CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Anioke, Chidera Linda"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Signal-to-interference-noise-ratio density distribution for UAV-carried IRS-to-6G ground communication
    (IEEE, 2025) Nnamani, Christantus Obinna; Anioke, Chidera Linda; Al-Rubaye, Saba; Tsourdos, Antonios
    This paper investigates the probability distribution of the signal-to-interference noise ratio (SINR) for a 6G communication system comprising a multi-antenna transmitter, an intelligent reflecting surface (IRS) and a remote receiver station. A common assumption in the literature is that the density distribution function for SINR and signal-to-noise ratio (SNR) of an IRS-to-ground communication follows a Rayleigh and Rician distribution. This assumption is essential as it influences the derivation of the properties of the communication system such as the physical layer security models and the designs of IRS controller units. Therefore, in this paper, we present an analytical derivation for the density distribution functions of the SINR for an IRS-to-6G ground communication ameliorating the typical assumptions in the literature. We demonstrated that the SINR density function of an IRS-to-6G ground communication contains a hypergeometric function. We further applied the derived density distribution function to determine the average secrecy rate for passive eavesdropping.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback