
 
 

 

Cranfield University 

 

 

Raed Al-Asadi 

BSc, MSc in Agricultural Machinery 

 

 

Combined sensor of dielectric constant and visible and near 

infrared spectroscopy to measure soil compaction using 

artificial neural networks 

 

School of Applied Sciences 

Doctorate of Philosophy 

 

PhD Thesis 

Academic Year: 2010 - 2014 

 

 

 

Supervisor: Dr Abdul Mounem Mouazen 

Co-Supervisor: Dr Tim Brewer  

May 2014 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Cranfield University 

 

School of Applied Sciences 

Doctorate of Philosophy 

 

PhD Thesis 

 

Academic Year 2010 – 2014 

 

Raed Al-Asadi 

 

Combined sensor of dielectric constant and visible and near infrared 

spectroscopy to measure soil compaction using artificial neural 

networks 

 

Supervisor: Dr Abdul Mounem Mouazen 

Co-Supervisor: Dr Tim Brewer 

May 2014 

 

This thesis is submitted in partial fulfilment of the requirements for 

the degree of Doctor of Philosophy 

 

 

© Cranfield University 2014. All rights reserved. No part of this publication may 
be reproduced without the written permission of the copyright owner.



 
 



i 
 

Abstract  

Soil compaction is a widely spread problem in agricultural soils that has 

negative agronomic and environmental impacts. The former may lead to poor 

crop growth and yield, whereas the latter may lead to poor hydraulic properties 

of soils, and high risk to flooding, soil erosion and degradation. Therefore, the 

elimination of soil compaction must be done on regular bases. One of the main 

parameters to quantify soil compaction is soil bulk density (BD).  Mapping of 

within field variation in soil BD will be a main requirement for within field 

management of soil compaction. The aim of this research was to develop a new 

approach for the measurement of soil BD as an indicator of soil compaction. 

The research relies on the fusion of data from visible and near infrared 

spectroscopy (vis-NIRS), to measure soil gravimetric moisture content (ω), with 

frequency domain reflectometry (FDR) data to measure soil volumetric moisture 

content (θv). The values of the estimated ω and θv, for the same undisturbed 

soil samples were collected from selected locations, textures, soil moisture 

contents and land use systems to derive soil BD.  

A total of 1013 samples were collected from 32 sites in the England and Wales. 

Two calibration techniques for vis-NIRS were evaluated, namely, partial least 

squares regression (PLSR) and artificial neural networks (ANN).  ThetaProbe 

calibration was performed using the general formula (GF), soil specific 

calibration (SSC), the output voltage (OV) and artificial neural networks (ANN). 

ANN analyses for both ω and θv properties were based either on a single input 

variable or multiple input variables (data fusion). Effects of texture, moisture 

content, and land use on the prediction accuracy on ω, θv and BD were 

evaluated to arrive at the best experimental conditions for the measurement of 

BD with the proposed new system. A prototype was developed and tested 

under laboratory conditions and implemented in-situ for mapping of ω, θv and 

BD. When using the entire dataset (general data set), results proved that high 

measurement accuracy can be obtained for ω and θv with PLSR and the best 

performing traditional calibration method of the ThetaProbe with R2 values of 

0.91 and 0.97, and root mean square error of prediction (RMSEp) of 0.027 g g-1 
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and 0.019 cm3 cm-3, respectively. However, the ANN – data fusion method 

resulted in improved accuracy (R2 = 0.98 and RMSEp = 0.014 g g-1 and 0.015 

cm3 cm-3, respectively). This data fusion approach gave the best accuracy for 

BD assessment when only vis-NIRS spectra and ThetaProbe V were used as 

an input data (R2 = 0.81 and RMSEp = 0.095 g cm-3). The moisture level (L) 

impact on BD prediction revealed that the accuracy improved with soil moisture 

increasing, with RMSEp values of 0.081, 0.068 and 0.061 g cm-3, for average ω 

of 0.11, 0.20 and 0.28 g g-1, respectively. The influence of soil texture was 

discussed in relation with the clay content in %. It was found that clay positively 

affected vis-NIRS accuracy for ω measurement and no obvious impact on the 

dielectric sensor readings was observed, hence, no clear influence of the soil 

textures on the accuracy of BD prediction. But, RMSEp values of BD 

assessment ranged from 0.046 to 0.115 g cm-3. The land use effect of BD 

prediction showed measurement of grassland soils are more accurate 

compared to arable land soils, with RMSEp values of 0.083 and 0.097 g cm-3, 

respectively. The prototype measuring system showed moderate accuracy 

during the laboratory test and encouraging precision of measuring soil BD in the 

field test, with RMSEp of 0.077 and 0.104 g cm-3 of measurement for arable 

land and grassland soils, respectively. Further development of the prototype 

measuring system expected to improve prediction accuracy of soil BD. It can be 

concluded that BD can be measured accurately by combining the vis-NIRS and 

FDR techniques based on an ANN-data fusion approach. 

 

Keywords: Bulk density, vis-NIR Spectroscopy, FDR, Artificial neural networks, 

multi-sensor. 
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  Chapter 1

Thesis Structure  

This thesis concerns the development of soil compaction sensors, using 

innovative approach of combining dielectric and vis-NIRS sensors for in-situ 

applications, which was established earlier by the Al-Asadi and Mouazen (2014) 

publication. In this thesis further easements of soil BD provided, under different 

affecting factors, namely, modelling approach, soil moisture level, soil texture 

and land use. The aim was to explore the potential of using this measuring 

system at minimum prediction error, develop specific calibration models for level 

of the presumed affecting factors, by choosing the optimum soil status to 

conduct the field measurements and the right calibration model would increase 

considerably the measuring system accuracy. 

The thesis will be divided into the six chapters (Figure 1-1) as following: 

 Chapter 1 is the introduction, where a general introduction of soil 

compaction problem and a glance of the measuring techniques, the 

research gap and the aim and specific objectives of the research are also 

been addressed in the first chapter. 

 Chapter 2 provide literature review with expanding of the negative 

impacts and suggested ways to minimise soil compaction, and a 

historical development of the measuring systems of soil compaction were 

reviewed. 

 Chapter 3 shows the materials and methods adopted to conduct this 

research. 

 Chapter 4 shows the detailed results of the different calibration 

techniques performance and prediction accuracy under wide range of 

studying parameters. 

 Chapter 5 addresses scientific discussions of each result obtained in the 

results chapter. 
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 Finally, chapter 6 concerns of showing the extracted conclusions of the 

whole research topics and the suggested future work. The list of 

publications to date is also added. 

 

Figure 1-1 Thesis structure, showing the 6 different chapters.  



3 
 

1. Introduction  

1.1. Background 

It’s hard to imagine agriculture today without the use of modern agricultural 

machinery. Farmers began by using animals to power their machinery, but with 

the invention of the steam engine and later the internal combustion engine, 

agricultural machinery has entered a new era of mass production and reliability. 

The increase in world population has put enormous pressure on agriculture to 

produce sufficient agricultural products to feed the world; however, this couldn’t 

be achieved without mechanised agriculture.  

Soil is a natural, dynamic, porous medium consisting of air, water and solid 

materials in various ratios. The solid materials of the soil are mainly minerals 

(clay, silt and sand) mixed with organic material, which acts as cement agent 

forming soil aggregates and structure. The porous nature of agriculture soil 

makes it the ideal environment for plant roots to develop, distribute and absorb 

minerals and nutrients needed for the plant growth. For optimum plant growth, 

the soil content by volume is 50% solids (45% mineral and 5% organic), and 

50% voids of which half is filled by water and half by gas. Maintaining a good 

balance between these two major phases was always the key success for plant 

growth and yield 

Man used soil for agriculture since the ancient times. Our ancestors have not 

reported the problem of soil compaction. When farmers noticed the need to 

looseness their soils to restore a good crop yield by overcoming the foot pass of 

the soil top layer, animals have been used to till lands after been cultivated. It 

was the time when the fossil fuels become available and affordable and 

significant mass increase of agriculture machinery, leading to unbearable 

mechanical force on soil structure. The increase in mass of agricultural 

machinery has led to recognising soil compaction as a major problem affecting 

crop growth and yield.  

Soil compaction is the rearrangement of soil aggregates and/or particles in such 

a way that the voids and pores mainly between aggregates and particles 
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become smaller. Soil compaction can have a number of negative effects on soil 

quality and crop production including damage to the soil structure (Wolkowski 

and Lowery, 2008), deterioration of the soils’ physical and hydraulic properties 

(Strudley et al., 2008; Lipiec et al., 2009), which reduces the ability of a soil to 

hold water and air that are necessary for plant root growth and function, leading 

to a decline in the ability of crops to take up nutrients and water efficiently 

(Rosolem et al., 2001; Chen and Weil, 2011). The net effect is a decrease in 

crop yield. Soil compaction is associated with increase in bulk density (BD) and 

penetration resistance (PR), while significant reduction of porosity and pore 

space may be expected (Hakansson, 1990). Therefore, soil compaction also 

affects the hydraulic properties of the soil. This includes decrease in infiltration 

rate, which typically leads to surface run off. This enhances soil erosion 

particularly in areas with intensive rainfall (Franzen et al., 1994). The increase 

of flood risk is expected, particularly in areas with steep slopes that experience 

intensive rainfall (Presbitero et al., 2005). The increase of soil resistance to 

penetration affects not only plant growth but also leads to increase energy 

requirement for tillage. Therefore, the occurrence of soil compaction should be 

avoided, which is a better strategy than to remediate the problem by a proper 

management of tillage, which is energy demanding and expensive. Managing 

the traffic of agricultural machinery by means of controlled traffic farming 

systems is another strategy, which is increasingly adopted (Lamers et al., 1986; 

Chamen and Audsley, 1993; Wang et al., 2005). 

There are several factors that influence the occurrence of soil compaction. 

Many researchers agree that the fundamental cause of soil compaction lies with 

the use of heavy agriculture machinery (Frey et al., 2009; Tóth et al., 2008). 

Compaction by agricultural machinery is one of the effects that human activity 

has had on soils during the last 150 years. Livestock trampling is a significant 

cause of compaction, especially in the surface horizon of finer textured soils, but 

effects are confined to the upper 15 cm of the profile (Willatt and Pullar 1983; 

Kelly 1985). Livestock impact on grasslands during the wet soil conditions 

reported to be among those factors causing compression stresses, which lead 

to soil compaction (Vrindts et al., 2005; Hamza and Anderson, 2005). Other 
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factors causing soil compaction are the repeated use of same tillage tools at the 

same depth and extreme weather conditions (Mouazen and Ramon, 2006; 

Quraishi, 2013). 

Canarache and Van den Akker. (2003) stated that “European soils are more 

threatened than ever in history”. However, susceptibility of soil to compaction is 

associated with soil physical conditions including, soil type, moisture content 

and organic matter content (OM) (Quraishi, 2013). Soils with low OM could be 

compacted easier as compared with higher OM content soils. In fact, OM acts 

like a cement agent bonding soil aggregates together strongly. Clayey soils are 

highly compactable (Table 1-1), especially when exposed to external load and 

associated with high moisture content, this is due to the presence of water 

around clay particles, which acts as a lubricant, thus making it easier for the soil 

fractions to slide against each other. Although, sandy soils do not form 

aggregates, they can also be compacted when they are subjected to heavy 

machinery during field operations. Soil water content during traffic and 

cultivation determines the severity and extent of soil compaction. Soil water acts 

as a lubricant, permitting soil aggregates and individual particles to move in 

response to pressure from the transit of animals, vehicles and tillage equipment. 

This leads to the loss of air spaces and the closer packing of soil particles. 

Thus, compaction risk is greater in moist soils (FAO, 2003).  

 

Table 1-1 Evaluation of soil susceptibility to compaction according to soil texture 
(after Wolkowski and Lowery, 2008). 

Desorption Evaluation 

No mineral texture (Peat soils, rocks, etc.) Low 
Coarse (clay  < 18 % and sand >65 % ) Low 
Medium (18 % < clay < 35 % and sand > 15 %, or 
clay <18 % and 15 % < sand <65 %) 

Medium 

Medium fine (clay <35 % and sand <15 %) Medium/High* 
Fine (35 % < clay < 60 %) High 
Very fine (clay > 60 %) High 

*Final evaluation can be affected by percentages of organic matter and sand. 
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To prevent and/or reduce soil compaction several procedures can be followed, 

for example: 

 Reducing the axle load of agriculture machinery (Duiker, 2004; Nevens 

and Reheul, 2003).  

 Controlled Traffic Farming, Chamen, (2011) stated the advantages of a 

traffic control system to prevent soil compaction and how it benefitted 

crop productivity. Figure 1-2 shows the percentage reduction in yield of 

different crops in comparison to controlled traffic farming. 

 

Figure 1-2 Reduction in yield (%) of combinable crops compared with controlled 

traffic farming. (after, Chamen, 2011). 

 

 Use of a combination of fibrous and tap rooted crops in a rotation to 

penetrate soils, by developing deep root channels and to add organic 

matter to the soil (Hamza and Anderson, 2005).  

 Avoid tillage during wet soil conditions (Alakukku et al., 2003) 

 Reduce tire inflation pressure when large mass agricultural machines 

have to be used (Ansorge and Godwin, 2007) 

 Use track tires instead of wheel tyres, particularly in heavy soils to 

increase the contact area, hence reduce contact pressure (Keller and 

Arvidsson, 2004), 
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 Use of dual tyres to increase the contact area and reduce the contact 

pressure(Servad et al. 2005: Botta et al., 2006), 

 Carry out several operations in one pass (Mitchel et al., 2004), 

 Use 4-wheall drive tractors (Botta et al., 2012), 

 Early identification of increasing soil BD for field management of soil 

compaction, as BD is one of the main indicators of soil compaction.  

Understanding therefore how and to what extent soil compaction may be 

eliminated seems of vital importance to the future wellbeing of agricultural 

systems. Land management is the key factor for this target, where a 

quantitative and realistic measuring system of soil compaction is one of the 

successful tools that can be used to generate maps of compacted areas, to 

enable the identification of management actions that could be deployed to solve 

the problem. Due to the complex nature of agricultural soils, it has been difficult 

to characterise soil compaction rapidly, easily and cost effectively (Aragón et al., 

2000; Horn et al., 2000; Mouazen et al., 2003), which has hindered the study of 

soil compaction and its consequent remediation (Quraishi and Mouazen, 

2013a). 

One of the main parameters to quantify soil compaction is BD. It is widely used 

for assessing soil compaction (Grossman, 1981; Bardy, 1984; Singh et al., 

1992). The most common, traditional method for BD measurement is the core 

sampling method (e.g. Kopecki ring), which is laborious, time consuming, 

expensive and difficult to conduct particularly under dry soil conditions (Quraishi 

and Mouazen, 2013b). However, although BD might be considered as an 

indicator of soil compaction, it does not necessarily indicate changes in soil 

function, for example, air and water movement (Quraishi and Mouazen, 2013a). 

Other parameters such as saturated hydraulic conductivity and infiltration rate 

are more closely related to soil compaction (Fleige and Horn, 2000). However, 

in comparison with the latter parameters, assessment of BD with a portable 

measurement system is possible (Quraishi and Mouazen, 2013a; Al-Asadi and 

Mouazen, 2014) and enables faster, easier, and more cost effective data 

acquisition, which is particularly useful for precision agriculture applications.  
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For simplicity reasons, researchers have considered soil strength as an 

indicator for soil compaction. It is attributed to the fact that PR is the easiest 

parameter to be measured under off-line or on-line measurement conditions 

(Adamchuk et al., 2004; Andrade-Sánchez et al., 2008; Hemmat et al., 2009). 

But, soil strength is a dynamic property that changes with time and also spatially 

within a field due to the influences of climate, soil management and plant growth 

(Cantero-Martínez et al., 2003). Mouazen and Ramon (2006) explained that PR 

is simultaneously affected by moisture content, texture, BD and OM. It also 

changes due to the external load of agricultural machinery, animal traction and 

tillage tools (Mouazen et al., 2002, Quraishi and Mouazen, 2013a). This 

dynamic nature makes the utilisation of soil strength for the characterisation of 

within field variability of soil compaction to be of limited value. This has 

stimulated the development of soil compaction sensors that measure causal 

parameters, while providing cost effective and high resolution data about soil 

compaction. For example, Mouazen and Ramon (2006) reported an innovative 

approach for on-line measurement of soil compaction indicated as BD, as a 

function of PR, moisture content, clay content (CC) and OM. Similar approach 

was developed for a portable system for the measurement of soil BD (Quraishi 

and Mouazen, 2013b). The need for multiple-soil parameters to be measured 

simultaneously necessitates the need for a multi-sensor and data fusion 

approach to arrive at a measurement system that enables a meaningful 

estimation of this complex and important parameter in soil. 

Multiple sensors and data fusion have been introduced as a new concept in 

proximal soil sensing (Kuang et al., 2012). Data fusion is an important tool that 

may improve the performance of a detecting system by integrating data from a 

range of sensors (Mahmood et al., 2009). Despite the fact that this is a new 

concept, several studies have reported on non-mobile (Hummel et al., 2004; 

Quraishi and Mouazen, 2013b) and mobile systems (Glancey et al., 1989; 

Mouazen et al., 2003; Adamchuk et al., 2004; Mouazen et al., 2005; Mouazen 

and Ramon, 2006; Naderi-Boldaji et al., 2011b; Quraishi and Mouazen, 2013a) 

for the measurement of soil compaction. Many researchers have shown that the 

cone penetrometer accuracy is affected by the soil properties (Tekeste et al., 
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2005; Sun et al., 2011; Quraishi and Mouazen, 2013b). To eliminate the 

moisture content effect on the cone penetrometer measurement accuracy of soil 

resistance, Vaz et al. (2001) combined time domain reflectometry (TDR) with a 

cone penetrometer to measure soil resistance simultaneously with soil moisture. 

Results showed that TDR reading improved soil resistance accuracy by 

considering the influence of soil moisture content. Their combined 

penetrometer-TDR probe consisted of a paired wire coiled around the 

penetrometer cone (Figure 1-3).  

 

 

Figure 1-3 Schematic drawing of the combined cone penetrometer and a time 

domain reflectometry (TDR) sensors (after, Vaz et al., 2001). 

 

Mouazen et al. (2003) successfully developed an on-line combined mapping 

system of soil compaction, based on a multi-sensor system of a single beam 

load cell and a wheel gauge to measure draught and the working depth of a 

subsoiler, respectively, and a visible and near infrared spectrophotometer to 

measure soil moisture content. They used a numerical–statistical modelling 

scheme to fuse the input data on subsoiler draught, depth and moisture content, 

and calculate BD as the system output. Naderi-Boldaji et al. (2013) developed a 

three-parameter model for on-line BD estimation, as a function of PR, 
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volumetric water content (θv) and CC, measured by a triple sensor  consisting 

of a horizontal penetrometer, a dielectric sensor and a gamma-ray sensor, 

respectively. Results were not encouraging. Quraishi and Mouazen (2013a) 

expand the calibration of the Quraishi and Mouazen (2013b) reported a data 

fusion approach of BD assessment, based on the fusion of data on gravimetric 

moisture content (ω), OM and CC, measured with a visible and near infrared 

(vis-NIR) spectrophotometer and penetration resistance measured with a 

penetrometer. They concluded that improvement of soil BD prediction was 

achievable by considering the influence of ω, OM and CC. However, a large 

number of variables e.g. ω, OM, CC and penetration resistance is required as 

input for the artificial neural networks (ANN) analysis to predict BD. The 

accumulated error of vis-NIR measurement of ω, OM and CC would sum up to 

a considerable error of BD assessment. Therefore, a simpler approach is 

needed that is based on a fusion of fewer input variables (e.g. ω and θv), where 

error in BD assessment is small (Table 1-2).  

 

Table 1-2 Comparison results of soil bulk density (BD) estimation, using data 

fusion techniques including multiple linear regression (MLR), Matlab artificial 

neural networks (ANN) and Statistica ANN, as a function of various input sets 

(after, Quraishi and Mouazen, 2013b). 

Model 
MLR (R

2
) 

RMSE 
Matlab (R

2
) 

RMSE 
Statistica (R

2
) 

RMSE 
C V C V T C V T 

PR 0.04 0.03 0.19 0.04 0.02 0.02 0.20 0.06 0.14 0.01 0.18 

PR, MC 0.12 0.15 0.17 0.44 0.33 0.49 0.14 0.61 0.59 0.42 0.15 

PR, OM 0.25 0.26 0.16 0.29 0.26 0.48 0.14 0.53 0.60 0.41 0.15 

PR, CC 0.37 0.38 0.15 0.49 0.35 0.58 0.14 0.61 0.69 0.69 0.12 

PR, MC, OM 0.25 0.26 0.16 0.51 0.38 0.68 0.11 0.62 0.52 0.53 0.14 

PR, MC, CC 0.41 0.41 0.14 0.21 0.19 0.42 0.34 0.61 0.74 0.71 0.11 

PR, OM, CC 0.37 0.38 0.15 0.55 0.36 0.60 0.13 0.71 0.70 0.68 0.12 

PR, MC, OM, CC 0.51 0.49 0.13 0.72 0.55 0.74 0.10 0.76 0.79 0.81 0.11 

PR is   penetration resistance (MPa), MC is moisture content (kg kg -1) OM is   

organic matter content (kg kg-1), CC is clay content (kg kg-1) and RMSE is root   

mean square error (Mg m-3), C is calibration, V is leave-one-out cross-validation 

and T is test sets for the calibration methods.  
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1.2. Research aim and objectives  

 Research gaps 

The aforementioned portable and on-line systems for the measurement of BD 

provide indirect estimation as a function of PR, draught and/or bearing capacity. 

None of them measure BD directly or estimate BD based on a physical model 

for BD estimation. The only portable system developed recently by Quraishi and 

Mouazen (2013c) is based on a large number of input variables e.g. PR, 

moisture content, CC and OM. This is the reason why there is a need for a 

simple, portable measuring system that provides a practical application for 

mapping of soil compaction.  

 Assumption 

The assumption of this thesis is that by combining a vis-NIRS to measure ω and 

a dielectric constant sensor to measure θv, BD can be derived using an existing 

model. 

 Research aim  

The overall aim of the thesis is to explore and evaluate the potential of a multi-

sensor and data fusion approach consisting of dielectric constant and vis-NIRS 

techniques for non-invasive, laboratory and in-situ measurements of soil BD to 

indicate soil compaction of selected soil textures and different agricultural 

practices. This new concept relies on simultaneous measurement of ω and θv, 

with a vis-NIR spectrophotometer and a frequency domain reflectometry (FDR) 

sensor, respectively. Afterword, the measured ω and θv values at a point are 

the only input parameter needed to calculate BD according to the fact that soil 

water content can be expressed in different ways, for example, relatively to the 

mass of the soil solid particles, or to the total soil volume, the various indexes 

are defined as follow: 

 Mass Wetness ω is the relative mass of the soil water to the dry soil 

particles after 24 h of oven drying at 105 °C (Figure 1-4). 
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𝜔 =
Mw

Ms
                                                                             1-1 

Where 𝜔 is soil’s gravimetric moisture content (g g-1), Mw is mass of soil water 

(g) and Ms is mass of soil solid particles (g).  

 Volume wetness (θv): volumetric water content of the soil is commonly 

computed as a ratio between the volume of soil’s water to the total 

volume of the soil (Figure 1-4). 

𝜃v =
Vw

Vt
                                                                           1-2 

Where 𝜃v is soil’s volumetric moisture content (cm3 cm-3), Vw is the volume of 

soil water (cm3) and Vt is the total volume of the soil sample (cm3). 

On the other hand, soil BD can be defined as the ratio of the solid particles 

mass to the total soil volume.  

BD =
Ms

Vt
=

Ms

(Va+Vw+Vs)
                                                 1-3 

Where BD is soil bulk density (g cm-3), Ms is mass of soil solid particles (g), Vt is 

the total volume of the soil sample (cm3) and Va , Vw and Vs are volumes of the 

soil air, water and solid particles, respectively (cm3).  

From Equ. 1-3, Vt can be written as follows: 

Vt =
Ms

BD
                                                                          1-4 

Water density (ρw) is the mass of the volume unit, which is computed as 

follows: 

ρw =
Mw

Vw
                                                                       1-5 

And  

Vw =
Mw

ρw
                                                                       1-6 
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By substituting Eqn. 1-4 and 1-6 in Eqn. 1-2, we obtain  

  𝜃v =
Vw

Vt
=

Mw
ρw

⁄

Ms
BD⁄

=
Mw

ρw
∗

BD

Ms
                                  1-7 

And by substituting Eqn. 1-1 in Eqn. 1-7, the following equation can be derived 

𝜃v = 𝜔 ∗ [
BD

𝜌w
]                                                   1-8 

Assuming that ρw = 1 g cm-3, the previous equation can be written as follows 

(Hill, 1998): 

BD =
𝜃v

𝜔
                                                                   1-9 

 

Figure 1-4 Schematic diagram of soil three phases 

 

The ultimate aim of this work is to achieve a portable prototype system for BD 

assessment. 
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 The research objectives: 

o To develop, under laboratory and field conditions, calibration functions 

for the dielectric probe for the measurement of θv of selected soil 

textures in UK soils under different tillage systems and land use.  

o To develop, under laboratory and field conditions, a general calibration 

model of vis-NIRS for the measurement of ω of the selected soil textures 

in UK soils under different tillage systems and land use. 

o To determine, under field conditions, soil BD based on measured θv and 

ω obtained with the dielectric and vis-NIRS sensors, respectively. For 

verification of the system performance, values will be compared with the 

corresponding values obtained by the traditional oven drying method. 

o To evaluate the best soil and operational conditions, at which the best 

measurement accuracy of θv, ω and BD can be obtained. These include 

soil moisture content, texture classes, and land use (e.g. arable land vs 

grassland).  

o To evaluate the best data fusion modelling techniques and calibration 

methods for vis-NIRS and FDR sensors, which may results in the highest 

measurement accuracy of the parameters under consideration. 

o To develop and test a prototype portable measurement system of BD. 

The system will be validated for the accuracy of measurement of θv, ω 

and BD in three selected arable and grassland fields in one commercial 

farm in UK.  

o To map the spatial variation in soil compaction of the selected three 

fields in the UK. 
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  Chapter 2

2. Literature review 

This literature review provides a discussion about the linkage between soil 

compaction and modern agriculture, focusing on methods of measuring soil 

compaction in-situ. In order to eliminate the diverse effects of soil compaction 

several solutions are reviewed and land management is identified as a key 

factor and the most effective one among them. However, the need of an 

objective, cost effective and portable measuring system of soil compaction is 

needed to achieve this goal. A new combined measuring system has been 

introduced, which consists of a vis-NIR spectrophotometer and a dielectric 

probe.  

The overarching focus however is on the vis-NIR spectroscopy and its dielectric 

properties that enable it to measure soil moisture contents. The aim is to bring 

together and draw conclusions from research to understand the impacts of 

laboratory and field measurements under different soil and crop conditions. Soil 

compaction sensors and their development is therefore a major backdrop to this 

review.  

2.1. Introduction  

Intensification of crop and animal farming is widespread globally, involving 

shorter crop rotations and the use of heavier machines, increasing the risk of 

soil compaction (Hamza and Anderson, 2005).  

Soil compaction can be defined as packing the solid components of soil into a 

smaller volume. The negative effects of this on soil can include:  

 damage to the soil structure,  

 increased soil bulk density (BD),  

 increased soil penetration resistance (PR),  

 decreased porosity and pore space, 

 decreased infiltration rate and hydraulic properties, 
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 increased soil susceptibility for flooding and erosion, 

 restricted air and water movement into and through the soil. 

Farming systems have, to a certain extent, developed efficiently to meet the 

high pressures that accompany intensive agriculture, but the inevitable 

consequences of mechanized farming systems have caused the deterioration of 

many healthy soils to the extent that crop yields have decreased (Chamen, 

2011). Newell-Price et al. (2012) have identified the importance of soil 

compaction in grasslands, where it may have severe impacts on the agriculture 

and environment in England and Wales. They concluded after a study of 300 

grassland fields that there is a need to improve our understanding of soil 

compaction in grasslands and to identify and evaluate mitigation methods that 

could have the potential to remediate soil compaction. Their survey results 

indicate that around 10% of grassland soils are in poor condition, around 60% in 

moderate condition and around 30% only in good condition.  

2.1.1. Causes of soil compaction: 

 Initial soil conditions  

Field traffic at the wrong moisture content increases the potential for soil 

compaction. This is due to the fact that soil moisture content is the dominant 

property affecting soil strength (Hamza and Anderson, 2005). Soil water acts as 

a lubricant, making it easier for soil fractions to slide against each other. As the 

soil strength decreases, the same axle load of field machinery compacts a soil 

more when it is wet than when it is dry (Figure 2-1) (e.g. Arvidsson, 2001). 

Tarawally et al. (2006) concluded that the level of compaction caused by 

machinery trafficking on cultivated fields was highly influenced by the soil-water 

status and such trafficking could have an impact on soil hydraulic processes. 

They reported the highest levels of soil compaction were found under soil water 

states corresponding to field operations undertaken at field saturation and field 

capacity.  
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Figure 2-1 Depth of soil compaction as soil moisture content increases (after, 

Soehne, 1958). 

 

Soil compaction can be exaggerated by the lack of organic matter this has been 

recognized worldwide (Défossez et al. 2014; Hamza and Anderson, 2005). Soil 

organic matter acts as a cementing agent, strengthening soil structure, making 

soil more resistant to failure (Thomas et al., 1996). This is the reason why soils 

with high organic matter are more resistive to compaction occurrence. Fine 

textured soils (with a higher percentage of silt and clay) naturally have more 

total porosity than soils with a coarse texture. For that, finer texture soils often 

can be more compact (Daum, 2014). 

 Farm machinery size 

The majority of the soil compaction under intensive agriculture is derived from 

external loads on the soil from farm machinery. Tractor mass has, for example, 

increased over the past 70 years from less than 3 tons to approximately 20 tons 

per machine to meet the high power requirements of field operations (Blue-Jet, 

2014). This has the potential to cause significant damage to the structure of the 

tilled soil and subsoil, thus reducing crop production and increasing 

environmental risk (Defossez and Richard, 2002). The higher axle load increase 

the depth of soil structure damage in the soil profile (Figure 2-2) (Soehne, 1958; 

DeJong-Hughes et al., 2001). 
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Figure 2-2 Depth of soil compaction as axle load increases (after, Soehne, 

1958). 

 

Wolkowski and Lowery (2008) stated heavy agriculture machinery is main factor 

of causing soil compaction, for example, modern loaded combine harvesters 

and manure tankers weigh 20 to 30 (t). They reported machinery weighting 

more than 10 (t) can raise the possibility of subsoil compaction to a depth that 

cannot be removed by conventional tillage (Figure 2-3). 

 

Figure 2-3 Shows modern agriculture machinery damages of soil (after, 

Wolkowski and Lowery, 2008). 
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 Tillage tools 

Soil tillage implements can stimulate soil compaction just below the depth of 

tillage, especially when soils are wet, when choosing the same depth and 

equipment (plough, disk, or chisel plough) of tillage for long periods of time that 

it will lead inevitably to hardpan formation. Hardpans lead to decrease soil 

permeability rates, restricting roots access to moisture and nutrients above the 

hardpan only (Figure 2-4). Raper et al. (2005) found that conventional tillage 

systems were considerably decreasing the hardpan depth from soil surface 

comparing to no-till treatment. They conducted their measurements in field has 

Silty soil texture in the South-eastern USA. 

 

Figure 2-4 Roots of a cotton plant stunted and diverted sideways by a very 

compact subsurface layer (after Shaxson and Barber, 2003). 
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Tolon-Becerra et al. (2011) linked soil compaction caused by three tillage 

systems, namely, direct sowing (no tillage), chisel plough and mouldboard 

plough on maize (Zea mays L.) with seeding emergence and yield. They found 

that the yields of three growing seasons were directly related to mass of the 

maize roots system, which was clearly affected by soil compaction caused by 

the three different tillage systems, although, seeding emerging of direct sowing 

was faster than the other tillage systems tested, but similar results were 

achieved 18 days after sowing.  Abu-Hamdeh (2003) studied the influence of 

tillage systems (e.g. on-tillage, chisel ploughing and mouldboard ploughing), 

axle loads ( 6 and 16 t) and tire inflation pressures (120 and 350 kPa) on okra 

(Abelmoschus esculentus L.) root system distribution and soil BD and PR, on a 

loamy soil texture in Irbid, Jordan. He reported that the effect the experiment 

treatments could be sensed down to 48 cm depth. Author also stated that the 

greatest effect was observed with the 16 (t) axle load, 350 (kPa) tire inflation 

pressure and no-tillage treatments, while the lowest effect was with 6 (t) axle 

load, and chisel ploughed treatments.  

       Multiple field passes: 

Literature demonstrated that the degree of compaction is affected by the 

number of machine passes over the same soil (Horn et al., 2001). Experimental 

reports have shown that all soil parameters were affected negatively after 

machinery first passage, but high frequency trafficking of light machinery could 

cause as much soil damage as one pass from heavy machinery (Schӓffer et al. 

2007). This explains that the majority of compaction is built after the first three 

passes (Canillas and Salokhe, 2002).  

Patel and Mani (2011) evaluated soil compaction by different passes of tractor 

with varying loads on a Sandy loam soil texture. They compared the influence of 

4.40, 6.40 and 8.40 (kN) normal loads and 1, 6, 11 and 16 number of passes on 

soil compaction level caused. They reported that soil BD and PR in 0-15 cm 

depth zone continuously increased up to the 16 passes of the tractor, and with 

higher rates of higher loads. The higher loads and larger number of passes 

caused more damage to the soil, but most of this damage was in the soil layer 
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from 0 to 30 cm. Taghavifar and Mardani (2014) investigated a compensation of 

three factors on soil compaction, including: wheel load (1, 2 and 3 kN), velocity 

(0.5, 0.75 and 1 m s-1) and multiple wheel passages (1, 2 and 3 passages) on 

clay loam soil texture at a soil bin (Figure 2-5). They concluded that increasing 

the wheel load and the number of passes both have increased soil compaction, 

while the increase of the wheel velocity had an adverse effect.  

 

Figure 2-5 Single wheel testing system of soil compaction in a soil bin. (after, 

Taghavifar and Mardani, 2014). 

 

Nevens and Reheul (2003) attempted to quantify the negative impacts of soil 

compaction on the maize (Zea mays L.) yields, on a sandy loam soil in Belgium, 

with traditional soil tillage, artificially compacted and subsoiled treatments. The 

artificial compaction treatment produced by multiple passages of a tractor 

increased the soil PR to more than 1.5 MPa for the soil depth from 0 to 35 cm. 

They also observed maize plants were smaller and flowering was delayed when 

growing in compacted soils, and the yield loss was 13.2 % compared to the 
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traditional tillage treated plots. However, the subsoiled plots didn’t show 

significant effect on maize crop.  

 Contact area and tyres inflation pressure 

The contact area between soil and tyres or tracks is an important factor 

affecting the degree and depth of soil compaction occurrence. Increasing the 

contact area distributes the downward force coming from the weight of the 

tractor over a larger area, reducing the contact pressure, hence, the damage to 

the soil. The contact area can be increased by, for example, using double or 

triple traction wheels, using track of half-track tyres or by decreasing tyres 

inflation pressure. The average ground contact pressure (wheel load divided by 

contact area  between  tyres  and  soil  surface)  estimates  the  average  value  

of  the  vertical  load  in  the  contact  area (Alakukku, 1999). To eliminate soil 

compaction, recommendations have been given for maximum values of 

average ground contact pressure and inflation pressure 50 cm depth.  

For example, Spoor et al. (2003) recommend a maximum ground contact stress 

of 65 kPa (tyre inflation pressure 40 kPa), while for hard soils (not particularly 

vulnerable to compaction) they recommended maximum to be a 200 kPa (160 

kPa). Technical solutions to reduce ground contact stress (e.g. number of 

wheels, tyres construction, tyres cross-section, tyres diameter, tracks) and tyres 

inflation pressure are discussed by Chamen et al. (2003) and Ansorge and 

Godwin (2007). Rodrίguez et al. (2012) evaluated four tire types effects on 

contact pressures with three inflation pressures (207, 276 and 345 kPa) and six 

loads on a tire (10, 20, 30, 40, 50 and 60 kN). They measured the vertical stress 

under the tires with sensors placed at 10, 30, 50 and 70 cm depth. Tire types A 

and B (Figure 2-6) produced lower contact pressure (Figure 2-7) and they 

concluded that type of tire is one of the factors affecting the magnitude of the 

stress propagated through the soil and cause compaction. 
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Figure 2-6 Four different tire types used in a test of causing vertical stress 

(after, Rodrίguez et al. 2012). 

 

 

Figure 2-7 Vertical stress under four types of tires (after, Rodrίguez et al. 2012). 

 

 Livestock interaction  

Hoof pressure from grazing animals can have a considerable negative influence 

on soil properties and consequently cause an unfavourable environment for 

plant growth, particularly when associated with wet soil conditions. The impact 

depth of trampling leading to soil compaction changes depending on animal 

weight and soil moisture content, for example, it could be within the range from 

5 to 20 cm (Ferrero and Lipiec, 2000). Terashima et al. (1999) concluded that 
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grazing animals could damage soil properties up to 20 cm depth, but the 

greatest compression occurred in the top 5 cm. Lemus (2011) stated soil types 

with higher CC (medium to heavy textures) are more liable to hoof compaction 

comparing to sandier soils (light textures). 

 Weather conditions and natural causes 

Soil deformation may occurs from natural causes, frequent floods, heavy rains 

and snow accumulating on the soil surface can create high weight and thus 

induce compaction. The effect of rainfall or irrigation drops energy can also 

cause considerable damage of soil structure, causing soil small fractions to form 

a thin layer of mud at the soil surface drying into a hard surface soil crust, which 

can reduce infiltration rate, oxygen diffusion and limit the emergence of 

germinating crops (Stiegler, 2014)  (Figure 2-8).  

 

Figure 2-8 A thin surface crust caused by raindrop impact on a bare soil of poor 

structure (after, Shaxson and Barber, 2003). 
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2.1.2. Negative effects of soil compaction 

Zhang et al. (2006) evaluated the effects of three levels of compaction on the 

hydraulic properties of silt loam soils. Three levels of soil compaction were 

compared by increasing soil BD by 0%, 10% and 20%. They found that 

increasing soil BD by 20% significantly changed the water retention curves for 

both saturated and unsaturated hydraulic conductivity. However, increasing the 

BD by 10% also affected the hydraulic properties of the soil but not significantly. 

Soil compaction caused by farm traffic or tillage systems affects nutrient 

transformations and uptake due to the changes in soil hydraulic properties, 

aeration, and diffusive properties, as well as by its effect on root growth and 

distribution. The effect on each of these properties depends on the soil water 

regime. In most cases, nutrient uptake is reduced by soil compaction (Lipiec 

and Stẹpniewski, 1995).  

Soane and van Ouwerkerk (1995) have linked soil compaction to the 

unfavourable effects of increased agricultural productivity on the environment. 

The scientific literature provides evidence that soil compaction contributes to 

adverse effects such as soil structure deterioration (Horn et al., 1995), declines 

in crop yield (Radford et al., 2001), increased risk of runoff and soil erosion 

(Fullen, 1985), heightened potential surface water contamination by organic 

waste and agrochemicals (Lipiec et al., 2003), and increased production costs 

due to the inefficient use of nutrients and power requirements for tillage (Soane 

et al., 1982).The effect of soil compaction on crop yields varies considerably 

according to soil texture and location (Hester and Harrison, 2012), cation 

exchange capacity, pH, soil organic matter content and crop characteristics 

(Lal, 2006). 

In addition to the negative effects on soil and related environmental 

consequences, soil compaction can also affect crop growth and yield (Arvidsson 

and Håkansson, 2014; Alakukku and Elonen, 1995; Siczek and Lipiec. 2011).  

Arvidsson and Håkansson (1996) reported significant yield loss as a result of 

soil compaction and associated with poor conditions for crop growth. Arvidsson 

and Håkansson (2014) found that moderate compaction led barley crop yield 
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only to increase significantly (P < 0.05), compared with zero trafficking and 

previously loosened soil. The greatest yield losses associated with soil 

compaction were observed for horse bean, peas, potato and sugar beet (Table 

2-1).  

 

Table 2-1 Yield loss (%) with three passes track-by-track by a tractor weight of 

3900 (kg) with inflation pressure of 195 and 155 (kPa) for the front and rear 

tyres, respectively, as compared with no traffic (after, Arvidsson and Håkansson 

2014). 

Crop Yield loss (%) 

Spring wheat 0.3 
Barley -0.4 
Spring oilseed 
rape 

3.6 

Oats 8.7 
Sugar beet 9.4 
Potato 9.9 
Peas 11.3 
Horse bean 21.7 
Winter rye 0.6 
Winter wheat 3.0 
Winter oilseed 
rape 

8.8 

 

2.1.3. Methods to measure soil compaction: 

Soil compaction can be indicated as soil BD, infiltration rate, porosity, PR, and 

others. Methods can be divided into laboratory and field measurements. Lal and 

Shukla (2004) classified assessment methods of soil compaction to direct and 

indirect methods. Figure (2-9) shows a flow chart of soil compaction 

measurement methods.   
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Figure 2-9 Soil compaction measuring methods (after, Lal and Shukla, 2004).    

 

As in this study the aim is to develop a field measurement system, the review 

will consider field methods (in-situ) only. In-situ methods can be divided into 

direct or indirect methods as follows: 

 Direct methods:  

1. BD assessments: Traditionally, one of the most common parameter to 

indicate soil compaction is soil BD. There are several ways to measure soil 

BD. The basic principle is by core sampling (e.g. Kopecki ring). Measurement 

is conducted in the field by inserting a cylinder of known volume into the soil 

to collect an undisturbed soil sample, weighting the wet core sample, and 

weighting the dry core sample after oven drying for 24 h at 104 °C. Soil BD 

can be calculated by the following formula: 

BD =
WW−DW

V
                                                                          2-1 

Where: BD is soil bulk density (g cm-3), WW and DW is wet and dry weight 

(g) of the core sample, respectively and V is the core volume (cm-3).  

2. Penetration Resistance (PR): Soil compaction usually measured by PR, 

which is a measure of soil strength or a resistance to a deformation and it is 

frequently referred to as cone index. The cone penetrometer is the common 
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type of many types of penetrometers, which is an instrument in a shape of 

cylindrical rod ended with a cone-shaped tip purposed to penetrate the soil 

easily, and the measuring of PR by a bearing or a strain gauge at the other 

end. A soil penetrometer is an instrument used for estimating soil PR, 

whether it is a vertical (Motavalli et al., 2003) or a horizontal penetrometer 

(Hemmat et al., 2009). The amount of force required to penetrate the soil 

body is related to the soil compaction level and depends upon the 

penetrometer dimensions. However, PR is not only affected by BD, but 

simultaneously also influenced  soil texture, OM, and moisture content, which 

make PR limited for estimating soil compaction. 

3. Shear vane: It is a tool primarily used to determined soil shear strength of the 

cohesive soils with strength generally up to 200 kPa. This method is not 

applicable to fractional soils (e.g. Sandy or Sandy loam soils) or soils 

contaminated with gravels. The shear vane measures the soil resistance to 

shear failure. The vane consists of four rectangular blades in a cruciform at 

the end of a steel rod. The test works by pushing the vane into the soil and 

applying rotating torque until the soil fails. The shear strength can then be 

calculated by analysing the failure torque the applied torque to the rod. Soil 

cohesion and friction coefficient can be calculated based on Mohr Coulomb 

criteria of soil failure, based on a plot of maximum shear stress measured 

versus displacement (Schnaid, 2009). 

4. Gamma-ray: Photons from a gamma source are absorbed or scattered at the 

time of interaction with the electrons of soil atoms, such that the number of 

photons incident on the detector at a given time is related to BD of the soil 

sample (Smith and Mullins, 2000). 

 Indirect methods including: In addition to soil BD, soil compaction can also 

be expressed in terms of infiltration rate, total porosity and void ratio. In all 

cases total soil compaction is accompanied by soil volume decrease primarily 

on the soil air account, which either compressed of expelled out of the soil. 

Neither soil solid particles nor liquids are evidently compressible. However, 

soil solids could be rearranged or deformed under a compactive stress Lal 
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and Shukla (2004). Following are examples of indirect methods of measuring 

soil compaction: 

1. Infiltration rate: Infiltration is the process, by which arriving water at the soil 

surface enters the soil, with its rate considerably reduced by compaction due 

to the deterioration of soil structure. Infiltration rate provides good sign of soil 

compaction (Haynes, 2010). Abu-Hamdeh (2004) found Infiltration rate 

decreased with increasing the axle load of different tillage regimes. At the 

same axle load, he reported infiltration rate was higher in the chisel-ploughed 

plots in comparison to the disk-ploughed or mouldboard-ploughed plots. 

There are many factors affecting the infiltration rate including soil structure, 

moisture content, surface condition, soil and water temperatures and if is 

tested by the double ring kit, the head of the applied water, diameter and 

depth of embedment of rings, also, would influence the infiltration rate 

measurements (ASTM). 

2. Porosity: Porosity is usually expressed as a percentage of the empty spaces 

to total volume. There are many methods can be used to estimate soil total 

porosity, for example, directly by calculate the total volume of the sample 

pores, using water saturation method (pore volume = total volume of water − 

volume of water left after saturation), and optically, using a microscope to 

determine the of soil solids verses the area of the pores (Lal and Shukla, 

2004; Carter, and Gregorich, 2007). Compaction causes a decreasing in total 

porosity (Douglas and McKyes, 1978; Schӓffer et al. 2007). This decreasing 

not only may occur with a changes of pore morphology (Arvidsson and 

Håkansson, 1996), but also the pore size distribution may be changed 

(Richard et al., 2001), as macropores and micropores are not equally 

affected by compaction (Horn et al. 1995). So far, soil compaction was often 

assessed using total porosity, although total porosity value does not allow 

identifying the class of pores affected or the structural damages that occurred 

(Boivin et al. 2006) 

Among the above discussed parameters to indicate soil compaction, soil BD 

might be the best indicator, although, it does not necessarily reflect soil 

functioning (e.g. air and water movement) (Quraishi and Mouazen, 2013b). 
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Other parameters e.g. saturated hydraulic conductivity and infiltration rate are 

more closely related to soil compaction (Fleige and Horn, 2000), compared to 

soil BD. The measurement of the soil hydraulic properties in the field is tedious 

and time consuming methods, the same drawbacks of measuring soil BD with 

the core sampling method. However, in comparison with the measurement of 

soil hydraulic parameters, the assessment of soil BD with a portable measuring 

system is possible (Quraishi and Mouazen, 2013b) and is faster, easier and 

more cost effective, which is particularly useful for precision agriculture 

applications and environmental risk assessment. 

2.2. Spectroscopy  

2.2.1. Background 

Spectroscopy is basically an experimental science, which is concerned with the 

absorption, emission or scattering of electromagnetic radiation by atoms or 

molecules (Hollas, 2004). Electromagnetic radiation is the technical term for 

light, not just the human eye sensitive or visible light, but any light from radio 

frequencies to gamma rays. As the name suggests, light of all kinds is radiated 

through conjoined electric and magnetic fields (Tranter et al., 2000). 

The absorption, emission and scattering phenomenas of light contain important 

spectra information about the structure and composition of matter.  

Spectroscopy is a powerful and sensitive tool used increasingly for chemical 

and physical analysis, as well as a method of probing electronic and nuclear 

structure and chemical bonding. The key to interpreting this spectral information 

is the knowledge that certain atomic and molecular processes involve only 

certain energy ranges. Figure 2-10 shows the regions of the electromagnetic 

spectrum and the associated energy transitions that occur in atomic and 

molecular processes (Thompson and Staley, 2014). 

There are many types of spectroscopy for example: 

 Electron spectroscopy 

 Fourier transform spectroscopy 

 Mass spectrometry 
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 Raman spectroscopy 

 Optical spectroscopy 

 

Figure 2-10 Electromagnetic radian regions and the associated energy 

transitions that occur in atomic and molecular processes (after, Thompson and 

Staley, 2014). 

 

It is impossible to construct one single spectral device capable of covering 

whole optical range and providing information about the different processes of 

absorption, emission and scattering of light. This is particularly because of the 

technical limited operational ranges of light sources, detectors and other optical 
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components. Consequently, optical spectrophotometers can be classified 

according to their operating wavelength ranges as follow: 

 Ultra Violet-visible (UV-VIS) (175-750 nm). 

 Near-Infrared (NIR) (750-2500 nm). 

 Mid-Infrared (MIR) (2.5-25 μm). 

 Far-Infrared (FIR) (25-1000 μm).  

Some spectrophotometers manufacturers are capable of covering neighbouring 

spectral regions, for instance, Vis-NIR, MIR-FIR or NIR-MIR 

spectrophotometers are now commercially available (e.g from Bruker Optics 

GmbH, Ettlingen).  

Gauglitz and Vo-Dinh (2003) stated that comparing to the rest optical 

spectroscopic techniques, NIR showed the greatest variety of instrumentation 

principles, and the market for commercially available instruments is undergoing 

continuous change and growth. They showed that NIR spectroscopy has a vast 

variety of applications in many fields, for example, agriculture, food processing, 

medical and pharmaceutical, polymer and plastics industrials, environmental 

measurements, and remote sensing.  

Visible and Near-infrared spectrometers differ considerably with respect to cost, 

size and portability, time needed for the measurement and environmental 

conditions for on-line applications in industry. According to their measurement 

techniques, NIR spectrophotometers fall into the following categories (Gauglitz 

and Vo-Dinh, 2003): 

 Fourier-Transform spectrophotometers 

 Scanning-Grating spectrophotometers 

 Diode array spectrophotometers (fixed-grating spectrometers) 

 Filter spectrophotometers 

 Light-emitting diode (LED) spectrophotometers 

 Acousto-optical tuneable filter (AOTF) spectrophotometers  
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Burns and Circzak (2008) expressed that the NIR spectroscopy is widely used 

in agriculture applications for determining the quality of grain products, oilseeds, 

coffee, tea, spices, fruits, vegetables, sugarcane, fats, and dairy products e.g. 

eggs, meat and milk. They explained the advantages of NIR spectroscopy as it 

meet the criteria of being accurate, reliable, rapid, non-destructive, and 

inexpensive. The accomplishment of sustainable agricultural and environmental 

management requests a better understanding and precise information of the 

soil at increasingly finer scales. Traditional soil sampling and laboratory 

analyses cannot efficiently supply this important information because they are 

slow and expensive for spatial scales (Viscarra Rossel and McBratney, 1998). 

2.2.2. Visible and near infrared spectroscopy (Vis-NIRS) implementation in 

soil science 

Visible and near infrared spectroscopy refers to the electromagnetic spectrum 

range, that starts from 400 nm to 700 nm for visible light and from 700 to 2500 

nm for the near infrared range. When near infrared radiation interacts with a soil 

sample, it is the overtones and combinations of fundamental vibrations of 

chemical bonds in the mid infrared that are detected (Miller, 2001). Generally, 

the NIR region is characterised by broad, superimposed and weak vibrational 

modes giving soil NIR spectra few and broad absorption features (Figure 2-

11b). In the visible region electronic excitations are the main processes as the 

energy of the radiation is high. 

Some dominant soil components and absorption peaks in the MIR range are 

indicated in Figure 2-11A for quartz (Q) as sand, organic compounds (OC), 

calcite (Ca), kaolinite (K), smectite (S), and (OH) features of free water and 

lattice minerals. Due to the broad and overlapping bands vis-NIR spectra are 

visually not very resolving and are difficult to interpret (Figure 2-11B). 

Nevertheless, this region does contain useful information on organic and 

inorganic materials in the soil. Absorptions in the visible region (400–780 nm) 

are primarily associated with minerals that contain iron (e.g. haematite, 

goethite) (e.g. Sherman and Waite, 1985). Soil organic matter can also have 

broad absorptions in the visible rang, which are dominated by the darkness of 

http://en.wikipedia.org/wiki/Spectroscopy
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humic acid. Absorptions in the NIR (780-2500 nm) result from the overtones of 

OH, SO4 and CO3 groups as well as combinations of fundamental features of 

H2O and CO2 (e.g. Clark, 1999). Clay minerals can show absorption in NIR-

region due to metal-OH bend plus O-H stretch combination (Viscarra Rossel et 

al., 2006). Water has a strong influence on vis-NIR spectra of soils. The 

dominating absorption bands of water at 1450 and 1950 nm are characteristic 

for soil spectra (Figure 2-11B), but there are also weaker bands all over the vis-

NIR range (Mouazen et al., 2006). In addition to soil water, soil texture and 

colour all affect the spectral features of the vis-NIR soil spectra, hence the 

prediction performance of soil properties (Mouazen et al., 2005a; Mouazen et 

al., 2006b; Mouazen et al., 2007). 

 

Figure 2-11 Soil diffuse reflectance spectra (A) the MIR 2500–25000 nm (4000–

400 cm-1) showing approximately where the fingerprints for quartz (Q) as sand, 

organic compounds (OC), calcite (Ca), kaolinite (K), smectite (S), and (OH), and 

(B) the vis-NIR 400–2500 nm (25,000–4000 cm-1) showing approximately the 

combination, first, second and third overtone (OT) vibrations occur as well as 

the vis range with red (680 nm), green (550 nm) and blue (450 nm) bands (after 

Stenberg et  al., 2010). 
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2.2.3. Vis-NIRS analyses of soil properties 

Vis-NIRS has become increasingly used for rapid analyses of soil chemical, 

physical and biological properties that can be useful for different applications. 

The early stages of the instrumentation of the light detector were with a single 

wavelength transmitter and receiver to measure the influence of a single soil 

element on spectra data (e.g. soil OM) (Shonk et al., 1991). With vis-NIRS 

detectors development and increased commercially availability, they are used 

widely across the world to determine most soil properties, such as soil moisture 

content (Qurishi and Mouazen, 2013b), soil organic matter (Li et al., 2012), CC 

(Viscarra Rossel et al. 2009), total nitrogen, phosphorous, pH, magnesium, 

calcium, cation exchange capacity and potassium under laboratory 

(Pietrzykowski and Chodak, 2014;  Ben-Dor & Banin, 1995; Chang et al., 2001; 

Mouazen et al., 2010) and field soil conditions (Mouazen et al., 2006; Waiser et 

al., 2007; Marίn-González  et  al., 2013). Less success was reported for the 

measurement of mineral nitrogen (Stenberg et al., 2010; Kuang et al., 2012). 

Soil properties were divided from accuracy of measurement point of view into 

two categories, namely spectrally active and in-active categories (Stenberg et 

al., 2010. Soil organic carbon (Nocita et al. 2014), organic matter, CC and 

moisture content sit under the first category, and have direct spectral response 

in the NIR range. This is the reason why these properties can be measured with 

high accuracy (Kuang et al., 2012). The remaining soil properties have no direct 

spectral response in the NIR range, but measurement can be successful 

through co-variation through other soil properties having direct spectral 

response (Stenberg et al., 2010). 

Researchers attempted to use different calibration algorithms, among which 

partial least squares regression (PLSR) is the most popular, for its simplicity 

and availability of user friendly Unscrambler software.  Studies concluded that 

non-linear methods such as artificial neural networks or support vector machine 

result in a better predicting performance as compared to the linear PLSR 

(Mouazen et al., 2010; Viscarra Rossel and Berhens, 2010). Christy et al. 

(2003) presented a soil mapping system, which implementing NIR 



36 
 

spectrophotometer with the range 900–1700 nm to measure a number of soil 

properties in a single field in central Iowa. They used principal component 

regression analysis as a calibration technique, giving the following results for 

the estimation soil moisture, total carbon, total nitrogen, and pH with R2 values 

of 0.82, 0.87, 0.86, and 0.72, respectively, and RMSEp values of 2.996, 0.453, 

0.029 and 0.464, respectively. Lee et al (2009) used the ASD FieldSpec Pro FR 

spectrophotometer (Analytical Spectral Devices, Boulder, Colorado, USA) to 

estimate soil physical and chemical properties and determine the significant 

wavelength ranges or bands for selected soil elements. They obtained mixed 

estimation accuracies for soil elements with R2 values of 0.80, 0.72, 0.78, 0.80, 

0.87 and 0.24 and RPD values of 2.24, 1.88, 2.11, 2.22, 2.73 and 1.15 for clay, 

silt, sand, Ca, organic carbon and K, respectively. They concluded that reducing 

the spectra wavelength between 1770 to 2500 nm wouldn’t affect estimation 

accuracy when compared with the full wavelength range spectrum of the 

spectrophotometer (350 – 2500 nm). Mouazen et al. (2007) arrived at a similar 

conclusion but for a spectral range of 350-177 nm as compared with 350 – 2500 

nm. Yang et al. (2011) found total nitrogen could be predicted more accurately 

than total carbon with R2>0.90 and RPD>3.3, using spectra data only from the 

visible range (400-700 nm). However, the prediction of total carbon needed 

almost the full range of the ASDi spectrophotometer with range 350 – 2500 nm 

wavelength. 

Morgan et al. (2009) used vis-NIR spectra to predict soil organic and inorganic 

carbon using the PLSR calibration technique. They reported that in-situ 

spectroscopy can measure organic and inorganic carbon with lower accuracy 

compared to the grounded and dried samples in the laboratory. Similar results 

were reported by other researchers (e.g. Chang et al., 2001; Tekin et al., 2012). 

However, Stenberg (2010) found a contrast results, so that accuracy of soil 

properties measurement were higher when wet (fresh) samples are used as 

compared to dry samples. The diverse and contradict results reported by 

different research group around the world necessitate the need for further 

research to come to robust conclusions on the capability and limitations of the 

vis-NIR spectroscopy application for soil analyses. 
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2.2.4. Vis-NIRS analysis of soil moisture 

vis-NIRS has been shown to provide an alternative measuring method to predict 

ω under laboratory non-mobile measurement conditions (Mouazen et al., 2006; 

Quraishi, 2013) and on-line mobile conditions (Mouazen et al., 2005; Kuang and 

Mouazen, 2012). These successful applications were attributed to the strong 

influence of the O-H bond on vis-NIR spectra of soils (Kuang et al., 2012; 

Stenberg et al., 2010). Viscarra Rossel and McBratney (1998) reported on the 

typical reflectance spectrum measured for 60 prepared soil samples showing 

evidence of the strong absorption bands of O-H bonds in soil water at around 

1450, 1950 and 2500 nm. Similarly, Bowers and Hanks (1965) stated that 

reflectance wavelength magnitudes are noticeable at several different soil 

moisture levels and they concluded that the absorption bands are highly 

affected by water and specifically represent the overtones of the fundamental 

frequencies at which water molecules vibrate (Figure 2-12). 

 

Figure 2-12 The representative NIR reflectance spectrum of soil samples, 

showing the three water absorption bands at 1450, 1950 and 2500 nm (after 

Viscarra Rossel and McBratney, 1998). 
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Mouazen et al. (2005a) during laboratory studies of soil, measured diffuse 

reflected vis-NIR spectra characteristics at various moisture content levels. 

Significant variations in the curves shape and reflectance percentages 

corresponding to soil moisture levels were reported (Figure 2-13). They 

concluded that increasing soil moisture content will result in a darker soil 

surface which will consequently decrease the reflected light. 

 

 

Figure 2-13 Effect of soil moisture content on the reflectance spectra (after 

Mouazen et al., 2005b). 

 

Al-Asadi and Mouazen (2014) found that the ANN calibration technique more 

accurately predicted soil moisture content using the ASDi vis-NIR 

spectrophotometer (350 – 2500 nm), as compared to the PLSR calibration 

method. They tested both calibration methods using a wide range of soil 

texture, moisture levels and land use. However, they reported that soil moisture 

content could be estimated even better at field scale with a specific calibration 

model in comparison with multi-field measurement. Similar conclusion was 

reported by Mouazen et al. (2006b). 
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2.3. Dielectric sensors implementation in soil science 

Materials in nature can be divided into conductors and insulators due to their 

response to an applied electric field. A conductor is a type of material, which 

permits the flow of electric charges in one or more directions, like copper, 

aluminum, iron, etc. On the other hand, dielectric materials or insulators won’t 

allow electric charges to pass through them, but instead, they only slightly shift 

from their average equilibrium positions causing dielectric polarization. From an 

electromagnetic standpoint, soil is classified as a dielectric material. A wet soil 

medium has three dielectric components consisting of: the solid matrix, a 

gaseous stage, and the liquid water stage. The liquid water can also be 

subdivided further into free water and bound water, which is due to the 

restriction in its mobility by adsorption on solid particle surfaces (Hallikainen et 

al., 1985). Under dry conditions (or the pure soil minerals) the dielectric 

constant of the soil is between 3 and 5 (Gaskin and Miller, 1996).  

Dielectric sensors have been widely used for determining soil water content. 

They attempt to distinguish the relationship between the dielectric constant of 

the soil-water-air matrix and θv (Figure 2-14). This is particularly due to the 

dielectric constant of the free water having a high permanent electric dipole 

moment, resulting in a substantially high value (~ 80) unlike both soil (~5 for 

pure soil minerals) and air (~1) (Topp et al. 1980; Gaskin and Miller, 1996; 

Robinson et al., 1999), and thus dominates the dielectric constant of the soil-

water-air matrix (Schmutz, 2007). In other words, the overall dielectric constant 

of the soil as a matrix is greatly influenced by the water content in the soil 

(Robinson et al., 2003). 
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Figure 2-14 Relationship between the square root of the soil dielectric constant 

(√𝑲 ) (dimensionless) and volumetric water content (θv) (m3 m-3) (after, Gaskin 

and Miler 1996). 

 

Dielectric constant based soil moisture sensors take several forms as follows: 

 Time Domain Reflectometry (TDR).  

 Frequency Domain Reflectometry (FDR) which can be also subdivided 

into capacitance and impedance sensing probes. 

 

 Time Domain Reflectometry (TDR) 

Time domain reflectometry is used to test electrical cable continuity. Its principle 

relies on transmitting a fast rise-time electromagnetic signal (in the form of a 

step-wave) through the conductor and measuring the velocity of the transmitted 

signal through the conductor. If the conductor has uniform impedance and is 

properly terminated, the whole propagated signal will be received at the far-end 

termination and no reflected signal will be received by the TDR. If the conductor 

impedance has any discontinuities, a reflectance signal will be sent back 

towards the TDR. However, increasing the conductor impedance will generate a 

reflection that reinforces the original signal, whereas any decrease in the 

http://en.wikipedia.org/wiki/Pulse
http://en.wikipedia.org/wiki/Pulse
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conductor impedance will produce a reflection that opposes the original signal 

(Behari, J. 2005; O'Connor and Dowding, 1999).  

The time (t) of the TDR pulse propagating one return trip in a transmission and 

receiving through line of length L (m), is expressed by: 

 𝑡 =
2𝐿√𝜀𝑎

𝐶
                                                                                            2-2 

Where t is the round trip propagation time (s), C is the speed of light in the free 

space (3 x 108 m s-1) and 𝜀𝑎 is the apparent permittivity of the medium (Moret-

Fernández et al., 2012; Robinson et al., 2003). 

 

Topp et al (1980) first used the TDR measuring system (Figure 2-15) to predict 

θv. They collected worldwide mineral soil samples with different textures and 

moistures, and measured the samples using a range between 20 MHz and 1 

GHz. They derived an empirical relation with an error of ±0.01 for estimating θv 

from K for mineral soils. The relation can be written as follows: 

 𝜃v = −0.053 + 0.0292𝐾 − 0.00055𝐾2 + 0.0000043𝐾3                       2-3 

Where: θv is soil volumetric moisture content and K is the dielectric constant of 

the soil, the dielectric constant does not have units or dimensions because it 

expresses the ratio of permittivity of a substance to that of free space or a 

vacuum. 

Ponizovsky et al., (1999) studied how different soil textures affect TDR 

calibration. They tested sandy, loamy sand, sandy clay, silt loam and clay soil 

textures, finding that the performance of the TDR calibration models was 

significantly influenced by the soil texture.   
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Figure 2-15 A schematic diagram of the TDR main components and a chart of 

two wave propagations through air and water (Robinson et al., 2003). 

 

 Frequency Domain Reflectometry (FDR) 

The complex nature of the TDR technique led to soil dielectric constant 

measurement based on FDR becoming popular method for the measurement of 

soil θv during the last few decades (Topp et al., 1980; Miller and Gaskin, 1996; 

Robinson et al., 1999). FDR in comparison is cheaper to manufacture, less 

complicated, and has a faster reading response. However, because of the 

complex electrical field around the probe, the sensor needs to be calibrated for 

different soil types (Kaleita et al., 2005). Some commercial sensors have been 

able to remove the soil type effect of the sensitivity by using a high operating 

frequency (Delta-T Devices Ltd., 1999). Gaskin and Miller (1996) used a FDR 

sensor with a 100 MHz operating frequency to measure soil θv, which is the soil 

impedance sensitivity corresponding to the variation of soil θv. This sensor was 

commercialized under the name of ThetaProbe (Delta-T Devices, Cambridge, 

UK) (Figure 2-16). The ThetaProbe (Delta-T Devices Ltd., 1999) was reported 

to be capable of measuring soil θv with ±0.01 m3 m-3 accuracy after a single 

calibration using two readings of wet and dry soil samples for the soil type 
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specific calibration, although, ±0.05 m3 m-3 accuracy can be achieved when 

generalised calibration by the manufacturer is applied (Foley and Harris, 2007; 

Jones et al., 2002; Walker et al., 2004). 

 

Figure 2-16 ThetaProbe soil moisture sensor. The four stainless steel 

electrodes are 6 (cm) in length and 3 (mm) in diameter (after, Kaleita et al., 

2005). 

 

Using a ThetaProbe, Gaskin and Miller (1996) provided a third order polynomial 

relationship between the standing wave signal, which converted to a voltage 

output reading (V), and the soil dielectric constant, written as follows: 

√𝐾 = 1.07 − 6.4𝑉 − 6.4𝑉2 + 4.7𝑉3                                                      2-4   

Where: √𝐾 is the square root of the soil dielectric constant (dimensionless) and 

V is the output voltage of ThetaProbe (mV). 

 

Soil texture strongly affects the accuracy of the FDR sensors for the 

measurement of θv. Cosh et al. (2005) tested the ThetaProbe accuracy using 

different calibration models for Clayey, Loamy and Sandy soil textures and they 

compared soil texture calibration models with the generalised calibration by the 

manufacturer and with the Topp and Reynold (1998) calibration formulas. 

Figure 2-17 shows the effect of the different calibration models on the predicted 

function between θv and soil dielectric constant. They concluded that soil 

texture has considerable influence on the calibration of the ThetaProbe. 
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Ponizovsky et al. (1999) also reported the performance of dielectric-based 

sensors is affected by soil texture.   

 

Figure 2-17 Plot of volumetric soil moisture content (θv) as a function of 

dielectric constant (K) for various calibration models of ThetaProbe (after, Cosh 

et al. 2005). 

 

Rowlandson et al. (2013) established calibration models for a number of soil 

textures and different land use using dielectric-based soil moisture sensor. The 

results show the best estimation accuracy was obtained with loamy fine sand 

and the accuracy declined with increasing clay fraction (Table 2-2). They 

calculated the two calibration parameters (A and B) for each individual soil 

texture to be used in a general calibration relation written as follows: 

 

𝜃v = A√𝐾 + B                                                                           2-5 



45 
 

 Where θv is soil volumetric moisture content (m3 m-3) and √𝐾 is the square root 

of soil dielectric constant. 

 

Since salinity affects the output of FDR sensors, many researchers have 

studied the effect of soil salinity on the dielectric measurement accuracy. It has 

been pointed out that soil conductance could be avoided and the measurement 

accuracy could be significantly improved by using a higher frequency of 30 MHz 

(Sun et al., 2006). Singh et al. (1992) identified a strong polarization effect due 

to soil electrical conductivity around 15.86 MHz frequency and they reported 

that this effect is relatively low at 47.45 MHz frequency. Gaskin and Miller 

(1996) and Sun et al. (2006) have chosen a 100 MHz operating frequency for 

soil dielectric sensors in order to minimize the influence of soil salt content on 

soil moisture content prediction. Robinson et al (1999) reported that the 

ThetaProbe overestimated soil dielectric constant for sandy and sandy loam 

soils by approximately 1.5 when compared with TDR estimation results. They 

suggested that the reason for this was because of the high soil BD around the 

electrodes.  

 

Table 2-2 Accuracy of the ThetaProbe calibration for different soil textures, land 

use, number of soil samples (n) and the individual calibration parameters A and 

B for the general calibration relation (after, Rowlandson et al., 2013). 

Soil texture 
Land 

cover 
A B R2 

RMSE 

(m3 m-3)           

Bias 

(m3 m-3)  
SN 

Loamy fine sand Grassland 0.1054 -0.1505 0.97 0.0121 0.0012 10 

Clay Wheat 0.0975 -0.1489 0.88 0.0491 0.0024 11 

Loam Soybeans 0.0967 -0.1518 0.73 0.0391 0.0015 17 

Loamy very fine 
sand 

Canola 0.0762 -0.0829 0.84 0.0241 <0.001 13 

Silty loam Soybeans 0.0898 -0.0952 0.56 0.0398 0.0016 16 
Silty clay loam Wheat 0.077 -0.039 0.84 0.0356 0.0013 12 

Fine sandy loam Corn 0.1153 -0.1905 0.83 0.0337 0.0011 13 

Clay loam Canola 0.0936 -0.1073 0.80 0.04 0.0016 11 

    
Average 0.034 

  RMSE is root mean square error; SN is sample number. 
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2.4. Multi-sensors and data fusion approaches in soil science 

Since agricultural soil is naturally complex material that exhibit spatial and in 

depth heterogeneity. Quantitative estimation of one or more soil properties 

cannot be made successfully with one sensing technology. Peers working on 

the development of soil sensors realised this fact, for which they proposed 

solutions based on multi-sensor and data fusion approaches. A comprehensive 

literature review discussed these in more details (Kuang et al., 2012). However, 

these sensing systems can be categorised into on-line (mobile) and in-situ (non-

mobile) systems. The following section will discuss the major sensors reported 

in the open literature. 

2.4.1. Historical developing of the on-line multi-sensors 

On-line sensors collect data in real time. They are either drawn by a tractor or a 

quad bike. Many researchers and manufacturers have attempted to develop on-

line multi-sensors for measuring soil mechanical, physical and chemical soil 

properties (Adamchuk et al., 2004). The first on-line measuring system was 

developed  in 1991, when Shonk et al. (1991) presented a measuring system of 

soil organic matter, which was basically  a  transmitting and receiving unit using 

a single wavelength (660 nm) of light. The system was fitted on a tractor, which 

travelled at a speed of 4.8-6.5 km/h and measured soil organic matter at 7.5-10 

cm depth. The system prediction accuracies were various depending on soil 

organic matter percentage; R2 values of 0.89 and 0.95 with <1% and >6% of 

soil organic matter, respectively, were reported. 

There are several types of sensors that measure ‘indirectly’ soil compaction 

depending on the soil property to be measured. Hemmat and Adamchuk (2008) 

classified soil compaction sensors into three families, namely, water content 

sensors, soil strength sensors, fluid permeability sensors and their combinations 

(Figure 5-3). Mosaddeghi et al. (2007) stated that we should not only rely on the 

strain-related properties as the dependent variable for the assessment of soil 

compaction, whereas different soil properties can also be considered as a sign 

of compaction.  
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Figure 2-18 Classification of soil compaction sensor systems (after, Hemmat 

and Adamchuk, 2008). 

 

Stombaugh (2014) has developed an on-line air permeability sensor to assess 

soil compaction, which consists of a subsoil plough with a vertical plate 

containing two outlet holes on each side (Figure 2-19). The system is sensitive 

to the air flow changes due to various soil BD. Author reported low accuracy of 

measurement due to the difficulty of separating the effect of soil compaction 

from soil texture interaction. 
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Figure 2-19 On-line air permeability measuring system to estimate soil 

compaction (A) and the subsoiler with the outlet holes plate attached (B) (after, 

Stombaugh, 2014). 

 

Adamchuk et al (2008) used a sensor array consisting of optical reflectance and 

dielectric (capacity-based) sensors, in addition to a vertical cutting blade 

attached to a platform of three sets of load cells (Figure 2-20), which were 

deployed to measure OM and moisture content of the soil, respectively. The 

whole dataset collected by the system was used to predict spatial variability of 

soil mechanical resistance. They reported a marginal correlation between soil 

mechanical resistance obtained from the mapping system and soil PR 

measured using a standard vertical penetrometer (R2 = 0.32).  
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Figure 2-20 On-line soil mapping system (A) and free-body diagram of the 

system and the vertical cutting blade (after, Adamchuk et al, 2008). 

 

Mouazen et al. (2005) developed a multi-sensor platform for the measurement 

of soil moisture content and BD (Mouazen and Ramon, 2006). The platform 

consisted of a draught sensor, a depth sensor and a vis-NIRS probe, attached 

to the back of a cutting tool (e.g. subsoiler). This platform was later used for the 

measurement of soil pH, phosphorous, moisture content and organic carbon 

(Mouazen et al. 2007), achieving good results, plotted in Table 2-3. The vis-NIR 

measurement was based on a vis-NIR spectrometer developed by Zeiss 

Company (Zeiss Corona 45 visnir fibre, Germany), which consisted of two 

detectors including a Silicon-diode-array detector for the visible and short 

infrared wavelength region (306.5–1135.5 nm) and an InGaAs diode-array 

detector for the NIR region (944.5–1710.9 nm). A light source of a tungsten-

halogen bulb with a 20 W power was used to illuminate the soil surface through 

two fibre optic cables for illumination and reflectance with a 45° angle between 

them formed in a lens holder (Figure 2-21). 
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Figure 2-21 Schematic diagram of the lens holder attached to subsoiler chisel 

for the on-line measuring system (after, Mouazen et al., 2007). 

 

Table 2-3 Results of soil properties prediction using Zeiss Corona 45 vis-NIR 

spectrometer and deploying PLSR with leave-one-cross-validation calibration 

methods (after, Mouazen et al, 2007). 

Property R2 Slope Intercept RMSEp RPD 

C-org 0.74 0.77 0.381 0.480 1.97 
C-tot 0.73 0.75 0.355 0.268 1.92 
MC 0.89 0.89 0.015 0.024 3.00 
pH 0.71 0.74 1.830 0.215 2.14 
P-avl 0.69 0.74 1.963 1.345 1.80 
P-ext 0.73 0.75 9.696 11.523 1.94 

RMSEp is the root mean square error of prediction; RPD is the residual 
prediction deviation = standard deviation (SD) divided by RMSEp; C-org is 
organic carbon; C-tot is total carbon; P-ext is extractable phosphorous; P-avl is 
available phosphorous; MC is moisture content. 
 
 
Sun et al (2006) designed and tested an on-line measuring system of soil 

moisture and PR using a horizontal combined probe (Figure 2-22), which is a 

cone penetrometer and a FDR capacitance type sensor. The other measuring 

system components were: cone blade with 40 (cm) in length and 5 (cm) in 

width, load cell and data acquisition electronic board (PCL-818, SPECTRE) 

using Delphi 6.0 software. The capacitance probe showed high accuracy of (θv) 
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prediction at silt loam soil texture with R2 = 0.99 compared to the oven-drying 

method. However, a weak (R2 = 0.51) estimation of soil BD was reported. 

 

Figure 2-22 An on-line horizontal combined penetrometer for measurement of 

volumetric moisture content (θv) and penetration resistance (PR) (after, Sun et 

al. 2006). 

 

Christy (2008) developed a soil mapping system using a vis-NIR spectrometer 

with the wavelength range of 900 to1700 nm built into a shank (Figure 2-23). 

This was commercialized and is available currently for research use by Veris 

Technologies, USA. It consisted of a sapphire window mounted on the bottom 

of the shank, a tungsten halogen bulb used to illuminate the soil, a fiber optic to 
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direct reflected light and InGaAs photodiode-array spectrophotometer 

manufactured by Control Development Inc., South Bend, IN, USA. Labview 

software (National Instruments, Austin, TX, USA) was used for data acquisition 

and all subsequent data processing.  

 

Figure 2-23 An on-line horizontal combined penetrometer for measurement of 

volumetric moisture content (θv) and penetration resistance (PR) (after, Sun et 

al. 2006). 

 

They used locally weighted principal component regression calibration method 

with a leave-one-out cross-validation. The mapping system achieved R2 values 

of 0.65, 0.80, 0.80, 0.60 and 0.92 for soil moisture content, organic matter, P, K 

and total carbon, respectively, and RMSE values of 2.8, 0.40, 30.0, 107 and 

0.15, respectively. 

Adamchuk et al. (2009) have developed a combined mapping system of soil 

physical properties (Figure 2-24) that consists of an instrumented blade for 

measurement of mechanical resistance, optical and capacitance sensors. The 
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latter operating frequency of the capacitance was 12.7 and 18.9 MHz for the dry 

and wet soil conditions, respectively. They reported R2 values between 

laboratory and sensor-based measurements of 0.57 for both θv and ω. 

However, the data fusion of soil mechanical resistance and capacitance 

sensors was capable to predict soil BD with R2 = 0.71 (Adamchuk et al. (2009).  

 

Figure 2-24 A Combined on-line mapping system (after, Adamchuk et al., 

2009). 

 

Kweon et al (2008) developed soil profile array sensors (Figure 2-25) which 

consisted of a vis-NIRS of 450 nm to 2200 nm wavelength spectrum to measure 

ω, a string potentiometer to measure PR, a soil conductivity probe, a GPS and 

a thermometer. PLSR was used to develop calibration models based on the 

leave-one-out-validation. They concluded that three of the six fields measured 

in Kansas State showed satisfactory results for estimating soil BD with R2 value 

as high as 0.78 and lowest RMSE of 0.07 g cm-3.  



54 
 

 

Figure 2-25 Soil profile array sensors (after Kweon et al., 2008). 

 

Based on the on-line sensing platform of Mouazen et al. (2006), and algorithms 

to predict BD produced by Mouazen and Ramon (2006) and Mouazen and 

Ramon (2009), Quraishi and Mouazen (2013b) expanded the algorithms to 

estimate soil BD to the majority of soil types in the UK. This was done by 

developing a correction factor of the BD estimation for each soil texture class 

based on ANN analysis with input data on soil gravimetric water, texture, 

draught and depth obtained from the on-line multi-sensor mapping system.  The 

ANN analysis resulted in the best model to predict a correction factor as 

function of moisture content and soil texture fractions (R2 = 0.96), which allowed 

the utilisation of the on-line measurement system for any field having any 

texture and average moisture content. The on-line BD sensor showed good 

capability of predicting field BD rapidly for a large number of samples with high 

accuracy with a high R2 value of 0.81 and a low RMSEp of 0.11 Mg m-3.  

Dhillon et al., (2010) presented an on-line soil mapping system, which 

integrated an optical sensor with only two wavelengths (505±10 and 880±10 
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nm) detection capabilities, ahead of a capacitance probe in addition to a load 

cell sensor. The mapping system can be towed by a pick-up truck (Figure 2-26). 

Based on laboratory calibration, the capacitance probe predicted θv and ω with 

standard errors of 0.016 cm3 cm-3 and 0.014 g g-1, respectively, whereas, the 

optical sensor accurately predicted soil OM with R2 = 0.74 and standard error of 

0.41%. Despite the high accuracy during the laboratory calibration, the system 

revealed low measurement accuracy for soil mechanical resistance under field 

conditions, when a comparison was made between the data collected by the 

load cell and a standard cone penetrometer (R2 = 0.28). The main criticism of 

this system was that none of the data fusion techniques to improve the 

prediction accuracy of the soil mechanical resistance have been applied. 

 

Figure 2-26 Integrated on-line sensing system for some soil properties mapping 

(after, Dhillon et al, 2010). 

 

Naderi-Boldaji et al. (2011) developed and evaluated a multi-sensor probe for 

on-line measurement of soil moisture content and soil compaction. The 

combined probe consisted of a strain-gauge load cell with a horizontal dielectric 
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sensor, assembled on a tine of 55cm in length, for the measurements of soil 

mechanical resistance and soil θv, respectively. The dielectric probe operates 

by means of a sinusoidal signal with a 100 MHz frequency generated by an 

oscillator and propagates into the soil by two copper half ring electrodes 

insulated electrically by a Teflon insulator (Figure 2-27). The standing voltage is 

generated from the propagated signal measured by a digital oscilloscope 

connected with the electrodes via coaxial cable. They showed that 

measurement of θv is affected by soil properties such as BD, organic matter, 

moisture content and CC. The results achieved of the relationship between the 

output voltage (V) and θv were of R2 values of 0.98 and 0.91 for bulk densities 

of 1.5 and 1.2 g cm-3, respectively.  

 

Figure 2-27 Schematic illustration and dimensions of the multi-sensor probe 

(after, Naderi-Boldaji et al., 2011). 

 

In a latter study, Naderi-Boldaji et al. (2013) examined the potential of an on-line 

mapping system to measure soil compaction. They stated that soil compaction 

can be measured as a function of soil PR and θv. The upgraded mapping 

system consisted of a horizontal penetrometer connected to a load cell, and a 

dielectric-based sensor soil and a gamma-ray (the Mole) sensor (Figure 2-28) to 

measure simultaneously PR, θv and CC, respectively. They developed a soil 

BD estimation model as a function of PR, θv and CC using a multivariate 
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statistical analysis. Results showed this model to provide reasonable estimation 

of BD with R2= 0.72 and RMSE=0.06 g cm-3, as compared to soil core samples.   

 

Figure 2-28 Triple sensor fusion mapping system (after, Naderi-Boldaji et al., 

2013). 

 

2.4.2. Historical developing of the in-situ multi-sensors 

With this category of sensors data collection is made once at a particular point. 

They are either portable or be driven by a mobile vehicle. The main sensor is a 

penetrometer to penetrate the soil vertically through the soil profile. In addition 

to the penetrometer other sensors are combined in one system.  

Vaz et al. (2001) reported soil strength measured by the penetrometer is 

affected by soil BD and soil moisture. For that, they combined a TDR and 

penetrometer to predict soil strength and moisture content simultaneously. The 

TDR electrodes were shaped as a pair of parallel copper wires with 0.5 (mm) in 

diameter and 15 (cm) in length, wound around a PVC insulated cone of a 

penetrometer (Figure 1-3). The TDR electrodes were connected to a cable 
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tester (model Tektronix 1502C) using a coaxial cable running inside the 

penetrometer steel tube. A personal laptop used to store the TDR readings. 

They concluded that soil resistance measuring accuracy was improved by 

adding soil moisture to a prediction model.  

Peter and Yurui (2004) designed a combined capacitance sensor with a cone 

penetrometer (Figure 2-29). They achieved a R2 = 0.94 for the linear 

relationship between the capacitance sensor’s V and θv in a silt loam soil 

texture under laboratory conditions. The Peter and Yurui (2004) system 

overestimated PR compared to the readings of the standard cone 

penetrometer.  

 

Figure 2-29 A combined sensor of cone penetrometer and capacitance probe 

with its electrodes shape and dimensions (after, Peter and Yurui, 2004). 

 

Hummel et al. (2004) presented a combined probe consisting of a cone 

penetrometer and NIR spectrometer (Figure 2-30). They achieved a R2 of 0.90 

and SD of calibration and prediction of soil ω of 1.97% and 2.38%, respectively. 

Their combined system has predicted the cone index with R2 = 0.86 compared 
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to the standard cone index, using all the data from clay loam, silt loam and 

sandy loam soil textures and the whole the range of soil moisture content. 

However, they did not attempt to measure soil BD. 

 

Figure 2-30 A combined probe of cone penetrometer and NIR spectrometer for 

the measurement of soil penetration resistance (PR) (after, Hummel et al., 

2004). 

 

Generally, the in-situ measuring applications are considerably more accurate 

than the on-line measuring applications of soil compaction, for example, Hall 

and Raper (2005) reported weak correlation results for an on-line soil strength 

sensor test in a sandy loam soil bin, to distinguish between compacted soil 

layers in comparison with the standard penetrometer. They found that soil 

strength measured by the mobilised system is closely correlated to soil BD 

measured by core sampling rather than the PR measured by penetrometer, with 

R2 = 0.74 and 0.53, respectively. Andrade-Sánchez et al. (2003) evaluated an 

on-line soil conductance sensor system under laboratory and field conditions, 

with R2 values of 0.87 and 0.78, respectively. These estimated values of R2 

were rather low for soil θv. This is might be due to the low sensor frequency 

adopted in their experiment with the range of 5.25 to 7.25 MHz.   
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Sheng et al., (2011) developed a monitoring system for soil water dynamics at 

two different soil depths (shallow: 16 cm; deep: 36 cm) (Figure 2-31), which 

consisted of two impedance soil moisture sensors with a 100 MHz operating 

frequency, two soil temperature sensors, an EC sensor, an optical sensor 

(photo-resistance type), a microcontroller, a 1 (MB) flash memory chip, a 

wireless transmitter, a solar panel and a rechargeable battery. The monitoring 

system was connected wirelessly to a laptop via a receiver to exchange data. 

The microcontroller functions as a data logger for every sensor and manages 

the data transmission, regulates power consumption between the batteries and 

the solar panel and controls data transmission wirelessly, keeping a data 

backup stored in the flash memory. The calibration results of the soil moisture 

sensors under laboratory conditions fit a linear relationship of R2= 0.99 with 

RMSE of 0.03 (cm3 cm-3). 

  

Figure 2-31 Soil water dynamics monitoring system (after, Sheng et al., 2011). 
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Quraishi and Mouazen (2013c) developed and tested a prototype soil BD multi-

sensor kit (Figure 2-32). It consisted of a digital penetrometer (Eijkelkamp 

penetrologger) combined with a NIR spectrophotometer (1650-2500 nm) 

(Avantes,  Eerbeek, The   Netherlands), fibre optics, which was connected to a 

10 watt halogen lamp and reflection fibres were connected to 256 pixel Indium 

Gallium Arsenide (InGaAs) detector. Their multi-sensor measuring system was 

controlled using AvaSoft 7.7 software (Avantes, Eerbeek, The Netherlands) 

through Universal Serial Bus (USB) cable connected to a personal laptop. They 

used ANN to model BD as a function of ω, CC and organic matter content. ANN 

was also used to predict moisture content, and CC based on vis-NIR spectra. 

Encouraging ANN results for the prediction of soil water content, organic matter, 

CC and BD were reported with R2 values of 0.94, 0.96, 092 and 0.94, and for 

RMSE values of 2.60, 0.82, 4.53 (%) and 0.04 Mg m-3, respectively. 

 

Figure 2-32 Schematic diagram of prototype of a soil bulk density multi-sensor 

(after, Quraishi and Mouazen, 2013c). 
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Liu et al. (2008) evaluated the thermo-TDR technique to estimate soil BD 

(Figure 2-33), the technique is based on the theory that the volumetric heat 

capacity (ρc) of the soil can be determined by summing the heat capacities of 

the solids, water, and air. Since the density and specific heat capacity of air are 

relatively very small to the other terms, the contribution of soil air is negligible, 

then soil BD can be calculated using the following equation: 

𝜌𝑐 = BD ∗ 𝐶𝑠 + 𝜌𝑤 ∗ 𝐶𝑤 ∗ 𝜃v                                                2-6    

Then soil BD can be estimated by: 

BD =
𝜌𝑐−𝜌𝑤∗𝐶𝑤∗𝜃v

𝐶𝑠
                                                                 2-7 

Where BD is soil bulk density (Mg m-3), 𝜃v is soil volumetric moisture content 

(m3 m-3), 𝜌𝑤 (1.0 Mg m−3) and 𝐶𝑤 (4.18 kJ kg−1 K−1) are the density and the 

specific heat capacity of water, respectively, and 𝐶𝑠 (kJ kg−1 K−1) is the specific 

heat capacity of the soil solids, which they are 0.791, 0.875 and 0.833 (kJ kg−1 

K−1) for sandy, silt loam and clay loam soil textures. 

 

Figure 2-33 Schematic view the thermo-TDR probe (after, Liu et al. 2008). 
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They reported RMSE values of BD prediction compared with the core sample 

measures in laboratory evaluations were 0.055, 0.051, and 0.046 Mg m−3 for a 

silt loam, a clay loam, and a sand soil, respectively, and was 0.095 Mg m−3 for 

in-situ evaluation. 

 

2.5. Research gaps 

The current measurement methods for soil compaction in the field have 

shortcomings. For instance, soil strength based methods are affected 

simultaneously by many factors, such as moisture content, BD, OM, texture and 

gravel availability. While, the traditional method of measuring soil BD in-situ by 

core sampling method (e.g. with Kopecki ring method) is time consuming, 

expensive for large number of soil samples and vulnerable to errors as soil 

cores have to be transferred to laboratory for 24 hours, be dried before the 

results can be shown. This is the reason why it can be concluded that the main 

research gaps highlighted with the literature review is that there is no laboratory 

or in-situ soil BD measuring system using only vis-NIRS and dielectric sensor 

without depending on the soil strength. In this thesis the author will discuss the 

accuracy, design, prototyping and evaluation of a combined sensor for the in-

situ measurement of soil BD. The combined senor introduced earlier by the 

publication of Al-Asadi and Mouazen (2014), consisted of a FDR sensor to 

measure soil θv and a vis-NIR spectrophotometer to measure soil ω 

simultaneously for same soil sample. The proposed technique will provide a 

new sensing methodology to overcome the shortcomings of the existing 

methods of measuring soil BD and by using well-established formulae, BD 

indicating soil compaction will be calculated as a function of θv and ω of the 

same point. Measurements will be carried out at wide range of soil textures, 

moisture content, BD and different land use including arable and grasslands, 

since the understanding of soil chemical and physical properties affecting the 

new measuring system of soil BD is vital, in order to improve the system 

accuracy and to provide precise calibration models. 
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2.6. Conclusions  

Soil compaction is among the most important factors that cause the 

deterioration of farmland and lower quantity and quality of crops and also can 

lead to increase the power requirements for the agricultural soil preparations. 

There are several factors that lead to soil compaction, and those the most 

affective once are soil moisture content and weight of agricultural machinery. 

Good land management of field operations is the key factor to control and 

eliminate the problem of soil compaction. One of the most important land 

management tools is the use of innovative methods of measuring soil 

compaction rather than traditional methods. Several sensors to measure 

various properties of the soil been reviewed and the focus was on dielectric and 

vis-NIR spectroscopy, the latter has been presented as a powerful analytical 

technique for both laboratory and field applications, it showed high accuracy of 

measuring ω in the soil and it has been used in both on-line and in-situ modes. 

Dielectric sensors also showed high accuracy of measuring soil θv. Different 

combined measuring systems of soil compaction have been reviewed and its 

ability to predict soil BD was presented. A conclusion has drawn on the need of 

an objective, cost effective, accurate and rapid measuring system of soil 

compaction. This new measuring system of soil compaction should indicate soil 

BD and avoid relying on soil strength for its limitation factors. 
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  Chapter 3

3. Materials and Methods 

This section provides detailed information on the vis-NIRS and the dielectric 

sensors, which were used to measure soil spectra and output voltage of the 

reflected sinusoidal wave data, respectively. The predicted values of ω and θv 

were then substituted in Eqn. 1-9 to estimate soil BD. This chapter also explains 

the methods used to calibrate both sensors and the measurements conditions 

at the laboratory and in-situ. The affecting factors on the measurement 

accuracy with both sensors were identified and the impacts were evaluated. 

These included among other affecting factors, soil texture, land use and soil 

moisture content. A prototype measuring system of topsoil soil bulk density 

consisting of a portable near infrared spectrophotometer and dielectric sensor 

was developed and tested under laboratory and field conditions. Finally, an 

explanation of the method of producing field maps was presented. 

 

3.1. Experimental sites and soil sampling 

The experimental sites used in this study are distributed across eight locations 

in England namely: Silsoe (Cranfield University experimental farm) and 

Wilstead in central Bedfordshire, Haversham and Gayhurst in Buckinghamshire, 

Flawborough in Nottinghamshire, Nafferton and Morpeth in Northumberland and 

from one location in Wales, namely, Aberbran farm, Brecon. A total of 1013 

undisturbed soil samples were collected from 32 fields, at the same time as the 

sensor field measurement, during the period from May 2011 -September 2013.  

Detailed information about these fields is shown in Table 3-1. 

The new concept of measuring soil bulk density tested in the laboratory and on 

fields using wide range of soil textures, various soil moisture content and 

different land use. 
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Table 3-1 Detailed information of the sites, where soil samples were collected from the top layer of 10–20 cm during 2011 -2013. 

Field name County Field location 
a
 Soil type 

b
 SN Soil texture 

c Clay 

% 

Silt

% 

Sand 

% 

OM 

% 
Crops 

Avenue, Silsoe 

Beds 

52° 0'33.77"N, 0°26'23.59"W 

Gleyic 

Cambisols 

45 Sandy loam 16 20 63 3.6 Oilseed  rape 
Avenue, Silsoe 52° 0'33.70"N, 0°26'17.08"W 80 Sandy loam 29 19 51 3 Grassland 

Beechwood, Silsoe 52° 0'6.95"N, 0°26'2.78"W 40 Clay 66 11 23 5.8 Oilseed  rape 
Chilpolea, Silsoe 52° 0'34.27"N, 0°26'35.78"W 20 Loam 21 30 49 2.5 Oilseed  rape 

Clover Hill, Silsoe 51°59'57.63"N, 0°25'56.12"W 20 Clay loam 35 24 41 4.8 Oilseed  rape 
Copse, Silsoe 52° 0'22.10"N, 0°26'12.57"W 40 Clay loam 38 26 36 4.8 Wheat 
Dowing, Silsoe 52° 0'30.71"N, 0°26'44.24"W 20 Sandy clay loam 28 19 53 4.1 Wheat 

Far Warden, Silsoe 52° 0'4.52"N, 0°26'32.02"W 20 Clay 59 27 14 5.1 Wheat 
Ive, Silsoe 52° 0'17.28"N, 0°26'0.06"W 40 Clay 53 19 28 3 Wheat 

Middle , Silsoe 52° 0'0.67"N, 0°26'24.38"W 20 Clay 55 25 15 4.7 Field beans 
Mound, Silsoe 52° 0'30.06"N, 0°26'22.78"W 38 Sandy loam 16 21 63 3.5 Arable land 
Near Warden, Silsoe 52° 0'11.32"N, 0°26'18.03"W 20 Clay 54 25 16 5.5 Barley 

Onley, Silsoe 52° 0'11.01"N, 0°25'48.33"W 51 Clay 60 30 10 5.4 Grassland 
Orchard, Silsoe 52° 0'29.13"N, 0°26'32.82"W 20 Clay loam 33 26 41 4.2 Wheat 

Showground, Silsoe 52° 0'29.21"N, 0°26'7.02"W 40 Sandy clay loam 24 17 59 3.3 Wheat 
Upbury, Silsoe 51°59'58.31"N, 0°26'13.72"W 20 Clay 54 24 22 4.5 Field beans 
Field 1, Wilstead 

 

52° 5'40.73"N, 0°27'9.18"W 

HaplicLuvisols 

32 Clay loam 32 27 40 3.5 Oilseed rape 

Field 2, Wilstead 52° 5'51.54"N, 0°27'19.22"W 20 Clay 47 38 15 3.8 Wheat 
Field 3, Wilstead 52° 5'35.89"N, 0°26'55.93"W 20 Clay 48 31 15 5.3 Wheat 

10 Acres, Wilstead 52° 5'27.27"N, 0°26'54.18"W 20 Clay 50 28 22 3.5 Field beans 
Hownsand, Wilstead  52° 5'26.93"N, 0°27'21.86"W 53 Sandy loam 14 18 68 3.3 Barley 
Runway, Wilstead  52° 5'37.51"N, 0°27'17.07"W 90 Clay loam 35 25 40 4.2 Grassland 

Barn right, Wilstead 52° 5'33.97"N, 0°27'19.09"W 60 Clay loam 30 30 40 3.6 Wheat 
Barn left, Wilstead  52° 5'25.13"N, 0°27'8.22"W 25 Loam 18 35 47 3.5 Wheat 

Gayhurset 
Bucks 

52° 6'38.23"N, 0°45'51.67"W Calcic 
Xerosols 

25 Clay 44 35 21 5.4 Grassland 
Haversham 52° 4'52.51"N, 0°47'6.11"W 34 clay loam 37 27 36 4.6 Grassland 
Flawborough Nottingham-

shire 

52°58'35.53"N, 0°50'17.64"W EutricGleysols 20 Clay 51 33 15 7.2 Grassland 
Flawborough 52°58'46.42"N, 0°50'32.80"W Calcic Luvisols 20 Clay 51 35 14 5.4 Wheat 
Longfarmlington, Morpeth  Northumbe-

rland 

55°17'34.96"N, 1°45'48.69"W 
CalcicLuvisols 

47 Clay 52 22 26 7.1 Wheat 
Longfarmlington, Morpeth  55°17'31.04"N, 1°45'26.65"W 45 Clay 55 23 22 8 Grassland 
Nafferton 

 
54°59'8.23"N, 1°53'44.23"W EutricGleysols 28 Sandy loam 13 22 65 7.5 Grassland 

Aberbran Brecon, Wales 51°56'56.23"N, 3°28'10.61"W LuvicXerosols 40 Silt loam 21 65 14 5.9 Grassland 

   
Total 1013 

      a Google Earth, b Soil type classification is according to the Food and Agriculture Organisation (FAO), c Soil texture classification is 

according to the United States Department of Agriculture (USDA), SN is the number of soil samples. 
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Figure 3-1 shows texture classes of the soil samples illustrated on the soil 

texture triangle of the United States Department of Agriculture (USDA). The 

minimum number of soil samples collected from each field was 20 and the 

maximum was 90 soil samples (Table 3-1). This number of samples enabled 

the validation of the measurement accuracy under different field conditions. 

 

Figure 3-1 Soil texture classes distribution according to the United States 

Department of Agriculture (USDA) classification; the red points indicate soil 

texture of each field used in this study. 

 

The study used undisturbed soil samples (cores), which were collected in a rigid 

ploy vinyl chloride (PVC) cylinder of 60 mm and 50 mm in height and diameter, 

respectively (117.75 cm3 in volume). A sharp metal cylinder (51 mm and 55 mm 

of inside and outside diameters, respectively, and 35 mm of height ) attached to 

one end of the PVC cylinder formed a cutting and supporting edge (51 mm and 
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55 mm of inside and outside diameters, respectively, and 30 mm of height ), 

while on the other end a metal cover was constructed to help with hammering 

the cylinder into the ground, until the inter height of the collecting cylinder (60 

mm) is inserted  (Figure 3-2).  

All the dielectric sensor readings were performed in-situ by recording the output 

voltage of the core sample (used for laboratory analysis), and three additional 

readings taken around the core sample position within 50 cm diameter spot. An 

average reading of the four readings was calculated and was considered as the 

final value of the output voltage reading at a measurement point. Similarly four 

vis-NIR spectrophotometer scans were collected from three equally divided soil 

volumes from every core sample collected at the laboratory. The four spectra 

were then averaged in one representative spectrum of a core soil sample.  

After the sensor readings were recorded in-situ, the cores were transferred to 

the laboratory for further analysis. All soil cores were kept in the PVC cylinders 

and sealed in plastic pages to prevent moisture escaping. In the laboratory the 

soil samples were stored at 4 °C from the time of collection until the time of 

laboratory analysis. 

 

Figure 3-2 Undisturbed soil sample collecting cylinder shape and dimensions. 
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3.2. Laboratory analyses 

Soil θv, ω and BD for all 1013 samples were measured by first oven drying the 

soil samples at 105 °C for 24 h (British Standards, 2007). The average field 

particle size distribution (PSD) and the average OM were measured, by mixing 

various numbers of soil samples from each field, depending on the field size, 

normally 20 soil samples considered to be representing the soil properties at 

each field and the required amount to conduct soil PSD and OM was taken from 

the field representing soil mix. The PSD was measured using the sieving and 

sedimentation method (British Standards, 1998). Soil OM was measured with a 

TrusSpecCNS spectrometer (LECO Corporation, St. Joseph, MI, USA), using 

the Dumas combustion method (British Standards, 2000). Table 3-1 shows the 

results of the laboratory analyses.  

3.3. Optical instrumentation and scanning 

There are two main types (among others) of sampling configuration with 

spectrometers depending on the nature and the position of the testing sample, 

namely, transmittance and reflectance. Although the arrangement of the main 

components differs between instruments, the basic configuration of both 

spectrophotometer types is shown in Figure 3-3.  

 

Figure 3-3 Basic instrument configurations for transmittance and reflectance 

spectrometers (after, Osborne et al., 1993). 
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In this study, two types of reflectance instrument, fibre type and standalone 

spectrophotometers, have been used, namely: 

 LabSpec® 2500 vis-NIR portable spectrophotometer (LabSpec Pro Near 

Infrared Analyzer, Analytical Spectral Devices, Inc, USA) (ASDi), covering 

the spectrum range of 350-2500 nm. This was used for the pilot study fields 

and to understand the effect of moisture content, texture and land use on the 

accuracy (Figure 3-4). 

 Avantes® NIR portable spectrophotometer (Avantes, Eerbeek, The 

Netherlands) covering the spectrum range 1650-2500 nm. This was used as 

part of the prototype combined probe (Figure 3-5). 

3.3.1. ASDi LabSpec® 2500 spectrophotometer:  

The instrument (Figure 3-4) has rapid data collection rate at 10 spectra per 

second, and sampling intervals of 1.4 nm and 2 nm for the spectral regions 350-

1000 nm and 1000-2500 nm, respectively. Its main components are: 

 Light source: The light source is a high intensity quartz-halogen lamp, 

built in a high intensity hand-held probe, which operates on 10 VDC and 

18.6 Watt output. Its output light correlated colour temperature is 2,975 

K° and 231.22 Lumens. The illumination and detection fibers were 

gathered in the high intensity probe enclosed at a 35° angle from the 

vertical line. 

 Optical cables: Two fiber optic cables are deployed; the internal one is 

made up of thirty seven (37) randomly distributed, ultra-low-OH, silica 

glass fiber optics. Nineteen of these fibers are 100 micron in diameter 

and are used for the vis-NIR spectrum (350-1000 nm). The remaining 

eighteen fibers are 200 micron diameter and are divided equally between 

two NIR spectral regions of 1000-1800 nm and 1800-2500 nm. The 

external optical cable conveys the reflected light from the probe to the 

wavelength filter through a group of lenses. It consists of forty four 

randomly distributed, ultra-low-OH silica glass fibers, which are 200 
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micron in diameter. The cable is 1 meter in length and protected by a 

metal spiral inside the black PVC cable casing. 

 Three prisms and a group of focusing lenses are used to filter out and 

redirect three groups of the reflected light to each different detector.    

 Detectors: ASDi has three separate holographic diffractions with three 

separate detectors as follows:  

o Vis-NIR: 512 element silicon photo-diode array for the spectrum 

region from 350 to1000 nm. 

o NIR: cooled InGaAs, photo-diodes detector for the spectral region 

from 1000 nm to 1800 nm. 

o NIR: cooled InGaAs, photo-diodes detector for the spectral 

regionfrom1800 nm to 2500 nm. 

 Data readout, storage and control device: A laptop is used to monitor and 

store the spectra data. An Ethernet cable connects the laptop and ASDi 

spectrometer, which is controlled by the Indico® Pro application software 

and easily converts the spectral readouts (ASD coded files) about the 

soil samples collected using the ASD instrument to a recognized file 

format (DX format file) for statistical analysis by The Unscrambler® 

version 7.8 by Camo Software (Camo Inc.; Oslo, Norway) 

 

Figure 3-4 The ASDi LabSpec® 2500 spectrometer and the high intensity probe 

during the laboratory soil sample scanning at the Soil Laboratory, Cranfield 

University. 
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3.3.2. Avantes® spectrophotometer:  

The portable system has a wavelength measurement range of 1650-2500 nm 

and was used for the prototype combined probe (Figure 3-5). It is consists of 

the following components: 

 Inserting probe: This consists of a 13 mm diameter and 1 m in height 

stainless steel rod, which is used to insert the Avantes spectrometer’s 

optical probe to 20 cm depth in the soil. The rod protects the optical 

fibers, which run inside it to a highly reflective surface internal chamber 

open to the soil through a sapphire window (Figure 3-5). 

 Fiber optic cables: Two external fiber optic cables are used. The first 

connects the light from the light source to the internal chamber and the 

second cable transfers the diffuse reflected spectra from the soil to the 

Avantes spectrometer. Both external fiber optic cables are protecting by 

steel coil and PVC shielding. 

 Spectrometer: The Avantes model NIR200-2.6 has a dual stage thermo-

electrical Peltier-cooled InGaAs single detector with 256 pixels and 7 nm 

resolution. The Avantes spectrometer is connected to a laptop through a 

high-speed USB2.0 interface. AvaSoft 8.0 software (Avantes, Eerbeek, 

The Netherlands) is used for controlling, analysing and converting the 

spectra data collected from soil scanning. A lead-acid battery with 

12VDC and 14 AVh is used as a power source during the field 

measurement. 

 Light source: A stabilized halogen lamp through an electronic circuit is 

used as a light source, with adjustable light focusing of the fiber optic 

connection to control the output light illumination at the desired 

wavelength via a filter-slot mounted on the front. The light source 

operates from a 24VDC and 20 Watts lead-acid battery, with a bulb 

colour temperature of 3000 °K.  
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Figure 3-5 Avantes model NIR200-2.6 spectrometer with the prototype 

combined probe during the laboratory calibration, at Soil Laboratory, Cranfield 

University. 

 

3.3.3 Optical scanning 

The fresh (undisturbed) and remoulded soil samples were scanned in diffuse 

reflectance mode in the laboratory and in-situ. Three replicate scans were taken 

from each soil sample using the LabSpec® vis-NIR and Avantes portable 

spectrophotometer and the average of those three scans was used for spectra 

pre-treatment and model establishment. 

Before scanning, only large plant remains, debris and stones were removed 

from the fresh soil samples (Mouazen et al., 2005a). Various weights of non-

sieved soil according to different textures and moistures were packed into Petri 

dishes of a 1.0 cm height by 3.6 cm in diameter. The soil in a Petri dish was 

mixed properly and gentle pressure was applied on the surface with a spatula to 

generate a levelled and smooth surface to ensure maximum diffuse reflection 

and thus a good signal-to-noise ratio (Mouazen et al., 2007; Kuang et al., 2012). 

Before the soil samples were scanned and at intervals of 30 min, a white 
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reference Spectralon disc was scanned to generate the baseline of a 100 % 

reflected spectra. 

3.3.4. Pre-treatments of the spectra data 

Spectra pre-treatment aimed to reduce spurious peaks that do not contain any 

physical or chemical spectra information and to correct the physical scatter 

effects, Figure 3-6A shows the raw reflectance spectra data plotted against the 

full wavelength range (350-2500 nm) of the ASDi spectrometer. The same pre-

treatments were applied on all spectra data collected from both spectrometers, 

except for the spectra range reduction, whereas, it was reduced from 500 to 

2200 nm wavelength range of the ASDi spectrophotometer, as Figure 3-6B 

showing and reduced from 1650 to 2225 nm wavelength range of the Avantes 

spectrophotometer . The aim of reducing the spectra wavelength range is to 

eliminate noise at both edges of the detection scale and to enhance calibration 

accuracy for ω measurement (Mouazen et al., 2005a). After noise elimination, 

spectra data were also reduced by means of averaging every 10 nm of the 

successive spectra readout to one, the final reduction results of the spectra 

observations were in the range of n= 169-172 after the two pre-treatments 

mentioned above. A maximum normalisation was followed, which is typically 

used to get all data to approximately the same scale (Figure 3-6C), or to get a 

more even distribution of the variances and the average values. The maximum 

normalisation is a normalisation that “polarizes” the spectra. The peaks of all 

spectra with positive values were scaled to + 1, while spectra with negative 

values were scaled to − 1. Since soil spectra have maximum positive values, 

the peaks of these spectra were scaled to + 1 (Mouazen et al., 2005a). The 

maximum normalisation led to better results for ω measurement, compared to 

other pre-treatment options tested. Spectra were then subjected to the 

Savitzky–Golay first derivation transformation (Martens and Naes, 1989), which 

enables the transformation of spectra data to the first or higher order 

derivatives, including a smoothing factor. This method determines how many 

adjacent variables will be used to estimate the polynomial approximation used 

for derivatives. A second order polynomial approximation was selected due to 
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its performance in producing more accurate calibration models using this study 

data. The final process of the pre-treatment was smoothing carried out at 2:2 

rate, in order to produce even more noiseless spectra from the measured soil 

samples. All pre-treatment steps were carried out using the Unscrambler 7.8 

software (Camo Inc.; Oslo, Norway). 

 

Figure 3-6 The pre-treatments of the reflectance spectral data, (A) the original 

full range, (B) noise reduction at the edges of the spectrum range, averaging 

every 10 reading to 1 and smoothing  and (C) normalisation.  

 

3.3.5. Establishment of vis-NIRS calibration models  

The entire 1013 soil spectra data generated from each soil sample scan were 

arranged in ascending order according to ω, then a three out of every four 

readings (75% of the spectra data) were chosen to be used in the process of 

generating the calibration model, while the remainder (25% of the spectra data) 
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was used as independent validation set. The ascending order process for 

spectra data before choosing the calibration and validation sets ensures that the 

range of moisture is represented in both sets. Two different calibration 

techniques were tested namely: Artificial Neural Networks (ANN) and partial 

least squares regression (PLSR). 

 Artificial Neural Networks 

The ANN toolbox from the Statistica software version 11 (StatSoft, USA, 2011) 

package was used to generate calibration models for ω. This was done for all 

affecting factor case studies investigated in this study (point 3.3.5) and for the 

general calibration model using the whole soil samples. The ANN method is a 

simplified model of the biological structure of human brains (Günaydin, 2009). It 

has three main layers of structure, namely, input nodes, one or more layers of 

hidden nodes and a set of output nodes (Figure 3-6).  

 

Figure 3-7 A simple feed-forward Artificial Neural Networks (ANN). 

All the modelling cases were developed using the powerful second order 

Broyden–Fletcher–Goldfarb–Shanno (BFGS) training algorithms, with different 

transfer functions used for hidden and output layers. The transfer functions 

included hyperbolic tangent (Tanh), logarithmic (Log) and exponential (Exp). 

The number of neurons in the hidden layer is established by training several 

networks with different numbers of hidden neurons, and comparing the 
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predicted with measured values. In this study, the hidden layers were varied 

between five to twenty one neurons depending on the best results obtained 

from the calibration models. Spectra data for each category of soil sample were 

pre-treated and divided into a training set (60%), test set (15%) and 

independent validation set (25%). The input data were soil diffuse reflectance 

spectra, whereas the output was ω. 

 

 Partial Least Square Regression 

The partial least squares regression (PLSR) toolbox of the Unscrambler 7.8 

software (Camo Inc.; Oslo, Norway) was applied on the calibration set of the 

spectra data and the calibration model validity was tested with the independent 

validation set. The PLSR technique was implemented to relate the variation in 

one variable (e.g. ω) responding to the variation in multi-spectra reflected 

frequencies. It is a bilinear modelling method where information in the original x 

data is projected onto a small number of underlying (“latent”) variables called 

PLS components, in other words, reducing the quantity of the spectra data and 

thus decreasing over-fitting problems without discarding any important 

information. The y data are actively used in estimating the “latent” variables to 

ensure that the first components are those that are most relevant for predicting 

the y variables. Interpretation of the relationship between the x and y data of the 

calibration set data (75%) is then simplified as this relationship is concentrated 

on the smallest possible number of components leading to the production of the 

PLSR calibration model, which can be used to predict y variables (e.g. ω) from 

any given x data (spectra data). More detailed information about the PLSR can 

be found in Martens and Naes (1989) and Osborne et al (1993). 

3.4. Frequency domain reflectometry (FDR) measurement with ThetaProbe 

3.4.1. ThetaProbe description 

ThetaProbe (Delta-T Devices Ltd.) is the commercial name of a dielectric probe 

for the field measurements of soil θv. It has been developed jointly by the 

Macaulay Land Use Research Institute, Scotland and Delta-T Devices Ltd, 

Cambridge. ThetaProbe consists of a waterproof hard plastic housing, which 
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contains the electronic circuitry and provides a solid base for the four parallel 

stainless steel rods of 65 mm length and 3.3 mm diameter, which are inserted 

into the soil. At the other end of the probe is the input/output cable (Figure. 3-7). 

The electronic circuit generates and emits an electromagnetic signal of 

sinusoidal shape, which is applied to an internal transmission line to the array of 

four rods. The impedance of this array varies according to the impedance of the 

soil, which has two components, namely, the apparent dielectric constant (K) 

and the ionic conductivity. 100 MHz was chosen as the operating frequency in 

order to minimise the effect of ionic conductivity, so that changes in the 

transmission line impedance was dependent almost solely on the soil’s 

apparent K. Water content determines the K of the soil, as the K of the water 

(~81) is much higher than the K of the soil (3 to 5) and that of the air (1). The 

travelling electromagnetic wave through the soil mass will cause a voltage 

standing wave to be set up from the interference of the emitted signal and its 

reflected component. By measuring this voltage amplitude, the K of the soil can 

be obtained and thus θv. More details can be found in Gaskin and Miller (1996) 

and Miller and Gaskin (1997). Kaleita et al. (2005) studied the effect of soil 

temperature on laboratory calibration of the ThetaProbe, and found insignificant 

differences in the accuracy for a temperature range of 10 to 40 °C. An 

insignificant effect from soil salinity in the range of 250 - 2000 mS m-1 was 

confirmed by the ThetaProbe manufacturer (Delta-T Devices Ltd., 1999). 

 

Figure 3-8 ThetaProbe and the HH2 meter. 

3.4.2. Establishment and testing of calibration models of ThetaProbe 
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Three ThetaProbe readings were recorded in-situ from the same spot (e.g. 50 

cm in diameter), where the soil core was collected and these three readings 

were recorded before extracting the core sample. An Additional reading was 

also recorded from the soil core itself after been extracted from the ground. 

These four readings were averaged to one final reading. 

In this study, five methods for the calibration of the ThetaProbe were tested, 

namely, manufacturer (M), specific soil calibration (SSC), general formula (GF) 

(Topp et al. 1980), and ThetaProbe output voltage (V) and ANN. The input for 

all calibrations was the readout of the ThetaProbe only. In the following 

subsections, the five calibration methods are explained. 

 Manufacturer calibration method (M): 

The general calibration by the manufacturer of the device is a pre-set 

programme at ThetaProbe digital moisture meter type (HH2), which provides an 

instant readout of θv in cm-3cm-3 and also output voltage (V) in mv. It comprises 

two calibration options for mineral (OM<7%) and organic (OM>7%) soils (Delta-

T Devices Ltd., 1999). It is based on the following third order relationship 

between K and V: 

√𝐾 = 1.07 + 6.4V − 6.4V2 + 4.7V3                                             (3-1) 

Where √𝐾 is the square root of the dielectric constant (dimensionless) and V is 

the output voltage reading of the ThetaProbe in mv. 

By substituting √𝐾 into the following equations, θv can be calculated for mineral 

and organic soils, respectively: 

𝜃v =  
√𝑘−1.6

8.4
                                                         (3-2) 

𝜃v =  
√𝑘−1.3

7.7
                                                         (3-3) 

 Specific soil calibration method (SSC):  
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This method relies on Eqn. 3-1, but is used for specific soil types. To calculate 

θv for a specific soil, the following linear relationship between √𝐾 and θv was 

established (Delta-T Devices Ltd., 1999): 

𝜃v =
√𝐾−𝑎0

𝑎1
                  (3-4) 

Where 𝑎1  and 𝑎0 are coefficients for wet and dry soil samples, respectively. 𝑎0 

is considered equal to √𝐾0 (Gaskin and Miller, 1996). However, 𝑎1  is calculated 

from the following equation: 

𝑎1 =
√𝐾1−√𝐾0

𝜃vt
                            (3-5) 

√𝐾1 is the square root of the dielectric constant of the wet undisturbed soil 

sample, √𝐾0 is the square root of the dielectric constant of the dried 

undisturbed soil sample. Both √𝐾1 and√𝐾0 were measured using Eqn. 3-1. θvt 

is the measured volumetric moisture content by oven drying of samples at 105 

°C for 24 h. 

 General formula calibration method (GF):  

This method relies on the concept that K can be measured from the standing 

voltage of the soil matrix and thus indicates θv. Topp et al., (1980) established 

the universal equation to express the relation between θv and K of many soil 

types, collected from all over the world, which is written as follows: 

𝜃v =  −0.053 + 0.0292𝐾 − 0.00055𝐾2 + 0.0000043𝐾3               (3-6) 

The K value is derived based on average measured V, which is substituted into 

Eqn. 3-6 to calculate θv.  

 Output voltage calibration method (OV):  

In this method a direct relationship between V and θv was established based on 

in-situ measurements from the ThetaProbe of soils collected in the current work. 

The average spot ThetaProbe output voltage readings of 1013 samples were 

divided into two sets, namely, calibration (75%) and independent validation set 
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(25%). The former was used to generate the relationship between θv and V 

based on the equation of the best fit line calculated by Microsoft Excel program, 

whereas the latter was used to validate the calibration equation developed.  

 Artificial neural networks (ANN) method:  

Here, the same ANN as that used for the prediction of ω (Section 3.3.2) was 

used. However, the input data is the readout V of the ThetaProbe, whereas the 

output is θv. 

3.5. Data fusion and soil bulk density estimation 

Methods adopted in Section 3.3.2 and Section 3.4.2 for the measurement of ω 

and θv, respectively, were based solely on the vis-NIRS spectra data, and the 

output voltage of the ThetaProbe, respectively, and the calibration models of 

each sensor were generated separately. In this section, the measurement of θv 

and ω is explained based on a fusion of the readout data from both sensing 

techniques (V and spectra), which were obtained for the 1013 soil samples, with 

or without including data obtained from laboratory analysis on sand (S in %), silt 

(SL in %), C in % and OM in %, which they were represented by the average 

values of each field involved in this study. However, in order to compare with 

other data fusion models, the input data of V (Section 2.4.2) or soil spectra 

(Section 3.3.2) were used to produce ANN calibration models for the 

measurement of θv and ω, respectively (Table 3-2).  

Table 3-2 Different inputs used for different artificial neural networks (ANN) 

analysis for the measurement of volumetric (θv) and gravimetric (ω) moisture 

content. Data used as input are output voltage (V), visible and near infrared 

spectra (Spec), sand (S), clay (C), silt (SL) and organic matter (OM). 
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Table 3-2 Different inputs used for different artificial neural networks (ANN) 

analysis for the measurement of volumetric (θv) and gravimetric (ω) moisture 

content. Data used as input are output voltage (V), visible and near infrared 

spectra (Spec), sand (S), clay (C), silt (SL) and organic matter (OM). 

Model Input Output 

I V, Spec, S, SL, C, OM θv, ω 
II V , Spec, C, OM θv, ω 
III V , Spec, OM θv, ω 
IV V , Spec, C θv, ω 
V V , Spec θv, ω 
VI Spec ω 
VII V θv 

 

One of the tools available for data fusion is the ANN. Similar ANN to that used 

in Section 3.3.2. Section 2.4.2 was used here too. In this study, different 

numbers of hidden nodes were selected automatically by the Statistica software 

(data mining toolbox) in each ANN calibration model depending on the input 

data used (Figure 3-8). 

 

Figure 3-9 The of an ANN calibration model I for predicting θv and ω 

architecture. 

For instance, the number of nodes of the hidden layer for θv based on V only 

was two nodes (Table 3-2). Five ANN analyses were performed to develop 
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different calibration models, according to the different multi-input variables used 

(Table 3-2). The output targets for the different input combinations were θv or ω 

(based on one input; soil spectra or V), or both (based on data fusion of soil 

spectra, V, soil texture components and OM). In this study, a hidden layer with 

five neurons showed the best results. All the texture classes were included in 

the calibration set so that the resulted models are valid for all textures. 

Having data on θv measured with a ThetaProbe and ω measured with a vis-NIR 

spectrophotometer, or by a fusion of data from both instruments, these are 

substituted into Eqn. 1-9 to derive BD values for all combinations of input data 

(Table 3-2). The estimation accuracy of BD is estimated by comparing with the 

oven drying method of soil samples at 105 °C for 24 h.  

 

The performance of the developed models was evaluated by means of the 

higher coefficient of determination (R2) values alongside the root mean square 

error of prediction (RMSEp) values of the independent validation set. The 

residual prediction deviation (RPD), which is the ratio of standard deviation (SD) 

values of the laboratory measured ω, θv and BD divided by RMSEp of the 

independent validation set, were also considered to evaluate the performance 

of the calibration models (Mouazen et al., 2010). Mouazen et al. (2006b) 

proposed the following classes of RPD values:  an RPD value below 1.5 

indicates poor model predictions and that such a value wouldn’t be useful; an 

RPD value between 1.5 and 2.0 indicates a possibility of distinguishing between 

large and small values, while a value between 2.0 and 2.5 makes approximate 

quantitative predictions possible. For RPD values between 2.5 and 3.0 and 

above 3.0, the prediction is classified as good and excellent, respectively. This 

classification system of RPD was adopted in this study. Generally, a good 

model performance would have high R2 and RPD values, and a small value of 

RMSEp.  

 Potential error estimation 

Analysis the RMSE values of ThetaProbe and ASDi spectrometer of current 

study with other researchers results of the RMSE values of predicting both θv 
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and ω, showing the capability of the new measuring system to predict soil BD at 

lower potential error. The linear formula used to estimate DB contains only two 

parameters of θv and ω, which leads to simplified potential error relation of DB 

prediction, as follow: 

Potential BD estimation error =
 RMSE of 𝜃v 

RMSE of 𝜔
                                3-7 

Where: Potential BD estimation error is the expected error of estimating BD 

relaying on the errors of θv and ω readings, it has no unites or dimension as 

BD potential error =
  RMSEp of  𝜃v  

RMSEp of 𝜔
=

cm3

cm3
g

g

= 1 , RMSE of θv cm3 cm-3 is the 

root mean square error of prediction θv using dielectric sensor and RMSE of ω 

g g-1 is the root mean square error of prediction  ω using vis-NIRS.  

3.6. Factors affecting measurement accuracy 

Literature documented influences of soil conditions on the performance of the 

vis-NIR and dielectric sensors for the prediction of soil ω and θv and 

subsequently the estimation of BD. Among these factors, soil water content 

(Mouazen et al., 2005; Robinson et al., 2003) soil texture (Quraishi and 

Mouazen, 2013a; Rowlandson et al., 2013) and land use probably the most 

significant factors. So far, the influences of these factors were studied 

separately and to a given extent on ThetaProbe and ASDi sensors 

performance. In this thesis the combined influences of these factors on the 

prediction of ω and θv and the estimation of BD will be investigated. 

3.6.1. The effect of soil moisture level 

The effect of soil moisture content on the prediction accuracy of θv or ω with 

both sensors was studied by conducting the field measurements during different 

seasons (representing different moisture content levels) using the same five 

fields with arable lands only (Table 3-3). Three field measurements were carried 

out within the period from July, 2011 to October, 2012. A total of 100 soil 

samples were collected for each of the three experimental visits, divided to 20 

soil samples per field per visit. All precautions have been taking in order to 
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conduct measurements and core sampling before soil tillage took place, to 

avoid the effect of soil disturbance on the readings. The same procedures 

explained previously (Point 3.1) were followed to obtain the readings from 

sensors and collecting the soil samples. The following three average levels of 

soil moisture content (L) of the 100 soil samples were obtained during the three 

field measurement occasions:   

 L 1 with 0.11 g g-1 and 0.15 cm3 cm-3 gravimetric and volumetric moisture 

content, respectively, during the period from 11th to 15th of July, 2011. 

 L 2 with 0.20g g-1 and 0.23 cm3 cm-3 gravimetric and volumetric moisture 

content, respectively, during the period from 15th to 21st of May, 2012. 

 L 3 with 0.28g g-1 and 0.32 cm3 cm-3 gravimetric and volumetric moisture 

content, respectively, during the period from 1st to 5th of October, 2012. 
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Table 3-3 Detailed information about the five experimental fields in Silsoe experimental farm, where soil samples were 

collected during 2011 and 2012, for investigating the influence of soil moisture content on the prediction accuracy. 

 

 

 

 

 

 

 

 

SN is sample number; OM is soil organic matter content.  

 

Fields Soil texture 
Clay,

% 

Silt,

% 

Sand

,% 

OM,

% 

L1 L2 L3 

Crop SN Crop SN Crop SN 

Avenue Sandy loam 16 20 63 3.6 Wheat 20 Barley 20 Harvested Wheat 20 

Beechwood Clay 66 11 23 5.8 Beans 20 Wheat 20 Harvested Wheat 20 

Clover hill Clay loam 35 24 41 4.8 Wheat 20 Beans 20 Harvested Barley 20 

Orchard Clay loam 33 26 41 4.15 Barley 20 Wheat 20 Beans 20 

Showground Sandy clay loam 24 17 59 3.34 Wheat 20 Barley 20 Harvested Wheat 20 

  Sum 100  100  100 

Total 300 
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Table 3-4 provides basic statistics of the 300 soil samples used for the analysis 

of the effect of the soil moisture content. Data were obtained from the laboratory 

oven drying method at 105 °C for 24 h.  

 

Table 3-4 Sample statistics of the laboratory analysis of three levels and the 

collective soil volumetric moisture content (θv) (cm3 cm-3), gravimetric moisture 

content (ω) (g g-1) and soil bulk density (BD) (g cm-3) used for the analysis of 

the effect of soil moisture content on the prediction accuracy. 

Category Level Minimum Maximum Average SD Range 

θv 

L 1 0.080 0.222 0.147 0.044 0.142 
L 2 0.130 0.410 0.231 0.077 0.28 
L 3 0.136 0.512 0.321 0.135 0.376 

Collective 0.035 0.44 0.197 0.117 0.405 

ω 

L 1 0.062 0.145 0.107 0.026 0.083 
L 2 0.114 0.394 0.196 0.085 0.28 
L 3 0.120 0.44 0.28 0.133 0.32 

Collective 0.08 0.512 0.236 0.119 0.432 

BD 

L1 1.092 1.671 1.359 0.133 0.579 

L2 0.913 1.423 1.219 0.126 0.51 

L3 0.879 1.529 1.192 0.153 0.65 
Collective 0.852 1.671 1.258 0.163 0.819 

SD is standard deviation; θv is volumetric moisture content (cm3 cm-3); ω is 

gravimetric moisture content (g g-1); BD is soil bulk density (g cm-3), Collective is 

the total of the three soil moisture levels. 

  

Among all calibration methods the ANN method was selected to perform data 

fusion of both sensors, due to its high performance (Al-Asadi and Mouazen, 

2014), for each of the three levels of moisture content, a performance 

comparison was made between the ANN calibration models for θv and ω 

predictions using V and vis-NIR spectra data, respectively. The same data (75 

soil samples) from each moisture level was used separately to generate 

calibration models using the above calibration method. The calibration models 

accuracies were tested using the same independent validation spectra data (25 

soil samples). Similar procedure followed with the collective model (L1+L1+L3). 
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The final output was four different ANN analyses, carried out for L1, L2, L3 and 

L1+L2+L3 (the collective model) with V and vis-NIR spectra data were used as 

input, whereas the output was θv and ω, respectively. 

3.6.2. The effect of soil texture 

Three soil texture classes were selected to understand the effect of texture 

class on the measurement accuracy of θv or ω. These are sandy loam, clay 

loam and clay. A total of 100 soil samples from each of the three soil textures 

(300 samples) were used, which were collected from arable lands and 

grasslands, during the period from December, 2011 to November, 2012, from 

different locations in the UK (Table 3-4). The same number of soil samples was 

used for each texture as to eliminate the influence of the sample number on 

prediction accuracy of the vis-NIR spectroscopy (Kuang and Mouazen, 2012). 

 

Table 3-5 provides detailed information about the location, growing crop and 

number of soil samples collected from each field. For each soil texture class, 

calibration models for the prediction of θv or ω were developed using ANN, by 

dividing the 100 samples into calibration (60%), cross-validation (15%) and test 

(25%) sets. In addition, models for all texture classes were developed using the 

same division of the sample sets. 

Table 3-6 provides basic statistics of the laboratory analysis of the 600 soil 

samples, used for the analysis of the effect of the soil texture on the prediction 

accuracy of θv, ω and BD.
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Table 3-5 Field location, land use and number of soil samples used to study the soil textures effect on the measurement of 

volumetric (θv) and gravimetric (ω) moisture content. 

Texture class Field 
Agriculture practice and 

crops 
Clay 

% 
Silt 
% 

Sand 
% 

OM 
% 

Sample 
number 

Clay 

Ive, silsoe, Beds 

Arable 
land 

Winter wheat 53 19 28 2.96 15 

Far Warden, silsoe, Beds Oil seed ripe 59 27 14 5.1 20 

Flawborough, Nottinghamshire Winter wheat 51 35 14 5.4 20 

Morpeth, Northumberland Oil seed ripe 52 22 26 7.08 45 

Clay loam 

Copse, Silsoe, Beds Winter wheat 38 26 36 4.83 33 

Field 1, Duck End, Wilstead, Beds Winter wheat 32 27 40 3.45 32 

Barn Right, Duck End, Wilstead, Beds Barley 30 30 40 3.6 35 

Sandy loam 

Avenue, Silsoe , Beds Winter wheat 16 20 63 3.6 45 

Mound, Silsoe , Beds Barley 16 21 63 3.5 38 

Showground, Silsoe , Beds Winter wheat 24 17 59 3.6 17 

  
  

    
Sum 300 

Clay 

Flawborough, Nottinghamshire 

Grassland 

51 33 15 7.2 20 

Morpeth, Northumberland 55 23 22 8.04 45 

Gayhurst, Bucks 44 35 21 5.4 15 

Olney, Silsoe, Beds 60 30 10 5.4 20 

Clay loam 
Harversham, Bucks 37 27 36 4.6 40 

Runway, Duck End, Wilstead, Beds 35 25 40 4.2 60 

Sandy loam 

Nafferton, Northumberland 13 22 65 7.5 28 

Avenue, Silsoe, Beds 29 19 51 3.1 32 

Brecon, Wales 21 65 14 5.94 40 

Sum 300 

Total 600 
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Table 3-6 Samples statistics of laboratory measured volumetric moisture 

content (θv) in cm3 cm-3, gravimetric moisture content (ω) in g g-1 and bulk 

density (BD) in g cm-3, used for the analysis of the effect of soil texture classes. 

  

  
Arable lands Grasslands 

Soil class 
statistic 
factor 

θv ω BD θv ω BD 

Clay 

Maximum 0.53 0.38 1.58 0.53 0.34 1.70 

Minimum 0.37 0.27 1.12 0.20 0.12 0.88 

Range 0.16 0.11 0.46 0.33 0.22 0.82 

Average 0.44 0.32 1.36 0.35 0.25 1.39 

SD 0.04 0.03 0.15 0.09 0.06 0.20 

Clay loam 

Maximum 0.45 0.36 1.88 0.40 0.25 1.79 

Minimum 0.19 0.12 1.10 0.18 0.11 1.35 

Range 0.26 0.24 0.78 0.22 0.14 0.44 

Average 0.30 0.20 1.58 0.29 0.19 1.57 

SD 0.06 0.05 0.19 0.07 0.05 0.12 

Sandy loam 

Maximum 0.36 0.24 1.81 0.46 0.36 2.08 

Minimum 0.14 0.11 1.09 0.25 0.12 1.18 

Range 0.21 0.13 0.72 0.21 0.24 0.91 

Average 0.21 0.15 1.41 0.36 0.23 1.68 

SD 0.05 0.03 0.17 0.06 0.08 0.31 

Collective 

Maximum 0.53 0.40 1.89 0.53 0.42 2.07 

Minimum 0.16 0.11 1.00 0.19 0.12 0.88 

Range 0.37 0.29 0.89 0.34 0.30 1.19 

Average 0.32 0.23 1.45 0.33 0.23 1.52 

SD 0.10 0.09 0.20 0.09 0.07 0.25 

SD is standard deviation; θv is volumetric moisture content (cm3 cm-3); ω is 

gravimetric moisture content (g g-1); BD is soil bulk density (g cm-3), Collective is 

the total of the three soil textures. 

3.6.3. Effect of light and heavy soils 

A total of 440 soil samples collected from arable lands only have been used to 

study the effect of dividing samples into the light and heavy soils (Figure 3-9) on 

the measurements accuracy of both sensors. The light soil class included loam, 

sandy loam, sandy clay loam, silt loam, silt, sand and loam sand textures, 

whereas the heavy soil class included clay loam, silty clay loam, silty clay, 

sandy clay and clay soils. In corresponding to the CC fraction obtained after the 

PSD analysis, Table 3-7 provides detailed information of the 440 soil samples 

including the number of samples, field location, texture class and soil texture 

fractions. 
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Table 3-7 Detailed information of the fields, where soil samples were collected to study the effect of dividing samples into light 

and heavy soil textures on the measurement accuracy of volumetric (θv) and gravimetric (ω) moisture content. 

Soil 
category 

Field 
Samples 
number 

Soil texture 
Clay 
% 

Silt 
% 

Sand 
% 

OM 
% 

Light 

Avenue, Silsoe, Beds 45 Sandy loam 16 20 63 3.6 

Barn left, Wilstead, Beds 25 Loam 18 35 47 3.5 

Dowings, Silsoe, Beds 20 Sandy clay loam 28 19 53 4.1 

Howne sand, Wilstead, Beds 52 Sandy loam 14 18 68 3.3 

Mound, Silsoe, Beds 38 Sandy loam 16 21 63 3.5 

Showground, Silsoe, Beds 40 Sandy clay loam 24 17 59 3.34 

  Sum 220 
     

Heavy 

Clover Hill, Silsoe, Beds 20 Clay loam 35 24 41 4.8 

Beechwood, Silsoe, Beds 40 Clay 66 11 23 5.8 

Ive, Silsoe, Beds 40 Clay 53 19 28 2.96 

Near Warden, Silsoe, Beds 20 Clay 54 25 16 5.53 

Orchard, Silsoe, Beds 20 Clay loam 33 26 41 4.15 

Upbury, Silsoe, Beds 20 Clay 54 24 22 4.5 

Flawborough, Nottinghamshire 20 Clay 51 35 14 5.4 

Morpeth, Northumberland 40 Clay 52 22 26 7.08 

  
 

Sum 220 
     

 
Total 440 

     
OM is soil organic matter content.



92 
 

 

Figure 3-10 Average field texture, classified into heavy and light soil texture 

classes, according to the United States Department of Agriculture (USDA). 

 

Table 3-8 provides basic statistics of the 440 soil samples used in the analysis 

of the effect of the light and heavy soils. The values of θv, ω and BD were 

obtained from the laboratory oven-drying method at 105 °C for 24 h. Two 

separate ANN calibration models were developed to analyse the effect of 

grouping soils into light and heavy classes on the measurement accuracy of θv 

and ω. The effect of the number of soil samples on the perdition accuracy of 

both sensors were diminished by selecting equal number of soil samples of 220 

samples for the light and another 220 soil samples for the heavy soils. In 

addition, a total of 440 soil samples were used to produce the overall calibration 

model of all textures. Soil samples in all sets were divided into calibration 

(60%), test (15%) and validation (25%) sets. The prediction of θv and ω has 

been managed with input variables on V and the pre-treated vis-NIR spectra 

data. 
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Table 3-8 Sample statistics of laboratory measured volumetric moisture content 

(θv) in cm3 cm-3, gravimetric moisture content (ω) in g g-1 and bulk density (BD) 

in g cm-3, used for the analysis of the influence of classification of soil samples 

into light and heavy soils on the prediction accuracy. 

Soil type Category Maximum Minimum Range Average SD 

Light 

θv 0.38 0.14 0.24 0.23 0.06 

ω 0.29 0.10 0.19 0.15 0.04 

BD 1.81 1.15 0.67 1.52 0.17 

Heavy 

θv 0.53 0.18 0.35 0.40 0.07 

ω 0.45 0.14 0.31 0.28 0.08 

BD 1.75 1.11 0.64 1.44 0.18 

Collective 

θv 0.53 0.14 0.39 0.32 0.11 

ω 0.45 0.10 0.35 0.23 0.10 

BD 1.81 0.97 0.85 1.41 0.20 

SD is standard deviation; θv is volumetric moisture content (cm3 cm-3); ω is 

gravimetric moisture content (g g-1); BD is soil bulk density (g cm-3), Collective is 

the total of light and heavy soil textures. 

 

3.6.4. The effect of land use 

The majority of agricultural fields in the UK are cultivated with arable crops. 

However, grasslands are of wide spread practice that have proven 

environmental benefits in particular. The effect of land use (e.g. arable fields or 

grassland fields) on the prediction accuracy of θv and ω was investigated by 

dividing the collected soil samples into the following two groups of different 

sites:   

 Arable lands soil samples: where fields were planted with different arable 

crops e.g. barely, wheat and oil seed rape. 

 Grasslands soil samples: where fields were planted with grass crops.  

A total of 616 soil samples were used for this analyses, with 308 samples 

collected each from arable and grassland fields. Table 3-9 shows the detailed 

information about the sample division, for different land use of the experimental 

sites including texture classes and texture fractions. 
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Table 3-9 Detailed information about experimental fields, where soil samples were collected to study the effect of land use on 

the measurement accuracy of volumetric (θv) and gravimetric (ω) moisture content. 

Land use Sites 
Sample 
number 

Soil texture 
Clay 

% 
Silt 
% 

Sand 
% 

OM 
% 

Grassland 

Avenue, Silsoe, Beds 40 Sandy loam 29 19 51 2.98 

Onley, Silsoe, Beds 20 Clay 60 30 10 5.4 

Morpeth, Northumberland 45 Clay 55 23 22 8.04 

Nafferton, Northumberland 28 Sandy loam 13 22 65 7.5 

Brecon, Wales 40 Silt loam 21 65 14 5.94 

Runway, Wilstead, Beds 60 Clay loam 35 25 40 4.2 

Gayhurset, Bucks 21 Clay 44 35 21 5.4 

Haversham, Bucks 34 Clay loam 37 27 36 4.6 

Flawborough, Nottinghamshire 20 Clay 51 33 15 7.2 

    Sum 308           

Arable 
land 

winter wheat Beechwood, Silsoe, Beds 40 Clay 66 11 23 5.8 
winter wheat Far Warden, Silsoe, Beds 20 Clay 59 27 14 5.1 
oil seed rape Avenue, Silsoe, Beds 40 Sandy loam 16 20 63 3.6 
oil seed rape Ive, Silsoe, Beds 40 Clay 53 19 28 2.96 
winter wheat Near Warden, Silsoe, Beds 20 Clay 54 25 16 5.53 
Barley Orchard, Silsoe, Beds 20 Clay loam 33 26 41 4.15 
winter wheat Showground, Silsoe, Beds 40 Sandy clay loam 24 17 59 3.34 
Barley 10 Acres, Wilstead, Beds 21 Clay 50 28 22 3.5 
oil seed rape Flawborough, Nottinghamshire 20 Clay 51 35 14 5.4 
winter wheat Morpeth, Northumberland 47 Clay 52 22 26 7.08 

  
Sum 308 

     
     Total 616           
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Table 3-10 provides the basic statistics of the 616 soil samples, used for the 

analysis of the effect of land use on the prediction accuracy. The values of θv, ω 

and BD were obtained with the oven-drying method at 105 °C for 24 h. 

 

Table 3-10 Samples statistic of the laboratory measured volumetric moisture 

content (θv), in cm3 cm-3, gravimetric moisture content (ω) in g g-1 and bulk density 

(BD) in g cm-3, the samples used for the analysis of the effect of land use on the 

measurement accuracy. 

Land use Category 
Statistics factor 

Maximum Minimum Range Average SD 

Arable lands 

θv 0.51 0.14 0.38 0.28 0.12 

ω 0.39 0.10 0.29 0.20 0.09 

BD 1.79 1.07 0.72 1.40 0.15 

Grasslands 

θv 0.53 0.19 0.34 0.32 0.09 

ω 0.41 0.12 0.29 0.22 0.08 

BD 2.08 0.89 1.19 1.48 0.24 

Collective 

θv 0.55 0.14 0.41 0.30 0.10 

ω 0.39 0.10 0.29 0.21 0.08 

BD 2.08 1.03 1.05 1.46 0.20 

SD is standard deviation; θv is volumetric moisture content (cm3 cm-3); ω is 

gravimetric moisture content (g g-1); BD is soil bulk density (g cm-3), Collective is 

the total of the two land use practices. 

 

The ANN calibration method was used to establish calibration models to predict θv 

and ω for arable lands and grasslands using the readout data produced from the 

dielectric and the vis-NIRS sensors, with equal soil sample number (308 soil 

samples for each class). Another ANN calibration models to predict θv and ω using 

both data sets of 616 soil samples were developed. Similar to the above ANN 

models, the soil samples were divided into calibration (60%), cross-validation (15 

%) and test (25%) and independent validation sets for the three modelling 

scenarios. 
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3.7. Development of a soil bulk density prototype sensor 

After providing a proof of concept of the new measurement system of BD and 

understanding the most affecting factors on the measurement accuracy of θv and 

ω and consequently of BD. The plan was to test this new concept in real situation 

in-situ. In order to do so, a new penetration probe was design and developed. It is 

a portable prototype measuring system, consisting of a combination of a NIR 

spectrophotometer (Avantes spectrometer), a dielectric sensor, a standard 

penetrometer, a battery and a laptop (Figure 3-13).  

The dielectric sensor used in this prototype measuring system has an electronic 

circuit generating a 100 MHz electromagnetic sine wave, which is propagated into 

the soil body through a central electrode in the form of a copper ring with a 10, 15 

and 1.5 mm height, diameter and wall thickness, respectively. The copper ring is 

insulated from the probe body, which forms two shielding electrodes as they are 

connected to the electronic circuits’ negative. Each shielding electrode has a 

cylinder shape with a 13 and 50 mm diameter and height, respectively. The 

readout pin of the electronic circuit is connected to the HH2 meter from Delta-T 

devices, which at the time of reading acts as a power supply and provides data 

storage.  

Although the same electronic circuit of ThetaProbe was used for the prototype 

sensor, V values of ThetaProbe and the prototype sensor are not comparable, due 

to the differences in the dimensions and the shapes of the probe’s electrodes, 

which in turn lead to significant differences in the sinusoidal wave reflection 

measurements. From the above, it can be concluded that it is necessary to 

calibrate the prototype sensor in the laboratory using different moisture levels and 

different types of soils (as explained in more details in point 3.7.1.), to figure out the 

relationship between these factors and V for the prototype, before carrying out the 

measurements in the field. 
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V is a direct readout of ThetaPobe’s electronic circuit, which was preferred to be 

used in this study as no need for further transformation formula to be used to 

record the dielectric constant values, for example. 

The probe body also provides protection for the optical fibres, as they run inside its 

cavity. The optical fibres open in the centre of a high reflection chamber, with a 

sapphire round window mounted on the top. The sapphire window is located in a 

small grove made in the probe body to prevent scratches that might form on its 

surface by the direct contact with the soil (Figures 3-10 and 3-11). The other ends 

of the optical fibres are connected to the Avantes spectrophotometer and the light 

source. 

 

Figure 3-11 The combined portable probe of a near infrared (NIR) 

spectrophotometer and a dielectric sensor, for the measurement of soil volumetric 

moisture content (θv), gravimetric moisture content (ω) and bulk density (BD). 
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Figure 3-12 The reflection chamber of the combined probe. 

 

As the combined probe inserted into the soil vertically, the surrounding soil in 

contact with probe electrodes will be affected by the fringe fields of the propagated 

signal, resulting from the two capacitors (Figure 3-12).  

 

Figure 3-13 Shows the electromagnetic fringe fields around the dielectric sensors’ 

electrodes. 
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3.7.1. Laboratory testing of the prototype measuring system 

The prototype of the portable soil BD measuring system was first tested in the 

laboratory using two soil textures, namely, sandy loam and clay loam (Table 3-11). 

Each soil texture was oven dried for 24 hours at a 105 °C. Stones and large plant 

residuals were removed and the dry weight of the soil was recorded. Different 

measured volumes of distilled water were added to the dry soils and mixed 

properly in order to artificially produce various soil moisture contents. Then, 

instantly the wet soils were placed in a 1 litre volume plastic packet and the wet 

weight was recorded. A total of 50 soil samples of each soil texture were prepared 

to perform the laboratory testing. Three replicates were recorded for vis-NIR 

spectra and V readings obtained with the NIR spectrophotometer and the dielectric 

sensor, respectively, from each soil sample with different moisture content and BD.  

Table 3-11 Information of the soil textures of soils used in the laboratory test of the 

prototype measurement system. 

Soil texture 
Samples 
number 

Clay 
% 

Silt 
% 

Sand 
% 

OM 
% 

Sandy loam 50 30 18 52 3.00 

Clay loam 50 60 29 11 5.50 

 

The entire spectra data were pre-treated as explained in the point 3.3.4. using the 

Unscrambler® version 7.8 (Camo Inc.; Oslo, Norway), except for the spectra data 

noise at the high edge of the frequency, which was made negligible by reducing 

the spectra data range from 1650 to 2225 nm. Later on, the ANN calibration 

method was used to analyse the data produced in the laboratory for each soil 

texture and for both textures. The entire data set (e.g. 50 or 100 samples) were 

divided into calibration (60%), cross-validation (15%) and test (25%). The ANN 

analyses included the prediction of θv and ω, using input readings on V and vis-

NIR spectra. Finally, BD was estimated using Eqn. 1-9.The prediction accuracy of 
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θv, ω and BD of the prototype measuring system was evaluated in terms of R2 and 

RMSEP values of the independent data sets. 

3.7.2. In-situ test of the prototype 

 In-situ measurement  

The prototype portable measurement system was tested for in-situ measurement in 

five fields with various textures and growing crops. At each point in the field, three 

V and NIR spectra were measured with the prototype’s dielectric sensor and vis-

NIR spectrometer. Average values of the three V and vis-NIR spectra were 

calculated afterwards. The experiment ran from August, 2013 to December, 2013, 

at the Silsoe experimental farm of Cranfield University. These fields are the same 

as those used to study the effect of moisture content of the measurements of 

output voltage and spectra. However, two more fields were used, namely, Avenue 

and Onley fields with grass grown. Table 3-12 shows information about the test 

fields where the prototype was tested. 

Table 3-12 Information of the fields, where the prototype measuring system was 

tested. 

Fields SN Soil texture Clay% Silt% Sand% OM% Crop 

Avenue 20 Sandy loam 16 20 63 3.6 Barley 

Beechwood 20 Cay 66 11 23 5.8 Wheat 

Clover hill 20 Clay loam 35 24 41 4.8 Barley 

Orchard 20 Clay loam 33 26 41 4.15 Wheat 

Showground 20 Sandy clay 

loam 

24 17 59 3.34 Barley 

Sum 100 

Avenue 50 Sandy loam 0.29 0.19 0.51 2.98 
Grass 

Onley 50 Clay 0.60 0.30 0.10 5.40 

Sum 100  
    

SN is samples number; OM is the organic matter content.  
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Table 3-13 provides basic statistics of the 200 soil samples, used for the field 

testing of the portable prototype sensor. Values of θv, ω and BD were obtained 

with the oven-drying method at 105 °C for 24 h, from soil samples extracted from 5 

– 10 cm from the soil top surface, the top of the soil was removed before the 

readings were recorded and the soil were collected to avoid effect of the high 

percentage of plants residuals. 

 

Table 3-13 Sample statistics of the soil samples, used for testing the new prototype 

measuring system. Values were obtained from laboratory measured volumetric 

moisture content (θv), in cm3 cm-3, gravimetric moisture content (ω) in g g-1 and 

bulk density (BD) in g cm-3. 

Statistic 
factor 

Arable lands Grasslands 

θv ω BD θv ω BD 

Maximum 0.55 0.41 1.60 0.46 0.36 1.78 
Minimum 0.12 0.10 1.08 0.24 0.15 1.20 
Range 0.43 0.31 0.52 0.22 0.21 0.58 
Average 0.34 0.26 1.34 0.35 0.25 1.49 
SD 0.14 0.11 0.11 0.09 0.08 0.24 

SD is standard deviation, ω is gravimetric moisture content (g g-1), θv is the 

volumetric moisture content (cm3 cm-3) and BD is soil bulk density (g cm-3). 

 

The light weight and compact size of the prototype in-situ measurement system 

made it easy to move through the growing crops and carry out the measurements 

either by assembling the system on a sackbarrow (Figure 3-13) or carrying in a 

rucksack (Figure3-14). 
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Figure 3-14 The prototype of the field measuring system of soil of volumetric 

moisture content (θv), gravimetric moisture content (ω) and bulk density (BD) 

assembled on a wheelbarrow. 
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Figure 3-15 The prototype of the field measuring system of volumetric moisture 

content (θv), gravimetric moisture content (ω) and bulk density (BD) carried in a 

rucksack. 
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The ANN technique was deployed to generate calibration models for θv and ω 

based on 75% of the vis-NIR spectra and V by the prototype sensors (75 soil 

samples). BD was then estimated using Eqn. 1-9 for the arable, grasslands and 

individual fields.  All estimated BD values obtained by applying the ANN calibration 

models on the independent validation set (25% = 25 soil samples) were compared 

with the independent measured BD values (25% = 25 soil samples) using core 

sampling method. Before running the ANN analyses, the entire spectra data was 

pre-treated as explained in the Point 3.3.4 using the Unscrambler® version 7.8 

(Camo Inc.; Oslo, Norway), except for the noise removing at the higher edge of the 

operating frequency of the Avantes spectrometer, which has been neglected by 

limiting the spectra data detection range from 1650 to 2225 nm. 

3.7.3. Development of soil maps 

Out of the 7 fields sampled with the prototype portable system, two fields were 

randomly selected for mapping. These were the Avenue arable and grassland 

fields. Three types of maps for the Avenue fields were developed for each soil 

property, namely, θv, ω and BD. These three maps are of the measured θv, ω and 

BD by the oven-drying of the core soil samples as a reference maps, the predicted 

maps of θv, ω and BD using the prototype combined sensor (for selected points) 

and predicted maps θv, ω and BD using full-data point maps. The reference and 

the predicted maps are used for a visual comparison of the prototype measuring 

system accuracy, the number of the soil samples and the position of the readouts 

for the reference and the 20 soil samples predicted maps were identical, while the 

full-data point maps were generated using a double number of the readouts of 

spectra and V data (A 40 readouts for a 40 different positions per field), as 

compared to the former two maps. The inverse distance weighing (IDW) 

interpolation method was used to develop the former two groups of maps using 

ArcGIS 10.2 (ESRI, USA) software. It was deployed to provide histogram of the 

prediction errors of the difference between oven-drying measured and the 

prototype predicted values of soil θv, ω and BD. Based on semivariogram 
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parameters and kriging interpolation methods, ArcGIS 10.2 (ESRI, USA) was used 

to produce the full-data point maps of the field predicted θv and ω from V and vis-

NIR spectra, respectively. Then field BD was calculated using Eqn. 1-9, by 

substituting the predicted values of θv and ω obtained with ANN calibration method 

and comparison was made between the calculated BD and independent measured 

BD using core samples method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



106 
 

  Chapter 4

4. Results  

In this chapter the validation results of both dielectric and vis-NIRS techniques for 

the measurement of θv and ω, respectively, will be presented. Results of the 

potential error for soil BD estimation resulted from using both ThetaProbe and 

ASDi sensors will be introduced. Finally, the results of both sensors as affected by 

the four affecting factors will be provided. To evaluate the performance of the 

methodology used in the current work the following main comparisons were 

considered in this chapter: 

 Effect of modelling approach 

Where a comparison was made between different calibration models adopted for 

ThetaProbe sensor, namely, 

o Manufacturer (M) 

o General formulae (GF),  

o Soil specific calibration (SSC), 

o Output voltage calibration (OV), 

o Artificial neural networks (ANN). 

Two calibration techniques were tested for ASDi spectrometer, namely, 

o Partial least squares regression (PLSR) 

o Artificial neural networks (ANN). 

The last comparison regarding the modelling approach was preformed between 

ANN data fusion method and SSC and PLSR calibration methods of ThetaProbe 

and ASDi spectrometer, respectively.  With the ANN data fusion method a multiple 

data layers of both ThetaProbe and ASDi spectrometer readouts of V and spectra 

data, respectively, were used as input in addition to other properties of the soil 

(Table 4-1).       
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 Effect of moisture level 

Here the results of effect of three different soil moisture levels on performances of 

both ThetaProbe and ASDi sensors were presented. The Three levels of soil 

moisture content and their averages values of gravimetric and volumetric moisture 

content were as follows: 

o L1 = 0.11 g g-1 and 0.15 cm3 cm-3 

o L2 = 0.20 g g-1 and 0.23 cm3 cm-3 

o L3 = 0.28 g g-1 and 0.32 cm3 cm-3 

o Effect of soil texture  

Here the results of soil texture effect on ThetaProbe and ASDi sensors accuracies 

were compared using three different soil types, namely, 

o Clay 

o Clay loam 

o Sandy loam 

In addition the results of both sensors accuracies, obtained after dividing the soil 

types into two soil textures classes were compared. These classes were:  

o Light textures 

o Heavy textures  

 Land use effect  

Here the results of different land use effect on ThetaProbe and ASDi sensors 

performance and estimated BD were presented, comparing the accuracy obtained 

in arable land soils with grassland soils.  

 Laboratory test and calibration of the prototype combined probe 

The results of the prototype system performance to measure θv, ω and BD are 

represented under the laboratory conditions. 
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 In-situ test of the prototype combined probe 

The capability of the data fusion calibration technique implemented on data 

collected with the prototype combined probe to eliminate BD under field conditions 

of five arable fields is evaluated. 

 The potential error for soil BD estimation 

The potential error for the estimation of soil BD calculated as RMSEp values of θv 

and ω estimation, obtained from current work was compared with the average 

published values reported by other researchers. 

 Mapping using the prototype portable measuring system 

Finally, maps of θv and ω, and soil BD developed with the prototype combined 

sensor are compared with the corresponding maps developed based on the core 

sampling method. In addition variation of these three properties will be examined 

using full-point maps provided for selected arable and grassland soils. 

 

4.1. Effect of modelling  

 Accuracy of ThetaProbe measurement for volumetric moisture content  

Table 4-1 shows the measurement accuracy of θv with the ThetaProbe compared 

to the oven drying method using M, SSC, GF, OV and ANN calibration models with 

one input parameter (e.g. output voltage V). The results suggest that the 

ThetaProbe is capable of measuring θv with high accuracy even with the M 

calibration method, without the need for additional calibration. However, slight 

differences can be observed between these methods. With the M method, the 

measured values of θv over-estimate the oven drying measured values. The 

scatter plot of the ThetaProbe-M predicted versus oven drying measured θv 

illustrates a slope with the x axis with a value of 1.12 cm3 cm-3, indicating over-

estimation of the M model (Figure 4-1A). The SSC calibration method performs 

equally well as that of the M method. However, the GF calibration method provides 
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an improved measurement accuracy (R2 = 0.96 and RMSEp = 0.020 cm3 cm-3) 

(Table 4-1). The RMSEp obtained with these three methods (e.g. M, SSC and GF) 

is still larger than 0.01 m3 m-3, which contradicts the instruction provided by the 

ThetaProbe’s manufacturer. The OV calibration method leads to further 

improvement (R2 = 0.97 and RMSEp = 0.019 cm3 cm-3), as compared to the M, 

SSC and GF methods. ANN analysis with one input (e.g. V) does not perform as 

well as the OV method (R2 = 0.96 and RMSEp = 0.021 cm3 cm-3). However, the 

ANN performance is the second best after the OV method. The worst performing 

methods are the SSC and M with the largest RMSEp values of 0.026 and 0.025 

cm3 cm-3, respectively.  

 

Table 4-1 Measurement accuracy of volumetric moisture content (θv), gravimetric 

moisture content (ω) and bulk density (BD) using the ThetaProbe or visible and 

near infrared (vis-NIR) spectra data (Spec), based on one input and data fusion 

with multiple inputs. 

  
       θv ω       BD 

Calibration 
method 

Input R
2
 

RMSEp, 
cm

3
 cm

-3
 

R
2
 

RMSEp, 
g g

-1
 

R
2
 

RMSEp, 
g cm

-3
 

PLSR & M One - V or Spec 0.95 0.025 0.91 0.027 0.50 0.160 
PLSR & GF One - V or Spec 0.96 0.020 0.91 0.027 0.23 0.187 
PLSR & SSC One - V or Spec 0.95 0.026 0.91 0.027 0.53 0.190 
PLSR & OV One - V or Spec 0.97 0.019 0.91 0.027 0.47 0.165 

ANN 

One - V or Spec 0.96 0.021 0.95 0.020 0.69 0.122 

V, Spec, S, SL, C & OM 0.97 0.019 0.95 0.020 0.70 0.120 

V, Spec, C & OM 0.96 0.020 0.94 0.022 0.65 0.127 

V, Spec & OM 0.97 0.018 0.96 0.018 0.78 0.101 

V, Spec & C 0.97 0.019 0.96 0.018 0.76 0.106 

V and Spec 0.98 0.015 0.98 0.014 0.81 0.095 

M is manufacturer, GF is general formulae, SSC is soil specific calibration, OV is 
output voltage calibration, PLSR is partial least squares regression, OM is organic 
matter content, C is clay content, S is sand content, SL is silt content, V is readout 
voltage of ThetaProbe, Spec is spectra data, ANN is artificial neural networks, 
RMSEp is root mean square error of prediction and R2 if coefficient of 
determination. 
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Measured θv (cm3 cm-3) 

Figure 4-1 Scatter plots between ThetaProbe predicted volumetric moisture 

content (θv) and volumetric moisture content (θv) measured by oven drying 

method, using ThetaProbe’s manufacturer (M) calibration (A) and artificial neural 

networks (ANN) calibration (B). Dashed line = 1:1 line; bold red line = line of best 

fit; = error bars. 

 

The ANN calibration model V, which is based on data fusion generally provides 

better measurement of θv, the Model showed the best results obtained from the 

effect of modelling, only V and vis-NIR spectra were used as input data to generate 

the Model V (Table 4-2) with R2 = 0.98 and RMSEp = 0.015 cm3 cm-3 of testing 

Model V on the independent validation set (Table 4-1), in comparison with the M, 

GF, SSC, OV and ANN-V models. Furthermore, this ANN-data fusion analysis with 

V and spectra only is the best performing among other ANN data-fusion analyses, 

where texture fractions and OM were used as input together with V and Spec 

(Table 4-1). In addition to the fact that the ANN – data fusion model results in the 

best measurement accuracy of θv, a shorter time was needed to conduct the ANN 

calibration-prediction, as compared to the single input modelling methods. This 
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technique requires only V and soil spectra to be used as input data, which are 

measured anyway by the ThetaProbe and vis-NIRS, respectively. 

 

Table 4-2 Model specifications used for different artificial neural networks (ANN) 

analyses for the measurement of volumetric (θv) and gravimetric (ω) moisture 

content. Data used as input are output voltage (V), visible and near infrared 

spectra (Spec), sand (S), clay (C), silt (SL) and organic matter (OM). 

BFGS: Broyden-Fletcher-Goldfarb-Shanno algorithm (Günaydin, 2009); Tanh: 
Hyperbolic tangent is a symmetric S-shaped (sigmoid) function; Exp.: Exponential 
function; Log.: Logarithmic function. 
 

After the ANN – data fusion model, the OV calibration model with one input 

variable (e.g. V) can be ranked as the second best predictor of θv (Table 4-1), 

when validated with the independent validation set. By using 75% (759 samples) of 

the total 1013 soil samples, the following 2nd order polynomial equation was 

established using the OV method (Table 4-2): 

 

𝜃v = 0.52V2 − 0.161V + 0.141                                            (4-1) 

Where, θv is soil volumetric moisture content cm3 cm-3 and V is ThetaProbe output 

voltage (v). 

Model Input Structure 
Training 

algorithm 

Hidden 

function 

Output 

function 
Output 

I V, Spec, S, SL, C, OM 176-5-2 BFGS 208 Log. Exp. θv, ω 

II V , Spec, C, OM 174-7-2 BFGS 92 Log. Exp. θv, ω 

III V , Spec, OM 173-6-2 BFGS 119 Exp. Exp. θv, ω 

IV V , Spec, C 173-4-2 BFGS 105 Exp. Tanh θv, ω 

V V , Spec 172-8-2 BFGS 188 Exp. Tanh θv, ω 

VI Spec 171-7-1 BFGS 202 Tanh Tanh ω 

VII V 1-2-1 BFGS 65 Exp. Tanh θv 
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The GF regression equation results in a slightly less accuracy (RMSEp = 0.020 

cm3 cm-3), as compared to that (RMSEp = 0.019 cm3 cm-3) obtained with Eqn. 4-1, 

as shown in Table 4-1. 

 

Figure 4-2 The relationship between the output voltage of ThetaProbe (V) and the 

soil volumetric moisture content (θv) measured by oven drying method. Bold red 

line = line of best fit; = error bars. 

 Accuracy of visible and near infrared spectroscopy measurement for 

gravimetric moisture content  

When only the vis-NIR spectra were used as input data, a smaller measurement 

accuracy of ω was obtained with the PLSR model (R2 = 0.91 and RMSEp = 0.027 

g g-1), as compared to the ANN model (R2 = 0.95 and RMSEp = 0.020 g g-1) (Table 

4-1). These results were expected, as ANN has been proved to out-perform PLSR 

for the measurement of soil properties with vis-NIRS (Khalilmoghadam et al., 2009; 

Mouazen et al., 2010; Viscarra Rossel and Behrens, 2010; Quraishi and Mouazen, 

2013b). However, this is a clear contradiction of the measurement derived for θv.  

ANN – data fusion based analysis results in much improved measurement 

performance of ω, as compared to the PLSR technique. Furthermore, ANN – data 

fusion modelling based on V and spectra, out-performs (R2 = 0.98 and RMSEp = 
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0.014 g g-1) all other ANN – data fusion analyses based not only on V and spectra 

only, but laboratory measured texture fractions and OM (Table 4-1). After ANN – 

data fusion model based on V and spectra, the second best performing techniques 

are those based either on the fusion of V, spectra and OM or V, spectra and C  (R2 

= 0.96 and RMSEp = 0.018 g g-1).  

  

Measured ω (g g-1) 

Figure 4-3 Scatter plot of independent validation between the estimated ω with vis-

NIRS and measured ω with oven drying, using the PLSR calibration method (A); 

and the ANN – data fusion calibration method (B). Dashed line = 1:1 line; bold red 

line = line of best fit; = error bars. 

 

 Bulk density assessment 

Having ω and θv measured accurately, respectively with the vis-NIRS and 

ThetaProbe, they are substituted in Eqn. 1-9 to derive BD. The accuracy of BD 

assessment with a single input variable (e.g. V or soil spectra) or with multiple input 

variables (e.g. V, soil spectra, C, S, SL and OM) (Table 4-2) is discussed in the 

following sections.  

 Accuracy of bulk density assessment with a single input variable 
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Under this BD modelling category, ω is measured based on vis-NIR spectra - 

PLSR, whereas θv is measured based on V only and by means of the five 

calibration techniques of ThetaProbe discussed above. Generally, the BD 

assessment in this category is not encouraging (R2 = 0.23 – 0.53 and RMSEp = 

0.160 – 0.190 g cm-3). The best assessment is obtained with the ANN - moisture 

content model (R2 = 0.69 and RMSEp = 0.122 g cm-3), however, this still has a 

relatively high RMSEp (Table 4-1). Figure 4-4A illustrates the scatter plots of 

estimated BD with ANN – single input variable moisture content models versus 

oven-drying measured BD. This is still a valuable result, as the analysis is capable 

of predicting BD of soils with a wide range of BD variation between 1.0 and 2.0 g 

cm-3. The intercept of the linear regression equation reveals that the new system 

under-estimates BD, which might be attributed to the relatively low accuracy of the 

vis-NIRS for the measurement of ω, as compared to the ThetaProbe for the 

measurement of θv. 

 

Measured BD (g cm-3) 

Figure 4-4 Scatter plot between estimated and oven drying measured soil bulk 

density (BD) based on artificial neural networks (ANN) with single input   variable 

(A) and ANN – data fusion modelling (B). Dashed line = 1:1 line; bold red line = line 

of best fit; = error bars.  
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 Accuracy of bulk density assessment with multiple input variables 

(data fusion) 

Under this modelling category, both ω and θv are predicted with ANN based on 

different combinations of input variables of vis-NIR spectra: V, S, SL, C and OM 

(Table 4-2). Generally, as for the measurement performance of ω and θv, the 

assessment of BD (using Eqn. 1-9) with ANN – data fusion techniques (R2 = 0.65 – 

0.81 and RMSEp = 0.127 – 0.095 g cm-3) out-performs the corresponding 

assessments obtained with the single input variable methods (R2 = 0.23 – 0.53 and 

RMSEp = 0.160 – 0.187 g cm-3) (Table 4-1). These results are in agreement with 

those reported by Quraishi and Mouazen (2013b). Although high assessment 

accuracy of BD is obtained with different ω and θv models of ANN – data fusion 

with different combinations of input variables, the accuracy increases with the 

decrease in the number of input variable used for ω and θv analyses. This trend is 

clearly illustrated by the increase in RMSEp values with the number of input 

variables used during ANN analyses (Figure 4-5C) of the independent validation 

set. However, R2 values decrease with the increase in the number of input 

variables (Figure 4-6). This trend can be attributed to a similar trend observed for 

θv (Figures 4-5A and 4-6) and ω (Figures 4-5B and 4-6). One exception is for the 

ANN model based on V, spectra, C and OM input variables, for which a smaller 

accuracy can be observed, as compared to those obtained with a larger number of 

input variables (Figures. 4-5 and 4-6). Furthermore, the ANN – data fusion model 

with V, Spec and C performs less well, as compared to that with V, Spectra and 

OM (Figures 4-5 and 4-6). 
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Figure 4-5 Variation of root mean square error of prediction (RMSEp) for the  independent validation set with the 

number of input variable (soil spectra  (Spec),  readout voltage ( V ), sand (S), silt (SL), clay (C) and organic matter  

content (OM) used for artificial neural networks (ANN) to predict volumetric  moisture content (θv) (A); gravimetric 

moisture content (ω) (B), and bulk  density (BD) (C). The results of ANN – data fusion are compared to those 

obtained with single-variable input model (taken as an example), based on partial least squares regression (PLSR) 

to predict ω and specific soil calibration (SSC) to predict θv. 
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Figure 4-6 Variation of coefficient of determination (R2) of the independent 

validation set with the number of input variables (soil spectra (Spec), readout 

voltage (V), sand (S), silt (SL), clay (C) and organic matter content (OM) used 

for artificial neural neural networks (ANN) to predict volumetric moisture content 

(θv) (A); gravimetric moisture  content (θv) (B), and  bulk density (BD) (C). The 

results of ANN – data fusion are compared to those obtained with single-

variable input model (taken as an example), based on partial least squares 

regression (PLSR) to predict ω and specific soil calibration (SSC) to predict θv. 

 

4.2. Effect of moisture level 

Appendix 1 shows the ANN results of θv and ω for three individual moisture 

levels and for all three moisture content levels (collective calibration) models 

based on data collected from arable lands only. Different network structures 
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for all models contained 172 neurons (171 neurons of spectra data and one 

neuron of V) and the output layer of all models generated contained two 

neurons of θv and ω. Eight neurons in the hidden layers were used with all 

three individual moisture content models, whereas 18 neurons were used with 

the collective model. Most non-linear functions were chosen automatically in the 

hidden and output activations, except for the L3 output activation where it was 

linear (identity function).  

All three individual moisture content models performed satisfactorily in cross-

validation and training (R2 = 0.95 – 1) (Appendix 1). The performance improved 

of both training and cross-validation with soil moisture content increasing, but 

with different rates. While slight improving observed between L2 and L3, 

performance difference was obvious when comparing between L1 and other 

two moisture levels. The collective moisture content model show similar results 

to the individual moisture content analyses. 

 Accuracy of ThetaProbe measurement for volumetric moisture content 

The results of four different ANN calibration models, which were developed for 

three levels of moisture content and the collective model (Appendix 1), revealed 

high performance for each calibration model tested. However, the accuracy for 

the training and cross-validation of θv increased accordingly with increasing soil 

moisture level. Similar behaviour can be observed in the test sets (Appendix 3), 

where, for example, RPD and R2 increased with moisture content level with 

4.00, 7.00 and 10.38 cm3 cm-3 and 0.94, 0.98 and 0.99 values at L1, L2 and L3, 

respectively. The RMSEp values showed a slight decrease from L1 to L2 and 

no difference between L2 and L3 could be observed (Table 4-3), this is in-line 

with Mittelbach (2011) when field tested four installed dielectric soil sensors 

down to 110 cm of depth, resulting lower absolute error of θv prediction during 

the dry conditions comparing to the measurements near or at the saturation 

conditions of the soil.  

The scatter plots of measured versus estimated θv for the test sets showed the 

points are distributed closer to the 1:1 line with small slope and intercept values, 
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confirming high prediction accuracy (Appendix 2). However, soil texture at L2 

and more clearly at L3 effected the distribution of the points, which resulting a 

wider range or variability of soil moisture across the fields (Appendix 2 B and 

C).  

Table 4-3 Results of volumetric moisture content (θv) (cm3 cm-3), gravimetric 

moisture content (ω) (g g-1) and soil bulk density (BD) (g cm-3) prediction in the 

validation sets, based on artificial neural networks (ANN) calibration methods 

for the soil moisture level effect experiment of level 1 (L1), level 2 (L2), level 3 

(L3), and the collective model. 

 
Moisture 

level 

θv ω BD 

R2 
RMSEp 
cm3 cm-3 

RPD R2 
RMSEp 

g g-1 
RPD R2 

RMSEp 
g cm-3 

RPD 

L1 0.94 0.011 4 0.89 0.009 2.89 0.58 0.081 1.64 
L2 0.98 0.011 7 0.98 0.012 7.08 0.74 0.068 1.85 
L3 0.99 0.013 10.38 1 0.008 16.63 0.86 0.061 2.51 

Collective 0.99 0.013 9 0.98 0.018 6.61 0.57 0.104 1.57 

R2: coefficient of determination; RMSEp: root mean square error of prediction; 
RPD: residual prediction deviation (Standard deviation/root mean square error 
of prediction). 

 

 Accuracy of visible and near infrared spectroscopy measurement for 

gravimetric moisture content      

The results of prediction accuracy of ω with the ANN analysis showed high 

performance (Table 4-3), using the independent validation sets of the three 

moisture levels plus the collective model. The accuracy improved with 

increasing soil moisture level. For example, the RPD and R2 values increased 

with moisture content level with 2.89, 7.08 and 16.63 g g-1 and 0.89, 0.98 and 1 

values at L1, L2 and L3, respectively. However, RMSEp responses to the 

moisture levels were different, where the largest value (0.012 g g-1) was 

calculated for L2, as compared to those of L1 (0.09 g g-1) and L3 (0.08 g g-1).  

The collective model preformed slightly better (RMSEp = 0.018 g g-1 comparing 

to Quraishi (2013), who reported RMSEp value of 0.024 g g-1 of ω prediction 

using the ANN method (Appendix 3D), although both studies used same fields 
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with similar variability in the data sets. The improved results of the current work 

might be attributed to the fusion of ThetaProbe and vis-NIR spectral data when 

used as input to ANN analysis. Appendix 3 shows ANN predicted ω values 

using ASDi spectrophotometer versus the oven drying measured ω values of 

the three moisture levels and collective model. Again the points distributed 

close to the 1:1 line with small slope and intercept values (particularly for L2 and 

L3). The x intercept and slope values were 0.007, 0.0042, 0.0045 and 0.027 g 

g-1 and 0.99, 1.00, 1.01 and 0.95, for L1, L2, L3 moisture content levels and for 

the collective model, respectively. For the same reason mentioned above of 

ThetaProbe measurements, soil texture at L2 and more clearly at L3 effected 

the distribution of the points, which resulting a wider range or variability of soil 

moisture across the fields, as soil fine textures tend to hold the moisture for a 

longer time, this phenomena was not clearly observed with L1, where the 

measurements were conducted in the fields after a long period in which the rain 

did not fall, making the soil moisture more homogeneous in L1 comparing to L2 

and L3 (Appendix 2 A, B and C).  

 

 Accuracy of bulk density assessment with soil moisture level 

The estimated values of θv and ω using the ThetaProbe and vis-NIRS, 

respectively, were substituted into Eqn. 1-9 to derive soil BD for the three 

moisture levels and the collective models. Table 4-5 shows the prediction 

results of soil BD for the independent validation sets, where the accuracy 

improves significantly with increasing soil moisture. With increasing the 

moisture content level, R2 and RPD values increased, while RMSEp decreased. 

The highest prediction accuracy was with L3 (R2 = 0.86, RMSEp = 0.61 g cm-3; 

and RPD = 2.51).  

Figures 4-7 shows scatter plots of soil BD measured by the oven drying method 

against soil BD predicted using the two sensors with the ANN calibration 

technique. The scattered points of the distribution lie nearer to the 1:1 line as 

the moisture level increased. The prediction results of θv and ω were improved 

with soil moisture increasing with R2 and RPD values raising (Table 4-3). 
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However, it was observed that ω prediction accuracy is the most influential of 

BD prediction accuracy, despite that RMSEp value of θv at L3 was the highest, 

with the lowest RMSEp value of ω. This supports the author hypothesis that the 

vis-NIRS data are the key factor when different levels of soil moisture are used 

to predict BD.  

  

Measured BD (g cm-3) 

Figure 4-7 Core sampling versus predicted soil bulk density (BD) with the 

artificial neural networks (ANN) calibration method, for the soil moisture levels 

effect experiment of level 1 (L1) (A), level 2 (L2) (B), level 3 (L3) (C), and the 

collective model (D). Dashed line = 1:1 line; bold red line = line of best fit; = 

error bars. 

4.3. Effect of soil texture 

The effect of soil texture class on the measurement accuracy of θv and ω and 

subsequently on BD was evaluated based on data fusion with ANN analysis. 
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other statistical analysis. ANN success can be attributed to power, versatility, 

and ease of use, its ability to learn from examples is one of the many features of 

building neural networks that enable the user to generate accurate models of 

the underlying relationship between various data sets, although the 

representative data used to invoke the training algorithms is the key factor to 

generate accurate models. Although the Statistica software can be run 

automatically to learn the structure of the data, the user essentially needs to 

have some previous knowledge of how to select and prepare the training and 

the test data sets, and how to interpret the results, after all, the level of user 

knowledge needed to successfully build ANN models is considerably lower than 

those needed in most traditional statistical tools and techniques, specifically 

when ANN models are hidden behind the well designed and intelligent 

computer programs (StatSoft, 2012). 

ANN analysis results for arable lands were presented separately than those for 

grassland data, as to avoid the effect of different land use. Appendix 4 shows 

the ANN analysis results for clay, clay loam, and sandy loam soil textures, and 

the total collected from arable land and grassland. Different network structures 

resulted, where the input layer for all models contained 172 neurons (171 

neurons of spectra data and one neuron of V) and the output layer of all models 

generated contained two neurons of θv and ω. Various numbers of neurons, 

ranging from 8 to 24, were in the hidden layer. Mix linear and non-linear 

functions were chosen automatically by the Statistica software in the hidden and 

output activations, however, the majority of these functions were non-linear. In 

general, the performance of the training and validation sets of soil textures from 

grassland was better than those from arable land. 

 Accuracy of ThetaProbe measurement of volumetric moisture 

content as affected by soil texture class 

The effect of texture class was tested on the prediction accuracy of θv using 

three texture classes and the collective model using the ANN calibration method 

(Table 4-4). Results showed the performance of ThetaProbe calibration models 

was affected by the soil texture class; similar findings were reported by 
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Ponizovsky et al., (1999) and Sarani and Afrasiab (2012). The highest R2 and 

lowest RMSEp values from the clay loam texture indicated the most accurate 

measurement with values of 0.89 and 0.018 cm3 cm-3, respectively, on the 

arable land and values of 0.99 and 0.008 cm3 cm-3, respectively, on the 

grassland. Similarly, the RPD of the clay loam texture was the best in grassland 

with a value of 8.75 and arable lands with a value of 3.33. 

The second best accuracy was obtained for the collective texture model. The 

accuracy in the sandy loam texture was the third best for arable land model, 

giving the third best RPD value of 2.38, instead of the clay loam texture as 

expected, as it had the highest SD value among the other textures tested (Table 

3-6). The collective model containing all three textures from arable land was 

less accurate compared to the collective model of the same soil textures from 

grassland, with RPD values of 4.35 and 6.43, respectively. 

 

Table 4-4 Artificial neural networks prediction results of volumetric moisture 

content (θv) (cm3 cm-3) based on input of ThetaProbe output voltage (V) and 

visible and near infrared spectra (Spec) for different soil textures collected from 

arable land and grassland fields. 

Soil textures 

Arable land Grassland 

R2 
RMSEp, 

cm3 cm-3 
RPD R2 

RMSEp, 

cm3 cm-3 
RPD 

Clay 0.80 0.019 2.11 0.96 0.018 5.00 

Clay loam 0.89 0.018 3.33 0.99 0.008 8.75 

Sandy loam 0.87 0.021 2.38 0.90 0.019 3.16 

       Collective 0.95 0.023 4.35 0.97 0.014 6.43 

R2: coefficient of determination; RMSEp: root mean square error of prediction; 
RPD: residual prediction deviation (Standard deviation/root mean square error 
of prediction). 

 

Appendix 5 and Appendix 6 show the scatter plots of the predicted and 

measured θv for clay (A), clay loam (B), sandy loam (C) soil textures and the 

collective (D) models for arable land and grassland, respectively, where the 
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points scattered closest to the 1:1 line have a clay loam texture and from both 

types of land use. Also of note is that the x intercept decreases with decreasing 

CC in the arable soils (Appendix 5). The ANN models for clay and clay loam 

textures from grassland predicted θv more accurately and the x intercepts were 

better than those of the same textures from arable land. However, θv was 

under-estimated for the sandy loam texture on grassland. Both collective 

models from arable land and grassland textures showed good prediction 

accuracy of θv (Appendix 6).  

 Accuracy of visible and near infrared spectroscopy for gravimetric 

moisture content measurement as affected by texture classes 

The effect of the same three soil textures, namely, clay, clay Loam and sandy 

loam was evaluated on the prediction accuracy of ω using the ANN calibration 

method. The results presented in Table 4-5, generally showed a good 

performance of ω model for each soil texture. Eight different ANN calibration 

models were generated from the arable land and grassland texture classes 

(Appendix 4).  

Table 4-5 Artificial neural networks (ANN) results of gravimetric moisture 

content (ω) (g g-1) prediction based on input data of visible and near infrared 

(vis-NIRS) spectra and ThetaProbe output voltage (V) for different soil textures 

collected from arable land and grassland fields. 

Texture 

class 

Arable land Grassland 

R2 
RMSEp,  

g g-1 
RPD R2 

RMSEp, 
g g-1 

RPD 

Clay 0.83 0.015 2.00 0.97 0.011 5.45 
Clay loam 0.87 0.018 2.78 1.00 0.004 12.50 
Sandy loam 0.89 0.013 2.31 0.95 0.019 4.21 

Collective 0.96 0.018 5.00 0.98 0.011 6.36 

R2: determination coefficient; RMSEp: root mean square error of prediction; 
RPD: residual prediction deviation (Standard deviation/root mean square error 
of prediction). 

Generally, the calibration models of soil textures collected from the grassland 

fields were more accurate than those collected from the arable land fields. The 

lowest accuracy of ω prediction using the independent validation was for clay 
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on arable land with the highest RMSEp of 0.018 g g-1 and the lowest RPD of 

2.00. The measurement in the grassland textures showed a clay loam texture 

RPD value of 12.50, which is the highest accuracy among all. However, the rest 

of the RPD values show good to excellent prediction accuracy of ω, according 

to Viscarra Rossel et al. (2006).  

Grassland RMSEp results showed considerably larger values for sandy loam 

textures (0.019 g g-1), as compared to the remaining two textures and the 

collective texture model. A similar result is reported by Dalal and Henry (1986), 

who found larger RMSEp values associated with ω prediction for coarsely 

textured and low OM soils. The RMSEp of the collective model in arable soils 

(0.018%) was close to the RMSEp value of 0.021% reported by Mouazen et al., 

(2006) for arable soils, where 360 soil samples were used from different fields 

with various soil textures. The collective texture model performed satisfactorily 

in grassland soils too, suggesting a mixed texture model to perform well for the 

prediction of ω. 

The RMSEp values of the ANN prediction of ω using the ASDi spectrometer 

revealed mixed results regarding the soil texture effect, where the best accuracy 

of prediction was obtained with the clay loam texture from grassland (RMSEp = 

0.004 g g-1) and the lowest prediction accuracy was gained from clay loam 

textures collected from arable land (RMSEp = 0.018 g g-1). The collective 

texture model of arable land results of R2, RMSEp and RPD of 0.96, 0.018 g g-1 

and 5.00, respectively, which are slightly more accurate from those reported by 

Mouazen et al. (2005) with R2, RMSEp and RPD values of 0.75, 0.025 and 3.38 

kg kg-1, respectively.     

Appendix 7 and Appendix 8 show the scatted plots of predicted and measured 

ω of soil textures namely, clay (A), clay loam (B), sandy loam (C) and the 

collective texture (D) collected for arable land and grassland, respectively, 

where the points are closer to the 1:1 line for all individual soil texture models 

and the collective model of grassland compared to the all individual soil texture 

models and the collective texture model of arable land. 
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 Accuracy of soil BD with soil texture classes effect 

The results of soil BD prediction with data fusion of V and vis-NIR spectra data 

gained from the dielectric and ASDi sensors, respectively, using Eqn. 1-9 can 

be found in Table 4-6. The highest accuracy of soil BD prediction was recorded 

for the sandy loam texture from grassland soils with R2 of 0.95, RMSEp of 0.075 

g cm-3 and RPD value of 4.13, and the lowest accuracy was with the clay loam 

texture from arable land with R2 of 0.42, RPD of 1.65, and RMSEp of 0.115 g 

cm-3. Although excellent prediction results e.g. RPD values were found with 

most soil textures, RPD values of soil textures from grassland were better than 

those from arable land, except for the clay texture where the arable land was 

better with an RPD value of 3.26 compared to a clay texture from grassland with 

a RPD value of 2.44. A similar trend dominated the values of RMSEp for BD 

prediction (Table 4-6). RPD values in grassland soils showed improving BD 

prediction with decreasing CC. This is not true for arable land soils (Table 4-6).    

Table 4-6 Prediction results for soil bulk density (BD) for different soil textures 

collected from arable land and grassland soils. 

Texture 
class 

Arable lands Grasslands 

R2 
RMSEp, 
g cm-3 

RPD R2 
RMSEp, 
g cm-3 

RPD 

Clay 0.90 0.046 3.26 0.85 0.082 2.44 

Clay loam 0.42 0.115 1.65 0.77 0.048 2.50 

Sandy loam 0.49 0.083 2.05 0.95 0.075 4.13 

Collective 0.68 0.079 2.53 0.91 0.066 3.79 

R2: determination coefficient; RMSEp: root mean square error of prediction; 
RPD: residual prediction deviation (Standard deviation/root mean square error 
of prediction). 

