CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Beddows, R."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Comparative signal-to-noise analysis of fibre-optic based optical coherence tomography systems
    (Taylor & Francis, 2005-09-20T00:00:00Z) Ford, Helen D.; Beddows, R.; Casaubieilh, P.; Tatam, Ralph P.
    Several optical coherence tomography ( OCT) systems are proposed using optical. fibre components and based around Fizeau sensing interferometers. The theoretical signal- to- noise ratio ( SNR) is calculated for each of the proposed configurations, using a constant set of assumed values for illumination and detection parameters. The SNR values obtained are compared with values calculated for typical existing configurations based around Michelson interferometers. Fizeau- based systems incorporating a secondary processing interferometer offer the advantage over current interferometer configurations of down- lead insensitivity, which prevents signal fading and reduces thermal fringe drift. The most basic form of the Fizeau system makes inefficient use of optical power, and has a low SNR compared with the widely used Michelson configuration. However, the results of the analysis described in this paper show that the SNR for more sophisticated Fizeau configurations, incorporating optical circulators and balanced detection systems, can be as high as the value for the most sensitive existing fibre- based OCT systems. Fizeau configurations therefore offer the combined advantages of optimized SNR and down- lead insensitivity, indicating their suitability for use in relatively poorly controlled environments such as in- vivo measurements.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback