CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Al-Qutayri, Mahmoud"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Semi-supervised multi-layered clustering model for intrusion detection
    (Elsevier, 2017-09-22) Al-Jarrah, Omar Y.; Al-Hammdi, Yousof; Yoo, Paul D.; Muhaidat, Sami; Al-Qutayri, Mahmoud
    A Machine Learning (ML) -based Intrusion Detection and Prevention System (IDPS) requires a large amount of labeled up-to-date training data, to effectively detect intrusions and generalize well to novel attacks. However, labeling of data is costly and becomes infeasible when dealing with big data, such as those generated by IoT (Internet of Things) -based applications. To this effect, building a ML model that learns from non- or partially-labeled data is of critical importance. This paper proposes a novel Semi-supervised Multi-Layered Clustering Model (SMLC) for network intrusion detection and prevention tasks. The SMLC has the capability to learn from partially labeled data while achieving a comparable detection performance to supervised ML-based IDPS. The performance of the SMLC is compared with well-known supervised ensemble ML models, namely, RandomForest, Bagging, and AdaboostM1 and a semi-supervised model (i.e., tri-training) on a benchmark network intrusion dataset, the Kyoto 2006+. Experimental results show that the SMLC outperforms all other models and can achieve better detection accuracy using only 20% labeled instances of the training data.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback