CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Alawadi, Tareq"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    High-frequency band automatic mode recognition using deep learning
    (IEEE, 2018-12-10) Xu, Zhengjia; Savvaris, Al; Tsourdos, Antonios; Alawadi, Tareq
    Communication in High-Frequency (HF) band allows for good-quality, low-cost, and long-distance data-link transmission over diverse landscapes in aerial communication systems. However, as limited frequency resources are allocated, HF band suffers from poor spectrum efficiency when the channel is congested with many users. To maintain the robustness of the data-link transmission, Automatic Link Establishment (ALE) is the worldwide standard for sustaining HF communication of voice, data, instant messaging, internet messaging, and image communications. Technologies, such as spectrum sensing, Dynamic Spectrum Access (DSA) are utilised in ALE with the primary step of automatic mode recognition based on cognitive radio. Conventional methods, such as Automatic Modulation Recognition (AMR) targets at the classification of single modulation, while modern communication systems require recognising multiple modes in combination of various number of tones, tone spacing, and tone interval. In this study, an approach that features filling the gap using deep learning is proposed. By characterising the common in-use mode formats in HF range, investigation shows that spectrogram diagram varies significantly, which necessitates the accurate characterisation and classification of multiple communication modes. Specifically, Convolutional Neural Network (CNN or ConvNet) is adopted for classification. The dataset is collected through USRP N210 with GNU Radio simulation. By reconstructing the communication in selected modes, the mode formats are classified. The performance result of recognition accuracy is displayed with confusion matrix. The confident classification of spectral characteristics, as well as accurate estimation, are established for practical communication scenarios.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback