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SUMMARY

The gquation for the pressure flictuations in a turbulent boundary
layer are derived with special reference to their values at a rigid wall,
It is shown that in incompressible f1-w the pressure field is defined
ccmpletely once the velocity field is known, The results obtained from
the theory are compared with experiment, The work is extended to include
the effects of compressibility and it is found that a treatment similar to
that given by Phillips is sppropriate, It is shown that under conditions
of zero heat transfer the theory obtained in incompressible flow is only
slightly modified by the effects of compressibility, However, at higher
Mach numbers eddy Mach waves are farmed and these modify to some extent the
pressure distribution throughout the layer, and in particular at the wall,
In addition strong radiation of sound occurs under conditions of supersonic
flow external to the boundary layer.

Comparisons with experiment show moderate agreement, The theories
as mentioned previously are for the case of zero external pressure gradient,
but it is shovm thet even when these conditions are relaxed similar results

occur, Some experimental results in suppart of this conclusion are presented.
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NOTATION

a/a

W
speed of sound
source function

skin friction coefficients

Green functions for unbounded and image flows respectively

source function

two dimensional wave mumber
pressure

see equation (31;.)

spatial separation

Reynolds number

pressure=velocity and pressure-velocity gradient coveriances

tine

nean flow velocity

turbulent velocity

velocity

convecdtion velocity

Fourier coefficient of u,
delay time; nmean shear dUl/ dx2
wall shear stress

frequency

Fourier coefficient of pressure

Fourier coefficient of scurce function

o 5 % ,8%  coefficients

Boundary lsyer thickness
displacement thickness

a/a

w

L

u
B.v T




u_ = ‘f'r‘Jpw shear velocity

u viscosity

n(k, ) spe ctrun function (pressure)
@22 gpectrun function (velocity component u2)
o source function

Subscripts

w wall value

o external to boundary layer
o} incompressible value

B tensor notation

X streamvrise direction

X5 normal to the wall

x3 transverse direction

Other syubols are defined where they occur in the texte



1 Introduction

The problem of pressure fluctuations in a turbulent boundary layer
has been studied thearetically by Kraichnan(l) and others for the case of

incompressible flow, In particular Kraichnan found on making certain

assumptions about the structure of the mean and turbulent flows that pi

was proportionzl to the local wall mean shear stress Tw. This result
is based on the assumption that the dominant source term involves an
interaftion between the mean shear ond the turbulence, whereas in the case

(2)

square fluctuating pressure is determined by quadruple velocity

of isotropic turbulence, Batchelor and otners have shovn that the mean

correlations. The experiments of Hodgson 3 and Wooldridge and Willmarth(h)
rrovide confirmation that the dominant interaction involves the product

of the mean shear and the turbulence, and these results aleo confirm to

some extenttgge theoretical predictions of Kraichnan as modified by ILilley

and Hodgson'~”‘,

These results, both thearetical and experimental, apply to the case
where the external oressure gradient is zero, One of the difficulties
arsoclated with experiments on pressure fluctuations in turbulent boundary
layers is the difficulty of makin, measurements ih the boundary layer
itself, and secondly the recdings of wall pressure fluctuations made with
a finite size of pressure transducer require extrapolation to zero microphone
diameter. The porrections associated with the finite size of the pressure
transducer are very significant, and have becen determined to some extent in
the work by Hodgson and Wooldridge and Willmarth, while Goroos(6) has
perforned both experiments and presented a theory for these corrections.

At high Mach numbers we find that apart from the work by Phillips(T) no
theory is available and it is in this area thst the present vaper is

primarily concerned,

The wark by Phillips is related to the problem of sound radiation
from supersonic turbulent shear layers, where he shows that the radiated
noise arises from eddy liach waves which are generated by some wave numbers
of the turbulence in those loyers of the shear flow for which the differernce
between the mean velocity of the fluid ateide and the local eddy convection
velocity of the turbulence is greater than the speed of sound ocutside the
shear layers, The problem of the pressure fluctuations inside a supersonic

turbulent bo-rndary layer present an analogous problem, However, Phillips
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theory needs to be modified somewhat in our groblem and it is necessary

to find the pressure fluctuations over a range of Mach numbers including
both subsonic and supersonic, wiaereas Phillips asymptotic theory is
strictly only applicable for very high supersonic liach numbers, The present
theory is compared with the e xperimental results of Kistler and Ghen.ts)
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2e Incompressible Flow Theory

The equations of motion and continuity ore

ov ov.V.,
Y i RS- 5 5 (RN . - 2 .
,po at + a)c_ = . + .IUDV vi ssessenae (1)
5| e 1
avi/&{i = 0 seseassce (2)

where v is the velocity, p is the pressure, Mo is the density and Ho
is the viscosity, The equation for the fluctuating pressure is found

from the divergence of equation 1, and gives

82
Wg Uy [ — - V.V
P = Lo 3 .a ) (ﬁi.b‘j 2 .) evescocep (5)

If y = U + g where J is the mean flow velocity and y is the turbulent
velocity then it can easily be shown for a boundary layer flow that

U, ou

i o 82 )
VZ_P = =g Po ac &c == Po ax.ax- (uiuj s L‘I.iuj LX) (LI-)
2 m 1,
EUZ all
since the remoining terms such as 2 3 B e small bty comparison,
4 2

It is seen that the somrce terms in Poisson's ‘equation for the
Pressure involve an interaction between the mean shear (aUl/axz) and the
turbulent gradient (&12/ axl) which we e¢all the (1~T) interaction while the
remaining source ternm represents the turbulent-turbulent (T-T) interaction.
In this equation xq is neasured in the direction of the mean flow outside
the boundery layer, while X5 is neasured normal to the wall, We see that
in the case of a uniforn flow the (M~T) source tern is absent und the
equation for the pressure reduces to that used by Batchelor (1951) in his

investigation on pressure fluctuations in isotropic turbulence.
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In the cace of boundiry layer flows lorge values of the mean shear
(aul/ax2) exist throughout the boundary layer, and in this oase it might
be expected that the two source terms have at lescse equal significance.

In fact the analysis which follows shows that in the case of zero external

gressure gradient the dominant source tern imvolves the (N-T) interaction.

The general solution of eguation (4) for the fluctuating pressure

can be vritten in the forn

plxst) = —lﬁ r d::é”m dxjdx (Go + G,) &(x',t)
y PO 1
l H 1 1 1
= onr “ dxjdxy G Op/%)

where the volume integral is taken over thé entire boundary layer, and
the surface integral is taken over the wall at xé = 0, The Green functions

GO, Gi are given respectively by

¢ = -zl 6 = lk-x*1""  eeneenn (6)

(o]

where x'* is the image point with respect to the wall,

However, from the equation of motiocn, eguation (1), we sec that

since the velocity vanishes at the wall our equation for the pressure becones

1 { 1 i 13- (r 1
plaa) = <= J ax} “ ajasg (G + 6;) Ax',t)
u ‘m a0 08060048 (?).
.._.;;_Ji axjaxy (G 2%y /axs?) e

and shows thot the sressure fluctuctions can be deterained from a

knowledge of the velocity field.
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The govariznce between the iressures =t any point (;g,t) and

(ﬁ‘ ",%') is given by

_ i o
R = p(x,t)p ' (x',8") = - h—ﬂ;y dx) “ axjdr(G 4G, ) AGg',e)p" ' (x'",t")
i .. 2
__.E..n r] dxlax! G ...Qz... u!( t t) il( N t')
2 | T2 pa> DREEISE S
-0 2

esivasse 08)

Thus in order to obtain the pressure covaricnce anywhere in the

shear laycr the following covariances are requireds

P”(%”,t')ué(ﬁt,t); plt(£lt,tl)uiu3(£l’t)

together with their spati-l derivatives, For convenience we will write
these covariances as R and R respectively.
Pu, I.)\.J.:.Lu'j

How the cov-riance pug'— can be obtained from eguation (7) giving

o o au
i 9 92
R (x'',x';t",t) =.P_Q._| - Axtax! (G +&.) 2._..% o7 WU T+ 3T
DU, bar | 2LL 173V 0 4 %) %) 272 x{Ox}
IPCE PR R |
ujuiu }
- o2 < T
Tyt 1
—E;?}J d._x‘.ldx' G b g i u2u2 ....-..(9)
s e < 2
= '= 0
2

and 2 similor expression exists far W Our knowledge of the double
velocity correlations is fairly complete for shear flow turbulence, but little
is knovm about the related triple and quadruple velocity correlations, If we
assune that the joint-probability distribution of p and R' is narmal then as
shown by Batchelor the triple veloecity correlations are zero, while the
quadruple correlations reducc to a sum of products of the double velocity

correlations, Although the assumption of a normal joint probability
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distribution would simplify the analysis, in our case its use has less
Justification than in the oroblem of wessure fluctuations in an isotropic
turbulence investigated by Botchelor (loc cit)., Our analysis will

therefore be devoted to the contributions to the wressure fluctuations from
the double velocity correiations, and the effect of the triple and quadruple
velocity correlations will be found by difference when our results zre
compared with experiment. The data on which tne double velocity carrelations
will be based is obbained from the work of Grant(g)(l958) and

Klebanoe(20) (1954).

B The Double Velocity Correlation Functions R

£

let us now consider functions defining R22 which fit the measured

corrzlations of Grant (loc cit) with fair accuragy. It can be shown that
in the 'imner r:gion' of the boundary layer, and including the constant

stress layer, that R,, is composed of contributions from small and big eddies.

The scale of the smal?.er energy containing eddies is proportional to their
disitance from the wall, waiile in this region the scale of the big eddies
is roughly independent of the distance from the wall, If we write ag and
2y as the amplitude of the smzll and big eddy contributions to R22 we find
that a reasonable fit with the results of Grant is obtained when

0.42| T

Rzz(xz;rl,0,0) = a (l - s

exp(~0.83 F; Vx,)

im0

2

(r 16 ,)°

+a.b<l— m ) e@<-(rl/ai)2>8

with as = 0,9 2nd Db = 0,1 as shown in Pigure 1, The one dinensional

spectrun function corresponding to this correlation is:
24i%

a8, (L34, ) I

2wy & (1+kiﬁx§)2 kv

(/8> 8)%exo(2 &/4)

'522(}:2;‘:1) =

o i

where - and = F is se Prom Fig 2 & i
where 'l = 0.85/1{2 né 61 -\Bél It is seen from Figure 2 that ﬂ22 is
flat ot low wave nuubers, has a shallow peak near k.8 = 0.7, corresponding
to the contribution from the big eddies, and falls off at high wave numbers

like kiz.
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Due to the dependence of the scale of the small eddies on the distance
fron the woll, the amplitude of jE522 falls at low wave nunbers as X, is
decreased, while at high wave nunbers ﬁ22 extends to higher and higher wave
nunbers 2s X, is decrcased, although necesserily some high wave number cut
off will eventually be reached. It is interesting to note that apart from
the shallow peck at klal = C.7 the shape of the spectrum function iz almost

entirely the resalt of contributions from the swmaller eddies,

The results of inserting a high pass filter, such as used by
Wooldridge and Willmurth(ll)(l962) , 8o that all wave numbers below
Ikl] = fK._,ll are eliminated con easily be demonstrated. Since the assunmed

form for R22 is an even function of rl

l o
,ﬁ22(x2,kl) = Wj cos k1r1R22(x2’r1’0’0)dr1 dasabiaie K18
o

and since ,622 is an even function of kl

R22(x2;|r1|,0,0) =2 fﬂﬁzz(xz;kl)cos(klirl])dkl ssssenes GIB)

The truncated forn for ,Ef22, associubed with the insertion of the high pass

£i’ Ler, leads to

il
R22(x2;r1,0,0) =2 TIL_L ﬁzz(xz;kl)cos k,r dk

-as sin Klrl

¥ = T =) T
and when Klﬁl <<1 we find very nearly that 322 o R22 T rlf:L‘L

eees (15)

since the big eddy contribution can be shown to be negligible.
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Thus for 61 < 2 vwhen 51 = 1, and K.Lﬁl = 0,2
&1:\{22 = 0-07 mPpaceeene (16)

which is sufficient to modify greatly the shape of the R22 correlation.
In fact for this value of the cut-off wave number the zero point for the

T e P
truncated R22 (R22) oecurs at smaller values of rl and in addition R22 has a

pronounced negative loop., For these reasons correlation functions obtained
from filtered signals need careful analysis as to their true interpretation.

Our assumed form for 1{22 is not entirely satisfactory since it does

not satisfy the comtinuity relations

_ﬁ322(x2;§‘) drydes = 0 sy LX)

unless a negative loop exists in the r, direction, But this is absent

3

from Grants wmeasurements near the wall and so strictly
fRzz(xz;rl,0,0)drl
]
should equal gero, However, errors arising from this cause can be shown
to be small unless the value of R22 at large separations is under
consideration., It is interesting to note however that our truncated form
of R,, does satisfy the above continuity relation, whereas in general it

22
will not,

he Pressure~velocity Covariance Rpu R P(;s,,t)ué' (2{-,' 't ")

If we assune th:ut the triple velocity correlation is zero we find that

RP is obtained fronm 322 together with the variation of the mean shear across

the boundary layer. If the form for R22 given in section 3 above is
substituted into equation (9) Rpu can be obtained.

2



-G o

Provided the pressure is not weasured at the woll it can be shown

that pu,, that is RP’ for zero separation and time delay, is very nearly

equal to, or at least proportional to, *poqzuz, showing that it depends on
triple velocity correlations or in other wards on the turbulent-turbulent
interaction, It con also be shown that the (li~T) contribution to EE; is
identically zero if R22 1° It is impartant

in this case to note the dominant role of the turbulent-turbulent interaction,

but it must be emphasised that this only applies to contributions to pu,
and it does not follow that the (M~T) tern is zero or negligible for RP .

is symmetric with respect to r

The impartance of the triple velocity correlation can be found to some

extent by re~writing the equation for the pressure in the following form

2 o e 2
V(o + 0o a°/3) = - po-—?-mi.axj (vyvs = Vovy = a/3 8;5)  ..e(18)

This equation is in the forn groposed by Patterson(lz), but clearly similar
equations can be proposed with dififerent coefficients for the velocity ternm
on the left-hand side of the equation, If structural similarity exists in
the inner region of the boundary layer it follows directly that

"'Puz e Poq_zuz ssessssnse (19)

I£ we now turn to the cnse of Rpu where the Jressure is measured at
2

the wall we find from equation (9) that the correlation is zero when rl =0

and is antisymmetric with respect to r It is however symmetric with

l.
respect to r‘_j. This covariance has been subjected to fairly full experimental.
treatment by Willmarth snd Wooldridge (1962), and a comparison between the

calculzted and me:suwred values is shown in Figure 3,

.......

5. The Turbulent Energy Equation

Our results for the pressure=velocity product can be checked by
refercnce to the role they play in the turbulent energy balance.
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Now fronm the equations of motion and continuity the turbulent energy

equation can be derived in the forn (see Townsend 1956)(M+).

au
— W g 2
e WY Fm "ax, (Pt eed/2y,
2 2
2 e ——
d 2
= pPo€ bl ' 1Y —"'2' (q_ /2 + u2) ssesecse (20)
ax
2

where the terns represent in turn the production, convective diffusion,

dissipation, and the work done by viscous stresses,

On intezration we find

q U, xa du
1
- Pg + f (-Oou u ) . dx possvee (21)
2 . 12 d.xz 4
. - ——
since pu, = q2u2 = &%- (q /2 + ui) + Oat x, = 0.

2

In the region close to the wall the last two terms in (21) are

negligible, while in the constant stress region

dau
- U_1 LR N ] 22)
12 dx2
and s
— ;]
pu2 :: -pnq u2/2 : ' eeevcocae (25)

which can be deduced from the results of Iaufer(lz')(LSSB) as plotted by
Tovmsend (1956).,
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Thus in the constrnt stress layer the dominant contribution to ;u_z
is from the (T-T) inter~ction vhercas cleser to the wall it is dominated
by the viscous térns, If we now coupare these results with equation (9)
we seec that the (M-T) and (T-T) terms must be small when x' = x'' is close
to the wall, -I-J{I; is then given by the surface integral which is the only
viscous term in equation (9). For larger values of x' = x'' "this viscous
tern islitself negligible. However the (M=T) term is also zero if :r'_u-é-'_

is symmetric about s. = O (where & =x'"~ :5"), as noted by Ch::rcos(:L (1962).

Thus the only remwining term, the (T-T) interaction, can contribute to
Puy in this region. This conclusion needs some qualification since Grants!

pmeasurenents of R, show some slight asymmetry about s, = O ond hence the

22 4.
(M~T) contribution is not entirely negligible, but our main result dealing

with the dominant role of the (T-T). tern is barely modified.

If it cen be verified that in this constent stress region

(p + pt/2)u, ~ O sesmis 100

it would 2dd support to the conclusion that turbulent motions exist in
wh ch the total energy is conserved during comvection with the velocity Uye
The random nixing jet hypothesis of Grant (loc cit) supports such a

conclusion and in such a nodel u, would be the random outward jet velocity.,

We a2lso note that in the region close to the wall the total
dissipation exceeds the wroduction of turbulent energy -nd is therefore a
region of energy defect. Thus the inner region takes on a double role of
transferring energy towards nnd away from the wall, The details of such

a transfer mechanism have been given by Grant and Townsend.

ou!
e : 2
6. The Correlation function Rpf12 = p(x;t') y-ra (x'st")

Following Wooldridge ond Willmarth (loc cit) we will assume for small

eddies (or small separations) that

3 3
5 Ul axl
and so 3ut

R, = T U (x}) p(xst) -g;g? (x'5%") voeseeses (25)



The correlation coefficient is written

il

au'
p(x; t) (x‘-t')
- - l LR B N RN NN ] (26)

Py T\ 2
,/p(g)z N/(Z:—.i]

and in what follows we will only consider the case when the pressure is

neasured at the wall., The wall pressure covariance can then be cbtained

approximately from the distribution over all space of ﬁ%& since

= (ot ) p(0,t)p(x,t+7)
R 23X, %47) = —
¥ ~ p(0)
& o, = ayar, auzz/'—
o o (x,bers
-2 [ % ow [T R NE
) )

if the (T-T) interaction is omitted as well as the surface integral.
This forn is in any case only valid if the integrals are dominated by the

values of R o ot small semrations, since it is only for small separntions

that Taylor's hypothesis, used in equation 25, is valid.

If we write
A (yz; T) = Rpﬁz (Oyyzsogr)

vhere §2 = yz/ﬁl and sssume throughout the inner region that

mI
e

n—— = —If'l_ LR N (28)
97, Vo
where K = O.4 ond Ul = Ul/u-r

with u - =J Tv; Ro
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we have fron (8) that

e (x K,T)
1 Hu e 5,'{ Pu
ﬁ ( H L 5 == l ) 1 3 . ena (29
PP 57 T, ’/P‘"/TW [ iyl 9 f[ x| Rp,lz(yz;r) )
- Ay,) (&2 &

U
since A(yz) is roughly independent of 7 for snsll values of T (O< —5? < 1)
(see Wooldridge and Willmarth loc oit),

For 7 = O we find ~ good fit (see Figure 4) with the data of
Willmarth and Wo.ldridge, if

e, BTO

3 55 G(E fl ..'):2;0) csecacce (30)

:
g 2
e_al( El‘l‘ EB ) .

o

8 ~a (£5+ €2)/3
R iy

vhere g = (x - aY,) and &g is a function of Yo This form for C(E,yZ;O)
satisfies the continuity relation

ﬁo dgldi{,}=0

The second term in C which cluarly arises frou the big eddies is important,

only for large separation,

It is found that the spectrum function is dominated by the termn
arising from the smaller eddies and the oniy effect of the big eddy tern

is to cause a small hump near k161 = 1 as shown in Figure b,
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However in view of the presence of extraneocus disturbances at low
frequencies Wooldridge and Willmarth inserted o high pass filter which has
the effect of modifying the value of Rpfl at large separations, Inaldition,

——=m=a 2
au',
as already stated,p -5;:-;- can only be derived fron Rpﬁ when the sepihtions
1 v 2 i

are small, For these severalreasons we will only evaluate‘/pi althhugh we c

show qualitatively that the estimated values of .R-PP’ the wall pressure
covariance, is in reasonable agreement with the measurements of Wooldridge
and Willmarth,

On inserting the neasured vale s of F(;r.z) and perforning the

intepration numerically we find that the small eddy contribution to p;/q—w
is 2.5. it ”

The effect of including the second term in C is to reduce this value
slightly. It is found thst the dominant contribution to the wall pressure
fluctuation cones from a region between the wall and y2/51 = Xs

The accuracy of the integration is poor since, as already indicated,
the accuracy in fitting curves to the experiwental data is poor when the
correlation coefficient is very snall, A rough estimate of the accuracy

involved irdicates that the coefficient of Tw in the asbove expression for

'\/'IE lies between 1.7 =nd 3 counwvared with a measured value of about 2'2Tw°

The conclusion fron this end she previous sections indicate that the
pressure fluctuations at the wall is largely controlled by the turbulence-
nean shear interaction and the region where this source term is dominant
extends up to about 251 fron the surface. 4s already stated this does not
necessarily apply to the case when the pressure is measured away from the
suriace, and in fact we have shown that for EL; the (M=T) interactioh is
exactly zero, Although p2 has not been calculated with any accuracy at
distances awny ifrom the surface, approximite calculations indicate that the
mean shear turbulence interaction contributes more than 507 to its overall

value and the remainder is made up fronm the T-1 interaction.
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s The Wall Frecsure Covariance and Comparison with Experiment

We have shown sbove that the wall pressure covariance can be
evaluated in terms of the mean flow and turbulent velocity flields.
Wie have also shown, at least for the case of zero external pressure
gradient, that the wall pressure fluctuations are dominated by contributions
fron the mean shear turbulence interaction, ‘e have also discussed the
difficulties in finding the magnitude of the remaining turbulence-
turbulence interaction., On the assumption thot the latter contribution
is negligible, Hodgson (1962) has evaluated the necessary integrals
nuperically to obtain the longitudinal and trznsverse wall pressure
spatial fluctustions ~nd the autocorrelation, The comparison between his
calculations and measurements made both in a wind tunnel and on the wing
of a glider, are shown in Figures 6 2nd 7. The comparison between the
calculnted and meosured autocorrelation as obtained from the glider
experinents is particularly encouraging and «dds support thnt the (M~T)

interacticn is domin=nt in this case,

Figure 7 shows that whereas the calculated transverse spatial
correlation falls to zero beyond separation distances of the order of the
Y oundary layer thickness, measurements madée in wind tumnels invariably
tend to a constant value for large separations, It can easily be shown
that this asymptotic value decreases as the magnitude of these extraneous

disturbances tends to zero.

