Browsing by Author "Bloomfield, J. P."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access A framework for a joint hydro-meteorological-social analysis of drought(Elsevier, 2016-11-11) Lange, Bettina; Holman, Ian P.; Bloomfield, J. P.This article presents an innovative framework for analysing environmental governance challenges by focusing on their Drivers, Responses and Impacts (DRI). It builds on and modifies the widely applied Drivers, Pressures, States, Impacts and Responses (DPSIR) model. It suggests, firstly and most importantly, that the various temporal and spatial scales at which Drivers, Responses and Impacts operate should be included in the DRI conceptual framework. Secondly, the framework focuses on Drivers, Impacts and Responses in order to provide a parsimonious account of a drought system that can be informed by a range of social science, humanities and science data. ‘Pressures’ are therefore considered as a sub-category of ‘Drivers’. ‘States’ are a sub-category of ‘Impacts’. Thirdly, and most fundamentally in order to facilitate cross-disciplinary research of droughts, the DRI framework defines each of its elements, ‘Drivers’, ‘Pressures’, ‘States’, ‘Impacts’ and ‘Responses’ as capable of being shaped by both linked natural and social factors. This is different from existing DPSIR models which often see ‘Responses’ and ‘Impacts’ as located mainly in the social world, while ‘States’ are considered to be states within the natural environment only. The article illustrates this argument through an application of the DRI framework to the 1976 and 2003–6 droughts. The article also starts to address how - in cross-disciplinary research that encompasses physical and social sciences – claims about relationships between Drivers as well as Impacts of and Responses to drought over time can be methodologically justified. While the DRI framework has been inductively developed out of research on droughts we argue that it can be applied to a range of environmental governance challenges.Item Open Access Identifying non-stationary groundwater level response to North Atlantic ocean- atmosphere teleconnection patterns using wavelet coherence(Springer Science Business Media, 2011-12-31T00:00:00Z) Holman, Ian P.; Rivas Casado, Monica; Bloomfield, J. P.; Gurdak, J. J.The first comprehensive use of wavelet methods to identify non-stationary time- frequency relations between North Atlantic ocean-atmosphere teleconnection patterns and groundwater levels is described. Long-term hydrogeological time series from three boreholes within different aquifers across the UK are analysed to identify statistically significant wavelet coherence between the North Atlantic Oscillation, East Atlantic pattern, and the Scandinavia pattern and monthly groundwater-level time series. Wavelet coherence measures the cross- correlation of two time series as a function of frequency, and can be interpreted as a correlation coefficient value. Results not only indicate that there are common statistically significant periods of multiannual-to-decadal wavelet coherence between the three teleconnection indices and groundwater levels in each of the boreholes, but they also show that there are periods when groundwater levels at individual boreholes show distinctly different patterns of significant wavelet coherence with respect to the teleconnection indices. The analyses presented demonstrate the value of wave- let methods in identifying the synchronization of groundwater-level dynamics by non-stationary climate variability on time scales that range from interannual to decadalItem Open Access Managing groundwater supplies subject to drought: An English perspective on current status and future priorities(Springer, 2020-10-23) Ascott, M. J.; Bloomfield, J. P.; Karapanos, I.; Jackson, C. R.; Ward, R. S.; McBride, A. B.; Dobson, B.; Kieboom, N.; Holman, Ian P.; Van Loon, A. F.; Crane, E. J.; Brauns, B.; Rodriguez-Yebra, A.; Upton, K. A.Effective management of groundwater resources during drought is essential. How is groundwater currently managed during droughts, and in the face of environmental change, what should be the future priorities? Four themes are explored, from the perspective of groundwater management in England (UK): (1) integration of drought definitions; (2) enhanced fundamental monitoring; (3) integrated modelling of groundwater in the water cycle; and (4) better information sharing. Whilst these themes are considered in the context of England, globally, they are relevant wherever groundwater is affected by drought.Item Open Access Using variograms to detect and attribute hydrological change(European Geosciences Union (EGU) - Copernicus Publications, 2015-05-12) Chiverton, Andrew; Hannaford, Jamie; Holman, Ian P.; Corstanje, Ronald; Prudhomme, Christel; Hess, Tim M.; Bloomfield, J. P.There have been many published studies aiming to identify temporal changes in river flow time series, most of which use monotonic trend tests such as the Mann–Kendall test. Although robust to both the distribution of the data and incomplete records, these tests have important limitations and provide no information as to whether a change in variability mirrors a change in magnitude. This study develops a new method for detecting periods of change in a river flow time series, using temporally shifting variograms (TSVs) based on applying variograms to moving windows in a time series and comparing these to the long-term average variogram, which characterises the temporal dependence structure in the river flow time series. Variogram properties in each moving window can also be related to potential meteorological drivers. The method is applied to 91 UK catchments which were chosen to have minimal anthropogenic influences and good quality data between 1980 and 2012 inclusive. Each of the four variogram parameters (range, sill and two measures of semi-variance) characterise different aspects of the river flow regime, and have a different relationship with the precipitation characteristics. Three variogram parameters (the sill and the two measures of semi-variance) are related to variability (either day-to-day or over the time series) and have the largest correlations with indicators describing the magnitude and variability of precipitation. The fourth (the range) is dependent on the relationship between the river flow on successive days and is most correlated with the length of wet and dry periods. Two prominent periods of change were identified: 1995–2001 and 2004–2012. The first period of change is attributed to an increase in the magnitude of rainfall whilst the second period is attributed to an increase in variability of the rainfall. The study demonstrates that variograms have considerable potential for application in the detection and attribution of temporal variability and change in hydrological systems.