Figures 4-8 and 4-9 illustrate the scatter plots of estimated BD versus oven 

drying measured BD. The intercept of the linear regression equation reveals 

that the new system considerably under-estimates BD with all texture models 

except for sandy loam soils for grassland soils. This is in agreement with 

findings of Quraishi (2013), who reported BD prediction accuracy in a clay soil 

texture was less accurate comparing to the BD estimation in the sandy loam 

texture, using an on-line system (Mouazen et al., 2006) to predict soil BD with 

sensor array including: vis-NIRS, load cell and depth wheel. However, the 
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measurements of the current work were of less under-estimation for clay 

textures comparing to clay loam textures, and the only exceptional over-

estimated BD was found for sandy loam texture of grassland (Figure 4-9), which 

might be attributed to the relatively lower accuracy of the vis-NIRS for the 

measurement of ω, as compared to the ThetaProbe for the measurement of θv 

(Tables 4-4 and 4-5). 
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Measured BD (g cm-3) 

 

Figure 4-8 Scatter plots of core sampling measured versus sensor fusion 

predicted soil bulk density (BD) for clay (A), clay loam (B) and sandy loam (C) 

textures and the collective texture model (D), for samples collected from arable 

land fields. Dashed line = 1:1 line; bold red line = line of best fit; = error bars. 
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Measured BD (g cm-3) 

 

Figure 4-9 Scatter plots of core sampling measured versus sensor fusion 

predicted soil bulk density (BD) for clay (A), clay loam (B) and sandy loam (C) 

textures and for the collective texture model (D), of samples collected from 

grassland fields. Dashed line = 1:1 line; bold red line = line of best fit; = error 

bars. 

4.4. Light and heavy soils effect 

Appendix 9 provides the ANN analysis results for light soils, heavy soils and the 

collective, for samples collected from arable lands only. The purpose behind 

using arable land samples was to reduce the number of factors that affect the 

measurement accuracy of the new system (e.g. agriculture practice) and to 

provide more specific calibration models that can be used to predict θv and ω 
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on arable lands. In addition, arable soils are more affected by soil compaction 

problem than grassland soils, due to the use of heavy agriculture machinery 

and the intensive use of the land. Various network structures resulted, where 

the input layer for all models contained 172 neurons (171 neurons of spectra 

data and one neuron of V) and the output layer of all models generated 

contained two neurons of θv and ω. The number of neurons in the hidden layer 

ranged from 8 to 21. Linear and non-linear functions were chosen automatically 

by the Statistica software in the hidden and output activations. Generally, the 

training performance for the light soils was slightly better than those for the 

heavy soils (Appendix 9). Alternatively, the validation of the models using the 

validation set showed models for the heavy soils have outperformed those of 

the light soils (Appendix 14). 

 Accuracy of ThetaProbe measurement of volumetric moisture 

content for the light and heavy soils 

Although high accuracy resulted from the ThetaProbe calibration models for 

both light and heavy soils, the independent validation of the heavy soils showed 

a better prediction accuracy of θv (Appendix 14), as compared to the training 

set (Appendix 9). The higher R2 (0.96) and RPD (4.38) values for the heavy 

soils indicate more accurate measurement as compared to lower R2 (0.93) and 

RPD (3.75) for the light soils. The effect of light and heavy soils was not obvious 

in the RMSEp values, hence, they were 0.016 cm3 cm-3 for both soil categories 

(Table 4-7). In this case, the use of RPD for the comparison is essential to 

identify the better accuracy. The highest RPD value of 5.24 was obtained for the 

collective model of both light and heavy soils (Table 4-7). However, the 

collective model resulted in the highest RMSEp, suggesting the use of individual 

texture class (heavy or light) to provide the smallest error and the best model 

performance.  
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Table 4-7 Artificial neural networks prediction results for the prediction of soil 

volumetric moisture content (θv) (cm3 cm-3), gravimetric moisture content (ω) (g 

g-1) and bulk density (BD) (g cm-3) based on the output voltage (V) of the 

dielectric sensor and visible and near infrared spectra (Spec) used as an input 

for the artificial neural networks (ANN) analyses of the light and heavy soils and 

collective soil textures. 

Index 

θv ω BD 

R2 
RMSEp 
cm3 cm-3 

RPD R2 
RMSEp 

g g-1 
RPD R2 

RMSEp 
g cm-3 

RPD 

Light 0.93 0.016 3.75 0.9 0.012 3.33 0.49 0.106 1.6 

Heavy 0.96 0.016 4.38 0.96 0.016 5 0.92 0.053 3.4 

Collective 0.96 0.021 5.24 0.96 0.018 5.56 0.71 0.092 2.17 

R2: determination coefficient; RMSEp: root mean square error of prediction; 
RPD: residual prediction deviation (Standard deviation/root mean square error 
of prediction). 

 

Appendix 10 shows the scatter plots of the predicted versus measured θv by 

oven drying for light soils (A), heavy soils (B) and the collective soil models (C), 

where the points are aligned best close to the 1:1 line for the heavy soils 

independent prediction. However, among the three models of θv, the smallest 

intercept with x axis of 0.009 cm3 cm-3 and the best slope of 0.98 were obtained 

for heavy soils model, ensuring the best prediction performance. The positive 

values of the intercepts of all three models indicate under-estimation, a result 

that contradicts to that of Robinson et al. (1999), who reported over-estimation 

of θv obtained with a ThetaProbe for sandy and sandy loam soil textures.  

 Accuracy of visible and near infrared spectroscopy for gravimetric 

moisture content measurement for light and heavy soils 

The effect of light and heavy soils on the prediction accuracy of ω with the ANN 

calibration method was studied. The results of the independent validation sets 

including statistical factors: R2, RMSEp and RPD are presented in Table 4-7. 

Generally, the performance of vis-NIRS to predict ω, using the ANN technique 

for both soils (light and heavy) was excellent with the collective texture model 

giving the best RPD value of 5.56, but again the largest RMSEp of 0.018 g g -1. 
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Similar finding was reported by Mouazen et al. (2007) for a collection of soil 

samples from Belgium and Northern France, who explained that the high 

accuracy to predict ω using vis-NIRS can be attributed to the clear influential on 

the spectra data by the O-H bond energy absorbance in the second overtone 

region at 1450 nm. Although, the RMSEp values indicates that the accuracy 

was higher with light soils compared to the heavy soils (Table 4-7).  

Appendix 11 shows the scatter plots between the predicted and measured ω, 

respectively, for light soils (A), heavy soils (B) and the collective soil texture 

class (C), where the points are closest to the 1:1 line with the heavy soils.  The 

smallest x axis intercept and the perfect slope of 0.0008 g g -1 and, respectively 

suggest the best prediction is obtained for the heavy soils, although the root 

mean square error was slightly larger than that of the light soils (Appendix 14). 

 Accuracy of soil bulk density estimation with light and heavy soils 
effect 

The independent validation results of soil BD prediction with data fusion of V 

and spectra data using the dielectric and vis-NIRS sensors, respectively, and 

based on the ANN calibration method are shown in Table 4-7. All statistical 

factors including, R2, RMSEp and RPD, which have been used to compare light, 

heavy and the collective models, indicate that the measurement of soil BD for 

the heavy soils gave the best accuracy of prediction, with R2, RMSEp and RPD 

values of 0.92, 0.053 g cm-3 and 3.40, respectively.  The lowest accuracy was 

with light soils and the second best was the collective texture model (Table 4-7). 

Figure 4-10 shows the scatter plots of the predicted versus measured soil BD 

by data fusion and oven drying methods, for light soils (A), heavy soils (B) and 

the collective (C), where the points are closest to the 1:1 line with the heavy 

soils of the independent validation data set. The lowest x intercept (0.023 g cm -

3) and best slope of 0.98 of the heavy soils indicate the best performance 

compared to the other models. This suggests dividing samples into heavy and 

light soils when estimation of BD is required for heavy soils. For light soils, 

however, merging heavy and light soils in a collective texture model is expected 

to result in much improved estimation performance 
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Measured BD (g cm-3) 

Figure 4-10 Scatter plots of core sampling measured versus artificial neural 

networks (ANN) predicted soil bulk density (BD) for the light soils (A), the heavy 

soils (B) and the collective texture soil samples (C). Dashed line = 1:1 line; bold 

red line = line of best fit; = error bars. 
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Appendix 12 provides the ANN analysis results for arable land, grassland and 
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neurons of θv and ω. The numbers of neurons in the hidden layer were 24, 21 

and 18 for arable land, grassland and the collective models, respectively. All 

models used non-linear functions and were chosen automatically by the 

Statistica software in the hidden and output activations. The performance of the 

three ANN model categories in the training and cross-validation provided 

comparable performance. 

 Accuracy of ThetaProbe measurement for volumetric moisture 

content for the land use effect 

The ThetaProbe measurement of θv gave high accuracy results in both arable 

and grassland soils. However, the independent validation of the arable soils 

revealed the highest prediction accuracy of R2 and RPD, with values of 0.99, 

and 8.23, respectively (Table 4-8). However, the grassland model has predicted 

θv with less error with RMSEp value of 0.013 cm3 cm-3. The R2, RMSEp and 

RPD values of 0.97, 0.018 cm3 cm-3 and 5.29 of the collective model indicates 

the lowest prediction accuracy of θv, (Table 4-8).  

Appendix 13 shows the scatter plots of predicted versus measured θv for arable 

land soils (A), grassland soils (B) and the collective scenario (C), where the 

points closest to the 1:1 line are found in the grassland soils of the independent 

validation data set. However, the arable land soils and the collective models 

also predicted θv accurately.  
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Table 4-8 Artificial neural networks (ANN) results for the prediction of soil 

volumetric moisture content (θv) (cm3 cm-3) based on the output voltage (V) of 

the ThetaProbe and visible and near infrared spectra (Spec) used as an input 

for ANN analyses. 

Land use 

θv Ω BD 

R2 
RMSEp 
cm3 cm-3 

RPD R2 
RMSEp 

g g-1 
RPD R2 

RMSEp 
g cm-3 

RPD 

Arable land 0.99 0.014 8.23 0.97 0.015 5.73 0.67 0.097 2 
Grassland 0.98 0.013 6.19 0.98 0.01 7.31 0.91 0.083 3.18 

Collective 0.97 0.018 5.6 0.98 0.012 6.86 0.77 0.079 2.4 

R2: determination coefficient; RMSEp: root mean square error of prediction; 
RPD: residual prediction deviation (Standard deviation/root mean square error 
of prediction). 

 

 Accuracy of visible and near infrared spectroscopy for gravimetric 

moisture content measurement for the land use effect 

The ANN results of the independent validation sets including statistical factors: 

R2, RMSEp and RPD are shown in Table 4-8. All the three calibration models 

have predicted ω with excellent performance. The prediction of ω for the 

grassland soils was slightly better than arable soils and the collective model had 

the second best results with RMSEp value of 0.012 g g-1. The R2, RMSEp and 

RPD results of this analysis with values of 0.97, 0.015 g g-1 and 5.73, 

respectively, for arable soils, are over preformed of R2, RMSEp and RPD 

values, for the measurements of ω from a multiple  field reported by Mouazen et 

al. (2006b) of 0.88, 0.021 g g-1 and 2.87, respectively, when they used PLSR 

calibration method.  

Appendix 14 shows the scatter plots of the predicted versus measured ω, 

respectively, for arable soils (A), grassland soils (B) and the collective soil (C) 

models, where the points closest to the 1:1 line are found in the grassland soils 

of the independent validation data set (Appendix 14B). Also, the grassland 

model resulted in the smallest intercept of 0.0021 g g -1 and the perfect slope, 

indicating the best performance among the other two models. However, the 

differences between the three models were minimal indicating no clear effect of 
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land use of measurement accuracy on ω. This result does not in line for the 

measurement of ω, where the best accuracy was found for grassland soils 

(Table 4-12). 

 Accuracy of data fusion for soil bulk density estimation for the land 

use effect 

The predicted values of θv and ω using the ThetaProbe and vis-NIRS, 

respectively, substituted into Eqn. 1-9 to derive soil BD using samples of the 

independent validation sets are shown in Table 4-8. All statistical factors 

including, R2, RMSEp and RPD, which have been used to compare between 

the three models, indicate that the estimation of soil BD from grassland soils 

achieved the highest accuracy, with R2, RMSEp and RPD values of 0.91, 0.083 

g cm-3 and 3.18, respectively.  The lowest accuracy was with arable soils and 

the second best was the collective model. Unfortunately, no results could be 

found in the literature about the prediction accuracy of θv and ω using dielectric 

probe and vis-NIRS, respectively, separately for arable lands and grasslands.  

Figure 4-11 shows the scatter plots of measured versus predicted BD using the 

two sensors. The points distributed nearer to the 1:1 line are found in the soils 

from grasslands. However, all three ANN models underestimated soil BD, with x 

axis intercept values of 0.438, 0.079 and 0.35 g cm-3 for the arable land, 

grassland and the collective models, respectively.  The overall conclusion in this 

section is that splitting samples into arable and grassland does not lead to 

improved estimation accuracy of BD. On the contrary, RMSEp (Table 4-6), 

intercept and slope values (Figure 4-11B) indicate the grassland model to 

perform the best as compared to the other two models. 
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Measured BD (g cm-3) 

Figure 4-11 Scatter plots of core sampling measured versus artificial neural 

networks (ANN) predicted soil bulk density (BD) for arable land (A), grassland 

(B) and the collective sample (C) models. Dashed line = 1:1 line; bold red line = 

line of best fit; = error bars. 

5.6. Evaluation of the prototype combined probe 

5.6.1. Laboratory test and calibration of the prototype combined probe 

The output voltage (V) of the dielectric sensor, which was assembled on a 

standard penetrometer, was tested in the laboratory using two soil textures 

namely, sandy loam and clay loam, where three repeated readouts were 

recorded and the average was considered. Figure 4-12 shows the relationship 

between V of the dielectric probe and θv measured by the oven drying method 

for the two soil textures, where, different relationships can be observed, 

including: linear and 3rd order polynomials, respectively. Similar observations 
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were reported by Seyfried et al. (2005) when they studied the effect of a range 

of soil textures on a dielectric sensor. Both relations gave high R2 values of 0.98 

and 0.99 for sandy loam and clay loam textures, respectively. 

 

Figure 4-12 Laboratory measured relationship between the output voltage (V) 

and volumetric moisture content (θv) of the dielectric sensor of the prototype 

combined sensor, in sandy loam (A) and clay loam (B) textures. Bold red line = 

line of best fit; = error bars. 

y = 1.4x + 0.49 
RMSE = 0.091 

R² = 0.98  

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4

V
 (

v
) 

θv (cm3 cm-3) 

A 

y = -4.53x3 + 1.57x2 + 0.69x + 0.54 
RMSE = 0.023 

R² = 0.99 

 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4

V
 (

v
) 

θv (cm3 cm-3)  

B 



139 
 

The RMSE value from the laboratory test revealed smaller error of 

measurement with the clay loam texture (RMSE = 0.023 cm3 cm-3) than with the 

sandy loam (RMSE = 0.091 cm3 cm-3). The reason for this is mainly related to 

the structural failure of the sandy loam texture, associated with the addition of 

moisture to the test samples, especially, with θv above 0.20 cm3 cm-3 (Figure 4-

12A). This phenomena was less noticeable with the clay loam texture (Figure 4-

12B), which can naturally hold more moisture before failure compared to the 

sandy loam texture. 

Figure 4-12 Laboratory measured relationship between the output voltage (V) 

and volumetric moisture content (θv) of the dielectric sensor of the prototype 

combined sensor, in sandy loam (A) and clay loam (B) textures. Appendix 15 

shows the results of the ANN calibration models of sandy loam and clay loam 

soil textures, using V and spectra data only, obtained from the dielectric and vis-

NIRS sensors, respectively. A total of 170 neurons were used in the input layer, 

divided into 169 neurons of vis-NIR spectra and one neuron of V. All of the 

calibration models generated performed well as indicated by the R2 values of 

each training and validation data set, and for both soil textures and for the 

collective sample model. 

 Dielectric sensor performance under laboratory conditions 

Generally, high accuracy of θv prediction using the independent validation sets 

was obtained from the laboratory test of the dielectric sensor of the combined 

probe, where three repeated readouts were recorded and the average was 

considered of V values of each prepared soil sample with various MC, with both 

soil textures used in the test. However prediction in the sandy loam texture was 

better with a RMSEp of 0.009 cm3 cm-3 and RPD = 10.21 compared to a 

RMSEp = 0.040 cm3 cm-3 and RPD = 3.36 for the clay loam texture (Table 4-9). 

This is due to the formation of air pockets around the central electrode ring of 

the dielectric sensor in the clay loam texture more than the sandy loam texture. 

Naderi-Boldaji et al. (2012) reported a rather low correlation between oven dried 

and dielectric sensor measured values of θv (R2= 0.544). They used a linear 

calibration formula for the soil moisture range of 0.20 to 0.40 cm3 cm-3, under 
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laboratory conditions. Adamchuk et al. (2009) evaluated a capacitance based 

dielectric sensor for on-line mapping applications. They reported a R2 value of 

0.79 for the measurements of θv under laboratory conditions, while they 

observed a 57% reduction of θv for field readings by using the laboratory 

calibration model.  

 

Table 4-9 Volumetric moisture content (θv) prediction results using dielectric 

probe under laboratory conditions of the independent validation sets, of sandy 

loam, clay loam textures and the collective sample model.  

 
Sandy loam Clay loam Collective 

R2 0.99 0.92 0.94 
RMSE, cm3 cm-3 0.009 0.040 0.030 
RPD 10.21 3.63 3.82 

R2: coefficient of determination. RMSE: root mean square error of prediction 
and RPD: residual prediction deviation. A RPD value larger than 2.5 indicates 
excellent model prediction (Viscara Rossel et al., 2006).  

 

The scatter plots of measured versus predicted θv for sandy loam, clay loam 

and collective samples, shown in Figure 4-13 indicate excellent prediction 

performance in the three cases. All three cases indicate small intercept, high R2 

and almost perfect slope. 

 

 

 



141 
 

 

 

Measured θv (cm3 cm-3) 

 

Figure 4-13 Scatter plots core sampling measured versus artificial neural 

networks (ANN) predicted soil volumetric moisture content (θv) using the 

prototype combined senor for laboratory measurements in sandy loam soils (A), 

clay loam soils (B) and the collective sample (C) models. Dashed line = 1:1 line; 

bold red line = line of best fit; = error bars. 
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expected due to the fact that the test is carried out under controlled laboratory 

conditions. However, the collective model resulted in the smallest RPD value, 

as compared to the other two models. Furthermore, small differences are 

apparent between soil textures, particularly with R2 and RMSEp values (Table 

4-10).  

 

Table 4-10 Gravimetric moisture content (ω) prediction results under laboratory 

conditions of the independent validation sets, of sandy loam, clay loam textures 

and the collective sample set.  

 
Sandy loam Clay loam Collective 

R2 0.99 0.94 0.94 
RMSE, g g-1 0.007 0.037 0.029 
RPD 12.67 3.90 4.09 

R2: coefficient of determination. RMSE: root mean square error of prediction; 

and, RPD: residual prediction deviation.  

 

The scatter plots of measured versus predicted ω for sandy loam, clay loam 

and collective samples, shown in Figure 4-14 indicate excellent prediction 

performance in the three cases. All three cases indicate small intercept, high R2 

and almost perfect slope. 
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Measured ω (g g-1) 

 

Figure 4-14 Scatter plots of core sampling measured versus artificial neural 

networks (ANN) predicted soil gravimetric moisture content (ω) using the 

prototype combined sensor from laboratory measurements in sandy loam soils 

(A), clay loam soils (B) and the collective sample (C) models. Dashed line = 1:1 

line; bold red line = line of best fit; = error bars. 

 

 Estimation of bulk density under laboratory conditions 

The results of BD prediction show good accuracy for the sandy loam texture 

with R2, RMSEp and RPD values of 0.92, 0.031 g cm-3 and 5.88, respectively,  

compared to the clay loam texture (Table 4-11), where the prediction of BD was 

relatively lower. Quraishi (2013) reported a similar but rather better result for BD 
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prediction using a prototype BD sensor under laboratory conditions for a sandy 

loam (RMSEp = 0.02 g cm-3) and clay (RMSEp = 0.04 g cm-3) textures, 

respectively. Both the current work and that of Quraishi (2013) show that BD is 

better estimated with lower CC soils.  

 

Table 4-11 Soil bulk density (BD) prediction results under laboratory conditions 

of the independent validation sets for sandy loam, clay loam and the collective 

sample set.  

 
Sandy loam Clay loam Collective 

R2 0.92 0.84 0.83 
RMSE, g cm-3 0.031 0.061 0.044 
RPD 5.88 2.43 3.66 

R2: coefficient of determination. RMSE: root mean square error of prediction; 

and, RPD: residual prediction deviation. A RPD value larger than 2.5 indicates 

an excellent model prediction (Viscara Rossel et al., 2006).  

 

The scatter plots of measured versus predicted BD (Figure 4-15) under 

laboratory condition show moderate prediction accuracy, although the 

measurement accuracy of both θv and ω were better. One reason could be the 

small number of soil samples used for this test. 
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Measured BD (g cm-3) 

Figure 4-15 Scatter plots of core sampling measured versus predicted soil bulk 

density (BD) using the prototype combined sensor under laboratory testing 

conditions for sandy loam soil (A), clay loam (B) and the collective sample set 

(C). Dashed line = 1:1 line; bold red line = line of best fit; = error bars. 

 

5.6.2. In-situ test of the prototype combined probe 

Appendix 16 shows the results of the ANN calibration models using soil 

samples collected from arable and grassland fields, using V and spectra data 

only, which were obtained from the dielectric and vis-NIRS sensors, 

respectively. A total of 170 neurons were used as the input layer, divided into 

169 neurons of vis-NIR spectra and one neuron of V. All of the calibration 

models generated performed well as indicated by the R2 values for each 
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training and validation data set, and for both arable and grassland soils. 

However, the collective calibration model performance is relatively lower than 

those of the individual land use models.  

 Dielectric sensor performance under field conditions 

The relation between the dielectric sensor V and θv in this study was somewhat 

weaker when the measurements were taken in the arable fields rather than 

grassland soils. However, this is likely to be due to the heterogeneous nature of 

topsoil layer of arable soils. While the R2, RMSEp, and RPD values for arable 

soils may be lower than grassland soils, but they are both considered to be 

within the excellent prediction level (Table 4-10), with values of R2, RMSE and 

RPD are 0.97, 0.024 cm3 cm-3 and 5.80, 1.00, 0.005 cm3 cm-3 and 13.72, 0.94, 

0.039 cm3 cm-3 and 3.67 for arable, grassland soils and the collective scenarios, 

respectively. Similarly, Figure 4-12 the slope and x intercept of the scatter plots 

show grassland is in advance of other two models. 

The prediction accuracy of θv using the assembled dielectric probe on the 

prototype combined system may be lower than controlled laboratory 

experiments (Table 4-12), however, the field measurements may better reflect 

the ability of the prototype to measure under real-world conditions. The same 

conclusion emerged to Kaleita et al., (2005) who calibrated a dielectric sensor 

for laboratory and field use and obtained R2 values of 0.87 and 0.77, 

respectively. The results of this work, was more accurate than those reported by 

Andrade‐Sanchez et al. (2001), who developed and tested a dielectric sensor 

and reported acceptable correlation with θv with (R2 values of 0.87 and 0.78 

under laboratory and field tests, respectively). 
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Table 4-12 Field results of volumetric moisture content (θv) prediction using the 

prototype’s dielectric sensor in arable, grassland and collective land use soils.  

  Arable land Grassland Collective 

R2 0.97 1.00 0.94 
RMSE, cm3 cm-3 0.024 0.005 0.039 
RPD 5.80 13.72 3.67 

R2: coefficient of determination. RMSE: root mean square error of prediction; 

and, RPD: residual prediction deviation. A RPD value larger than 2.5 indicates 

an excellent model prediction (Viscara Rossel et al., 2006).  

 

 

 

Measured θv (cm3 cm-3) 

Figure 4-16 Scatter plots of core sampling measured versus artificial neural 

networks (ANN) predicted soil volumetric moisture content (θv) using the 

prototype combined senor for field measurements in arable land soils (A), 

grassland soils (B) and the collective soils (C). Dashed line = 1:1 line; bold red 

line = line of best fit; = error bars. 

y = 0.96x + 0.016 
R² = 0.97 

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6

A 

y = 1.001x - 0.003 
R² = 0.995 

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6

B 

y = 1.07x - 0.02 
R² = 0.94 

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6

C 

E
s
ti
m

a
te

d
 θ

v
 (

c
m

3
 c

m
-3

) 



148 
 

 Vis-NIR spectrophotometer performance under field conditions 

Generally, field measurements revealed lower accuracy (Table 4-13) compared 

to the laboratory measurements (Table 4-10), as expected. The main reason is 

the variability of soil properties under field conditions, including texture, OM and 

presence of gravels, which may raise the need for calibration models derived 

from soils with less diverse properties if precise accuracy is demanded, for 

example, generate a calibration model for each specific field. Values of R2, 

RMSE and RPD for the prediction of ω using the vis-NIR spectrophotometry are 

0.97, 1.9 g g-1 and 5.46, and 0.96, 1.1 g g-1 and 4.73, for arable and grassland 

soils, respectively, and 0.96, 2.3 g g-1  and 4.56 for the collective model, 

respectively, which are of similar magnitude to those obtained by Mouazen at 

al. (2006b) and closer to those reported by Quraishi and Mouazen (2013b), who 

found 0.94, 2.6 g g-1 and 4.03 values, respectively. This is despite the fact that 

spectra data collected from multiple fields would be less accurate, Table 4-13 

shows excellent accuracy of prediction ω, with five arable and two grasslands 

fields, with R2 and RPD values close if not better than those reported by 

Quraishi (2013), however, RMSEp values of Quraishi (2013) ranged from 0.32 

to 0.60 % from single arable fields with a wide range of textures.  

 

Table 4-13 Field results of gravimetric moisture content (ω) prediction using the 

prototype’s visible and near infrared (vis-NIR) spectrophotometer, in arable, 

grassland and collective land use soils. 

  Arable land Grassland Collective 

R2 0.97 0.96 0.96 

RMSEp, g g-1 0.019 0.011 0.023 

RPD 5.46 4.73 4.56 

R2:  coefficient  of  determination. RMSE:  root  mean  square  error of 

prediction.  RPD:  residual  prediction  deviation. RPD  values  larger  than  2.5  

indicate  an excellent  model  prediction  (Viscara Rossel  et  al.,  2006). 

 

The scatter plots of measured versus predicted ω shown in Figure 4-17 indicate 

excellent measurement accuracy for the three sampling scenarios. 
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Measured ω (g g-1) 

Figure 4-17 Scatter plots of core sampling measured versus artificial neural 

networks (ANN) predicted soil gravimetric moisture content (ω) using the 

prototype combined senor for field measurements with arable land soils (A), 

grassland soils (B) and the collective land use samples (C). Dashed line = 1:1 

line; bold red line = line of best fit; = error bars. 
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(2003) who obtained R2 = 0.82 for ω prediction using a prototype soil 

reflectance mapping unit equipped with a NIR spectrophotometer, in a single 

field in central Iowa, USA. Also, the results of the collective model presented in 
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Christy et al. (2008), who obtained R2 = 0.40 and RMSEp = 3.6 %, for the ω 
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prediction with an on-line measuring system. However, it is worth noting that 

results of Christy et al. (2008) were reported for on-line measurement in 

contrary to that of the current work. 

 Estimation of bulk density under field conditions 

The prediction of BD in the arable land revealed rather lower accuracy results 

with values of R2 = 0.34 and RMSEp = 0.104 g cm-3 (Table 4-14) compared to 

R2 = 0.94 and RMSEp = 0.04 g cm-3 reported by Quraishi and Mouazen 

(2013b), who used a prototype measuring system that combined a vis-NIRS 

sensor and penetrometer for the measurement of soil BD. The grassland results 

show better accuracy of soil BD prediction in comparison with the 

measurements from arable land, with the validation R2, RMSEp (%) and RPD 

values of 0.47, 7.7 g cm-3 and 1.36, respectively.  

The collective model for predicting soil BD in situ revealed encouraging results 

of R2 = 0.52 and RMSEp = 0.102 g cm-3 and they are in line with those reported 

by Kweon et al. (2008), who measured BD with the use of vis-NIR and insertion 

force measurements in six fields in Kansas, USA. Their cross-validation R2 

values ranged from 0.21 to 0.78 and RMSE values ranged from 0.07 to 0.13 g 

cm-3.  

 

Table 4-14 Field results of bulk density (BD) prediction using the prototype 

combined sensor tested in arable, grassland and collective soils. 

  Arable land Grassland Collective 

R2 0.34 0.47 0.52 
RMSEp 0.104 0.077 0.102 
RPD 1.08 1.36 1.21 

R2: coefficient of determination; RMSE: root mean square error of prediction; 

and, RPD: residual prediction deviation. A RPD value larger than 2.5 indicates 

an excellent model prediction (Viscara Rossel et al., 2006).  

 

Comparing the scatter plots revealed that BD points are closer to the 1:1 line for 

grassland soils (Figure 4-18B), while BD points from arable soils seem to be 
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more scattered (Figure 4-18A). The smaller intercept of 0.2 g cm-3 and the 

better slope of 0.84 of the collective sample model (Figure 4-18C), as compared 

to the other two models indicate a better estimation performance, suggesting 

the use of large number of soil samples collected from arable and grassland 

soils has improved the prediction accuracy of BD.  

 

 

Measured BD (g cm-3) 

 

Figure 4-18 Scatter plots of core sampling measured versus artificial neural 

networks (ANN) predicted soil bulk density (BD) using the prototype combined 

sensor with arable land soils (A), grassland soils (B) and the collective land use 

samples (C). Dashed line = 1:1 line; bold red line = line of best fit; = error 

bars. 
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 Estimation of soil bulk density for individual fields  

The accuracy of the prototype measuring system during the field measurements 

shows higher accuracy of soil BD estimation for any individual field tested in this 

experiment, this effect is expected and in line with other research groups results 

of using vis-NIRS to predict soil properties. Table 4-15 shows the RMSEp 

results of the experiment was conducted in five fields and two pastures, which 

clearly shows that the measurement of any single field operation came with high 

accuracy and short range of variation between RMSEp values for all fields 

tested, ranging RMSEp values to estimate soil BD between 0.009 and 0.032 g 

cm-3, the results of this work is in line with the findings of Quraishi 2014 who 

reported better prediction accuracy of soil BD for an individual fields comparing 

to the collective model. The RMSEp results of the field experiment for individual 

fields are classified excellent to estimate soil BD using the prototype measuring 

system under field conditions.  

 

Table 4-15 Field results of RMSEp of the prototype measuring system to predict 

soil BD of five arable fields and two grasslands as an individual analysis.  

Field Land use 
Sample number RMSEp 

g cm-3 Model Test 

Avenue 

Arable 
land 

180 20 

0.027 

Showground 0.017 

Orchard 0.032 

Clover Hill 0.008 

Beechwood 0.021 

Avenue 
Grassland 150 50 

0.006 

Olney 0.028 

 

Literature shows no similar studies about the assessment of BD, as a function 

of θv and ω measured with a dielectric probe and vis-NIR spectrophotometer, 

respectively. Therefore, the prototype combined system introduced in the 

current study proves to be unique in the assessment of BD, and also the 

prediction of other soil properties that are important for land management. 
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However, further development is needed so as to improve the estimation 

performance obtained so far. This might concern improvement in the technical 

specification or calibration procedure followed in the current work. 

 

4.7. Estimation of the potential error of soil BD predicted using Eqn. 3-7 

From the literature review, it was observed that the range of RMSEp values of 

each θv and ω measured by the dielectric constant and vis-NIRS techniques 

vary as shown in Table 4-16.  

 

Table 4-16 Summery of RMSEp values of θv and ω predictions using the 

dielectric constant and visible and near infrared (vis-NIRS) techniques.   

  θv ω 

  Researchers RMSEp* Researchers RMSEp** 
1 Rowlandson et al. (2013) 0.034 Christy et al. (2003) 0.030 
2 Sheng et al., (2011) 0.030 Mouazen and Ramon (2006) 0.024 
3 

  
Christy (2008) 0.028 

4 
  

Quraishi and Mouazen (2013c) 0.026 

 Average  0.032 Average  0.027 

RMSEp* is the root mean square error of prediction of θv (cm3 cm-3) and 

RMSEp** is the root mean square error of prediction of ω (g g-1).  

 

Table 4-17 shows the results of the potential error of estimation of soil BD 

calculated using RMSEp values of θv and ω estimated by ThetaProbe and 

ASDi sensors, respectively, for the 1013 soil samples tested during this study, 

using different calibration methods, compared with potential error of BD 

prediction using other researchers findings of θv and ω RMSEp values (Table 

4-15).  
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Table 4-17 the results of potential error of soil BD estimation, showing a 

comparison between published RMSE values and RMSEp values of the current 

study obtained with different calibration methods of ThetaProbe and ASDi 

sensors.  

 

θv 
RMSEp 
cm3 cm-3 

ω 
RMSEp 

g g-1 

calibration 
method 

BD potential error* 

literature values 0.032 0.027 - 1.185 

Current study 
values 

0.026 0.027 PLSR and SSC 0.963 

0.015 0.014 ANN 1.071 

RMSEp is the root mean square error of prediction; PLSR is partial least 
squares regression; ANN is artificial neural networks; * : the BD potential error 
does not have unites since it derived from Eqn. 1-9, which expresses the error 
ratio for both sensors.  

 

The results of error of soil BD estimation, calculated by Eqn. 3-7, indicating 

smaller error values of current study of 0.963 and 1.071 obtained with PLSR 

and SCC and ANN, respectively, compared with the average error value of 

1.185 reported in the literature, calculated from the average values of RMSE of 

θv and ω prediction of other researchers publications. These positive results 

have proved the quality of the current work and encouraged further tests to 

understand more the factors affecting the accuracy of the BD measurements 

using the dielectric and vis-NIRS sensors as a combined measuring system. 

 

4.8. Mapping of soil bulk density, gravimetric and volumetric moisture 

content on selected arable and grassland soils using the new prototype 

portable measuring system 

Comparison maps of reference and predicted θv, ω and BD were generated for 

Avenue field, Silsoe, as an example of field testing of the prototype. This field is 

or two plots, with one used for arable crops and the other used for grassland 

crops. A total of 40 points were measured using the prototype combined probe, 
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from which 20 points were selected to collect core samples using the 

undisturbed soil sample collecting cylinder (Figure 3-2). These 20 cores were 

used to validate the prototype measurement. Three types of mapping product 

were developed for θv, ω and BD, namely, comparison maps, full-point maps 

and error maps. Figure 4-19 shows the layout of Avenue field used to derive the 

full-point maps based on 40 readings and the comparison maps based on 20 

points. The error maps developed are based on the absolute error between the 

predicted and measured of the 20 points.   

 

Figure 4-19 Sampling layout of samples collected in Avenue arable field and 

grassland with the prototype combined probe. 
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Figure 4-20 compares the spatial distributions of the measured θv by core 

sampling and predicted θv by the dielectric sensor of the prototype, for arable 

land (Figure 4-20 A and B, respectively) and grassland (Figure 4-20 C and D, 

respectively) plots of the field. The full-points maps are shown in Figure (4-20 E 

and F). Figures show that the dielectric sensor is capable of mapping wide 

ranges of variability of θv throughout the field with high accuracy, as shown by 

the pattern of predicted θv (Figures 4-20B and 4-20D) which mirrors that of the 

core sampled map (Figures 4-20A and 4-20C), with a similar θv range from 0.12 

to 0.46 cm3 cm-3 The full-points maps of arable plot (Figure 4-20 E) and 

grassland plot (Figure 4-20 F) show similar spatial distribution of θv comparing 

to the references maps (Figure 4-20 A and C), particularly in the grassland plot.  

Figure 4-21 demonstrates a comparison between measured and predicted ω on 

arable land (Figure 4-21 A and B, respectively), grassland (Figure 4-21 C and 

D, respectively) and full-points on arable land and grassland plots (Figure 4-21 

E and F, respectively). The similar spatial patterns seen when comparing the 

measured and predicted ω are attributed to the high prediction accuracy of the 

NIR spectrophotometer. However, there are slight differences in spatial pattern 

between measured and predicted ω can be observed (Figure 4-21).The full-

points maps of arable (Figure 4-21 E) and grassland plots (Figure 4-21 F) soils 

show similar spatial patterns of ω to the references maps (Figure 4-21 A and 

C).  

