CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Adebayo, Kehinde R."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Magnetoconvection around an elliptic cylinder placed in a lid-driven square enclosure subjected to internal heat generation or absorption
    (Wiley, 2022-04-01) Olayemi, Olalekan Adebayo; Al-Farhany, Khaled; Obalalu, Adebowale Martins; Ajide, Tomisin F.; Adebayo, Kehinde R.
    The impacts of MHD and heat generation/absorption on lid-driven convective fluid flow occasioned by a lid-driven square enclosure housing an elliptic cylinder have been investigated numerically. The elliptic cylinder and the horizontal enclosure boundaries were insulated and the left vertical lid-driven wall was experienced at a fixed hot temperature, and the right wall was exposed to a fixed cold temperature. COMSOL Multiphysics 5.6 software was used to resolve the nondimensional equations governing flow physics. A set of parameters, such as Hartmann number ( 0≤𝐻𝑎≤50 ), Reynolds number ( 10^2≤𝑅𝑒≤10^3 ), Grashof number ( 10^2≤𝐺𝑟≤10^5 ), heat generation-absorption parameter ( −3≤𝐽≤3 ), and elliptical cylinder aspect ratio (AR) ( 1.0≤𝐴𝑅≤3.0 ) have been investigated. The current study discovered that for low Reynolds number, the adiabatic cylinder AR of 2.0 provided the optimum heat transfer enhancement for the model investigated, also the impact of cylinder size diminishes beyond Gr = 10^4. But for high Reynolds (Re = 1000), the size of the cylinder with AR = 3.0 offered the highest heat transfer augmentation. The clockwise flow circulation reduces because of an increase in AR, which hinders the flow circulation. In addition, heat absorption supports heat transfer augmentation while heat generation can suppress heat transfer improvement.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback