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ABSTRACT

A major uncertainty in soil carbon studies is how inputs of fresh plant-derived

carbon affect the turnover of existing soil organic matter (SOM) by so-called

priming effects. Priming may occur directly as a result of nutrient mining by

existing microbial communities, or indirectly via microbial population

adjustments. Soil type and conditions may also influence the intensity and

direction of priming effects. However the mechanisms are poorly understood.

The objectives of this study were (1) to investigate how additions of labile C4

substrate affected SOM turnover in two contrasting unplanted C3 soils (clayey

fertile from Temple Balsall, Warwickshire (TB) and sandy acid from

Shuttleworth, Bedfordshire (SH) using 13C isotope shifts; (2) to investigate the

influence of rhizodeposition from plant roots on SOM turnover in the same two

soils planted with a C4 grass; (3) to assess an automated field system for

measuring soil temperature, moisture and photosynthesis sensitivities of SOM

turnover in the same two soils over diurnal to seasonal time scales. I used a

combination of laboratory incubation, glasshouse and field experiments.

In the soil incubation experiment, I made daily applications of either a maize

root extract or sucrose to soil microcosms at rates simulating grassland

rhizodeposition, and followed soil respiration (Rs) and its δ13C over 19 days. I

inferred the extent of priming from the δ13C of Rs and the δ13C of substrate and

soil end-members. There were positive priming effects in both soils in response

to the two substrates. In the SH soil there were no differences in priming effects

between the substrates. However in the TB soil, sucrose produced greater

priming effects than maize root extract, and priming effects with sucrose

increased over time whereas with maize root extract declined after the first

week. I explain these effects in terms of the greater fertility of the TB soil and

resulting greater microbial nitrogen mineralization induced by priming. Because

the maize root extract contained some nitrogen, over time microbial nitrogen

requirements were satisfied without priming whereas with sucrose the nitrogen

demand increased over time.
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In the glasshouse experiment, I planted C4 Kikuyu grass (Pennisetum

clandestinum) in pots with the same two soils. The extent of rhizodeposition by

the plants was altered by intermittently clipping the grass in half the pots (there

were also unplanted controls) and priming effects were inferred from the δ13C of

Rs and the δ13C of plant and soil end-members. Unclipped plants in both soils

generated positive priming effects, while clipping reduced priming in TB soil and

produced negligible PEs in SH soil. Microbial nutrient mining of SOM again

explained the observed PEs in this experiment. Photosynthesis was a major

driver of priming effects in the planted systems.

In the third experiment, I found that the tested automated chamber system

provided reliable measurements of Rs and net ecosystem exchange (NEE), and

it was possible to draw relations for the dependency of Rs and NEE on key

environmental drivers.

Collectively, the results contribute to a better understanding of the mechanisms

of priming effects and highlight possibilities for further research. The methods

developed here will allow high temporal and spatial resolution measurements of

Rs and NEE under field conditions, using stable isotope methods to separate

fluxes into plant- and soil-derived components.

Keywords: Soil respiration, soil moisture, soil temperature, Isotope ratio,

maize root, flux chamber, climate change, organic matter, rhizodeposition
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Introduction and literature reviewChapter 1:

1.1 Introduction

Soil carbon (C), principally in the form of soil organic matter (SOM), plays a

crucial role in ecological soil functions and conservation of soil fertility, and on a

global scale, soil is the main repository of terrestrial C stocks. The amount of C

in the top metre of soil globally is estimated to be more than double that in the

atmosphere or vegetation (Ciais et al., 2013). The annual flux of C between the

land and the atmosphere is estimated to be 120 Pg C yr-1 (1 Pg = 1 petagram =

1 billion tonnes = 1015 grams), whereas the C flux from fossil fuel to the

atmosphere is 8 Pg yr-1 and that between the ocean and atmosphere is 80 Pg

yr-1 (Ciais et al., 2013). The land surface is thought to currently absorb 30% of

the CO2 emitted from fossil fuel combustion as vegetation grows faster with

rising atmospheric CO2, and the oceans absorb a further 20% (Ciais et al.,

2013). However, according to the IPCC (Ciais et al., 2013), the future trend in

the land-surface sink is one of the largest uncertainties in predicting how the

global C balance will respond to climate change. Models predict that the current

enhanced land sink will diminish as other factors limit vegetation growth,

whereas emissions from soils will increase as the earth warms, so at some

point in the future the land surface will become a net source of atmospheric C,

resulting in a positive feedback loop (Friedlingstein et al., 2006)

In view of this, the potential for soil-based management interventions to mitigate

anthropogenic CO2 emissions through enhanced C sequestration is much

debated (Royal Society, 2009; Powlson et al., 2011). The latest IPCC report

recognizes the value of climate change adaptation strategies based on

agricultural management that simultaneously preserve and increase SOM while

continuing to meet production and productivity targets.

However the mechanisms controlling the exchange of C between soils, plants

and the atmosphere are poorly understood. The SOM content of a soil depends

on the balance between below-ground inputs -- primarily of detrital material and

root exudates – versus outputs -- primarily as CO2 to the atmosphere. The
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coupling between plant and soil C dynamics remains one of the least

understood components of the global carbon cycle (Reichstein et al., 2014; Hill

et al., 2015). A particular knowledge gap is how the turnover of existing soil

organic matter is affected by inputs of fresh (plant derived) organic matter, so-

called ‘priming effects’ (Kuzyakov, 2002; Paterson and Sim, 2013; Chen et al.,

2014; Cheng et al., 2014). Potentially, climate change feedback loops could

enhance priming effects and increase soil C losses.

A major problem in studying plant and soil C dynamics is the difficulty in

quantifying soil C fluxes and in distinguishing fluxes from live roots (autotrophic

respiration) and from the decomposition of recent root debris and exudates and

true soil organic matter (heterotrophic respiration) (Paterson et al., 2009). Most

past research was done with laboratory soils in which the natural soil structure

was destroyed, and in un-planted soils in which the linkages between plant

inputs to the rhizosphere, microbial functions and soil carbon dynamics are lost

(Conant et al., 2011). The influence of root activity on SOM decomposition is

central to soil and ecosystem C dynamics (Paterson et al., 2009; Kuzyakov,

2010; Fontaine et al., 2011). In true field soils, the occlusion of SOM in soil

aggregates, restricting access by roots, microbes and their mineralizing

enzymes, contribute to the spatial and temporal variability of SOM turnover.

This also complicates temperature and moisture sensitivities of SOM turnover

(Davidson and Janssens, 2006), and understanding of the C sequestration

potential of different soil types (Conant, 2010).
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1.1.1 Terminology used in the thesis

Before the main literature review, I here summarise the terminology I use in the

thesis to describe soil respiration and carbon turnover.

The components of plant and soil C budgets are summarised in Figure 1-1.

Losses through leaching as dissolved organic carbon (DOC) were estimated to

be negligible (Niklaus et al., 2000).

Figure 1-1 Conceptual model of the components of plant and soil carbon turnover.

Both the autotrophic and heterotrophic components are strongly controlled by substrate

availability – transport of carbohydrate supply for root respiration and dead organic

material for microbial respiration. The dotted circle highlights rhizosphere priming and

dotted arrows show the effect on enhanced decomposition of recalcitrant C and a

consequential increase in heterotrophic respiration. Adapted from Ryan and Law

(2005)

Plants assimilate atmospheric CO2 through photosynthesis. The total rate of C

fixation in photosynthesis in a particular ecosystem is the gross primary

production (GPP). Some of this assimilated C is used to supply energy to plant

shoots and roots, resulting in the release of CO2 back to the atmosphere as

Heterotrophic
respiration

Aboveground

Autotrophic
respiration

Belowground

Photosynthesis:
depends on nutrient
supply, soil temperature
and moisture

CO2

Allocation:
Depends on photosynthesis,
nutrient supply, species growth
stage, management

Live roots

Exudates

Dead roots
& litter

Recalcitrant
soil CLabile

soil C

Microbes

Priming
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autotrophic respiration. The net C assimilated, after autotrophic losses, is

referred to as the net primary production (NPP), and is a measure of the rate at

which energy is stored by plants in the form of organic substances:

NPP = GPP – Rshoot – Rroot (1.1)

Several sources combine to produce the composite flux of CO2 in a plant-soil

system. These include: microbial respiration from SOM and litter decomposition,

(RSOM); soil microbial respiration in the rhizosphere, including mycorrhizal fungi

(Rrhiz); and autotrophic, plant respiration (Rshoot + Rroot). Collectively this is

referred to as ecosystem respiration (Reco). Hence

Reco = Rshoot + Rroot + Rrhiz + RSOM (1.2)

The processes of CO2 fixation in photosynthesis and release in respiration drive

ecosystem-level C exchange between the soil and the atmosphere. The total

ecosystem level exchange of CO2 is called the net ecosystem exchange (NEE):

NEE = GPP – Reco (1.3)

Total soil respiration (Rs) is regarded as the total release of CO2 originating from

different belowground sources: RSOM, Rroot and RRhiz. Hence

Rs = RSOM + Rroot + Rrhiz (1.4)

Respiration processes

Total soil respiration (Rs) includes respiration from below-ground sources as

shown in Equation 1.4 and depicted in Figure 1-1. Physiologically, respiration

involves a series of metabolic processes that break down compounds

containing organic C to produce energy, H2O and CO2. In soils, carbon-

containing compounds are the substrates for Rs. These substrates are derived

from organic materials that may be grouped as fresh, partially decomposed or

fully decomposed in the form of humus, and their decomposability depends on

physical and chemical protection within the soil matrix, as well as their chemical

characteristics. Conventional models of SOM turnover subdivide SOM into
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hypothetical pools with different mean residence times and accumulation rates,

but in reality there is a continuum of reactivities and decomposition potentials

across SOM.
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1.2 Literature review

1.2.1 Priming effects

1.2.1.1 A definition of priming effects

The priming effect is commonly defined as the observed changes in SOM

turnover following additions of C or nutrients to soil (Kuzyakov, 2010; Kuzyakov

et al., 2000; Lavelle and Spain, 2001; Hütsch et al., 2002; Blagodatskaya et al.,

2007; Nottingham et al., 2009). A range of responses can be obtained based on

the type and quantities of substrate applied and prevailing soil conditions

(Figure 1-2).

Kuzyakov (2010) noted two different approaches to the definition depending on

whether C or nitrogen (N) was the focus. In cases where C was being studied

priming effects would be the extra decomposition of organic C (released as

CO2) after the addition of an easily decomposable organic C substrate. In terms

Soil + Substrate
Positive (a) C or N

priming effect induced
by substrate addition

Soil + Substrate
Negative (b) C or N

priming effect induced
by substrate addition

Soil without
Substrate

Figure 1-2 Schematic representation of the priming effect — non-additive interactions between

decomposition of the added substrate and of soil organic matter (SOM): (a) acceleration of

SOM decomposition — positive priming effect; (b) retardation of SOM decomposition —

negative priming effect (Kuzyakov et al., 2000).
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of N it relates to the extra soil N taken up by plants (through mineralization) after

the addition of mineral N fertilizer compared to plants not treated with

(inorganic) N (Figure 1-2).

Although there is a tendency to consider priming effects only as positive, added

substrates can also result in negative priming, where added substances

contribute to reducing the total amount mineralised from SOM compared to that

mineralised from basal respiration in untreated controls. According to Kuzyakov

et al. (2000) negative priming effects may be of much greater significance to

ecosystems than positive ones. This is primarily because negative priming

ultimately results in conservation of stored C or N, since the added substrate

replaces some or all the stored C or N that would otherwise be lost to the

atmosphere through mineralisation. In comparison positive priming is

associated with an accelerated rise in SOM and N mineralisation with an

undesirable increase in atmospheric C or N (Figure 1-2).

While priming can be readily demonstrated artificially in the laboratory it is a

naturally occurring phenomenon. For example, deposits of low molecular weight

C compounds from plant roots into soils (rhizodeposits) may cause priming

effects (Zhu et al., 2014; Shahzad et al., 2015). The quantity and quality of

rhizodeposits varies spatially in the soil profile. There are also significant

differences between plant species and across the different plant growth stages

and in response to environmental impacts. The quantification of rhizodeposition

and identification of individual compounds and their functionality is not very well

developed (Reichstein et al., 2014; Hütsch et al., 2002). The critical link

between vegetation and soil C and N cycling, where living roots stimulate the

decomposition of SOM, is still poorly understood (Gärdenäs et al., 2011).

Various mechanisms have been put forward to explain the wide range of

reported effects but none are well established. A consequence is that priming

effects are generally not included in current ecosystem and global scale models

of C-cycling (Kuzyakov et al., 2000; Gärdenäs et al., 2011).

For the purpose of this study I define priming as the change in native SOM

turnover in response to C substrate additions as rhizodeposits in planted soil
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systems or as plant derived substrates specially prepared and applied to soil

microcosms. The observed changes in native SOM were compared to

unplanted and untreated controls, respectively, receiving only water.

1.2.1.2 Experimental evidence of priming effects in unplanted soils

Accelerated SOM decomposition in the presence of labile carbon has been

demonstrated by many researchers. This was first noticed in 1929 by Lohnis,

cited in Kuzyakov et al. (2000) in studies of green manure decomposition in soil.

Lohnis observed an intensification of humus N mineralization when fresh OM

residues were added to soils. Later in 1946 Broadbent and Norman, cited in

Kuzyakov et al. (2000) found a four to 11 fold increase in CO2 evolution from

SOM after adding 13C labelled residues.

Soil organic matter decomposition is usually determined by proxy from changes

in CO2 efflux rates or N mineralization rates. However, the total CO2 efflux from

a soil will be a composite derived from several sources. In addition to sources

given in Equation 1.4, priming effects induced by roots or by addition of plant

residues are also included (Kuzyakov, 2006). Since not all the sources

contributing to the total soil CO2 efflux are related to SOM decomposition,

potentially misleading results could be obtained where only the total efflux is

considered. Partitioning of the efflux according to its various sources is required

to derive more accurate estimates (Millard et al., 2008). Kuzyakov et al. (2000)

categorized priming effects based on the source of the CO2 efflux rate change

and its direction. Four categories of priming effects were identified:

(a) Real positive and (b) real negative priming effects – increase or decrease,

respectively, in C or N mineralization in an unplanted soil subjected to a

substrate compared to an untreated control.

(c) Apparent positive and (d) apparent negative priming effects – increase or

decrease, respectively, in CO2 efflux from soils in response to added substrate

but this change in microbial activity is related to microbial turnover (in the case

of C) and the substitution or exchange of nutrients (N) within the various pools

existing in soil. There is no turnover or mineralization of resident soil C or N.
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Apparent priming effects were reported by Jenkinson and Rayner (1985) when

they explained observed interactions between applied 15N fertilizers and

resident soil N. They reported that real positive priming effects were commonly

observed as increased native N uptake in plants treated with fertilizer N

compared to controls not receiving fertilizers. Positive apparent priming effects

are thought to relate to the release of soil microbial biomass N or C that is

replaced by applied fertilizer N or applied C without any turnover of resident C

or N (Jenkinson et al., 1985; Blagodatskaya and Kuzyakov, 2008). Apparent

priming effects were linked to initial increases in microbial metabolism following

additions of labile C substrates (Blagodatsky et al., 2010). The extent of real or

apparent PEs in laboratory experiments is verified by analysis of microbial

biomass C using isotopic techniques to determine its relative composition of

SOM or substrate-derived C (Paterson and Sim, 2013; Ghee et al., 2013;

Dimassi et al., 2014).

Removal of plant roots from the soil system eliminates the possibility of

rhizosphere priming effects. Important interactions involving soil microbes and

plant roots and soil processes related to C and nutrient turnover are either

absent or less realistic in unplanted systems. Nonetheless, this approach brings

simplicity and facilitates compartmentalisation of a highly complicated and

diverse system. It allows for deliberate studies investigating the mechanisms of

priming effects. In earlier studies root exclusion techniques, including trenching

(where sections of roots particularly in forest trees were cut off and physically

separated) were used to compare the CO2 efflux from planted and unplanted

soils (Hütsch et al., 2002; Fisher and Gosz, 1986; Lee et al., 2003). Such

comparisons were used to partition root respiration and estimate the

contribution of soil and its microbial constituents to the CO2 efflux. However, this

technique does not assess the dynamic effects of plant roots and their

interactions and so only provides rough estimates of the root CO2 efflux. Apart

from the priming effects of root exudates, the presence of roots alters the soil

moisture balance and temperature regimes compared to an unplanted soil.

Also, dead roots, root hairs and sloughed off cells generate changes in the

structure and activity of the soil microbial community. Hence several important
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parameters impacting on the soil CO2 efflux are different in a planted soil.

However, unplanted soil systems can be valuable especially when used in

combination with other methods, like isotope techniques.

Using an unplanted soil incubation experiment, Blagodatskaya et al. (2007)

studied glucose and N induced priming effects relative to microbial growth

strategies. They found positive and negative priming effects depending on the

level of C and N added relative to the soil microbial biomass C. Likewise,

Blagodatskaya and Kuzyakov (2011) using data from several previous studies,

showed that low levels of C in added substrates (less than 15% of soil microbial

biomass C) produced real positive priming effects (Figure 1-3) whereas at much

greater levels of substrate C relative to microbial biomass C (greater than

200%) they found positive apparent, negative and zero priming effects (Figure

1-4).

Figure 1-3 Primed CO2 –C efflux as affected by the amount of easily available

substrate C added as percentage of microbial biomass C. The added C is < 15% of

microbial C (Blagodatskaya and Kuzyakov, 2011).
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Nottingham et al. (2009) demonstrated real positive priming effects in response

to additions of sucrose and maize leaf litter to a brown forest soil. Their study

showed that the type and quality of added substrate were key determinants of

the levels of real positive priming effects. Sucrose applied at 6 mg C g-1 of soil

generated much greater positive priming effects compared to similar quantities

of C added as maize leaf litter, either ground or chopped. Ground maize

produced greater positive priming effect than chopped maize residue, indicating

that the finer substrate was more readily decomposed.

According to Blagodatskaya and Kuzyakov (2011) carbon substrates of variable

quality (especially in forms not readily utilised by the soil microbes) can produce

similar priming effect responses (to that of glucose, for example) when applied

to soil at sufficiently low quantities relative to soil biomass C. A study by

Blagodatskaya et al. (2007) showed that substrates of different quality (glucose

and plant residue) applied at the same rate (6 mg C g-1) produced different

Figure 1-4 Primed CO2-C efflux as affected by the amount easily available substrate C

added and expressed as percent of microbial biomass C; added C is > 50% of

microbial C (Blagodatskaya and Kuzyakov, 2011).



12

rates of priming. It can be concluded that the inherent qualities of the substrates

used may have accounted for the observed differences in priming effects, even

under similar conditions. The physical attributes like particle size and especially

chemical composition, the type of C compounds and possibly other nutrient

compounds involved can account for significant differences in decomposition

and priming effects. For example, simple sugars exuded from plant roots would

be readily decomposed with a high turnover rate and mean residence time

(MRT) of minutes to hours, whereas plant residues with high contents of

cellulose and lignin would decompose within weeks to months (Kuzyakov,

2006). These details are highly relevant for proper evaluation and comparison

of priming studies. They are also likely to account for the high variability in

available literature.

Notwithstanding, using soil samples from a drained Cambisol developed from

granitic rock, Fontaine et al. (2007) showed that supplies of fresh plant-derived

C (cellulose) could generate real priming effects by stimulating microbial

turnover of old recalcitrant C age 2,567 ± 226 years. The old C was in soil

samples collected at 0.6 to 0.8 m depth. Cellulose was applied at a rate

representing one-quarter of the annual C litter loading from plant roots into the

upper soil layer. This produced an increase in turnover rate of 72 mg C kg-1 for

old recalcitrant C compared with the same subsoil incubated without added

cellulose. This rate was comparable to the SOM turnover rates observed in the

topsoil at the sample site. The SOM turnover rate of the topsoil is influenced by

plant roots, which provide a continuous supply of fresh C that is not available at

greater depths (0.6 to 0.8 m in this case). However, when fresh C was added to

the subsoil samples the turnover of its stored, recalcitrant C proceeded at

comparable rates to the topsoil. This led to the conclusion that the absence of

fresh C supplies was crucial for C recalcitrance and hence sequestration. These

effects need to be explored in contrasting soil types and general conditions.

While the above study (Fontaine et al., 2007) refers to laboratory experiments,

there are important practical concerns for the sustainable management of farm

lands and the natural environment. Decomposition of resident SOM at greater
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depths could be facilitated inadvertently by poor soil management practices and

land use changes. For instance, during deep ploughing, subsoil material is

exposed to the surface, mixed with surface material rich in highly available C

and a microbial community capable of rapidly decomposing the old,

sequestered C. As conditions of aeration and moisture improve deeper into the

soil profile root growth will also be facilitated. In essence, the rhizosphere may

extend downwards and stimulate SOM decomposition in sections of the profile

that would be otherwise physically protected.

1.2.2 Evidence of plant-induced priming effects

The important role of plants and particularly plant roots in SOM turnover was

noted earlier. Cycling of C through plant roots is pivotal to ecosystem responses

to climate change (Lavelle and Spain, 2001; Zobel, 2005; Bardgett, 2011). In

the presence of sunlight during photosynthesis plants are the receptors and

effective conduits of fixed atmospheric C to soils. While the mechanisms by

which plant roots modulate important soil processes are not fully understood,

their importance is obvious from comparisons of planted and unplanted soil

systems and confirmed by the isotopic techniques now available (Kuzyakov,

2002; Fontaine et al., 2011; Hütsch et al., 2002; Paterson, 2003; Kuzyakov and

Schneckenberger, 2004; Fontaine and Barot, 2005). Plant roots make a

significant and direct contribution to the total CO2 efflux from soils. Their

exudates of easily available C-rich compounds nourish the soil microbial

community by altering the soil physical and chemical environment (i.e. soil

structure, water flow, pH). Consequently, they exert a controlling effect on SOM

turnover. It can also be argued that the plant shoots rather than roots may

ultimately be in control of SOM turnover in planted systems since roots are only

able to transfer C compounds that were initially fixed in the green leaves of the

plant. However, it is discussed later that the process of C partitioning within the

plant into its root and shoot resources may actually be paramount in

determining what proportion of fixed C actually reaches the soil.
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1.2.3 Plant root dynamics and the rhizosphere

The zone of root and soil interaction in the soil close to root surfaces is known

as the rhizosphere. Rhizosphere processes depend upon C inputs from root

growth and turnover, rhizodeposition, and resulting microbial activity. Because

the supply of nutrients and water are unevenly distributed in soils and varies

greatly in time, roots typically possess a level of phenotypic plasticity that

enables them to respond to changing soil conditions. The resulting root

architecture therefore depends on a combination of inheritable traits and

environmental conditions. To a large extent root architecture determines the

spatial distribution of the rhizosphere within soils.

Within the rhizosphere, roots extract nutrients and water from soils and in turn

release exudates and shed dead cells from root tips and mucilage. Roots

penetrating through soil may be important for breaking down soil aggregates

and exposing otherwise protected SOM particles to microbial attack which may

increase decomposition (Kuzyakov, 2002). The role of roots in stimulating

decomposition of SOM is seen as key to understanding soil carbon turnover

and possible feedback loops to future climate change (Cheng and Kuzyakov,

2005; Kuzyakov and Gavrichkova, 2010; Phillips et al., 2011).

Kuzyakov (2010) distinguished the effects of a one-time or occasional pulse

release of C into the soil and a permanent or continuous flow. Inputs from plants

can occur both as pulses and continuously. The subsequent pattern of C

release from root debris or exudate will depend on its inherent decomposability.

Microbial breakdown of dead roots and the decomposition of aboveground plant

parts can be relatively quick in some species; for example grass or pasture

systems have relatively high turnover rates compared with forests. After

decomposition any DOM is coupled with available root exudates and enters the

soil solution, providing a one-time or pulse delivery of C to the soil. Such

releases can occur at microsites which may join to form zones with high

concentrations of readily available C substrates, referred to as ‘hotspots’

(Kuzyakov and Blagodatskaya, 2015).



15

Kuzyakov (2010) argued that continuous input is typical of the slow

decomposition of dead roots, leaf and shoot residues. These decompose at a

slower rate than root exudates and are available in very small amounts at a

time. The extent or prevalence of pulse or continuous C inputs is highly

dependent on environmental conditions, plant species, phenological stage and

especially rooting densities (Cheng and Kuzyakov, 2005). In grasslands, where

a dense mat of dead roots, leaves and other easily decomposed plant matter

occupy the top few cm of soil, there can be a continuous supply of C from live

roots and detrital material particularly during the growing season.

Kuzyakov (2010) noted that the possible differential effects of repeated pulses

or continuous inputs are under-investigated. However it may be likely that

differences in both the pattern and intensity of SOM decomposition and related

PEs could vary just based on whether inputs are solitary or continuous. It is also

likely that prevailing soil and environmental conditions could also play major

roles in how PEs are manifested in either scenario. Most priming studies have

been limited to simulation of a one-time or pulse C release. In one of the few

studies that investigated repeated substrate additions on priming effects, using

a 1-4 month incubation study Hamer and Marschner (2005) added 14C labelled

substrates (fructose, alanine, oxalic acid and catechol) in various combinations

as pulse and repeated applications. They monitored SOM mineralization rates

at hourly intervals and found that repeated (minimum 6-day interval) and

combined additions of substrates generated greater priming effects than a one-

time, pulse release. Although the important link between C assimilation by

plants (photosynthesis) and rhizodeposition is well established (Bardgett, 2011;

Kuzyakov and Gavrichkova, 2010; Kuzyakov and Cheng, 2001) it was

demonstrated by Dilkes et al, (2004) using wheat plants in solution culture, that

the internal partitioning of C between shoot and root had greater significance on

the temporal exudation of C compounds than photosynthesis. The pattern of C

flows as rhizodeposition could be of major significance. But as for studies on

priming where the soil system is simplified to consider only a few factors at a

time, there is the risk the experimental system does not adequately represent

reality. Consequently the models and predictions of SOM turnover generated
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from such studies may be of limited value. A way forward may be to link such

studies (microcosm and mesocosm) directly with in situ field approaches where

the systems are left undisturbed as much as possible and to develop composite

models that assimilate the results.

1.2.3.1 Root exudates

As much as 50% of C fixed by plants in photosynthesis can be deposited in

soils either as root exudates or respired as CO2 (Lavelle and Spain, 2001;

Kuzyakov and Gavrichkova, 2010; Bais et al., 2006). Jones et al. (2004)

reasoned that root exudates may account for 2-4% of photo-assimilated C,

however the variability of reported results suggest a dependency on context.

Root exudates comprise a mixture of carbohydrates (simple sugars and

polysaccharides), amino compounds, organic acids, nucleotides, flavones,

enzymes and growth factors. Bais et al. (2006) noted that root exudation

represents a significant carbon cost to the plant. Another perspective may be

one of a selfish trade-off or exchange of plant C for other valuable nutrients

within SOM, which are made available after mineralization by C feeding

microbes. Using a root-shoot separated chamber experiment with wheat and

alfalfa, Hutch et al. (2002) demonstrated that up to 20% of photosynthetically

fixed C was released into the soil during the vegetative phase and

approximately 64% (alfalfa) and 86% (wheat) of the released C was rapidly

respired by micro-organisms. This supply of C to the root zone is continuous

and the fact that a large percentage is quickly used by soil microbes suggests

the existence of a tight and continuous association between plant roots and soil

microbiota.

Plant species, growing conditions, nutrient availability and stage of plant growth

affect the nature and composition of exudates, the interactions with soil

microbes and therefore associated priming effects. Differences at the plant

species level and the impact of added nutrients, especially N, have been

observed. Cheng (2009) found that there was a greater priming effect from

soybean plants compared to wheat (251 and 116% in comparison to an

unplanted control). Not only were there differences in the priming effects in
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relation to plant species but plant phenology and time of sampling also exerted

a significant effect on the levels of rhizosphere priming effects.

Though there is a basic understanding of rhizodeposition and the constituents

of root exudates, we are still unclear about their mechanisms, environmental

triggers, linkages to other soil processes and overall importance in nutrient

cycling (Cheng et al., 2014; Gärdenäs et al., 2011). The tracking of C flows from

plant roots to soils, including detailed in situ assessments of their cumulative

effects over temporal scales (diurnal and seasonal), and their dependency on

environmental drivers are lacking from previous studies in this area.

1.2.4 Possible mechanisms to account for priming in soils

1.2.4.1 Biologically-driven mechanisms

A fundamental argument still exists about whether the rates of SOM turnover

are controlled by biotic or abiotic processes (Brookes et al., 2008; Kemmitt et

al., 2008; Brookes et al., 2009; Kuzyakov et al., 2009). The lack of consensus

reflects insufficient knowledge about the processes involved and the

mechanism(s) driving priming effects. This is also indicated by the paucity of

models of C and N dynamics allowing for priming effects (Kuzyakov et al.,

2000).

The focus of earlier studies was on demonstrating the existence of priming

effects rather than on establishing the mechanisms involved (Blagodatskaya

and Kuzyakov, 2011). But an understanding of the mechanisms is crucial to a

better understanding of the overall processes. Kuzyakov (2002) proposed

seven possible mechanisms through which plants interact with soil components

to stimulate SOM turnover.

(1) The growth of plants accentuates soil-drying and this affects the rate

of SOM decomposition. This hypothesis considers that in planted soils the

natural drying process will be accentuated by plant transpiration and water

harvesting by roots. Rewetting a dry soil has long been known to create a rush

of respiration known as the “Birch Effect”. However, as considered by

Blagodatskaya and Kuzyakov (2011) soil moisture is the main driver of
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microbial activity and lower priming effects can be expected from soil conditions

where moisture is limiting. They noted that both the intensity and types of

priming effects dominating in a soil also depended on the frequency and

duration of drying-rewetting events. Plants themselves have a threshold beyond

which they will be affected by moisture deficits. Microbes generally are more

tolerant to moisture stresses and can survive beyond the wilting point for most

plants. Furthermore, this mechanism is only relevant in planted soils and could

not explain priming in unplanted systems or where adequate moisture is

maintained constantly. These considerations suggest that this mechanism may

not be very significant overall.

(2) Mechanical effects of growing roots assist in the release of SOM

physically bound in soil aggregates and make it available for microbial

attack. Several studies have demonstrated that a portion of labile SOM may be

hidden within the structures of stable soil microaggregates (Beare et al., 1994;

Denef et al., 2001; McCarthy et al., 2008). On a larger scale growing roots

assist with the disaggregation of larger soil clods. However at the level of soil

particles and micro-aggregates (2 to 250 µm in diameter) roots tend to lend

more support to the aggregation rather than disaggregation thus forming stable

macroaggregates (0.25 to 5 mm) (Brady and Weil, 2008). The pressure of

growing roots actually forces nearby soil particles closer together and soil

particles and micro-aggregates are bound by sticky root exudates to form

macro-aggregates (Brady and Weil, 2008). The importance of this effect

depends on the existing level of soil aggregation (Denef et al., 2001; Six and

Jastrow, 2002). The mean residence time of C in macro-aggregates is shorter

than that of C in micro-aggregates where organic C is bound much more tightly

with greater stability and could potentially account for long-term C sequestration

in soils (Six and Jastrow, 2002; Schlesinger and Lichter, 2001). Cheng and

Kuzyakov (2005) noted that the effects of aggregate disturbance associated

with roots may be due to the effects of intense wetting and drying accentuated

by roots. The evidence is that roots do more for aggregate construction rather

than destruction. However, the impact of roots on SOM decomposition via
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aggregate destruction has not been thoroughly investigated or clearly

understood.

(3) Uptake of exuded soluble organic substances by plant roots decreases

the amount available for microbes. Exudates from plant roots are a primary

source of highly available C-rich compounds for soil microbes. If these are

substantially depleted in the rhizosphere through reabsorption by plant roots,

then microbial activity could be adversely affected, causing a decrease in SOM

decomposition. The bi-directional flow of C resources between roots and the

rhizosphere was reviewed by Jones et al. (2009). They admitted that roots are

ineffective competitors for these resources compared to the soil microbial

biomass but proposed four hypotheses to explain root uptake of soluble organic

substances. Nonetheless, as stated earlier the boundaries of available C pools

in the rhizosphere are very porous with continuous exchange of resources

between the various pools. Along with plant root secretions, other sources

(including degraded plant and animal cells) simultaneously make contributions

to the total available C pool in soils. The extent to which soil microbes are

actually deprived of available C through direct competition from plants is not

likely to be significant but could vary considerably with plant species, growing

conditions, stage of plant development and plant health.

(4) Faunal grazing on microbes in the rhizosphere (especially by protozoa

and nematodes) increases microbial turnover and thereby release

nutrients and CO2 (Bonkowski, 2004). However, the turnover is mainly of fresh

highly available forms of C and other nutrients recently exuded from plant roots

rather than of recalcitrant or stored SOM. The exudates are rapidly consumed

by bacteria which are then preyed on by the higher trophic groups (including

protozoa, nematodes and earthworms). The faunal grazers incorporate about

50 to 70 % of the ingested material with the balance being excreted and

returned to the soil. The grazers eventually die or are preyed upon by other

faunal groups, carnivorous nematodes and arthropods.
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(5) Competition between plant roots and microbes for limited N resources

in the rhizosphere contributes to a decline in SOM decomposition.

Nitrogen is required for microbial growth in the rhizosphere. Although there are

symbiotic relationships between microbes and the plant at various levels

Bonkowski (2004) highlighted the selfishness of these relationships and

suggested they be viewed in an evolutionary context. Essentially, the plant is

trying to get what it needs and the bacteria and other microbes are similarly

looking to fulfil their own needs. It is a case of the fittest surviving better. The

ability to garner the mineral N on offer will differ with plant species, root

architecture and growing conditions. Depending on the plant efficiency of

acquiring the limited N on offer, there may or may not be a sufficient supply for

microbial growth. A consequence of the latter is reduced microbial growth and

thereby a decrease in SOM decomposition.

(6) Preferential utilization of available microbial substrate over SOM C.

This theory states that where mineral nutrient resources are abundantly

available in the soil, soil microbes will prefer the labile root - derived C to SOM

C. This has the effect of reducing SOM turnover. On the other hand if soil

mineral nutrients are limiting, soil microbes will prefer C derived from SOM with

the associated nutrients (Cheng and Kuzyakov, 2005).

(7) Root exudates stimulate microbial activity and increase SOM

decomposition. It was shown by De Nobli et al. (2001) that relatively small

amounts of readily available C substrates can significantly increase SOM

decomposition. Blagodatskya and Kuzyakov (2011, p 661) referred to this as

signalling and triggering effects. They defined the triggering effect as “an

acceleration of internal microbial metabolism by trace amounts of substrate with

an immediate (several minutes to several hours) increase in respiratory activity”.

They further observed that in several studies under field conditions, the amount

of C added to soil was relatively insignificant as an energy source but provided

the impetus to changes requiring much more energy.
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Based on available evidence, the most significant mechanisms are thought to

be (5), (6) and (7): concurrence of demand for mineral N between plants roots

and soil microbes (Fontaine et al., 2011; Zhu et al., 2014; Yin et al., 2013;

Nottingham et al., 2015), preferential substrate utilization (Milcu et al., 2011)

and microbial activation (Blagodatsky et al., 2010; Cheng and Kuzyakov, 2005).

Cheng and kuzyakov (2005) argued that the operationalization of a particular

mechanism was dependent on the relative abundance of available soil C and N.

Where both C and N were limiting, competition between the plant roots and

microbes would dominate, leading to decreases in microbial activity and SOM

decomposition. Where available C is limiting and N is in abundance, preferential

substrate utilization will be the dominant mechanism. After available C is

consumed, microbes capable of mining the more recalcitrant C will dominate

and SOM decomposition will be enhanced. Where N is limiting and available C

remains in abundance, microbial activation will be dominant. The available C

will stimulate growth of microbial populations which will initially consume and

immobilize available nutrients. The nutrients are released again by faunal

grazing or microbial turnover.

1.2.4.2 Bank theory

Fontaine and Barot (2005) proposed a ‘bank’ mechanism whereby

sequestration of nutrients and carbon in SOM are adjusted according to the

availability of nutrients in the soil solution. This is based on the assumption that

the SOM priming is controlled by the relative concentrations of nutrients in the

soil solution (Fontaine et al., 2011). It follows that where nutrients are in short

supply, microbial species with the ability to seek out these nutrients in SOM (k-

strategists) would be stimulated to mine for them in preference over species

feeding only on fresh carbon substrates (r-strategists). In contrast, when soluble

nutrients are in abundance microbial mining should decrease, resulting in more

sequestration of nutrients (Fontaine et al., 2011).

The common and important central thread through these mechanisms is that

they are biologically driven. The role of soil microbes is central at least to the

three proposed mechanisms highlighted earlier as being the most significant for



22

explaining soil priming effects. Notwithstanding this, in recent years abiotic

mechanisms have also been proposed.

1.2.4.3 Abiotically-driven mechanisms – the regulatory gate hypothesis

Jenkinson (1966), and Jenkinson and Powlson (1976) observed that SOM

mineralization continued at the same rate after severe perturbations (chloroform

fumigation) that resulted in the loss of most of the soil microbial biomass.

Brookes et al. (2008) showed that even after 90% of the soil microbial biomass

was removed, the process of SOM mineralization continued as if the microbial

biomass was untouched. Considering these observations Brookes et al. (2008,

p 718) concluded that “the rate of soil organic matter mineralization is

independent of both the size and community structure of the soil microbial

biomass.”

Building on these ideas Kemmitt et al. (2008) proposed the ‘regulatory gate’

hypothesis whereby the mineralization of the SOM occurs in two stages: (1)

non-bioavailable humified SOM is altered by an abiotic process(es) to make it

bioavailable; (2) the SOM that is now bioavailable is mineralized.

Kemmitt et al. (2008) proposed that the regulatory gate hypothesis explained

the observation that both the depleted and intact microbial mass appeared to be

mineralizing SOM at the same rate. Since Stage 1 is abiotic it proceeds

unhindered by size and activity of the microbial biomass; because it is also slow

compared to Stage 2, it limits the overall rate of mineralization and

consequently the overall rate is insensitive to the size of the microbial biomass.

It follows that additions of labile C in the context of the ‘regulatory gate’ may not

generate any priming effects, since the initial access to less available SOM is

abiotic.

1.2.5 Interactions with other drivers of soil C mineralization

1.2.5.1 Environmental impacts on rhizosphere priming

Global climate change impacts are of major concern and recent studies have

focused on the possible feedback effects to soil processes linked to SOM

decomposition (Kuzyakov and Gavrichkova, 2010; Gregory, 2006; Heimann and
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Reichstein, 2008; Subke and Bahn, 2010; Carrillo et al., 2011). Rising

atmospheric CO2 levels is a predicted consequence of human perturbations of

the C-cycle and several free-air CO2 enrichment (FACE) experiments are being

used to assess the impacts on various soil processes. Phillips et al. (2011)

showed that root exudation in a pine forest under elevated CO2 increased by

50% compared to control treatments.

There is mounting evidence from different ecosystems that plant traits have

major influences on soil nutrients and C cycling, and that certain plants can

select for particular groups of soil organisms that play key roles in

biogeochemical processes, including SOM decomposition through rhizosphere

priming effects. This suggests that climate adaptations such as changes in

vegetation composition could potentially alter patterns of C dynamics (Bardgett,

2011; Paterson, 2003; Kuzyakov and Gavrichkova, 2010; Phillips et al., 2011;

Gregory, 2006; Dijkstra et al., 2009).

Apart from the changes in plant species composition there are other

environmental effects that can have direct and significant impacts on SOM

turnover. Soil organic C content, photosynthesis intensity, soil mineral N

content, N fertilisation regimes, N mineralisation by extra decomposition of SOM

and elevated atmospheric CO2 concentrations were reviewed by Kuzyakov

(2002). The impact of soil moisture, soil temperature, aggregate and particle-

size fractions and soil pH were reviewed later (Blagodatskaya and Kuzyakov,

2011). These are now considered in greater detail.

1.2.5.2 Soil organic C content

Kuzyakov (2002) considered two contrasting hypotheses to explain the effects

of organic C content in a soil on SOM turnover. Firstly, large SOM levels

provide for high quantities of readily utilizable C, which can be readily

mineralized by soil microorganisms during rhizosphere priming. On the other

hand, where organic soil C content is large, N and other nutrients are seldom

limiting when compared to infertile soils with low organic C. Therefore, plants

and microorganisms growing in these soils are not as dependent on enhanced

SOM mineralization (priming effects) to obtain nutrients. Contrasting results
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have been obtained from studies on the impacts of soil organic C content on

rhizosphere priming effects, depending on incubation conditions and plant

species used (Kuzyakov, 2002).

1.2.5.3 Photosynthesis intensity

There are several studies and reviews demonstrating the controlling effect of

photosynthesis intensity on root exudation of C belowground as well as CO2

efflux from soils (Kuzyakov, 2002; Kuzyakov and Gavrichkova, 2010; Kuzyakov

and Cheng, 2001; Beylich et al., 2010). Kuzyakov and Cheng (2001) showed

that the absence of light caused a decrease in root exudation and subsequent

priming effects. They explained that this was caused by the interruption of the

flow of easily decomposable substrates. Several studies have showed that

apart from reduced light, other growth limiting factors, such as soil compaction

can decrease photosynthesis. Clay and Worrall (2013) showed that compaction

by grazing sheep on a peat soil significantly reduced photosynthesis. Tubeileh

et al. (2003) reported that artificially compacted soils planted with maize

significantly reduced C assimilation and increased C partitioning to roots and

exudates compared to controls. They hypothesized that compaction-induced

resistance to root penetration developed a sink limitation leading to

accumulated C in roots. This resulted in a feed-back to shoots that regulated C

assimilation. Another possible mechanism advanced was the effect of

compaction on limiting soil water movement and uptake leading to moisture

stress signals being sent to shoots. The plant responds by limiting stomata

opening and therefore photo-assimilation. The two scenarios highlight the

varied responses that are possible from different abiotic stresses to the plant-

soil system. Another important factor for consideration is the effect of defoliation

through clipping or herbivory on the photosynthetic potential of plants.

1.2.5.4 Effects of foliage clipping on plant C partitioning and soil C

turnover

Defoliation through clipping or herbivory is common in grassland management

systems. Clipping events can alter plant C partitioning and affect the quantity

and timing of rhizodeposits and contribute to changes in soil respiration and
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rhizosphere priming effects (Shahzad et al., 2012; Schmitt et al., 2013).

Shahzad et al (2012) showed that artificial clipping in a potted grass experiment

resulted in significantly reduced priming effects in a drained Cambisol.

Generally, defoliation will result in reduced photosynthesis in plants. The

intensity of clipping will determine the extent of photosynthesis reduction and a

range of physical and chemical changes within the plant can follow clipping.

These include, but are not limited to, aboveground effects, such as changes in

growth rate, biomass production, plant height, photosynthetic activity, root to

shoot ratio and C dynamics within plant tissues. Clipping has been shown to

alter the distribution of C resources within the plant. After clipping C resources

initially allocated to roots are reallocated to the shoot to support regrowth

(Schmitt et al., 2013).

1.2.5.5 Soil nutrient status

Although soil C has been the focus of this review so far, the importance of N

cycling to C turnover in soils is fundamental. The key mechanisms of soil

priming effects noted earlier, microbial concurrence of demand for mineral N

between plants roots and soil microbes, preferential substrate utilization and

microbial activation all involve N cycling. There is general agreement that the

amount of available soil N impacts the amount of C primed in soils. Decrease in

priming effects was observed when available N was applied to soil with organic

C (Blagodatskaya et al., 2007; Liljeroth et al., 1994).

Kuzyakov (2002) noted that N applications can have both direct and indirect

effects on soil conditions and consequently SOM turnover. A direct effect of

mineral N additions is the reduction of N limitations in the rhizosphere. This is

thought to weaken the concurrence of N demand between soil microbes and

roots and improve growing conditions for the microbial community. The resulting

growth of the microbial community facilitates efficient use of root exudates and

reduces the need for decomposition of SOM to mobilize additional N.

Indirectly, higher levels of soil mineral N positively impact plant growth and the

assimilation of C through photosynthesis. However, there may be a

simultaneous reduction in the allocation of assimilated C to roots (Coleman et
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al., 1983; Paterson and Sim, 1999). Although the quantities of exudates may be

the same for fertilized and unfertilized systems, the quality of the exudates may

differ significantly to create differences in priming effects. Fertilizer application

method (banded, broadcasted or fertigation) and inherent soil characteristics

(hydraulic conductivity, leaching potential, organic matter content, water holding

capacity) may influence priming effects of fertilizer applications.

1.2.5.6 Interaction between soil moisture and access to substrate

Soil moisture is a major driver of microbial activity therefore smaller priming

effects may be expected under moisture limiting conditions. The frequency and

duration of wetting and drying events can also have direct effects on the

intensity of priming effects (Blagodatskaya and Kuzyakov, 2011). Rainfall

events that break extended periods of drought result in a short-term activation

of soil microbes that metabolize available substrates (the Birch effect).

According to Blagodatskaya and Kuzyakov (2011), in such cases rapid moisture

loss is the major limitation to microbial activity. Therefore both apparent positive

priming effects, resulting from the triggering of the microbial community and

pool substitution, and negative priming effects from preferential substrate

utilization, would be expected. Dry conditions would therefore favour C

sequestration. These observations agree with Lamparter et al. (2009) who

reported that C sequestration is moisture dependent and concluded that

physical soil properties, like aggregation, wettability and wetting dynamics were

important to understand specific differences in the dynamics of carbon

mineralization in soils.

1.2.5.7 Soil temperature

The relationship between temperature and the biochemical processes of soil C

turnover or soil respiration (Rs) can be described by the Arrhenius equation

(Arrhenius, 1898). The term ‘temperature sensitivity’ has been used to describe

the temperature dependence of Rs (Davidson and Janssens, 2006); it defines

the relative change in Rs in direct response to a temperature change over a

specific range. Temperature sensitivity is usually shown as the Q10 value,

representing the increase in Rs in response to a 10oC rise in temperature.
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Eq.1.5 below can be used to calculate Q10 of Rs if there is a significant rise in

temperature. It assumes an equal Q10 over the range of the temperature

increase.

Q10=ቂ
R2

R1
ቃ
10(T2-T2)

(1.5)

where R2 and R1 represent the Rs observed at times T2 and T1, respectively.

There are several recommended variations to the Q10 function based on the

context of use and underlying assumptions. For example (Heinemeyer et al.,

2012) applied the Q10 Equation 1.2 from (Atkin et al., 2000)), to annual and

seasonal periods using mean daily values of Rs and its components. In

Equation 1.2, the regression slope (β) of the log10 (Rs) plotted against soil

temperature, is used to calculate Q10.

Q10 =
(×) (1.6)

The temperature dependence of Rs is widely studied but there has not been

consensus about the mechanisms involved. The temperature sensitivity of C

turnover is thought to depend heavily on the molecular complexity of the

substrates being mineralised. By comparison SOM with more complex

molecular structures and also physical barriers that occlude them from

degrading enzymes are likely to have higher temperature sensitivities compared

to root exudates which comprise simple compounds that are readily available

(Davidson and Janssens, 2006; Arrhenius, 1898; Knorr et al., 2005). It is

therefore likely that relative combinations of different C pools in a soil could

influence the overall temporal and spatial temperature dependence of Rs.

Subke and Bahn (2010) argued that the temperature effect on soil C turnover

was only transient, as substrate pools are exhausted and the soil microbial

community acclimatize to warmer temperatures. Blagodatskaya and Kuzyakov

(2011) contended that psychrophilic microorganisms thriving at low

temperatures (less than 20oC) have enzyme systems with higher affinity for low

availability substrates like soil humus. They play an important role in SOM

decomposition in cold environments (Gounot, 1986). Both increase and
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decrease in priming effects were observed in different studies that compared

low and high temperatures

The varied results from temperature dependence studies have been linked to

the inherent variations in substrate quantity, quality and availability combined

with the influence of environmental factors, all of which can change at micro

scales within the soil profile (Davidson and Janssens, 2006). Soil C models that

prescribe a one dimensional measure of SOM, without consideration for the

variability of soil C and their diversity of kinetic properties are likely to produce

misleading results. Either over or underestimating the impact of the predicted

future rise in global temperatures and other climatic events.

Plausible approaches to investigating temperature dependence of SOM

turnover may be to: (1) Use continuous high resolution flux chamber

measurement systems that are field based, and designed to separately

measure fluxes from the major C pools. This should be coupled with depth-

resolved measurements of temperature and moisture. (2) Observe how

mineralization of different C substrates as representatives of soil C pools, are

influenced by various simultaneous perturbations of soil temperature, moisture

and other important environmental impacts. A better understanding of how

temperature changes affect soil C turnover is important to improve current

model predictions about how future climate change might affect soil C stocks.

1.2.5.8 Soil acidity and pH

Blagodatskaya and Kuzyakov (2011) reviewed eight different studies conducted

between 1997 and 2007 that demonstrated effects of soil pH on the intensity of

priming effects. They reported that greater priming effects occurred in neutral

soils in the pH range 6 to 8, when both easily available substrate and plant

residues were added to soil. Rousk et al. (2010), among others, have shown

that soil pH can have greater impacts on soil microbial community structures

than biome types. The changes of soil microbial activity and community

structure as well as enzyme synthesis are higher in soils with pH 5 - 8

compared to acidic soils (Blagodatskaya and Anderson, 1998). The possible

mechanisms underlying effects of soil pH on the soil microbial phenotype was
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explored by Zhang et al. (2015). They used soils from 17 different sites and

worked with a pH range of 4 to 7 in a ten-year study. They concluded that

counteractive effects of evolutionary filtering, (which promoted microbes that

were already adapted to the current pH) and evolutionary dispersal of microbes

(that evolved or acclimatised to the new pH) were responsible for the

counteractive effects of evolutionary and dispersal attributes of microbial

response to pH changes.

Priming studies are largely based on CO2 measurements, and artefacts can

occur where the pH dependent solubility of CO2 is not considered

(Blagodatskaya and Kuzyakov, 2011). It stems from the fact that the equilibrium

of the different forms of carbonates in soils (H2CO3, CO3
2-, and HCO3

-, all

derived from CO2) is pH dependent. Thus the soil pH must be duly considered

when interpreting results from CO2 evolution. At lower soil pH, values below 5,

the possibilities of artefacts are significantly reduced because H2CO3 would be

the dominant carbonate form (about 98%), which dissociates immediately into

CO2 and H2O. In this case all the CO2 produced by soil microorganisms is freely

evolved and the efflux is intact. As pH increases the relative proportion of

H2CO3 decreases, yielding larger misestimates of the CO2 efflux. The

predominant forms of carbonate at pH values greater than 6.8 are HCO3
- and

CO3
2-. The CO2 produced by the soil microbes must first dissolve in soil water

until the saturation capacity of the solution is reached. In such circumstances,

CO2 evolution will depend on the volume of the soil solution. Misestimates of

between 10 and 100% at pH values 8 and 9, respectively, are possible. The pH

status of soils is therefore a very important consideration for soil priming studies

both from the perspective of the effects on the soil microbial community and the

processes they mediate, and for the interpretation of soil respiration data.

The vast temporal and spatial diversity of soils makes it almost impossible to

consider all variables at once. However, better synergy across working groups

involved with different but related aspects of soil science maybe crucial to

advance a more comprehensive understanding of the mechanisms driving soil

C turnover. There is consensus that an understanding of ecosystem function
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and response to global change requires due consideration of feedbacks

between plants, microbes and soil processes (Bardgett, 2011; Paterson, 2003).

However, more research is required.

1.2.6 Measuring soil respiration and priming effects

A review by Luo and Zhou (2010) provides a history of soil respiration (Rs)

measurements and different approaches used over the years. I consider three

commonly used approaches for measuring Rs, and then consider aspects of

isotopic and non-isotopic methods for differentiating Rs into its component plant

and SOM-derived components (Section 1.1.1), reviewed previously by

Kuzyakov (2006).

1.2.6.1 Measuring soil respiration

Eddy-covariance

Among earlier approaches for measuring soil respiration, the eddy-covariance

(EC) technique is widely used for ecosystem scale measurements (Baldocchi,

2008; Myklebust et al., 2008; Ward et al., 2012). It relies on a measure of the

covariance between fluctuations in vertical wind velocity and CO2 mixing ratio.

Essentially, high frequency measurements of wind speed and direction (10-20

Hz) and measurements of CO2 at a point above the area of interest (called the

‘foot print’), using a sonic anemometer and a fast response infrared gas

analyser, respectively. It assumes perfect turbulent air mixing and the

measurements are integrated over periods from 30 to 60 minutes to build a

basis for calculating C balances over daily to annual scales. Since turbulence is

required for EC functioning, there can be considerable down time in periods of

reduced turbulence. The technique is not well suited for understorey vegetation

and when high resolution spatial variability needs to be assessed. Chamber

measurements are more appropriate for such conditions.

Gas flux chambers

Gas flux chambers are widely used for measuring and monitoring soil

respiration. They are usually in two modes, steady state and non-steady state

(Davidson et al., 2002). In steady state systems the flux is calculated from the
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difference in CO2 concentration from the air flowing at a known rate between

the inlet and outlet after the chamber air reaches equilibrium CO2 concentration.

In non-steady state systems the flux is calculated as a change in concentration

in the chamber headspace of known volume shortly after the chamber is placed

over the soil. Non-steady state systems are commonly linked with infrared gas

analysers to provide accurate and relatively quick soil respiration and net

ecosystem exchange measurements (Heinemeyer et al., 2012; Bahn et al.,

2009; Ojanen et al., 2012; Thurgood et al., 2014). Chambers systems are

associated with unnatural disturbances to the soil and roots and importantly

they impose pressure gradient changes which can alter the flux being

measured. Improvements have been made to address these issues and

correction factors are applied to address the errors they may pose (Davidson et

al., 2002; Livingston and Hutchinson, 1995).