Figure 8 shows the conmparison between the calculated and neasured
power spectral density obtained from the glider ueasurenents, and although
the agreement is fair it should be noted that the ratio of the nicrophone
diameter to the boundary iayer dispiacement thickness is equal to 2.93,and 4.1
and hence it is necessary to carrect the measured data for the finite
size of the microphone. . . This hay the effect of broadening out the

spectrum curve snd  dncreases its level towards the higher frequencies,

Frou the wmeasurements of Willmarth and Wooldridge, Hodgson and others,
of the space-time correlations of the vall pressure fluctuaxtions, it is
found that the pressure field is convected past the wall transducer at a
speed of approximately 0.8U, This convection speed is a function of
frequency and reduces to values of nearer 0,6U_ as the frequency is

increased, An important result from the work of Hodgson is that the _‘{?E
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integral of the autocorrelation is xzero in confirmation with the theary,
and leads to a falling power spectral density at low frequencies.

This result has not been obtained frowu experiments in wind tunnels

(for example the experiments of Wooldridge and Willmarth) due to the

presence of extraneous disturbances as discussed above,

14 has already been menti.ned that corrections are required to
allow for the finite size of the pressure trandducer, and the magnitude
of such corrections can be determined to soue extent from the experimental
work of Hodgson, and Wooldridge and Willmarth, while Corcos has perfornmed
both experiments and has presented a theory for these corrections. It would
appear, however, that our state of knowledge about these corrections is only
f2ir ond more work is required in arder to determine this effect with

certainty,

The §ressure measurenents made on the glider recently by Eaton and

Goddard(la (1963) have shown that in the region of adverse pressure gradient

the values of pi do not change greatly fron their values in zero
aressure gradient., The effect of varintion of Reynolds number cannot be
deduced from these results, It is however noted, since all velocities are

now conveniently expressed in terms of the local external velocity, U _,

1 at
[ 2
B /ﬂoui

should increase slightly as separation is avproached, corresponding to the

2

increase in
q i

The experimental results confirm this,

8. Conpressible Flow Theory

Fron the theory in incompressible flow ns presented aobove, we have
shown that for the case of zeroc external pressure zradient with a lineer

relation between _2 and TW exists, We have also presented some evidence
s
to supoort the view that the larger contribution to the wall pressure

fluctuations arises from the (M-I) interacticn, In the @se of a
compressible flow we might expect simil=ar relations to apply and indeed
this is confirmed by the ueasurements of Kistler and Chen (1962) who shew
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from wind tunnel experiments of the wall pressure fluctuations unler

conditions of zero he:t transfer up to Mach numbers of 5, that
¥ i

—

2 ]
PW P a(RSMoo) TW'
where a(R,Mm) is a slowly varying function of both the Reynolds number (R),

and the freestream Moch nunber (Mm).

If we assunme therefore that the interactions existing in
incompressible flow still apoly apart from uodifications azrising from
compressibility eff'ects, and if we neglect all diffusive effects then our
equotions in dimensional form can be written in the form proposed by

Phillips (1960) as follows

w2 2 2

— B2 , 8. & 4. 8- B _2ag(x4) ... (30)
2 2 2 dx 2 ox o ~

&, Dt a. 2 a 2 W

_— _ 2 _ . el . _ -
where p =P/9Wu7" x = pwu_rx/“w, t = tquv/gw, u_ =fTW/pW

ol o0, au, o, o
Alx,t) = -[2 +
E

o, ox, B, Bt
Low ol . ol aw U, =U.(x,) only
Dt ot 1 & ‘ s M :

In this equaticn we have assumed that the mean values of the density,
viscosity and sheor stress at the wall are independent of the strearwise
distaence. We have also assumed that the speed of sound, a, is only a
function of the distance nornal to the wall. Thesc simplifying assmmptions
inply the neglect of convection and scattering of sound waves by the
turbulence and of fluctuations in the speed of sound, Our equation does
however include the effect of fliactustions in density (sound waves) and
hence pressure fluctuations result from fluctu:tions in both the vorticity
and sound modes, where in view of our rewmarks regarding the analogy between
the incompressible and compressible flow problems, the vortifity moce is
expected to provide the larger contribution, If this were not so the mean

flow in a commwessible boundary layer could not be derived from a simple
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tronsformetion of the corresponding results in an incompressible flow
16)

which is in contradiction to the work of I\.-iorkovin( A5 )(1962) and Coles(
(1961),

It is of course not necessary for us to neglect diffusive effects at
this stnge since these can be imcorporated into the right hand side of the
equation above.

A solubion to eguation (31) can be obtained by finding its Foubier
transfori and defining the tiarce dimensional Fourier-Stieltjes transforms o

p(x,t) and A(x,t) s follows:

1(1clxl+k x, +wt)

p(x,t) = j. e 73 dalx, 3k, )
i(k x, +k,%_+ wt) | '
Alx,t) = j g v+ 22 a(x,3k,w)

where k is the wave namber vectar in the (xl,xﬁ) plone and w is the

frequency., The equsticn for the Fourier coefiicient 4 w is
ey ...51_< N "lz ) ann ‘k2 -lﬁ-(m U2 )2 aw = (o/ )ay (32)
de'' + ax, \/ = w = -z ¢l AR Waa

end on eliminating the first derivative by the use of the dependent variable
Z with

2= (o/2) du

we find that
)

t 2 EI., < te
't - Lk - 2 (w + Ulkl) + a''/ajz = (pa/pwaw)db, swpnsaness (33)

(=

It can be seen that this eguation reduces to the corresponding equation in

incompressible flow when a = A=

In his analysis Phillips chose non-dimensional co-ordinates such that
the width of the shewr laycer was unity and the dinch number of the external
flow was very high, and finally obtained the sound radiation from the shcar
layer by a solution which neglected terms of order 1/M~ . In our problem

we have chosen boundury lisyer coordinates such that Ul—;a U, as x2ﬁ°° o
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It is not possible for us to estimnte the radiation of sound fronm
the boundary layer, since our solution does not include the far field outside
the boundnry layer, bat nevertheless one boundsry condition which we must
apply involves the nmognitude of the disturbance pressure at the edge of the

boundary loyer,

95 The Solution of the Pressure Equation

The solution is required of

g -b(xz)g = h(xg)

where prines denote differentintion with respeet to Xos and
2
2 T 2 gl
b(xz) = iR e 12 {w+ Ulkl) %5
Pa
h(x?_) = -—-*—-pwaw da)(xz;ﬁ,w)

We note that

;(O;}&m) = dﬁ(o;'}\g,w)

2 ,}
Now - = (Cf/2) Mo <<
a

w
a

for all M, and so we cun choose A = ﬁ:'-:_ >>1 for all Mo , os shown in
Figure 9., Hence we require a solution of (33) for large values of A .

If we introduce the new dependent variasble

) 2

W xzu.r,/a‘
and put 2 2

& a w+U_k
2 AL
ay) =& =5 = |—= )
U, a

where a = af a_s then

24(3)z = H() [POP—

with - a_ 4 a
Hy) = 2= (—*—"-) BN 52
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The tern in Eyy hos been included as 2 source ter.a far conveniernce
since its numerical value is sn=1l compared with the dominant source
tern as can be inferred fori: Figure 10, A typicel veriation of g(y)
aoross the boundary loyer is shown in Figure 11,

The bo.ndary conditions are as follows:

1]

dge'(0)

|
o

2'(0) =

1
o

]

and either dn' () o) =

or, & must be bounded as X, ooy for the cases respectively of zero

disturbance at the edge of the boundary layer and outward propagating

waves.  For ye—p oo H(y) ~0, Ul = U 4 a = ac/aw, so that (34) becomes:
a.2 ‘
& N 2 w 2
g ™% kl—ago(mUakl) Z=0

and the solubtion must be exponentially decrcasing or oscillatory so

that Zis bounded 28 ¥~ ». Thus when

72
2 Yo
§99) > - (w+ ILokl?'
-t

we obtain the exponentinlly decreasing solution waile faf

2
f (w+ Ux.lL_L) > (1{7\.)2

we obliain the oscillatary solution which physically carresponds to a
radiated pattern of Mach maves =s discussed by Phillips (loc cit).

In fact with kl = k cos 6 and for a convection speed of the turbulence
Uc such that w= _k_LUc eddy Moch waves will be propagated _utwards for

those wave nuitbers defined by

00526 >[M1{1-UC/U~9)] -2



Thus the eddy lach waves are generated by those wave numbers in the

outer region of the bound:ry layer for which

- 6 < 8< w+ Op ond -6 <6 <6p

where B = cos-l I:l/( 1-'00/ Uc,)l‘.-L@].

For the remaining wave nurbers Z—=39 0 28 ¥ con

At the wall if w= -Uk., q(0) vanishes when
(o]

il
¥-1,2
cos’6 = i —-————-——-—l+ £ Mm Uee
c w/Uc - Mgo 9]
c

for the case of zero heat transfer,
Thus for those wave numbers in the region of the wall for which

=0 < 68 <+ 06 and =8 < O <B
c c c c

eddy Mach waves exist simnce q(yl) < 1 =nd the solution will be oscillatory.

Hence there are certain wave nuibers of the turbulence in the
region 0 €y < - where q(y) is negative and similarly in the region
Yy <Y < oo In the region Io <¥ <7ys q(y) is positive, although for some

wave numbers q(y) is positive for all values of y.

Fhus for certain wave numbers equation (34) has two transition points

at y = 3 and ¥ = vy where q(y) = O.

Case I qgly) >0 0L v € o

For the wse where q(y) is everywhere positiyve the solution of
equ tion (34) con be fo.rd if terms in 1/A are neglected, On insecrtion
of the boundary oondificrs at the wall and at y = o we find that

~ 1 " Hy! ¥ oa K ?‘:‘:m

W) = - oy | By o SRR e (5] 50N
q(y! 0 [ .‘_~:"'~S‘\ L

1 Bk _:-'_ . —
This ejuation reduces to that found in incompressible flow when lqé-:a \,111 \,;. “??j)

oy

2 SRR
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Case II q(y) <0 y; <¥ < vhere q(y;) = O

A solution is required in the region around y = Yy where
Q(Yl) = 0. But this soluti.n must be the analybic continuation of the
solution found zround y = Yy for g(y) >0 and this is oresented under
case IV below,

{The solution can of course be written in terms of y* and t* where

(3] w o)

