CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Batraev, Igor S."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Formation of TiC-Cu nanocomposites by a reaction between Ti25Cu75 melt-spun alloy and carbon
    (Elsevier, 2018-10-02) Dudina, Dina V.; Korchagin, Michail A.; Gavrilov, Alexander I.; Bulina, Natalia V.; Batraev, Igor S.; Esikov, Maksim A.; Georgarakis, Konstantinos; Kato, Hidemi
    In this work, Ti25Cu75 melt-spun partially amorphous alloy was used as a source of Ti and Cu to synthesize in-situ TiC-Cu nanocomposites. The reaction between the alloy and carbon started during ball milling and continued during Spark Plasma Sintering. At the same time, during ball milling, the alloy experienced phase transformations: crystallization of the amorphous phase was followed by decomposition of TiCu3. Copper crystallites formed during the alloy transformations were the reason for the presence of copper regions 0.5–1 µm in size free from TiC nanoparticles in the sintered composites. The Ti-Cu intermetallics transformed into non-agglomerated TiC 10–20 nm in size distributed in the copper matrix. The hardness of the synthesized TiC-Cu nanocomposites exceeded that of composites obtained by conventional sintering of ball-milled Ti-C-Cu powders.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Interaction between Fe66Cr10Nb5B19 metallic glass and aluminum during spark plasma sintering
    (Elsevier, 2020-08-28) Dudina, Dina V.; Bokhonov, Boris B.; Batraev, Igor S.; Amirastanov, Yusif N.; Ukhina, Arina V.; Kuchumova, Ivanna D.; Legan, Mikhail A.; Novoselov, Aleksey N.; Gerasimov, Konstantin B.; Bataev, Ivan A.; Georgarakis, Konstantinos; Koga, Guilherme Yuuki; Guo, Yaofeng; Botta, Walter José; Jorge, Alberto Moreira
    In the area of metal matrix composites, novel reinforcing options are currently being evaluated. Particles of amorphous alloys present an interesting possibility to reinforce soft metals. In the present work, the interaction between Fe66Cr10Nb5B19 metallic glass and aluminum during spark plasma sintering (SPS) was studied for the first time. In order to trace the phase and microstructural changes upon sintering, mixtures containing 20 vol% and 50 vol% of metallic glass were subjected to SPS at 500–570 °C. After SPS at 500 °C, no reaction layer between the metallic glass particles and aluminum was observed. After SPS at 570 °C, a reaction layer containing Fe2Al5 and FeAl3 formed around the Fe-based cores. The Vickers hardness of composites obtained from mixtures containing 20 vol% Fe66Cr10Nb5B19 at 540 °C was 75 HV and increased to 280 HV after sintering at 570 °C due to the formation of thicker reaction layers at the interface. The hardness of the composite sintered from the mixture containing 20 vol% Fe66Cr10Nb5B19 at 570 °C was between the values predicted by Reuss and Voigt models. Comparison of results of SPS of the powder mixtures with those of SPS of a pre-compacted pellet and electric current-free annealing suggests that local heating at the interface caused by interfacial resistance may be an important factor influencing the reaction advancement at the interface and the formation of Al-containing intermetallics
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Microstructure and mechanical properties of composites obtained by spark plasma sintering of Al–Fe66Cr10Nb5B19 metallic glass powder mixtures
    (MDPI, 2021-09-15) Dudina, Dina V.; Bokhonov, Boris B.; Batraev, Igor S.; Kvashnin, Vyacheslav I.; Legan, Mikhail A.; Novoselov, Aleksey N.; Anisimov, Alexander G.; Esikov, Maksim A.; Ukhina, Arina V.; Matvienko, Alexander A.; Georgarakis, Konstantinos; Koga, Guilherme Yuuki; Jorge, Alberto Moreira
    At present, metallic glasses are evaluated as alternative reinforcements for aluminum matrix composites. These composites are produced by powder metallurgy via consolidation of metallic glass-aluminum powder mixtures. In most studies, the goal has been to preserve the glassy state of the reinforcement during consolidation. However, it is also of interest to track the structure evolution of these composites when partial interaction between the matrix and the metallic glass is allowed during sintering of the mixtures. The present work was aimed to study the microstructure and mechanical properties of composites obtained by spark plasma sintering (SPS) of Al-20 vol.% Fe66Cr10Nb5B19 metallic glass mixtures and compare the materials, in which no significant interaction between the matrix and the Fe-based alloy occurred, with those featuring reaction product layers of different thicknesses. Composite materials were consolidated by SPS at 540 and 570 °C. The microstructure and mechanical properties of composites obtained by SPS and SPS followed by forging, composites with layers of interfacial reaction products of different thicknesses, and metallic glass-free sintered aluminum were comparatively analyzed to conclude on the influence of the microstructural features of the composites on their strength.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback