Browsing by Author "Anthony, Edward J."
Now showing 1 - 20 of 92
Results Per Page
Sort Options
Item Open Access Applying machine learning algorithms in estimating the performance of heterogeneous, multi-component materials as oxygen carriers for chemical-looping processes(Elsevier, 2020-01-09) Yan, Yongliang; Mattisson, Tobias; Moldenhauer, Patrick; Anthony, Edward J.; Clough, Peter T.Heterogeneous, multi-component materials such as industrial tailings or by-products, along with naturally occurring materials, such as ores, have been intensively investigated as candidate oxygen carriers for chemical-looping processes. However, these materials have highly variable compositions, and this strongly influences their chemical-looping performance. Here, using machine learning techniques, we estimate the performance of heterogeneous, multi-component materials as oxygen carriers for chemical-looping. Experimental data for 19 manganese ores chosen as potential chemical-looping oxygen carriers were used to create a so-called training database. This database has been used to train several supervised artificial neural network models (ANN), which were used to predict the reactivity of the oxygen carriers with different fuels and the oxygen transfer capacity with only the knowledge of reactor bed temperature, elemental composition, and mechanical properties of the manganese ores. This novel approach explores ways of dealing with the training dataset, learning algorithms and topology of ANN models to achieve enhanced prediction precision. Stacked neural networks with a bootstrap resampling technique have been applied to achieve high precision and robustness on new input data, and the confidence intervals were used to assess the precision of these predictions. The current results indicate that the best trained ANNs can produce highly accurate predictions for both the training database and the unseen data with the high coefficient of determination (R2 = 0.94) and low mean absolute error (MAE = 0.057). We envision that the application of these ANNs and other machine learning algorithms will accelerate the development of oxygen carrying materials for a range of chemical-looping applications and offer a rapid screening tool for new potential oxygen carriers.Item Open Access Attrition study of cement-supported biomass-activated calcium sorbents for CO2 capture(American Chemical Society, 2016-08-19) Duan, Lunbo; Yu, Zhijian; Erans Moreno, Maria; Li, Yingjie; Manovic, Vasilije; Anthony, Edward J.Enhanced CO2 capacity of biomass modified Ca-based sorbent has been reported recently, but undesired attrition resistance has also been observed. Cement was used as a support for biomass-activated calcium sorbent during the granulation process in this study, in order to improve the poor mechanical resistance. Attrition tests were carried out in an apparatus focused on impact breakage to evaluate how the biomass addition and cement support influence the particle strength during Ca-looping. Results showed biomass addition impaired the mechanical strength and cement support could improve it, which is reflected by the breakage probability and size change after impact of pellets experienced calcination and multiple calcination/carbonation cycles. Larger-sized particles suffered more intense attrition. The mechanical strength of sorbents declined significantly after higher temperature calcination but increased after carbonation. After multiple cycles, the mechanical strength of particles was greatly enhanced, but more cracks emerged. A semi-empirical formula for calculating average diameter after attrition based on Rittinger’s surface theory was developed. Observation on the morphology of particles indicated that particles with more porosity and cracks were more prone to breakage.Item Open Access A calcium looping process for simultaneous CO2 capture and peak shaving in a coal-fired power plant(Elsevier, 2018-11-09) Zhou, Linfei; Duan, Lunbo; Anthony, Edward J.CO2 capture and peak shaving are two of the main challenges for coal-fired power plants in China. This paper proposed a calcium looping (CaL) combustion system with cryogenic O2 storage for simultaneous flue gas decarbonization and peak shaving for a 1000 MWe coal-fired power plant. The philosophy of this concept is that: (1) the boiler always operates at maximum continuous rating (MCR) to ensure the highest boiler efficiency; (2) during off-peak times, the excess energy output from coal combustion is used to provide heat for the calciner and produce pure oxygen for energy storage; (3) at peak times, the O2 produced is used to capture CO2 in the flue gas via the CaL process and reduce the CO2 abatement penalty; and (4) any excess O2 is treated as a by-product for commercial utilization. The whole system was simulated in Aspen Plus® which shows that the net electric efficiency of the proposed system without cryogenic O2 storage system is 35.52%LHV (LHV, low heating value), while that of the conventional CaL system is 34.54%LHV. The proposed system can reduce the methane consumption rate by 38.5 t/h when methane is used as fuel in the calciner. Including the cryogenic O2 storage system, the peaking capability of the proposed system can range from 534.6 MWe to 1041 MWe. Correspondingly, the net electric efficiency is improved from 18.98%LHV to 36.97%LHV. Increasing the rate of oxygen production can reduce the minimum net power output to lower than 534.6 MWe. The peaking capability can be regulated by the rate of oxygen production where excess oxygen serves as a byproduct.Item Open Access Calcium looping sorbents for CO2 capture(Elsevier, 2016-08-12) Erans Moreno, Maria; Manovic, Vasilije; Anthony, Edward J.Calcium looping (CaL) is a promising technology for the decarbonation of power generation and carbon-intensive (cement, lime and steel) industries. Although CaL has been extensively researched, some issues need to be addressed before deployment of this technology at commercial scale. One of the important challenges for CaL is decay of sorbent reactivity during capture/regeneration cycles. Numerous techniques have been explored to enhance natural sorbent performance, to create new synthetic sorbents, and to re-activate and re-use deactivated material. This review provides a critical analysis of natural and synthetic sorbents developed for use in CaL. Special attention is given to the suitability of modified materials for utilisation in fluidised-bed systems. Namely, besides requirements for a practical adsorption capacity, a mechanically strong material, resistant to attrition, is required for the fluidised bed CaL operating conditions. However, the main advantage of CaL is that it employs a widely available and inexpensive sorbent. Hence, a compromise must be made between improving the sorbent performance and increasing its cost, which means a relatively practical, scalable, and inexpensive method to enhance sorbent performance, should be found. This is often neglected when developing new materials focusing only on very high adsorption capacity.Item Open Access Carbon capture and storage (CCS): the way forward(Royal Society of Chemistry, 2018-03-12) Bui, Mai; Adjiman, Claire S.; Bardow, André; Anthony, Edward J.; Boston, Andy; Brown, Solomon; Fennell, Paul S.; Fuss, Sabine; Galindo, Amparo; Hackett, Leigh A.; Hallett, Jason P.; Herzog, Howard J.; Jackson, George; Kemper, Jasmin; Krevor, Samuel; Maitland, Geoffrey C.; Matuszewski, Michael; Metcalfe, Ian S.; Petit, Camille; Puxty, Graeme; Reimer, Jeffrey; Reiner, David M.; Rubin, Edward S.; Scott, Stuart A.; Shah, Nilay; Smit, Berend; Trusler, J. P. Martin; Webley, Paul; Wilcoxx, Jennifer; Mac Dowell, NiallCarbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets, delivering low carbon power, decarbonising industry and, more recently, its ability to facilitate the net removal of CO2 from the atmosphere. However, despite this broad consensus and technical maturity, CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus, in this paper we review the current state-of-the-art of CO2 capture, transport, utilisation and storage from a multi-scale perspective, moving from the global to molecular scales. In light of the COP21 commitments to limit warming to less than 2 C, we extend the remit of this study to include the key negative emissions technologies (NETs) of bioenergy with CCS (BECCS), and direct air capture (DAC). Cognisant of the non-technical barriers to deploying CCS, we capitalise on recent experience from the UK’s CCS commercialisation programme and consider the commercial and political barriers to the largescale deployment of CCS. In all areas, we focus on identifying and clearly articulating the key research challenges that could usefully be addressed in the coming decade.Item Open Access Characterization of solid char produced from pyrolysis of the organic fraction of municipal solid waste, high volatile coal and their blends(Elsevier, 2019-11-22) Tokmurzin, Diyar; Kuspangaliyeva, Botagoz; Aimbetov, Berik; Abylkhani, Bexultan; Inglezakis, Vassilis J.; Anthony, Edward J.; Sarbassov, YerbolIn this study, the organic fraction of municipal solid waste (Org-MSW) was blended with high-volatile coal (HVC) in proportions of 25/75%, 50/50%, 75/25% by weight. Pyrolysis of these mixtures was then investigated in a thermogravimetric analyzer (TGA) and a horizontal tube furnace under a nitrogen environment. The mass loss rate of samples, differential thermogravimetry (DTG) curves and kinetic analysis of the samples were compared for both blended and non-blended samples. Higher gas yields were seen with increasing pyrolysis temperature for both samples. In addition, the kinetic analysis indicated that the apparent activation energy values of org-MSW samples varied from 535 to 5284 kJ/kmol (over the temperature range of 100–887 °C), while the values for HVC were 247–962 kJ/kmol. The activation energy for HVC varied with temperature and the highest value of 2036 kJ/kmol was found in the temperature range of 336–490 °C. Comparable results were obtained between the TGA and fixed bed tests on the residual char fraction. The findings of this work will be very important in developing a co-firing technology for solid waste residuals and coal for energy production.Item Open Access Characterization of tar generated from the mixture of municipal solid waste and coal pyrolysis at 800 oC(Elsevier, 2020-03-02) Tursunov, O.; Suleimenova, B.; Kuspangaliyeva, Botagoz; Inglezakis, Vassilis J.; Anthony, Edward J.; Sarbassov, YerbolNowadays, comprehensive perception of the tar characteristics generated from municipal solid waste (MSW) and coal to guide pyrolysis or gasification gas yield upgrading and cleaning has attracted massive research attention. In this study, MSW and coal samples were chosen as principal components. The mixture of these products was pyrolyzed in a horizontal tube furnace at 800 °C with a heating rate of 20 °C/min. The tar derived from the pyrolysis of this mixture was further studied. Gas chromatography–mass spectrometry (GC–MS)coupled with a trace GC and a nuclear magnetic resonance (NMR) spectrometer was applied to investigate the tar composition and characterization along with their molecular chemical structures. 1H and 13C NMR spectra indicated that the functional groups of the tar derived from the mixture of MSW and coal were dominant at the resonances of 0.9–1.8 ppm, 1.5–2.6 ppm and 3.8–4.1 ppm for 1H, 10–40 ppm and 60–80 ppm for 13C. The results from GC–MS showed that the tar derived from the mixture of MSW and coal contained about 20 major chemical compounds such as benzene, methyl isobutyl, toluene, xylene, phenol, cresol, naphthalene and others.Item Open Access CO2 capture and attrition performance of competitive eco-friendly calcium-based pellets in fluidized bed(Wiley, 2018-11-15) Su, Chenglin; Duan, Lunbo; Anthony, Edward J.A system incorporating spent bleaching clay (SBC) into the calcium looping (CaL) process has been proposed. In this paper, prepared sorbents doped with regenerated SBC and cement were tested in a bubbling fluidized bed (BFB) to examine in detail their cyclic CO2 capture capacity and attrition properties. The results revealed that the cyclic CO2 capture capacity of pellets modified by pyrolyzed SBC and/or cement showed significantly better performance than limestone, which is consistent with the thermogravimetric analyzer (TGA) results. This is due to the improvement of pore structure and enhanced sintering resistance created by adding support materials to the sorbent. The elutriation rates of the composites prepared with pyrolyzed SBC and/or cement were consistently lower than for crushed limestone. Scanning electron microscopy (SEM) images indicated that the pellets possessed higher sphericity than limestone particles, thus reducing surface abrasion. Limestone exhibited a high attrition rate (diameter reduction rate) of 10.7 μm/cycle, which could be eliminated effectively by adding regenerated SBC and/or cement. ‘L‐5PC‐10CA’ (85% lime/5% pyrolyzed SBC/10% cement) exhibited an attrition rate of only 7.9 μm/cycle. Based on the analysis of breakage and probability density function (PDF) for particle size distribution, it appeared that pellets without cement experienced breakage (mostly chipping and disintegration) and surface abrasion, whereas ‘L‐10CA’ (90% lime/10% cement) and ‘L‐5PC‐10CA’ mainly suffered surface abrasion, combined with some chipping.Item Open Access CO2 capture performance of calcium-based synthetic sorbent with hollow core-shell structure under calcium looping conditions(Elsevier, 2018-05-15) Ma, Xiaotong; Li, Yingjie; Duan, Lunbo; Anthony, Edward J.; Liu, HantaoA novel calcium-based synthetic CO2 sorbent with hollow core-shell structure was prepared by a carbon microsphere template route where carbide slag, alumina cement and glucose were employed as the low-cost calcium precursor, support and carbon source, respectively. The effects of the alumina cement addition, the pre-calcination temperature during the preparation process, the carbon template addition and calcination conditions on CO2 capture performances of the calcium-based synthetic sorbents were studied during calcium looping cycles. The synthetic sorbent containing 5 wt.% alumina cement possesses the highest CO2 capture capacity during calcium looping cycles, which is mainly composed of CaO and Ca12Al14O33. The CO2 capture capacities of the synthetic sorbent under mild and severe calcination conditions can retain 0.37 and 0.29 g/g after 20 cycles, which are 57% and 99% higher than those of carbide slag under the same conditions, respectively. The synthetic sorbent possesses a hollow micro-sphere morphology with a nano-structured shell and meso-porous structure, which decreases the diffusion resistance of CO2. Periodic density functional theory (DFT) calculations are used to explain why Ca12Al14O33 can effectively retard both agglomeration and sintering of the synthetic sorbent. The hollow core-shell model is proposed to explain the CO2 capture mechanism of the synthetic sorbent. For the same CO2 capture efficiency, the energy consumption in the calciner using the synthetic sorbent is much lower than those using carbide slag and natural limestone. This work designs a good method to prepare the hollow sphere-structured synthetic sorbents with high CO2 capture capacity and provides a promising way to integrate efficient CO2 capture with the utilization of industrial waste.Item Open Access CO2 capture performance of gluconic acid-modified limestone-dolomite mixtures under realistic conditions(ACS, 2019-07-10) Wang, Ke; Gu, Feng; Clough, Peter T.; Zhao, Pengfei; Anthony, Edward J.Calcium Looping (CaL) technology has become one of the most attractive ways to capture CO2 from fossil fuel power plants. However, with increasing numbers of cyclic reactions, the CO2 capture capacity rapidly decreases. To address this shortcoming, limestone-dolomite mixtures modified by gluconic acid were explored to prepare highly effective, MgO-stabilized, CaO sorbents that exhibited a high and stable CO2 capture capacity over multiple cycles. The sorbents were all tested over 10 carbonation-calcination cycles and were performed under realistic CaL conditions (calcination in a high CO2 concentration). The results of this research have demonstrated that the inhomogeneous composition that occurs between CaO and MgO - caused by the small CaO crystallite size, porous texture, nanosheet (~100 nm thick) morphology - provides sufficient void space for the volume expansion during carbonation to mitigate the effects of repeated cycle sintering and retain structural stability. A MgO content as low as 10 mol% was able to ensure a superior CO2 capture performance with a fast carbonation rate, high CO2 carrying capacities and remarkable stability. Furthermore, these sorbents retained a conversion (above 90%) over multiple cycles following a recarbonation stepItem Open Access CO2 capture performance using biomass-templated cement-supported limestone pellets(American Chemical Society, 2016-09-09) Duan, Lunbo; Su, Chenglin; Erans Moreno, Maria; Li, Yingjie; Anthony, Edward J.; Chen, HuichaoSynthetic biomass-templated cement-supported CaO-based sorbents were produced by granulation process for high-temperature post-combustion CO2 capture. Commercial flour was used as the biomass and served as a templating agent. The investigation of porosity showed that the pellets with biomass or cement resulted in enhancement of porosity. Four types of sorbents containing varying proportions of biomass and cement were subject to 20 cycles in a TGA under different calcination conditions. After first series of tests calcined at 850 °C in 100% N2, all composite sorbents clearly exhibited higher CO2 capture activity compared to untreated limestone with exception of sorbents doped by seawater. The biomass-templated cement-supported pellets exhibited the highest CO2 capture level of 46.5% relative to 20.8% for raw limestone after 20 cycles. However, the observed enhancement in performance was substantially reduced under 950 °C calcination condition. Considering the fact that both sorbents supported by cement exhibited relatively high conversion with a maximum value of 19.5%, cement promoted sorbents appear to be better at resisting of harsh calcination conditions. Although flour as biomass-templated material generated significantly enhancement in CO2 capture capacity, further exploration must be carried out to find the way of maintaining outstanding performance for CaO-based sorbents under severe reaction conditions.Item Open Access CO2/SO2 emission reduction in CO2 shipping infrastructure(Elsevier, 2019-06-04) Awoyomi, Adeola; Patchigolla, Kumar; Anthony, Edward J.There is an increased focus on the reduction of anthropogenic emissions of CO2 by means of CO2 capture processes and storage in geological formations or for enhanced oil recovery. The necessary link between the capture and storage processes is the transport system. Ship-based transport of CO2 is a better option when distances exceed 350 km compared to an offshore pipeline and offers more flexibility for transportation, unlike pipelines which require a continuous flow of compressed gas. Several feasibility studies have been undertaken to ascertain the viability of large-scale transportation of CO2 by shipping in terms of the liquefaction process, and gas conditioning, but limited work has been done on reducing emissions from the ship’s engine combustion. From 2020, ships operating worldwide will be required to use fuels with 0.5% or lower sulphur content (versus 3.5% now) or adopt adequate measures to reduce these emissions. This study explores the use of the solvent-based post-combustion carbon capture and storage (CCS) process for CO2 and SO2 capture from a typical CO2 carrier. A rate-based aqueous ammonia process model was developed, validated, then scaled up and modified to process flue gas from a Wartsila 9L46 F marine diesel engine. Different modes of operation of the carrier were analysed and the most efficient mode to operate the CCS system is during sailing. The heat recovered from the flue gas was used for solvent regeneration. A sensitivity study revealed that the 4 MWth supplied by the “waste heat recovery” system was enough to achieve a CO2 capture level of 70% at a solvent recirculation flowrate of 90–100 kg/s. The removal of SO2 by the ammonia water solution was above 95% and this led to the possibility of producing a value-added product, ammonium sulphate. The boil-off gas and captured emitted CO2 were recovered using a two-stage re-liquefaction cycle and re-injected into the cargo tanks, thereby reducing extra space requirements on the ship.Item Open Access Combined calcium looping and chemical looping combustion for post‐combustion carbon dioxide capture: process simulation and sensitivity analysis(Wiley, 2016-05-24) Duhoux, Benoit; Mehrani, Poupak; Lu, Dennis Y.; Symonds, Robert T.; Anthony, Edward J.; Macchi, ArturoIn this work, a combined calcium looping and chemical looping combustion (CaL--CLC) technology is simulated at thermodynamic equilibrium conditions and the results in terms of efficiency, power production, and solids circulation rates are compared with the case of using CaL alone. In addition, a new solids looping configuration in the CaL--CLC process is proposed with the purpose of mitigating the loss of calcium oxide conversion after high cycle numbers. Simulations show an improved process efficiency of the CaL--CLC method compared with CaL alone (34.2 vs. 31.2 % higher heat value) and an increased power output (136 vs. 110 MWe additional power) due to the higher energy requirement to preheat the reactants. A sensitivity analysis of the process operating parameters highlights the particular importance of the temperature difference between reactors, which has a strong impact on the required mass of solids circulating in the loops. Finally, partial carbon dioxide capture scenarios are considered and indicate that lower capture levels are suitable to match regulation targets.Item Open Access The combined effect of H2O and SO2 on the simultaneous calcination/sulfation reaction in CFBs(Wiley, 2019-01-10) Chen, Liang; Wang, Chunbo; Zhao, Fan; Zou, Chan; Anthony, Edward J.The combined effect of H2O and SO2 on the reaction kinetics and pore structure of limestone during simultaneous calcination/sulfation reactions under circulating fluidized bed (CFB) conditions was first studied in a constant‐temperature reactor. H2O can accelerate the sulfation reaction rate in the slow‐sulfation stage significantly but has a smaller effect in the fast‐sulfation stage. H2O can also accelerate the calcination of CaCO3, and should be considered as a catalyst, since the activation energy for the calcination reaction was lower in the presence of H2O. When the limestone particles are calcining, SO2 in the flue gas can react with CaO on the outer particle layer and the resulting CaSO4 blocks the CaO pores, increases the diffusion resistance of CO2 and, in consequence, decreases the calcination rate of CaCO3. Here, gases containing 15% H2O and 0.3% SO2 are shown to increase the calcination rate. This means that the accelerating effect of 15% H2O on CaCO3 decomposition is stronger than the impeding effect caused by 0.3% SO2. The calcination rate of limestone particles was controlled by both the intrinsic reaction and the CO2 diffusion rate in the pores, but the intrinsic reaction rate played a major role as indicated by the effectiveness factors determined in this work. This may explain the synergic effect of H2O and SO2 on CaCO3 decomposition observed here. Finally, the effect of H2O and SO2 on sulfur capture in a 600 MWe CFB boiler burning petroleum coke is also analyzed. The sulfation performance of limestone evaluated by simultaneous calcination/sulfation is shown to be much higher than that by sulfation of CaO. Based on our calculations, a novel use of the wet flue gas recycle method was put forward to improve the sulfur capture performance for high‐sulfur, low‐moisture fuels such as petroleum coke.Item Open Access Combustion characteristics of lignite char in a fluidized bed under O2/N2, O2/CO2 and O2/H2O atmospheres(Elsevier, 2018-12-21) Li, Lin; Duan, Lunbo; Tong, Shuai; Anthony, Edward J.As a possible new focus of oxy-fuel work, O2/H2O combustion has many advantages over O2/CO2 combustion, and has gradually gained increasing attention. The unique physicochemical properties (thermal capacity, diffusivity, reactivity) of H2O significantly influence the char combustion characteristics. In the present work, the combustion and kinetics characteristics of lignite char particle were studied in a fluidized bed (FB) reactor under N2, CO2 and H2O atmospheres with different O2 concentrations (15%–27%) and bed temperatures (Tb, 837–937 °C). Results indicated that the average reaction rate (raverage) and the peak reaction rate (rpeak) of lignite char in H2O atmospheres were slower than those in CO2 atmospheres at low O2 concentrations. However, as the O2 concentration increases, the rpeak and raverage of lignite char in H2O atmospheres significantly improved and exceeded those under CO2 atmospheres. The calculation result for the activation energy based on the shrinking-core model showed that the order of activation energy under different atmospheres is: O2/CO2 (28.96 kJ/mol) > O2/H2O (26.11 kJ/mol) > O2/N2 (23.31 kJ/mol). Furthermore, gasification reactions play an important role in both O2/CO2 and O2/H2O combustion, and should not be ignored. As the Tb increased, the active sites occupied by gasification agent were significantly increased, while the active sites occupied by oxygen decreased correspondingly.Item Open Access A comprehensive review of pre-and post-treatment approaches to achieve sustainable desalination for different water streams(Elsevier, 2023-09-09) Poirier, Kristofer; Lotfi, Mohsen; Garg, Kapil; Patchigolla, Kumar; Anthony, Edward J.; Faisal, Nadimul Haque; Mulgundmath, Vinay; Sahith, Jai Krishna; Jadhawar, Prashant; Koh, Liam; Morosuk, Tatiana; Al Mhanna, NajahDesalination is an energy intensive process requiring adequate pre- and post- treatment. The novelty of this paper is that it jointly reviews the technologies for pre-treatment, desalination and post-treatment and bridges the gap between them while comparing the treatment methods needed depending on the type of feed water including seawater, brackish water, municipal and industrial wastewater. Those different streams show wide variability, sometimes containing organics, oil or scaling precursors which require adequate treatment. Nowadays, membrane pre-treatment methods have become promising alternatives to conventional pre-treatment techniques thanks to their flexibility. Hybrid desalination technologies have shown great potential in reducing energy consumption. Moreover, desalination plants produce large quantities of brines which require post-treatment to reduce environmental impacts. Current research on post-treatment is looking into recovering salts, metals and potable water from brines to achieve zero liquid discharge (ZLD). Thermal-based ZLD technologies are capable of extracting those resources while membrane-based ZLD methods are mostly limited to pre-concentration and water recovery due to fouling issues. Several studies have shown that ZLD systems can lower the cost of water and increase profitability if crystals and water are recovered and sold for additional revenue.Item Open Access Copper-based oxygen carriers supported with alumina/lime for the chemical looping conversion of gaseous fuels(Elsevier, 2017-07-29) Haider, Syed K.; Erans Moreno, Maria; Donat, Felix; Duan, Lunbo; Scott, Stuart A.; Manovic, Vasilije; Anthony, Edward J.Copper (II) oxide in varying ratios was combined with either an alumina-based cement (Al300), or CaO derived from limestone as support material in a mechanical pelletiser. This production method was used to investigate its influence on possible mechanical and chemical improvements for oxygen carriers in chemical looping processes. These materials were tested in a lab-scale fluidised bed with CO or CH4 as a reducing gas at 950 °C. As expected, the oxygen carriers containing a greater ratio of support material exhibited an enhanced crushing strength. Oxygen carriers comprised of a 1:3 ratio of support material to active CuO exhibited increased crushing strength by a minimum of 280% compared to pure CuO pellets. All oxygen carriers exhibited a high CO conversion yield and were fully reducible from CuO to Cu. For the initial redox cycle, Al300-supported oxygen carriers showed the highest fuel and oxygen carrier conversion. The general trend observed was a decline in conversion with an increasing number of redox cycles. In the case of CaO-supported oxygen carriers, all but one of the oxygen carriers suffered agglomeration. The agglomeration was more severe in carriers with higher ratios of CuO. Oxygen carrier Cu25Al75 (75% wt. aluminate cement and 25% wt. CuO), which did not suffer from agglomeration, showed the highest attrition with a loss of approximately 8% of its initial mass over 25 redox cycles. The reducibility of the oxygen carriers was limited with CH4 in comparison to CO. CH4 conversion yielded 15-25% and 50% for Cu25Ca75 (25% wt. CuO and 75% wt. CaO) and Cu25Al75, respectively. Cu25Ca75 demonstrated improved conversion, whereas Cu25Al75 exhibited a trending decrease in conversion with increasing redox cycles.Item Open Access Cyclic oxygen release characteristics of bifunctional copper oxide/calcium oxide composites(Wiley, 2016-10-12) Duan, Lunbo; Godino, D.; Manovic, Vasilije; Montagnaro, F.; Anthony, Edward J.Integrated calcium–copper (Ca–Cu) looping is a novel carbon capture technology that uses copper oxide to transport oxygen and calcium oxide to capture CO2 in the same process. Investigations into the oxygen release behavior of the bifunctional CuO/CaO composite are critical to assess the potential for applying this technology to solid fuels such as coal. In this study, three different CuO/CaO composites having different relative percentages (CuO75CaO25, CuO50CaO50, and CuO25CaO75) were manufactured in a commercial granulator and then tested in a bubbling fluidized bed reactor to examine their oxygen release characteristics at temperatures in the 880–940 °C range. All the composites exhibited clear oxygen release properties during the testing, indicating that the solid fuel can be directly oxidized rather than being gasified first in the Ca–Cu looping process. At the same temperature, the oxygen release rate of CuO25CaO75 is the fastest and its final oxygen yield is the