
 
 

 

CRANFIELD UNIVERSITY 

 

 

Sulei Chen 

 

 

Robotic polishing of large optical components 

 

 

MSc Thesis 

 

 

MSc by Research 

Academic year: 2013 - 2014 

 

 

Supervisors: Dr Xavier Tonnellier 

       Dr Paul Comley 

 

August 2014 

  



 
 

 

CRANFIELD UNIVERSITY 

 

 

 

 

MSc by Research Thesis 

Academic Year: 2013 - 2014 

 

Sulei Chen 

 

Robotic polishing of large optical components 

 

 

Supervisors: Dr Xavier Tonnellier 

       Dr Paul Comley 

August 2014 

 

 

© Cranfield University 2014. All rights reserved. No part of this publication 

may be reproduced without the written permission of the copyright owner. 

 

  



i 
 

ABSTRACT 

Lightweight space mirrors have been widely used in earth observation and astronomy 

applications. Many organizations and companies, such as NASA in America, ESA in 

Europe, SSTL in UK as well as CASC in China, have spent a lot of money and effort on 

researching new materials for larger size space mirrors to meet both the payload weight 

constraints of launch and the increased advanced manufacturing process demanded for 

higher observations quality. 

This project is aimed at robot neutral polishing of lapped, ground and polished optical 

substrates using an industrial FANUC robot system. The project focused on three main 

fields which were: robot polishing with polyurethane tool and cerium oxide, pitch 

polishing with pitch tool and cerium oxide, as well as polishing of a 400mm ULE 

component. The polishing process targets were to achieve: 1) a surface roughness (Ra) of 

10 nm and a surface profile (Pt) of 6 µm and 2µm on lapped and ground substrates 

respectively with polyurethane based tools and 2) a surface roughness (Ra) of 2nm with a 

surface profile (Pt) unchanged on robot neutral polished substrates using pitch based tools. 

This thesis comprises four main sections: a literature review, an experimental 

implementation, metrology and analysis, and the final conclusions. The experiment results 

measured with the metrology equipment selected were analysed. Conclusions of the 

relationship between the polishing performance of a specific sample and the selected 

polishing tool, polishing slurry, tool pressure, polishing time and other parameters were 

drawn. 

Results obtained from robot neutral polishing were surface roughness (Ra) of 8-10nm and 

surface profile (Pt) of 6µm for 100mm square lapped and ground parts. The process 

scalability was demonstrated from robot neutral polishing in 45 hours, a 400mm square 

ground component from a surface roughness (Ra) of 200nm to 10nm.  

There is additional work to be implemented in the future, such as the development of 

robot pitch polishing of robot neutral polished parts to achieve 2nm Ra. 
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1. Introduction 

1.1 Lightweight space mirrors 

Lightweight space mirrors were initially applied in military parts, for example the Global 

Positioning Satellites (GPS), to provide the armed force with precise position information. 

With the development of science technology, lightweight space mirrors are used in both 

military and civil purposes recently for the functions of weather forecast, navigation, 

communications, earth observation and astronomy. 

Large, lightweight and high precision mirrors are also required and critical for the 

application of astronomical telescopes, such as the well-known Hubble Space Telescope. 

The telescope observes much farther with a larger size in diameter and more precise with 

higher precision. The mirror would be much heavier when the size increases aimed at the 

given material which makes it more difficult to launch into the space. The payload of 

space shuttle to the geostationary transfer orbit is limited up to 3,810kg. To meet the 

payload weight constraints of launch, the mirror had to be very lightweight. 

Therefore, many space agencies, for example NASA (National Aeronautics and Space 

Administration), ESA (European Space Agency) as well as CNSA (China National Space 

Administration), and a large number of companies, such as L-3, SSTL (Surrey Satellite 

Technology Ltd) as well as CASC (China Aerospace Science and Technology 

Corporation), have invested much time and capital in new materials and processes of 

lightweight space mirrors. US government agencies have designed equipment for airborne 

and space-based systems which will require mirrors ranging in size from 0.1 to 100 

meters in diameter. Moreover, the budget of astrophysics at NASA will reach 642 million 

dollars in 2014 (Budget Estimates, FY2014). 

The traditional materials and processes include monolithic glass mirror and metallic 

mirror. The new materials and processes, such as lightweight glass and silicon 

carbide-based mirrors, help increase the size of the mirror as well as reduce the real 

density compared with traditional materials. There are other new approaches that are 

being considered for developing space mirror, such as mirrors constructed from foams 

and composite mirrors (Matson and Mollenhauer, 2003). 

1.2 Manufacturing process chain 

Geyl and Cayrel, (1999) from Sagem and Pileri and Krabbendam, (1995) from Kodak 

reported similar manufacturing processes of large mirrors. Both of their approaches were 

composed of the following steps: the shaping process, the grinding process, the lapping 

process, the polishing process and the final ion beam figuring process. 

The blank piece, whose substrate material is glass or ceramic, is shaped to a flat or a 

curved shape. Then a grinding machine is used to manufacture the workpiece to the 

required shape. Moreover, the workpiece is lapped and polished to obtain the right 

dimension and to eliminate the subsurface damage occurred during the earlier 

manufacturing process. Finally, a final figuring step, such as magneto-rheological 

finishing (MRF) or ion beam figuring (IBF) is used to manufacture the workpiece to 

desired accuracy (Tonnellier , 2009). 

http://www.google.co.uk/url?url=http://www.sstl.co.uk/&rct=j&frm=1&q=&esrc=s&sa=U&ei=Q8fsU6aTDZXd8AW4nIGICw&ved=0CBQQFjAA&usg=AFQjCNGfORRnmVgU1-9K5R809Ad51TX29w
http://www.google.co.uk/url?url=http://www.sstl.co.uk/&rct=j&frm=1&q=&esrc=s&sa=U&ei=Q8fsU6aTDZXd8AW4nIGICw&ved=0CBQQFjAA&usg=AFQjCNGfORRnmVgU1-9K5R809Ad51TX29w
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The general process chain proposed using Cranfield technologies for manufacturing 

lightweight space structures is shown in Figure 1. 

 

Figure 1: Process chain of manufacturing lightweight space mirror (Tonnellier et al., 2013) 

First, the optical components are manufactured by the Big OptiX (BoX) grinding process 

which is a high precision grinding with less sub-surface damage (SSD). Then robot 

neutral polishing is employed to enable figure correction using Reactive Atom Plasma 

(RAP) efficient processing. Final, robot pitch polishing is used to obtain better surface 

roughness. 

1.3 Overview of polishing technologies 

There have been many types of polishing technologies designed depending on the 

mechanism of polishing process. Jairath et al., (1987) introduced that Chemical 

mechanical polishing (CMP) was developed as the preferred technique for meeting the 

global planarity requirements for sub-half micron technology. Lubliner and Nelson, (1980) 

presented an ultra-precision polishing method, Stressed Mirror Polishing (SMP), which 

applies stresses to a mirror blank to elastically deform it from a desired surface into a 

sphere. Sub-aperture polishing techniques, including Magneto-Rheological Finishing, 

Precession and other techniques, are introduced in detail in section 1.3.2 to section 1.3.4. 

The mechanism of polishing process involves four components: the workpiece, the fluid, 

the granule, and the lap. The component itself and the interaction of the components both 

have an influence over the final polishing result of the workpiece. For the fluid, its 

physical properties, including viscosity, density and temperature conductivity, affect both 

fluid dynamics and material transport in polishing; while for the solid granule, its average 

size and size distribution have an influence of the surface quality of the polished 

workpiece. The interaction of fluid and granule during which the fluid pH changes the 

surface of granule affects the surface quality of the polished workpiece (Evans et al., 

2003). 

1.3.1 Preston’s equation 

Preston’s equation (see 1.3.1.1) was initially presented for glass polishing to describe 

material remove after polishing process.  

                            MRR=Ke P V                       (1.3.1.1) 

Where MRR (mm/s) is the material removal rate, Ke (mm
2
/N) is an all-purpose coefficient, 

P (N/mm
2
) is the downward pressure and V (mm/s) is the relative velocity over the 

workpiece surface. The equation demonstrates a linear reliance of material removal rate 

on the pressure and velocity (Luo, 2003).  
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1.3.2 Magneto-Rheological Finishing 

Arrasmith et al., (1999) in University of Rochester designed a new platform of polishing 

spots on different optical substrates in Magneto-Rheological Finishing (MRF) which 

exploited a magnetic field-stiffened Magneto-Rheological (MR) fluid ribbon to create a 

sub-aperture lap used to manufacture on optical surface. 

Evans et al., (2003) employed the MRF technology whose function is shown in Figure 2.  

 

Figure 2: MRF machine schematic (Evans et al., 2003) 

MRF utilizes the characteristic of MR fluids to change its stickiness taking advantage of 

magnetic function. The MR fluid which is comprised of deionized water, iron particles, 

abrasives and stabilizing agents is unceasingly kept flowing between the pumps, 

transforming between its solid phase where the electro-magnet affects and liquid phase 

everywhere else. The magneto-rheological polishing fluid is employed on the edge of a 

rotating wheel, which conveys the fluid to the polishing area. The workpiece to be 

polished is grasped in the computer-numerically controlled (CNC) machine, and 

immersed into the ribbon of fluid. The amount of material to be removed at a given area 

depends on the dwell time which is similarly to other computer controlled polishing 

methods. 

1.3.3 Precession process 

The precession process has been created to control the texture and preserve the form 

during polishing on flat, spherical and aspheric surfaces. Tooling for the precession 

process is shown in Figure 3. 
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Figure 3: Precessing bonnet (Walker et al., 2003) 

The tool is a bonnet which is an inflated rubber membrane of spherical form covered with 

a non-pitch flexible polishing surface. The membrane has the property that the polishing 

pressure (tool hardness) and the contact area (polishing spot size) can be changed 

independently by altering the internal pressure of working fluid and the axial position of 

the tool. A static pole-down spinning tool displays zero surface-speed at centre, rising 

linearly to a maximum at the periphery. The tool spins about its axis to increase surface 

speed and to attain a high volumetric removal rate. The tool-axis is precessed in discrete 

steps about the local normal to the surface of the part. The influence functions are 

near-Gaussian, effectively edgeless with no sharp discontinuities. The precession process 

is a combination of classical polishing and CNC diamond grinding which unites the 

flexibility of the former and the determinism of the later (Walker et al., 2003). 

1.3.4 Other sub-aperture polishing techniques 

Seifert (2007) from Carl Zeiss Laser Gmbh introduced a principle process chain for 

aspheres. The process chain starts with Computer Controlled Lapping (CCL) of aspherical 

surfaces with small sub-aperture tools followed by using 6-axes Computer Controlled 

Polishing (CCP) technology, then followed by the Ion Beam Figuring (IBF) technology to 

achieve a high performance. 

SPK 150 CNC-HPP, a machine provided by the Opto tech Correction Technology (OCT) 

whose important advantage is the direct correction of the polishing tool by means of the 

measured surface irregularity of the workpiece, applies to spherical polishing for optics up 

to Ø 150mm (Opto Tech). 

The robotic polishing technique, a sub-aperture polishing method and one step of the 

manufacturing chain: aspheric grinding followed by polishing robot followed by RAP 

figuring, has been applied in Cranfield University (Tonnellier et al., 2013). 
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1.4 Aim and objectives 

This project is aimed at robot neutral polishing of lapped and ground substrates, and the 

improvement of the final surface roughness using pitch polishing, both using an industrial 

FANUC robot system. Together, these processes will promote the use of RAP as an 

efficient energy beam processes tool. 

 

The process objectives of this project were:  

1) To achieve, by robot neutral polishing, a surface roughness (Ra) of 10nm and profile 

(Pt) of 6µm on lapped optical glasses (ULE and fused silica). Figure 4 demonstrates how 

this relates to the Cranfield manufacturing process chain described in Figure 1. 

 

 
Figure 4: Objective 1 of the project  

From BoX grinding to Robot neutral polishing, it was anticipated that the surface profile 

degrades from 1µm to 2µm (Pt) and the surface roughness improves by a factor of 15-20 

from 150-200nm to 10nm (Ra) (see Objective 1.1). Considering the robot neutral 

polishing performance, for a lapped sample, the surface profile (Pt) and the surface 

roughness (Ra) that were considered achievable, were 6µm and 10nm respectively (see 

Objective 1.2). The polishing process has been verified on two materials ULE and fused 

silica. Up-scaling of the process has also been demonstrated on a 400mm square ULE 

substrate. 

 

2) To achieve, using robot pitch polishing, a form accuracy < 6µm Pt and surface 

roughness < 2nm Ra on ULE, see Figure 5. 
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Figure 5: Objective 2 of the project 

Objective 2.1 illustrates that after RAP processing, which degraded the surface roughness, 

the robot pitch polishing improves Ra to 2nm with a surface profile (Pt) unchanged. It can 

be inferred that, after robot pitch polishing a robot neutral polished sample, the surface 

roughness achieved should be 2nm Ra with an unchanged surface profile (see Objective 

2.2). These samples were assessed to show that limited form accuracy degradation was 

observed. 

1.5 Methodology 

The methodology of this project comprises four phases: a literature review, experimental 

implementation, metrology and analysis, and conclusion (see Figure 6). 

Papers related to this subject have been read to understand the background and master 

relevant knowledge during the literature review phase. The parameters, which affect the 

polished surface quality, have been studied, such as the substrate material, the polishing 

tool, the polishing spot, the polishing slurry, the robot processing and the metrology 

equipment. The factors during the polishing process, such as the polishing pressure and 

the dwell time, have also been reviewed. Moreover, the robot based polishing platform, 

which is comprised of robot arm, air spindle, slurry pump, polishing tray and control 

software, has be employed in robot neutral polishing and robot pitch polishing. 

Implement experiment and metrology phases are explained in Chapter 3 (Metrology 

equipment and Experiment procedures) and Chapter 4 (Experiment Results). The final 

phase, analysis and conclusion, is to analyse the experiment results and identify further 

work to be carried out which are explained in Chapter 5 to Chapter 7. 
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Figure 6: Methodology of the project 
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2. Literature review 

2.1 Substrate Materials 

There are four main kinds of substrate materials for optical applications. These include 

metals and their alloys, ceramics, glasses and semiconductors, which are manufactured to 

a required geometry, finish, accuracy, and surface integrity to fulfil their service 

requirements.  

The non-metals substrates have the following characteristic: covalent (directional), or 

ionic bonding, low symmetry, limited or inadequate slip systems for plastic deformation, 

low thermal conductivity, and low fracture toughness and low breaking energy 

(Komanduri et al., 1997). 

Carl Steinheil and Leon Foucault designed small silvered-glass telescope mirrors in the 

late 1850s which started the beginning research of metallised-glass reflecting telescopes 

(Tobin, 1987). Fabbrizzi and Mariani, (1986) introduced lightweight metal mirror for the 

Giotto Multicolour Camera. Hoeness et al., (1988) introduced lightweight mirror 

substrates manufactured from the glass ceramic Zerodur; Zhou et al., (2006) presented 

high precision lightweight optical application using Carbon-fiber reinforced silicon 

carbide (C/SiC);  

Table 1: Material properties of various optical substrates  

(Tsuno et al., 2005, Hobbs et al., 2003, Goela et al., 1995) 

Material property Units 
Fused Silica 

(Corning) 
ULE 

Zerodur 

(Typical) 

SiC 

(Typical) 

Density (ρ) kg/m
3
 2200 2200 2530 3100 

Young’s Modulus (E) GPa 73 67 91 420 

Poisson’s Ratio (v) - 0.16 0.17 0.24 0.25 

Ultimate Tensile Strength MPa - - 57 400 

CTE (α) 10
-6

K
-1

 0.52 0.03 0.10 2.2 

Specific Heat Capacity (Cp) J/kg/K 741 778 820 680 

Thermal Conductivity (k) W/m/K 1.3 1.3 3.5 140 

Specific Stiffness (E/ρ) 10
9
Nm/kg 0.034 0.030 0.036 0.135 

Thermal Diffusivity 

(D=k/Cp/ρ) 
10

-6
m

2
/s 0.75 0.8 0.8 66.4 

Steady State Distortion (α/k) 10
-6

m/w 0.038 0.023 0.028 0.016 

Transient Distortion (α/D) s/K/m
2
 0.067 0.039 0.063 0.033 

2.1.1 Glass 

Fused silica, an isotropic glass substrate, is stable in dimension and capable of being 

finished to an extreme smooth surface with low coefficient of thermal expansion, low 

density and high stiffness. Table 1 shows the key properties of fused silica which is 

manufactured by Corning Incorporated (Hobbs et al., 2003). 

Fused silica is one kind of high frequently used optical glasses in the National Ignition 

Facility (NIF). There are two various grades of fused silica on the NIF: one grade is 
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manufactured through a more typical CVD deposition process and the other improved 

grade is made free of re-fractory inclusions, with high optical homogeneity and in large 

sizes which is bigger than 400mm square. The NIF is one of the largest optical systems in 

the world using 7500 precision optics which included 960 fused silica aspheric lenses and 

other substrates (Moses et al., 2003). 

Martin et al., (2006) introduced the manufacturing of 8.4m primary mirror segments for 

the Giant Magellan Telescope (GMT) using borosilicate glass. 

2.1.2 Glass-Ceramics 

Ultra-low expansion (ULE) glass has been manufactured by Corning Incorporated since 

the 1960’s. The glass is primarily applied in telescope mirrors, for example the 

well-known Hubble space telescope whose maximum diameter is 4.2 meter. The low 

expansion characteristic helps these large mirrors to minimize distortions in the images 

causing by thermal changes. The main properties of ULE are summarized in Table 1. 

It is defined as having a coefficient of thermal expansion (CTE) of 0±30ppb/℃ over the 

temperature range of 5 to 35℃. To provide perspective, this is more than an order of 

magnitude smaller than the coefficient of thermal expansion of fused silica, which is 

traditionally considered to have a small expansion (Hrdina, 1999).  

Zerodur, a glass ceramic, has a good performance on primary mirrors and lightweight 

mirrors for its high homogeneity properties, such as extremely low CTE values and good 

thermal stability (see Table 1). The production of lightweight Zerodur mirror blanks is 

comprised of the following steps: first, direct casting of blanks followed by low 

temperature fusion of glassy Zerodur; then using CNC grinding to remove weight of 

blanks; the final step is CNC grinding and additional acid lightening (Morian and Mackh, 

1998). Dierickx et al., (1990) introduced the 8.2 meter primary mirrors of the Very Large 

Telescope (VLT) made of Zerodur. 

2.1.3 Ceramics 

Silicon Carbide (SiC) is a ceramic which is a contamination free material for silicon 

semiconductor process and its high stability in high temperature. It is is widely used in 

manufacturing semiconductor equipment parts. SiC has been used as space optical 

substrate material in recent years owing to its remarkable property, high stiffness, high 

thermal conductivity, very hard and high melting point (see Table 1). In space 

environment, thermal stability is extreme important for optical equipment, since the 

thermal control of optical equipment is one of the major issues during the extreme large 

thermal change situation.  

In addition, high specific stiffness means that the mirror could be thinner and have more 

precise surface figure with higher stiffness (Goela et al., 1995) making SiC a good 

candidate in space optical mirror application (Tsuno et al., 2005). 

According to Export Regulations of International Traffic in Arms (2006), as a substrate of 

electronic components and deposited materials, SiC is in the list of controlled items. The 

companies and organizations in every country have to carry out projects of manufacturing 

their own large size silicon carbide substrate. The company Coorstek Optical Ceramics in 

America has produced SiC materials suitable for mirrors for space-based optical systems, 

such as UltraSiC
TM

 Single Phase Silicon Carbide (Coorstek, 2012). ECM, a company in 
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Germany, has developed carbon-fiber reinforced silicon carbide for GREGOR telescope 

(Krödel et al., 2006). Zhang et al., (2013) in Harbin Institute of Technology developed a 

new non-aqueous gelcasting system for casting of reaction bonded silicon carbide 

ceramics. 

Boostec SiC material is a Sintered Silicon Carbide (SSiC) which is previously known as 

“SiC-100”. The main key properties of “SiC-100” are the high specific stiffness and high 

thermal stability which make it suitable for space optics. Sein et al., (2003) presented the 

development of the Φ 3.5m telescope fabricated by SiC for Herschel Mission. 

Chemical-vapor-deposited (CVD) SiC is notionally dense, polycrystalline material which 

is free from voids and micro-cracks, resulting in a substrate with superior properties for 

mirror application. Due to the porosity of SSiC, a thin layer of CVD SiC is deposited on 

substrate before final polishing. This CVD SiC has the highest values of elastic modulus, 

thermal distortion parameter and thermal stress parameter which makes it a good material 

for optics applications (Goela et al., 1995).Table 2 shows the comparison of CVD SiC 

with other mirror substrates.  

Table 2: Comparison of CVD SiC with other mirror substrates 

(Goela et al., 1995, Boostec industries, 2012, Goodman and Tanaka, 2009) 

Material Property CVD SiC 
SiC-100 

Boostec  

Trex CVC 

SiC 

Density, ρ (kg/m
3
 ) 3210 3150 3200 

Coefficient of thermal expansion (10
-6

K
-1

) 2.2 2.2 3.5 

Specific heat, C (J /kg/K) 640 - 640 

Thermal conductivity, k (W/m/K) 330 180 205-250 

Elastic modulus, E (GPa) 466 420 466 

Thermal distortion parameter, kα-1
 (W/m x 10

7
) 15 8.2 - 

Inertia loading parameter, E ρ
-1 

(10
9
Nm/kg ) 0.145 0.1333 - 

Thermal stress parameter, kα-1
 E

-1
 (W m/N x 10

-4
) 3.2 - - 

Poisson’s Ratio - - 0.21 

 

Trex Enterprises Corp. (Trex) improves the conventional CVD process to acquire its 

Chemical Vapor Composite SiC (CVC SiC). It has superior high temperature stability, 

thermal and mechanical performance and polish ability which is suitable for lightweight 

space and airborne telescopes, high energy laser optics and other critical optical systems 

(Goodman and Tanaka, 2009). 
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2.2 Robotic polishing technology  

As mentioned in Chapter 1, various polishing technologies have been employed to 

produce large optical glass mirrors. These technologies are based on the similar polishing 

strategies and polishing motions which are introduced in this section. 

2.2.1 Polishing strategies 

Different kinds of process kinematics have been used for corresponding polishing 

methods which can be seen from Figure 7.  

 

Figure 7: Different kinds of polishing process kinematics (Brecher et al., 2010) 

 

The eccentric tool movement achieves a sufficient material removal rate and a texture free 

surface finish; The tilted tool axis obtains high material removal rates but strong 

directional textures on the surface; The precession tool movement provides the best 

performance which combines the high material removal rates of tilted tool movement and 

the texture free surface finish (Brecher et al., 2010). 

2.2.2 Polishing motions 

Polishing motions could be geometrically described as the tool path which is defined as a 

series of straight lines, curves and connecting bridges. The tool path commands the 

polishing tool motion along the sample surface exactly. Figure 8 shows different 

strategies for tool path. 

The continuous raster path includes zigzag, staircase, sweep path and so on whose 

polishing tool travels back and forward across the sample surface with constant step size 

between paths. The polishing tool of the spiral path starts at the external edge of the 

sample and continues inwards towards the middle of the sample in spiral motion. The 

discontinuous raster path employs the polishing tool that moves in parallel direction for 
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each path along the sample surface and then moves back from the sample surface to the 

starting point across next path. The contour path produces a series of closed 

self-intersections tool path (Rososhansky and Xi, 2011). 

 

Figure 8: Tool path: a) Raster motion, b) Spiral motion, c) Discontinued raster motion and 

d) Contour path (Rososhansky and Xi, 2011) 

Pseudo-random tool paths are developed for precession CNC polishing to eliminate the 

residual periodicities in a surface at the nano or sub-nano scale left by the typical paths. 

The precessions process implements given polishing with the help of a dwell time map 

combined with a tool path. The velocity of the tool can be different along the path to 

generate the dwell time specified at each point on the dwell time map because the raster, 

spiral or random tool path never cross itself (Walker et al., 2008). Figure 9 shows the 

raster and random tool paths on a 35mm diameter circle. 

 

Figure 9: Raster and random tool paths on a 35mm diameter circle (Dunn and Walker, 2008) 

2.2.3 Diamond turning cusp motion error 

Franse (1990) introduced the function and equation of the groove’s surface profile 

developed by diamond turning process which is shown in Figure 10 and Equation 2.2.3.1. 
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Figure 10: Surface profile of groove developed by precision-machining process (Franse, 1990) 

Pt = f
2
/8R                      (Equation 2.2.3.1) 

Equation 2.2.3.1 shows the calculation of the surface profile (Pt), where f means the feed 

rate, R means the radius of manufacturing tool. 

Franse (1990) also explained different grooves in diamond turning caused by various feed 

rate, overlap and vibrations which are shown in Figure 11. 

 

Figure 11: Surface profile - successive tool overlap (Franse, 1990) 

On the BoX grinding machine, cusps on the part were generated by moving along the Y 

axis by the same amount of distance per revolution of the rotary table while the grinding 

spindle was titled at a fixed 20 degree (Tonnellier, 2009). Figure 12 shows the mode of 

BoX grinding machine used to prepare samples in this project. 

 

Figure 12: BoX grinding mode (Tonnellier, 2009) 
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2.3 Polishing tools 

Various computer controlled optical surfacing (CCOS) processes have been created since 

the 1960s whose processes have three main components: a numerically controlled (NC) 

polishing machine, embedded process control intelligence and a polishing tool. The tool 

properties, such as pressure distribution, tool contact area shape and tool motion, affect 

the tool influence function since polishing tool contacts and removes materials from the 

workpiece directly.  

2.3.1 Tool body structure 

When developing a polishing tool, it has to consider both the flexibility which is required 

to maintain good contact with the workpiece surface and the rigidity by which to hit high 

portions with higher pressure on a rough surface. The schematic structures for different 

tool types are illustrated in Figure 13.  

 

Figure 13: Schematic tool structures of four different tool types (Kim and Burge, 2010) 

The rigid tools are usually constructed with a stiff material as a tool base structure 

covered with a polishing material, for example pith or polyurethane, as a polishing 

interface. The semi-flexible tool usually uses a relatively thin metal plate as a tool base 

covered with a polishing pad or pitch as a polishing interface. A foam layer maybe put 

between the thin plate and the solid thick plate. The complaint tool usually utilizes 

complaint materials, such as a liquid and air, which are often sealed in a container or 

make direct contact with the workpiece. The new rigid-flexible tool takes the advantages 

from both the rigid and complaint tool. It utilizes Non-Newtonian fluid which is often 

sealed in a container covered with a polishing interface (Kim and Burge, 2010). 

Table 3 shows the general comparison between different tool types where the parameter 

with a superscript is usually regarded as advantage. 
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Table 3: General comparison between different tool types (Kim and Burge, 2010) 

 Rigid tool 
Semi-flexible 

tool 

Compliant 

tool 

Rigid 

conformal tool 

Making large tool (e.g.＞30cm) Easy
1
 Easy

1
 Difficult Easy

1
 

Cost (including a NC machine) Inexpensive
1
 Medium Expensive Inexpensive

1
 

A tool for different workpieces No Limited Yes
1
 Yes

1
 

Smoothing Good
1
 Good

1
 Poor Medium 

Predictability Low Fair Excellent
1
 Good

1
 

Fitting to workpiece surface Poor Fair Good
1
 Good

1
 

Working on aspheric workpiece Difficult Good
1
 Easy

1
 Easy

1
 

Working on freeform workpiece Difficult Hard Easy
1
 Easy

1
 

Working over the edge Yes
1
 Yes

1
 No Yes 

Tool maintenance Difficult Easy
1
 Medium Easy

1
 

2.3.2 Polyurethane 

Polyurethane is a material suitable for polishing optical parts as a result of the following 

reasons: First, the pores and asperities in its body and surface help to keep the slurry 

particle during polishing; Second, the high viscosity and relatively high soften 

temperature enable the high linear/angular speed; Final, the surface figure can keep quite 

a long time which can manufacture passels of optical parts with uniform surface form (Li 

et al., 2008). The polyurethane pad used in this project was LP-66 whose parameters are 

shown in Table 4 (Abrasifs Grains et Poudres, 2013). 

