CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Alharbi, Bander"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Investigation of the effect of temperature on the wear rate and airborne noise in sliding wear
    (MDPI, 2022-01-21) Lontin, Kevin; Khan, Muhammad; Alharbi, Bander
    When friction processes occur, wear is generated. The generation of wear also leads to airborne noise. There have been many research studies on wear and its correlation with airborne noise, but most research has focused on experimental aspects, and theoretical models are rare. Furthermore, analytical models do not fully account for the wear and airborne noise generation, especially at an asperitical level. One model was developed that gave a reasonable quantification for the relationship between wear and airborne noise generation at an asperitical level under room temperature. In this paper, the accuracy of the model is assessed at higher temperatures. Two materials were set up on a tribometer (aluminium and iron) at 300 RPM. The samples were tested at two different temperatures (40 and 60 degrees) and two different loads were applied (10 N and 20 N). The model computed the predicted wear and sound pressure, and it was compared with the experimental results. The errors are larger for the wear than when the model was validated at room temperature. However, the increase in the error for the sound pressure was smaller at higher temperatures (approximately 20–30%). This is due to the assumptions that were made in the initial model, which are exacerbated when higher temperatures are applied. For example, flash temperatures were neglected in the original model. However, when initial heat is applied, the effects of flash temperatures could be more significant than when no heat is applied. Further refinements could improve the accuracy of the model to increase its validity in a wider temperature range.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback