CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Awasthi, Mukesh Kumar"

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Current state of the art biotechnological strategies for conversion of watermelon wastes residues to biopolymers production: a review
    (Elsevier, 2021-12-14) Awasthi, Mukesh Kumar; Kumar, Vinay; Yadav, Vivek; Sarsaiya, Surendra; Awasthi, Sanjeev Kumar; Sindhu, Raveendran; Binod, Parameswaran; Kumar, Vinod; Pandey, Ashok; Zhang, Zengqiang
    Poly-3-hydroxyalkanoates (PHA) are biodegradable and compostable polyesters. This review is aimed to provide a unique approach that can help think tanks to frame strategies aiming for clean technology by utilizing cutting edge biotechnological advances to convert fruit and vegetable waste to biopolymer. A PHA manufacturing method based on watermelon waste residue that does not require extensive pretreatment provides a more environmentally friendly and sustainable approach that utilizes an agricultural waste stream. Incorporating fruit processing industry by-products and water, and other resource conservation methods would not only make the manufacturing of microbial bio-plastics like PHA more eco-friendly, but will also help our sector transition to a bioeconomy with circular product streams. The final and most critical element of this review is an in-depth examination of the several hazards inherent in PHA manufacturing.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    High level xylitol production by Pichia fermentans using non-detoxified xylose-rich sugarcane bagasse and olive pits hydrolysates
    (Elsevier, 2021-09-22) Narisetty, Vivek; Castro, Eulogio; Durgapal, Sumit; Coulon, Frederic; Jacob, Samuel; Kumar, Dinesh; Awasthi, Mukesh Kumar; Pant, Kamal Kishore; Parameswaran, Binod; Kumar, Vinod
    Hemicellulosic sugars, the overlooked fraction of lignocellulosic residues can serve as potential and cost-effective raw material that can be exploited for xylitol production. Xylitol is a top platform chemical with applications in food and pharmaceutical industries. Sugarcane bagasse (SCB) and olive pits (OP) are the major waste streams from sugar and olive oil industries, respectively. The current study evaluated the potential of Pichia fermentans for manufacturing of xylitol from SCB and OP hydrolysates through co-fermentation strategy. The highest xylitol accumulation was noticed with a glucose and xylose ratio of 1:10 followed by feeding with xylose alone. The fed-batch cultivation using pure xylose, SCB, and OP hydrolysates, resulted in xylitol accumulation of 102.5, 86.6 and 71.9 g/L with conversion yield of 0.78, 0.75 and 0.74 g/g, respectively. The non-pathogenic behaviour and ability to accumulate high xylitol levels from agro-industrial residues demonstrates the potential of P. fermentans as microbial cell factory.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Lignocellulose in future biorefineries: strategies for cost-effective production of biomaterials and bioenergy
    (Elsevier, 2021-10-28) Reshmy, R.; Philip, Eapen; Madhavan, Aravind; Sirohi, Ranjna; Pugazhendhi, Arivalagan; Binod, Parameswaran; Awasthi, Mukesh Kumar; Vivek, Narisetty; Kumar, Vinod; Sindhu, Raveendran
    Lignocellulosic biomass has been emerging as a biorefinery precursor for variety of biofuels, platform chemicals and biomaterials because of its specific surface morphology, exceptional physical, chemical and biological characteristics. The selection of proper raw materials, integration of nano biotechnological aspects, and designing of viable processes are important to attain a cost-effective route for the development of valuable end products. Lignocellulose-based materials can prove to be outstanding in terms of techno-economic viability, as well as being environmentally friendly and reducing effluent load. This review should facilitate the identification of better lignocellulosic sources, advanced pretreatments, and production of value-added products in order to boost the future industries in a cleaner and safer way.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Myco-biorefinery approaches for food waste valorization: Present status and future prospects
    (Elsevier, 2022-07-09) Awasthi, Mukesh Kumar; Harirchi, Sharareh; Sar, Taner; VS, Vigneswaran; Rajendran, Karthik; Gómez-García, Ricardo; Hellwig, Coralie; Binod, Parameswaran; Sindhu, Raveendran; Madhavan, Aravind; Kumar, A.N. Anoop; Kumar, Vinod; Kumar, Deepak; Zhang, Zengqiang; Taherzadeh, Mohammad J.
    Increases in population and urbanization leads to generation of a large amount of food waste (FW) and its effective waste management is a major concern. But putrescible nature and high moisture content is a major limiting factor for cost effective FW valorization. Bioconversion of FW for the production of value added products is an eco-friendly and economically viable strategy for addressing these issues. Targeting on production of multiple products will solve these issues to greater extent. This article provides an overview of bioconversion of FW to different value added products.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Organic waste recycling for carbon smart circular bioeconomy and sustainable development: a review
    (Elsevier, 2022-07-15) Awasthi, Mukesh Kumar; Yan, Binghua; Sar, Taner; Gómez-García, Ricardo; Ren, Liheng; Sharma, Pooja; Binod, Parameswaran; Sindhu, Raveendran; Kumar, Vinod; Kumar, Deepak; Mohamed, Badr A.; Zhang, Zengqiang; Taherzadeh, Mohammad J.
    The development of sustainable and low carbon impact processes for a suitable management of waste and by-products coming from different factors of the industrial value chain like agricultural, forestry and food processing industries. Implementing this will helps to avoid the negative environmental impact and global warming. The application of the circular bioeconomy (CB) and the circular economic models have been shown to be a great opportunity for facing the waste and by-products issues by bringing sustainable processing systems which allow to the value chains be more responsible and resilient. In addition, biorefinery approach coupled to CB context could offer different solution and insights to conquer the current challenges related to decrease the fossil fuel dependency as well as increase efficiency of resource recovery and processing cost of the industrial residues. It is worth to remark the important role that the biotechnological processes such as fermentative, digestive and enzymatic conversions play for an effective waste management and carbon neutrality.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Process optimization for recycling of bread waste into bioethanol and biomethane: a circular economy approach
    (Elsevier, 2022-05-28) Narisetty, Vivek; Nagarajan, Sanjay; Gadkari, Siddharth; Ranade, Vivek V.; Zhang, Jingxin; Patchigolla, Kumar; Bhatnagar, Amit; Awasthi, Mukesh Kumar; Pandey, Ashok; Kumar, Vinod
    Bread is the second most wasted food in the UK with annual wastage of 292,000 tons. In the present work, bread waste (BW) was utilized for fermentative production of ethanol by Saccharomyces cerevisiae KL17. Acidic and enzymatic saccharification of BW was carried out resulting in the highest glucose release of 75 and 97.9 g/L which is 73.5 and 95.9% of theoretical yield, respectively. The obtained sugars were fermented into ethanol initially in shake flask followed by scale up in bioreactor in batch and fed-batch mode. In the fed-batch mode of cultivation, the maximum ethanol titers of 111.3, 106.9, and 114.9 g/L with conversion yield and productivity of 0.48, 0.47, and 0.49 g/g, and 3.1, 3.0, and 3.2 g/L.h was achieved from pure glucose, glucose-rich acidic and enzymatic hydrolysates, respectively. Further to improve the process economics, the solid residues after acidic (ABW) and enzymatic (EBW) hydrolysis of BW along with respective fermentation residues (FR) obtained after the ethanol production were pooled and subjected to anaerobic digestion. The solid residue from ABW + FR, and EBW + FR yielded a biochemical methanation potential (BMP) of 345 and 379 mL CH4/g VS, respectively. Life cycle assessment of the process showed that the total emissions for ethanol production from BW were comparable to the emissions from more established feedstocks such as sugarcane and maize grain and much lower when compared to wheat and sweet potato. The current work demonstrates BW as promising feedstock for sustainable biofuel production with the aid of circular biorefining strategy. To the authors knowledge, this is the first time, such a sequential system has been investigated with BW for ethanol and biomethane production. Further work will be aimed at ethanol production at pilot scale and BMP will be accessed in a commercial anaerobic digester.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback