CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ahmadi, Mohammad"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Development of a thermal excitation source used in an active thermographic UAV platform
    (Taylor & Francis, 2022-06-03) Deane, Shakeb; Avdelidis, Nicolas Peter; Ibarra-Castanedo, Clemente; Williamson, Alex A.; Withers, Stephen; Zolotas, Argyrios; Maldague, Xavier P. V.; Ahmadi, Mohammad; Pant, Shashank; Genest, Marc; Rabearivelo, Hobivola A.; Tsourdos, Antonios
    This work aims to address the effectiveness and challenges of using active infrared thermography (IRT) onboard an unmanned aerial vehicle (UAV) platform. The work seeks to assess the performance of small low-powered forms of excitation which are suitable for active thermography and the ability to locate subsurface defects on composites. An excitation source in multiple 250 W lamps is mounted onto a UAV and is solely battery powered with a remote trigger to power cycle them. Multiple experiments address the interference from the UAV whilst performing an active IRT inspection. The optimal distances and time required for a UAV inspection using IRT are calculated. Multiple signal processing techniques are used to analyse the composites which help locate the sub-surface defects. It was observed that a UAV can successfully carry the required sensors and equipment for an Active thermographic NDT inspection which can provide access to difficult areas. Most active thermographic inspection equipment is large, heavy, and expensive. Furthermore, using such equipment for the inspection of complex structures is time-consuming. For example, a cherry picker would be required to inspect the tail of an aircraft. This solution looks to assist engineers in inspecting complex composite structures and could potentially significantly reduce the time and cost of a routine inspection.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Diagnosis of composite materials in aircraft applications: towards a UAV active thermography inspection approach
    (Society of Photo-Optical Instrumentation Engineers (SPIE), 2021-04-12) Alhammad, Muflih; Avdelidis, Nicolas Peter; Deane, Shakeb; Ibarra-Castanedo, Clemente; Pant, Shashank; Nooralishahi, Parham; Ahmadi, Mohammad; Genest, Marc; Zolotas, Argyrios; Zanotti Fragonara, Luca; Valdes, Julio J.; Maldague, Xavier P. V.
    Diagnosis and prognosis of failures for aircrafts’ integrity are some of the most important regular functionalities in complex and safety-critical aircraft structures. Further, development of failure diagnostic tools such as Non-Destructive Testing (NDT) techniques, in particular, for aircraft composite materials, has been seen as a subject of intensive research over the last decades. The need for diagnostic and prognostic tools for composite materials in aircraft applications rises and draws increasing attention. Yet, there is still an ongoing need for developing new failure diagnostic tools to respond to the rapid industrial development and complex machine design. Such tools will ease the early detection and isolation of developing defects and the prediction of damages propagation; thus allowing for early implementation of preventive maintenance and serve as a countermeasure to the potential of catastrophic failure. This paper provides a brief literature review of recent research on failure diagnosis of composite materials with an emphasis on the use of active thermography techniques in the aerospace industry. Furthermore, as the use of unmanned aerial vehicles (UAVs) for the remote inspection of large and/or difficult access areas has significantly grown in the last few years thanks to their flexibility of flight and to the possibility to carry one or several measuring sensors, the aim to use a UAV active thermography system for the inspection of large composite aeronautical structures in a continuous dynamic mode is proposed.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback