CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bildik, Enver"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Development of reinforcement learning based mission planning method for active off-board decoys on naval platforms
    (AIAA, 2021-12-29) Bildik, Enver; Yuksek, Burak; Tsourdos, Antonios; Inalhan, Gokhan
    In this paper, a reinforcement learning-based decoy deployment strategy is proposed to protect naval platforms against radar seeker-equipped anti-ship missiles. The decoy system consists of a rotary-wing unmanned aerial vehicle (UAV) and an integrated onboard jammer. This decoy concept enables agility which is quite critical for jamming operations against a high-speed anti-ship missile. There are two main purposes of the developed jamming strategy; a) flying in the field of view of the anti-ship missile to conceal the naval platform, and b) flying away from the target ship to increase the miss distance between the anti-ship missile and naval platform. Here, it is aimed to meet these requirements simultaneously. Kinematics models are used to represent missile, decoy UAV, and target motion. Jammer and seeker signal strengths are modeled and the radar-cross section of a frigate is utilized to increase the realism of the simulation environment. Deep Deterministic Policy Gradient (DDPG) algorithm is applied to train an actor-critic agent which maps the observation parameters to decoy’s lateral acceleration. A heuristic way is chosen to create an appropriate reward function to solve the decoy guidance problem. Finally, simulations studies are performed to evaluate the system performance.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback