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SUMMARY 

The quation for the pressure flurtuations in a turbulent boundary 

layer are derived with special reference to their values at a rigid wall. 

It is shown that in incompressible f:Y-rw the pressure field is defined 

ccmpletely once the velocity field is known. The results obtained from 

the theory are compared with experiment. The work is extended to include 

the effects of compressibility and it is found that a treatment similar to 

that given by Phillips is appropriate. It is shown that under conditions 

I.E i D 

of zero heat transfer the theory 

slightly modified by the effects 

Mach numbers eddy Mach waves ace 

pressure distribution throughout 

obtained in incompressible flow is only 

of compressibility. However, at higher 

formed and these modify to some extent the 

the layer, and in particular at the wall. 

In addition strong radiation of sound occurs under conditions of 

flow external to the boundary layer. 

supersonic 

Comparisons with experiment showmoderate agreement. The theories 

as mentioned previously are for the case of zero external pressure gradient, 

but it is shown th7_t even when these conditions are relaxed similar results 

occur. Some experimental results in support of this conclusion are presented. 

This paper was presented at the 6th Symposium on Advanced Problems in 
FL id Mechanics. Zakopane, Poland. September 1963. 

Professor of Experimental Fluid Mechanics at the College of Aeronautics, 
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NOTATION 

a 	 a/a 
rT 

a 	 speed of sound 

A( 	t ) 	source function 

C
f 	

skin friction coefficients 

G
o' 

G 	Green functions for unbounded and image flows respectively 

H(y) 	source function 

k 	 two dimensional wave number 

pressure 

see equation (34) 

r 	 spatial separation 

R 	 Reynolds number 

Rpu2 . pu 	
pressure-velocity and pressure-velocity gradient covariances 2  

t 	 time 

U 	 mean flow velocity 

u 	 turbulent velocity 

v 	 velocity 

U 	 convection velocity 

dz2 
	Fourier coefficient of u2  

T 	 delay time; mean shear dU
1
/dx

2 

w 

do) 

wall shear stress 

frequency 

Fourier coefficient of pressure 

Fourier coefficient of source function 

sfi*,8*,8* coefficients 

Boundary layer thickness ...,--- 
T.:7'N 61 	displacement thickness 

i/f 	

,,,,s,,, 

-...", 'l 
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1. 	Introduction 

Ilhe problem of pressure fluctuations in a turbulent boundary layer 

has been studied theoretically by Kraichnan(1) and others for the case of 

incompressible flow. In particular Kraichnan found on making certain 

was proportional to the local wall mean shear stress rw. This result 

is based on the assumption that the dominant source term involves an 

interaction between the mean shear and the turbulence, whereas in the case 

of isotropic turbulence, Batchelor(2) and otners have Shawn that the mean 

square fluctuating pressure is determined by quadruple velocity 

correlations. The experiments of Hodgson(3) and Wooldridge and Willmarth(4) 

provide confirmation that the dominant interaction involves the product 

of the mean shear and the turbulence, and these results also confirm to 

some extent the theoretical predictions of Kraichnan as modified by Lilley 

and Hodgson(5). 

These results, both theoretical and experimental, apply to the case 

where the external pressure gradient is zero. One of the difficulties 

a-sociated with experiments on pressure fluctuations in turbulent boundary 

layers is the difficulty of makin measurements ih the boundary layer 

itself, and secondly the readings of wall pressure fluctuations made with 

a finite size of pressure transducer require extrapolation to zero microphone 

diameter. The corrections associated with the finite size of the pressure 

transducer are very significant, and have been determined to some extent in 

the work by Hodgson and Wooldridge and Wilimarth, while Corcos(6) has 

performed both experiments and presented a theory for these corrections. 

At high Mach numbers we find that apart from the work by Phillips(7) no 

theory is available and it is in this area that the present paper is 

primarily concerned. 

The work by Phillips is related to the problem of sound radiation 

from supersonic turbulent shear layers, where he shows that the radiated 

noise arises from eddy Mach waves which are generated by some wave numbers 

of the turbulence in those layers of the shear flow for which the difference 

between the mean velocity of the fluid atside and the local eddy convection 

velocity of the turbulence is greater than the speed of sound outside the 

shear layers. The problem of the pressure fluctuations inside a supersonic 

turbulent bc:-.ndary layer present an analogous problem. However, Phillips 

2 assumptions about the structure of the mean and turbulent flows that p. 



theory needs to be modified somewhat in our problem and it is necessary 

to find t2-1: pressure fluctuations ovi. a range of Mach numbers including 

both subsonic and supersonic, wiereas Phillips asymptotic theory is 

strictly only applicable for very high supersonic Mach numbers. The :oresent 

theory is compared with the experimental results of Kistler and Chen.(8) 



( 
Do 
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a)c. 	= — ax. poV v. 
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2. 	Incompressible  11(7.;,  Theory 

The equations of motion and continuity are 

avi/axi  = 0 

where v is the velocity, p is the ixessure, po is the density and go  

is the viscosity. The equation for the fluctuating yressure is found 

from the divergence of equation 1, and gives 

2p = 	P°  a;;61: (vjj vivi) 

If x  Y U 	there 1,1, is the mean flow velocity and j  is the turbulent 

velocity then it can easily be shoAn. for a boundary layer flow that 

(3) 

(1)  

(2)  

au
2 V2p 	-2 	-7-2 	Pa 

a-a2 
.ar. j 
1  

U . 
J 	z j 

= 	t) 

(4) 

since the remaining terms such as 2 
au2 all 
ax1 ax2 

'74 small by comparison. 

It is seen that the source terms in. Poisson's-equation for the 

Imwssure involve -In interaction between the mean shear (aU
1
/ak2) and the 

turbulent gradient (au.2/ax
1 

which we call the (M-T) interaction While the 

remaining source term represents the turbulent-turbulent (T-T) Interaction. 

In this equation x
1 
 is measured in the direction of the mean flow outside 

the bo.:1-1dnry layer, while x
2 

is measured normal to the wall, We see that 

in the case of a uniform flow the (M-T) source term is absent 1.1:nd the 

equation for the pressure reduces to that used by Batchelor (1951) in his 

, 	• 
• 46‘.  

investigation on 1-ressure fluctuations in isotra,•,ic turbulence. 



In the case of boundary layer flows large values of the mean shear 

(DU/act) exist throughout the boundary layer, and in this case it might 

be expected that the two source terms have at lease equal significance. 

In fact the analysis which follows shows that in the case of zero external 

pressure gradient the dominant source tern involves the (M-T) interaction. 

The general solution of equation (4) for the fluctuating pressure 

can be written in the farm 

] p(x,t) = 1  
Ligr 	

dx 

	

2 	dxidx' (Go  + Gi) 
1 3 	

t,t) 
-co 

(5) 
1 r 	dx dx 	ap/ 27r 10 	1 	 x,! 3 o 	,  

- • CO 

where the volume interal is taken over thd entire boundary 1 ayer, and 

the surface integral is taken over the wall at 	= 0. The Green functions 

Go, G. are given respectively by 

GO 	Ix - x..° I 
-1; G

i = 	- x/* I -I    (G) 

where 20* is the image point with respect to the wall. 

However, from the equation of motion, eouation (1), we see that 

since the velocity vo_nishes at the :all our equation for the pressure becomes 

1 so 
11-7r

JQ  r 
dx  
2 IS 

d.x'
1
dxt (G- + Gi) A(xt,t) 3 

  

(7) 
a2al/ ax12) 
2' 20 2 

 

and shows that the f,ressure fluctuations cun be determined from a 

knaaledge of the velocity field. 



csq+Gi) 	f,t)p"(x",V) R 	erp(x
' 
 t)p"(x",t() = 

PP 	̂ 
0 • -•••• ea 

The govariama, between the lressures ,A any point (A,t) and 

(x",t1 ) is given by 

il 	 a2 
... -a I 	dx1 	 u1(x/ t)p"(x",t') 

2ff 2i 

	

1 	ax' o 	- 2 - ' 
.co  2 

Thus in order to obtain the pressure covariance anywhere in the 

shear layer the following covariances are required: 

p"(x",t')u(xt,t); 	p"(x",t')u1u1j r•-•
(x/ot) 

together with their spatial derivatives. For convenience we will write 

these covariances as R 	and R 
.U. U2 	Fu  

respectively. 

Now the cov7.riance put' can be obtained from equation (7) giving 

a 	82 re? 	 ( aul x x , R 	( 11  , 1  ,t/ t) - 211 	dx/ 	dxdx 	-i-(3.) 	2 ---= 	" 
77 DU ^' 	 4vj 	2 	1 3 o I 	ex' ax' u2a2 	70. - 2 	 a 	 2 	1  

	

. 	ft u. a .u, 

_a2  utu" 
21T 

dx 	 2/dx3  / 	2 
00 	 2 ix' = 0 

and a similar expression exists for pu!1u'./. Our knowledge of the double 

velocity correlations is fairly complete for shear flow turbulence, but little 

is knaan about the related triple and quadruple velocity correlations. If vie 

assume that the joint probability distribution of and le is normal then as 

shown by Batchelor the triple velocity correlations are zero, while the 

quadruple correlations reduce to a sum of products of the double velocity 

correlations. 	1though the assumption of a normal joint probability 

(9) 



R22 (x2' .1.l' 0 0) 	= as 

distribution would simplify the analysis, in our case its use has less 

justifiction than in the jroblem of Ipressure fluctuations in an isotropic 
turbulence investigated by Batchelor (loc cit). Our analysis will 

therefore be devoted to the contributions to the pressure fluctuations from 
the doable velocity correlations, and the effect of the triple and quadruple 

velocity correlations will be found by clifference when oar results are 
compared with experiment. The clita on which tae double velocity correlations 

will be based is obtained from the work of Grant( ')  (1958) and 
Klebanoff( 10)

(1954). 

3. 	- The Double Velocity Correlation Functions R22 

Let us now consider functions definiiv; R22  which fit the measured 

correlations of Grant (loc cit) with fair accuragy. It can be shown that 

in the 'inner r...gion' of the boundary layer, and including the constant 
stress layer, that R22  is composed of contributions from small and big eddies. 

The scale of the smaller energy containing eddies is proportional to their 

distance from the wall, while in this region the scale of the big eddies 
is roughly independent of the distance from the wail. If we write as  and 

ab  as the auplitude of the small and big eddy contributions to R22  we find 

that a reasonable fit with the results of Grant is obtained when 

exp( -0.83 IrlyX2) 

exP(-(r1/1)2)8  

	 (10) 

with a = 0.9 2nd. ab  = 0.1 as shown in Figure 1. The one dimensional 

spectru:.1 func'Aon corresponding to this correlation is: 
2 

(1+3k14 1  ) 

(1+k1/111}2   

where 41  = 0.83/x2  and el  = 1.881. It is seen from Figure 2 that .022 is  
flat at low wave numbers, has a shallow peak near kibi  = 0.7, corresponding 

to the contribution from the big eddies, and falls off at high wave numbers 
like k-2 1 

) 	ass 3. 
/622(x2;k3.' 277111 -̀'1. (401)3(k1k)2exl)(-14-4/4)  

	 (11) 



Due to the dependence of the scale of the smolt eddies on the distance 

from the wall, the amillitude of Of22  falls at low wave numbers as x
2 
is 

decreased, while at high wave numbers 0 extends to higher and higher wave 

numbers as x2 is decreased, although necessarily some high wave number cut 

off will eventually be reached. It is interesting to note that apart from 

the shallow peak at kloi  = C.7 the shape of the spectrum function is almost 

entirely the res-,11t of contributions from the smaller eddies. 

The results of inserting a high pass filter, such as used by 

Wooldridge and Willmqrth (12)(1962), so that all wnve numbers below 

lk 	I 

	

are eliminated can easily be demonstrated. 1 	,T1,1, 	 Since the assumed 

form for R22 is an even function of r1 

1 .1" = 	 . 	0)dr Ø22(x2 k1) 	 cos k 1
r 1R 22(x 

 2'
r 
 150  ' 	1 

0 

and since 022 
is an even function of k1 

222(x2;Irl l'°'°)  = 2  r°22(x2;k1)c°s(klirlDdkl 

The truncated form for 	associated with the insertion of the high pass 

fi7.er, leads to 

RT2 (x2'  
.r 0
' 
 0) ,... 2 7 

	

2 	
°22(x2 ;ki)cos 

(-2) 

(15) 

= R
22 (x2' .r11 0' 

 0) --2 °22(x2;k1)  
cos(kiri)dki  

 

(14) 

 

-a sin 
1  and when K1&1  <<1 we find very nearly that R._z 	R = — 2 227r rial  .... (15) 

since the big eddy contribution can be shown to be negligible. 



r 

6
1 Thus for — < 2 when 1  5  = 1, and K

1
8
1 
 = 0.2 

1 

AR
22 

= 0.07 

which is sufficient to modify greatly the shape of the R22  correlation. 

In fact for this value of the cut-off wave number the zero point for the 

truncated R
22 

(R2
2) °scurs at smaller values of r1 

and in addition 
R22 
 has a 

pronounced negative loop. For these reasons correlation functions obtained 

from filtered signals need careful analysis as to their true interpretation. 

Our assumed form for A
22 is not entirely satisfactory since it does 

not satisfy the continuity relation: 

co 

R22 (x2' .g) dr dr3 
 =  0 1  

unless a negative loop exists in the r3  direction. But tnis is absent 

from Grants measurements near the wall and so strictly 

CO 

I

R (x r 0 dr 
22 2' 1"

0) 
 1 

should equal zero. However, errors arising -Prom this cause can be shown 

to be small unless the value of R
22 

at large separations is under 

consideration. It is interesting to note however that our truncated form 

of R22 does satisfy the above 

will not. 

continuity relation, whereas in general it 

    

4. 	Pressure-velocity Covariance R put  Firp(t)Uy (X" 

If we assume that the triple velocity correlation is zero we find that 

R 
Pu2  

the boundary layer. If the form for R22  given in section 3 above 

substituted into equation (9) R 	can be obtained. pu2 

(16)  

If 

(17)  

is 

is obtained from R
22 together with the variation of the mean shear across 



— 9 

Provided the pressure is not measured at the wall it can be shown 

that pu2, that is R u2  for zero separation and time delay, is very nearly Put 
equal to, or at least proportional to, -poqu2, showing that it depends on 

triple velocity correlations or in other words on the turbulent-turbulent 

interaction. It can also be shown that the (M-T) contribution to pu2  is 

identically zero if R22  is symmetric with respect to r1. It is important 

in this case to note the dominant role of the turbulent-turbulent interaction, 

but it must be er hasised that this only applies to contributions to pu2 
axed it does not follow that the (E-T) term is zero or negligible for R . 

P112 
The importance of the triple velocity correlation, can be found to some 

extent by re-writing the equation for the pressure in the following form 

a 2 	t 	 2 , 2
(P 	Po q2/3) 	 ax. (vim j 

— 
i 

17 	q /3 sib ) 	..,(18) a j  J 

This equation is in the form proposed by Patterson(12) but clearly similar 

equations can be proposed with different coefficients for the velocity term 

on the left-hand side of the equation. If structural similnrity exists in 

the inner region of the boundary layer it follows directly that 

2 pu2 	poq u2  
	 (19) 

It we now tarn to the case of R 	where the pressure is measured at u2  

tha wall we find from equation (9) that the correlation is zero when ri  = 0 

and is antisymmetric with respect to r1. It is however symmetric with 

respect to r3. This covariance has been subjected to fairly full experimental 

treatment by Wilim  rth  and Wooldridge (1962), and a comparison between the 

calculated and me-:.sured values is shown in Figure 3. 

5. 	The Turbulent Energy Equation 

Our results for the pressure velocity product can be checked by 
referance to the role they play in the turbulent energy balance. 
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Ilbwr from the equations of motion and continuity the turbulent energy 

equation c.n be derived in the form (see Townsend 1956)()  

d - 2 
2 dx2 

- 	(p + 00  q /7)u2  —Po 	 dx2 ` 

pee 
2 

-Iva 
dx2 

( 
2 	

4- 2 /2 u2) 2 
2 

	 (20) 

where the terns represent in turn the production, convective diffusion, 

dissipationl  and the work done by viscous stresses. 

On inte3ration we find 

 

j
Po edx2 + p

a  
-77 
qe/2  + u Put  

gut - Po 7 

x 
f 2 

(—PoU. 
111 2 

dU
1  

dx2 
dx
2 	 

(21) 

  

q2u2 = 
_ 

	

(7/2 + u2 	0 at x
2 = O. = 	 dx2 	 2 

since.  put  

In the region close to the wall the last two terms in (21) are 

negligible, while in the constant stress region 

u 
1
u, dU 1 z a 	

O0000OP e n ( 22 ) 

and 

put 	q
2
u2/2 	 •0•9 90000 (23) 

which can be deduced from the results of Laufer
(13)

(A.953) as plotted by 

Townsend (1956). 
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Thus in the constant stress lcyer the dominant contribution to put  

is from the (T T)interaction whereas closer to the wall it is dominated 

by the viscous tiarms. If we now compare these results with equation (9) 

we see that the (M-T) and (T-T) terms must be small when x' = x'' is close 

to the wall. pu2  is then given by the surface integral which is the only 

viscous term in equation (9). For larger values of x' = x" 'this viscous 

term iSlitseIf negligible. However the (M-T) term is also zero if 14u,;' 

is symmetric about si  = 0 (where 111= x" - x'), as noted by Oorcos(1  (1962). 

Thus the only remAning term, the (T-T) interaction, can contribute to 

Pu2  in this region. This conclusion needs some qualification since Grants' 

measurements of R22 
show some slight asymmetry about s

1 
= 0 and hence the 

(M-1) contribution is not entirely negligible, but our main result dealing 

with the dominant role of the (T-T). term is barely modified. 

If it oxi be verified th7:t in this oonstnit stress region 

----- 
2  (p poq Mu "'0 2 opowo C000 (24) 

it would ada support to the conclusion that turbulent motions exist in 

wh eh the total energy is conserved during commotion with the velocity u2. 

The random mixing jet hypothesis of Grant (loc cit) supports such a 

conclusion and in such a model u
2 
would be the random outward jet velocity. 

We also note that in the region close to the wall the total 

dissipation exceeds the 1,roduction of turbulent energy and is therefore a 

region of energy defect. Thus the inner region takes on a double role of 

transferring energy towards an  away from the wall. The details of such 

a transfer mechanism have been given by Grant and Townsend. 

6. 	The Correlation -1unction R . 	p(z;t1) 	(5' 3t`) pu2  

Following Wool aridge and Willmnrth (loc cit) we will assume for small 

eddies (or small separations) that 

a
u 	

a 
et 	1 ax 

and so 

      

R 
Pu2  

au;', 
- U 	

2  (xt) p( ;t) 	(z"t.tt) 
1 	 ax  

1 

  

(25) 
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The correlation coefficient is written 

au'2 p(x;t) 	(xT ;t1) 

1:7 . 
Pu2 

         

(26) 

         

         

Jp(x)
2 

 

   

and in what follows we will orqy consider the case when the pressure is 

measured at the wall. The wall.pressure covariance can then be obtained 

approximately from the distribution over all space of T. 	since 
1342 

p(O,t)p(x,t+r) 
5
PP (0" 

t t+7) 
P(0) 

Pr 
••=1.•=1. 4E. 

aU 	tr 
1 

'3372 	
fr-1.-1 RP. (x,t+r;Y,t) 
jj 

-  

if the (T-T) interaction is omitted as well as the surface integral. 

This fora is in any case only valid if the integrals are dominated by the 

values of R 	at small se%ratians, since it is only for small separations 

that Taylor's hypothesis, used in equation 25, is valid. 

If we write 

	

A 02; r) 	2 ( ,Y2  

Where y2  = y2/61  and assume throughout the inner region that 

	

-TT
1 	1 

	

a:/2 	172 

where K = 0.4 and Ul = lyur  

with 	 U = Tw Al 0  

(28) 



R (3E4D0) 
P112  
	C(E , 72;0) 

C7 ;0) 

r 
P 2 

- 13 - 

we have from (8) that 

P 
 (xT) 

P "1  

Uur iZ; 7. 	 Wp;  

F(7 2)(372 fci 	• itp:a2(Y2 2 

... (29) 

     

 

A(Y2) 

14Y2 

 

2 61 
7170 aY). 

where F(y2) = 

 

  

rU 
since A.67) is roughly independent of r for small value7, of r (0<---t22  

(see Wooldridge and Wilkuarth loc cit). 

For r = 0 we find a good fit (see Figure 4) with the data of 

Willmarth and WO-ldridge, if 

0 0 0 0 0 P 	( 3 ) 

[ 

e 	 + 9 \J. - 8 a3, 1 

2 	 2 
21 

e 

 

=  

where a = (x z) and al  is a function of y2. 	This for-Li for 0(,72;0) 

satisfies the continuity relation 

rsp 

If0

ay 1--  G3  O. 

me. CO 

The second term in C which clarly arises from the big eddies is important, 

only for large separation. 

It is found that the spectrum function is dominated by the tern 

arising from the smaller eddies and the only effect of the big eddy term 

is to cause a small hump near kiell  M 1 as shown in. Figure 5. 



However in view of the presence of extraneous disturbances at low 

frequencies Wooldridge and Willmarth inserted a high pass filter which has 
the effect of modifying the value of R. at large separations. In addition, p 2  

as already state4p 
ax

---72  - can only be derived from R . when the seplbtions 1 	 P 2  = 

J 
are small. Far these several reasons we will only evaluate p2 w althhugh w 0 e  

show qualitatively that the estimated values of R
PP 

 , the wall pressure 
covariance, is in reasonable agreement with the measurements of Wooldridge 
and Willmarth. 

integration numerically we find that the suoll eddy contribution to p(447-. 
iir 2 

is 2.5. 

The effect of including the second tern in C is to reduce this value 
slightly.. It is found that the dominant contribution to the wall pressure 
fluctuation comes from a region between the wall and y2/81  = 1. 