Gradient method

The gradient method (GM) has grown in popularity and attempts to address the

pressure gradient issues associated with chamber measurements (Subke et al.,

2004b; Maier and Schack-Kirchner, 2014). Like chamber measurements this

approach is suited for higher resolution measurements. The method uses Fick’s

first law to calculate soil CO2 efflux (fs)

fୱ = Dୱ�
பେ

ப
(1.7)

Where Ds is the soil gas diffusion coefficient, C is the soil CO2 concentration

and z is the depth below the soil surface. The method relies on measurements

of both soil CO2 profile concentrations and the coefficient of soil CO2 diffusion

which are both difficult to measure and model (Pingintha et al., 2010). The

essential difference of the GM compared to the chamber method is that it does

not alter conditions of the soil surface boundary as with chambers. It can also

provide measurements of the profile dynamics of CO2 concentrations (DeSutter

et al., 2008). Performance comparisons of these flux measurement options

(Myklebust et al., 2008) show that they all possess inherent advantages and

limitations.
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1.2.6.2 Separating soil respiration in soil and plant derived components

Natural abundance

The natural 13C abundance technique has been used to evaluate rhizosphere

impacts on SOM decomposition and critical aspects of soil C turnover (O'Leary,

1981; Kristiansen et al., 2005). It is based on the natural occurrence of two

stable isotopes of C in the environment, the more abundant 12C and 13C.

Atmospheric CO2 contains about 1.1% of the heavier C isotope 13C and 98.9%

of the lighter isotope 12C. Carbon isotope data are conventionally reported as

δ13C values: the 13C/12C ratio of the sample relative to the international Vienna

PDB (Pee Dee Belemnite) standard. Typically 13Cߜ values are reported in parts

per thousand (‰), i.e. Equation 1.8.

δ13C =ቂ
(13C 12C⁄ ) sample

(13C 12C⁄ )VPDB

− ቃ×1000 (1.8)

Plants discriminate against the heavier 13C during photosynthesis in ways that

reflect plant metabolism and the environment. The extent of the depletion

reflects the photosynthetic pathway and specific ranges of .13Cߜ Plants with the

Calvin Cycle or C3 pathway have a lower 13Cߜ value, averaging about -27‰,

while plants from the Hatch-Slack, C4 pathway have a mean 13Cߜ value -12‰.

By using a C3 derived soil in a C4 plant system or vice-versa, the C entering the

rhizosphere through live roots will have a different 13Cߜ value from the 13Cߜ

value of SOM. This allows for the separation of the total CO2 efflux from the

system into its SOM and plant derived components. The relative contribution of

SOM-derived C to Rs is determined by a mass balance equation:

RSOM=
઼13Cି઼13CSOM

઼13Cି઼13Cplant
(1.9)

where RSOM is the SOM-derived proportion of Rs. The plant-derived component

(Rplant) is determined by the equation

Rplant= 1 − RSOM (1.10)

This natural method eliminates some of the difficulties of earlier methods and

provides a fairly simplistic way to study rhizosphere impacts on SOM
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decomposition. However, where C3 derived soil is used with C4 plants and vice-

versa, unnatural conditions may arise that could potentially compromise the

rhizosphere influenced SOM decomposition that would have occurred naturally.

For example the original microbial community in a C4 derived soil with C4 plant

could be different from a C3 derived soil with C4 plants thus providing

differences in the magnitude and direction of priming effects.

1.2.6.3 Pulse and continuous ࢾ 14C labelling

Plant labelling approaches are widely used for disaggregating Rs and to study

the dynamics of soil C turnover belowground (Schmitt et al., 2013; Gamnitzer et

al., 2009; Wu et al., 2013). This technique involves exposure of plants to a CO2

gas of constant ratio of 13C or 14C and air. The labelling process can be

introduced continuously or as a pulse. Continuous labelling required lengthy

periods, usually starting from shoot initiation to the end of the experiment. This

provides enough time for all C pools contributing to root exudation to be

uniformly labelled. The proportion of plant and SOM-derived components in the

flux is determined from the relative dilution of the labelled CO2 from the plants

by unlabelled CO2 from SOM. In contrast, pulse labelling is characterised by

labelling of shoots for short time periods. Repeated pulse labelling can also be

done to evaluate effects of multiple substrate flows from plant to the soil system.

The relative proportion of root-derived C in Rs following pulse labelling is

calculated based on the percentage of assimilated 14C or 13C evolved as root-

derived CO2. As the total 14C or 13C absorbed by shoots is known the

calculation is simple if the efflux can be sampled correctly to determine its

labelled C composition. The technique involves several assumptions. Meharg

(1994) reviewed the two methods and compared their various advantages and

disadvantages. Other labelling approaches that have evolved include the

labelling of soil (Dalenberg and Jager, 1989) and plant material (Subke et al.,

2004a; Conde et al., 2005) and substrates (Nguyen and Guckert, 2001) for the

conduct of priming experiments.
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1.3 Summary

A considerable body of work on rhizosphere priming effects (RPEs) have been

generated in the last 20 years. Current research trends highlight soil microbial

nutrient demand, preferential substrate utilization and microbial activation

induced by fresh labile substrates additions as leading explanations of

mechanisms involved. There is not a standard approach to priming studies and

many contradictory results are generated. Substrate quality, identity and

diversity have been shown to influence changes in soil biological, physical and

chemical properties that can alter RPEs. Simple polysaccharide substrates like

glucose and sucrose are commonly used for priming studies. Multiple

compound substrates that better resemble the diversity of root rhizodeposits

could potentially produce more realistic results. In addition, systems that allow

for high resolution measurements of soil respiration and their dependency on

key drivers also hold tremendous value to contribute to a better understanding

of the mechanisms involved with RPEs. This study uses a combination of

laboratory incubation, glasshouse and field experiments to investigate RPEs.
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1.4 Overall aim of the research

The overall aim of the study is to contribute to a better understanding of the

processes regulating soil carbon balances, specifically the mechanisms of soil-

plant interactions that release stored C from soils through rhizosphere priming

effects.

1.5 Specific research objectives

The specific objectives of the study are:

1. To investigate the influence of labile substrate availability on SOM

turnover in two contrasting unplanted soils, with rates of substrate

addition simulating rhizodeposition.

2. To investigate the influence of labile substrate released from plant roots

on SOM turnover (rhizosphere priming effects) in the same two

contrasting soils planted with grass.

3. To assess an automated field system for measuring the soil temperature,

moisture and photosynthesis sensitivities of SOM turnover in the same

two soils over diurnal to seasonal time scales.
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General MethodologiesChapter 2:

This chapter describes details of generic methods used at various stages of this

study, and in some cases the process of their development. Specific methods

are detailed in the chapters where they were used.

2.1 Maize root extract preparation

Planting

Maize seeds, of the Marai F1 hybrid early variety (Unwins GroSure,

Huntingdon, Cambridge, UK) were planted in media of compost and

horticultural sand mixed in a 3 to 1 (compost to sand) ratio. Seeds were planted

in 1 litre pots at four seeds per pot. The plants were watered daily and fertilized

weekly with an all-purpose soluble fertilizer containing supplemental iron. After

8 weeks there was is sufficient root growth to fully occupy the media and plants

were harvested shortly thereafter.

Harvesting and cleaning

The pots were kept very moist just before harvest; since the drying media

generated increased osmotic pressure from roots that made compost particles

cling more tightly to roots and this made root-cleaning more difficult. The shoots

were cut off at the base leaving an intact root ball which were soaked in water to

remove adhering debris. Using 2 mm and 1 mm seives to contain the roots,

both fine and larger roots were carefully cleaned with water. Roots were kept

covered with moist tissue until extraction.

Root extract preparation

Cleaned roots were packed into the receiving column of a BNIB stainless steel

compact mega power juicer 700W-2011. Compacted roots in the column were

fed through the juicer. The machine extracted the liquid contents of the roots,

which were collected. Root fragments remaining on the mesh/screen filter were

then passed through the juicer for a second time for further extraction.
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Filtration

The extract was centrifuged at 8000 rpm for 10 minutes to separate solid

material from the liquid. The liquid was then filtered through a glass microfiber

(1.2 µm) filter under suction. Filtered samples were immediately stored in 250

ml plastic bottles and frozen.

Freeze drying

Frozen samples were then freeze dried using a Christ Alpha 1-2LD drier, and

stored in a desiccator until ready for use. In preparation for use, freeze-dried

material was resuspended in ultra pure water. Several tests were conducted to

determine the total organic and inorganic C content of reconstituted root extract

using a total carbon (TOC) analyser, (Shimadzu TOC-V analyser, Tokyo,

Japan). Applications in incubation treatments were based on the determined

values of total C concentration.

2.2 Determination of δ13C in air samples

Isotope ratio mass spectrometer (IRMS)

The δ13C analysis used in the experiments relied solely on natural abundance

differences of isotope ratios in the plants and soils used without any labelling for

enrichment or depletion. I used a gas chromatograph coupled with an isotope

ratio mass spectrometer (GC-IRMS) Sercon 20-22 (Sercon Limited, Crewe, UK)

to analyse for differences in the δ13C of collected air samples. Each sample was

referenced to a pulse of standard gas, N5.0 grade 99.99999% CO2 (BOC

Limited, Surrey, UK) with a known isotopic value. Before use the δ13C value of

the standard was determined at Sercon Limited relative to the International

Vienna PDB (Pee Dee Belemnite) standard. In brief, the IRMS operates by

ionizing the gas sample, accelerating it over a potential in the kilovolt range and

separating the resulting stream of ions according to their mass-to-charge ratio

(m/z). Beams of lighter ions bend at a smaller radius than beams with heavier

ions. The current of each ion beam is then measured using a multiplier detector

(Figure 2-1). I analysed for isotopes of C and O in the air samples.
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Under helium flow and through a double-holed needle, air samples from each

vial were inserted in the aluminium pipeline, through a water trap, the liquid-N

cryo-trap, the GC (Poropack QS column) and then to the IRMS (Table 2-1). A

minimum of four sub-samples were used to arrive at a mean isotopic value per

sample. Prior tests and quality control checks conducted showed that GC-IRMS

had a precision of 0.20 ‰ ± standard deviation of the mean for measuring δ13C

of CO2 in 5 ml samples.

Table 2-1 Results of air sample (5 ml) analysis to determine GC-IRMS accuracy

Sample δ
13

C (‰) δ
18

O (‰ )

1 -13.51 -7.28

2 -13.3 -7.41

3 -12.98 -7.15

4 -13.26 -7.58

5 -13.4 -7.74

Mean -13.29 -7.43

SD 0.20 0.23

Figure 2-1 Schematic of IRMS analysis, arrows indicate sample flow with helium carrier gas
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Sample preparation

Only clean septum-capped 12 ml exetainers (Labco Ltd) were used. The caps

were first fitted with new septa and heat-treated at 105oC overnight. This

removed any volatile compounds that might contaminate the samples. Pre-

experiment trials showed that heat-treatment significantly improved

measurement accuracy. Vials were the evacuated using a suction-pump, P6Z-

101 Chemvac (Ilmvac Vogelherd, Germany) and purged with helium at 60 L

min-1 using a Gilson autosampler attached to the GC-IRMS assembly. To

maintain sample integrity they were analysed within 24 hours.

Control of the sampling process

The sampling system was controlled by the Callisto CF_IRMS software for

stable isotope ratio analysis on SerCon mass spectrometers and prep systems

(SerCon 2009). Callisto was used to control the available functions and

interface of the auto sampler, the prep system and the IRMS. I used the system

to perform periodic quality control checks and to manipulate data processing

and collection to determine the δ13C values of air samples. Sample processing

was closely monitored as several problems, including prolonged freezing of

cryo-traps, were encountered and urgently handled (Figure 2-2).

Figure 2-2 Dewar with frost and frozen cryo-traps during δ13C analysis
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Prolonged cryo trap freezing delayed the sample from getting to the GC. Since

all related processing events, including reference gas pulses, are time based,

this can produce skewed results and the loss of valuable samples.

Callisto is based on the Microsoft Windows operating system. Control and

sequencing of switches and valves is made through Setup Groups, accessed

via an icon in the master window toolbar. A setup group defines the

experimental timings, gas species, integration windows, outputs, references and

sequences for a particular analysis. It includes a sequence table, which

determines the valves/switches to be operated and when. The table has three

columns, Time: to specify when an event occurs; Events: to specify the

operations to be performed; and L/R: to specify whether the event is associated

with the prep system (Local) or with the mass spec (Remote).

2.3 Determination of microbial biomass carbon by fumigation

extraction

The chloroform fumigation method was used to determine the microbial

biomass C of the two soils in response to various experimental treatments. The

results are reported in Chapters 3 and 4. The method is based on the British

Standard BS 7755: Section 4.4.2:1997 Determination of soil microbial mass –

fumigation-extraction method which is identical to ISO 14240-2:1997 first

reported by Vance et al. (1987). The basic principle of the method involves the

use of chloroform fumes to kill and lyse microbe cells to release their carbon.

The released C can be recovered by extraction with a potassium sulphate

solution. The extraction process does not affect inorganic soil C. Soil microbial

biomass is estimated from the increase in extracted C flushed from fumigated

soil samples compared to flushed C from non-fumigated soils.

Fumigation

The soils were first homogenized by sieving through a 2 mm sieve. Two aliquots

of each sample (12.5g dry weight equivalent) were weighed into 200 ml glass

jars, one for fumigated and the other for the non-fumigated control. Fumigation

was conducted under a fume hood in implosion resistant desiccators. The

desiccators were lined with moist paper jars with soil for fumigation placed in
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the desiccator with a 100 ml beaker containing 25 ml ethanol-free chloroform

and a few anti-bumping granules. A beaker containing 25 ml soda lime was also

placed at the bottom. The desiccators were then sealed using a gasket seal and

evacuated with a vacuum pump until the chloroform boiled for two minutes. The

valve on the desiccator was then locked and the vacuum pump switched off.

The desiccator was left under the fume hood for 24 hours. The tissue, beaker

with chloroform and bumping granules were removed and the desiccator

evacuated six times using a vacuum pump, each time for two-minutes

Extraction

The carbon from each sample was extracted by adding 50 ml (0.5mol/l)

potassium sulphate solution. The jars were capped and loaded on a side-to-side

shaker, set at 300 min-1 for 30 minutes. The suspensions where then filtered

through Whatman No 42 filter paper into separate sample bottles and stored at -

15oC until ready for analysis.

Determination of carbon in extracts

A Burkard Scientific SFA-2000 Segmented Flow Analyser (Uxbridge,

Middlesex) was used to analyse all the samples. The process involved a series

of steps beginning with sparging of the extract with CO2 –free air to remove

inorganic C as CO2. The sample was then mixed with acidified potassium

persulphate and irradiated with UV light to oxidize the organic C in the extract to

CO2. The CO2 concentration was determined by infra-red spectrometry.

Segmented flow analysis was carried out according to the standard operating

procedure for the instrument. If the concentration reached higher than that of

the concentration curve then the sample was diluted with 0.5 M K2SO4 solution.

Calculation

C (μg/g) = (sample -������ሻ�ൈ�ቂ
extract volume

dry weight soil mass
ቃ (.2.1)

Microbial C (μg/g) = fumigated organic C - non-fumigated organic C
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Microbial C was converted to biomass using the conversion factor of 0.45

(Jenkinson et al., 2004).

2.4 Phospholipid fatty acid (PLFA) profiling

Phospholipid fatty acids (PLFAs) were measured as described by Bligh and

Dyer (1959) and as modified by White et al. (1979) and used by Bardgett et al.,

(1996). The PLFAs were measured on soil samples from each of the 24

lysimeters at the Wolfson Field Laboratory (WFL) described in Chapter 5.

Chapter 5:Lipids were extracted from 5 g of fresh soil using a mix of chloroform,

methanol and citrate buffer (1:2:0.8 by volume). The supernatant from this was

split into two phases by adding chloroform and citrate buffer. The lower

chloroform phase containing the lipids was recovered and evaporated under a

stream of nitrogen (N2) gas. These lipids were re-suspended in chloroform, and

then separated into neutral lipids, glycolipids and phospholipids (eluted

individually, with chloroform, acetone and methanol) by fractionation on silicic

acid tubes, Strata® NH2 (55 µm, 7 nm), 500 mg / 12 mL, Giga Tubes, supplied

by Phenomenex, Cheshire, UK. The phospholipids were retained and

evaporated under a stream of N2 gas, and mild alkaline methanolysis was then

performed to create methyl esters. These samples were also evaporated under

N2 gas and stored at -20oC until analysis by gas chromatography (GC).

After GC analysis, peaks were identified by calculating retention times relative

to an added internal standard (C19) and comparing this with peaks from a

bacterial methyl ester standard (Supelco Bacterial Acid Methyl Esters CP Mix

47080-U). The results were normalised by expressing each peak as a

percentage of the sum of all peaks. This gave results on percent mol (% mol)

basis and were characterized by standard nomenclature (Tunlid et al., 1989).

PLFAs used to represent bacteria were: cyclic fatty acids (cy-17:0, cy-19:0),

branched fatty acids (i-15:0, a-15:0, i-16:0, i-17:0 and 15:0). A relative measure

of the fungal:bacterial ratio was calculated by dividing fungal PLFA (18:2ω9,12) 

by bacterial PLFA.
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The effects of simulated plant exudates onChapter 3:

soil carbon turnover in two unplanted and contrasting

soils

3.1 Introduction

Additions of highly available C substrates to soils, like those from plant root

exudates are sometimes found to stimulate the rapid turnover of soil organic

matter, the so-called soil priming effect (PE) (Section 1.2.1.1). Decomposition of

“old” sequestered C can be accelerated where there are favourable soil

moisture and temperature conditions coupled with plant cover which provides a

continuous supply of root exudates (Kuzyakov, 2002). There is still much

uncertainty about the extent of such phenomena in different plant-soil systems

and about the mechanisms driving them. Priming effects are expected to differ

between soil types with different quantities and qualities of organic matter, and

different physical, chemical and biological attributes. Differences between plant

species, including root growth, turnover and exudation of labile substrates, and

their interactions with soil microbes and the soil environment, are likely to also

affect priming effects. Experiments on priming are often made excluding plant

roots to simplify the system and isolate processes. Simple sugars like glucose

and sucrose are commonly used as surrogates for root exudates, without the

other compounds and nutrients that may be important for PE. Applications are

usually made in single pulses, which are not reflective of field conditions

because root exudates are thought to be continuously involved in mediating

plant-soil interactions (Walker et al., 2003). Thus, such experiments may give a

misleading picture of PE phenomena in true plant-soil systems.

In this chapter I report on an attempt to simulate the effects of root exudation

and turnover by applying an extract of root material to a soil incubation system

to study soil priming effects. I made continuous daily additions at C rates

commensurate with 15 and 50% of soil microbial biomass and comparable to

weekly net primary productivity of a grazed pasture system (UK). I used a

prepared extract from roots of the C4 plant, maize (Section 2.1) in C3 soil and

compared the extract to standard C4 sucrose in two contrasting C3 soils in order
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to separate the turnover of the root extract or sucrose and soil organic matter

based on 13Cߜ differences. To the best of my knowledge this type of root

preparation has not been used in previous soil priming studies (Section 2.1).

3.1.1 Research objective

The primary objective of this experiment was to investigate soil C turnover

responses and priming effects in two contrasting soil types in response to two

substrates, maize extract and cane sugar, added repeatedly. I tested the

following hypotheses:

1. The two substrates will produce different soil C turnover responses

2. The two soils will have different C turnover responses to the substrates

3. Priming effects will occur in both soils, sustained for the duration of the

experiment

3.2 Materials and methods

3.2.1 Soils

Two soils were used in this study, collected from (0-5 cm) at two locations.

Monoliths of these soils are also used in lysimeters at the Wolfson Field

Laboratory, discussed in Chapter 5. They are:

(1). A poorly drained, seasonally waterlogged loamy clay soil from Temple

Balsall, Warwickshire, England (276559 N, 420189E), sampled in March 2012,

hereafter referred to as TB for Temple Balsall. It is classified (UK) as a typical

stagnoley soil, Brockhurst series (Beard, 2010). The primary vegetation has

been permanent pasture. Relevant properties are given in Table 3-1. Compared

with the second soil, this soil has a higher pH, a smaller organic carbon content

but with a greater N content and total phosphorus.

(2). A well-drained coarse loamy soil from Shuttleworth College, Bedfordshire,

England (243867.30N 514421.09E), sampled in May 2012, hereafter referred to

as SH for Shuttleworth. It is classified (UK) as a typical brown sand, Cottenham

series (Beard, 2010). The sampled layer comprises large amounts of partly

decomposed woody material originating from bracken growth. The area is a
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remnant bracken heathland on the field edge. Relevant properties are given in

Table 3-1 and the processing of collected is soil samples outlined in Figure 3-1.

Figure 3-1 Flow diagram of soil processing operations prior to the start of the

experiment.

The field samples of the SH and TB soils were
seived to pass 6.0 mm removing stones,
recognizable fragments and fauna

TB soil sub-samples then homogenised using a
mixer

SH soil sub-samples were limed to pH 5.0 with CaO2 (4
g kg-1 soil). Lime was initially mixed with shovels by
hand and then homogenised using a mixer as for TB
soil

Both soils were stored in protected soil bins for over

12 months before the start of the experiment.

Table 3-1 Selected properties of clay loam (TB) and sandy loam before pH
adjustments (SH) (6 mm sieved –air dried except where indicated)

Soil TB SH

pH (KCl) 5.5 3.8
Total P (mg kg-1)* 609.6 801.6
N ( % ) 0.49 ± 0.01 0.42 ± 0.003
C ( % ) 4.62 ± 0.06 6.48 ± 0.02
C/N Ratio 9.5 15.3
Microbial Biomass C (mg kg-1) 704 ± 15 407 ± 30
Sand (%) 60 82
Silt (%) 18 8
Clay (%) 22 10
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Just before starting the experiment, samples of both soils were sieved to pass 2

mm, removing the remaining debris and larger soil fauna. The gravimetric

moisture contents of the 2 mm sieved TB and SH soil were 20% and 27%,

respectively.

For the experiment soil moisture was adjusted to 65% of field capacity, and

samples were packed to an initial dry bulk density of 0.7 and 0.8 g cm-3,

respectively for TB and SH, in microcosms as shown in Figure 3-2 (Paterson et

al., 2007). These comprised semi-circular sections of PVC pipe (120 mm length,

46 mm internal diameter) mounted on stands for stability (Figure 3-2). The

volume of soil in each microcosm was 100 cm3.

3.2.2 Experimental design

For each soil type, 12 microcosms were prepared to allow six treatments (2

soils x 2 substrates and a water control) with four replicate blocks, a total of (6 x

4) = 24 microcosms. The substrates used were a maize root extract and

sugarcane (i.e. C4) sucrose (Billington’s Fairtrade light brown sugar, Tesco)

applied at 0.35 and 0.2 mg C g-1 dry soil for the TB and SH soils, respectively.

This represented 15 and 50% of the microbial biomass C in the TB and SH

soils, respectively, and 140 and 80 % of the weekly estimated net primary

productivity (NPP) (Equations 3.1 to 3.4).

Figure 3-2 Incubation microcosm packed with soil
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The microcosms were pre-incubated in the dark at 20oC and 80% humidity for

16 days before treatments were applied. During the pre-incubation phase, soil

moisture was maintained by watering with a syringe to the original weight.

During the incubation phase, treatments were applied daily in a 1 ml solution,

predetermined as the minimum moisture loss from the microcosm in 1 day.

Moisture requirement above 1 ml was applied as deionised water mixed with

the respective treatment solution before application by syringe. Soil respiration

and δ13C measurements were made periodically as follows.

3.2.2.1 Calculation of net primary productivity (NPP)

The calculations were based on analysis of temperate grassland responses to

climate change using the Pasture Hurley Model (Thornley and Cannell, 1997).

Under standard conditions in grazed pasture system in a Southern lowland (UK)

the annual net primary productivity (NPP) was estimated as 0.57 kg C m-2.

Thus

NPP = 0.57 kg C m-2 year-1 (3.1)

Assumptions: soil depth = 10 cm; bulk density =1.0 g cm-3; 70% of annual NPP

is deposited during 4 months of the year.

Then NPP = 0.57 kg C in (10,000 cm2 x 10 cm) (3.2)

and NPP = 570 g C in 100,000 cm3 x 1.0 g cm-3 soil

Therefore NPP = 0.0057 g C in 1 g soil or 5.7 mg C g-1 soil per year.

(3.3)

Weekly NPP loading during high production period =

5.7 mg C x 0.7

ଵ�୵ ୣୣ ୩ୱ
= 0.25 mg C (3.4)

The substrates applied at 0.2 and 0.35 mg g-1 soil were 80 and 140% of the

weekly NPP in the SH and TB soil, respectively.
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3.2.3 Soil respiration and isotope measurements

The Kilner jars containing the microcosms were fitted with lids containing a 1

mm plastic mesh (Plastok Ltd Birkenhead, Merseyside, UK) that allowed

gaseous exchange (Figure 3-3 A). Prior to respiration measurements the mesh

lids were replaced with gastight lids containing inlet and outlet ports with Luer-

lock valves (Figure 3-3 B).

The inlet and outlet valves were connected to the system shown in Figure 3-4,

with which to scrub CO2 from the system microcosm headspace and follow the

subsequent accumulation of CO2 released from the soil and sample for δ13C. To

scrub CO2, the system was flushed with CO2-free air at a flow rate of

approximately 1 L min-1. The headspace concentration was measured with an

infrared gas analyser (IRGA), (LICOR-820, Lincoln NE, USA). Purging

continued until the CO2 concentration at the outlet reached a minimum of <10

µmol mol-1 CO2 and subsequently incubated for 2.5 hours. At the end of this

period, a 10 ml gas syringe (SGE Europe Ltd) was attached (with Luer lock

connections) to the outlet valve on the Kilner jar lid to extract three 5 ml

samples from the headspace. Each sample was injected into separate

evacuated and helium-purged 12 ml exetainers (Labco Ltd) capped with

Figure 3-3 (A) Lid with plastic mesh for incubation and storage (B) Airtight lid with

inlet and outlet for respiration measurements and air sampling
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gastight septa. Samples were analysed for δ�ଵଷC within 24 hours using a Sercon

20-22 IRMS with auto sampler as described in Chapter 2. After sampling the

headspace, the jars were immediately re-connected to the IRGA and

headspace circulation contained at approximately 1 L min-1 for 2 minutes to

determine the soil respiration from the microcosm.

3.2.3.1 Soil and substrate analysis

The maize extract was analysed for total C and N content using and Elementar

Vario El elemental analyser (Elementar Analysensysteme GmbH, Hanau,

Germany). The sugar composition of the maize extract was determined using

an Agilent 1260 Infinity high performance liquid chromatograph with evaporative

light scattering detector (HPLC-ELSD) (Agilent Technologies, California, USA).

IRGA

Flow meter

Gastight 1 L jar with
soil microcosm fitted
with valves & luer-lock
sampling ports

diaphragm
pump

CO2 scrubber
isolation

Soda lime
column – CO2

scrubber

Figure 3-4 Diagram of assembly for scrubbing CO2 from jars prior to incubation,

measuring soil efflux, and air sampling for δ 13C. Bev-A-line (2 mm I.D) with airtight

connectors are shown in blue
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3.2.3.2 Calculation of soil respiration rate

The soil respiration rate RS (µg C g-1 soil h-1), was calculated from the measured

rate of change in CO2 concentration in the microcosm headspace, dC/dt (µg C

cm-3 headspace h-1), using the equation

RS = dC/dt × V/ M (3.5)

Where V is the volume of the headspace (cm3) and M the mass of the soil in the

microcosm (g).

The value of dC/dt over the measurement period is found from

dC/dt = ∆C / ∆t (3.6)

where ∆C is the change in CO2 concentration (µg C cm-3 headspace) over the

measurement interval ∆t (2.5 h).

