CORD - Cranfield University research data
Permanent URI for this community
In order to deposit your data, you will need to log in to this Deposit form.
Browse
Browsing CORD - Cranfield University research data by Author "Abhyankar, Hrushikesh"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Effect of extrusion and compression moulding on the thermal properties of Nylon-6/Silica Aerogel Composites: Experimental Data(Cranfield University, 2017-10-05 16:38) Krishnaswamy, Surya; Tinsley, Lawrence; Marchante, Veronica; Addepalli, Sri; Huang, Zhaorong; Abhyankar, HrushikeshThe paper presents the effect of a lower extrusion speed and compression moulding on the thermal properties of PA-6/Aerogel composite. SEM/EDX and optical microscope images showed that although most of the aerogel was destroyed during extrusion at 65 rpm, extrusion at 5 rpm showed better retention of the aerogel structure. However, when subjected to moulding in a compression press, both composites suffered significant damage. Nevertheless, the final thermal conductivity and damage coefficient values did show an improvement in the thermal insulation properties of the samples extruded at 5 rpm compared to the samples extruded at 65 rpm and the virgin polymer (PA-6) with the former losing around 33% of the structure of the aerogel particles compared to 41% for the later.Item Open Access Morphological, optical and thermal characterisation of aerogel/epoxy composites for thermal insulation applications(Cranfield University, 2018-08-23 11:35) Krishnaswamy, Surya; Bhattacharyya, Debabrata; Abhyankar, Hrushikesh; Marchante Rodriguez, Veronica; Huang, Zhaorong; Brighton, JamesThe present work explores the possibility of introducing aerogel particles at different stages of the epoxy resin cure to find the most effective method that ensures minimal destruction of the former along with a high degree of mouldability for the composite material. The aerogel particles are added at 0.5 hours, 1 hour and 1.5 hours after the resin and the hardener are mixed together. Additionally, the effect of a wetting agent that improves the interface between the aerogel and the resin is also investigated. The different materials are characterised using optical images and electron microscope with energy dispersive X-ray spectroscopy to determine the most effective processing route. Additional data is also provided by determining the different material€™s optical transmittance and reflective characteristics. From the experimental results, it is seen that the addition of aerogel at the 1 hour mark proves to be the most efficient route to follow. In addition, the wetting agent displays a negligible effect on the samples in the study; hence its usage is advocated. Therefore, the aerogel/epoxy/wetting agent sample with the aerogel added at the 1 hour mark is the most promising material. A 13.3% decrease in thermal conductivity when compared with the pure resin/hardener sample along with the calculated aerogel damage coefficient value of 0.227 (22.7%) confirms its promise and potential for thermal insulation applications.