Table 4: Parameters of polyurethane (Abrasifs Grains et Poudres, 2013) 

Product 

Grade 
Filler 

Density  

( kg/m
3 
) 

Hardness 
Standard 

thicknesses 

Standard 

dimensions 
Shore “A” 

Range 

Durometer 

Aim 

Shore “D” 

Range 

LP-66 
Cerium 

Oxide 
352.7-512.7 67-72 25 20-30 

0.51mm; 

1.27mm; 

3.18mm; 

6.35mm 

580 mm x 

1400mm 
GR-35 

Zirconium 

Oxide 
561.1-673.1 85-93 35-40 33-43 

Kim and Burge, (2010) introduced the method of gluing the LP-66 polyurethane polishing 

pad on a machined aluminium back plate to make a rigid conformal tool.  

2.3.3 Pitch 

Polishing pitch has been widely used in optical application for many years. There are 

mainly two kinds of pitch, the synthetic pitch and the natural pitch. The basic types are 

wood pitch, rosin pitch, petroleum based and asphalt tar pitch. The properties of these 

different pitches vary because of the different material they are made from. Two 

important properties which affect the performance of pitch are viscosity and shear 
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modulus. The viscosity is generally described as the resistance of a material to flow while 

shear modulus reflects the elastic behaviour (Gillman and Tinker, 1999). 

For example, Gugolz Polishing Pitch is made from natural wood resin and has five grades 

from very-soft to very-hard. It is easy to use by slicing, melting, and pouring onto a lap. 

The pitch carries abrasives well, such as aluminium oxide, cerium oxide, and diamond 

slurries, and presents them efficiently to the optic's surface for a superior finish (Meller 

Optics, Inc. 2013). The parameters of the pitch are shown Table 5 (Meller Optics, Inc. 

2014).  

Table 5: Parameters of Gugolz polishing pitch (Meller Optics, Inc. 2014) 

Specifications Melting Point Flash Point Burn Point Softening Point 

55-Very Soft 52℃ -55℃ 246℃ 278℃ 63℃-64℃ 

64-Soft 68℃ -72℃ 229℃ 262℃ 65℃ -68℃ 

73-Medium 77℃ -80℃ 219℃ 254℃ 71℃ -74℃ 

82-Hard 79℃ -82℃ 210℃ 246℃ 75℃ -77℃ 

91-Very Hard 84℃ -87℃ 213℃ 252℃ 78℃ 

2.4 Polishing spot 

Figure 14 shows the modelling of the function of polishing spot and interferometric data 

from polishing spot in MRF. 

 

Figure 14: a) Modeling of the function of polishing spot; b) Interferometric data from              

polishing spot in MRF (Evans et al., 2003) 

The modeling of the function of polishing spot is shown in Figure 14a. Parameters 

affecting the polishing spot comprise rotation speed of tool, tool pressure, dwell time and 

the contact extent during tool and substrate. With faster tool rotation speed, higher tool 

pressure and longer dwell time on the substrate, more material were removed away 
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because of the better contact during tool and substrate. Preston’s equation explains the 

function of polishing spot well (see equation 1.3.1.1), the material remove rate (MRR) is 

in proportion to the downward pressure (P) and relative velocity (V). The removed 

material is in proportion to the tool pressure, rotation speed and dwell time. 

Figure 14b shows the interferometric data of polishing spot in MRF which was produced 

by the high shear stress in the contact zone within which the material was removed away 

over a portion of the work piece surface (Evans et al., 2003). 

The characteristic of material removal has been expressed as the influence function which 

was described by Walker et al. (2004) as polishing spot produced by a spinning polishing 

tool imposing a cutting action on a certain location of a workpiece surface (Zeng, 2012). 

2.4.1 Tool angle 

A polishing tool angle is required for the following reasons: First, a needed rotation speed 

can be achieved by defining the tool angle as the speed at the tool centre is zero. Then a 

polishing spot can be achieved by a proper tool angle considering the tool pressure and 

rotation speed. Next, a tool angle is required when polishing a freeform shape surface 

considering the tool position. 

2.4.2 Spot size 

Spot size is the dimension of the polished area generated by tool compliance and 

polishing pressure caused on the surface of the sample. 

Johns et al., (2007) reported that extent of edge effect is proportional to spot size, but 

polishing time is (roughly) inversely proportional to spot size during MRF (see Figure 

15). 

 

Figure 15: Different size of spots over edges and surface (Johns et al., 2007) 

In order to minimize the edge effect and improve the polish rate, it is suggested to use 

smaller spot (lower plunge depth) near edges where edge effects are anticipated and use 

larger spot (higher plunge depth) away from edges to remove material quickly (see Figure 

16). 
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Figure 16: Using different size spots according to the location of workpiece (Johns et al., 2007) 

Kim et al., (2009) designed a parametric model to predict the tool influence function (TIF) 

for the situations of a polishing tool on the edge of the sample. The polishing spot near the 

edge of the sample is very complex due to different polishing pressure, tool shape, dwell 

time and other parameters. 

2.4.3 Polishing pressure 

One of the major differences between polishing process and other machining process, for 

example cutting, milling and grinding, is that the former is performed by pressure control 

but the latter is controlled by position. The average polishing pressure is achieved by 

polishing force or polishing load divided by the polishing spot which is the contact area 

between the polishing tool and the optical component (Guo et al., 2013). 

Mori et al. (1976) and Tsuwa et al. (1979) spread the concept of Elastic Emission 

Machining (EEM) to CNC shaping and finishing semiconductors and glass which 

employed 0.5 N/mm
2
 polishing pressure; Walker et al. (2002) introduced the polishing 

pressure employed to polish the Extremely Large Telescope (ELT) segments using a 

Precession CNC polishing machine IRP200 with cerium oxide on polyurethane was 0.1 

N/mm
2 

with the average full spot size of 180mm; Guo et al. (2013) introduced the 

technology of ultra-precision polishing micro-optics whose polishing pressure was 

controlled within the range of 0-1 N/mm
2 

with
 
the polishing spot size under 0.2mm

2
. 

2.5 Polishing slurry  

Polishing slurry is comprised of the fluid and the solid granules phase. 

The fluid phase may be characterized by its chemical composition and by its physical 

properties. Chemical compositions include water and nonaqueous fluids like 

hydrocarbons and alcohols. The pH may be controlled by adding acids or bases, or using a 

buffer system. Physical properties, including viscosity, density and thermal conductivity, 

affect both fluid dynamics and material transport in polishing. There are two main sources 

of heat during polishing: the primary one is mechanical friction and the less important one 

is exothermic chemical. Several factors, such as pressure, velocity, geometry and fluid 

supply, will affect the overall slurry temperature. 

The function of solid granules is to mechanically remove material from the surface of the 

workpiece. The granules themselves can be distinguished by a number of factors, such as 

chemical composition, size, shape and concentration. Concentrations may be defined as 
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weight percent or particles per volume. At very large particle concentrations, the removal 

rate per particle will be proportional to the penetration depth theoretically which means 

that removal rates will depend on particle size and concentration. At very low 

concentrations, the particles will be embedded that they no longer carry the whole load 

because load per particle is large enough (Evans et al., 2003). 

2.5.1 Cerium oxide 

Cerium oxide is an inorganic solid, mono-constituent, appearing under the form of a white 

ivory to pale beige powder. It is not categorized as harmful to human health and 

environment according to the current research. Cerium oxide is mainly used for industrial 

purpose as polishing slurry for glass products in the high precision manufacturing field 

(Rhodia, 2012). Table 6 shows the physical and chemical properties of cerium oxide. 

  Table 6: Properties of cerium oxide (Rhodia, 2012) 

Property Value 

Physical state Solid at 20℃ and atmospheric pressure 

Form Powder 

Particle size (D50) 41nm to 20 µm 

Colour White ivory to creamy white-pale beige 

Flammability Non flammable 

Vapour pressure No potential for volatilisation 

Water solubility Very low water solubility 

2.5.2 Diamond 

The industrial diamond is commonly used in lapping and polishing processes whose 

characteristic influences the performance of the manufactured workpiece. 

Industrial diamonds are mainly manufactured from synthetic sources into 

mono-crystalline diamond, polycrystalline diamond or nano-crystalline diamond. 

Mono-crystalline diamond is widely available while polycrystalline diamond is not but 

often micronized into narrow fractions as the material for lapping and polishing. 

The parameters of industrial diamond, such as particle size, particle sharp and particle 

concentration, as well as the liquid component of the slurry affect the performance of the 

manufactured mirror. 

Particle mean size influences material remove rate and surface roughness of the final 

workpiece. Choi et al., (2004) reported that the polishing rate increases in direct 

proportion to particle concentration and decreases with increasing particle size on the 

micro- and nanoscales. (See equation 2.5.2.1, where A is contact area, C0 is particle 

concentration andφis particle diameter). 

                        (2.5.2.1) 

Particle sharp affects the performance of the final workpiece as well as the ability of the 

particle to embed in the lapping plate. Each mono-crystalline has a few sharp edges and 

corners which will potentially interact with the workpiece to machine the surface. 

Polycrystalline diamond has a rougher surface with more cutting points which increases 

the possibility of interacting with the workpiece to achieve a higher material remove rate 
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and a lower surface roughness. 

The ingredient of the polishing slurry has several effects. First, it ensures the same 

dispersion and controlled distribution of the diamond of the lapping plate and polishing 

cloth; then, the slurry acts as lubricant to stop the temperature of the workpiece from 

rising when interacting with abrasives; Moreover, the slurry takes away the fine debris 

resulting from abrasion (Ng and Dumm, 2012). 

2.6 Summary 

This project employed the lapping machine and the BoX grinding machine to prepare the 

fused silica and ULE glass samples. The robotic polishing process using an industrial 

FANUC robot was the research emphasis of this project. The polishing tools employed in 

this project were polyurethane tool and pitch polishing tool. The tool path generated was 

followed a raster motion. The polishing slurry selected was cerium oxide. Three different 

polishing methods were researched: robot polishing with polyurethane tool and cerium 

oxide, pitch polishing with pitch tool and cerium oxide, as well as polishing a large part 

ULE sample. The metrology equipment, such as LVDT, CMM, profilometer and 

interferometer, used to measure the surface quality before and after polishing process, are 

introduced in Chapter 3. 
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3. Experimental equipment and procedures 

3.1 Metrology Equipment 

3.1.1 Linear Variable Differential Transformer 

A Linear Variable Differential Transformer (LVDT) is a displacement transducer which 

alters a linear displacement or position from a mechanical reference into a proportional 

electrical signal containing phase (for direction) and amplitude information (for distance). 

The reasons that the LVDT operation does not demand electrical contact between the 

moving parts and the transformer and without any built-in electronic circuitry make it 

widely used in aerospace applications where high reliability is required. Figure 17 shows 

the cross-section of both short stroke and long stroke LVDT.  

 

Figure 17: LVDT cross-section, short stroke (L) and long stroke (R) (Measurement Specialties, 

LVDT) 

The LVDT comprises of a primary coil wound over a cylindrical non-conductive material 

coil form. Two secondary coils are wound and classically connected in “opposite series”. 

A ferromagnetic core magnetically pairs the primary to the secondary winding turns. 

The LVDT probes used in this project were Inductive Probe Millimar 1301 and 1303. 

Table 7 shows specifications of the probes. 

Table 7: Specifications of Inductive Probe Millimar (Millimar, LVDT) 

Probe type 1301 1303 

Measuring range ± 1.0mm 

Measuring force at the 

electrical zero point 
0.75N ± 0.15N 

Increase in measuring force 0.4 N / mm 

Sensitivity deviation 0.5 % 

Repeatability 0.1μm 
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3.1.2 Profilometer 

The model of profilometer used in this project was a Form Talysurf 120L (see Figure 18). 

It is a surface form and texture measuring instrument equipped with a selection of stylus 

for form, waviness and roughness measurement (Ultra precision, Talysurf). 

 

Figure 18: Form Talysurf 120L profilometer 

Table 8 shows specifications of Form Talysurf 120L profilometer. The Talysurf has a 

nanometer resolution throughout a 10mm gauge range with interferometric gauge. 

Table 8: Specifications of Form Talysurf 120L profilometer (Leuven, 2005) 

Traverse Length 120mm 

Traverse Speed 10mm/sec maximum 

Measuring Speeds 1mm and 0.5mm/sec ±5% 

Return Speed up to 5mm/sec 

Measuring Range 10mm 

Gauge Type 
Phase Grating Interferometer, 

1mN force nominal 

Resolution 12.8nm @ 10mm range 

Range to Resolution Ratio 780,000:1 

Straightness Accuracy 
0.5µm over 120mm traverse 

0.2µm over any 20mm traverse 

Data Resolution 0.25µm 

3.1.3 Co-ordinate Measuring Machine 

The Co-ordinate Measuring Machine (CMM) used in this project was a Leitz 

PMMF302010 (see Figure 19).  
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Figure 19: Leitz PMM-F measuring machine (Hexagon metrology, 2014) 

The Leitz PMM-F measuring machine is equipped with an integrated active vibration 

damping system and kept with temperature and humidity control systems. It is a 

high-accuracy monolithic gantry measuring machine for large workpieces. Table 9 shows 

the specifications of Leitz CMM, including the stroke and accuracy. 

Table 9: Specifications of Leitz CMM (Hexagon metrology, 2014) 

Temperature range X stroke [mm] Y stroke [mm] Z stroke [mm] Accuracy [µm] 

18°C – 22°C 3000 2000 1000 E0 = 1.7 + L/400 

18°C – 24°C 3000 2000 1000 E0 = 1.7 + L/300 

It can achieve a traceable accuracy of 5.7µm for a 1.5m component (Ultra precision, Leitz 

CMM). 

3.1.4 Interferometer 

For the 100mm square sample, the model of interferometer used in this project was a 

Fisba Zygo Optik Microphase 2 OT Interferometer (see Figure 20) which is comprised of 

table stand (a), lenses (b), interferometer uPhase
R
 2 SR/HR (c), PC (d), software 

uShape
TM

 (e), dongle (f) and light source (g) (Fisba Optik, 2004). 

   

Figure 20: Picture and components of the Fisba Zygo interferometer (Fisba Optik, 2004) 

Microphase interferometers are widely used for measuring the surface and wavefront of 
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components made of glass, plastic, metal or ceramic objectively and precisely. One 

outstanding advantage of the measurement is the non-contact measurement method which 

prevents damage to the sample under test and gives the most exact evaluation of the entire 

surface or wavefront (Ultra precision, Microphase interferometer). 

The Fisba Zygo can measure sample up to 100mm. Table 10 shows the specifications of 

Fisba Zygo interferometer. 

Table 10: Specifications of Fisba Zygo interferometer (Fisba Optik, 2004) 

Camera resolution [pixel] 512x512 

Usable resolution [pixel] Ø ~480 

Measurement range [mm] 1-5 

Measurement wavelength [nm] 632.8 

Reference temperature [°C] 21 

Search area [°] 5 

Operational temperature [°C] 15...30 

PV Accuracy of iteration [λ] < 1/200 

RMS Accuracy of iteration [λ] < 1/1’000 

Illumination diameter [mm] 5 

For the 400mm square mirror, the model of interferometer selected was a Zygo Laser 

Interferometer Dynafiz (see Figure 21). 

 

Figure 21: Zygo Laser Interferometer (DynaFiz, 2013) 

The Zygo DynaFiz™ dynamic laser interferometer is designed particularly for 

implementing accurate metrology of optics in the company of air turbulence and extreme 

vibrations. The merits of the system, such as the high light efficiency of the optical system 

and the long life, high power, HeNe laser source, enables operation at high camera shutter 

speeds that “freeze” vibration. This dynamic capability provides reliable metrology in 

environments that are too violent for traditional temporal phase shifting techniques (Ultra 

precision, Dynafiz). Table 11 shows the specifications of Zygo Laser Interferometer. 
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Table 11: Specifications of Zygo Laser Interferometer (DynaFiz, 2013) 

System 

overview 

Measurement 

Capability 

Measures surface form of reflective materials and 

optics, and transmitted wavefront of transparent optics 

Test Beam Diameter 4 inch (102mm) or 6 inch (152mm) 

Laser Source High power stabilized HeNe, Class IIIa 

Wavelength 632.8 nm 

Frequency 

Stabilization 

< 0.0001nm 

Camera Resolution 1200 x 1200 pixels 

Performance 

RMS Simple 

Repeatability 

< 0.06 nm, λ/10,000 (2 σ) 

RMS Wavefront 

Repeatability 

Dynamic: < 1.0nm, λ /600 (mean + 2 σ) 

PSI: < 0.25nm, λ /2500 (mean + 2 σ) 

Fringe Resolution 
Dynamic: 250 fringes (all magnifications) 

PSI: 500 fringes (all magnifications) 

3.2 Experiment procedures 

The experiment procedures are comprised of the following steps: robot based polishing 

platform, polishing slurry preparation, polishing tool preparation, samples preparation and 

various polishing methods which include robot polishing with polyurethane tool and 

cerium oxide, pitch polishing with pitch tool and cerium oxide as well as polishing large 

ULE part. 

3.2.1 Robot based polishing platform 

The robot based polishing platform in Cranfield University is composed of an industrial 

robot, a high precision air bearing spindle as well as a commercial slurry system, which 

was designed to remove subsurface damage and mid-spatial from the ground surface. 

Figure 22 shows the layout of the platform. 

 

Figure 22: Industrial robot based polishing system 
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The industrial robot is a six axis Fanuc M710ic/50 with a working envelope which makes 

it suitable for polishing optics up to 1.5 meters. The PI air bearing spindle utilizes the 

compressed air to rotate the polishing tool fixed on the spindle to polish the surface. The 

slurry system was developed to circulate cerium oxide and diamond slurries between the 

slurry pump and the polishing area (Tonnellier et al., 2013). 

The Fanuc controller is a deadman enabling manual and automatic control of the robot. 

Pressure measuring platform was built via 4 button load cells connected to a PC with 

Labview program. The complex tool path programming was carried out using a bespoke 

Matlab program and the simple one was done through Fanuc’s own software, namely 

Roboguide. 

3.2.2 Polishing slurry preparation 

The polishing slurry, cerium oxide, for polishing ULE and fused silica samples was 

prepared according to the procedure in Table 12.  

Table 12: Polishing slurry mixing procedure 

Step Item 

1 2.5 L of EverFlo in a jug; 

2 Slowly mix cerium oxide into jug; 

3 3.5 L of water in mixing tank (room temperature); 

4 Add slowly into mixing tank; 

5 
Circulate and mix for 2 hours; 

Check specific gravity among 1.02-1.03 g/cm
3
; 

6 Add 25L of water; 

7 Mix for 1 hour; 

Note 
EQ #1 (Everflo) = Total tank volume x 0.05 

EQ #2 (Amount of cerium oxide) = 2.25 kg for 50L 

Additive, Everflo, was added to the slurry mixing tank to reduce the agglomeration of 

cerium oxide slurry particles.  

Figure 23 shows the polishing slurry tank used in polishing slurry preparation process. 
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Figure 23: Polishing slurry tank and chiller 

The chiller was employed to keep the temperature at a constant 20 degree to prevent the 

working temperature of the spindle from rising when it rotated for quite a long time. The 

mixing tank was used to provide a container to mix the polishing slurry. The motor was 

employed to stir the polishing slurry and the air pump was used to circulate the polishing 

slurry from the polishing zone to the mixing tank. 

3.2.3 Polishing tool preparation 

3.2.3.1 Polyurethane tool preparation 

The polyurethane used in this project was LP-66. Table 13 shows the procedure employed 

to make the polyurethane polishing tool whose components are shown in Figure 24. 

Table 13: Polyurethane polishing tool making procedure 

Step Item 

1 
Mix polyurethane substrate part A and part B into the tool 

mould according to the prescription; 

2 Modify the substrate surface to the required curve; 

3 

Cut the polyurethane pad to round piece whose diameter is 

the same as the substrate and glue it on the surface of the 

polyurethane substrate. 
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Figure 24: Polyurethane polishing tool 

3.2.3.2 Pitch tool preparation 

The pitch used in this project was Gugolz polishing pitch (N0. 73). Table 14 shows the 

procedure employed to make the pitch polishing tool whose components are displayed in 

Figure 25.  

Table 14: Pitch polishing tool making procedure 

Step Item 

1 
Mould was greased with Silicone Grease on faces which  

were wanted to be released; 

2 Fill assembled moulds with a controlled amount of pitch; 

3 
Put the mould and pitch into oven: set the temperature at 

120℃ for 20 minutes; 

4 
Take out the mould from the oven, cool down the pitch to soft 

and modify the shape of the tool surface with cold top mould;  

5 Remove the pitch tool from the mould; 

6 
Heat up the top mould to 75℃ and modify the tool surface, 

use abrasive paper to modify the tool edge; 

7 Measure and modify the roundness of the pitch tool. 
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Figure 25: Pitch polishing tool 

3.2.4 Samples preparation 

3.2.4.1 Lapped 100mm square ULE sample 

Figure 26 shows the lapping process of 100mm square ULE sample.  

 

Figure 26: Lapping 100mm square ULE sample 

The parameters of lapping process are displayed in Table 15. 

  Table 15: Parameters of lapping 100mm square ULE sample 

Item Parameter 

Diameter of cerium oxide 9µm 

Lapping time 60 minutes 

Lapping weight 5kg 

Rotation speed of lapping plate 60 rpm 
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The form accuracy and roughness of the sample were measured using the Talysurf 

profilometer following the method highlighted in Figure 27. The measurement directions 

were 1, 2, 3 and 4. 

 
Figure 27: Measurement method of the 100mm square lapped ULE sample 

3.2.4.2 Ground 100mm square fused silica sample 

Table 16 shows the parameters of grinding 100mm fused silica sample process.  

Table 16: Parameters of grinding 100mm square fused silica sample 

Item Parameter 

Grit Size 25µm 

Depth of Cut 50µm 

Feed rate 1.5 mm/rev 

Surface Speed 25 mm/s 

Cutting Speed 30 m/s 

The form accuracy and roughness of the sample, after the grinding process, were 

measured using the Talysurf profilometer following the method described in Figure 28. 

The curved lines represent the cusps generated by the grinding process. The measurement 

directions were 1, 2, 3, 4, 5 and 6. 
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Figure 28: Measurement method of the 100mm square ground fused silica sample 

3.2.4.3 Ground 400mm square ULE sample 

Table 17 shows the parameters of grinding of the 400mm square ULE sample.  

Table 17: Parameters of grinding 400mm square ULE sample 

Item Parameter 

Grit Size 46µm 

Depth of Cut 50µm 

Feed rate 1.5 mm/rev 

Surface Speed 25 mm/s 

Cutting Speed 30 m/s 

The form accuracy of the sample after the grinding process was measured using the CMM. 

The roughness, edge effect and the cusp condition were measured using the Talysurf 

profilometer following the method demonstrated in Figure 29. 
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Figure 29: Roughness, edge effect and cusp condition measurement method of large ULE sample 

The dimensions of the sample are 400mm square. The diameter of the ground region is 

425.7mm. The surface roughness, edge effect and cusp condition were measured between 

the following points with a radius of curvature sphere of 3000mm: F0-2, F1-3, F2-6, F4-5, 

F7-8, F9-10, F0-42, F41-43 and F42-44. Each measurement length was 100mm. Each 

measurement can be used to analyse the cusp condition and the surface roughness after 

grinding. The measurement of F2-6, F7-8, F9-10 and F42-44 before and after polishing 

can be used to analyse the edge effect of polishing. The above measurement procedure 

was carried out for the other three similar regions of the sample.  

3.2.5 Measurement procedure of 100mm square sample 

Each 100mm square part was probed using the LVDT probe to generate data for polishing. 

The probing method was to measure a point every 7mm from 5mm to 96mm in X 

coordinate and every 30mm from 5mm to 95mm in Y coordinate. Figure 30 shows the 

flow chart of the probing method. 
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Figure 30: Probe method of measuring 100mm square ULE sample 

The Probe_program was used to measure the form accuracy of the part; then the tilt 

obtained was removed (Probe_S01) to probe the part more accurately. The measurement 

result (Probe_result) was generated from the program Probe_S02. By adding the values of 

Probe_S02, Probe_result and the compensation, the result was used to generate the 

polishing program. The steps motioned above were repeated if the measurement error was 

over 1000µm. 

3.2.6 Robot polishing with polyurethane tool and cerium oxide 

Table 18 shows the parameters of robot polishing with polyurethane tool and cerium 

oxide. 

Table 18: Parameters of robot polishing with polyurethane tool and cerium oxide 

Item Parameter 

Polishing pressure 100N 

Polishing speed 5 mm/s 

Polishing step 1mm 

Tool angle 3.5 degree 

Tool rotation speed 1000 rpm 

Diameter of cerium oxide 9µm 

There are two sets of 100mm square samples, lapped ULE and ground fused silica, to be 

robot polished. Figure 31 shows the procedure before robot polishing. 
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Figure 31: Procedure before robot polishing  

First, samples were prepared in accordance with samples preparation in section 3.2.4. 

Next, the polyurethane polishing tool was made according to polyurethane polishing tool 

preparation in section 3.2.3.1. The cerium oxide polishing slurry was mixed on the basis 

of polishing slurry preparation in section 3.2.2. This was followed by polishing spots and 

polishing grooves tests to investigate the influence of different tool angles, polishing 

pressures and polishing times. Then the samples were prepared again. Finally, the sample 

was fixed on the pressure measurement platform to probe it with linear variable 

differential transformer (LVDT) and robot neutral polishing was implemented. Figure 32 

shows the process of robot neutral polishing. 

 

Figure 32: Robot neutral polishing process 

Before each robot neutral polishing operation, the LVDT probe was used to measure the 

part tilt and the robot motion error data which were used to generate polishing program 

with the bespoke Matlab software. Before and after each polishing operation, the Talysurf 

profilometer was employed to measure the final polished surface quality. These results 

before and after the polishing process were compared to evaluate the improvement of 

surface quality. Robot neutral polishing was completed when the measured result met the 

requirement. 
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3.2.7 Pitch polishing with pitch tool and cerium oxide 

Table 19 shows the parameters of robot polishing with pitch tool and cerium oxide. 

Table 19: Parameters of robot polishing with pitch tool and cerium oxide 

Item Parameter 

Polishing pressure 50N 

Polishing speed 5 mm/s 

Polishing step 1mm 

Tool angle 3.5 degree 

Tool rotation speed 500 rpm 

Diameter of cerium oxide 9µm 

 

There are two sets of 100mm square robot polished samples to be pitch polished, which 

were: robot polished ULE sample and robot polished fused silica sample. Figure 33 shows 

the procedure before pitch polishing. 

 

Figure 33: Procedure before pitch polishing 

First, samples were robot neutral polished. Next, the pitch polishing tool was made 

following the pith polishing tool preparation procedure (section 3.2.3.2). The cerium 

oxide polishing slurry was mixed according to the section 3.2.2. This was followed by 

polishing spots and polishing grooves tests to investigate the influence of different tool 

angles, polishing pressures and polishing times. Then the samples were robot polished 

again. Finally, the sample was fixed on the polishing platform measured using the LVDT 

probe and the robot pitch polishing was implemented. Figure 34 shows the process of 

robot pitch polishing. 
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Figure 34: Pitch polishing process 

Before each robot pitch polishing operation, the LVDT probe was used to measure the 

part tilt and the robot motion error data which were used to generate polishing program 

with the bespoke Matlab software. Before and after each polishing operation, the Talysurf 

profilometer was employed to measure the final polished surface quality. These 

measuring results before and after the polishing process were compared to evaluate the 

improvement of surface quality. Robot pitch polishing was completed when the measured 

result met the requirement. 

3.2.8 Robot polishing 400mm square ULE component 

The parameters selected to polish the 400mm square ULE part are summarized in Table 

20. 

Table 20: Parameters of polishing large ULE part 

Item Parameter 

Polishing pressure 80N 

Polishing speed 10 mm/s 

Polishing step 1mm 

Tool angle 3.5 degree 

Tool rotation speed 1000 rpm 

Diameter of cerium oxide 9µm 

 

The ULE part was polished according to the procedure in Figure 35. 
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Figure 35: Procedure of polishing large ULE sample 

First, sample was ground in accordance with sample preparation in section 3.2.4.3. Next, 

the polyurethane tool and the pitch tool were made according to polishing tool preparation 

in section 3.2.3. Then, the cerium oxide polishing slurry was mixed following the 

polishing slurry preparation in section 3.2.2. This was followed by metrology of the 

ground part before polishing using CMM and Talysurf. Then the part was probed and 

robot neutral polished followed by metrology. Finally, the sample was fixed on the 

polishing platform measured using the LVDT probe again and the robot pitch polishing 

was implemented. Figure 36 shows the process of polishing 400mm square ULE part. 

 

 

Figure 36: Polishing 400mm square ULE component 

Before robot neutral polishing, Leitz CMM and Talysurf profilometer were used to 

measure the surface quality of the part. After the robot neutral polishing operation, 

Talysurf profilometer, Leitz CMM and the Zygo laser interferometer with 3m optical 

tower were employed to measure the surface quality. For the metrology process, CMM 

was employed to measure the form accuracy of the part, Talysurf was used to measure the 
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edges, grinding cusps, polishing centre defect and roughness of the part, Interferometer 

was selected to check the reflectivity and measure the form accuracy of the part. These 

measuring results before and after robot neutral polishing were compared to see the 

development of polishing results and the removed condition of cusps. Polishing process 

was completed when the measured result met the requirement. 

3.2.9 Validation 

The reasons of polishing the smaller size sample (100mm square) included the following 

two aspects: 1) the dimension of the sample was big enough to limit the edge effect area 

affecting the polished surface quality, and 2) the parameters that may affect polishing the 

larger size sample were tested by polishing the same sample to test the influence of the 

polishing tool wearing out. 

The edge effect would affect the quality of polished surface edge. Therefore, the polished 

quality of the central area of the surface should be better than the edge area. The solution 

was to use smaller size polishing spot near the edge to eliminate the edge effect and use a 

bigger size polishing spot away from edge to increase the polishing rate. 

The polishing tool may wear out through polishing for a long period of time. The failure 

modes monitored mainly included the change of cloth thickness, cloth glazing and the 

change of cloth structure. The polishing pressure may get smaller when the cloth 

thickness gets thinner followed by a smaller polishing spot and a lower polishing rate. The 

cloth glazing leads to a less friction between the sample and polishing tool which would 

cause a lower polishing efficient. The change of cloth structure reduces the ability of 

containing the polishing slurry. There are two methods to solve the problem of the tool 

wearing up: increase the polishing pressure to a proper degree continuously or change to a 

new polishing tool when necessary according to measured tool pressure or based on the 

metrology results. 
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4. Experiment Results 

4.1 Calibration of the force measurement platform 

The calibration of sensors fixed under the force measuring platform was carried out 

before polishing process to make sure that the record of polishing pressure was correct 

and accurate. Figure 37 shows the setup for the calibration of the force measurement 

platform. 

 
Figure 37: Calibration of force measurement 

From the experimental procedure, the maximum polishing force employed was 100N. 

Five runs of loading from 0N to 139.2N and unloading from 139.2N to 0N were carried 

out to calibrate the sensors which covered the range of the polishing pressure expected 

shown in Figure 38 (and the section of A9.1).  

 

Figure 38: Loading and unloading for force measurement calibration-first run 
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Table 21 shows the weight selected for the loading and unloading process and the 

respective recorded force measurement for each run.  

Table 21: The record of force measurement validation 

             Force(N)        

Weight(N) 
run1 run2 run3 run4 run5 

0 -2±8 0 ± 8 0 ± 8 0 ± 8 2 ± 8 

49 48 ± 8 48 ± 8 48 ± 8 48 ± 8 48 ± 10 

68.6 68 ± 8 68 ± 8 68 ± 8 68 ± 10 68 ± 8 

88.2 86 ± 8 86 ± 8 88 ± 8 88 ± 8 86 ± 8 

98 96 ± 8 96 ± 8 98 ± 8 96 ± 8 96 ± 8 

117.6 114 ± 8 114 ± 8 116 ± 8 116 ± 8 114 ± 8 

139.2 136 ± 8 134 ± 8 136 ± 8 136 ± 8 134 ± 8 

117.6 114 ± 8 114 ± 8 114 ± 8 114 ± 8 114 ± 8 

98 98 ± 8 98 ± 8 96 ± 8 98 ± 8 96 ± 8 

88.2 88 ± 8 86 ± 8 88 ± 8 86 ± 8 88 ± 8 

68.6 68 ± 8 68 ± 8 68 ± 8 68 ± 8 68 ± 8 

49 46 ± 8 46 ± 8 48 ± 8 48 ± 8 48 ± 10 

0 0 ± 8 0 ± 8 0 ± 8 0 ± 8 2 ± 8 

It can be seen from the charts and the calibration in Table 21 that the average repeatability 

of the sensor was within ± 8 N. This was due to signal noise effect from sensors employed 

as shown in Figure 38.  

Figure 39 shows the pressure measurement during one polishing run to highlight the 

factors which affected the force measurement. 

 
Figure 39: Factors affect the polishing pressure measurement 
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The first region (1) corresponded to the effect of the polishing slurry being on and the 

spindle rotating prior to any contact with the part. The second region (2) corresponded to 

the polishing tool force on the sample surface with the polishing slurry on and spindle 

rotating. As can be seen the first region, the average effect of the noise and the polishing 

slurry were 30N. It can be seen from the second region that the average polishing force 

was 110N eliminating the influence of the noise, the polishing slurry and the tool rotation. 

4.2 Calibration of Probing technique 

Previous experiments carried out using the robot LVDT probe (Cranfield internal reports, 

2012) highlighted a possible effect in measuring repeatability depending on the probe 

position. The influence of the probe length on the measurement result was checked by 

probing the form accuracy of a tilt part with different probe lengths. Three different probe 

lengths were tested and measurement was repeated three times (see Figure 40).  

 

Figure 40: Probes with different lengths 

The lengths selected were a Z1 of 220mm and a Z2 of 110mm. The position X effect was 

also tested with by setting the length of X at 105mm and Z at 89mm with the help of a 

magnetic holder and a finger probe. Figure 41 combines the probing results.  
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Figure 41: Probing result with different probe lengths 

For a given probe length, the results were extremely repeatable. However, the values 

varied by over 50µm for different position in X and Z coordinates. Therefore, it is 

important to keep the same length between the probe and the tool so that the robot 

position error remains the same between metrology and polishing stages. The 

measurement results also highlighted the positioning errors of robot as the part measured 

was tilted but the flatness was 5µm. 

4.3 Manufacturing polishing tool 

Figure 42 shows the polyurethane tool and pitch tool which were manufactured according 

to the experiment procedure of section 3.2.3.   

 
Figure 42: Polyurethane tool and pitch tool 

The polyurethane tool was selected based on the previous work carried out at Cranfield 
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University (Tonnellier et al., 2013). As a pitch tool was never used at Cranfield University, 

a lot of work had to be carried out on making and testing it which is reported in detail in 

section 4.3.2. 

4.3.1 Polyurethane tool compliance 

Several tests were implemented to obtain the relationship between the polyurethane tool 

depth and the polishing pressure which is required to maintain the correct polishing depth 

for a constant polishing pressure. Figure 43 shows the connection between the Z position 

below touch point and the force of the polyurethane tool.  

 

Figure 43: Connection between Z position below touch point and force of polyurethane tool 

The tool angle used for these tests was 3.5 degree. This corresponded to the tool angle 

leading to a more symmetric spot geometry as shown in section 4.4.1. The variation of the 

Z position below touch point was ±20µm at the force of 100N. The results of the tests 

were recorded in section of A9.2. 

The equation of the relationship between the Z position below touch point and the force 

could be reached according to the tendency line (see equation 4.3.1.1), where Y means the 

Z position below touch point and X means the polishing force. 

Y=-0.016X
2
+6.828X               (Equation 4.3.1.1) 

Table 22: Connection between Z position below touch point and force of polyurethane tool 

Force(N) 0 10 20 30 40 50 60 70 80 90 100 110 120 

Depth(µm) 0 -67 -130 -190 -248 -301 -352 -400 -444 -485 -523 -557 -589 

As can be seen from Table 22, -400µm, -445µm, -485µm and -520µm mean 70N, 80N, 

90N and 100N respectively for the 3.5 degree polyurethane polishing tool. 
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4.3.2 Pitch tool manufacturing 

Figure 44 to Figure 47 show the manufacturing process of pitch polishing tool according 

to the experiment procedure of section 3.2.3.2 “Pitch tool preparation”.  

 

Figure 44: Moulds for making polishing tool 

 

Figure 45: Melt the pitch filled in the moulds with oven closed  

 

Figure 46: Modify the shape of the tool surface with cold top mould 
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Several issues had to be addressed to obtain a suitable pitch tool. There were large 

hollows on the pitch tool surface caused by air bubbles. These were produced by the hot 

top mould. Four holes were blocked when the pitch melted. The solutions were to use a 

cold top mould to modify the pitch substrate surface when it was still soft and increased 

the number of holes on the top mould (see Figure 46). 

 

Figure 47: Modify the surface and edge of the pitch tool with hot mould and abrasive paper 

The other problems occurred during the initial process of making and testing the pitch 

tool which were solved by the corresponding treatment methods. First, the pitch substrate 

was hard to be removed from the moulds and the shape obtained was wrong. The solution 

selected was to grease silicone grease on mould faces to facilitate release. Second, the 

pitch tool shook badly due to lack of the concentricity and due to the precision of the tool 

positioning inside the mould. The treatment method was to modify the design of the 

mould by machining a step to hold the tool holder precisely so that the tool concentricity 

improved. Finally, the tool broke during polishing tests as shown in Figure 48. 

 

Figure 48: Pitch tool broke during polishing tests 

The reasons of the tool breakage include: 1) the temperature increased with the polishing 

time leading to softening of the pitch; 2) the pitch tool substrate was brittle as the length 

of tool substrate was long; 3) the polishing pressure selected was too high; 4) the edge of 

the tool was sharp; 5) the tool angle was too big leading to reduce contact area and 

increase polishing pressure. The solutions selected were: to chamfer the edge of the tool 

with the abrasive paper (see Figure 47), decrease the tool length by half and compensate 

the length with spacer (see Figure 49), and to reduce tool angle and polishing pressure. 
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Figure 49 shows the final design of the pitch tool. 

 

Figure 49: Final pitch tool design 

4.3.3 Shaping the pitch tool 

The pitch tool was shaped to a radius of 200mm using top mould. However, the spot 

polishing tests highlighted high vibration level. Therefore, additional shaping process of 

tool was necessary. Due to the pitch brittleness, chipping of edges occurred when 

modifying the pitch tool surface on a curved tool mould with the pitch tool rotating. 

Therefore, the technique selected was shown in Figure 50. 

 

Figure 50: Shaping of the pitch tool 

Shaping the pitch tool was carried out with the spindle rotating and the polishing slurry on. 

The pitch tool rotating speed selected was 500rpm and the tool angle was 3.5 degree. The 

procedure was: 1) find the touch point; 2) jog the pitch tool to -10µm in Z direction for 20 

seconds and then jog it higher than the touch point; 3) jog the pitch tool to the position 

10µm lower than the previous one for 20 seconds and then move to the position higher 

than the touch point; 4) the deepest position was -160µm; 5) repeat the procedure 1 to 4 

until the recorded forces are constant. 

 

 



47 
 

Figure 51 shows the result of a constant polishing force which could be used to calculate 

the relationship between the Z position below touch point and pressure of the pitch tool. 

The polishing slurry effect was about 10 N. 

 
Figure 51: Obtain the constant pitch tool compliance 

4.3.4 Pitch tool compliance 

As can be seen from Figure 51, the difference of force between each 10µm displacement 

in Z direction was 5N. The equation of the pitch tool compliance was summarised in 

4.3.4.1.  

Y=-2X-30                  (Equation 4.3.4.1) 

Y means the Z position below touch point and X means polishing force. 

The connection between Z position below touch point and force of pitch tool obtained 

from equation 4.3.4.1 was shown in Table 23. 

Table 23: Connection between Z position below touch point and force of pitch tool 

Force(N) 0 20 25 30 35 40 45 50 55 60 65 

Depth(µm) 0 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 

4.4 Polishing spots 

4.4.1 Polyurethane tool 

The original polishing process carried out at Cranfield University employed a tool angle 

of 3 degree. Spots with different tool angles were tested to obtain a more symmetric spot 

geometry.  

For the first experiment, four different angles from 3 degree to 6 degree with the same 

polishing time (30s) and the same polishing force (80N) were tested. Figure 52 shows the 

polished spot size obtained with different angles. 
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Figure 52: Polishing spots with various angles and the same polishing time - Polyurethane tool 

The results show that the polishing angle needed to be set at 3.5 degree to obtain a more 

symmetric spot.  

For the second experiment, two groups of 3.5 degree polishing spots were tested (see 

Figure 53).  

 

Figure 53: 3.5 degree polishing spots with different force and times-polyurethane tool 

One group of polishing spots employed the same polishing time (11s), but different 

polishing force from 70N to 100N. The other group utilized constant polishing force 

(100N), but various polishing time from 2 seconds to 17 seconds. 
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4.4.2 Pitch tool 

Figure 54 shows the polished spots generated with the same tool angle and polishing 

depth but different polishing times. 

 

Figure 54: 3.5 degree polishing spots with different polishing times-pitch tool 

Table 24 shows the form accuracy (Pt) of the middle of the polished spots.  

Table 24: Parameters and form accuracy of polishing spots - Pitch tool 

Spot number 
Tool angle 

(degree) 

Polishing depth 

(µm) 

Polishing time 

(s) 
Pt (µm) 

1 3.5 -160µm 10 x 10 5.2 

2 3.5 -160µm 16 x 10 7.3 

3 3.5 -160µm 22 x 10 9.1 

4 3.5 -160µm 28 x 10 7.6 

5 3.5 -160µm 34 x 10 6.3 

From the 1st to the 3rd spots, the depths of the spots increased with the increasing of 

polishing time. After the 4th spot, the depths decreased showing a potential tool wear.  

Figure 55 shows the form accuracy of each polishing spot.  
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Figure 55: Form accuracy of each polishing spot 

The total pitch polishing time before the tool wore out was about 220s. The material 

remove rate decreased because the tool wore out and became flat from the 4th spot. The 

polishing force recorded did not reduce when polishing the 4th and the 5th spots. 

Therefore, this could not be selected as a parameter to judge the condition of the tool wear. 

Figure 56 shows the surface of pitch tool after polishing spots.  

 

Figure 56: Pitch tool after spots polishing 

The tool became flat and wore out near the edge which caused the breakage of the tool. 

Therefore, a smaller tool angle, 3 degree was selected to polish grooves. 
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4.5 Grooves polished by polyurethane tool 

Grooves were polished on lapped sample to measure the depth of polishing which is a 

mean calculation of the material remove rate and the Preston coefficient. Three grooves 

(10 runs, 15 runs and 20 runs of polishing) were manufactured using a 3.5 degree tool 

angle, 100N polishing force and 5 mm/s polishing speed (see Figure 57). 

 

Figure 57: Polished grooves after different number of runs 

4.5.1 Polishing force 

The polishing force was recorded during the 1st, 5th, 11th, 16th and 20th run (see Figure 

58 and the section of A9.4). Figure 58 shows the polishing force of the first run. 

 
Figure 58: Polishing force - 3 grooves - the 1st run 
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From the first region, when there was no contact between the tool and the part, the 

influence of the polishing slurry and the tool rotation was on average 40N. For the second 

region, the average polishing force was about 110N eliminating the influence of the 

polishing slurry and the tool rotation. 

Figure 59 shows the record of polishing force from the 1st run to the 20th run. 

 

Figure 59: Polishing force after different number of runs 

The polishing force was constant except for the 11th run where the force was about 15N 

lower than the others. This means that the tool does not wear out during a short time 

polishing. 

4.5.2 Cross sections of grooves 

The cross sections of the middle of the grooves were measured using the Talysurf 

profilometer to calculate the material remove rate and the Preston coefficient. Figure 60 

shows the measurement results of cross sections. 

 
Figure 60: Cross sections through the middle of the grooves 
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4.5.3 Material Remove Rate 

The method of Full Width Half Maximum (FWHM) was employed to calculate the size of 

the cross section. Equation 4.5.3.1 shows the calculation of the size, where Sc means the 

size of cross section, Dc means the depth of the cross section and the Wc means the width 

of the cross section.  

Sc= Dc * Wc /2                     (Equation 4.5.3.1) 

Equation 4.5.3.2 illustrates the calculation of material remove rate, where MRR1U means 

the material remove rate of ULE, Sc means the size of cross section, Ls means the length 

of the groove, t means polishing time per run and Nruns means the number of runs. 

MRR1U=Sc*Ls/t/Nruns                             (Equation 4.5.3.2) 

Table 25 shows the results of the size of cross sections and the material remove rate of 

robot polishing grooves. 

Table 25: Material remove rate and Preston coefficient of robot polishing grooves 

Nruns Sc(mm
2
) MRR1U (mm

3
/s) Preston coefficient (m

2
/N) 

10 runs 3.83 x 10
-2

 1.91 x 10
-3

 3.03 x 10
-13

 

15 runs 6.40 x 10
-2

 2.13 x 10
-3

 3.38 x 10
-13

 

20 runs 7.50 x 10
-2

 1.88 x 10
-3

 2.98 x 10
-13

 

It can be calculated from the table that the average material removal rate of ULE was 1.97 

x 10
- 3

 mm
3
/s. 

4.5.4 Preston coefficient 

According to the Preston equation (see Equation 1.3.1.1), Ke=MRR/P/V, Where Ke 

(mm
2
/N) is an all-purpose coefficient, MRR (mm/s) is the material removal rate, P 

(N/mm
2
) is the downward pressure and V (mm/s) is the relative velocity over the 

workpiece surface.  

For the 2nd groove after 15 runs polishing, with MRR= MRR1/S=2.13 x 10
-3

 mm
3
/s/ 

(8mm x 10mm) = 2.66 x 10
-5

 mm/s, P=110N/ (3.14 x 8
2
) mm

2
=0.55 N/mm

2
, V= 5mm/s. 

Then, Kpoly= 0.97 x 10
-13

 m
2
/N. 

4.5.5 Edge effects 

The form accuracy (Pt) of the grooves was measured to analyse the edge effects of 

polishing (The measurement result were recorded in the section of A9.5). Figure 61 shows 

the tendency line of different grooves’ form accuracy. 



54 
 

 

Figure 61: Tendency line of different grooves’ form accuracy 

From the edge (70mm to 95mm) of the 2nd groove (after 15 runs of polishing), less 

material was removed away than in other area. Table 26 shows the edge’s Z position of 

the 2nd groove. 

Table 26: Edge effect of 2nd groove after 15 runs of polishing 

Location(mm) Pt (µm) Z position (µm) 

70 8 -500 

95 6 -375 

Table 27 shows the compensation data which was used for the raster polishing process of 

100mm square part.  

Table 27: Compensation of the tool effect 

Location (mm) 68 75 82 89 96 

Z position (µm) -500 -468 -437 -406 -375 

Compensation (µm) 0 -31 -62 -93 -124 

4.6 Robot polishing 100mm square sample 

4.6.1 Robot Polishing of lapped ULE sample 

4.6.1.1Form accuracy and roughness measurement before polishing 

One 100mm square ULE sample was lapped following samples preparation methodology 

(section 3.2.4.1) to prepare for robot polishing. The form accuracy and roughness which 

were measured according to the method in Figure 27 after lapping process were recorded 

in the section of A9.6. The form accuracy (Pt) ranged from 2.2µm to 2.6µm and the 

surface roughness (Ra) was 230- 240nm. 
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4.6.1.2 Polishing force 

Figure 62 illustrates the force of the second run during robot polishing the 100mm square 

lapped sample. 

 

Figure 62：Robot polishing force - 100 mm square lapped sample- 2nd run  

The first area shows that the average influences of polishing slurry and tool rotation was 

about 30N. The increase and the decrease of forces in the second and the third areas show 

the interaction between the tool and the sample from no contact to full contact and vice 

versa. The average polishing force remained at about 100N when subtracting the 

influence of the polishing slurry and tool rotation. 

4.6.1.3 Form accuracy and roughness measurement after robot polishing 

Figure 63 shows the measurement method of lapped sample after robot polishing where 

the 1, 2, 3, 4, 5, 6 and 7 mean the measurement direction comparing to the polishing 

direction and the raster direction. The measurement result of form accuracy and roughness 

after robot polishing is recorded in the section of A9.6.  
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Figure 63: Measurement method of 100mm square lapped sample after robot polishing  

Figure 64 illustrates the development of form accuracy from the result of lapped surface 

to the result after 1 and 7 robot polishing runs. 

 

Figure 64: Development of form accuracy from lapping to robot polishing 

The form accuracy decreased after one polishing run in both polishing and vertical 

directions. After 7 runs, it worsened in the polishing direction while improving in the 

vertical direction. 

Figure 65 illustrates the surface roughness results before polishing and after 1 and 7 robot 

polishing runs. 
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Figure 65: Improvement of roughness during robot polishing for lapped sample 

Surface roughness (Ra) improved significantly after one polishing run by a factor of 30. 

After 7 polishing runs, in the polishing direction, the Ra improved by less than 0.2nm to 

within 6nm. The surface roughness, in the vertical direction, improved more (about 0.8nm) 

to within 7.5 nm but remained worse than in the polishing direction. 

4.6.1.4 Edge effect 

Figure 66 shows the edge effect of the part after 7 robot polishing runs.  

 

Figure 66: Form accuracy after 7 robot polishing runs -measurement direction 3 

The first and the second area show the edge roll-off after 7 robot polishing runs. The third 

area (68mm to 96mm on the part), much more material was removed than anticipated, it 

was decided that values used for compensating the edge effect highlighted would be 

divided by two. Table 28 illustrates the modified compensation of the tool effect.  
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Table 28: Modified compensation of the tool effect 

Location (mm) 68 75 82 89 96 

Compensation (µm) 0 -15.5 -31 -46.5 -62 

4.6.2 Robot polishing of ground fused silica sample 

Both sides of a fused silica sample were ground using the BoX grinding machine 

following procedure described in section 3.2.4.2. The form accuracy and roughness after 

the grinding process, which were measured according to the method in Figure 28, were 

recorded in the section of A9.7. The surface qualities of ground side1 were: The form 

accuracy (Pt) ranged from 1.4µm to 3.0µm and the roughness (Ra) ranged from 73nm to 

115nm. The surface qualities of ground side2 were: the form accuracy (Pt) ranged from 

0.8µm to 1.3µm and the roughness (Ra) ranged from 56nm to 75nm. 

4.6.2.1 Polishing half part of the ground sample 

Figure 67 show the result of polishing half part of ground sample to calculate the material 

removed after 6 robot neutral polishing runs. 

 

 

Figure 67：Polishing half part of the ground sample 

Figure 68 show the form accuracy of polished groove. The surface profile (Pt) of the 

polished groove was 21.5µm. 
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Figure 68: Form accuracy of the polished groove 

The polished area was from 20mm to 80mm in the Y coordinate. The width for a constant 

groove was 20mm which was used to calculate the full polishing length in Y coordinate 

when programming to polish the full sample.  

4.6.2.2 Polishing along the direction of grinding cusps 

Figure 69 shows the measurement method after robot polishing along grinding cusp (side 

1) where 1, 2, 3, 4, 5 and 6 mean measurement direction. The measurement results were 

recorded in the section of A9.7. 

 

 

Figure 69: Measurement method of 100mm square ground sample after robot polishing - side 1 

Figure 70 illustrates the development of form accuracy from the result of ground surface 

to the result after 6 runs robot polishing. 
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Figure 70: Development of form accuracy from grinding to robot polishing- side 1 

The form accuracy decreased from the result of grinding process to robot polishing for 

both polishing direction and vertical direction. Before the polishing process, the form 

accuracy (Pt) along grinding cusps (1.4µm-2.0µm) was better than the value vertical to 

grinding cusps (2.2µm-3.0µm). After 6 robot polishing runs, this trend remained with Pt 

=2.6-4.0µm and Pt =3.6-5.5µm respectively except measurement direction 3. 

Figure 71 illustrates the improvement of roughness before and after robot polishing. 

 

 

Figure 71: Improvement of roughness from grinding to robot polishing- side 1 

The roughness (Ra) was improved from 73nm -115nm before polishing to less than 10nm 

after 6 runs robot polishing. The surface roughness parallel to polishing direction ranged 
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from 5.3nm to 6.1nm while the roughness vertical to polishing direction ranged from 

7.7nm to 9.2nm. 

Figure 72 shows the form accuracy of measurement direction 3 after 6 runs polishing. 

 

Figure 72: Form accuracy after 6 runs robot polishing-measurement direction 3 

The first area of the part shows the edge roll-off. As can be seen from 72mm to 100mm of 

Figure 71 (68mm to 96mm on the part), the modified compensation of tool effect in Table 

28 has worked which was improved by a factor of 5. 

4.6.2.3 Polishing vertical to the direction of grinding cusps 

Figure 73 shows the measurement method after robot polishing vertical to grinding cusp 

(side 2) where 1, 2, 3, 4, 5 and 6 mean measurement direction. The measurement results 

were recorded in the section of A9.7. 
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Figure 73: Measurement method of 100mm square ground sample after robot polishing - side 2 

Figure 74 illustrates the development of form accuracy from the result of ground surface 

to the result after 6 robot polishing runs. 

 
Figure 74: Development of form accuracy from grinding to robot polishing- side 2 

The form accuracy (Pt) decreased from 0.8µm-1.3µm before polishing process to 

1.8µm-4.3µm after 6 robot polishing runs for both polishing direction and vertical 

direction.  
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Figure 75 illustrates the improvement of roughness before and after robot polishing. 

 

Figure 75: Improvement of roughness from grinding to robot polishing- side 2 

Before polishing process, the roughness along grinding cusp (72nm-75nm) was worse 

than the roughness vertical grinding cusp (53nm-62nm). The roughness parallel and 

vertical polishing directions were improved to almost the same which were ranged from 

4.0nm to 4.5nm. 

4.6.3 Polishing time 

The polishing time of one robot polishing run on a 100mm square part could be calculated 

according to the experiment procedure 3.2.6.  

T1=LW/ (Vp x Sp)                   (Equation 4.6.3.1) 

Equation 4.6.3.1 shows the calculation of the polishing time of one run (T1), where L and 

W are the length and width of the polishing area, Vp is the polishing speed, Sp is polishing 

step. Then, T1=125mm x 125mm/ (5mm/s x 1mm) = 3125s=52 minutes. The total 

polishing time for 6 runs robot polishing the ground part was 312 minutes. 

4.7 Robot polishing 400mm square ULE component 

To demonstrate the scalability of polishing process developed, a 400mm square ULE 

component was ground using the BoX grinding machine with 3000mm curvature sphere. 

4.7.1 Measurement results before polishing 

Figure 76 shows the measuring process of the 400mm square ground part according to the 

experiment procedure in section 3.2.4.3. 
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Figure 76: Measuring the 400mm square part using Talysurf profilometer 

The fixed radius of the LS Arc absolute measurement was set to 3000mm which was the 

programmed radius of curvature of the sphere ground on the 400mm square ULE part. 

The form accuracy and roughness of each measurement direction were recorded in the 

section of A9.8.  

4.7.1.1 Grinding cusp measurement 

Figure 77 and Figure 78 show the cusp condition vertical and parallel polishing direction 

after grinding process respectively. 

 

Figure 77: Cusp condition before polishing-vertical polishing direction (direction 1-3) 
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Figure 78: Cusp condition before polishing-parallel polishing direction (direction 11-13) 

The depth of grinding cusp which has to be removed was 0.6 µm (Pt). 

4.7.1.2 Surface roughness measurement 

Figure 79 shows the different area’s roughness of the 400mm square part before 

polishing. 

 

Figure 79: Roughness of the 400mm square part before robot polishing 

The roughness of the ground part degraded from the position near the centre (Ra=168nm 

at the position 0 to 100mm near the centre) to the position near edge (Ra=194 nm at the 

position 100 to 200 near the centre). The area which had the worst roughness was 100 to 

150mm near the centre. The roughness of the part should be improved to within 10nm (Ra) 

after robot neutral polishing according to the objective1 of the project. 
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4.7.2 Robot polishing results 

Figure 80 shows the process of robot polishing the 400mm square ground ULE part using 

the polyurethane polishing tool and cerium oxide polishing slurry.  

 
Figure 80: Robot polishing 400mm square ground ULE part 

4.7.2.1 Measurement result after 4 robot polishing runs 

Figure 81 shows the comparison of the 400mm square part before and after 4 robot 

polishing runs. 

 

Figure 81: 400mm square part before and after 4 robot polishing runs 

The form accuracy and roughness of each measurement direction after 4 robot polishing 

runs were recorded in the section of A9.8. Figure 82 shows the cusp condition after 4 

robot polishing runs, the measurement was vertical to the polishing direction. 
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Figure 82: Cusp condition after 4 polishing runs -vertical polishing direction (direction 1-3) 

Figure 83 shows the cusp condition after 4 robot polishing runs, the measurement was 

parallel to the polishing direction. 

 

Figure 83: Cusp condition after 4 polishing runs -parallel polishing direction (direction 11-13) 

Figure 84 shows the detailed information of the square area in Figure 82. 

 

Figure 84: Step of cusp after 4 robot polishing runs (Measurement direction 11-13) 

Figure84 
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The grinding cusp still remained as the valley of the grooves was 1.5mm which was 

generated by the grinding process. However, they were reduced by a factor of 4. The 

grooves in Figure 82 were generated by the function of polishing process and grinding 

process together as only grinding cusps could be observed.  

Figure 85 shows the roughness improvement before polishing and after 4 polishing runs at 

different area of the 400mm square part. 

 

Figure 85: Roughness improvement before polishing and after 4 polishing runs 

The roughness was improved by a factor of 38 to within 6nm (Ra) after 4 robot polishing 

runs. 

4.7.2.2 Measurement result after 9 runs robot polishing 

Figure 86 shows the comparison of the 400mm square part after 4 runs robot polishing 

and after 9 runs robot polishing. 

 
Figure 86: 400mm square part after 4 and 9 robot polishing runs 
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The form accuracy and roughness of each measurement direction after 9 robot polishing 

runs were recorded in the section of A9.8. 

Figure 87 shows the cusp condition after 9 robot polishing runs. It was the measurement 

vertical to the polishing direction.  

 

Figure 87: Cusp condition after 9 polishing runs -vertical polishing direction (direction 1-3) 

Figure 88 shows the detailed information of polishing grooves. 

 

Figure 88: Step of polishing lines after 9 robot polishing runs (Measurement direction 1-3) 

The grooves were only generated by the polishing process because the valley of grooves 

was 1mm which was produced by polishing every 1mm. The surface profile (Pt) of the 

polishing grooves was about 0.1 µm 

 

Figure 89 shows the cusp condition after 9 robot polishing runs. It was the measurement 

along the polishing direction. 

Figure88 
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Figure 89: Cusp condition after 9 polishing runs -parallel polishing direction (direction 11-13) 

The grinding cusps were removed along the polishing direction so that the robot polishing 

was stopped at this stage to prevent producing deeper polishing grooves. Figure 87 shows 

the polishing grooves left on the surface of the part. 

Figure 90 shows the roughness development after 4 and 9 polishing runs at different area 

of the 400mm square part.  

 

Figure 90：Roughness development after 4 and 9 polishing runs 

The surface roughness did not be improved significantly but worsened at a given region 

from 4 to 9 robot polishing runs. The roughness was improved to within 6µm after 9 robot 

neutral polishing runs. 
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4.7.3 Polishing time 

The polishing time of one run’s robot polishing 400mm square part could be calculated 

according to “Polishing large ULE ground part” in the experiment procedure 3.2.6.  

T1=LW/ (Vp x Sp)                  (Equation 4.7.3.1) 

Equation 4.7.3.1 shows the calculation of the polishing time of one run (T1), where L and 

W are the length and width of the polishing area, Vp is the polishing speed, Sp is polishing 

step. Then, T1=425mm x425mm/ (10mm/s x 1mm) = 18062s=5h. The total polishing time 

for 9 runs robot polishing to remove away the grinding cusp was 45 hours. 

4.7.4 CMM and Zygo interferometer measurements 

The 400mm square ULE part was measured using the Leith CMM after BoX grinding and 

after robot neutral polishing. The region assessed was 5mm from edges of sample within 

an inscribed circle surface as shown in Figure 91.  

 

Figure 91: CMM measurement - Measured region 

A raster scanning path was performed and data points were recorded every 10mm in X 

and Y directions. The Z positions were best fitted to a fixed best fit radius of curvature 

(2950) to obtain surface form accuracy (Pt). The data points obtained after grinding 

process are shown in Figure 92. 
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Figure 92: Data points obtained from CMM after grinding process 

The form accuracy was 40µm with an astigmatism effect in the Y direction. The central 

region form error was due to the spiral grinding tool path employed (section 3.2.4.3). The 

rotary table reached a maximum rotation speed leading to a reduction in grinding forces 

and resulting in a change in Z position between the tool and the part.  

The data points obtained after robot neutral polishing are shown in Figure 93. 

 
Figure 93 : Data points obtained from CMM after robot neutral polishing process 
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The surface form error was maintained below 40µm after robot neutral polishing. Some 

additional form errors could be observed in the polishing direction. These could be limited 

to the repeatability of the probing that was used to generate the robot tool path using the 

bespoke Matlab software (see Section 4.2). The Talysurf profilometer was employed to 

investigate details edge effects as well as grinding and polishing grooves. 

The part was placed under the optical tower and tested using the Zygo interferometer. The 

fringes obtained as shown in the section of A9.9. Due to the form accuracy and polishing 

raster lines, an interferometry measurement was not possible. This was mainly due to the 

missing central region (high slope error) and the high fringes density obtained. This 

should be resolved by additional polishing operations to correct the surface form error or 

by re-grinding this part to a higher precision. 
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5. Discussion 

5.1 Calibrations 

Calibrations of the polishing force and probing technology are significant because they 

would affect the surface quality of the polished part.  

Figure 38 shows the calibration of the force measurement platform, the sensor’s average 

repeatability was within ±8N. It would make a difference of ±50µm in the Z position 

below the touch point according to Equation 4.3.1.1. These values are within the targeted 

repeatability of the polishing system. 

During the polishing process, the total force recorded corresponded to the applied force as 

well as the polishing slurry and tool rotation forces which accounted for an additional 

30-40N (Figure 39 and 58). The calculated polishing force employed was the total 

recorded force excluding the effect of the polishing slurry and the tool rotation. 

Figure 40 and Figure 41show the calibration of the probing technique, the probing results 

for a given probe length were repeatable but varied by over 50µm for different positions 

in X and Z coordinates. Georgiou (2011) investigated that the industry FUNUC robot arm 

had the following characters: the repeatability of X coordinate was good at 25µm and the 

repeatability of Z coordinate ranged from 16 µm to 56 µm. The position error in Z 

coordinate had a maximum inaccuracy of ±100µm over 1000mm robot coordinate. 

5.2 Polishing tools and material removal rate 

5.2.1 Polishing tool 

Figure 94 shows the connection between Z position below touch point and force of 

polyurethane tool and pitch tool. 

 

Figure 94: Connection between Z position below touch point and force of polishing tool 

The pitch tool, Gugolz Polishing Pitch (No. 73), was stiffer than the polyurethane tool, 
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LP-66 polyurethane pad, employed in this project. 

Actions, such as selecting softer specification of the Gugolz Polishing pitch, testing 

different temperature and time set in the oven to heat the pitch or burying the cerium 

oxide inside the pitch polishing tool, should be taken to modify the pitch tool which may 

help to realize the objective 2 of the project to improve the surface roughness. 

5.2.2 Polishing pressure 

After comparison of the spots polished by polyurethane tool with different angles in the 

section of 4.4.1, the maximum tool angle which produced the most symmetric size was 

3.5 degree. Figure 95 shows the polishing pressure of polyurethane tool on contact area. 

 

Figure 95: Pressure of polyurethane tool on contact area – 3.5 degree 

The pressure increased with the increasing of polishing force however this is not linear as 

these results in a growing contact area. The calculated polishing pressure for a 100N force 

was 0.585N/mm
2
. The pressure was similar with the pressure used for polishing grooves 

(0.55N/mm
2
) (see the calculation in section 4.5.4). However, the pressure is higher than 

the pressure (0.1N/ mm
2
) used for polishing ELT segments but similar to the pressure 

employed for EEM to CNC polishing glass (introduced in section 2.4.3). 

A limitation of maximum MRR was the maximum available spindle torque which 

prevented employment larger size polishing tool for larger size spots. The size of a 

standard polishing tool employed on Zeeko machines is 80mm radius (Walker et al., 

2004). The method to increase the polishing contact area would be to use larger polishing 

tool requiring a spindle with a higher torque. 
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5.2.3 Preston coefficient 

The Preston coefficient derived from the experimented work was 0.97 x 10
-13 

m
2
/N 

(shown in section 4.5.4). The result is in the order of 10
-13 

m
2
/N which coincides with the 

result of Ong and Venkatesh (1998). They polished pyrex glass with 1 µm grain size 

cerium oxide powder with a polyurethane pad (the polishing pad and the wafer surface 

were modelled as statistically distributed hemispheres) and found a Preston coefficient of 

3.313 x 10
-13 

m
2
/N. Fiedler (1995) explained that the Preston coefficient for different 

kinds of glass-polishing was similar providing comparable chemistry was employed. 

5.3 Robot polishing 100mm square sample 

5.3.1 Volume of material removed 

Equation 5.3.1.1 shows the calculation of the volume of material removed from the 

ground fused silica after robot polishing, where Vf is the volume of removed material, Sf is 

the size of the fused silica sample, Df is the removed depth. 

Vf = Sf x Df                      (Equation 5.3.1.1) 

As can be seen from the ground fused silica sample half of whose surface was polished, 

the surface profile (Pt) was 21.5µm (see Figure 68 in section 4.6.2.1) which equalled to 

the removed depth (Df). Then, Vf = (100mm x 100mm) x 21.5x10
-3

 mm =215mm
3
. 

Similar to polishing the lapped sample (see Figure 65 in section 4.6.1.3), the surface 

roughness achieved the requirement after one polishing run with the volume of 36mm
3
 

fused silica removed. More polishing runs and polishing times were employed to remove 

the grinding cusps on the surface. 

5.3.2 Material removal rate 

Equation 5.3.2.1 shows the calculation of the material removal rate of polishing fused 

silica (MRR1f), where Vf means the volume of removed fused silica and tf means the time 

of polishing fused silica. 

MRR1f = Vf / tf                     (Equation 5.3.2.1) 

Then, MRR1f =215mm
3 
/ (125mm x125mm / (5mm/s x 1mm))/6 = 1.15 x 10

-2 
mm

3
/s. 

Comparing the result with the material removal rate of ULE which was 1.97 x 10
-3 

mm
3
/s 

(see section 4.5.3), the material removal rate is 5.8 times higher than ULE.  

5.3.3 Edge effect 

Figure 65 (in the section of 4.6.1.4) showed the edge effect of the 100mm square robot 

neutral polished part. The regions (1) and (2) showed the edge roll-off and the region (3) 

showed the tool effect after polishing. 

The compensation of the tool effect in the third region was shown in Table 28 which was 

half the value in the compensation of the tool effect summarized from the form accuracy 

of the polished grooves in Figure 61. Therefore, it could be concluded that the 

compensation worked from the form accuracy of the polished ground part in Figure 72.  

The compensation of the edge roll-off in this project is to lift the polishing tool for a 
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smaller spot size and a lower polishing pressure near the edge therefore removing less 

material. Jones et al (2007) employed smaller spot sizes near edges to minimize the edge 

effect whereas larger spot sizes were employed away from the edge to remove material 

quicker.  

5.3.4 Raster line from polishing 

Figure 96 to Figure 98 show the form of the polished surfaces (lapped and ground) after 

robot polishing. 

 

Figure 96: The form of the lapped sample after 7 robot polishing runs 

 

Figure 97: The form of the ground part after 6 robot polishing runs – side1 
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Figure 98: The form of the ground part after 6 robot polishing runs – side 2 

It can be seen from the charts that the step of the polishing grooves was 1mm and the 

surface profile (Pt) of the polishing lines was about 0.1 µm. 

According to Equation 2.2.3.1, Pt = f
2
/8R, which is the calculation of the surface profile 

for rigid tool. For this project, f = 1mm, R =200mm, then, Pt =1mm
2
/ (8 x 200mm) 

=0.6µm.  

The reasons for the difference of the surface profile measured and calculated may include: 

1) the radius of the polishing tool increased when it was pressed on the surface of the 

sample; 2) the polished groove did not have symmetric geometry. 

Figure 99 shows the cross section of the grooves polished using the polyurethane tool. 

 

Figure 99: Cross section of the grooves polished by polyurethane tool 

The height of the small groove in the bottom of the groove after 10 runs polishing was 

about 0.15µm. The surface profile (Pt) should be about 0.1µm after 6 runs or 7 runs 

polishing which coincides with the results measured in Figure 92 to Figure 94.  
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5.4 Robot polishing 400mm square component 

5.4.1 Polishing time 

Messner et al., (2007) employed the MRF polishing technology with Q-22-950F polishing 

machine and the raster polishing tool path to polish an 840mm diameter fused silica 

component which was pre-polished to a vertex radius of 2295mm by the SOML. The total 

polishing time spent was 256 hours to improve the root mean square (RMS) residual error 

from 5.1µm to 0.51µm. 

According to equation 4.7.3.1(in section 4.7.3), the time used for polishing one run of an 

840mm diameter component employing robot neutral polishing used in this project would 

be: T1=3.14 x 450
2
 mm

2
/ (10mm/s x 1mm) = 63585s=17.6h. The total polishing time for 9 

robot polishing runs would be 159 hours. However, this polishing does not improve the 

surface profile which may increase polishing time due to the necessity of convergence. 

5.4.2 Edge effect 

Figure 100 shows the form accuracy of the part near the edge before polishing. There was 

no edge roll off before polishing process. 

 

Figure 100: Form accuracy before polishing - vertical polishing direction (direction 12-16) 

Figure 101 and Figure 102 show the edge roll-off of the robot neutral polished part for 

both the direction parallel and vertical to the polishing direction. 
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Figure 101: Edge roll-off of robot neutral polished 400mm square part - parallel polishing 

direction (direction 2-6) 

 

Figure 102: Edge roll-off of robot neutral polished 400mm square part - vertical polishing 

direction (direction 12-16)  

The compensation of the edge roll-off parallel the polishing direction in this project is to 

lift the polishing tool so that a smaller spot size and a lower polishing pressure were 

employed near the edge to remove less material. The tool path is shown in Figure 103. 

 

Figure 103: Tool path of polishing 400mm square part to compensate the edge roll-off 

The polishing tool was lifted by 100µm at the point 10mm away from the edge higher 

than the Z coordinate at the edge. 
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5.4.3 Raster line from polishing 

Figure 104 shows the polishing lines left on the surface of the polished 400mm square 

part due to the raster polishing feed rate which was 1mm. 

 

Figure 104: Polishing lines of the 400mm part after 9 runs polishing (vertical to polishing 

direction) 

It can be seen from the plot that the step of the grooves was 1mm from 65mm to 72mm 

because of the unobvious small grooves. The step of the grooves was 2mm in the other 

areas. 

 

Franse (1990) explained different grooves in precision-machining are caused by various 

feed rate, overlap and vibrations, this is shown in Figure 12-d) in the section of 2.2.3.  

The step of polishing lines in Figure 99 for the 1mm feed rate could be caused by overlap 

and the limitation of the repeatability the robot arm used in this project. 

5.5 Pitch polishing tool 

The roughness of the pitch polished spots on the surface of robot neutral polished sample 

had no significant improvement with the 9µm diameter cerium oxide. Therefore, reducing 

sizes of cerium oxide may be necessary. Tesar and Fuchs (1991) used an average cerium 

oxide particle size of 0.78µm to polish Fused silica. Ong and Venkatesh (1998) polished 

one pyrex glass with 1 µm grain size cerium oxide powder on a polyurethane pad; After 3 

minutes’ polishing, the roughness of part was improved from 74.3nm to 8.7nm and then 

decreased to 14.7nm. Eminess technologies (2004) produced the cerium oxide employed 

for polishing fused silica, zerodur and glass whose size is between 0.55µm to 3.2µm.  

Suratwala et al. (2008) carried tests of polishing with 0.5µm cerium oxide slurry on 

polyurethane or pitch pads.  
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6. Conclusions 

In summary: 

 The surface profile (Pt) and roughness (Ra) of the 100mm square lapped sample 

were achieved to within 6µm and 10nm respectively with robot neutral polishing 

which fulfilled objective 1.2 of the project.  

The roughness (Ra) of the 100mm square ground part was improved to within 

10nm which conformed to objective 1.1 of the project. However, the surface 

profile (Pt) degraded to over 2µm which was caused by the following reasons: 

first, the surface profile (Pt) of the ground sample was not 1µm but 2-3µm; second, 

the edge effect of the part after polishing made the surface profile worse.  

The roughness (Ra) of the 400mm square part was improved to within 6nm after 

robot neutral polishing which fulfilled objective 1.1 of the project. 

A pitch tool was developed and initial polishing experiments were carried out. 

Surface roughness (Ra) measured was similar to polyurethane polishing. 

Therefore, additional works, such as using smaller cerium oxide particles or 

different pitch, are necessary to achieve object 2.2 of this project.  

 Time used of polishing 400mm square part: 

The total time to achieve the surface roughness required was 20 hours which 

corresponds to 4 runs polishing. The total time spent to remove the grinding cusp 

was 45 hours which spent 9 runs polishing. The total time could be reduced if the 

cusps generated by grinding process are smaller after grinding. 

 Raster polishing lines were left on the surface of robot neutral polished samples 

for both 100mm square part and 400mm square part. These were of a magnitude 

of 0.1µm (Pt) which was generated by the form error of the polyurethane tool 

employed.
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7. Further works suggestions 

The following works are suggested to be done in the future to improve the robot 

polishing system. 

 Pitch polishing of robot neutral polished parts: 

To obtain a more symmetric spot size and an improved surface roughness, 

additional tests of polishing spots and grooves with various tool angles, polishing 

pressures, polishing times and sizes of cerium oxide should be carried out. 

To check the degree of pitch tool wear, the 100mm square robot neutral polished 

samples and the 400mm square larger robot neutral polished part should be 

polished. This would provide information about the roughness (Ra) and surface 

profile (Pt) improvement during a short and a long time pitch polishing period 

 To obtain higher torque capability, the current spindle should be modified so that 

larger polishing tool size could be employed to increase contact area between the 

polishing tool and the sample. 

 Polishing Silicon Carbide parts with a rotary table: 

Based on the Preston coefficient and reported material removal rate of SiC, the 

polishing process is expected to be significantly longer than ULE. In order to speed 

up this process, a rotary table should be designed and a spiral polishing strategy 

should be implemented. The polishing tool moves from the edge to the centre of the 

round part at a given tool angle, speed and feed rate while the table rotates at a 

fixed speed.  

In addition, a new kind of polishing slurry, diamond, should be prepared and spots 

as well as grooves should be polished to obtain a symmetric spot size and to 

calculate the material removal rate.  

 Polishing a random tool path strategy to avoid raster polishing lines: 

To eliminate polishing raster lines, the eccentric tool technique or random tool path 

generated using a dedicated software should be investigated. Tests should be 

carried out to check the difference in surface texture condition after robot polishing 

employing the random tool path and the raster tool path.   
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9.  Appendices 

9.1 Calibration of force measurement platform 

 
Figure 105: Loading and unloading for force measurement validation – second run 

 
Figure 106: Loading and unloading for force measurement validation – third run 

 
Figure 107: Loading and unloading for force measurement validation – fourth run 
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Figure 108: Loading and unloading for force measurement validation – fifth run 

9.2 Connection between press depth and force of polyurethane tool 

        Table 29: Connection between press depth and force_3.5_Z1-2.1 

Depth (um) Force (N) Force (N) Force (N) Average (N) 

0 0 0 0 0 

-50 7 5 5 6 

-100 15 13 12 13 

-150 24 20 18 21 

-200 32 30 27 30 

-250 42 40 38 40 

-300 52 50 48 50 

-350 62 59 58 60 

-400 72 72 69 71 

-450 83 81 82 82 

-500 96 93 93 94 

-550 107 105 106 106 

-600 119 118 118 118 

     Note: The tool length was about 10mm shorter than the length of the probe 
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        Table 30: Connection between press depth and force_3.5_Z1-2.2 

Depth (um) Force (N) Force (N) Force (N) Average (N) 

0 0 0 0 0 

-50 9 6 5 7 

-100 16 12 10 13 

-150 24 19 17 20 

-200 34 27 25 29 

-250 43 38 35 39 

-300 53 48 47 49 

-350 63 60 57 60 

-400 73 72 68 71 

-450 84 82 80 82 

-500 96 94 94 95 

-550 109 107 106 107 

-600 120 120 116 119 

    Note: The tool length was about 10mm shorter than the length of the probe 

Table 31: Connection between press depth and force_3.5_Z1-1 

Depth (um) Force (N) Force (N) Force (N) Average (N) 

0 0 0 0 0 

-50 8 5 4 6 

-100 13 10 8 10 

-150 18 15 14 16 

-200 27 24 21 24 

-250 35 31 28 31 

-300 44 38 36 39 

-350 52 48 46 49 

-400 60 57 55 57 

-450 70 68 67 68 

-500 82 77 77 79 

-550 93 90 88 90 

-600 103 103 100 102 

    Note: The tool length was about 10mm shorter than the length of the probe 
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Table 32: Connection between press depth and force_3.5_Z2 

Depth 

(um) 

Force 

(N) 

Force 

(N) 

Force 

(N) 

Average1 

(N) 

Force 

(N) 

Force 

(N) 

Force 

(N) 

Average2 

(N) 

0 0 0 0 0 0 0 0 0 

-50 9 6 5 7 10 7 5 7 

-100 16 12 11 13 18 15 13 15 

-150 25 21 18 21 27 24 21 24 

-200 34 29 27 30 37 32 31 33 

-250 43 37 37 39 46 44 40 43 

-300 53 47 45 48 56 54 51 54 

-350 63 60 59 61 67 64 62 64 

-400 75 72 72 73 79 76 75 77 

-450 84 83 81 83 90 88 88 89 

-500 96 94 93 94 101 100 100 100 

-550 109 106 105 107 112 112 111 112 

-600 123 120 118 120 126 125 125 125 

 Note: The tool length was the same as the length of the probe 

9.3 Measuring and modifying the concentricity of the pitch tool 

Figure 102 shows the process of measuring and modifying the concentricity of the 

pitch tool. 

 
Figure 109: Measure and modify the concentricity of the pitch tool 
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The pitch tool shook badly when the concentricity and the precision of the tool were 

in a bad condition which would affect the polishing result. It is critical to modify the 

concentricity of the rotating pitch tool using an abrasive paper glued on a fixed plate 

and then check that the value of concentricity was within 200µm using finger probe. 

9.4Force of grooves polished by polyurethane tool 
 

 
Figure 110: Force of polishing grooves - 5th run 

 
Figure 111: Force of polishing grooves - 11th run 
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Figure 112: Force of polishing grooves - 16th and 20th runs 

 

9.5 Edge effects of polished grooves 

Table 33: Form accuracy of the grooves 

Pt(µm) 

mm 
10 runs 15 runs 20 runs 

2 5.9 8.9 11.7 

5 5.9 8.8 11.1 

8 5.6 8.4 10.3 

11 5.6 8.3 10.0 

14 5.6 8.3 10.0 

30 5.6 8.7 9.9 

50 5.4 8.0 10.3 

70 4.9 7.9 10.4 

86 4.4 6.5 11.7 

89 4.1 6.3 10.5 

92 3.8 6.1 8.7 

95 3.7 6.0 8.3 

98 4.2 6.8 10.5 
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9.6 Measurement of 100mm lapped sample before and after polishing 
 

Table 34: Measurement result of lapped sample 

Measurement 

direction 
Pt (µm) Ra (nm) 

1 2.5685 238.3 

2 2.3932 235.4 

3 2.5462 236.0 

4 2.2418 240.3 

 

Table 35: Measurement after 1st run of robot polishing 

Measurement 

direction 
Pt (µm) Ra (µm) 

1 2.9615 0.0056 

2 3.2260 0.0075 

3 3.2318 0.0059 

4 3.2042 0.0082 

5 3.1746 0.0061 

6 3.2382 0.0080 

7 3.1708 0.0082 

 

Table 36: Measurement after 7th run of robot polishing 

Measurement 

direction 
Pt (µm) Ra (µm) 

1 4.7452 0.0056 

2 2.5996 0.0069 

3 5.0908 0.0058 

4 2.6211 0.0073 

5 5.1420 0.0059 

6 2.4899 0.0072 

7 2.5621 0.0074 
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9.7 Measurement of 100mm ground samples before and after polishing 

Table 37: Measurement result of ground sample- side 1 

Measurement 

direction 
Pt (µm) Ra (µm) 

1 1.7260 0.1115 

2 2.2509 0.0731 

3 2.0496 0.1092 

4 2.7196 0.1129 

5 1.4003 0.1074 

6 2.9603 0.1092 

 
Table 38: Measurement result of ground sample-side 2 

Measurement 

direction 
Pt (µm) Ra (µm) 

1 1.2657 0.0742 

2 1.2086 0.0537 

3 0.7968 0.0748 

4 1.2380 0.0614 

5 1.1146 0.0725 

6 0.8894 0.0565 

Table 39: Measurement result of ground sample after 6 runs robot polishing-side 1 

Measurement 

direction 
Pt (µm) Ra (µm) 

1 2.6241 0.0053 

2 5.4609 0.0092 

3 4.0107 0.0058 

4 4.1453 0.0077 

5 3.0533 0.0061 

6 3.6005 0.0079 
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Table 40: Measurement result of ground sample after 6 runs robot polishing-side 2 

Measurement 

direction 
Pt (µm) Ra (µm) 

1 3.1413 0.0040 

2 4.2507 0.0044 

3 2.7745 0.0045 

4 1.9784 0.0043 

5 2.1200 0.0044 

6 1.8500 0.0044 

 

9.8 Measurement of 400mm ground sample before and after polishing 

Table 41: Form accuracy and roughness of each measurement direction of 400mm square part 

Measurement 

direction 

Ground surface 4 runs robot polishing 9 runs robot polishing 

Pt (µm) Ra (µm) Pt (µm) Ra (µm) Pt (µm) Ra (µm) 

0-2 3.5108 0.1735 3.3964 0.0049 3.1350 0.0039 

1-3 2.6564 0.1857 1.5576 0.0054 1.0394 0.0044 

2-6 1.4193 0.1920 1.2090 0.0036 3.2175 0.0031 

0-12 1.6315 0.1650 3.4132 0.0052 3.8734 0.0048 

11-13 1.4818 0.1774 2.3203 0.0058 2.7904 0.0050 

12-16 1.8050 0.1914 2.9637 0.0039 3.3025 0.0035 

0-22 3.8987 0.1652 2.8150 0.0039 2.3227 0.0053 

21-23 1.3454 0.1771 0.8324 0.0042 1.5607 0.0057 

22-26 2.8680 0.2038 1.7029 0.0045 1.8112 0.0034 

0-32 3.2719 0.1720 2.2105 0.0046 1.9347 0.0055 

31-33 1.6538 0.1894 1.3828 0.0052 3.1000 0.0056 

32-36 1.3781 0.1886 6.9280 0.0034 3.3910 0.0035 

0-42 4.3404 0.1664 1.5283 0.0056 3.3163 0.0045 

41-43 1.6675 0.1869 1.2092 0.0054 1.7093 0.0048 

42-44 1.2543 0.1976 1.0137 0.0042 1.5687 0.0032 

0-46 3.6046 0.1669 1.0597 0.0056 3.5222 0.0049 

45-47 2.0006 0.1974 3.6027 0.0062 2.3066 0.0053 

46-48 1.3969 0.1935 1.2826 0.0040 2.4451 0.0036 

0-50 3.5019 0.1746 2.3543 0.0045 1.5184 0.0054 

49-51 1.2525 0.1915 1.8403 0.0046 3.1376 0.0058 
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50-52 1.1887 0.1909 2.5026 0.0034 4.6504 0.0037 

0-54 3.4498 0.1665 2.5651 0.0050 2.0250 0.0053 

53-55 1.2183 0.1900 1.1027 0.0056 2.0088 0.0058 

54-56 1.2991 0.1966 2.2731 0.0035 3.9492 0.0038 

4-5 2.8966 0.2353 3.7633 0.0053 4.8558 0.0058 

14-15 1.0251 0.2238 2.6378 0.0061 6.6976 0.0070 

24-25 2.3543 0.2327 4.2457 0.0059 4.8853 0.0051 

34-35 2.0319 0.2280 2.4286 0.0046 2.8656 0.0053 

7-8 0.7688 0.1924 2.6510 0.0030 3.4346 0.0025 

9-10 1.1660 0.1832 1.3727 0.0030 3.5036 0.0025 

17-18 0.9150 0.1965 1.7593 0.0031 2.8459 0.0027 

19-20 0.9672 0.1832 1.7438 0.0029 2.5049 0.0026 

27-28 0.9429 0.1969 3.6321 0.0024 3.3742 0.0028 

29-30 1.0698 0.1827 1.6454 0.0024 2.7860 0.0027 

37-38 0.7257 0.1911 7.6908 0.0028 2.5079 0.0028 

39-40 0.8468 0.1836 4.6971 0.0039 2.4249 0.0027 

 

9.9 Fringes obtained using the Zygo interferometer - 400mm square part 

 
Figure 113: Fringes observed using the Zygo interferometer optical tower 


