CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Alturbeh, Hamid"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Collision avoidance systems for UAS operating in civil airspace
    (Cranfield University, 2014-11) Alturbeh, Hamid; Whidborne, James F.
    Operation of Unmanned Aerial Vehicles (UAVs) in civil airspace is restricted by the aviation authorities which require full compliance with regulations that apply for manned aircraft. This thesis proposes control algorithms for a collision avoidance system that can be used as an advisory system or a guidance system for UAVs that are flying in civil airspace under visual flight rules. An effective collision avoidance system for the UAV should be able to perform the different functionalities of the pilot in manned aircraft. Thus, it should be able to determine, generate, and perform safe avoidance manoeuvres. However, the capability to generate resolution advisories is crucial for the advisory systems. A decision making system for collision avoidance is developed based on the rules of the air. The proposed architecture of the decision making system is engineered to be implementable in both manned aircraft and UAVs to perform different tasks ranging from collision detection to a safe avoidance manoeuvre initiation. Avoidance manoeuvres that are compliant with the rules of the air are proposed based on pilot suggestions for a subset of possible collision scenarios. The avoidance manoeuvre generation algorithm is augmented with pilot experience by using fuzzy logic technique to model pilot actions in generating the avoidance manoeuvres. Hence, the generated avoidance manoeuvres mimic the avoidance manoeuvres of manned aircraft. The proposed avoidance manoeuvres are parameterized using a geometric approach. An optimal collision avoidance algorithm is developed for real-time local trajectory planning. Essentially, a finite-horizon optimal control problem is periodically solved in real-time hence updating the aircraft trajectory to avoid obstacles and track a predefined trajectory. The optimal control problem is formulated in output space, and parameterised by using B-splines. Then the optimal designed outputs are mapped into control inputs of the system by using the inverse dynamics of a fixed wing aircraft.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Modelling and control of the roll-stabilised control unit of a rotary steerable system directional drilling tool
    (IET, 2019-04-26) Alturbeh, Hamid; Whidborne, James F.; Luk, Patrick Chi-Kwong; Bayliss, Martin T.
    A directional drilling tool control unit whose design is based on servo control of a rotary valve using the roll-stabilised instrumented system approach has been successfully used in oil fields for over 20 years. Here, field-oriented control (FOC) is applied to cascaded voltage regulation and servo control using an open-loop plant model of the roll-stabilised control unit. The servo control is applied to the rotary valve so that drilling mud is ported in a geostationary direction despite the rotation of the drill string and the bottom hole assembly of the rotary steerable system. Voltage regulation is applied in order to provide a DC voltage bus for the servo control of the valve. A torquer or alternator, which is a type of permanent magnet synchronous machine, is the core of the roll stabilised control unit. So, a mathematical model of the torquer is derived. An FOC scheme is proposed for servo control and to provide a DC regulated voltage using the torquers. The algorithm is tested in MATLAB/Simulink.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Visual flight rules-based collision avoidance systems for UAV flying in civil aerospace
    (MDPI, 2020-02-25) Alturbeh, Hamid; Whidborne, James F.
    The operation of Unmanned Aerial Vehicles (UAVs) in civil airspace is restricted by the aviation authorities, which require full compliance with regulations that apply for manned aircraft. This paper proposes control algorithms for a collision avoidance system that can be used as an advisory system or a guidance system for UAVs that are flying in civil airspace under visual flight rules. A decision-making system for collision avoidance is developed based on the rules of the air. The proposed architecture of the decision-making system is engineered to be implementable in both manned aircraft and UAVs to perform different tasks ranging from collision detection to a safe avoidance manoeuvre initiation. Avoidance manoeuvres that are compliant with the rules of the air are proposed based on pilot suggestions for a subset of possible collision scenarios. The proposed avoidance manoeuvres are parameterized using a geometric approach. An optimal collision avoidance algorithm is developed for real-time local trajectory planning. Essentially, a finite-horizon optimal control problem is periodically solved in real-time hence updating the aircraft trajectory to avoid obstacles and track a predefined trajectory. The optimal control problem is formulated in output space, and parameterized by using B-splines. Then the optimal designed outputs are mapped into control inputs of the system by using the inverse dynamics of a fixed wing aircraft.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback