Browsing by Author "Bu, Tongle"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access High performance perovskite sub-module with sputtered SnO2 electron transport layer(Elsevier, 2019-03-13) Bai, Guangfeng; Wu, Zhengli; Li, Jing; Bu, Tongle; Li, Wangnan; Li, Wei; Huang, Fuzhi; Zhang, Qi; Cheng, Yi-Bing; Zhong, JieHybrid perovskite solar cells (PSC) have gained stupendous achievement in single/tandem solar cell, semitransparent solar cell and flexible devices. Aiming for potential commercialization of perovskite photovoltaic technology, up scalable processing is crucial for all function layers in PSC. Herein we present a study on room temperature magnetron sputtering of tin oxide electron transporting layer (ETL) and apply it in a large area PSC for low cost and continues manufacturing. The SnO2 sputtering targets with varied oxygen and deposition models are used. Specifically, the working gas ratio of Ar/O2 during the radio frequency sputtering process plays a crucial role to obtain optimized SnO2 film. The sputtered SnO2 films demonstrate similar morphological and crystalline properties, but significant varied defect states and carrier transportation roles in the PSC devices. With further modification of thickness of SnO2, the PSCs based on sputtered SnO2 ETL shows a champion efficiency of 18.20% in small area and an efficiency of 14.71% in sub-module with an aperture area of 16.07 cm2, which is the highest efficiency of perovskite sub module with sputtered ETLs.Item Open Access Robust transparent superamphiphobic coatings on non-fabric flat substrates with inorganic adhesive titania bonded silica(Royal Society of Chemistry, 2017-04-03) Wen, Min; Zhong, Jie; Shuangjie, Zhao; Bu, Tongle; Guo, Le; Ku, Zhiliang; Peng, Yong; Huang, Fuzhi; Cheng, Yi-Bing; Zhang, QiThe technological implementation of superamphiphobic surfaces has been largely hindered by the stability issues caused by surface abrasion, corrosion, contamination, etc. Robustness still remains the major challenge for a well-performing superamphiphobic coating. In this study, the simple route of spraying inks containing pre-designed silica, cetyltrimethylammonium bromide (CTAB) and titanium diisopropoxide bis-2,4-pentanedionate (TAA) is presented to prepare micro–nanostructure films. The mechanical properties of the films are significantly strengthened by titania after the pyrogenic decomposition of TAA, and the films are able to withstand a standard 2H pencil scratching and sand flow impact. The as-made films exhibit excellent super-repellency to various liquids after treatment with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFTS). The static contact angles (SCAs) for water (surface tension 72.1 mN m−1) and dodecane (surface tension 25.3 mN m−1) can reach 166° ± 3° and 153° ± 3°, respectively. On controlling the thickness of the films, the optical transmittance of the films (400 nm thick) can come close to that of glass. Moreover, efficient photocatalytic decomposition of an organic substance attached on the surfaces is demonstrated; this decomposition enables the recovery of the superamphiphobic property of the contaminated films. Thus, the unique properties of robustness, transparency and self-healing, etc., combined with the relatively low cost fabrication, make these superamphiphobic coatings promising in various applications.Item Open Access The self-assembling growth of copper nanowires for transparent electrodes(Springer, 2019-02-18) Wu, Junqing; Guo, Le; Wen, Min; Bu, Tongle; Zhou, Peng; Zhong, Jie; Huang, Fuzhi; Zhang, QiLong (15 - 40 μm), thin (diameter of 20 ± 5 nm), and well-dispersed CuNWs Cu nanowires were prepared. The high-resolution TEM and selected area electron diffraction showed that the CuNWs were single-crystalline. To investigate the growth mechanism, we examined the microstructure of these CuNWs at different reaction time. It was found that the CuNWs were actually formed through the self-assembling of Cu nanoparticles along the [110] direction. The transparent electrodes fabricated using the CuNWs achieved a high transparency of 76 % at 31±5 Ω/□.