Browsing by Author "Azuazu, Ikeabiama Ndubuisi"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Challenges and opportunities for low-carbon remediation in the Niger Delta: towards sustainable environmental management(Elsevier, 2023-07-27) Azuazu, Ikeabiama Ndubuisi; Sam, Kabari; Campo, Pablo; Coulon, FredericThere is increasing demand for low-carbon remediation strategies for reducing greenhouse gas emissions and promoting sustainable development in the management of environmental contamination. This trend is within the broader context of sustainable remediation strategies that balance environmental, economic, and social aspects. This article critically reviewed existing literature to evaluate and compare various low-carbon remediation methods, such as bioremediation, phytoremediation, in situ chemical oxidation, soil vapour extraction, and electrokinetic remediation, to identify suitable techniques for the remediation of oil-contaminated sites in the Niger Delta region of Nigeria. We analysed the UK sustainable remediation frameworks (SuRF-UK) to glean lessons for the Nigerian context. Our findings indicate that bioremediation and phytoremediation are particularly promising low-carbon remediation technologies for the Niger Delta region due to their cost-effectiveness and adaptability to local conditions. We proposed a framework that deeply considers opportunities for achieving multiple goals including effective remediation and limited greenhouse gas emissions while returning net social and economic benefit to local communities. The proposed framework will help decision makers to implement effective remediation technologies that meet sustainability indices, integrates emissions considerations return net environmental benefit to local communities. There is a need for policymakers to establish and enforce policies and regulations that support sustainable remediation practises, build the capacity of stakeholders, invest in research and development, and promote collaboration among stakeholders to create a regulatory environment that supports sustainable remediation practises and promotes environmental sustainability in the region. This study provides insights for achieving low-carbon remediation in regions addressing land contamination by different contaminants and facilitates the adoption of remediation technologies that consider contextual socio-economic and environmental indices for sustainable development.Item Open Access Enhancing natural attenuation for oil-contaminated soils using a combination of low-carbon bioengineered approaches.(Cranfield University, 2023-08) Azuazu, Ikeabiama Ndubuisi; Coulon, Frederic; Campo, PabloThis thesis presents an extensive study aimed at optimising natural attenuation for oil- contaminated soils by employing a combination of low-carbon bioremediation strategies. Responding to the urgent need for sustainable remediation practices, this work systematically evaluates the efficiency of bioremediation techniques, focusing on their potential implementation in the Niger Delta, a region severely impacted by oil contamination. An initial review identified bioremediation and bioadmendment with compost or biochar as effective low-carbon strategies, tailored to the unique conditions of the Niger Delta. An elaborate laboratory investigation of diverse biostimulation strategies subsequently confirmed the superior efficiency of combined treatments over singular approaches. Notably, integrating oxygen-release compounds (ORC) with food waste compost significantly enhanced microbial activities, accelerating the degradation of total petroleum hydrocarbons (TPH). Further exploration revealed the benefits of bioaugmentation with biochar for managing recurring spills. The combination of wheat straw biochar and specific bacterial strains resulted in markedly higher remediation efficiency in recurrently contaminated soil, underscoring the crucial role and adaptability of microbial communities in such scenarios. To streamline decision-making processes, a decision tree framework based on the Analytical Hierarchy Process (AHP) was developed. This tool assesses the techno-economic and sustainability aspects of the proposed remediation strategies. The decision tool highlights that the use of ORC with compost, and wheat straw biochar augmented with Pseudomonas aeruginosa and Bacillus sonorensis holds substantial promise. However, it underscores the importance of comprehensive site assessments, drawing attention to potential constraints in diverse environmental contexts. This research offers novel insights into refining bioremediation techniques and paves the way for future advancements in this critical field. The findings could guide the development of more efficacious, sustainable, and cost-effective remediation strategies for oil- contaminated soils, with continued refinement and application anticipated.