CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Akindele, A. O."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Computational study of Cattaneo–Christov heat flux on cylindrical surfaces using CNT hybrid nanofluids: a solar-powered ship implementation
    (Elsevier, 2023-04-07) Obalalu, Adebowale Martins; Salawu, S. O.; Asif Memon, M.; Olayemi, Olalekan Adebayo; Ali, Mohamed R.; Sadat, R.; Odetunde, Christopher Bode; Ajala, Olusegun Adebayo; Akindele, A. O.
    This study examines the potential of using nanofluids in solar thermal energy systems. Nanofluids are known to exhibit high convection heat transfer coefficients, low specific heat, and density, making them ideal for improving the performance of solar thermal energy systems. However, this computational study investigates the application of Cattaneo-Christov heat flux on cylindrical surfaces using carbon nanotube (CNT) hybrid nanofluids, for use in a solar-powered ship. The work utilizes numerical simulations to analyze the heat transfer and fluid flow characteristics of the hybrid nanofluids. The research examines the use of single-walled and multi-walled carbon nanotubes (SWCNT and MWCNT) in engine oil (EO) as the working fluid. The Galerkin weighted residual method (GWRM) is utilized to solve the ordinary differential equations (ODEs) governing the system. The impact of various parameters, such as Cattaneo-Christov heat flux, solar thermal radiation, nonlinear stretching surface, slippery velocity, and porous media on the velocity equation, energy equation, and entropy generation are investigated and elaborated through detailed plots. The findings show that the MWCNT-SWCNT/EO hybrid nanofluid (HNF) exhibits maximum efficiency of around 2.4%, while the minimum efficiency is at 2.7%. This research provides valuable insights into the design and optimization of solar thermal systems for sustainable transportation.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback