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SUMMARY 

This paper treats the elastic stability of supported 

rectangular plates of sandwich construction with isotropic and 

aeolotropic fillings under compression and shear loading. 

Formulae are developed fcr critical stresses etr flat and 

curved panels in compression and flat panels in shear for the 

buckling of the whole panel, also for the wrinkling or local 

failure of the faces of flat panels in compression. A methtd 

is indicated for calculating the critical load of a cylinder 

in pure bending. 

It is established that for a wide range of conditions 

the critical stress for panels buckling in compression is 

independent of the form of the filling providing it is 

symmetrical about the normal; of the elastic constants of 

the filling only the transverse shear is of concern. As a 

result a simple extension of the equivalent plate theory of 

greatly improved accuracy is developed enabling the use of 

equations treating the plate as a whole. 

NOTE: This paper was presented as a thesis for the 

Diploma of the College of Aeronautics, June 1948. 
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SUMMARY OF RESULTS 

An isotropic and two forms of aeolotropic filling are 
Considered. Of the latter both are symmetrical about the 
normal to the panel? but one has stiffnesses only in normal 
planes and the other has comparable stiffnesses in all planes: 
the first of these will be referred to as a honeycomb filling, 
as a fabricated paper honeycomb filling is a good example of 
the material in mind, and the other simply as aeolotropic. 

Failure may be either a buckling of the panel as a 
whole or a short wave buckling or wrinkling of the faces. The 
latter has only been investigated for simply supported flat 
panels. The critical stress for this type of failure is not 
dependent on the dimensions of the panel other than the ratio 
of the skin thickness to the overall thickness; from this and 
from dimensional arguments there is reason to believe that the 
wrinkling stress is independent of the edge conditions and of 
curvature and that a panel in shear will wrinkle when the 
compression field equals the critical compressive wrinkling stress. 

Sections 4 and 5 of this paper derive by a fairly 
rigorous analysis formulae for the critical stresses for 
buckling, as opposed to wrinkling, of simply supported panels 
in compression which divide into three orders of approximation. 
The first, which in general is quite inaccurate, is the result 
of ignoring shear deformation and gives the so-called 
equivalent plate stress; this, of course, is the same for all 
forms of filling. 	The second, which is also independent of the 
form of filling, provides in effect a correction factor to the 
equivalent plate stress that is a function of a parameter, 
denoted by the symboll , which is a measure of the transverse 
shear stiffness of the filling in terms of the strength of the 
whole panel in compression. 	The third approximation is a 
more complicated expression giving the failing stress f6r panels 
that are weak in shear. 

This common second approximation is important because 
it is accurate over a wide range of conditions and because 
it can also be deduced by a simple allowance for the shear 
deformation of the filling. 	Though the latter is a natural 
and obvious extension of engineer's bending theory, the rather 
tedious analysis of sections 4 and 5 of this Report remains 
necessary because it establishes the accuracy and range of 
validity of the approximation. 	The way is then cleared for 
applying this simple concept of the behaviour of the filling 
with a fair hope of comparable accuracy to such problems as 
clamped edge conditions and shear loading which are 
difficult by more rigorcus methods. 

/ The smaller 	 

From recent tests with Dufaylite this is not strictly 
true for honeycomb material. The transverse shear 
modulus measured along the direction of a diagonal of 



The smaller the parameter the more marked is the 
effect of shear deformation with a consequent decrease in both 
failing stress and buckling wave length. 	This applies 
in all circumstances of long wave buckling. 

The problem of curved panels in compression is 
treated by an approximate correction of the flat panel solution 
and also as a check by the method of simple shear allowance. 
No investigation is made of the stability of the buckled state, 
so that the apparent gain in stiffness may be illusory. 

The critical shear stresses for nearly square and for 
long narrow panels are calculated by energy methods. Both 
solutions are approximate particularly the latter. Shear 
critical stresses appear to fall more rapidly with the filling 
shear stiffness than the corresponding compressive stresses, 
and it is difficult to estimate the lower limit of the parameter 
T1 for the validity of the formulae. 

The formulae derived can only be a guide to the failing 
stress owing to the simplifying assumptions particularly 
with regard to edge conditions. 	A general verification of 
results is of course necessary but especially of the more 
approximate formulae such as those for curved panels and 
panels in shear. Among the many other aspects are two which 
may be of overriding importance, the effect of non-homogeneous 
fillings and the effect of initial waviness of the skin. 
The use of large mesh honeycomb material is clearly another 
source of local failure of the skin. 	Initial waviness will 
lead to additional bending stresses in the faces that may 
cause their premature yielding and impose strains that may 
rupture the adhesive at the interfaces. The implications 
of initial waviness have been discussed at length by 
Howard (ref. 1) and very similar results to his can be 
obtained by using the formulae derived in this paper. 

/ 2. NOTATION 	 



2, 	NOTATION 

A, C, L, N, F 	Elastic constants of filling (equation 

E9 IT 

a, b 

2h, t 

R 

f or q 

fc or qc 

Xx/ Yz  etc. 

exx eyz etc. 

x, y, 

Young's modulus & Poisson ratio of face  

Panel length and width 

Filling and face thickness 

Radius of curvature of panel 

Compressive or shear stress due to 
applied load 

Critical compressive or shear stress 

Filling stresses 

Filling strains 

Geometrical coordinates (fig. 1) 

u, v, w 	 Displacements in x, y, z directions 
Nx, Nxy,  , N y, Qx, Q

Y 
 Stress resultants of faces 

Mx/ Mxy, M1 	
Stress couples of faces 

g x/ ky/ My. 
	 Stress couples of whole plate 

n, m 	 Number of buckling half wave lengths 
along and across the panel. 

= nb/a n27„? 172%2 

a2 1- b2 
2h/t 

6 = au ay 
ax ay 

t a u 	a v 
= ay  a x 

 
2 „.1. 8

2 

- 	2" + 	2 x ay 

= L(1 _cr2)b2 	c-= 	-2h2 = L lt2h2 
2 	 3C -7-  E h t 

D = 	Et3 = 	2b2 
E  

12 ( 1 - 	) 	 it  ( 2h + t) 	( 1 -0 2)L R  

= L(1 	21 
Et 

v = C + L 
C L 

e W  2C/L 

/ 3. SUMMARY 	 



3. SUMMARY OF FORMULAE  

(a) Buckling in Compression of Flat panel  

(i) Aaroximate Formulae for all Forms of Filling 

1. Simply Supported Long Panel. 

fc  = 2(11 	+ 1)2L 	. Ti '7-.2(2h 	+ 	t)2E 	. Ti 	‘42  (26)'-' 
11 (1 	+/I )2  - ( 1 - a  2  )13 

( 
1 	+ in  j 

/I  
where 11/(1 - 1)-: b2/2ooh2,n = 1,(1 _ a. 2)1)2 1.z2Eht  

= 2h/t 

2. Simply Supported Short Panel 

Where a/b = 0(1) a correction factor to 1 is given 
at Fig. 10. 

Where the panel is very wide compared to its length 
a modified Euler strut formula is obtained 

1F:2(h 2.4)2E  
1 + fc =

2Eht 	 (27) 

a2 	 (1 - 2)La 2  
provided a > 10h 

3. Long Panel with Clamped Edges 
fc = 	1)2L . 	3.490

2 

3 + 3.68.n 2 + 3.6n --1.3 

= 17.05(2h 	trE . 	3  
(1 	cr  2 )b2 

T13 + 3.68-n
2 + 3.G - 1.3 

(43) 

1 and 3 are plotted at Fig.8 as correction factors 
to the equivalent plate stresses. 
The buckling wave lengths are shown at Fig.9. 

(ii) More Accurate Formula for Isotruic Filling 
(Simple Support) 

2 - fc = ( + 11 .(n
2  + 1)2' 	 1 	1 	2f  (24) 

2p 	-2 	 -2 2*  tn +71 + 1 - 	+ 1) 	311(.p 	+ 

where R is chosen to make f a minimum and 

= 2C L 	
2 

3C . b2 

f/L 

 

versus 	is plotted for different-rt at Figs. 2 & 3 

for 6 ,114, . (1 *-'0" 2 )( 2C - L)L/EC equal to 0.001 and 
0.0004 respectively. 

/ (iii) Accurate 

Numbers refer to equation numbers in main text. 



(iii) Accurate Formula for Honeycomb Filling 
(Simple Support? 

= (4 4. 11! (724. 1)2c fc 	 1 + 	 1  

L 21A 	n2  6  - 	1-2 in. + 11 + 1+ err'  (Y12+ 1)2  31G4 + 1)2 

where /I is chosen to make fc a minimum and 
x = L 	7?h2 

3C b2 
f c/L versusp is plotted for different -ri at Figs. 4 to 7 

for values of 6 	= (1  _ 0.. 2 )L2/  AAJ, 	 Bo of 2.5 x 10 4; 
10-4; 2.5 x 10-5 and 10-5 respectively 

(b) Wrinkling of a Simply Supported Flat Panel in Compression 

(i) Isotropic Filling 

fc = I 	EC2 / (3(1 - 	CL1C  

12(1 -0-2 )L(C + L)2,  
2 tanh Lif. 	

cr2
2E(c + L 	I I\ 

+ 
- C + L 

Approximate condition of validity is 11 3CL 
E(C TE7 

This result is plotted at Figs. 2 and 3. 

(ii) Aeolotropic Filling 

f 	c2EC(JAC F)( 	+ 2L  
1 . L 	16L2  (1  -0- 2 )( JA0 + L)2  

- + 
,SAC + L 

Approximate condition of validity is 

P-3( 	F)2(gC + 2L 	F)
2 

> 100 
EOL(JZO + L) 

(iii) Honeycomb Filling 

f c = 	2EC 	= 1 
j.(1 	cr  2 )1..2 

This result is plotted at Figs. 4 to 6; the wrinkling 
stress is too high to appear on Fig. 7. 

/ (c) Simply 

2 

(] 
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(c) Simply Supported Curved Plates in Compression 

i) Panels 

fC = (;1. 4. 1)2 	01..2 4. 1)2 

L 	-2 	-2 2[1n 	n + 	+ 1 

(L  

where n2  has the nearest value to -11+11+1F
2 
 +rdp(n + + 2

2\  
); 

2 2 " 

= a 2/7.2R ( 2h + t) and 	 ± 2  p 

The factor e increase of this stress over that for a 

similar fiat panel is plotted at Fig. 11. 

(ii) Cylinders  

fC = GI + 1) 	n 2 f -2 	
P 
2 

n 
E- 	211 	1 n-2 	+ -2 +71 	1-1  

. where n has the nearest value torn /(1-1 - 

For long cylinders this reduces to:- 

p ) and b = R 

fC = 1 
+II 	-2- pT, where ' = 	E 	. t, 

(1 -0. 2  )L 	R  

which is plotted at Fig. 12. 

(d) 	Sim2ly Supported Flat Panels in Shear 

(i) Square Panels 

go = 

+ 8) 	5 

    

n> 10 say 

 

     

     

or q = 23.3(2h + t)2  . 
IT 	(1 	_2)b2 

     

     

   

+ 8  ) 	+ 5 ) 

 

(ii) Long Panels 

Lc 
= 2.69(ip + 1)2 

 l 

W  3
+ 
 5.81 
—211 

or c 
= ;3.3(2h 	t)2  ca. 	3 	5•81  

IF 	(1 - 2
)b

2 	t 

(6; 

The shear stresses are plotted at Fig.13 as correction factor, 
to the equivalent plate stresses. 	It is suggested that valel 
for intermediate values of the ratio b:a will be given by 
parabolic interpolation. 

/L.. General .. 
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4. GENERAL CONDITIONS OF EQUILIBRIUM 

In this section the equations of equilibrium are 
derived that are required for finding the critical stresses of 
simply supported flat and curved panels under uniform 
compression by the method of considering neutral equilibrium unde: 
infinitesimal displacements. 

The coordinates to be used are indicated in Fig. 1. 
They are cylindrical coordinates but instead of the usual(; 0, 
x for the radial, azimuthal and axial coordinates, R + z, y/R, 
x are used, where R is the radius of curvature. 	The sides 
and the direction of the applied load are parallel to the 
axis of the cylinder; the ends of the panel are cut by planes 
rerpendicu'.ar to the axis. 

The approach to the curved panel problem is to expand 
the various expressions involved in powers of 1/R and to 
neglect the higher powers. 	To this end we assume that R is 
large compared to the total panel thickness. 

• The faces are taken to be isotropic and the filling is 
assumed to be aeolotropic, but with symmetry about the normal 
to the plate. 	Writing Xx, Yz  etc, for the stresses and 
e
xx' 

eyz etc. for the strains in the filling, the stress-strain 
relationship is given by the following scheme:- 

1+'.x = AeXX + (A - 2:1)eYY 
 + Fezz, yz = Le yz 

Y = (A - 2N)exx + Ae + Fe 9 	= Le yy 	zz 	xzx 	 (1) 

= Pe. + Feyy + Cezz' 	Xy Ne x 	 xy 

by writing u, vs  w for the displacements in the x, y, z 
directions and neglecting second order terms in 1/P the well 
known equations relating strain and displacement in cylindrical 
coordinates become:- 

xx. au 
ax 

e 	= a7 	1. 	av 
YY --Eiz 

	

cly 	i ay 
e .. aw zz az 

e . av aw yz az + ay - R - 
e 	= aw 	-au zx ax "1" az 

e 	= ,au 	-av 	z xy 	+ -- - 'ay ax R 
au 

/(b) Equilibrium ...c 
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(b) Equilibrium of the Filling 

In the same fashion the following equations of 
equilibrium are obtained:- 

a xx 	aYx 	azx 1  z aY - x 	0 	 (3 
8 Xv, 	8Yv 	aZIT 	1  t'i- a Y.„. 2.. + -....e. 	 ,..--q- - 2Z ( 	=0 	 (4 a x 	ay + ---1Laz - F. )z  a y 	Y 1, 4. 	 +.4 
a Xz 	aY z 	az, 	1 	ay, 

+ az x 	+ ay 	" 	R = z a y" 	Zz  + Y37. , = 0 (5 

On substituting from equations (1) and (2) into equations 
(3) and (4), we have:- 

_32u 	2u 	2 	 2 	 2w  
A---ff + NA-1 + L 	+ (A - N) -La- + (F + L)-a-z- 

ax 	ay 	a z 	 axay 	a xa z - 

lr_ 	'(A, = Eizrg.k - N).02T- + 2NILay)- (A - 2N - L)41. - Lau 8.x 	 ax 	az 

,42,, 	 2 	,2 	 , w2 2 	a v and (A -,N)-=-'--'4 - +N- + A-7  + 1.,=)-4 + (F 4- 14)----= 
axay 	ax 	ay 	az 	8 Yaz 

r 
=R z 6FA - N) x+ 2AtT-. + (F + L)Hri- (A + 2L)ii. - 

ay 
2 

Write 8 = 	so L1-1  + 	= 	ate' v 
„,2 	6 

ax  ax 	a y 

Differentiate equations (6) and (7) with respect to x and 
y respectively and add, so that:- 

2  (AV2  + Li-?5 
)e--/8 

 + (F + L)V2  g L-)8 

_ ic,_[,,,...  
- Ft) ay _'4'48y (A - N)fr + (F + L)ai- LfE,,,  

I, 	 2„, 	 2i 
- (A - aN 4. Oz-i - (A 4- 2L)1-.. 

ay 1 a x 

Differentiate equations (6) and (7) with respect to y and x 
respectively and subtract, so that:- 

( 	2 	82  ) al, 	1 	a r  a a 	• .... 	 2
2 

 1 
NV 	+ L----1  w " a-- ri. ,z.3-7   2N75,._  

az -̀'  
I 

2 I a W ••• 
2N +axayS 

/ substituting 	 

(8)  

77 	"Fir 

aya ..1 

(9)  



Substituting from equations (1) and (2) into equation 
(5) gives:- 

(F + L)2, + (LV2  + Cj..72) w  
az az 

. a 	+ L)ly + 2LJEj + (L + A - F)av 
ay 

 
az 	(),y 

+ (A F 2N)au - caw 
7R 	az 

Among the terms in 1/R2  neglected in the last equation 
is a term A - F w which is worthy of note. It arises 

R2 
since e contains w/R and is contained in (z Yy)/R  
in equation (5). When the buckling wavelength is 
of the same order as R, which it might be for a 
semicircular panel, V2w is of the same order as w/R

2. 

This woad appear to limit the angle of the sector forming 
the panel for an accurate solution, but however these 
equations lead to solutions in section 8 which are 
identical to those obtained by other means. 

(c) Equilibrium of the Faces 

When considering the equilibrium of the faces it is 
necessary to make allowance for the fact that the stress 
resultants in the face and the reaction of the filling are 
not in the same plane. 

Let unprimed quantities refer to values at an inter- 
face, z 	h, and primed quantities to values at the 
central surface of a face z = ± (h + lt) where 2h and t 
are the thickness of the filling and a face. 

We have approximately:- 

15) = u+ 2taw 
ax 

vt = v it aw 
ay 

wt = w t  it .Lly. t 

where the top sign refers to the face z = + h and the 
bottom to the face z = - h. 

Hence V 	-1-tV2w 
= rk1D-' 

and since the normal stress in a face may be considered 
to be negligible cr, 	+ 	+ (1 — cy aw 

	

'ax 	ay 
	 az 

 =
0 

 

whence wf = w 	t 	E)t 2(1 - ) 

/ However 	 
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However since the areal dilatation is small compared to the 
transverse displacement the last correction can be ignored. 

Equilibrium in the Surface of a Face  

Neglecting terms in t/R and 1/R2 we have:- 
, 

N = Et au 	
± x  

cr  ax 	 R4h  fILLaY e 	i 
ti w)! 

NEt 	
r 
 d u i 	av 	h au? xy 2(1 +a) f ay 	ax 	R ay ) 

N = 	Et  r aut 	Ovt 	1 (mv., ay' 	wt 
1  2 cr ax + ay 	-" ay (3- 	.., 

	

whereNx,Nxy  ,Ny, 	are the stress resultants in the face 
and the top and bottom signs refer to face z = +h and 
h respectively. 

( 11) 

In considering the equilibrium of the stress 
resultants in the x and y direction account must be taken 
of the shear forces acting at the interfaces:- 

aN ay 	h aNxy 	„ 4. T W 	u 
e X 	"T-  ay 	 ay 	- zax=- 	+ R 	 dx az z = h 

and 

3N
2...SY

3 Nv 	h  a Nv 	 fay 	aw 
a x 	+  	77,0- 	zy R  -R 	K hnr. 

z =
4 
h
(12) 

where Q is the y - stress resultant nrrmal to the faces 

Substituting from equations (11) into equations (12) yields:- 

1 
-7-  + 2 --2" + --7--  7357r 
a u. . ' 	--  p  -a2.121  : 1 + o 311-1 - + ic,  ( ar 	du ax a z + 
2 

ax 	 ay 

1 +cr• 	Ove 	aw! 	\ 	dU 
.2 , 

7---1-- h aleur  '4.0d= +(1 -o7h --2-- 
ay 

and 

t 1 
R (13) 

l +0'  Cu' 
 1 .-*0-•  a2v a

2
v 	+Iv 

2 axay 	
ay 

- ay d a x 
2 , 1 1 1 +o. 	if .cwt + I41. t R 	2 	

kni axay + ay 	ay 	L ‘a6  y 
J 

4 ha ± 

( 14 ) 

where 	= (1 - 0.2)14/Et  

/Differentiating 	 
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Differentiating equations (13) and (14) with respect 
to x and y respectivelyeand adding, and eliminating the 
primed quantities, we obtain:-- 

I 
(fetiT 2  + - tV4)w  -(±v2  - a 	= 	h  a2wav) 

az 	R 	4-  Tr ay 
2w  - 11 

r 
 2h -LI 	1 	-1-cr  h 	

2 
	 + K 

1, 	- 	2 	axay + 	ax 	ay '"L ay 

Differentiating equations (13 and (14) with respect to 
y and x and subtracting, we obtain:- 

1 -0- 
V lir 4: 	= ± 	(1 

2 
(1 -cr )12- SLY 

axaY L ax 

2 2 
h- 

2 	axay 

 

Equilibrium Normal to a Face 

With the same approximations the stress couples, 
Mx, Mxy, 5., are given  by:- 

w .
2
w 	2 - 	 LI 

x
) M 	= -D --.7 . _ L.1.: 4.2h 

ax -1-'-a
r ay

2  1- R 	ay 	ay, 

(32'w 1( a2w avli M 	= -( 	) 1 -0 Day7  T /.. h 77J7  ± 7  /. 
Y 

 2 	 a
2
w + .E 

y 	 r 	
. ) ) a2w 	a w _ 1 2h  ( 

M 	 = Hl r7 + 7 4. ft 	---1 — ay/  \ ay 

where D = Et3/12(1 - cy2) 

In considering the equilibrium of the shears and 
couples account must be taken of the distributed moment 
of the shear forces at the interfaces about the centre 
of the faces:- 

( 

( 1' 

a Mx 
Qx ax 

h) 2  Mxy 
a y 

(1 

y 	x 

am 	 aM 
= 	h) —( 1.7 	ay  it y 

Similarly in considering the equilibriums of the 
shears and normal forces account must be taken of the 
tension the filling exerts on the faces:- 

'a( x 

	

4 (1 	h) aQ'y 	
a2w  N, 

77— 	 yr. = ft 	+ 	t Zz  
ax4-  

where f is the stress in the faces resulting from 
the applied load. 

/On substituting ....... 
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On substituting from equations (17) and (18) into the 
last equation we obtain:- 

ft .5-1 DOW - 2tL(72w 104.(14 F 5 
ax 

= TR2  (4-  /4.11 '72 ( 
+ 

a2v 

2 	--a 3v 
ay2 

- ltLc 2h 

alC
2
,3 y 

ay ) 

av 
77- 
GY  

a 

ha 	
w ay  2 ay 

Et 

ayaz 

au 

(1 - 	2)R  crax  

(19) 

It will be noted that the last term in the last 
bracket of this equation is of order 1/R2. 	This term 
is retained because it is not a derivative and because 
E is so much greater than the other elastic constants; 
other possible terms that might be retained are either 
derivatives which are necessarily smaller for long wave 
buckling, or contain elastic constants of the filling. 

/5. Simply 
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5. SIMPLY SUPPORTED FLAT PANEL IN UNIFORM COMPRESSION 

The conditions of equilibrium are given by putting 
1/R = 0 in equations (8), (9), (10), (15), (16) and 
(19) and they are:-' 

(
, 

2 )

2 
AV2 + L 	18 + (F + L)V2  aw 	0 

az  ?.z 

(F + L)  65 	4,  2 
4A.14 + 	V 

2 . 
+ C a 	g)liv = 0 

8z 

(1 	72  
2 	+ 

(NV2 + L 12-2)ar = 0 
8z 

z 	= 0 at z = ± h 

(k,v,2 	tiTI)w 	(± V2  

fta z7  Dv4w 	tL(7-2  w 

= 0 
iE)8  

at z 	h 

1)-1 0 a! + F8 az 
= 0 

( 

If we assume w to be of the form XW (z) sin 
7cy sin - m - (n, in integers), 8 will be a similar series 

whiles a' will be a double cosine series. 

n7cx 
a 

Since the equations containing e" do not contain w 
or E , the coefficients in the series forte' will be 
independent of those for w and8 . 	In each coefficient ciffil 

there will be two constants of integration which must be 

chosen to satisfy the second equation of (21) at 

z = +h and -h. 	It is clear that the only possible solution 

is %r= 0. 

Each pair of corresponding terms in the two series 

for w and& must satisfy equations (20) and (22) separately. 
In solving equations (20) each pair of coefficients will 

contain four constants of integration, which must be chosen 

to satisfy the four equations of (22). The latter 

requirement will determine the value of f, but f will now 

be a function of m and n, so that the equations cannot be 

satisfied for all m, n at the same time. Hence w will 

consist of one term only, instead of a series, corresponding 

to one pair, m and n, which must be chosen to make f least. 

/For a panel 
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For a panel with edges at x = o, a-  and y = a, b 

we will have w = 0 at the edges. 	The bending moments of 

the plate as a whole will also be zero at the edges since 

in addition to a 2w 	82
w= 0  we have 77 

au = av  = 0, because8 --7 	 ay 
ox 	8y 

at the edges ander= 0 everywhere, making the direct stresse 

as well as tho bending moments in the faces vanish at the 

boundaries. Hence the conditions of simple support are 

satisfied apart from small displacements in the plane of the 
panel, 

Isotropic Filling 

For an isotropic filling A = C, N = L, F =C 	2L 
The solution of equation (20) is 

nitax sin  Elz w 	(Wit + W2e.zs + Wit s + W2T eze) sin --  

8 = 	+ W2(eze +'' s)+ WI'c + W2t(tzs + vc)l)sin" 

where c = chtz, s = slvez 
2 	2 	2 2 n A - 	M A 7_ 

a 

v = 	+ LAC L) 

W15, W2s. Wit , W2' = consts. of integration 

New w and8 are the sums of even and odd functions of z: 
to the even part of w corresponds the odd part of6 and 
vice versa. 	It will be seen from inspection of equations 12 
taking due account of the alternative signs, that the odd 
and even parts of w will form independent solutions. 

Let us first consider the even part of w 
/. 0.. 	W1' = W2' = 0) corresponding to the buckling of the 
panel as a whole or "in-phase buckling". 

On substituting for w and S in equations (22), we have: 

) 
	2   

( 	4- v 	+ U hl c + :!?V.h +v.  -- LL-t12-321  itp.  

(2 	- it e ) c + e. s 

& z---
2 

-ft = D4 q-c  A4+  1+0,r. + 20,W1  4L( 2h + 1+Lt )4c + (C -12+ 	 ) 
the', )51,  e, W 

' 	Q 	2 	-  
a W1  c 	+ 	W2ehs 

V(C 	L)tht21 2 + 2C 	Woh(C 	2 

6L q  + 2L2Y4C 	L) 	tt2L] as 

e  4 	21.2Kh(c 	L) + C 	(C 7  L)-the ].s2  
12ke 	0ah)c2  +(c + L)8cs 	(C 	s2  

/In order 	 

sin b 

( 
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In order to minimise .the expression for f it is 
necessary to make an approximation. Consider first long wave 
buckling in which eh is simall,sax  0.7, so that 
approximately tanh 	 i = eh - 43h) Neglecting higher powers 
of eh the equation reduces to:- 

n2 2 	t 
—atft t /4  (h  it)2  + 1113(4KC 	L - 11t82) C 	C 	D 

 

eh :14,40(2  k ) 

  

   

In general the second bracket of the numerator of the 
fraction on the right hand side is small, so the equation 
reduces approximately to:- 

, 	1  
2 m ) 31-1(i 	1) 

7.2h  
IC 
2 Eht 

2 
E= 2C - 	h2 

3C • —2—

= nb/a 

of af 2 
Nowam  - yn- = r 	so that, if there exist m and n 

for which of vanishes, the least f occurs at the least possible 
8n 

value of m, which in this case is unity. 

The minimum value f c/L of this expression is plotted 
against for a range of 'n• of 0.2 to 20 for 60-14 =0,4x2v-0,/  
equal to 0.001 at Fig.2 and equal to 0.0004 at Fig.3 

In computing these curves it is assumed that the panel is 

long so that fi = nb/a can take up its optimum value. 

For 	a further approximation may be made:- 

(E2 4. 1)2 

L 	
+ )

2 

- 	2 p 	R2(112 4.  1 4,71)  

This gives for a long panel, R =k4-1.  and:- 

fo 	2(p+ 1)2 

L 	 • en .4- 1)2  

This expression requires a correction when the panel 
is not long to allow for E being restricted by virtue of n 
being an integer. 	The correction is plotted at Fig.10. 

/ The last  	 

2 (.1; 	+ 	1) -2 	2 ) 1 (n + m -2 2 m 

2 b2  

-2 g (n L
f 

= 	2 µ 

where 

' 	1712 	try + 	n 

= 	2h/t 

= 	pb2  = 

( 21 

(25, 

(26; 



ft = Dt2 + 	2CL 	2tL
2 

(C + L)6 	C + L 

- 18 - 

The last approximation is tantamount to substituting 
th for tanh 4 so that a reasonable condition for validity 
is 	11 

200h 

b is large compared to a, n = 1 so equation 25 
2 

fc = 

(4 + 1)2Lb2t + 
24.a2,11 

+ It)2E 	1.  it2Eht  
a2 	 ja2 

which is a modified Euler strut formula. 

When 
becomes: - 

2  + 1)2L 	11. 5) +  
24 	2 

(3a - ) • (1  

1] 

so f = 
(27) 

Now consider the opposite approximation in which h 
is large, say 	2, so that tanh th r.:g 1 corresponding to 
short wave buckling, or wrinkling of the faces. 	This 
rather drastic approximation implies that the two faces fail 
independently. 
With tanht h = 1 equation (23) yields:- 

n2iz2 	,4 4..  Ltiiocc -Y L) + 2C4  + 2tLt2  + iCt21,3  
a 2 

ft = DT, 	 2)(C + (C +L); 

2 e  2 = -a_n
2
It
2 

..., 4 As before m = 1; also 
b2 

+  
a 2 	' h2 2 

by our assumption, but - 4 7  is in general large compared to 7'2 h 	 b 
so that p can be replaced by 8 . 

In addition vg <  he/2tE < 0.01 say, so that 	terms in 
can be neglected. 	The ratio of the fourth term of the 

numerator of the faction to the third, which in itself is 

3[17 
4 small, is ' 	E  approximately and may also be neglpotea. 

Therefore:- 

(28) 

Hence:-- 

C = 	9EC2 2L  
17 	4.(1 	-cr2)L(C + L)2 C + L 

for which n 2 73(1 0"2) CL 
a = 	

--
ITT 	2E(c + L) 

/ This makes 	 
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/13  This makes f/.., 	th 	—L E which may well be as low 
as 19  in which case the approximation made would not be 
acceptable. 	From an inspection of equation (23) it would 
appear that a better approximation in place of equation 
(28) might be:- 

ft  . 	 tanhth 	2t1,2 
C +L 	t 	C + L ( 

Using the previous value ofewe have:- 

-.A.r 
EC2 1 )1 + 2 tank h 3(1 - cr

2)CL )1  i s 	 3  
L ir 	  0_2(1 - 2  cr)L(C + 	I 	

t 2E(C + L) 

+ 2L/(C + L) 

This second approximation will be inaccurate if 
th < 3/2, so p3CL/E(C + L)72 is an approximate 
condition of validity. 

It should be noted that 71 = 1 is not the threshold 

between long wave buckling and wrinkling, but only the 

boundary of validity of expression (26). Though indeed the 
wavelength shortens as 11 tends to zero, the expression 
2b 117-T-1  for the wavelength no longer holds as r 
approaches one. 

We will now show that out of phase buckling modes do 

not occur; that is modes with w as an odd function of z. 

By repeating the same process as for in phase buckling 

an equation like (23) will be derived except that ch.h and 
shLi will be interchanged. 

Considering long wave buckling first, put tanhth 
= th 3t2h2  as before, giving: - 

2 2 
T1 IT. 	 4. __7-ft = Du + L 
a 

C + /•Kh(C - L)-ht2[(C - )t + 3Ith2(C - 

h FL + OC hC + 4-t2h2  c 	2L 	hC 

   

  

(3 

  

  

As a first approximation write:-' 

2 2 
2  ft 	D = „ (14  + C/h 

/ so that , 	 

I 
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so that for a minimum( "--„ =) - 	+ C/Dh whence (hi)4 4- 7.,  a 

11.) C 3 
(rah) > 0113/D = 12(1 -0- 

2  )( 	which in general gives a a 
greater value of eh than the approximation will stand. Now 
the full expression (31) will yield an even greater value of 

-8.h, since its second term on the right hand side is a 
decreasing function of et instead of a constant as first 
assumed. 	It is therefore concluded that longwave out 
of phase buckling does not arise. 

With regard to short wave out of phase buckling we will 
obtain the same expression as for in phase buckling on putting 
tank 	= 1 for the first approximation. However for the 

second approximation the result of interchanging chth and 
shjj.h will be the counterpart to equation (29) with coth ah 
for tanh if h , clearly leading to a greater critical stress. 

Aeolotropic Filling 

The solution to the equilibrium equations (20) for the 
filling are:- 

	

1 	
7c w = :,Wc + W2c +W ts +W's sin nx sin mAy I 1 1 	2 2 	1 1 	2 24  ) 	a 	b i 

o  

	

ri 	 ( 

	

=`' 	+ A s 	,. \ 	, 
e 

 ,.. 
j 
-l ' s1 

° . a a. 	- 2s2 *T"  l 1 	
S
2I

sin nitx sin mitt' 
a 	b 

o where cl  = ch k1  uz, sl = sh kl  Lz etc. 

2 = n272 m2 T.2  
a2 	b2 

	

2 	
\ are the roots of LCk-(AC 	2LF -- F2  )k2  + AL = 0 

w1411 w17,61' = (F + L)ki/(L k12C) etc. 

Proceeding as for isotropic filling and considering 
only the even part of w9  we have on substituting for w and 
into equations (22):- 

Wlel(K 2t42)  '-'11(4s1 + "lel)  

W2c2(1-‹ 	2-tt2) +62(e.s2  +Kk2c2) 

pk1W1+ Fill)s,+(Ck2W2+ FA2) s2  
2 2 

n '2 ft = Dt4  +I + j-tLf.,2  RW1-  k-t13.)c,+(W-- k2 2  ) a 

W1 c1 + W2 c2 

/ whence 	 

= 

and 



J 
W1 + W2 

Wl  

W2 

and 112% 2 
ft = at, 4 - 

a  

( 

1'  

V13. 	W2  \ 
61, 	Lka W1+ k2VQ+ P 	+ 

	

t 	 1 -3 

	

F+LI 	Sict i  2
w1 + k22  W2  + FVV1  + W 

k1 	ite(F  _)+ Kk22C)k2  + (k22C 
k2 	  

(KF - te2(F 	L)+ ickk12c)k1 	(k12c 

- 21 - 

whence:- 

( KF - I- t Z 2  ( F + L)+1<hk22C)k2c2  +(1..c22  C - L)  s2 
( t51  - iffte(F + L )+ K'k12C)k1c1  +(k12  C -• L) Li  

ir f 

and n; 2 	
, 	

AL 4C k‘killVa.  Si+ k2W2S2) + I" (Wisi/k1+ W2s2,/k2N . 
24 ' 	""4" 	 ,... 

f. 
- 

a2 	 ---t ft = D t. + F + L +  . 1 	F C   i tii kk 2W c + k 2W c ) ' 	71 c 1, L 	1 1 1 	2 2 2 ' \ 1 1 	2? 
W1 CI + W2 c2 

(32 ) 

V 

2 	k2 

As an approximation for longwave buckling (th 
01  = c2  = 1 s 	kigh and s2  = k2eh so that:-  

k12  W1 + k22W2tCF -  :kbely 	--P.,2hL 
N1 4- VI2 ( 	+ 	2  h) 

small) put 

and n
-"" 

;) 4, 
l 

A2 
ih_+ Wiit2  ki2virj,  + k22W2  

+ L 	I 	Z + W2  C + F  

= 	2 t  

i.e, f 
L 

(11  + 1)2 	n-2 + 2 \2 
s   

2 p, 	21 	2 n 	+ M +11) 
which is the same 

expression as derived for an isotropic filling (equation 25) 
by a comparable approximation. 

For short wave buckling (th large) put ca.  = c2  = 8/  = s2  
so that equations (32) become:- 

  

kk F2  + FC(ka.2+ k22 )+ k 2  k22  C + C(F + L )(ski  + zo% 1 f 
[LC (k12+ k 	C 2k12k22.-• 24F 

+ 2tt3  C (11 + L) kik2  (k1  + k2) 

  

  

F + L 

 

e(ckik2  L) Kc k1k2  (k1  k2.) 

/ For similar 	 
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For similar reasons to those given for short wave bucklin4 
with an isotropic filling, put 	= tand neglect terms in 
K and t2  413, so that:- 

ft = D 2  + LC(ki+ k2) 
e,(0kik2+I) 

which is least for ni = t= 
a 

LC `k1 + k) 
2Di \Ck1  k2  + L)' 

so that 

Lc 3 9E0( AC - ETAT + 2L + F) 	F 	 (33: 
16L (1 -o-  )(1/AC + L)2 	AC + 

on substituting for ki, k2  from the quadratic in k2. 

This formula only holds when kith and k2th are large, say 
greater than 2, so that an approximate condition of validity is: 

  

F)2(JAC + 2L + F)2 

ELC (Jrd + L) 
> 100 

  

since (kith)3  or (k2th)3 	

Ik

i+ k 
2 

  

3 	h3L 0(ki  + k2)4  

16D(0k1k2  + L) 

  

  

  

Honeycomb Filling 

It is assumed that this type of filling has no stiffness 
in the plane of the plate, so that A = N = F = 0. The solution 
to the equations of equilibrium of the filling now become:- 

w = 	Wi  + W2 2z2  + W2
f 
 ez)  sinnrx  --- sinm iry 

r =t[Witz w 'az - 3e3z3)+ 	+ 2  2 
t z isin

n
a
x  sin 

where e = 2C/1 

Proceeding as in the previous two cases for in-phase 
buckling we obtain on substituting for w and in equations (22) 

W1  
2 

and n27c2, 
a2 

c_(K.+ He) 	+ Wh2e- 

(h + 2t)t2  

ft = Du4  + LW2f,2 E (h + 	) 

Wl  + W e,2h2 

= 6 	(h + ;.t)2  
th + 	64113  

L + 

/ whence 

(k12+ k2  )+ 2(F +L)0k.k, "" 
2\ 	

J. 
	 2 

(F + L)(Ckik2  + 



Hence fC = 	tEC 
L 	/3h(2. 	0,2)1,2 

31g 
(35. 

-23-- 

2 -2 2 	1  	1 whence f (p + 1)
2 
 n + m )  1 	 - +----- L - 	2 p 	B.2 	+ -2 n + 2 ,x,-2 m'e m 4-f.:, kn. + 	3M (µ + 1  

x 	L II:2h2 	 (34 

	

where 	.,. 
3e 
 -7- 

This is of the same form as obtained for an isotropic 
filling (24) and approximates to precisely the same expression 
(25) obtained for the other two types of 	for long wave 

buckling when n > 1. 
2 - When n is large compared to (1 + 1 ), an alternative 

approximation may be made:- 

E2 	1 
f 	+ 1) 2 	 
E 	2p 	1 + x .2 

3 (p. + 1) 

so that fc 	1 c u + 1 	1 ) 
,31 	6 LL x 

2 - for which n = 	T 3r7x  - 1 +----  

This approximate form corresponds to an in-phase wrinklin, 
It does not necessarily give the critical stress since the full 
expression may have more than one minimum. 

The critical stress computed from the full expression 
is plotted as fc/L versus p for the range ofn of 0.1 to 20 
at Figs 4 to 7 for values of 6AAJ. = (1  - 0-2)2/EC of 
2.5 x 10-40  lo, 2.5 x l0-5and 10-5 respectively. 

For out of phase buckling we consider the odd part of w 
i.e. W26z sin a  sin 

 

and obtain directly:- 

 

n2T.2 ft . De,4 + C/h a2 

so that f t = 	D 1 + 1 c 	b2 

for which (n4' = 	+ C 
a 	 Dh 

+ Cb / 	DC 
17;1 

/ This mode 	 



2)4 

This mode is short wave buckling or wrinkling and is shown 

as the limiting lines on Figs 4 to 6. 

These results for honeycomb filling are basically those 

obtained by Hemp (ref. 2), who made use of the fact that for such 

a material Zx and Z are functions of x and y only (see equatior 

3 & 4), thereby being enabled to integrate the equations of 

equilibrium of the filling directly. 

It will have been noted that the displacements of a filliiig 

of isotropic or aeolotropic material contain hyperbolic functions 

of z while those of a honeycomb filling do not. 	This indicates 

that a disturbance initiated at the boundary of a large mass of 

the former would be dissipated while that in a honeycomb material 

would be transmitted indefinitely. However unreal the 

latter may appear, the possibility of the elastic form considered 

being a fair approximation to the truth is not precluded when 

confined to plates of no great thickness. 

/ 6. Simplified dm.“0.00b1 
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6. SIMPLIFIED MECHANISM OF LONG WAVE BUCKLING 

The most important result so far obtained is that over a 
great range of conditions the long wave buckling stress of flat 
panels in compression is independent of the form of the filling: 
of its elastic constants only the transverse shear modulus 
is of concern. It will now be shown that the approximation 
leading to the common formula for the critical stress is 
equivalent to the replacement of the actual filling by an 
idealised form, allowing the development of equations treating 1 
plate as a whole. 	This concept greatly facilitates the 
handling of problems where the use of double Fourier series 
becomes unwieldy. 

In the theory of thin plates it is usual to consider 
the central surface as inextensible and that fibres initially 
perpendicular to it remain so. 	This approach, which in 
particular neglects shear deformation, results in the 
equivalent plate theory when applied to sandwich plates. 
If we denote by fe  the failing stress according to the latter 

theory of a simply supported panel in compression, we have 

r  T.2Ei2h t)2 
0. 	so that we can rewrite the formula e 	(1 	2) b2 

f = (g 	2 .  11_ 	2n 	 2 
1-1 	(1 +11 )2 	

as fc  = (1.1.L177) 	fe  

If we denote by Ps  the shear stiffness, 2hL, of the fillip 
and by Pe  = 2fet the strength of the panel according to 

equivalent plate theory, then 14Ps/Pe, so that parameteroi , 

is a measure of the shear stiffness in terms of the strength of 

the plate as a whole and also of the accuracy of the equivalent 

plate theory. 

It is therefore natural to modify the equivalent plate 

theory by some such device as assuming that the fibres initially  

normal to the neutral surface remain straight but deflected by 

the action of shear forces, necessarily assumed uniform across 
the filling. 	This leads to the following formulae for the 
displacements of the central surfaces of the faces:— 

u (h 4-t) 

v= (h it) 

hZ aw 	x 
ax 7,—  

hZ aw 	y 
ay L 

( 3c 

where the transverse displacement, w, and the filling shear 

stress, Zx and Zy  are assumed constant along any normal 

/ Hence 	 
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Hence, neglecting the stiffness of the faces themselves, 
we have 

ii 	= - (2h +_tIII 	 2 	az 	a Z -1 
xy 	 2(h + -t) a---1-v  - T.11 	71  + --1  

2(1 +0- ) .\. 	 a X8 y 	— W ay 	ax .., i 

- t- a  AN + a2W _ h cf. nx + R 	= — 1,211 + t )Et  '.11  
Y 	 a  x2 	ay2 	L 1 — cr 2 	

ik + .i ) 

	

6 x 	ay f 

where Mx, illxy5  L 9  are the stress couples of the sandwich as E 
whole. 

For equilibrium:-_ 
Al a mx 	xy (2h + t)Zx  = 77,— + 	y• (  

and (2h + t)Z = aIxy  aff 
Y 	ax + 2y 

( 	2 	,_21)( az. 	a z 	1.4.(a-± _L. vi+w  so that ,7 - -L-i t --- + 	= 
b 	N ax 	ay 1 P  

_2„) ( 	a and (1 - a 1
2 	 zx 	Zy) = 

;"--2 2 	b 	a y 	ax 

Now for a plate in compression the condition for 
equilibrium of the normal forces is:- 

2  
2 	

L!) 2ft --- 	(2h 	Lc 	1) (--- 
a x 	- ax 	ay 

azx  az, 
which on eliminating 	+ --,L) gives ax ay 

2 a2w  
= b ax 2 

(4 

sinnerIf w = W sin---sin 	 then from equation 08) it a aZ 	az 	 n7x 111  follows that x and __y are also proportioned to sin-a-sin b  
FTC 

Hence by equations (37) Mx  = My = 0 as well as w = o at the 
edges x = o,a and y = o,b of the panel, satisfying the 
boundary conditions for a simply supported panel. 

Substituting for w in equation 
(-2 	2)2 

f - 
Cp. +1)2 n + m  

L  211 	R2012 4. m2 +71) 

that is f3 = (i4 +  1)2 211 	which result is the same as . 
L 	kt 	(1 +11 )2  

(26) and demonstrates that the approximation leading to the 
common formula for the long wave buckling stress is equivalent 
to accepting the simple concept of shear deformation enunciate 
earlier in this section. 

rix  = - (2h + t)Et lw  4.  

1 -0- 2 --t)  ax2 
a2w  _ 1.2 l aZx 4. .a2y  
831.2 L ax 	aY 1 

- 

( 7  

(3 

(4°) gives 
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7. LONG.2.  FLAT PANEL WITH CLAMPED EDGES UNDER UNIFORM COMPRESSION 

We will define clamping of the edges by the boundary 

condition w = aw = o holding thoughout the thickness of the 3y 
plate. 	This implies that the filling as well as the faces 

is fully constrained, a condition not likely to be attained 

in practice, but it is of interest to investigate the effect cf 

maximum constraint. 

Consider long wave buckling, for which the approach 

cutlined in the previous section is sultr,+,:le. 

Equation (40) states:- 4
7,2_ afm) 	= 

14.6L.± allew 
b2 ax2 	2 

Assume that w = W(y) sin if, which, when substituted into the 

above equation, gives:- 

d4W 

	

	 d2W 14 4 2 2 

d74 	b 	dy 	b _ 

where 0 =  2pf  

(µ 1)2L 

The failing stress will be least for the simplest wave-

form across the panel, so that W must be an even function of Js 

if the edges are taken to be at y = ± b/2. 	Therefore put 

W = Ach b 	B cos 2py  

The boundary conditions w = aw oy 0 at y = ±b/2 reduce to:- 

Hence 

Also 

and 

A click +B cos f = 

‘,4, A sh 	B sine = 0 

cktantick 	F tan p = 0 

.„( 2 -.13  2 	,2 2 

4.22  = 	[5(1 4- 	--1.1 

(42) 

since W satisfies equation (41) 

/ These last 	 

= 0 
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These last three equations are solved .numerically by 
finding the least value or 	corresponding to a given value of 

It is found that the following expression fits the 
numerical results within 4,%:- 

fc _ ( p. 4. 1)2 3.9112 
- 	• 3 	6 ' 2  1 4. 3. 8,1 + 3.611 - 1.3 

alternately fc_ 	 3 	
. f 3 	11 1-1 	+ 3.68 	+ 3.611 - 1.3 	e  

where fe is the equivalent plate critical stress for the 

clamped edge condition. 

Equations (42) break down when Ti passes through unity 

with the wavelength tending to zero in a similar fashion to the 

approximation in the simply supported case. 

It will be noted that the critical stresses f7,r both 
cases tend to the common value of IJ( 112 

	
as  71 .1.4 1, +_122  

presumably due to the lessening influence of boundary 
conditions with decreasing wavelength. 

The correction factors to the equivalent plate stresses 
fcr both cases are plotted at Fig. 8 and the buckling half 
wavelengths are pls,tted against 1 at Fig. 9. 

/ 8. Simply 
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8. SIMPLY SUPPORTED CURVED PLATES UNDhit UNIFORM COMPRESSION 

In the first instance we shall regard the problem of 

curved plates under long wave buckling as an extension of 

that of flat plates as treated in section 5. 	We will assume 
that w ando can be expanded in powers of h/R, viz:- 

• h2w2:7  w = w 	 + - - o R -R2 

8 = 8 • + -- h85"1 	h28HH  ___7_ 
R 	R 

where wo1  w", WH34  may be expected to be of the same order. 

Clearly w ,6 o  will be the displacements of hypothetical flat 

plate of the same dimensions constrained to buckle with the 

same wavelengths (i.e. the same m and n) and are therefore 

known functions, 

Substitute these expansions for w and 8 into the 

equilibrium equations (8), (10), (15) and (19) and neglect 
second order terms, 	In effect all terms in 1/R2 other than 

the term Etwo/(1 -0-2)R2  arising in equation (19) are ignored. 

It should be noted that such terms as Fhw/R2 that arise are 

small since Fh is small compared to Et, while all derivativec 

are small. 

Now since wo and 8 o  are a solution to the equations 1 obtained when the terms in 17  are ignored, the equations of 

equilibrium of the filling (8 and 10) on the substitution 

of the expansions, reduce to 

Qic2  L-2 )8'71  
z 

+ (F + L)g 2aw--- 
a z = F (n 	w ) 1 o' o' o 

N 
(F 	 (Lq

2 + 0-7)104  = F2  (u6, vo, 
az 	 a 

where F F2 are known functions of z independent rf w and 5 

Put 	= w1 + w2 + w3 

8 31  =6 	+ 8 1 	2 ' 3 

where wl  and 1  form the particular solution of equations 44 c 
45 and w2  and w3  are the odd and even parts of the 
complementary solution; 8 2  and 83  correspond to w2  and w

3 
and are even and odd functions of z respectively. 

	

First suppose 	 

w
0/ 
	 ( L 



First suppose that wo  is an even function of z and 
thereforeS o  an odd function. 	From equations 8 & 10 it 

will be seen that F1 and F2 are even and odd respectively, 
so that w1 and 8 1  are odd and even respectively, the opposite 

of wo and 8 o 

In a similar fashion equation (15) for the equilibrium 

of the faces reduces to:- 

(e 	4.“714)-w31 	
(+v 2 	89E = F3 (1109 von wo) 	(L 

where F
3 
is an odd function of z, and the top and bottom sign 

refer to the faces z = ±h 

Adding the two forms of this equation corresponding to 

the two faces together we obtain:- 

w  
3 (;i7 2  - K.48 3  = 0 

Now wo and8 o  are also a solution of this equation and i 
addition w 2 8 o  and w3 3 are both complementary solutions 
of equations (44) and (45) and both w and w

3 
are even 

functions and 8 o  and 8
3 

odd functions. Since both pairs of 

functions only contain two constants of integration apiece, 

they must therefore be identical except for a common factor. 

Hence the addition of hw  to wo makes no difference to the 

solution and we may put w = 8 = 0. 3 3 

Consider the equation of equilibrium (19) for the 

normal forces acting on the faces. 	Since w 8 o  are a 

solution to the left hand side of this equation taken alone, 

when f = fo the failing stress of the hypothetical flat 

plate, this equation now reduces to 
2
w 	( 

fo t --7 - 
o  + hi 

8x 	8x 	
az3E ±  F8 ) 	 a4- + D94w itdrp2W44+ li!)i C--- 
aw 

Etwo = F4 (U0 2 v0 9 	(1 0.2)R2 

where F
4 

is an odd function of z. 

/ As we .. 	 

( 4 
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As we have shown w to be an odd function, of z and6 
an even function, on adding the two forms of the 1st 

equation corresponding to the faces, we obtain:- 

atwo 	Ew 
0  

fO 	ox2 	( 1 — 0-2)R2 

c Cr12 + m2) 2  i.e. 	f 	(r + 1)
2 

L 	2p. 	.R2( R2 	ra2+  

where p = 22R(2h + t) 

- For a panel m = 1, and n has the nearest value to 

(148) 

    

1+01 +  1)p +
21  -I- )1)  _al 	provided 	[1 Ail+ 4p h '21  

- p 

forri less than this value f has no minimum, so that the 

approximation fails. 	The ratio of this stress to that of 

the corresponding flat panel is plotted at Fig. 11. 

The odd functions w1 and w2 are not zero; they are 

determined by the two equations that are obtained by 

subtracting the forms of equations (146) and (47) 

corresponding to opposite faces from one another. 	Hence 

for curved plates true in phase buckling does not occur. 

It has already been observed that in deriving 

equation (45) for the equilibrium of filling a term of 

order 	has been ignored, which may in fact be of 
R 

consequence if the wave length and radius are of the same 

order. 	The presence of such a term would make F2  in equation (45 
no longer an odd function and invalidate the argument. 

Nevertheless, let us extend our results t3 corer a complete 

cylinder. 

For the complete cylinder b =1tR and m can take the 

value zero in equation (48), so:- 

f 	(,u. 	1)2 f 	-2 	2 

E = 	)112  + rl 117 

2 - where n has nearest value to p /(n -p ) 

(49) 

and now i  0.2)LR2  
E ht 

= 2R/(2h + t) 

/ For a 	 
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For a long cylinder this may be written:- 

fc f . T 1  1 L 	L. 

where T = 

"". 2 Irr  

Et • 17  
(1 - cr )L 

(5 

provided T 4.. 1. 	This result is plotted at Fig. 12, 

It can be shown that the buckling half wavelength is 
approximately 7E(1 - -:- )Rh, which for normal dimensions will be 
small compared to the radius but sufficiently large compared 

the thickness not to invalidate the equations. 	It therefore 

seems probable that the expression for the critical stress is 

valid provided ir is not too large, but as a check the same 

result will be obtained by a different method. 

At section 6, equations were derived for treating the 

flat panel as a whole; these will now be extended for curved 
panels. 	It will be assumed that equations (37) for the streE 
couples still hold; this can only be true for symmetrical 
buckling of a cylinder where the displacement v is zero. 

Allowances must be made for the effect of the circumferential 
stresses due to curvature on the normal forces. 	Since we 
are dealing with the whole plate we must add the stresses 

of the two faces together, and these cancel except those due 
to the y-wise strain w/R arising from the expansion of the 
cylinder, Hence equation (39) is modified to:- 

z 
2f t-2-2  + 	2Etw 	(2h + t) 	74 _ ) a Z ,2 

ax2 	_ cr  2 )R  2 

So that V 2  - 
2 f  

E 	 CI+ 1)2  4„ 	(1 

7:7 	( 1 cr 2  )R 2tv 
	

2-11  

Putting w = Wsin nax  sinille gives the previous expression 

-2  2 
f 	(p. 	1)2 n 	 ( 	+ m2) E 	 E2 4.  m2 +' 71 2A2  

/ A Cylinder 	 

j 
so that we arrive at the same formulae for the critical 
stresses for a panel and for a cylinder, by either method 
despite the fact they form weaker approximations at opposite 
ends of the range of curvatures considered. 



Put w 

ilim(112  + 

CO :s-To(  - .:57'Wm  cos, rn 

m2 +11)17,12 f Cos  

so that 

R 
7 fm)cos-4.r,  1 = 0 

Equating 

. 	, + 	d 

(-2 2. n + 	Wo 

coefficients of cosMi to zero gives:- 

me  1,12 	. 0 

2 n + 4 + 	t f 4 	71 2+ 1 +M1 j 2) 	of\  =0 

0 0 

0 

0 0 

0 

ak 

-1/f bo  

a1 -1/f 

0 	a2  

0 	0 

b1  0 

-1/f b2 

0 

0 	 0 	 0 0 

— 	0  —2 L(11 + 1)2  (n2  + m2 
 ) + 	(n + m2 411) 

bm 

	

— 	 --- 2 

	

IA 11 	+ m+1 + ) 
2 	2 
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9. A CYLINDER IN PURE BENDING 

A formal solution of the problem of a cylinder in pure 
bending will now be given. 

The stress at failure will not be uniform round the 
cylinder but proportional to cos(y/R), so that equation (51) 
requires to be modified as follows:- 

tr 
cos 

 

W 
L(L + 1)2N7 

2u w 
(1 	2  )rt 

where fm is the value of f given by equation (51) for a p  

2 I_ m-12  + 	+ 2  \. (E2+ 	+11P6 m-1 	 +1 

f
2 	m2 + 111 
- 	

= 0 

for m 	2 

BY neglecting harmonics of order greater than k the 
stress is given by the discriminant:- 

   

n2  (n -2 ---2 

 

where am 
L(p. 2 2 + 	+ 2}

2  m  + n 

/ Since 0001.00. 



Since p
2 	 100, say, it is clear that 

m has to be at least 20 before the coefficients am, bm  

decrease appreciably, so that it will be necessary to 

solve a high order discriminant for f in order to attain 

any accuracy. 	In addition it will be necessary to 

determine the value of E to give the least stress by trial 
and error. 	The method therefore is somewhat impracticable, 

/ is Simply 	 
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10. SIMPLY SUPPORTED FLAT PANEL UNDER AN UNIFORM SHEAR - LOAD 

(a) 	Short Panels 

For short panels in shear energy methods will be use 
emploing the approximations developed in section 6. 

Putting wmn  sin141  since, we have from equations 4L  Ind  n 

/ -2 z  . 2h + t Tc.._ n + m2 	213t 	nTx 
x 	--72h  .,,z77---7--- . .57 - Wmilcos= sin-'6`_ 

n 	m +11 ..,_, 

2h + t 	-2 n + m2 m.) Int 	A n 7.X 	M r) 
z = 	. Y 	— 75. 	2 	v, sln--- cos.---) • b 	mn 	a 	b n + m.+ 11 

Clearly the boundary conditions are met for edges at 
x = o a and y = ol  b 

From equations (36) therefore:- 

37 Imn  

a u = ia,(h + 	 a sin 421. 	m2 ccsar 

__/ m wmn  

	

= ml(h 	 sina2-T- cos b 	+ 	 a n + m + 

Neglecting the contribution from the bending of the faces, 
the strain energy of the panel is:- 

.1 774A 241  §'' 44)2 +
1

— cr(au 
+ --27—  75E + -,--- ay 

av),1 

0 o 
+ 12.7' [zx2  + zyl 1 dxdy 

2+ m2) 
2j w2 

ad 	Et _ 4(h  4. t)  2 2 n T  .... , 2°b4 + m2+4n 
3  4 w2 

mn + L  2 -211-(h. + i 
2 n2+t) 2  

b  n + m + 
 

n2+m2)
2w2  
	 mn 
-2 ---- n + m2+ 1 

/ The work 	 

ic2 at La_+_11_ 2 
= -- G - 
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The work done by the shear force 2qt on buckling is:- 

2qt 	Ow . 77 try dxdy 

0 0 

= 16gt7,7— 
'  

(m-p)&(n-q 
both odd 

nmpq Wmn  

2 2 2 m2 p-gq n ) 

I 
(R2+  m2)W  

mn  

n
2 
 + Iii

2 
 + irl  Hence 2 _ ,2 a 	( u, + 1.Z  

L 	In ° E • 	p: nmpq W W 
=7.7 	mn pq 
„.../ (m2_ p2)(q2.... n2)  

The critical stress is that value of q which makes 
the following system of equations compatible:- 

p71. 
mnpq(a2+ m2+ -'n) W 
(m2- p2)(g2_ 	iii(A .1. m2)2 = )4.1/Imn' 

= L 2a 	(g  , where ), 
-61 	6/41 ° 

for all m, n 

(52 ,  

If we order ,the double sequence of terms Wmn  in some 

manner so that -It can be represented by a single sequence 

then the last eouation can be written as 
co 

=kai  i = 1 to 
= 1 

An approximate answer for is obtained by considering 

a system of equations of the form:- 

aij.,
J 
 =)V1,1  i = 1 to k 

j = 1 

This is tantamount to ignoring all au, i) k with j 4k, and 
assuming that X and 4i, i = 1 to k, found from the last 
equation tTsgether with.. = 0, i 'lc, is a reasonable 

approximation. 	This is unlikely to be the case if any 
aii, 	 k are not small though the condition for them 

to be small is sufficient rather than necessary. When 

p = m 1, q = n + 1 the coefficients of equation (52), on 

W  mn 

/ 



r 

i.e. )1/4.2  = 16022 C11 
k 

c31 810 J.J.) 
+ 25 + —625 81 

- 37- 
-2 	2 

1 + m  
dividing through byn are approximately If . 

 n2 + m 
n-7 

 ) 2 (  
for m and n not small. As m and n increase together this 

- quantity will not be small when (n2+ m2) is of the order of r 
Therefore an accurate solution cannot be expected unless n 
is reasonably large: the minimum value of ri will depend on 

the ratio a/b, for as this departs from one more equations 

have to be considered since 11 moves more slowly as n increaseE 

For a = b it is suggested that i  should be greater than 10. 

(in - 

The equations (52) split into two systems, for since 
p)&(q - n) are both odd numbers, (p + q) is odd or even 

whenever (m + n) is odd or even, so that terms Wig  with 

(i + j) both even and odd do not occur in the same equations. 

The system with (m + n) even may be expected to give the 
least value of qc, since it contains terms corresponding 
to the longest wave length. 

If terms involving suffices m and n greater than 
three are ignored, the characteristic determinant of (52) 
reduces to:- 

4 
c11 	9 

0 	0 0 

4 	 4 
9 22 

0 	4 

	

5 	c13 

o 	 o 	_X_ -- 4  0 c31 
 

36  oo 	o 

	

25 	 c33 

0 	0 
= 0 

where C = n2  + m 2 mn - 	2 2 (n2  + m 

401/a 2+   4 + 11 	1354 	2025 	2025  
= 50625 1 +(b/R)9 2  1-1 +(b/a)2 4-  1 + 9(b/a)2 + 9 + (b/a)2 

706 	 2025 	 2025  + n 
{ (1 +(b/a)22 2  + (1 + 9(b/a)2)2  + (9 +(b/a)2) 

/ Hence for 	 
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Hence for a square plate;- 

4.72(p +1)2 
8)(11 +5.19) 

and for a plate with dimensions in the ration 5 : 4 

(le 	3.92 (, ,+ 1)2 
L 	

p./1 + 6.56)(1 + 4.07) 

These results expressed as correction factors to the 

eqpvalent plate stress, i.e.714/(1 + 8)(1 + 5.19) and 

747 + 6.56)(71 + 4.07) are plotted at Fig. 13. 

(b) Long Panels 

A solution is possible by a method analogous to that 

used in section 7 for the panel in compression with clamped edgy 

The counterpart to equation (40) is:- 

2c1A7
Tra5 = 	20. 

2 	2 ) a2w 	L(.4.±_L2 4 
w 

Put w = sin 

+ cos 

+ sin 

+ COS 

ii?(Nx +d Y) 	145 py 

21(\x +,...iy)Bsh%€3 Y 

4(,Xx+ ~ y) Cch  t.(3I y 

+ 4).1,.y)Dsh 

+ _Vsh 

+ Bf ch 

+ C sh 

+ D t ch 

(5! 

whereot,± i 13 ind 	i40 are the roots of It in 

v 4 w 20),53 	2Wv2 	20X(,2+ 71 ),, -FX4 = 0 
	

(5 

where 0 = 21,Lq/L(p. + 1)2 

Take the boundary conditions to be w = 	= 0 at 

y = ± b/2. 	It is easily shown that either the primed or the un 
ax 

primed constants of integration are zero. The two alternative 

solutions are the same except for a shift in the origin of x 

by a quarter wave length. 

/The boundary 	 
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The boundary conditions now reduce to:- 

sec2 7w' th p • sect Mr th IV 
2 	2 

1LCL , tan-- 2  - tan 

2a13(1-1-tan2 'Mt n2 
It 7 

(y2 see2 

	

th :Lc (3 	(y" 2  sec2  21.2 1' th 
2 	 2 	2 

	

+2af3tan2Lath21C
7 

 (3) 	 -1-2a' 0' tana-1•' thlt 13') 2 	 • 	 2 	2 

inrhere y2 = a2 - p 	yi 2 = al 2 - 13, 2 

From equation (56) we have 

+ a/ . 

a2 + a, 2 + 	+ 02 + Laat  = 2  

a  (al  2 + 	2)  + 	(a,2+ 13 2)  = 	0.2 + To  

(0,2 + i32) (Go  2 + 13 , 2)  =  

(y2- y 2+ 	al 2apta 'flthLt f3 
2 

-2al ta I/lath:L.93T 
2 2 

(y 2tan2 	y 2 tan2
7ta 

2 	2 
+2a1  (3 th 	) 

2 	2 

. 0 	 (57) 

(58)  

(59)  
(60)  

(61)  

2a? pi (1-Ftaxi2Mt  th`Lc 13) , 
2 	2 

The equations could be tackled in the following manner. 

For a given value of Ad a set of curves can be plotted of 13 

versus pt for different a by means of equations (57) and (58). 

A second set of such curves can be plotted by means of 

equations (58), (59) and (61). 	The intersection of 

corresponding curves gives a pair p, p! for every a : these can 
be converted to a pair 'A 	for everya by means of equations 

(58), (59) and (60). Repeating the process for several values 

of P. a. set of curves of versus 11 for different 0,Xis obtained 

this can be converted to a set of curves of 0 versus 

for different 71 giving the critical stress for values of 1 

As the computations involved are longer than can be 

readily undertaken, resort is made to an approximation analogou 

to that used by Timoshenko (ref. 3) for the long, homogeneous 

plate. Assume therefore that 

w = W sin -1.7  sin 	(nx -- my) where n, m are not b 
necessarily integers. 

/ This assumes 	 



This assumes that the troughs of the buckling wave form are 
straight, which is well known not to be so, as is also obvious 
from equation (55). Furthermore, the conditions of simple 
support are imperfectly satisfied. 

We now proceed as with the short panel and choose m and 

n to give the least stress. 	Instead of integrating 

over the whole panel for the strain energy and work, 
integrate over the parallelogram nx - my = 0, b; y = 0,b, 

and we obtain respectively:- 

x2tL 	+ 157 
P. 

1)2  (n2+ (n2+ 1 7-7M2)2  1712)
2  

2 n + 1 + m2+11 n2+ 1 - m2+1 

and 2m 7r.2cit 

 

n  2 	
2  n2+  1 + m ) 	(n2+ I712) 

n
2
+  1771-m2÷ 	n2+ 1 - m2+71 

hence q 
L niri 

  

To find m, n to make a least, put n = 1/r and m = s/r 
and differentiate giving:- 

2 
g.ir  + s)(1 + F71.2.1 (1 + 17-712 	+7121 

1 + 	+ r2 (1 + 1776 + r2 )2 

— 2 2  + jr 0(1 f-7—I2)  12  + r - s_1  (r - s +1kr)  = 0 — 1 + r 	s2 
 +7-1 r2 	(1 + F:62 	r2 ) 2  

2 — 

	

and LELE,  + 81(1 + r + s2 
 ) 	?s(r + s)(1 + 14-177

2
)
2 
 (1 + r + s

2 
 )  

1 	2  r + s +11 r2 	 2 	2 (1 + r + s +1 r2) 	1 + 	 r 
2, 

2 

 2 — 	 —2 
48(r `- s)(1 + r 	s 2  1 	2s(r 	

2 
s)(1 + r 

2  s2  ) 
	r 	

2  
s )  

— 	 — • 1 + r s + 11' 2— 	(1 + r s + 	N r 	1 + r s+ir 

Approximate by expanding the latter pair cf expressions 
in terms of 1/r1 and neglecting second and higher order terms:- 

(r2- s2,.. 1)(r2+ s2+ 1)  = _17r6_ 3r2(/  + 6s2+ 5s4)-2(1 + s2 )
3 

 
TI r k, 	 j 

0  2 
and s2(8r2  + 3s2  + 2) - (1 + r-) ' 

1 ) 2 _' --Ds  -(3 	18r
2+ 9s2+ 15r4+ 45r

2
s
2
+ 584) 

1 r t.  

/ For very large  	 

- (1 + r2 )3/' 
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For I very large we find r = ,6/2 and s = tirf27 

and as a second approximation we obtain:- 

✓ (1 —1 
S W3 (1 + ) 

Hence:- 

qe 	 T7 2.83Cp + 1)  0.933(1 - 	 6 1. 09 	0. 

L - 	(1 + 
0.177 0. 3 - 	712  

2.24 5.96)2  0▪  .067(1  

2.49 4.  0.882  
11 / 

i.e . a 2.83(( + 1)2 
 

L  
3 +  5.8 
'n 	2 (62) 

To give the correct stress for very large 1 the constant 

in the above equation should be 2.69 instead cf 2.83: this 

discrepancy is the same as that found for the homogeneous panel 

in ref. 3 and is due to the initial assumptions. 	It is 

likely that the other numerical constants in equation (62) will 

have the same order error. 

As 11 decreases the buckling wave length shortens as in 

the other cases; also the angle the trough in the wave form 

makes with the sides sharpens slightly. 

At Fig. 13 are plotted the correction factors to the 

equivalent plate stresses for the three panels for which 

formulae have been derived. 

If a parabolic interpolation of the form K1-(K1- K)fb 2 

is made between the curves in Fig. 13 for the square and the 

long panel9  a good fit is obtained for the curve for a : b = 5 : I 
which suggests that such interpolations may give reasonable 

results for all values of a : b. 
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