The comparison maps of measured (Figure 4-22 A and C) and predicted BD 

from the prototype (Figure 4-22 B and D), and full-points maps (Figure 4-22 E 

and F) developed for arable land and grassland plots, respectively, show a 

degree of similarity. The spatial similarity in the arable plot (Figure 4-22 A and 

B) is clearer than that in the grassland plot (Figure 4-22 C and D). In general the 

new measuring system was able to indicate the major soil BD spatial patterns 

(Figure 4-22).                 
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Figure 4-20 Comparison θv maps between measured (A and C) and predicted 

(B and D), and full-points maps (E and F) using ArcGIS 10.2 (ESRI, USA) 

software with the readouts of the prototype measuring system in arable and 

grassland plots, respectively, in Avenue field, Silsoe, UK. 
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Figure 4-21 Comparison ω maps between measured (A and C) and predicted 

(B and D), and full-points maps (E and F) using ArcGIS 10.2 (ESRI, USA) 

software with the readouts of the prototype measuring system for arable and 

grassland plots, respectively, in Avenue field, Silsoe, UK. 
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Figure 4-22 Comparison bulk density (BD) maps between measured (A and C) 

and predicted (B and D) and full-points maps (E and F) using ArcGIS 10.2 

(ESRI, USA) software with the readouts of the prototype measuring system for 

arable land and grassland plots, respectively, in Avenue field, Silsoe, UK. 
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 Error analysis 

The error map of θv measurements on arable land plot is shown in Figure 4-

23A, which illustrates that the maximum error is encountered in the north west 

and south west corners of the field, where the dielectric probe over-estimated 

θv. The north east corner of the field exhibited under-estimation of θv, but to a 

lesser degree than those areas exhibiting over-estimation. The over-estimation 

errors correlate with compacted areas in the field. The grassland error map of 

θv measurements (Figure 4-23B) shows lower error rates compared to the 

arable land error map. Furthermore, fewer spatial patterns of error are evident 

in the grassland map, while each colour pattern in both error maps represents 

the same rate of θv prediction absolute error. 

The absolute error histograms of θv in the arable soil (Figure 4-24A) shows that 

the majority of the errors were between -0.020 and 0.020 cm3 cm-3 and the error 

distribution shows that the dielectric sensor have skewed towards over-

estimation end. The grassland histograms of θv error (Figure 4-24B) show that 

most of the error of prediction is within a range from -0.004 to 0.005 cm3 cm-3 

and under-estimation error was the dominant feature.   

The error map of ω measurements in arable land illustrated in Figure (4-25A) 

shows the maximum negative error (predicted ω > measured ω) in the south 

west corner and the maximum positive error is observed in the north east corner 

of the field. The negative errors resulting from over-estimation of ω were 

considerably more the positive errors. This is shown in the error histograms of 

the measurements taken in the arable land (Figure 4-26A). The majority of the 

errors were found between -0.020 and 0.020 g g-1. The grassland error map of 

θv measurements (Figure 4-26B) shows lower rates, compared to the arable 

land error map. Furthermore, fewer spatial patterns of error are observed in the 

grassland map; however, most of errors were positive, with a range between 

0.00 and 0.020 g g-1.  

BD error maps of arable land and grassland are shown in Figure 4-27 A and B, 

respectively, where the maximum errors occur at the borders of measured area 
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of both arable land and grassland, which might be attributed to a systematic 

error of the NIR spectrophotometer or it could be related to the irregularity of the 

top soil layer at the field edges. Kuang (2012) reported similar error locations 

during field mapping using an on-line vis-NIR spectrophotometer (Mouazen et 

al., 2005b). Figure (4-28A) shows a histogram of BD error, where most of the 

errors found in the BD map from the arable land are between -0.20 and 0.10 g 

cm-3. Figure 4-38B shows the grassland error map of BD. Lower rates of error 

are observed compared to the arable land error map and fewer spatial patterns 

of error are observed in the grassland map.  

Analysis of comparison maps, full-point maps and error maps of BD including 

normal distribution of error confirms the potential of the prototype sensor to map 

θv, ω and BD. Although spatial distribution of these properties were possible to 

map for the top soil layer only, the potential of utilising the sensor to map these 

soil properties through the soil profile is possible, after technical modification to 

the  dielectric constant sensor to measure θv is undertaken. 
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Figure 4-23 Volumetric moisture content (θv) error between oven drying method 

and predicted using the prototype combined probe, in the arable land (A) and 

grassland (B) plots, in Avenue field, Silsoe, UK. The error maps were created 

by using the ArcGIS 10.2 (ESRI, USA) software.   
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Figure 4-24 Volumetric moisture content (θv) error between oven drying method 

and predicted using the prototype combined probe, in the arable land (A) and 

grassland (B) plots, in Avenue field, Silsoe, UK. The error histograms were 

created by using the ArcGIS 10.2 (ESRI, USA) software. 
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Figure 4-25 Gravimetric moisture content (ω) error between oven drying method 

and predicted using the prototype combined probe, in the arable land (A) and 

grassland (B) plots, in Avenue field, Silsoe, UK. The error maps were created 

by using the ArcGIS 10.2 (ESRI, USA) software. 
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Figure 4-26 Absolute error between measured and predicted gravimetric 

moisture content (ω) using the prototype combined probe for arable land (A) 

and grassland (B) plots in Avenue field, Silsoe, UK. The error histograms were 

created by using the ArcGIS 10.2 (ESRI, USA) software. 
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Figure 4-27 Soil bulk density (BD) error between core sampling and predicted 

using the prototype combined probe, in the arable land (A) and grassland (B) 

plots, in Avenue field, Silsoe, UK. The error maps were created by using the 

ArcGIS 10.2 (ESRI, USA) software. 



167 
 

 

 

Figure 4-28 Absolute error between core sampling and predicted using the 

prototype combined probe, in the arable land (A) and grassland (B) plots, in 

Avenue field, Silsoe, UK. The error histograms were created by using the 

ArcGIS 10.2 (ESRI, USA) software. 
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  Chapter 5

5. Discussion 

Modern agricultural production of crops and animals is often linked to negative 

impacts on soil and the environment. Large volumes of data are required for 

successful land management particularly where precision farming is used. The 

only realistic way to obtain this valuable data for soil or plants is with the use of 

sensors (Dworak et al., 2010). A characteristic of the current agricultural era is 

increased soil BD due to intensive agricultural operations. Soil BD is known to 

be the one of the key soil physical properties alongside soil structure, aeration 

and compaction (Lal, 2006). Soil compaction can be measured by both direct 

methods, namely, soil BD and PR; and indirect methods that depend on air and 

water movements in the soil. Although there have been many attempts by 

researchers to provide a measurement system for soil compaction, only limited 

success was reported for portable, simple and fast sensing systems. The main 

criterion for evaluating these systems is the measurement accuracy. However, 

different accuracy levels can be achieved using the prototype measuring 

system with implementing lower cost and shorter spectrum detector for different 

end-users requirements.    

This chapter is about discussing how valuable of the findings of the current 

study in the context of other studies, identifying where the strengths and 

weaknesses lie with the techniques developed for measuring soil BD and 

attempt to recognise where research work is still required to create a robust, 

repeatable and operational system of measurement appropriate to land 

managers. The new measuring system developed and evaluated in this thesis 

consists of the dielectric constant and vis-NIRS sensors. Chapter 4 presented 

the experimental results, demonstrated the systems’ ability to provide accurate 

readings, evaluated under various soil conditions and different calibration 

techniques and provided a brief discussion of the experimental results with 

details of the factors that affect the measurement accuracy. Thus, this chapter 

focuses on providing relevant scientific reasoning, wherever appropriate, to 
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explain the effect of different factors on the measurement accuracy. It also 

discusses the prototyping of the measuring system, with its new combined 

probe using both sensing techniques, including its design, manufacture, and 

laboratory and field testing, and the situations where it can be used and its 

commercially availability. The discussion, therefore, will be divided into four 

main topics, namely: 

1. Prediction accuracy comparison between the results of the new 

measuring system and the established measuring systems of soil 

compaction. This will include the influences of modelling method, 

moisture, texture and land use. Discussion will separately tackle θv, ω 

and BD. 

2. The new combined probe sensing technique design, manufacture and 

laboratory and field validation. 

3. Advantages and practical challenges associated with the use of the new 

system.  

4. The implementation and commercialisation of the new measuring 

system.  

5.1. Prediction accuracy comparison  

The new measuring system has been tested under laboratory and field 

conditions. The impact of four factors namely, modelling, soil moisture level, soil 

texture and land use, were evaluated on the measurement accuracy of soil θv, 

ω and BD using the new system. The results revealed that the accuracy of each 

single sensor may often be low compared to data fusion of multiple sensors, 

due to the fact that soil sensors are sensitive to more than one soil property of 

interest. In these instances, data fusion is the key to overcoming the 

shortcomings of a single sensor and useful and integrated information can be 

extracted from multiple sensors (Mahmood et al., 2012).  

5.1.1. Modelling effect 

In this study, the M method revealed an over-estimation for a group of soil 

samples across a full range of moisture contents, similar findings observed by 
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Robinson et al. (1999) and Kaleita et al. (2005). Both research groups indicated 

that the accuracy of the ThetaProbe declined with moisture content (Table 4-

1and Figure 4-1A). Cosh et al. (2005) compared the performance of the M and 

SSC methods using 180 samples collected from arable and grassland sites with 

a wide range of soil textures. They reported a smaller RMSEp value with SSC 

(0.040 cm3 cm-3), as compared to M (0.053 cm3 cm-3). This RMSEp range is 

larger overall than that obtained in the current study, although we accounted for 

different textures, OM and land use (Table 4-1). Eqn. 4-1 is based on wide 

variations in soil type, moisture content, OM and land use (Table 3-1) of the UK 

soils. Therefore, it is an improved regression equation as compared, to that 

reported by Kaleita et al. (2005), who attempted to relate θv with K, using a 

smaller number of 100 samples only. Their regression models resulted in R2 

values of 0.85 and 0.77 for the laboratory and in-situ experiments, respectively. 

The GF regression equation (Eqn. 3-6) of Topp et al. (1980) based on soil 

samples collected from all over the world, provided an adequate estimation of 

θv in the range <0.5 cm3 cm-3, which covers the entire range of interest in most 

mineral soils, with a RMSEp of 0.013 cm3 cm-3. Jones et al. (2002) reported a 

shortcoming of the GF method for θv exceeding 0.5 cm3 cm-3 in organic or 

mineral soils with high OM or C content. 

Data fusion based on ANN analyses using data from the vis–NIR 

spectrophotometer and a dielectric sensor for the measurements of soil ω and 

θv, respectively, out preformed other calibration methods if data from both 

sensors was analysed separately. This is due to the ANNs’ ability to deal with 

nonlinear behaviours, as the results from this study indicate the relationship 

between the soil spectra data and ω is nonlinear. Similar findings of the 

advantage of the ANN method over other linear calibration methods were also 

reported by others (Mouazen et al., 2010; Viscarra Rossel and Behrens, 2010; 

Quraishi and Mouazen, 2013b and Kuang, 2012). The results showed that the 

relationship between V and θv is also nonlinear. Wijaya et al. (2003) and Gaskin 

and Miller (1996) reported nonlinearity behaviour of K as a function of the soil 

moisture change. The ANN – data fusion results in a RPD value of 4.45 for the 

independent validation set, which can be classified as excellent measurement 
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performance according to Mouazen et al. (2006b), although the PLSR also 

results in an excellent but smaller RPD value of 3.57. Mouazen et al., (2006a) 

stated that the performance of vis-NIRS-PLSR to predict ω is influenced by the 

scale of modelling. They reported a lower validation accuracy for a sample set 

collected from multiple fields in Belgium and northern France (R2 = 0.91 and 

RPD = 3.22), as compared to that of a single-field sample set (R2 = 0.97 and 

RPD = 5.26). The accuracy of measurement obtained in the current study with 

both PLSR and ANN – data fusion for a sample set collected from 32 fields in 

the UK is higher than that reported by Mouazen et al. (2006a), which is an 

encouraging result and suggests using the current ω models for BD 

assessment. Likewise for θv measurement, ANN – data fusion technique 

provided the best ω measurement performance, and requires the same input of 

V and soil spectra only (Table 4-1). 

The modelling effect shows that fusing data from both sensors further enhanced 

their prediction of θv and ω and therefore BD, which supports the author’s 

hypothesis that the prediction accuracy of each sensor will be improved by 

deploying ANN. This also indicates the strength of ANN to handle data from 

multiple sensors and the ability to deal with non-linearity among sensor 

readouts, thereby enhancing the effectiveness of sensor data fusion. The 

highest accuracy was achieved for the θv, ω and BD predictions gained by 

using the ANN data fusion calibration model, with RMSEp values of 0.015 cm3 

cm-3, 0.014 g g-1 and 0.095 g cm-3, respectively and with R2 values of 0.98, 0.98 

and 0.81, respectively, compared to the lower values obtained by preforming 

separate calibration methods for each sensor (Table 4-1). The prediction result 

of BD using ANN is slightly better than Quraishi and Mouazen (2013), who 

achieved a BD prediction result with R2 = 0.69 and RMSE = 0.11 g cm-3, using 

soil PR and soil clay content as input parameters to an ANN model. Günaydin 

(2009) also attempted to predict soil BD by using an ANN model. His model 

inputs were: fine grained, sand, gravel, specific density, liquid limit, and plastic 

limit. The regression analysis revealed various correlations (R2 = 0.70- 0.95) 

between different combinations of the inputs and predicted soil BD. However, 
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the large number of inputs could be the main practicality limitation of such a BD 

estimation methodology.  

Although, most of the soil strength related BD measuring systems are less 

accurate than the new BD measuring system, they are not even close to the 

prediction accuracy of BD measurements achieved using the new concept. 

Quraishi and Mouazen (2013c) presented a prototype BD sensor, consisting of 

a penetrometer and NIR spectrometer, with prediction accuracies of R2 = 0.94 

and RMSE = 0.04 g cm-3, using the ANN method. However, their 

measurements were conducted only in three arable fields in Silsoe, England, 

which express such high accuracy of BD prediction, where vis-NIRS is well 

known to be affected by soil variability in texture, colour alongside with 

moisture. Given that the results of BD prediction gained from the current study 

are obtained from soil readings of 32 fields distributed across England and 

Wales, the new system shows high accuracy when various soil types and 

conditions are taken into account. The previous research group also reported a 

higher prediction BD accuracy of one field with R2 = 0.95 and RMSE = 0.02 Mg 

m-1, which indicates that soil variability is the main limitation factor affecting 

prediction accuracy.  

ANN has an extraordinary ability to derive and extract meaning, functions, and 

trends from complicated, noisy, and imprecise data. They have been 

considered as a standard nonlinear modelling method (StatSoft, 2012). Their 

predictive and generalisation capabilities have been developed to learn just like 

human brain from the presented data and dynamically modifying themselves 

accordingly. Statistica multilayer perceptron neural networks is one of the most 

useful toolbox of ANN, which been used to generate the calibration models and 

to perform the data fusion of the 2 variables in the input layer, where the input 

data of both sensors can be processed simultaneously. The use of ANN has led 

to better prediction performance due to the non-parametric nature of ANN 

multilayer perceptron and can approximate almost any function with high 

degree of precision. So, the main difference between ANN and any other 

calibration methods is that ANN in a real sense can learn by the given example 
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data rather than having to be programmed with specific, preconceived 

functions. In other words, ANN can be classified as a non-parametric statistical 

mechanism that uses the observations to predict the unknown function 

(Boguslauskas and Mileris, 2009; Singh et al., 2012). Among all models, the 

ANN - data fusion with V and soil spectra only used as input variables for the 

measurement of ω and θv performs the best for the assessment of BD using 

Eqn. 1-9 (R2 = 0.81 and RMSEp = 0.095 g cm-3). This is mainly attributed to a 

much larger improvement in ω measurement, as compared to θv (Table 4-1), 

when ANN is used. This model provides useful information about field BD with 

small RMSEp, to recommend practical application of the new proposed system 

of combining vis-NIRS and dielectric sensors for the assessment of BD. 

This can answer the question of why ANN has been chosen for the complicated 

mathematical functions for the multisensory applications modelling and to 

perform multiple predictions. Even with single factor prediction (e.g. ω) ANN has 

showed higher performance comparing to the linear calibration (PLSR). Farifteh 

et al. (2007) similarly reported over performing of ANN compared to PLSR, 

when they developed predictive models of soil salinity based on soil spectral 

data. However, when ANN single factor prediction (e.g. θv), compared with 

multi-factor based prediction (e.g. M, GF, SSC and OV), there are no obvious 

prediction accuracy improvement (Table 4-1).     

5.1.2. Soil moisture level effect 

The accuracy of measurement of the three parameters improved considerably 

with increasing soil moisture, which is in line with many researchers who have 

demonstrated higher sensitivity of both sensors with rising soil moisture. 

Therefore, the highest moisture level (L3) was found to be the best to conduct 

the field measurements using both sensors to predict θv and ω and 

subsequently this positive effect resulted in the highest prediction accuracy of 

BD with R2, RMSEp and RPD values of 0.86, 0.061 g cm-3 and 2.51, 

respectively (Table 4-3).  

The relationship between soil θv and K is non-linear, which takes its 

characteristics from the forces between the water molecules and the soil 
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particles, where more energy is required to change the polarity of the water 

molecules dipoles in the case of dry soil. This reduces the reflection of the 

transmitted signal through the body of the soil. This forces decrease with soil 

moisture increases, comparing to the high dipolar moment of the free water 

molecules at the saturated soil condition (Fernández-Gálvez, 2008). Fernández-

Gálvez (2008) studied the effect of the soil moisture level on θv prediction 

accuracy, using nine calibration models of different research groups. 

Consequently, 81 predicted θv values resulted from all possible combinations of 

calibration model, which their RMSE were used to identify effect of moisture 

levels (from 0 to 0.50 m3 m-3) on the prediction accuracy. The retrieval soil 

moisture RMSE of the 81 cases, and the highest RMSE induced by using the 

two most inaccurate soil dielectric models are illustrated in Figure 5-1, which 

shows that the RMSE values are higher with low moisture content and the error 

of prediction decreases as the soil moisture increases (Figure 5-1), which is in 

line with the findings of the current research.   

 

Figure 5-1 Retrieval errors of volumetric moisture content (θv) estimation using 

different calibration models (after, Fernández-Gálvez, 2008). 
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Arsoy (2014) compared the accuracy of three dielectric sensors to predict θv, 

reporting RMSE values of 0.012, 0.015 and 0.016 m3 m-3, for TDR, ThetaProbe 

and WET sensor readings, respectively. These results were obtained under 

laboratory conditions using a wide range of soil textures, BD and 6 different 

moisture levels. The SSC method was adopted in the current study to calibrate 

ThetaProbe, comparing to the collective model of the 3 level moisture contents. 

Despite the fact that the measurement conducted at 5 fields with various soil 

textures, the accuracy achieved here is slightly better with RMSE of 0.013 cm3 

cm-3. Presumably the accuracy of the current study was improved with the use 

of ANN calibration method.   

Soil moisture at different levels can be easily identified using vis-NIRS, due to 

the obvious influence of soil ω on the spectra data; however, this advantage 

can be a limitation factor in the prediction of other soil chemical properties 

(Nocita et al. 2013; Kuang and Mouazen, 2013). Literature shows that there is a 

clear effect of soil moisture level on the prediction of ω using vis-NIR 

spectrophotometer (Mouazen et al., 2005a; Viscarra Rossel and McBratney, 

1998), in terms of increasing the level of soil moisture reflected positively in the 

prediction accuracy for the moisture levels investigated. This is particularly due 

to the good sensitivity of vis-NIR to the O-H bond in the soil samples. Dalal and 

Henry (1986) reported better results of predicting ω for eight profiles from each 

of three major soil series in Darling Down, Queensland, Australia, using NIR 

spectrophotometry within the wavelength range 1100 to 2500 nm than for L1 in 

the current work. An R2 value of 0.93 and RMSE value of 0.6% was reported for 

samples ranging between 3.5% and 13% moisture content, which is close to the 

L1 range of moisture (e.g. 0.11 g g-1). 

Kodaira and Shibusawa (2013) reported that ω was the best predicted property 

using an on-line mapping system (Figure 5-2), equipped with a vis-NIR 

spectrometer with a wavelength range from 305 to 1700 nm and using a PLSR 

calibration method. They predicted ω with R2, RMSEp and RPD values of 0.93, 

0.0142 g g-1 and 3.6, respectively.  However, comparing to L2, which is the 

nearest range of soil moisture, the prediction accuracy of ω obtained in the 

current work for non-mobile measurement was better with R2, RMSEp and RPD 
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values of 0.98, 0.012 g g-1 and 7.08, respectively. Although the on-line 

measurement system provides high resolution data at speedy way, in terms of 

the robustness, the new non-mobile BD measuring system showed high 

durability, as the combined probe can be inserted into the measuring layer 

easily and controllable, where no tolerance of the soil strength on the accuracy. 

However, software and hardware developments are essential to present 

mapping system for larger scale, although for in-situ application the new BD 

measuring system has showed simplicity of collecting the readings and high 

easiness of use.  

 

Figure 5-2 Real-time soil visible-near infrared mapping system (after, Kodaira 

and Shibusawa, 2013). 

 

R2 of BD prediction of the collective model was 0.57 (Table 4-3), which is an 

improved value compared to that (0.46), reported by Quraishi and Mouazen 

(2013b), when they used multiple linear regression (MLR) analysis. However, 

they reported a better R2 value of 0.81 with the ANN method as compared to 

collective model of the current work (R2 = 0.57). This confirms ANN to be the 

most favoured calibration method. But, the BD prediction accuracy for L3 

moisture content (R2 = 0.86) was the best obtained as compared to the 

remaining models, confirming the best measurement of BD is to be expected 

when the soil is wet enough to avoid error associated with soil disturbance while 

penetrating the soil. 
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When discussing the prediction errors of BD based under dry soil conditions 

affecting penetrometers, Quraishi (2013) stated this to be a limitation of soil 

related measuring tools of soil compaction. This is because of the additional 

force needed to insert the cone through the soil under dry soil conditions. 

Although the new measuring system proposed in the current work does not 

depend on the strength of penetrating the soil, the process of inserting the  

ThetaProbe electrodes in the dry soils is accompanied by great difficulties led to 

formation of air pockets around the central electrode and thus decreased 

measurement accuracy (Gaskin and Miller, 1996). The vis-NIRS is also affected 

by the soil moisture level, so that measurement accuracy increases with soil 

moisture. It’s worth mentioning that measurements under dry soil conditions, 

using core sampling method as a comparator with the predicted soil BD values 

obtained by the new measuring system was difficult to preform and subjected to 

measurement errors (Holmes et al., 2011), which in return induces more 

prediction errors of soil BD at L1 soil moisture. Furthermore, the collective 

model showed lower accuracy compared to any moisture level. This suggests 

the need for the measurement of BD to be made for one measurement done in 

one time, and to avoid mixing measurement taken at different time intervals that 

may reflect different levels of moisture content in the soil.  

5.1.3. Soil texture effect: 

The soil texture class effect on the measurement accuracy of θv prediction 

shows that the range of RMSEp of θv was from 0.018 to 0.021 cm3 cm-3 for all 

textures and from both arable and grassland soils. However, the best result was 

obtained from the measurement of grassland in heavy clay loam soils. Apart 

from this result, there were no clear impacts of soil texture on the ThetaProbe 

measurements, although, the results from grassland showed better accuracies. 

Further work is needed to consider more soil texture classes than those 

considered in the current work (e.g. three soil textures). 

Using  a Hydra probe, Rowlandson et al. (2013) showed that the measurement 

accuracy of θv for soil textures with clay contents less than 40% were higher 

than measurements of finer textured soils (Table 5-1). The various calibration 
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techniques revealed RMSEp values ranging from 0.0374 cm3 cm-3 for the 

calibration of individual fields to 0.0623 cm3 cm-3 for the whole dataset collected.  
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Table 5-1 Measurement accuracies of a dielectric soil moisture sensor (Hydra probe) with different modelling and for coarse 

and fine soil texture (after, Rowlandson et al., 2013). 

Calibration technique R2 
RMSE      

(cm3 cm-3) 
Models 

General, linear 0.77 0.062 𝜃v = 0.0838√𝐾 − 0.0846 

General, 3rd order polynomial 0.77 0.062 𝜃v = 3.55 ∗ 10−6𝐾3 − 4.19 ∗ 10−4𝐾2 + 0.022𝐾 − 0.0024 

General, Linear with outliers removed 0.85 0.048 𝜃v = 0.0862√𝐾 − 0.0962 

General, 3rd order polynomial with outliers removed 0.85 0.047 𝜃v = 3.99 ∗ 10−6𝐾3 − 4.56 ∗ 10−4𝐾2 + 0.023𝐾 − 0.014 

Texture, coarse (<40% clay) 0.85 0.042 𝜃v = 0.0971√𝐾 − 0.1326 

Texture, fine (>40% clay) 0.81 0.051 𝜃v = 0.0787√𝐾 − 0.0626 
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The results of the current study show no clear texture effect on the RMSEp values 

for the studied texture classes and heavy and light soil classification experiments. 

But, in general the RMSEp values ranged from 0.008 to 0.021 cm3 cm-3, which 

were considerably better than those reported by Rowlandson et al. (2013) and 

suggest that ThetaProbe is in advance of Hydra probe in terms of prediction 

accuracy with the use of data fusion performed by ANN technique. Similarly, no 

clear trend observed of the influence of clay percentage on the accuracy of 

measurement of the ThetaProbe. However, literature demonstrated negative 

correlation between CC and measurement accuracy of θv. Alizadeh et al., (2008) 

reported negative influence of CC with R2 values of 0.91, 0.93 and 0.95 and RMSE 

values of 6.7%, 5.1% and 2.7%, for clayey, loamy and sandy loam soils, 

respectively. However, these authors only used 17 soil samples to represent each 

one of the three soil textures. Similarly, Hanson and Peters (2000) stated that the 

ThetaProbe accuracy decreases with increasing CC. They reported R2 values of 

0.87, 0.91 and 0.79 and average absolute differences (absolute percent volume) of 

1.8, 2.5 and 3.0, for sandy loam, loam and clay textures, respectively. Sarani and 

Afrasiab (2012) reported better ThetaProbe accuracies, with R2 and RMSEp values 

of 0.95, 0.93, 0.91 and 0.90, and 3.0, 2.9, 3.8 and 10.8 % for sandy, sandy loam, 

loam and clayey textures, respectively.  

Wijaya et al. (2003) found ThetaProbe readings are significantly affected by the 

type of soil, where they reported RMSEp values of 0.014 and 0.008 cm3 cm-3 for 

clay and clay loam soil textures, respectively. However, no clear difference of the 

RMSEp between the light and heavy soils was observed in the current study under 

the field conditions, which contradict the findings of Wijaya et al. (2003), who 

gained their results under laboratory conditions, where homogenous soil samples 

were used. Also, Wijaya et al. (2003) did not divide all texture classes into heavy 

and light soils. Both soil groups tested in this research resulted in RMSEp of 0.016 

cm3 cm-3, which were within the range reported by the manufacturer (Delta-T 

devices, 1999), and is comparable to that of Wijaya et al. (2003) reported for clay 
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soil under laboratory conditions. This high accuracy expresses the reliability of 

ThetaProbe to predict θv under field conditions with ANN calibration method. 

The ω prediction results did not show clear evidence of texture classes from both 

arable land and grassland. However, in most cases the prediction accuracy was 

within the range between good to excellent, which is not consistent with what 

Kuang and Mouazen (2011) reported. They found a negative influence of clay 

fractions when they studied ω prediction using vis-NIRS. They reported the highest 

RPD value of 3.01 measured in a single field with a sandy loam texture and the 

lowest RPD value of 2.5 was in a single field with clay loam texture. They attributed 

this trend to the combined effects of texture and moisture content on prediction 

accuracy. The effect of CC in most soil textures on prediction of ω using vis-NIRS 

was positive according to the current work results (Table 4-5), which is in-line with 

Quraishi (2013) who reported RPD values of 5.30, 3.09 and 3.68 in three fields 

with various textures, namely, clay, sandy loam and sandy loam, respectively. 

However, the RPD values of ω from this work, using the ANN method, are 

considered to be within the range of very good to excellent prediction models under 

soil texture effect, according to Viscarra Rossel et al. (2006) who classified RPD 

values between 2.0 to 2.5 as a very good quantitative model, while the RPD values 

larger than 2.5 are indicative of an excellent predictive model. 

Mouazen et al. (2006) work on ω prediction with vis-NIR spectroscopy showed a 

less performing model (R2 = 0.88; RMSEp = 2.5%) for data set collected from 

several fields in Belgium and Northern France, compared to single field prediction 

accuracy of about 7 ha area (R2 = 0.98; RMSEp = 1.6%). They stated that the 

variability of soil samples in terms of colour, texture, and origin, attributed 

negatively to the prediction accuracy of soil ω under laboratory conditions. Kuang 

(2012) reported on the ability of vis-NIRS to measure ω in farms with different soil 

textures. The results revealed that ω could be predicted accurately with PLSR 

modelling, using soil samples with different soil textures collected from four farms 

across Europe, with R2 values ranging from 0.74 to 0.92 and RPD from 1.63 to 
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4.57 for the independent validation sets. Better model performance was observed 

for heavy soils than for light soils. Kano et al. (1985) used a NIR soil sensor at two 

wavelengths of 1800 and 1940 nm to measure soil moisture. They reported soil 

texture influence on the accuracy, where a single calibration model could be used 

with clay and loam textures and another calibration model would be necessary for 

sand and sandy loam textures. Curcio et al. (2013) studied the interaction between 

the -OH group with clay and sand factions. They reported that the illite, kaolinite 

and montmorillonite minerals of clay have absorption peak around 2200 nm 

wavelength, whereas, the sand’s silicates are liked to -OH stretch vibration of water 

observed around 1400 nm wavelength. They predicted clay, silt and sand 

accurately with R2 and RMSEp values of 0.87, 0.60 and 0.80, respectively and 

RMSEp values of 5.8, 7.2 and 7.7, respectively, using PLSR calibration method 

under laboratory conditions. Sinha and Wang (2008) revealed a higher R2 of 0.98 

using the ANN technique for BD prediction as a function of soil solid particle 

density, fineness modulus, effective grain size, plastic and liquid limits. However, 

they measured the input variables under laboratory conditions, which could explain 

the high accuracy, although, such kinds of measurement of soil physical properties 

are time consuming and demand experienced individuals to conduct them.  

The influence of CC on ω prediction was in line with the findings of other 

researchers, who reported the difficulty in predicting ω with the presence of high 

CC. This is due to the fact that the absorption bands of OH groups, which are 

associated with clay minerals and water bound in the clay lattice vary with mineral 

types (Clark, 1999) and coincide with the water removed upon oven drying. For this 

reason, quantity measurement of ω across different soil types is difficult (Ben-Dor 

et al., 1999).  However, the R2 and RPD value of a light soil was the lowest, which 

may be attributed to the large sample variation (e.g. SD and range of 

concentration) in heavy soils and collective soil texture, as compared to the light 

soils (Kuang and Mouazen, 2011). Qurishi and Mouazen (2013c) showed similar 
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trend of RPD and R2 values, when they studied the effect of clay and sandy loam 

textures on ω prediction using vis-NIR portable system.       

The findings of this section led to no clear conclusion on which texture model to 

provide the best accuracy. However, for both grassland and arable land fields, the 

collective texture model seem to provide more stable prediction results as 

compared to individual texture models. These results demonstrate that 

measurement in grassland fields is more robust and trusted than in arable land 

fields. 

The final conclusion of the soil fraction effects on the spectra data can be that the 

soil minerals respond in different rates and it would be adequate to take into 

account the complex interaction between the –OH group and soil texture when vis-

NIRS is used to predict soil moisture content.  

 

5.1.4. Land use  

The effect of land use on the measurement accuracy soil θv, ω and subsequently 

BD was evaluated. The prediction performance of BD on the grasslands was more 

accurate than on the arable lands. The reason behind this could be related to the 

larger heterogeneity of BD in grasslands (SD = 0.24 g cm-3), as compared to the 

arable land (SD = 0.15 g cm-3) sample sets considered in the current work (Table 

3-10). This was true in spite of the fact that both sensors showed high prediction 

accuracy for θv and ω for the arable land soils, as compared to the grassland soils. 

Although the measurement conditions are different between the two land use 

scenarios investigated. For example, grassland soils tend to be more compacted in 

the measuring profile and with larger heterogeneity in the top soil BD, the system 

was able to predict BD accurately, which may be attributed to the good contact 

between the soil and dielectric probe, achieving an RMSEp = 0.013 cm3 cm-3. On 

the other hand, dividing the data according to the land use compared to the 

collective model, showed prediction improvement (Table 4-8). It was the spectra 



184 
 

data that outweighed the prediction accuracy for the grassland soils, where the 

RMSEp scored the lowest value (0.01 g g-1). However, all RPD values fall under 

excellent classification category, according to the classification index of Viscara 

Rossel et al. (2006). The BD prediction of the grassland revealed the lowest x 

intercept value of 0.079 g cm-3 with the closest scattering of BD points around the 

1:1 line. However, the encouraging results of the collective calibration model to 

predict soil BD using whole data was considered an advantage for the systems’ 

ability to operate under different soil conditions. This suggests dividing sample set 

into arable and grass land is not recommended particularly for arable land soils. 

For grassland soils, splitting calibration models into two sets have a positive impact 

on accuracy. 

 Summary of Section 5.1 

In general, the soil BD measuring system developed and tested in the current work 

showed high capability to estimate soil θv, ω and BD, under various calibration 

methods, soil types and conditions, where the accuracy fluctuated under the 

factors tested, but in most cases was high. However, different levels or 

percentages of the tested affecting factors have helped to identify where and when 

the measurements would be consistent and more accurate. Starting with the 

modelling effect, the ANN method with data fusion was the best method to handle 

the data from both sensors and provided the best accuracy. The moisture level 

influence showed that soils with average moisture contents near high end at L3 

were expected to achieve good prediction results. When it comes to the soil texture 

effect, it was concluded that clay minerals showed a positive interaction with the O-

H bond, influencing the spectral data, which in turn led to high prediction accuracy 

for soils with high CC. The growing crop effect showed that grassland soils are in 

advance of arable land soils planted with different crops, but the author believes 

that there are no direct connections between the measuring system accuracy and 

the growing crops. The experimental results only demonstrated the relationship 

followed field operations and its impacts on the soil viability. Literature sources 
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indicated that many authors have attempted to provide an accurate soil BD 

measuring system, due to the importance of such a single soil physical property 

that has many environmental and economic impacts. The new measuring system 

has demonstrated that better results are achievable for measuring soil BD 

compared to many others reviewed work, where large data volumes and a wide 

range of soil types and conditions are experienced. 

 

5.2. Evaluation of the prototype combined probe 

5.2.1. Laboratory evaluation of the prototype combined probe  

The prototype combined probe showed encouraging accuracy for measuring soil 

BD under field conditions (Table 4-14), although it was more accurate during 

laboratory test of two different soil textures, but soil texture effect was clear on 

RMSEp values 0.061 and 0.031 g cm-3 of BD with clay loam and sandy loam 

textures, respectively (Table 4-11), these findings are in-line with Liu et al. (2008) 

results of soil texture effect on the Thermo-TDR system accuracy to estimate BD in 

silt loam, clay loam and sandy textures under laboratory conditions with RMSEp 

values of 0.055, 0.051 and 0.046 Mg m-3, respectively.  

Clay fraction effect on the accuracy of the TDR sensors reported to be related to 

the attaching mechanism of the electrolytes to the clay fraction surface by static 

electrical force, leading to extra polarization, which would further interact with the 

electromagnetic wave that is travelling through the soil, in other words, CC 

impedes the electromagnet wave propagation in the clayey soils. The longer signal 

travel time leads to a higher output voltage, or overestimation of soil moisture 

reading (Sun and Young, 2015). Whereas, for the FDR sensors the effect of 

increasing CC lead to under-estimation of the V (Figure 4-12B), the reason behind 

such behaviour is due to decrease the bulk dielectric property of the soil matric with 

increase CC, the soil in FDR measuring systems represents the insulating material 
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between the electros of the dielectric sensor of the prototype combined probe. On 

the other hand, the linear relation between V and θv of the sandy loam soil texture 

expresses that the bulk dielectric of the soil matrix related to the K of the soil water 

solely (Figure 4-12A).   

The accuracy of the dielectric probe depends on maintaining good contact between 

the probe’s electrodes and the soil. For this reason, a penetrating cone is used as 

one of the shielding electrodes in addition to a second part above the central 

electrode,  a similar approach was followed by Peter and Yurui (2004) for the 

design of a combined capacitance sensor with a cone penetrometer (Figure 2-29). 

They reported lower accuracy for the linear relationship between the capacitance 

sensor’s V and θv using a silt loam soil texture under laboratory conditions, 

compared to the current prototype FDR sensor, which resulted in a better R2 value 

of 0.99 and RMSEp = 0.023 cm3 cm-3, using a clay loam soil texture under 

laboratory conditions and the characteristics of the relationship between V and θv 

found to be expressed more accurately using a non-linearity function.  

A vis-NIR spectrometer with a shorter spectrum was used for the prototype. The 

process of combining both sensors was the most challenging task of this work, as 

both sensors are very sensitive to any changes made to their sensing probes or 

heads. Delicate materials have to be used in the sensor manufacture, for example, 

using thin fibre optics in the limited space inside the steel shaft, upon which the 

combined probe is assembled and a sapphire material was used to ensure that no 

scratches would affect the probe windows’ transparency.  

5.2.2. In-situ evaluation of the prototype combined probe  

The dielectric probe showed high accuracy in measuring θv in arable and 

grassland soils and even more accurate for a single field test using ANN technique. 

Similarly, Namdar-Khojasteh et al. (2010) studied the relationship between K 

measured by TDR and θv. Concluding ANN calibration method used to predict the 

K–θv relationship using 10 different soil textures (e.g. sand, loamy sand, sandy 
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loam, sandy clay loam and loam) provided considerably better prediction of θv 

comparing to GF of Topp (1980). However, he reported that the microscopic 

phenomena associated with K of clays are still a subject of considerable debate 

and more investigation studies are needed. 

Soil temperature reported to be influential the dielectric accuracy (Robinson et al, 

2003; Kaleita et al., 2005), Chow et al. (2009) concluded it is importance to include 

the soil temperature in the calibration model of the dielectric sensors, their study 

included nine dielectric sensors installed in the >50 cm soil layers. The effect of soil 

temperature on the dielectric property of the soil is complex due to the 

interferences of CC, electrical connectivity and BD (Seyfried and Murdock, 2004), It 

is reported that the K of water decreases approximately 0.7% °C-1 for temperatures 

from 5 to 35°C, Hence, K of the soil had a temperature dependence related solely 

to K of the water, measurements of soil K would show a negative correlation with 

temperature (Campbell, 2015), for these reason adding temperature sensor to the 

prototype combined probe would improve the accuracy and provide more valuable 

information on the way of presenting compact mapping system.  

The NIR spectrometer of the current prototype predicted ω accurately in arable and 

grassland soils with R2 of 0.97 and 0.96 and RMSEp 0.019 and 0.011 g g-1, 

respectively (Table 4-13), compared to a lower accuracy magnitude reported by 

Hummel et al. (2004) combined probe (Figure 2-30), the accuracy of the field 

measurements are in-line with Quraishi (2013) who used similar wavelength 

spectrum range for ω prediction.  

RMSEp value of BD estimation for the five arable fields and two grasslands (Table 

4-14) showed encouraging accuracy comparing to the lower RMSEp value of BD 

estimation obtained during the single field test (Table 4-15), these results 

suggesting a high sensitivity for the prototype combined probe to soil BD, however, 

the author believe the less variability of the soil at a single field contributed towards 

better BD prediction accuracy, same trend also observed when the RMSEp of the 
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arable lands compared with those of the grasslands, which naturally experience 

less soil variability providing that the grass established long enough. Quraishi 

(2013) reported considerable accuracy improvement of soil BD prediction at a 

single field comparing to the prediction of soil BD at multiple arable fields.        

Field measurements of soil BD showed good accuracy when testing the prototype 

combined probe, which is composed of two sensors of dielectric and vis-NIRS to 

measure soil moisture only, Peter and Yurui (2004) concluded that adding the 

capacitance sensor electrode and insulator caused additional frictional resistance 

to soil penetration by the combined sensor. This led to deterioration in 

measurement accuracy for the soil strength related system, a problem which has 

no effect on the soil moisture related systems to measure soil BD designed and 

developed in the current thesis. This is in-line with the literature review, which 

showed shortcoming of soil strength related measuring systems. Furthermore, the 

available on-line mapping systems for soil properties are in general not accurate in 

comparison to in-situ measuring systems. For example, the low accuracies 

reported by Stombaugh (2014) on-line air permeability sensor (Figure 2-19) to 

estimated soil compaction and Adamchuk et al (2008) sensor array system (Figure 

2-20) to map the spatial variability of soil mechanical resistance, which might be 

explained by a deficiency in their concept or design, even under soil bin conditions 

(Hall and Raper, 2005; Andrade-Sánchez et al., 2003).  

The prototype measuring system showed better soil BD estimation accuracy with 

light soil textures (e.g. sandy loam), the process of inserting the combined probe 

was smoother and easier when the soil moisture is at the field capacity, which led 

to form a well-shaped walls of the measuring hole, these conditions were the best 

to gain stable and accurate readouts from both sensors, the well-shaped walls 

provided better contact area between the electrodes of the dielectric sensor, while 

the smooth and the well-shaped walls provided the better light reflectance for the 

NIRS measurements. The author recommend conducting the soil BD 

measurements after harvesting the crops and before ploughing the soil, as the 
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effect of soil disturbance at this time is minimum and also the results of soil BD 

measurements can provide a beneficial information for efficient land management, 

where for example a subsoiler can be used at specific parts in the field, whereas 

for the lower BD parts of the field a higher speed of the tractor may be selected for 

more efficient tillage.     

From the above it is clear that the best time to conduct field measurements using 

the prototype combined probe when the heavy soils’ moisture is ranging between 

0.18 to 0.30 gg-1 and between 0.20 to 0.28 gg-1 in the light soils, in order to avoid 

the occurrence of air spaces around the dielectric probe’ electrodes, as well as to 

prevent the overestimation of V when the soils at or near saturation status. 

Conducting field measurements also preferred when the soil temperature degree 

convergent with those in which the model calibration was generated, however, 

assembling a thermo-sensor on the combined probe and add the effect of soil 

temperature to the calibration models expected to improve the accuracy. Fields 

with light soil texture showed a tendency of better accuracy of estimation BD 

comparing to the fields with heavy soil texture (Table 4-15).  

Many prediction models for soil physical or chemical properties have been 

extensively developed to be used with soil combined sensor applications. The data 

fusion technique is a powerful tool, when implemented for various multiple 

integrated sensors in a soil compaction measuring system, and has emerged as a 

promising approach (Mouazen and Ramon, 2008; Mouazen, 2009). Simultaneous 

mapping of soil compaction indicated as BD, alongside with θv and ω could 

considerably optimise future farming efficiency (Adamchuk et al., 2008). 

It is understandable that in-situ mapping systems, such as the prototype system 

developed in the current work, are labour-demanding for a large field area, but this 

issue can be solved by providing, for example, a quad motorbike for easier 

movement around the fields during the measurements. However, the main 

important consideration about conducting such measurements is to ascertain the 
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measurement accuracy, which the literature has proved that the on-line mapping 

systems are not sufficiently accurate, due to many factor interactions associated 

with the measurement process, even the use of a relatively large number of 

sensors would not be able to solve this lack of accuracy.   

 

5.3. Advantages and practical challenges associated with the use of the new 

concept and the prototype combined probe  

The advantages of using the new concept to measure soil compaction indicated as 

BD with the implementation of dielectric and vis-NIRS sensors are as followed: 

 The system is semi- non-invasive, whereas, the frequency domain 

sensor measures the dielectric constants of the compound by emitting an 

electromagnetic signal propagated through the soil body and the vis-

NIRS sensor detects the diffused reflectance of electromagnetic wave 

from the soil samples surface down to the depth of 2 mm. 

 The system is relatively small in size and light in weight: the ASDi 

spectrometer weights 5.44 kg with dimensions of 12.7 by 36.8 by 29.2 

cm, of height, width and depth, respectively, whereas the ThetaProbe is 

a handheld with minor weight measuring device.  

 The prototype soil compaction measuring system has an additional 

advantage by presenting a combined probe containing both sensors. 

 Rapid readouts: The readings from both sensors can be recorded within 

few seconds. 

 Robust design of the prototype combined probe in terms of the 

penetration rod geometrical structure, where the ability to easily 

penetrate the soil have been taken into account by this streamlined form. 

 Cost effective, efficient and long lasting mapping system for BD and it 

has the potential to measure other soil physical and chemical properties. 
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 Adequate accuracy with wide a range soil types and conditions, 

providing accurate calibration models are used. 

For further details of the up-to-date soil BD measuring systems, Table 5.2 shows a 

comparison between the prototype measuring system presented in this thesis and 

other prototypes, clearly, the prototype of the current work is among the best 

measuring systems from the accuracy point view (Table 4-14), Although these 

results are field measurements of the five different fields with different soil textures, 

the current results are encouraging when taking into account that the measurement 

accuracy under laboratory conditions of the prototype proved affected by the 

texture of soil (Table 4-11), which in the future requires calibration procedure 

depends on the type of soil to obtain a higher accuracy measurements. Both the 

current prototype and Liu et al. (2008) Thermo-TDR measuring systems of soil BD 

are non-soil-strength-depending systems sharing the high estimation accuracies 

and the simple operational principles, but the high electrical power of the probe’s 

heaters and long time needed for a single readout are the main disadvantages of 

the Thermo-TDR probe, while the current prototype’s probe consumes 

considerably less electrical power as no heating element is present and only 

around 5 seconds are needed for a single readout. Other soil-strength-depending 

soil BD measuring systems can be described as more complicated systems, which 

their accuracies are affected by soil moisture content, to solve this issue a moisture 

sensor should be added to the measuring system, among all these systems 

Quraishi and Mouazen (2013c) showed the highest accuracy of an in-situ 

measuring system of soil BD, aided by the ANN calibration technique they 

achieved RMSEp as low as 0.02 Mg cm-3 for a single field soil BD prediction, 

similarly the prototype measuring system of the current study showed considerably 

high accuracy to estimate soil BD in Clover Hill field with RMSEp value of 0.008 g 

cm-3, furthermore for all individual field tested the results show excellent accuracy 

ranging from 0.008 to 0.032 g cm-3 (Table 4-15). However, the results of prediction 

soil BD during the individual field measurement show no clear effect of various soil 
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textures, which suggest that a calibration model from wide range of soil texture can 

predict BD with high accuracy.  

The simplicity of the measuring system of soil BD is a key factor to present a 

practical, low cost and usable system, the prototype of the current system provide 

these advantages, however, the author believe that higher accuracy can be 

obtained when using calibration models of different soil textures, as the latter 

proved to affect the measurement accuracies of both dielectric (Liu et al., 2008; 

Rowlandson et al., 2013; Alizadeh et al., 2008) and vis-NIRS sensors (Kuang, 

2012; Quraishi, 2013) (Table 4-9 and 4-10, respectively).  

Table 5-2 provide a comparison between the prototype measuring system of soil 

BD and other measuring systems, the accuracy comparison shows that the new 

measuring system is among the most accurate systems with less than 0.01 g m-3 

values of RMSEp for a single field measurement of soil BD. Furthermore, the 

prototype simple and robust design is the key feature of presenting the new system 

as affordable and accurate for the in-situ measurements, whereas the general 

disadvantage of the on-line system is the lower accuracy despite the use of 

multiple sensory systems, However, the radiation hazard of using the gamma ray 

source is the maim limitation of using Naderi-Boldaji et al. (2013) measuring 

system, which was the best among the on-line measuring systems of soil BD, with 

RMSE value of 0.06 g m-3.  
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Table 5-2 Comparison between the prototype measuring system of soil BD and other measuring systems from the up 

to date literature.   

Systems Accuracy Mobility Complexity 

The prototype 

of current 

thesis 

RMSEp=0.01 g cm-3 

of soil BD. 

In-situ; portable system can be 

carried by a person. 

Combined soil probe of dielectric 

sensor and vis-NIRS. 

Kweon et al. 

(2008) 

R2=0.21 to 0.78 

RMSE=0.07 to 0.13 g 

cm-3 of soil BD. 

Mounted on a vertical frame is 

installed on a pick-up truck and has 

an assisting hydraulic system to 

help penetrate the soil profile. 

Soil profile array sensors consisted of 

a vis-NIRS, a string potentiometer, a 

conductivity probe, GPS and a 

thermometer. 

Adamchuk et 

al (2008) 

R2=0.32 of soil BD. On-line; Compound on a platform 

carried on the three suspension 

points of a tractor. 

Sensor array of an optical 

reflectance, dielectric probe and three 

sets of load cells. 

Sun et al 

(2006) 

R2=0.51 of soil BD. On-line; Compound on a platform 

carried on the three suspension 

points of a tractor. 

Horizontal combined probe of a cone 

penetrometer and a FDR capacitance 

sensor. 

Adamchuk et 

al. (2008) 

R2=0.71 of soil BD On-line; Compound on a platform 

carried on the three suspension 

points of a tractor. 

Combined mapping system 

consisting of a load cell, an optical 

sensor and a capacitance probe. 

Dhillon et al., R2 = 0.28 of the On-line; mounted on a platform can Integrated mapping system of an 
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(2010) predicted soil 

mechanical 

resistance. 

be towed by a pick-up truck optical sensor with a capacitance 

probe, a load cell sensor and GPS. 

Naderi-Boldaji 

et al. (2013) 

R2= 0.72 and 

RMSE=0.06 g cm-3 of 

soil BD. 

On-line; Compound on a platform 

carried on the three suspension 

points of a tractor. 

Mapping system consisted of a 

Horizontal penetrometer connected to 

a load cell, a dielectric probe and a 

gamma-ray sensor. 

Quraishi and 

Mouazen 

2013c 

R2=0.94 and 

RMSE=0.04 Mg m-3 

of soil BD. 

In-situ; portable system can be 

carried by a person. 

Soil BD multi-sensor kit consisted of a 

digital penetrometer combined with 

an NIRS. 

Liu et al. 

(2008) 

RMSE=0.046 to 

0.055 Mg m-3 

In-situ; portable system can be 

carried by a person. 

TDR, thermometer and combined 

probe. 



195 
 

One of the challenges raised during the field measurements was the fact that 

agricultural soils are not naturally homogeneous and contain stones, gravels and 

plant residuals. These have a significant negative impact on the dielectric sensor, 

relating to the fact that the central electrode is very sensitive to air pockets when 

they present around it. Stones in the collected soil cores lead to soil moisture 

estimation error, as the stones do not hold any moisture inside them. Dry soil 

conditions make the measurements difficult and less accurate, while the very moist 

soil status could make it harder to conduct the readings. Excluding the soil sample 

outliers from the whole data could also improve the accuracy of prediction; 

however, a certain SD limit of soil sample groups can help solve this issue.  

Technical challenges can be summarised as the necessity for a more compact 

system, which has the capability of recording the data from both sensors, as well 

as the ability to process the adapted calibration models and providing the desired 

output, which may include spatial maps or prediction values. Long life and light 

weight batteries are essential for the measuring system to be easily mobile and 

reliable for extended periods of field measurement. However, assembling the 

system on a quad motorbike could solve all of the above issues. Supplying the 

right coaxial cable for the dielectric sensor was the main challenge in the 

manufacture of the combined probe for the prototype measuring system. This was 

particularly due to the difficulty of dealing with the high frequency signals (100 

MHz). With more research time and financial support a whole profile measuring 

probe instead of just the top 10 cm of depth measurements would have been 

developed.  

5.4. Implementation and commercialisation of the new measuring system  

The new measuring system has proved to measure soil BD as a function of the 

directly measured θv and ω. However, many soil physical and chemical properties 

can also be measured by the vis-NIR spectrometer, providing the right and 

accurate calibration models. The benefits of having this measuring system 

commercially available are expected to be multidisciplinary,  including assisting 
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farmers from an economic point of view, where such a helpful and reliable system 

can by implemented for efficient application of fertilisers and this would lower the 

risk of surface and ground water contamination by the agrichemicals. Also, the 

identification of the compacted parts of the fields could direct compaction solution 

processes more specifically, which would save time and financial resources. 

Similarly, a considerable amount of energy can be saved if site-specific tillage is 

deployed (Andrade‐Sanchez et al, 2008).  

The author believes that the new measuring system will be a valuable tool to the 

environmental agencies, since speedy, high spatial resolution and low cost data 

about soil compaction will assist prediction and modelling of flood risk, while 

effective land management for flood defence can be established. In other words, 

the new measuring system can be a reliable and accurate mapping system to 

Natural England and Environmental Agency to support their two soil protection 

schemes of from runoff and erosion, by providing prediction models where soil 

erosion or floods might occur during heavy rains, due to the low infiltration rates, 

that are normally associated with compacted soils.  

The new measuring tool can support the Catchment Sensitive Farming initiative by 

making a difference to local water quality by showing where improvements to soil 

bulk density (soil compaction) and rainfall infiltration are required, consistently, and 

in a targeted manner (DEFRA, 2008). Field measurement of soil compaction at 

high spatial resolution will assist successful implementation of Unilever sustainable 

agriculture by enabling a better management of land for sustainable production 

(Unilever, 2010). Finally, to improve compaction management, site specific tillage 

systems can be adopted based on high resolution measurement output of bulk 

density as the main indicator of soil compaction. 
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  Chapter 6

6. Conclusions and future work 

6.1. Conclusions 

The visible and near infrared spectroscopy (vis-NIRS) for the measurement of the 

gravimetric moisture content (ω) was combined with the ThetaProbe for the 

measurement of the volumetric moisture content (θv) for in-situ assessment of soil 

bulk density (BD). Influences of modelling technique, moisture content, texture and 

land use on measurement accuracy of the three properties were evaluated. Based 

on successful results obtained for 32 fields in England and Wales with different 

textures, organic matter percentages, moisture contents, and various land use, a 

prototype measuring system for soil BD, with its combined probe of two sensing 

techniques, was designed, manufactured and tested in the laboratory and field. 

The following conclusions can be drawn from the results of the tests: 

 Soil BD can be assessed with the proposed new approach by substituting 

the vis-NIR measured ω and the ThetaProbe measured θv into an existing 

BD model with high accuracy. 

 Artificial neural networks (ANN) methods were proven to provide high 

performance as a calibration technique for both the dielectric sensor and 

vis-NIR spectrophotometer, with only spectra and V used as input variables 

to generate separate calibration models of θv and ω, respectively. However, 

the ANN - data fusion models are generally better than when used 

separately, due to the unique ability of the multilayer perceptron neural 

networks to deal with the most complex data, which were obtained from 

multiple variables in the input layer, and its capability to process the input 

data, using nonlinear functions rather than only linear processing calibration 

methods. 
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 The accuracy of BD assessment depends on the measurement accuracy of 

ω and θv. The highest accuracy (R2 = 0.81 and RMSEp = 0.095 g cm-3) was 

based on ω and θv values predicted with the artificial neural networks (ANN) 

– data fusion models with ThetaProbe output voltage (V) and vis-NIRS 

spectra used as input variables. A total of 1013 soil samples with wide 

ranges of soil moisture, texture, colour and two different cropping systems 

were used in the analysis. This demonstrated the good reliability of the new 

measuring system to predict soil BD, compared to other measuring systems 

reported in the literature (Quraishi and Mouazen, 2013c;  Hummel et al., 

2004; Sun et al., 2011; Lin et al., 2014), where their reported results were 

not able to achieve a similar magnitude of prediction accuracy under the 

same conditions. 

 The performance of the BD model based on the ANN – data fusion 

approach deteriorated with an increase in the number of input variables e.g. 

clay, silt, sand or OM, used to predict ω and θv, which supports the author 

hypothesis of presenting a soil BD measuring system depends on ω and θv 

only. From statistics point view it can concluded that the additional soil 

properties are not relevant to the prediction ω and θv and subsequently 

have no effects on BD prediction. The reliance on a small number of input 

variables can be considered an advantage of the measuring system making 

the prediction of soil BD lower in cost as there is no need for laboratory 

analysis of soil properties. 

 The influence of soil moisture level on accuracy of θv, ω and BD prediction 

revealed lower accuracy at the lowest soil moisture level and the accuracy 

improved as soil moisture levels increased. This is because literature 

showed that soil moisture content is one of the most influential factors on 

the vis-NIR spectra data (Stenberg et al., 2010; Mouazen et al., 2005a; 

Viscarra Rossel and McBratney, 1998). Similar conclusion can be drawn 

from moisture level effect experiment of the current work, for that, predicting 

ω accurately was the key to obtain higher BD measurement accuracy. 
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Furthermore, results also showed that accuracy of θv measurement with 

ThetaProbe depends on obtaining good contact with the soil. For dry soil 

condition, a poor contact between the soil and ThetaProbe’s electrodes 

might also affect the accuracy of θv measurement and hence the prediction 

of BD. The implication of this fact leads to preferable soil moisture range, 

where precise soil BD estimation can be certain.      

 A smaller effect of texture as compared to moisture content on prediction 

accuracy of BD was seen from clay on the dielectric sensor compared to the 

vis-NIRS measurements. In fact, no clear effect of texture was observed, 

which was attributed to the small number of soil textures (3 textures) 

compared in the current work. The results of the ω prediction for the soil 

texture effect experiment showed that root mean square error of prediction 

(RMSEp) in most cases decreased with lower clay content. However, in 

most soil textures a good to excellent BD prediction accuracy levels were 

obtained for arable and grassland soils, according to the residual prediction 

deviation (RPD). 

 The collective texture models of heavy and light soils appears to provide 

more stable soil BD prediction results, as compared to individual texture 

model of light soils. However, the heavy soil model performed better than 

the collective soil model. This suggests dividing samples into heavy and 

light soils when estimation of BD is required for heavy soils. For light soils, 

however, merging heavy and light soils in a collective texture model is 

expected to result in much improved estimation performance. However, 

results show that measurement in grassland soils is more robust and 

accurate than in arable land fields. Furthermore, the analysis also showed 

that there was no measurable effect on the dielectric sensor readings, but in 

contrast, a clear impact on the vis-NIR spectrophotometer measurements. 

The BD prediction on heavy soils showed the best accuracy, which is 

particularly related to the higher prediction accuracy of ω. The positive 

interaction effect of CC and moisture content on the spectral data leading to 
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better ω prediction. This revealed the need for further study of the 

interaction between soil fractions and moisture content and the identification 

of the most sensitive wavelength band that could be used for this 

combination. 

 The land use effect experiment indicated more accurate assessment of BD 

in Grassland fields than in arable fields. This was true for R2 and RPD 

values. However, the RMSEp values were similar in both arable land and 

grassland fields, suggesting that splitting samples into arable and grassland 

does not lead to improved estimation accuracy of BD. The higher R2 and 

RPD values obtained in the grassland field were attributed to the higher SD 

that increased R2 and RPD values. This is particularly due to the natural 

differences of the two grassland locations, where the samples were 

collected. 

 The prototype portable combined sensor can be used successfully for the 

measurements of θv, ω and BD across a wide range of soil textures and 

land uses. However, the laboratory test gave better results compared to the 

in-situ measurements. The field test of the prototype in selected arable and 

grassland sites to predict θv and ω provided excellent results, and the BD 

results were encouraging. The best topsoil BD predicted was for grassland 

soils (R2 = 0.47, RMSEp = 0.077 g m-3 and RPD = 1.36). It can be 

concluded that a narrow band wavelength spectrometer or even mono 

optical detectors of a certain wavelength can also be used to predict ω 

effectively, which would considerably lower the cost of the new measuring 

system and would present it as replacement for the high cost of traditional 

laboratory measuring methods. 

 The highest accuracy of the prototype measuring system was achieved with 

single field measurements, where BD predicted as low as 0.01 g cm-3 of the 

RMSEp. 

 The data of the field test of the prototype combined sensor were 

successfully utilised to produce maps of measured and predicted θv, ω and 
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BD. These derived products were capable of showing accurate spatial 

variation for each parameter mapped, although, the full-points maps were 

more clear image as double readings number were used to generate θv, ω 

and BD maps. These BD maps can be of particular interest for land 

managers, where soil compaction or traffic have to managed site 

specifically.  

 The new measuring system has proven good capability to measure soil 

compaction indicated as a soil BD, using the combined probe. Unlike 

measuring soil compaction systems that rely on the strength of the soil, the 

new measuring system depends on the moisture content measurements of 

the soil only. From an economic perspective the new measuring system can 

be an effective tool for land managers to determine soil deterioration areas 

of the field due to compression and then directing tillage operations to those 

areas specifically, and that leads to reduce expenses when compared to 

apply tillage to the whole field. At the same time environmental 

organizations can benefit from the new system to conduct surveys to the 

problem of soil compaction, which is one of the most important factors that 

increase the risk of flooding during heavy rain seasons.  

 

6.2. Future work 

This thesis provided a first step of developing a prototype combined sensor for the 

assessment of BD. However, further development should be considered as to 

cover the following points: 

 It is proposed that further development of the prototype combined sensor 

software programming and hardware components be carried out, where one 

platform containing both sensors would be an advantage and substituting 

the laptop with a suitable data logger capable of device control, data storage 
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and data display. This arrangement would result in a more compact system 

and one that is more practical for field based measurements. 

 The dielectric sensor electrodes need an improved design, in order to 

achieve better contact with the soil. The current prototype is capable of 

measurement to a soil depth of 10 cm, but with further development, the 

combined probe has the potential to become a whole profile probe, enabling 

the system to measure soil BD at various soil depths.  

 The NIR spectrophotometer is a robust tool that can provide rapid 

measurements of many physical and chemical soil properties, if accurate 

calibration models are used. The following points need to be considered for 

the development of the prototype: 

1. New calibration models can be developed for different physical and 

chemical soil properties (e.g. organic carbon, N, P, pH and C) using the 

ANN calibration method. 

2. More compactness and less weight spectrophotometer are needed for 

easier in-situ measurements. 

3. Software development is essential for fast measurement of both sensors 

and output interpretations, for example, an automatic generation of output 

maps from the measurements would be beneficial to present mapping 

system. 

4. A quad motorbike would be needed for mapping large areas and it would 

provide additional power source for the system operation.  

5. Develop the combined probe further to achieve soil profile measuring 

capability through different soil depth down to 30 cm.   
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Appendixes  

 

Appendix 1 Different artificial neural networks (ANN) analyses for the 

measurement of volumetric (θv) and gravimetric (ω) moisture content for L1 (0.11 g 

g-1 and 0.15 cm3 cm-3), L2 (0.20 g g-1 and 0.23 cm3 cm-3) and L3 (0.28 g g-1 and 

0.32 cm3 cm-3). Data used as input are output voltage (V) and visible and near 

infrared spectra (Spec). 

MC 
Level 

Network 
Structure 

Training 
R2 

Cross-
validation 

R2 

Training 
error 

Cross-
validation 

error 

Training 
algorithm 

Hidden 
activation 

Output 
activation 

L1 172-8-2 0.95 0.95 0.000104 0.000212 BFGS 38 Log. Exp. 
L2 172-8-2 0.99 0.98 0.000139 0.000125 BFGS 103 Log. Exp. 
L3 172-8-2 1.00 0.99 0.000056 0.000255 BFGS 162 Log. Identity 

Collective 172-18-2 0.99 0.96 0.000149 0.000276 BFGS 120 Log. Exp. 

 

BFGS: Broyden-Fletcher-Goldfarb-Shanno algorithm,  

Log. Is logistic sigmoid function,  

Exp. is negative exponential function,  

MC: moisture content. 
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Appendix 2 Core sampling versus predicted soil volumetric moisture content (θv) 

with the artificial neural networks (ANN) calibration method, for the soil moisture 

levels effect experiment of level 1 (L1) (A), level 2 (L2) (B), level 3 (L3) (C), and the 

collective model (D). Dashed line = 1:1 line; bold red line = line of best fit; = 

error bars. 
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Appendix 3 Core sampling versus predicted soil gravimetric moisture content (ω) 

with the artificial neural networks (ANN) calibration method, for the soil moisture 

levels effect experiment of level 1 (L1) (A), level 2 (L2) (B), level 3 (L3) (C), and the 

collective model (D). Dashed line = 1:1 line; bold red line = line of best fit; = 

error bars. 
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Appendix 4 Different artificial neural networks (ANN) analyses used for the measurement of volumetric (θv) and 

gravimetric (ω) moisture content for the soil texture effect. Data used as input are output voltage (V) and visible and 

near infrared spectra (Spec). 

 

Texture 
classes 

land use 
Network 
structure 

Training 
R2 

Validation 
R2 

Training 
error 

Validation 
error 

Training 
algorithm 

Hidden 
activation 

Output 
activation 

Clay 
Arable 
land 

172-12-2 0.94 0.90 0.000235 0.000442 BFGS 81 Identity Exp. 

Grassland 172-8-2 0.99 0.98 0.000122 0.000217 BFGS 87 Identity Exp. 

Clay Loam 
Arable 
land 

172-12-2 0.94 0.94 0.000423 0.000369 BFGS 58 Identity Log. 

Grassland 172-24-2 1.00 1.00 0.000016 0.000043 BFGS 88 Exp. Identity 

Sandy loam 
Arable 
land 

172-8-2 0.96 0.94 0.000123 0.000353 BFGS 20 Exp. Tanh 

Grassland 172-8-2 1.00 0.96 0.000024 0.000388 BFGS 98 Exp. Tanh 

Collective 
Arable 
land 

172-8-2 0.98 0.98 0.000332 0.000446 BFGS 54 Exp. Tanh 

Grassland 172-8-2 0.99 0.99 0.000156 0.000162 BFGS 106 Tanh Exp. 

 

BFGS: Broyden-Fletcher-Goldfarb-Shanno algorithm.  

Log.: logistic sigmoid function. 

Exp.: negative exponential function.  

Tanh: hyperbolic tangent function.  
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Appendix 5 Scatter plots of core sampling versus artificial neural networks (ANN) 

predicted soil volumetric moisture content (θv) for clay (A), clay loam (B), sandy 

loam (C) soils and the collective texture model (D), using samples collected from 

arable land fields. Dashed line = 1:1 line; bold red line = line of best fit; = error 

bars. 
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Appendix 6 Scatter plots of core sampling versus artificial neural networks (ANN) 

predicted soil volumetric moisture content (θv) for clay (A), clay loam (B), sandy 

loam (C) soils and the collective texture model (D), using samples collected from 

grassland fields. Dashed line = 1:1 line; bold red line = line of best fit; = error 

bars. 
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Appendix 7 Scatter plots of core sampling versus artificial neural networks (ANN) 

predicted soil gravimetric moisture content (ω) for clay (A), clay loam (B), sandy 

loam (C) textures and the collective texture model (D), for samples collected from 

arable land. Dashed line = 1:1 line; bold red line = line of best fit; = error bars. 
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Appendix 8 Scatter plots of core sampling versus artificial neural networks (ANN) 

predicted soil gravimetric moisture content (ω) for clay (A), clay loam (B), sandy 

loam (C) textures and the collective texture model (D), for samples collected from 

grassland fields. Dashed line = 1:1 line; bold red line = line of best fit; = error 

bars. 
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Appendix 9 Different artificial neural networks (ANN) analyses used for the measurement of volumetric (θv) and 

gravimetric (ω) moisture contents for light and heavy soils and for collective soil models. The data used as inputs are 

output voltage (V) and visible and near infrared spectra (Spec). 

 

Index 
Network 
structure 

Training 
R2 

Validation 
R2 

Training 
error 

Validation 
error 

Training 
algorithm 

Hidden 
activation 

Output 
activation 

Light 172-21-2 0.99 0.95 0.000086 0.000243 BFGS 96 Tanh Exp. 
Heavy 172-8-2 0.97 0.96 0.000275 0.000463 BFGS 138 Exp. Identity 

Collective 172-11-2 0.98 0.94 0.000375 0.000489 BFGS 59 Tanh Identity 

BFGS: Broyden-Fletcher-Goldfarb-Shanno algorithm.  

Exp.: negative exponential function.  

Tanh: hyperbolic tangent function 
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Appendix 10 Scatter plots of core sampling measured versus artificial neural 

networks (ANN) predicted soil volumetric moisture content (θv) for light soil 

textures (A), heavy soil textures (B) and the collective texture class model (C).  

Dashed line = 1:1 line; bold red line = line of best fit; = error bars. 
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Appendix 11 Scatter plots of core sampling measured versus artificial neural 

networks (ANN) predicted soil gravimetric moisture content (ω) for the light soil 

textures (A), the heavy soil textures (B) and the collective texture model (C). 

Dashed line = 1:1 line; bold red line = line of best fit; = error bars. 

 

 

 

           Measured ω (g g-1) 

y = 0.9129x + 0.0124 
R² = 0.90 

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

A 

y = 1x + 0.0008 
R² = 0.96 

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3 0.4 0.5

B 

y = 0.9463x + 0.0104 
R² = 0.96 

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3 0.4 0.5

D 

E
s
ti
m

a
te

d
 ω

 (
g
 g

-1
) 



237 
 

Appendix 12 Three different models obtained with artificial neural networks (ANN) analyses for the measurement of 

volumetric (θv) and gravimetric (ω) moisture contents using arable land, grassland and collective land use samples. 

Data used as inputs are output voltage (V) and visible and near infrared spectra (Spec). 

 

Index 
Network 
structure 

Training 
R2 

Validation 
R2 

Training 
error 

Validation 
error 

Training 
algorithm 

Hidden 
activation 

Output 
activation 

Arable land 172-24-2 0.992705 0.992676 0.000159 0.000147 BFGS 88 Exp. Exp. 
Grassland 172-21-2 0.996369 0.988902 0.000048 0.000182 BFGS 212 Log. Identity 

Collective 172-18-2 0.993149 0.987700 0.000127 0.000231 BFGS 180 Log. Identity 

 

BFGS: Broyden-Fletcher-Goldfarb-Shanno algorithm.  

Log.: logistic sigmoid function. 

Exp.: negative exponential function 
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Appendix 13 Scatter plots of core sampling measured versus artificial neural 

networks (ANN) predicted soil volumetric moisture content (θv) for arable land (A), 

grassland (B) and the collective sample model (C). Dashed line = 1:1 line; bold red 

line = line of best fit; = error bars. 
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Appendix 14 Scatter plots of core sampling measured versus artificial neural 

networks (ANN) predicted soil gravimetric moisture content (ω) with arable land 

(A), grassland (B) and the collective sample (C) models. Dashed line = 1:1 line; 

bold red line = line of best fit; = error bars. 
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Appendix 15 The artificial neural networks (ANN) modelling results for the laboratory test of the prototype combined 

probe. 

Index 
Network 
structure 

Training 
R2 

Validation 
R2 

Training 
error 

Validation 
error 

Training 
algorithm 

Hidden 
activation 

Output 
activation 

Sandy loam 170-10-2 0.98 0.97 0.00028 0.000268 BFGS 14 Identity Exp. 
Clay loam 170-19-2 0.98 1.00 0.00033 5.55E-05 BFGS 56 Exp. Logistic 

Collective 170-8-2 0.996 0.99 9.03E-05 0.000202 BFGS 81 Tanh Identity 

BFGS: Broyden-Fletcher-Goldfarb-Shanno algorithm; Logistic: logistic sigmoid function; Exp.: negative exponential 
function; Tanh: hyperbolic tangent function.  

 

Appendix 16 The artificial neural networks (ANN) modelling results of the field testing of the prototype combined 

probe. 

Index 
Network 
structure 

Training 
R2 

Validation 
R2 

Training 
error 

Validation 
error 

Training 
algorithm 

Hidden 
activation 

Output 
activation 

Arable land 170-17-2 1.00 0.98 0.000008 0.000458 BFGS 147 Exp. Exp. 
Grassland 170-8-2 0.99 0.99 0.000052 0.000065 BFGS 113 Log. Exp. 
Collective 170-15-2 0.97 0.95 0.000111 0.000652 BFGS 178 Exp. Exp. 

 

BFGS: Broyden-Fletcher-Goldfarb-Shanno algorithm.  

Log.: logistic sigmoid function. 

Exp.: negative exponential function. 
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Appendix 17 Artificial neural networks (ANN) modelling results of the individual field testing of the prototype 

combined probe. 

Field Network 
structure 

Training 
R2 

Validation 
R2 

Training 
error 

Validation 
error 

Training 
algorithm 

Hidden 
activation 

Output 
activation 

Avenue 173-1-2 0.99 0.98 0.000214 0.000353 BFGS 73 Identity Exp. 
Showground 173-2-2 1.00 0.99 0.000100 0.000282 BFGS 104 Exp. Tanh 
Orchard 173-5-2 0.98 0.98 0.00055 0.000501 BFGS 24 Tanh Tanh 
Clover Hill 173-1-2 0.99 0.97 0.000358 0.000720 BFGS 49 Log. Exp. 
Beechwood 173-2-2 1.00 0.99 0.000113 0.000351 BFGS 167 Exp. Exp. 

Avenue grass 173-1-2 0.99 0.99 0.000301 0.000337 BFGS 58 Exp. Tanh 
Onley grass 173-1-2 0.98 0.96 0.000456 0.001088 BFGS 88 Log. Log. 

BFGS: Broyden-Fletcher-Goldfarb-Shanno algorithm.  

Logistic: logistic sigmoid function. 

Exponential: negative exponential function.  

Tanh: hyperbolic tangent function. 
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