The accuracy of the integration is poor since, as already indicated, 

the accuracy in fitting curves to the experiwental data is poor when the 

correlation coefficient is very small. A rough estimate of the accuracy 

involved indicates that the coefficient of Tw 
in the above expression for 

rwp2 lies between 1.7 and 3 compared with a measured value of about 2.21-w. 
The conclusion from this and the previous sections indicate that the 

pressure fluctuations at the wall is largely controlled by the turbulence-
mean shear interaction and the region where this source term is dominant 

extends up to about 281 
from the surface. As already stated this does not 

necessarily apply to the case when the pressure' is measured away from:the 

surface, and in fact we have shown that for put  the (M-T) interaction is 

au'  

, 
On inserting the measured vale s of F(y2) and perfornling the 

exactly zero. Although p
2 
has not been calculated with any accuracy at 

distances away, from the surface, approximate calculations indicate that the 

mean shear turbulence interaction contributes more than 507-0 to its overall 

value and the remainder is made up from the T- interaction. 
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7. 	The Wall ire: sure Covariance and Comparison. with Experiment  

We have shown 5:.bove that the wall pressure covariance can be 

evaluated in terms of the mean flow and turbulent velocity fields. 

have also shown, at least for the case of zero external pressure 

gradient, that the wall pressure fluctuations are dominated by contributions 

from the mean shear turbulence interaction. 	have also discussed the 

difficulties in finding the magnitude of the remaining turbulence-

turbulence interaction. On the assumption that the latter contribution 

is negligible, Hodgson (1962) has evaluated the necessary integrals 

numerically to obtain the longitudinal and transverse wall pressure 

spatio_i_ fluctuations -nd the autocorrelation. The comparison between his 

calculations and measurements made both in a wind tunnel and on the wing 

of a glider, are shown in Figures 6 and 7. The comparison between the 

calculated and measured autocorrelation as obtained from the glider 

experiments is particularly encouraging and adds support that the (M-T) 

interaction is dominant in this case. 

Figure 7 shows that whereas the calculated transverse spatial 

correlation falls to zero beyond separation distances of the order of the 

1..)andary layer thickness, measurements made in wind tunnels invariably 

tend to a constant value for large separations. It can easily be shown 

that this asymptotic value decreases as the magnitude of these extraneous 

disturbances tends to zero. 

Figure 8 shows the comparison between the calculated and melsured 

power spectral density obtained from the glider measurements, and although 

the agreement is fair it should be noted that the ratio of the microphone 

diameter to the boundary layer displacement thickness is equal to 2.93s and 4.1 
and hence it is necessary to correct the measured data for the finite 

size of the microphone. . 	ThiS hag the effect of broadening out the 

spectrm curve and increases its level towards the higher frequencies. 

From the measurements of Wilimarth and Wooldridge, Hodgson and others, 

of the space-time correlations of the 	pressure fluctuations, it is 

found that the pressure field is convected past the wall transducer at a 

speed of approximately 0.8L.c 	This convection speed is a function of 

frequency and. reduces to values of nearer 0.6%, as the frequency is 

increased. An important result from the work of Hodgson is that the 
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integral of the aatocorrelation is zero in confirmation with the theory, 

and leads to a filling power spectral density at low frequencies. 

This result has not been obtained from experiments in wind tunnels 

(for example the experiments of Wooldridge and Willmnrth) due to the 

presence of extraneous disturbances as discussed above. 

It has already been menti•ned that corrections are required to 

allow for the finite size of the pressure trantaducer, and the magnitude 

of such corrections can be determined to some extent from the experimental 

work of Hodgson, and Wooldridge and gillmarth, while Corcos has performed 

both experiments and has presented a theory for these corrections. It would 

appear, however, that our state of knowledge about these corrections is only 

fair and more work is required in order to determine this effect with 

certainty. 

The pressure measurements made on the glider recently by Eaton and 
18)?  Goddard(  0_963) have shown that in the region of adverse pressure gradient 

the values of fp do not change greatly from their values in zero 

pressure gradient. The effect of variation of Reynolds number cannot be 

deduced from these results. It is however noted, since all velocities are 

now conveniently expresse‹.. in terms of the local external velocity, 

t at 

should increase slightly as separation is approached, corresponding to the 

increase in 

The experimental results confirm this. 

8. 	Comaressible Flow Theory 

From the theory in incompressible flow as presented above, we have 

Shown that for the case of zero external pressure radient with a liner 

relation between 2 and 7 exists. We have also presented some evidence 
Pw  

to support the view that the larger contribution to the wall. pressure 

fluctuations arises from the (M-T) Interaction. 	In the cELse of a 

compressible flow we might expect similar relations to apply and indeed 

this is confirmed by the measurements of Kistler and Chen (1962) Who shag 
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from wind tunnel experiments of the wall pressure fluctuations under 

conditions of zero he-ct transfer up to Mach numbers of 5, that 

72 
= a(R,M.,) r 

VT 

where a(R,M00) is a slowly varying function of both the Reynolds number (R),  

and the freestream Mach number (M,,,). 

If we assuMe therefore that the interactions existing in 

incompressible flow still p.p-oly apart from modifications arising from 

compressibility effects, and if we neglect all diffusive effects then our 

equations in dimensional form can be written in the form proposed by 

Phillips (1960) as follows 

2 	2 	 2 
2 
u

T 	 a 	72 	d 	 12.a A(x,t) 	.... (31) 
a
2 

Bit2 a 
2 dx2 a

2 aK2w 
00 	 00 

where p rAp/p U
2 
 • x EpU 	; t tu-  p 

W W T' 	T 	 . 

A( :as„ t ) (, c3 au2 
ak 1 

au au 

ax 	ax 

a 

DU1 	and U1 U
1
(x
2
) only. 

+ 	aK
1 

In this equation we have assumed that the mean values of the density, 

viscosity and shear stress at the wail are independent of the streamwise 

distance. We have also assumed that the speed of sound, a, is only a 

function of the distance normal to tha wall. These simplifying assumptions 

in,f4y the neglect of convection and sclttering of sound waves by the 

turbulence and of fluctuations in the speed of sound. Our equation does 

howvqr include the effect of flactaations in density (sound waves) and 

hence pressure fluctuations result from fluctuAtions in both the vorticity 

and sound modes, where in view of our remarks regarding the analogy between 

the incompressible and compressible flow problems, the vartialty mote is 

expected to provide the larger contribution. If this were not so the mean 

flow in a cumpressible boundary layer could not be derived Prom a simple 



transfora,tion of the corresponding results in an incompressible flow 

which is in contradiction to the work of Morkovin(15)(1962) 	Coles(16) 

(1961). 

It is of course not necessary for us to neglect diffusive effects at 

this stage since these c-n be incorporated into the right hand side of the 

equation abova. 

A solution to equation (31) can be obtained by finding its Foutier 

transform and defining the tire dimensional Fourier-Stieltjes transforms ce 

p(x,t) and A(x,t) ..-Ls follows: 

p(x,t) = I 
i(k1x1+k3x3 +fit) 	

c1.7,-;( x2  ;k„ (,)) 

41.(x, t) 	
e i(k1x1-4(3,,:3+ ut) 	

dAxo;k, 

where k is the wave number vector in the (x1'x3)  plane and w is the 

frequency. The equation for the Fourier coefficient d w is 

2 .) drj  - k2 	U1k1)2 	, dw = p/p )da• .... (32) 
dx2 00 	 a2 

and on eliminating the first derivative by the use of the dependent variable 

4 with 

4 	(-Vaw) dw 

we find th 
2 u 

4,1 	(k2  - —T---2 	+ u1k1)2  + a" /a 4 = (palp„aw)dli)  
a 

o6aeoaa000 (33) 

It can be seen that this equation reduces to the corresponding equation in 

incompressible flow when a = 

In his analysis Phillips chose non-dimensional co-ordinates such that 

the width of the shear layer was unity and. the Mach number of the external 

flow was very high, and finally obtained the seund radiation from the shear 

layer by a solution which neglected terms of order 1,/lvi,,o . In our problem 

we have chosen boundary layer coordinates such that U 	as 1 	x2-1`° 
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It is not possible for us to estimate the radiation of sound from 

the boundary layer, since our solution does not include the far field outside 

the boun&.ry layer, but nevertheless one boundary condition which we must 

apply involves the :.:agnitude of the disturbnce pressure at the edge of the 

bo_ald..:xy layer. 

9. 	lihe Solution of the Pressure B.uation 
The solution is reodired of 

4'1  - b(x2)4 = h(x2) 

where grimes denote differentLItion with respect to x2, and 

u
2 

Is 
b(x2) = k2\2  ulki)  

a 

h(x2) 
P 

P w w 

We note that 

(0;4..,w) m dZ(0;k,w) 

u
2 

Now 	 = (0 f/2) DC ‹4 
3ill  

a 
for all M, and so we can choose X = 	>>1 for all M. , as shown in 

Figure 9. Hence we require a solution of (33) for large values of X ■ 

If we introduce the new de pendent variable 

22 y = X UT/a 
2 w 

and out 

q(y) = k2  

\ 2 
a
2 

6-1+1,1-
1
k w 

 
1 

 
ur a. 

where a 	Waw, then 

Z., 	(71(3)4 = H(Y) 

H(y) = ---- Pa 
P  
w
a (U

T 

(30 

a 
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The term in a 	has been included as a source ter.1 for convenience 
yy 

since its numerical value is sm.-al compared with the dominant som-ce 

term as can be inferred farm Figure 1[1. A tyjical v=ition of q(y) 

amross the boundary loyer is shown in Figure 11. 

The bo.ndary conditions are as follows: 

dZt(0) 	'(0) = 0 

and either 	dZI(,) = 4(,) = 0 

or, 4 must be bounded as x
2
—.7„, for the cases respectively of zero 

disturbance at the edge of the boundary layer and outward propagating 

waves. For 	H(y) 	U1  U, , a = aWn, so that (3L+) becomes: 

a: 

4, 	— X
2 
(1

.2 
	

2 (w+ U,k1)2) 	= 0 
a, 

and the solution must be exponentially decreasing or oscillatory so 

that 4is bounded as y 1  a. Thus when 

(k?)2  

1 2 a 
÷ 'Jock 

1' 

  

we obtain the exponentially decreasing solution wiile foe 

2 

(w+ Unoki) 	> (kA )2 

we obtain the oscillatory solution which physically corresponds to a 

radiated pattern of Mach wzAves as discussed by Phillips (loc cit). 

In fact with k1 = k cos 0 and for a convection speed of the turbulence 

Ue such that w= -k_Uc  eddy Mach waves will be propagated _utwards for 

these wave numbers defined by 
-2 

cos2e >EM3,-(1-Ulti,)] 



This equation reduces to that found in incompressible flow when k2- 
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Thus the eddy Mach waves ape generated by those wave numbers in the 

outer region of the boundry layer for which 

IT 
	BEI < 8 < 	+ em  and - em  <0 <8m  

where 	 em  = cos-1' []/(1-0c/uc,)/q. 

For the remaining wave numbers 	0 

.L:it the wall if w= -Uk q,(0) vanishes when 

cos2e = a2 
./U2 

c 

3'-1 1 + 	Li 

,2 
U, 
Uc 

for the case of zero heat transfer. 

Thus for those wave numbers in the region of the wall for which 

C 
< 	< IT + e 	and - 8 < 0 <-.,t3

C 	 C 	 c 

eddy Mach waves exist since q(yi) < 1 and the solution will be oscillatory. 

Hence there are certain wave numbers of the turbulence in the 

region 0 4y <yo  where q(y) is negative and similarly in the region 
y < y < 0. In the region yo < y < y1, q(y) is positive, although for some 
wave numbers q(y) is .positive for all values of y. 

Thus for certain wave numbers eQuation (3L) has two transition points 
at y = yo  and y = yi  where q(y) = 0. 

Case I q(y) >0 	0c y <  

For the case where q(y) is everywhere positige the solution of 

eau tion (3) can be fo.nd if terms in ]A are neglected. On insetion 

of the boundary conditiats at the wall and at y = oo we find that 

00 

ca.Z(o) 

	

1 i 	H(yt 	
7" - 77-7 	exp (-X 	q2dy")dyi 

q(yi )71.  
(35) 

cn1 

u 	-?) 
-Y0 "" 
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C.Ise II  q(Y) <0 	Yi  <y < m where q(y1) = 0 

A solution is repaired in the region arulnd y = yl  where 

ci(y
1
) = 0. But this soluti:n must be the an,dytic continuation of the 

solution found around y = y1  for q(y) >0 and this is ..)resented under 

case IV below. 

(The solution can of course be vxitten in terms of m* and 	where 

- 	2 	Ifq ay )2/3  

yl 

,2 	3/2 = 
3 	and 

= 	0 

igr ri Hen:: e t = 	e ; 	= q•-• 	 ki* e ; 	= 	e
i3 d 
 

Cast III q(y) >0 y < y <yi  where q(yo) = 0 

  

    

The solution -,,r0 nd. y = yo  where q(yo) = 0 is 

[ 1 	 1 

(Y) 	= (s/q) 	773 1? (777 a(y) + 17-sl(n) #(y) 
3 

where 	s = 0 I 	a  ) 
Yo  

q >0 

a(Y) 

0(Y) 

n= 

= 

= 

2 
3 

A 

B 

xs3/2 

S 

0 

S

r 

 

(
XS
f93  2 

1 

0(s) j
3

kl(n) ds 

 0(s) 713I1(1)  ds 

(36)  

(37)  

with A(s) 

 

small terms. 
(q/5)4  

A and B are constants to be determined from the boundary conditions. 
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Case IV 	q(y) >0 	yo< y< yl  where q(y1) = 0 

The solution found above is not valid near y = yl  where q(yl) = 0 
even though s is finite at y yl. A solution around y = yl  is 

r , 

thi) 	(t/q)' L  $311(g)i(y) 	1.10,I) 8(Y) 

where t = ( 
3 
2 

1 	Vq dy X  q >0 

M = 

( y ) = 	C 
t 

0(t) ii-El ( g) at 

 

(38) 

  

5y)= D 
1 

0(t) 	(p) at 

 

(39) 

 

‘a.th 0(t)= 	Igy)3 	small terms 
(v04 

C and D are constants to be deternined fron the boundary o nditions. 

Case V q <0 
	

0 < y <y 	GAY)) = 0  

In this region although q is negative the solution given 
for Case III will still be valid. However s and n will now be complex 

numbers. 

(The solution can of course be written in terus of n* and s* 

where s* = ( 2 

77' 2X a. 3/2 73-   

and 	= —q >0 



d (.( 0;lz, w)d ( 0;177; 
dkidk3dw 

4k X
2 

= --T--  J  t'22 
2; 

1-40;1 , 

(y,z;k:y dY• 
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. Hence s = 	q = q'e ; 77 = ee
i3T/2 

and it folloys that the 

modified Besel functions with imaginnry argurl. ents can be written in 

terms of Bessel functions of the first kind. 

10. Evaluation of the constants  A.B.0 and D. 

The  boundf-try conditiwls are: 

	

aY 
	0 	

y = 0 

and 4 is bounded as y-.000 . -de will assume, following Phillips, that 

only outgoing Mach ,,raves will exist or 

	

4(y) 	 ) as y---> o. 

The remaining two conditions are found by matdaing the solutions 

found for 4 and 	around y = y and y = y
1 
respectively at some 

dY 

convenient station in yo< y< 

In the appendix this station is taken t y = Ywhere 

w u1
(Y)k

1 
0 

It is shown in the appendix that A,B4OID can be evaluated in terms of 

weighted integrals of the source function H(y) taken over certain regions 

of the boundary 

11. The Pressure Spectrum and the Mean Snuare Pressure 

The spectrum function can be obtained from the Fourier coefficient 

da0) of the wall pressure fluctu,lti:ns. Thus for the case q(y) > 0 

everywhere, that is for ed.J.ies moving subsonically with respect to the 

speed of sound at the wall, it is found that 

dU 
1 

dz 

 

77 

d_z 
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on writing 	= 
	

dY, and 1.22  is the spectrum function of 

the normal velocity. For the other wave nuMbers similar expressions 
for fl (0;15 	can be obtained. 

Now in the range of supersonic freestream Mach numbers up to about 

5 it is found that the contribution to the pressure from the wave numbers 
generting eddy Mach waves at the wall is roughly comparable with the 

contribution from the wave numbers moving subsonically with respect to the 

speed of sound at the wall. 

The remainder of the calculation involves the replacing of the 

compressible flow 'ivantities by the equivalent incompressible values using 

Coles' transformationOM. It is found that the spectrum function is not 

greatly changed from its value in incompressible flame 

An integration over all wave numbers and frequencies enables us to 

find the mean sauare pressure and the results of the numerical integration 

)(-- 
2 w  

show that p P r increases slowly with Mach 	nuMber. In fact pw
2  

w  
ecreases due to the reduction in skin friction coefficient with Mach 

number and increases as a result of the dominant source region moving 

nearer the wall with increase in Mach number. 

Although as stated previously the present analysis cannot be used to 

determine the sound radiation from the boundary layers, it is shown that 
the outward radiation in the outer part of the layer is given by 
equation Ae23 in the Appendix. 

The comparison of these results with the on4 availLble experimental 

data of Kistler and Chen(8) is fair as shown in Figure 12. 
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12. 	Conclusions 

It is shorn that in incompressible flow the available theoretical 

and experimentaltLata sup.)ort the conclusion that the 'ressure fluctuations 

at the wall in a turbulent boundary layu-. are domin-ted by the interaction 

between the moan sher and the turbulence. 

In incompressible flow few exp,...imental data exist but this data shows 

that up to Nach numbers of the order of 5 similar source terms must exist 

since the changes in level of the pressure fluctuations with M together with co 

the changes in the power spectral density are reasonably small. A theory is 

presented ohich supports this conclusion. It is shown that even though eddy 

Hach waves exist both near the wall and in the outer region when the turbulence 

is moving supersonically with respect to the seeds of sound in the external 

flow, and at the wall, the overall increase in 2ressure level is small at 

Hach numbers up to 5. 
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AaEMIX. 

The Solution of the  Pressure Ecolation for ti Wall Pressure 

In Section 9 the solution of the pressure equation for a compressible 

boundary layer has been obtained apart from the evaluation of four constants 

which are to be determined from the boundary conditions. For those wave 

numbers which generate eddy Mach waves both near the wall and in the outer 

region of the boundary 1pyer the solution is as follows: 

W3 11 (-)4 Ir 4,3,71( .7.)a4q 	iv  y) + -2-- e 	n* --p(77*) /9*(3r) lo 	<yo  .... A.1 

4(Y) = (11)114  1 
	1.2 

	3 

f 

a
l  

fo 

0(s)77 

0(s)  

At) 

3 K1(71) ds 

1711_1(0 ds 

dt 

a(y) = A + 
x3  

R(Y) = B - 141 

x' 

(Y) - 0  
x3  

t 

0(t) u 3  It(m) at 

( 77*  
2 

.. 	 A.5 

	  A. 6 

	  A. 7 

	  A. 8 

	

:• :5 die:   A.9 

5(y) = D 

c(Y) -A 

1 

3-t 3 ast.:: 	 110 

(3r)  = (q)4 	(Y) 	‘K 1(0 &(y) 	yo<Ys  Y 
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1?*(Y) = 0  - 2 	
(4)5  
-3-1  sin 5,. 

124:7L. 
(y) = D 

X 

t* 

0 

 

( 	 A. Ll 

0(t* ),11_ ) 

 

	 A, 12 

The application of the boundary condition 

L4- = 0 t y = 0 leads to 
aY 

ciao) = 4(0) = 
0 

x 	44-  n.' w2 	-. 3  a(7*w  ) 
aiaoma e o.aoil.,13 

for 	large, where the subscript, w, refers to conditions ^t y = 0, 

cc ( 0) = — J2 
(7.7 *`v) 

J 0(
Fr 

77:;i 0 .0 0000p 00 O AQ 14 

provided the terra in brackets does not vanish. 

When 	2( * TT  ) = 11 2(n* ) 

dao) = 4(0) = i/T e 	2 jar/3 	
1 

• 
2tiv 77A ,,)e` (0) 

) VG x1/6 
q*  w 

 

A  15 

 

for X large 7.1- 	 ei1v3  1,, (77* )i9 (0) c  w  Vl 

 

a- ( o) 

 

	 A.16 

 

xo-  2(11 	w 
3/2 

  

Thus A is given in terms of B and du(0) is found when the vr,lue of B has 
been obt'lined.. 

If on3y outward propa7.1.ting eddy Mach waves ire allowed in the region 
y 	a 0  we find. that 

&)— ,,17(1)1/6  x1/6—q.7,yA 

ei5 74/12 	_e-i 7?-4) e  ( 

(1+ e1  
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with 
= 

and so 0 is given in terms of D. 

The next condition is found by matching the value of 4 and 

found from the solutions about y = yo  and y = yi  resj?ectively. 

e thus find that for 

d 
dy 

	

( a (I) 	(Y)) 14(77) = 	i9(Y) +& (I))1C-.4(77 ) .... 	1.4 19 

	

( a(Y) 	(Y) ) I(77) 	6(y) — g(y) 	( ) 	 A.20 

and for large 

	

a(Y) 	?(Y) = C 

The matching station is taken at y = Y with yo  < Y < y1  where 

= 0 

Hence both A and C can be evaluated. Thus 

1 
f 	0(s) 	(r1) 	dY   A. 21  

0 

A - 
	

C:)3  

71. 3  

and 

= 

Y1 
0(t)13K101) 

at 
 dy 	 A. 22 

arc we can find B and 3D from („16) and (A.18) respectively. 

The uutmrd radiation given by (A,17) becomes using these expressions 

for C and D 

— 	/4 e 	-fir 	1-1(3r ) 	ala 
d 	4 Is)  c..)   A.23 

*( q."" 
f

YlJ 
	

ci 
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If -ae insert the values for H(y1) and eqyl) respectively the spectrum 

function can be shown to have the form 

	

a dU a2 	1 
X jk1p22 

a ax2 
2 

	

acc, 	e(mrk 

dU
1 where a:  --- and dx  
2 

122 r_re all evaluated at y = yi. 

It is now necessary to identify the frequencies w at a given wave 

number k in the source function in the ply-tee y = y1, which arise from 

disturbances below this plane, soy at y = Y, where the speed of convection 

is 0(Y) and w = -Ue(Y)ki. Since the convection speed is positive 

will have the opuosite sign tc,  cos e, where kl  = k rose , and this imposes 

a cut off Wave number angle at each y = yl  as shown in figs. 13a and 13b. 

Thus only a finite range of frequencies contributes to the pressure wave 

number spectrum for any given wave number. A diagram illustrating the 

generation of eddy Mach -, caves is shown in Figares 14a and 14b. 

On inserting a suitable form for 4;22, which is a reasonable 

approximation to the measured spectrum function except at very high numbers, 

and using Coles' relations between the incompressible and compressible 

properties of the boundary lay .x it is found that 

U /U 	82/8 
2_L1 c 00  

3 	= 1 x 10 3 	 oa000000 __.25 2  
P. 

Acomprison with the experimental results of Laufer(13) is shown in 

Figure 15. 

k,w) 	2.77- 	 A. 24_ 
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