Browsing by Author "Abu, Robin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Natural gas flaring management system: a novel tool for sustainable gas flaring reduction in Nigeria(MDPI, 2023-01-31) Abu, Robin; Patchigolla, Kumar; Simms, Nigel; Anthony, Edward J.The use of hydrocarbon fuels increases with population growth and rising standards of living, and so does natural gas flaring. Natural gas flaring is both a waste of natural resources and a violation of Nigeria’s energy policy for sustainable development through natural gas conservation. However, it remains the most cost-efficient and effective associated natural gas (ANG) management option in developing countries such as Nigeria. The World Bank’s initiative to eliminate routine gas flaring by 2030 has increased the need to limit or eliminate routine gas flaring. Often, studies on natural gas utilisation techniques fail to consider the lack of practical tools that integrate economic, technical, and regulatory factors into a gas flaring management framework, and the intricacies of existing tools, which often come at the expense of simplicity to achieve real-time information output. This paper aims to establish a framework and ANG management tool to reduce regular gas flaring in Nigeria. This research established a management framework (using a flowchart decision tree) and models to provide a user-friendly ANG flaring tool (using a MATLAB graphical front end user interface with back-end ASPEN HYSYS thermodynamic models). This was combined with techno-economic models for liquefied natural gas, gas-to-methanol, and gas-to-wire ANG utilisation options. The tool was then tested with data obtained from Fields Y and X in the Niger Delta region of Nigeria. The results, considering both economic and technical factors, showed that the choice of liquefied natural gas for Field Y was best due to its proximity to the pipeline infrastructure and its cost-effectiveness, and the availability of a high-demand LNG market for that area. For Field X, gas-to-wire was best due to its proximity to the electrical grid and high electricity requirements for that area. Additional geographical profiles in West Africa and ANG utilisation alternatives were recommended for further investigation. This paper developed and validated a one-of-a-kind ANG flaring management tool that incorporates techno-economic analysis of selected ANG utilisation options to assist operators and investors in making more profitable investment decisions.Item Open Access A review on qualitative assessment of natural gas utilisation options for eliminating routine Nigerian gas flaring(MDPI, 2023-01-28) Abu, Robin; Patchigolla, Kumar; Simms, NigelNatural gas flaring, with its harmful environmental, health, and economic effects, is common in the Nigerian oil and gas industry because of a lower tax regime for flared gases. Based on the adverse effects of flared gas, the Nigerian government has renewed and improved its efforts to reduce or eliminate gas flaring through the application of natural gas utilisation techniques. However, because the conventional approach to flare gas utilisation is heavily reliant on achieving scale, fuel, and end-product prices, not all technologies are technically and economically viable for typically capturing large and small quantities of associated gas from various flare sites or gas fields (located offshore or onshore). For these reasons, this paper reviews and compares various flare gas utilisation options to guide their proper selection for appropriate implementation in the eradication of routine gas flaring in Nigeria and to promote the Zero Routine Flaring initiative, which aims to reduce flaring levels dramatically by 2030. A qualitative assessment is used in this study to contrast the various flare gas utilisation options against key decision drivers. In this analysis, three natural gas utilisation processes—liquefied natural gas (LNG), gas to wire (GTW), and gas to methanol (GTM)—are recommended as options for Nigeria because of their economic significance, technological viability (both onshore and offshore), and environmental benefits. All these gas utilisation options have the potential to significantly reduce and prevent routine gas flaring in Nigeria and can be used separately or in combination to create synergies that could lower project costs and product market risk. This article clearly identifies the environmental benefits and the technical and economic viability of infrastructure investments to recover and repurpose flare gasses along with recommendation steps to select and optimise economies of scale for an associated natural gas utilisation option.