-t::'. -

Iy
wo= a2 ng
g = =g >0

2

Herce t = t* e, g = q:‘em o= u*el}H’/’ZJ

1
(@]

Case IIT  q(y) >0 y,< ¥ <y, vhere q(yo)

e

The solution saroond y = T where q(yO) = 0 is

5 = (/0% (2 n” 1) o) +,,‘1"x%(n>a(y)}
where _— (—3— /,y 7 dy>% q 50
yO
n= -§- el 2

El =

f 4(s) n‘l‘K%(n) ds R 1

1]
L]
+
{ AR
I O

a(y)

I

() p. G j #(s) r:%Ié_(n) as iesnans 5T

with #(s) = + small terms,

Hy)_
(¢/3)*

A and B are constants to be determined from the boundary conditions.
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Case q(y) >0 I y< ¥y where Q(.‘:’l) =0

The solution found above is not valid near y = Y1 where q(yl) =0
even though s is finite at y = Yqe A solution ocround ¥ = vy is

Zyq) = (/a)* {ﬂ%Iﬁ_(#)f(Y) + u%K%(u) a(y)}

3

i
i
PO

.\"’E‘:
|_I
>
W
Ne!
v
o

where
y
p= B2
2 .1? v 1
()= ¢ +-Li*_%: j #(+) ﬁx%_(u) at simiesnsses 1L38)
0
2 13" 5 1
8y) = D - j BAY PElp) G 7 dwareihodis 283
;\3 & -

vith g(t)= -—Iib’-)-;_ + snall terns
(a/t)*

C and D are constants to be determined from the boundary o nditions,

Case V q <0 O<y <Y, Cl(Yo) =0

In this region although q is negzative the solution given
for Case IIT will stili be valid, However s and n will now be complex

nuibers.

(The solution can of course be written in terus of 7% and s*

where s¢

I
N
o]

kh_"“':q
o
%
S
LE1] (4]
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Hence s = #*e 3 q = q-‘el : n:-q*eljr/z and it follovs that the

modifiied Be:sel functions with imnginary arguments can be written in

terns of Bessel functions of the first kind,

10, Bvzluation of the constants A4,B,C and D,

The boundsry conditions ares
.QE = 0 ¥y = 0

and £ is bounded as =9 « » We will assune, foliowing Philiips, that
only outgoing Moch waves will exist or

Ly) ~ exp(-itF) as y—> o,

The remaining two conditions are found by mnotching the solutions

fourd for £ and %f srwnd}r:yoandy:y

convenient station in 356 y< yl.

| Fespec tively at some

In the appendix this station is tzken 2t y = Y where
T =
W + Ul( )xCl 0

It is shown in the appendix that A,B,C,D can be evaluated in terms of
weighted integrals of the source function H(y) token over certain regions

of the boundary layerd.

11, [The Pressure Spectrun and the Mean Square Pressure

The spectrum function can be obtained from the Fourier coefficient
dZ(O) of the wall pressure fluctuati.ns. Thus for the case g(y)> 0
everywhere, that is for ediies moving subsonically with respect to the
speed of sound =t the wall, it is found that

du(O;}’g) wjdd‘(o;l’{d, w)
mo;]b w) = dk.dk_d

% 3
2.2 i
Lk gl i
au
- ’T_i 822 (v,25k, w) —dy' FECa.
2 <4
Q2 0 q

T dUl —Ee
f iy =
-y
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y
on writing n = f vaq dy, and §,, is the specfrum function of

o]

the nornal velocity. PFar the other wave mubers sl miler expressions

for NM(0;k, w can be cbtained,

Now in the ronge of supersonic freestrean lach numbers up to about
5 it is found that the contribution to the pressure from the wave nunbers
generating eddy Mach waves <t the wall is roughly compurable with the
contribution from the wave numbers moving subsonically with respect to the
speed of sound at the wall,

The remainder of the calculation involves the replacing of the
compressible flow cuantities by the equivalent incompressible values using
16)

Coles' transf’ornation( - It is found that the spectrum function is not

greatly changed from its value in inconpressible flow,

An integration over oll wave numbers and flrequencies enables us to

find the mean square gressure and the results of the nunmerical integration

s : - 2
show that | pf/ T, 1ipcreases slowly with Mach number, In fact fpw

gcrenses due to the reduction in skin friction coefficient with kach
nurber and increases as 2 resalt of the dominsnt source regilon uoving

nearer the wall with increcase in liach nunmber.

Although ~s ststed previcusly the present cnalysis cannot be used to
deternine the sound radiation from the boundary layers, it is shown that
the outward radiation in the outer part of the layer is given by

equation A.23 in the Appendix.

The compzrison of these results with the oniy avail ble experinental

dnta of Kistler and Chen(a) is fair as shown in Figure 12,
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12, Conclusions

It is shown that in incompressible flow the available theoretical
and experimental ata sup ort the conclusion that the nressure fluctuations
at the wall in a turbulent bound-ry lay:r are dominated by the internction

between the mean shesr =nd the turbulence.

In incompressible flow few expcoimental data exist but this data shows
that up to Moach nuubers of the order of 5 similar source terms nmust exist
since the changes in level of the ressure fluctu~tions with M_together with
the changes in the power spectral density are rceasonably small, A theory is
orescnted vhich supports this conclusion, It is shown that even though eddy
Mach waves exist both near the wall and in the outer region when the turbulence
is noving supersonically with respect to the speeds of sound in the external
flow, and 2t the wall, the overall increase in pressure level is small at

lMach numbers up to 5.
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ASPENDIX,

The Solution of the Pressure Equation for the Wall fressure

In Section 9 the solution of the Jressure equztion for a compressible
boundary layer has been obtained spart from the evaluation of four constants
which are to be determined from the boundary conditions., For those wave
nunbers which gencrate eddy Moch waves both near the wall and in the outer

region of the boundsry layer the solution is as followss

i

49) = ~ (S0 e @) + Z M () #) o @ v, aven 2

3

6 = OF [71yn) aly) + 0En) B) | 7€ 7Ty eereereeeenn A2
) = BF L WYE) ¢ u ) 60D | 7,e7e Ty sereneeneiens 23

= 3 : ig i .l~ &
Z(y) =-(-E—i—)"|u *"'J%(u"’)a"-‘(y) 2 elﬁ/j'u & ;(w‘)é’f‘(y)l T1< T eessens Aub

wath

aly)

g s
ZNE 1
PR € 2 f Ka)n Fi(n) as Lot e i
13 o 3
5

2 25

ay) =B -4 f #(s) n°T.(n) ds e SR
-}\3 o 5
=] ‘1;' t %

2(y) = G J—Q% f #(+) K () at st s BT
N o) 2
et f '

8(y) = D - j #(t) u SL(p) ab eeeveeneenes A8
A Jo

213 P 1

#(y) = A = "Dy f Bs2) (To() + I_1(s) )rff"3 . O S

2sime A o 3 3

3

n

1 s%
(92__ 1
ﬁ"(Y) B— Ti f ﬁ(s';‘)Jl_(T-f:)n:;{st* fsessvoceacsa A.lo
}:3 ’ 3
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() f B) (30 0) + 7)) fhae e a1

f
Q
I
Ny
\k]'l

& (y)

1l

1
[ ﬂ(t“::)l]-‘!‘?(ﬁ‘)“f.‘jdt* asgasas s sy Aﬁlz
S)

The application of the boundary condition

oz,

i = O 2ty = 0 lezds to

Ve,
ay0) = z(0) = {24217 _Bx(0)
: 5 *,,“ n;;:f J_2(n*)

.I.l.l..'..‘AC]'}

for 9 large, whecre the subscript, w, refers to conditions at y = 0, and

«#(0) = é—f (1 - Jg__(n*w)/ J__,;__(qﬁ)) - (0) TR L

provided the term in brackets does not vanish.

-5 W

When Jg_(n*w) = J_o(n* )

! : 3 2 £
ao) = z(0) = - F 273 2 j%(ﬁkw)ﬂ'*(O)/ Ve 50 g* F eeeeshsd5

W'
“‘I':(O) = L I I ) -El-’16
AT (w D, 2

for A large end g ( )3/2 ) 1”/3f, ()6 (0)

Thus A is given in terms of B and d'J(O) is found when the value of B has
been obtained.
If only outwerd propaiating eddy Mach waves ore allowed in the region
Y —p o we £ind that
6157/12(611;/5 _e—-:l.'n;/}) % ( )
TS (1 + &)

v.O.A.l?

Ay)~ =
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with 5
a)’:‘(:n) — :;relfr/6 6;"(5-9) sesensne J&LQ:L8

and so C is given in teras of D,

The next conditicn is found by motching the value of Z and %;;
found from the solutions szbout y = o andy = N respectively.

Vie thus find that for Alarge

—

(a(z) “ 9 (z)) Iok) = (ﬁ(x) h a(z))zx:g(n) ceveeees AL
(a(Y) - X (Y)) I%(n) = (@(Y) - p(Y) )K__}(n) semvesis Ha20

and for large 7
Q(Y) = 2)’(}?) =0

The nztching station is taoken at y = ¥ with ¥, % Xz yq where

W+ Ul(Y)ILJ_ = 0

Hence both & and C can be evaluated. Thus

Y 1 ;
A = = "('J_ f ﬁ(s)ﬁal\f_ﬁ_(ﬂ)% dy cscasen BGEL
}\3 3
yO
1 )
2y3 1 at
= —L_%- f FeuKiw) = a e wanen B2
53 ¥y 3 dy

ard we can £ind B ond D from (..16) and (4,18) respectively.

The outward radisticn given by (A,17) becomes using these expressions
for C cnd D

3 g H(y) a a
dlu‘ k) ~ ieiw/h' o B i 4 W/ < swnns s ety

/2 /a* ‘(ylj q*()?
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If we iﬁsert the values for H(yl) and g* '(yl) respectively the spectrum

function can be shovn to have the forn

5 2 2
a dau a y Nl O - T
H('\:; E,OJ) e 2‘?Tf C]JC_:L “2'? ® = 1 % B 990coenoe 11.2}.‘.
5 A a* €)%k
dUl
where a, - and §,, are all evalucted st y = Yqe
2

It is now necessary to identify the frequencies w at a given wave

mumber k in the source function in the plrne y = T1 which orise fron

distwrbances below this planc, ssy at y = ¥, where the speed of convection

is UC(Y) and o= -UC(Y)R__L. Since the convection specd is positive w
will have the opwosite sign to cos 8, where kl = k cosf , and this imposes

a cut off wave number angle at each y = y., as shown in figs. 13a and 13b.

1
Thus only = finite range of fregquencies contributes to the pressure wave
mumber spectrun for any given wove number, A diagranm illustrating the

gencration of eddy Mach waves is shown in Figures lha and 1ib,

On inserting a suiteble form for ®22, which is a reasonable
opproximation to the measured spectrun function except at wery high numbers,
and using Coles' relations between the incompressible and compressible
Properties of the boundsry loyer it is found that

'é';”: UC/UN .52/6 5

2 .\3 i lx lo—-o seescavse A.25
P I

oD oo

. . . : 13) . .
A comprison with the experimental results of Iauf‘er( ) is showm in

Figure 15.
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