largest, followed by CuO75CuO25 and CuO50CaO50. XRD results reveal that Ca2CuO3 is formed in the used samples of CuO75CuO25 and CuO50CaO50, but not in the case of CuO25CaO75, which may explain the performance difference observed. Further examination of the attrition and agglomeration behavior shows that all the composites are stable and strong, and it appears that CuO25CaO75 is the most stable and strongest of the materials examined.Item Open Access Design, process simulation and construction of a 100 kW pilot-scale CO2 membrane rig: Improving in situ CO2 capture using selective exhaust gas recirculation (S-EGR)(Elsevier, 2017-12-01) Darabkhani, Hamidreza Gohari; Jurado Pontes, Nelia; Prpich, George; Oakey, John E.; Wagland, Stuart T.; Anthony, Edward J.Carbon capture and storage (CCS) from natural gas-fired systems is an emerging field and many of the concepts and underlying scientific principles are still being developed. Preliminary studies suggest this approach can boost the CO2 content in the feed gas up to 3 times compared to the ‘no recycle’ case (CO2 concentration increased to 18% vs. 6%), with a consequent reduction in flow to the post-combustion capture unit by a factor of three compared to conventional, non-S-EGR. For this project, Cranfield University developed a pilot-scale 100 kW CO2 membrane rig facility in order to investigate simultaneously EGR and S-EGR technologies, the latter being achieved by using a CO2 sweep air polymeric membrane. A bench-scale membrane rig has also been developed to investigate the permeability and selectivity of different polymeric membranes to CO2. Currently a small-scale polydimethylsiloxane (PDMS) membrane module is also being investigated to study its selectivity/permeability. The tests include exploring the performance improvement of the PDMS membrane using different operating conditions with a view to developing scale-up procedures for the membrane unit for the actual 100 kW pilot-scale rig. Process simulations were performed using Aspen Plus software to predict the behaviour of the pilot-scale rig using a model developed based on empirical parameters (i.e., mass transfer coefficient of CO2 through the membrane and permeance), measured in the bench-scale membrane test unit. The results show that CO2 concentrations of up to 14.9% (comparable to CO2 level in coal combustion) can be achieved with 60% EGR, with a 90% CO2 removal efficiency of the membrane units. However, the results generated with the membrane model in which specific permeance values to PDMS were applied, predicted concentrations of CO2 in flue gases up to 9.8% (v/v) for a selective recycle of 60%. The study shows that the S-EGR technique is an effective method that can provide similar conditions to that of a coal-fired power plant for the post-combustion capture system operating on natural gas-fired units, but also highlights the fact that more research is required to find more suitable materials for membranes that optimise the CO2 removal efficiencies from the flue gas.Item Open Access Developments in calcium/chemical looping and metal oxide redox cycles for high-temperature thermochemical energy storage: A review(Elsevier, 2019-11-27) Yan, Yongliang; Wang, Ke; Clough, Peter T.; Anthony, Edward J.Energy storage is one of the most critical factors for maximising the availability of renewable energy systems while delivering firm capacity on an as- and when-required basis, thus improving the balance of grid energy. Chemical and calcium looping are two technologies, which are promising from both the point of view of minimising greenhouse gas emissions and because of their suitability for integrating with energy storage. A particularly promising route is to combine these technologies with solar heating, thus minimising the use of fossil fuels during the materials regeneration steps. For chemical looping, the development of mixed oxide carrier systems remains the highest impact research and development goal, and for calcium looping, minimising the decay in CO2 carrying capacity with natural sorbents appears to be the most economical option. In particular, sorbent stabilisers such as those based on Mg are particularly promising. In both cases, energy can be stored thermally as hot solids or chemically as unreacted materials, but there is a need to build suitable pilot plant demonstration units if the technology is to advance.