The value of C is related to the measured CO2 concentration (44.0 g mol-1 air),

by

C = ∆C
∗
× Mm / Vm (3.7)

Where Mm is the molar mass of CO2 (44.0 g mol-1) and Vm is the molar volume

of air (24.4 x 103 cm3 mol-1 at 20oC and 1 atm)

Combining Equations 3.5 to 3.7 gives

RS =
∆C

*
MmV

∆tVmM
(3.8)

The value of V is found from

V = Vjar-Vmicrocosm (3.9)

where Vjar and Vmicrocosm are the volumes (cm3) of the Kilner jar and microcosm,

respectively.
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3.2.4 Partitioning of the soil respiration between SOM and added

substrate

I used the measured isotope data to partition the total soil respiration (RS)

between soil organic matter (SOM) and added substrate (maize root extract or

sucrose) sources as follows.

Carbon isotope data are conventionally reported as δ13C values: the 13C/12C

ratio of the sample relative to the international Vienna PDB (Pee Dee

Belemnite) standard. Typically 13Cߜ values are reported in parts per thousand

(‰), i.e.

δ13C =ቂ
(13C 12C⁄ ) sample

(13C 12C⁄ )VPDB

− ቃ×1000 (3.10)

Hence, the more negative the δ13C value, the more depleted the sample is in

13C relative to the standard.

I used the measured δ13C values to determine the relative proportions RS

derived from the applied substrates (R
substrate

) and from the native soil organic

matter (RSOM) with the two end-member mixing model:

RSOM=
઼13Cି઼13CSOM

઼13Cି઼13Csubstrate
(3.11)

and

Rsubstrate = 1-RSOM (3.12)

where δ13CSOM and δ13Csubstrate are the values for SOM and the added

substrates, respectively.

The δ13CSOM values were determined from the measured δ13C of the control

soils, unamended with substrate. The δ13Csubstrate values were determined on

solid samples of the substrates (freeze dried maize root extract and granular

cane sugar) burnt in a combustion coupled to IRMS at the James Hutton

Institute, Aberdeen, Scotland (c/o Dr. Eric Paterson). The values were -12.20‰

and -11.52‰ (± 0.1 ‰), for maize and cane sugar, respectively.
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A correction to the measured δ13C values was necessary because of isotopic

fractionation in the transport of respired CO2 through the soil to the microcosm

headspace by diffusion. This arises because the diffusion of the heavier 13CO2

is slightly slower than that of 12CO2. The ratio of the diffusion coefficients is

D(12CO2) D(13CO2)⁄ =1.0044 (3.13)

i.e. a difference of 4.4‰ (Cerling et al., 1991). This means that the CO2 at the

point of production within the soil pores is enriched in 13C relative to CO2 leaving

the soil as RS by at least 4.4 ‰, i.e. the δ13C of soil air is less negative by at

least 4.4‰.

In measurement systems in which the initial steady-state concentration gradient

of CO2 through the soil is maintained, all the CO2 produced in soil respiration is

transferred to the headspace and the measured δ13C is that of the respired CO2

with no diffusional fractionation. However, in the system used here, which is

designed to equilibrate the headspace CO2 with the CO2 in the soil air, the

measured headspace δ13C is offset from the true δ13C of the respired CO2 by

some 4.4 ‰.

A realistic value for the fractionation is therefore 4.4 ‰ (Cerling et al., 1991) and

accordingly I corrected the measured δ13C and δ13CSOM values by subtracting

4.4‰. Note there is no diffusional fractionation in the measurements of

δ13Csubstrate obtained by combustion of the solid substrates. Other potential

sources of error in chamber measurements of the δ13C of respired CO2 were

discussed by others (Nickerson and Risk, 2009; Ohlsson, 2010; Midwood and

Millard, 2011).

Having partitioned RS in this way, I calculated priming effects (PE), defined as

the change in the decomposition of native SOM as a result of substrate

additions, as the difference between the basal respiration in controls and the

SOM-derived respiration in substrate-amended soils (equation 3.8).

PE = (RSOM in substrate amended soil) − (RSOM in unamended soil) (3.14)
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3.2.4.1 Determination of δ13C and required adjustments

Natural abundance differences of δ13C in C3 soils and C4 substrates were used

to separate soil respiration into its substrate and soil-derived components. This

formed the basis for determining PEs, their patterns and direction. A purged

static chamber (PSC) design, depicted in Figure 3-4, was used for flux

measurements and chamber air samples were collected for δ13C analysis. This

chamber design is used widely. However there are concerns about their

accuracy and repeatability with respect to13ߜ��C and େଶܨ measurements. These

were studied by Nickerson and Risk (2009). They found that PSCs produce

SOM 13Cߜ values that were more enriched than actual within a range of

approximately 0 to 15 ‰, over all diffusivities and production rates evaluated. It

was notable that the largest deviations occurred when soil respiration was low

and soil diffusivity was high. In comparison to more common chamber systems

(Subke et al., 2004b; Ekblad and Högberg, 2000) the surface area of the

exposed soil (120 mm x 46 mm) of microcosms was relatively wide compared to

soil depth (23 mm). This may have allowed for higher diffusivity of CO2 through

soil. When coupled with low CO2 production within the soils, as evidence by low

flux measurements in control treatments (data not shown), this could have

accounted for the higher than expected 13Cߜ values. The SOM end member

13Cߜ values determined from the control treatments were adjusted by the

minimum value, -4.4‰, recommended by Cerling et al. (1991). Similarly the

13Cߜ for the flux of treated microcosms were also adjusted by -4.4‰.

3.2.5 Statistics and data analyses

The software package Statistica version 12 (Statsoft Inc. Dell Inc. Aliso Viejo,

USA) was used for statistical analyses. Repeated measures ANOVA was used

to study the variation in RS and its 13Cߜ over time, between the various

treatments. One-way ANOVAs were used for determining treatment effects on

soil microbial biomass. The differences between means were analysed using

post hoc Fisher least significant difference (LSD).
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3.3 Results

3.3.1.1 Soil equilibrium and basal respiration

During the 17 day stabilisation period, total respiration in both soils declined

after disturbance for preparation of microcosms and acclimatisation to

incubation conditions (Figure 3-5). Soil respiration rates in the clay loam (TB)

was initially greater than in the sandy loam soil (SH) but decreased significantly

near the end of the stabilisation phase. By Day 18 the mean respiration rates in

each soil reflected a state of stabilised decline (Figure 3-5), indicating that the

length of the stabilisation phase before applying treatments was adequate. The

stable basal respiration in TB was less than that in SH (Figure 3-5).
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Figure 3-5 Measured soil respiration rates (RS) in control treatments in TB and SH

soils receiving only water over the duration of the experiment. Days 0-17 comprise the

stabilisation phase after disturbance. Points show means (n=4), bars show standard

errors.
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3.3.1.2 Effects of added substrates on soil respiration (RS)

In both soil types the added substrates (from maize roots and sugarcane)

produced significant increases in total soil respiration (RS) compared to basal

soil respiration measured in controls treated only with water (Figure 3-6).

Generally, added sucrose produced greater RS than maize, markedly so in the

clay loam, TB soil (the trend was generally insignificant (P ≤ 0.198) in the sandy 

loam, SH soil). From the second day after treatment (DAT) the RS from sucrose-

treated TB soil was significantly greater than that from the maize treated TB soil

and increased with time. At the end of the experiment 19 DAT, RS in sucrose-

treated TB soil was 4.6 ± 0.12 µg C g-1 dry soil h-1 compared to 1.90 ± 0.12 µg

C g-1 soil h-1 in the maize-treated TB soil, a difference of over 240%.
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Figure 3-6 Effect of maize root extract and sucrose on soil CO2 efflux in (a) sandy loam soil

[SH] and (b) Clay loam soil [TB]. Points show means (n=4), bars show standard errors.
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3.3.1.3 13Cࢾ� of soil efflux

The 13Cߜ values of RS in control treatments receiving only water were stable

over the duration of the experiment and not significantly different between the

two soils (Figure 3-7). However, the values were large (or less enriched)

compared with typical temperate soils with a history of C3 vegetation (O'Leary,

1981; Buchmann and Ehleringer, 1998; Flanagan and Ehleringer, 1998; Griffis

et al., 2005).
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Figure 3-7 The measured 13Cࢾ of respiration in microcosms treated with and without added

substrates (a) sandy loam SH and (b) clay loam TB. Points show means (n=4), bars show

standard errors.
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Table 3-2 Comparison of δ13C values of soil respiration measured for control

treatments in SH and TB soils measured over 19 days. Data are means ± SE (n-4)

3.3.1.4 SOM contributions to total soil respiration and priming effects

The effect of substrate additions on the proportion of RS derived from SOM

(RSOM) in the two soils is shown in Figure 3-8. In both soils the effect of

substrates on RSOM was always positive, i.e. SOM–derived respiration was

above basal respiration, indicating positive priming effects. Sucrose caused

significantly greater RSOM values in both soils. In the TB soil, the increase in

RSOM with sucrose was greater than with the maize extract from 1 DAT. SOM

decomposition was greatest in sucrose treated TB soil (2.4 ± 0.06 µg C g-1 soil

h-1) at 17 DAT. However, in SH soils RSOM differences were only significant at 1

DAT when the maize treatment induced greater primed C and sucrose induced

slightly greater but significant RSOM at 6 and 17 DAT (Figure 3-8 a). There

appears to be a consistent pattern of RSOM in all treatments and soils until 6

DAT (Figure 3-9). Then from 9 DAT there appears to be divergence in both soil

and treatment responses, particularly with sucrose (Figure 3-8 and Figure 3-9).

The RSOM reduction 9 DAT in the maize-treated TB soil was most dramatic and

the only treatment where RSOM continuously declined from that point, albeit

gradually (Figure 3-8 b). In the maize treated SH soil RSOM increased at 11 DAT

and then gradually declined to the end, 19 DAT (Figure 3-8). The sucrose

treatments were characterised by significant and persistent increase in RSOM

Time

(DAT)

δ13C of RS in SH soil

(‰)

δ13C of RS in TB soil

(‰)

1 -20.29 ± 0.01 -22.92 ± 0.28

2 -23.35 ± 1.21 -24.61 ± 0.73

4 -23.06 ± 1.13 -24.33 ± 0.94

6 -23.16 ± 0.58 -23.89 ± 0.61

9 -22.64 ± 0.74 -24.38 ± 0.76

11 -23.59 ± 1.19 -23.89 ± 0.89

13 -22.44 ± 0.58 -23.93 ± 1.31

17 -23.49 ± 1.04 -24.71 ± 0.52

19 -22.79 ± 0.96 -24.08 ± 0.66

DAT - days after treatment
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until 17 DAT in both soils with a more significant and dramatic increase in the

TB soil (Figure 3-8 and Figure 3-10).

Figure 3-8 SOM-derived respiration in (a) SH soil and (b) TB soil treated with sucrose

and maize. Points show means (n=4), bars show standard errors.
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Sucrose caused significantly greater priming effects in both soils (Table 3-3).

The magnitude of maize-induced soil respiration (RS) was greater in TB

compared to SH (Table 3-3). However, primed soil C in maize treatments

contributed more to RS in SH soils, 48% compared to 29% in TB (Table 3-4).

The relative significance of substrate induced priming was the same for both

substrates in the SH soil, 48% of RS. Sucrose induced priming effects

accounted for 50% of RS in the TB soil compared to 29% in maize treatments

(Table 3-4).
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Figure 3-9 Pattern of priming effects in contrasting soils, captured by the primed

respiration expressed as a multiple of basal ቀ
primed resp

Basal resp
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sampling point in SH and TB soils. Points show means (n=4), bars show standard

error.
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Table 3-4 Relative proportions (%) of SOM, primed and substrate-derived

respiration per microcosm during treatment phase.

Table 3-3 Cumulative respiration per microcosm (micr) during the treatment

phase, partitioned into SOM, primed and substrate-derived components.

Total C Basal soil-

derived C

Primed soil-

derived C

Substrate-

derived C

(mg C micr
-1

) (mg C micr
-1

) (mg C micr
-1

) (mg C micr
-1

)

Maize 52.38 ± 0.63 24.92 ± 0.42 16.02 ± 0.21

Sucrose 55.93 ± 1.25 26.72 ± 0.87 17.76 ± 0.39

Maize 67.98 ± 0.95 19.86 ± 0.44 38.07 ± 0.52

Sucrose 120.34 ± 5.66 59.43 ± 3.25 50.86 ± 2.41
TB

11.44 ± 0.28

10.05 ± 0.25

Soil type Treatment

SH

Soil type Treatment

Total C

(% of RS)

Basal soil-

derived C

(% RS)

Primed soil-

derived C

(% RS)

Substrate

derived-C

(% RS)

SH Maize 100 22 48 30

Sucrose 100 20 48 32

TB Maize 100 15 29 56

Sucrose 100 8 50 42
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Figure 3-10 Cumulative priming effects in response to maize extract and sucrose

additions in (a) SH and (b) TB soils. Points show means (n=4), bars show standard

errors.

P
ri
m

e
d

C
(

g
C

)

2

4

6

8

10

12

14

16

Maize SH

Sucrose SH

Days after planting

0 2 4 6 8 10 12 14 16 18 20

P
ri
m

e
d

C
(

g
C

)

0

2

4

6

8

10

12

14

Maize TB

Sucrose TB

(a) Sandy loam

(b) Clay loam



64

3.4 Discussion

3.4.1.1 Priming effects, intensity and patterns in contrasting soils

The results presented above met the objective of quantifying changes in SOM

turnover in two contrasting soils in response to continuous additions of labile

substrates. This study differed from most previous studies in that it (a) simulated

root exudation in a temperate pasture with daily substrate additions, and (b)

compared a multi-compound substrate with a single-compound substrate, rather

than just single substrates.

In both soils positive priming effects were detected after the first day following

maize and sucrose additions and continued with repeated substrate additions

for the duration of the experiment. However, there were differences between the

soils. In the sandy, low fertility soil (SH) maize and sucrose additions produced

similar total soil respiration patterns and priming effects but in the more fertile

clay loam soil (TB), sucrose produced consistently greater respiration rates and

priming effects than maize extract. Also, in the TB soil the priming effect

induced by maize declined after the first week, whereas the PE with sucrose

increased.

Greater soil microbial activity and priming effects in response to single sucrose

additions compared to maize were observed in similar studies (Nottingham et

al., 2009; Engelking et al., 2007) and with repeated (26 days) substrate

applications (Hamer and Marschner, 2005).This contrasts with the results of

Blagodatskaya et al.(2007) who observed zero and negative PE, from applied

glucose, 2 to 4 days after application both with and without added N.

My intention was to simulate natural continuous C additions in a grazed

temperate grassland, during the most actively growing periods of the year. Due

consideration was also given to the size of the microbial biomass

(Blagodatskaya and Kuzyakov, 2011) with rates of additions comparable to root

exudation in the rhizosphere.

Several studies investigating SOM turnover and PEs have used maize plant

tissue (Liljeroth et al., 1994; Nguyen and Guckert, 2001; Baudoin et al., 2003;
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Marx et al., 2007; Machinet et al., 2009). However these were mostly as solid

dried plant material (Chen et al., 2014; Nottingham et al., 2009; Conde et al.,

2005; Clemente et al., 2013). Use of liquid formulations are rare, however use

of hydroponic-derived maize root mucilage (Benizri et al., 2007) and exudates

(Marx et al., 2007) were reported. Comparison of a maize cellulose (from stems,

added as powder) to C4 sucrose (Engelking et al., 2007) was also reported for a

priming experiment using a Haplic Luvisol. Nonetheless, to my knowledge, this

is the first study comparing sucrose to a composite liquid maize root extract with

repeated applications. The literature is replete with demonstrations of priming

effects so a primary focus was to determine how my observations of continuous

rather than pulse additions and mixed-composition substrate relate directly to

the underlying mechanisms driving priming effects.

Possible priming mechanisms

There is a clear indication that the inherent qualities of both soil and substrate

influenced the operating mechanisms. The differences in magnitude and time-

course of priming effects following repeated substrate applications are of

particular interest. The pattern of priming response between the soil types and

substrates were initially similar but changed over time. Additions of easily

available substrates to soils can energise the soil microbial community into

activity well over basal soil respiration. An initial burst of microbial activity within

hours of substrate additions is widely recognised (Paterson and Sim, 2013;

Jenkinson et al., 1985). It is believed that the most active part of the microbial

community, comprising so-called R-strategists, benefits most with activity and

population surges (Chen et al., 2014; Fontaine et al., 2011). It could explain the

initial activity observed following the first application of all substrates in both

soils. It is likely the peak activity occurred before the initial measurement 19

hours after the first application as total soil respiration appears to be falling after

1 DAT. It is also thought that the early microbial stimulation is mostly associated

with ‘apparent’ PE from the turnover of microbial biomass with the labile newly-

available substrates (Blagodatskaya and Kuzyakov, 2008; Ghee et al., 2013).

With a single substrate pulse, this may explain PE observations occurring within

1 to 2 days (Blagodatskaya et al., 2007). Repeated daily applications at the
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rates used in this experiment are likely to rapidly satisfy the C-limitations of R-

strategists. However, the significant and relatively high levels of priming effects

observed throughout this experiment cannot be explained by the theory of

microbial activation.

After the initial activation it is possible that subsequent growth and changes in

the structure of the soil microbial community induced mineralisation of mostly

the added substrates rather than the less decomposable SOM. This mechanism

is referred to as preferential substrate utilization (Sparling et al., 1982).

Repeated daily substrate applications made in this experiment would have

enhanced preferential substrate utilization and possibly produced negative PE

in the early incubation period. However, only positive priming effects were

observed. Although PE significantly declined in the maize-treated TB soil after

the first week, PE remained positive in all treatments. So it may still be

reasonable to conclude that this mechanism was either not important or non-

existent.

Relationships between rhizosphere N transformations, soil C dynamics and the

release of fresh labile C from plant roots are well established (Yin et al., 2013;

Norton and Firestone, 1996; Landi et al., 2006; Jackson et al., 2008).

Mechanisms of priming related to the C and N composition of added substrates

in comparison with existing soil C and N availability have been explored in

planted systems (Cheng, 2009; Liljeroth et al., 1994) and microcosm studies

(Chen et al., 2014; Dijkstra et al., 2009). Similarly the role of soil phosphorus (P)

availability on SOM mineralisation (Bünemann et al., 2012) and the combined

influence of N and P availability on the soil priming mechanisms were

considered (Nottingham et al., 2015). The evidence suggests that depending on

general fertility conditions PEs can be either amplified or reduced. The microbial

N mining theory was advanced to explain observations of enhanced PEs in soils

with low available N. It assumes that N-seeking microbes use added labile C

substrates as energy sources to mine for N within SOM (Blagodatskaya and

Kuzyakov, 2008). This is consistent with my results where sucrose and maize

root extract stimulated positive PE in both soils throughout the incubation. I

postulate that similar patterns of soil respiration and PE observed in response to
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added sucrose and maize in the SH soil was due to the proliferation of N mining

microbes. This could be a consequence of selection pressure placed on the

biomass by a ready supply of C for respiration but little N/P/S for growth, hence

the need to mine.

Similar patterns of PE in response to both substrates in the TB soil until 9 DAT

is consistent with the N microbial mining theory. Significantly greater PE during

that period in TB over the SH soil may be due to the greater substrate

application rates (twice that in SH soil based on microbial biomass). Another

factor could be the much greater fertility of the TB soil and the consequently

greater return of mineralised N or other nutrients to the microbes from priming.

Although SH had greater total C content compared to TB, a major component of

C in the SH soil was recalcitrant woody fragments from its bracken cover, as

shown by the much greater C:N ratio of the SOM. The greater fertility of TB was

demonstrated by its higher microbial biomass (Table 3-1) and that it supported

much better plant growth (Chapter 4).

From 9 DAT the pattern of PEs separated markedly with a rapid decline in

maize-treated TB soil with a simultaneous rise in sucrose-treated TB soil. I

attribute this decline in the maize extract treatment to an accumulation of N in

the soil derived from the added material. The maize extract had a C/N ratio of

34. As a result 0.84 mg N was added daily to each microcosm giving soil a total

of 7.56 mg N per microcosm by 9 DAT (i.e. approximately 0.1 mg N g-1). As

available N accumulated, microbial N mining became redundant, thus the rate

of PE fell. I hypothesize that at 9 DAT a threshold of available N was reached in

the maize-treated TB soil, which contributed to the dramatic fall in PE. However,

there was still some demand for N, since although reduced, PE remained

positive and above basal respiration in control treatments. In the sucrose

treated TB soil, SOM decomposition continued to increase because the N-

demand was still unfulfilled. It was not until 19 DAT that there was a significant

decline in PE, possibly due to reduced N demand or exhaustion of available

resources, including nutrients.
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By contrast, the SH soil received a smaller substrate addition based on its

smaller microbial biomass, 0.42 mg N daily. If the apparent N threshold of 7.56

mg N inferred for TB soil is applied per unit mass (0.1 mg N g-1 soil) of SH soil

then that threshold would be reached approximately 20 DAT, after the

experiment concluded. This is because the microcosms were packed to 80.8

and 70.7 g soil for SH and TB soil, respectively. Reduced SOM mineralisation in

response to added N is well documented (Chen et al., 2014; Nottingham et al.,

2015) however contrasting results with positive PE have also been reported

(Conde et al., 2005).

It is well known that different C substrates applied to the same soil at similar

rates can have different effects on the soil microbial community structure

(Hamer and Marschner, 2005; Liljeroth et al., 1994; Landi et al., 2006). The

simple sugars glucose and fructose at 121 and 87 mg g-1, respectively, were

found in the maize extract. However, a range of other water soluble compounds

are also present in maize roots and exudates and would have also been

present in the extract. Hütsch et al. (2002) found that maize root exudates

comprised 79% water soluble compounds, which were partitioned into 64%

carbohydrates, 22% amino acids or amides and 14% organic acids. Actual root

material was found to have similar compounds and other nutrients (Clemente et

al., 2013; Badri and Vivanco, 2009). I hypothesize that the diversity of

compounds in this substrate would have stimulated changes in the soil

microbial community compared to soils treated with sucrose. Changes in

microbial community profiles (Orwin et al., 2006) and relative proportions of

bacterial to fungal microbes (Jagadamma et al., 2014) in response to variable C

substrates combinations were confirmed from laboratory incubations.

Conceivably, sucrose was mostly stimulating to the N miners and may have

contributed to the higher PE levels observed, especially in the TB soil. This is

consistent with several studies using glucose or sucrose (Paterson and Sim,

2013; Nottingham et al., 2009; Hamer and Marschner, 2005).
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3.5 Conclusions

An incubation study over 19 days represents a snap shot relative to complex

soil processes continuing over millennia. Nonetheless, the results shed light on

the processes governing root-soil interactions on seasonal time-scales. Sucrose

additions stimulated consistently greater total soil respiration values across both

soils and yielded positive priming effects over the duration of the experiment.

Overall maize extract and sucrose both produced positive priming effects in

both soils. It appears that substrate quality contributed most to the magnitude

and direction of priming effects compared to the nature and properties of the

two soils. The microbial N mining theory may be more significant to explain the

SOM turnover dynamics observed in this experiment. Further research is

required on the mechanisms and effects of C supply in relation to microbial

community composition, substrate quality and soil fertility.
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The effects of plants and rhizodeposition onChapter 4:

soil carbon turnover in two contrasting soils

4.1 Introduction

In this chapter I discuss the effects of plant growth and root interactions with

microorganisms on soil C turnover. Compared to the incubation study reported

in the previous chapter, planted systems provide more realistic conditions since

they involve biological and physical interactions of roots, soil and the

environment. Photosynthesis by plants is thought to exert a controlling effect on

all plant processes including root-microbial interactions. Photosynthetic C is

synthesised into plant tissues, sugars and other soluble compounds within the

plant and up to 30% (Gregory, 2006) can be released into the soil as exudates

and detrital plant material. While detrital plant material is thought to increase

SOM and C storage, high energy C compounds in root exudates can accelerate

the mineralisation of stored soil C through rhizosphere priming effects (RPE). It

is desirable to have SOM function mostly as a store rather than a source of

CO2, as this can positively impact climate change by reducing atmospheric C.

However, the evidence for RPE and how they differ between different plant -

soil systems is equivocal.

A key methodological problem in studying RPE is the necessity to partition soil

respiration into its component soil and plant-derived parts. This is necessary in

order to quantify the effect of newly deposited plant C on existing soil C. The

natural abundance method takes advantage of differences in the C isotope

signature of C3 and C4 plant and soils, whether C3 soil with C4 plants or vice

versa. The δ13C of C3 respiration is typically ≤ 10 ‰ more negative than C4

respiration.

For the experiments reported in this chapter I used the C4 Kikuyu grass

(Pennisetum clandestinum) in pots containing soils from experiments discussed

in chapter 3 with a history of C3 vegetation. By following the δ13C of the net soil

CO2 efflux and knowing the δ13C of the plant and soil C sources in isolation, I

could infer the separate plant and soil C fluxes and the extent of RPE. I sought
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to vary the extent of rhizodeposition by clipping the grass leaves periodically.

This should have varied the net photosynthesis, root:shoot partitioning of

photosynthate and root exudation.

4.1.1 Objective

To investigate the role of plant-soil interactions on the turnover of soil C and

possible rhizosphere priming effects in two contrasting soils.

The following hypotheses were tested:

1. Clipping will cause differences in root to shoot partitioning.

2. Resulting differences in rhizosphere C inputs will produce different soil

turnover responses and priming effects.

3. The two soils will have different soil C turnover responses and priming

effects.
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4.2 Materials and methods

4.2.1 Experimental design

The clay loam (TB) and sandy loam (SH), the two soils used were described in

section 3.2.1. The experiment was conducted in a glasshouse located within the

compound of the Wolfson Field Lab at Cranfield University from May to July

2014.

A randomized block design was used with the two soils, the following three

treatments and four replicates:

a) Planted soil (with grass) and unclipped

b) Planted soil (with grass) and clipped weekly to 2 cm

c) Unplanted control with soil only.

A total of 40 pots were prepared, including 16 planted pots that were

destructively sampled at the midpoint of the experiment (31 DAP). The

treatments were arranged in a randomized block design. The harvested material

from clipping treatments was collected to determine dry matter production.

Total root and shoot dry matter was determined at the end of the experiment.

The soil CO2 efflux and its δ13C were measured periodically.

4.2.2 Preparation of pots and glasshouse operations

Sieved soils (> 6 mm) were moistened to 60% field capacity and packed into 30

cm long, 10.3 cm ID polyvinyl chloride (PVC) tubes to give 1.5 and 1.4 kg dry

weight per pot for TB and SH, respectively. The base of each pot was capped

with a weed block fabric to constrain root growth. Pots were fixed on table tops

2 m above a concrete floor. Seeds of Kikuyu grass (Pennisetum clandestinum)

were obtained from Barenbrug Holland B.V., Nijmegen, Netherlands. They were

sown 2-3 mm below the soil surface at a rate of 20 seeds per pot on May 16th

2014. Seeds were sown in a circular band approximately 3 cm from the edge of

the pots. This ensured that there were no seeds at the centre of the pot which

was reserved for the chamber headspace (next section) which was mounted

shortly after germination. One fertilizer application was made soon after
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germination with a water soluble NPK formulation (36-0-12 + trace elements;

Vitax, Leicester, UK) at 0.16 g per pot (226.5 Kg ha-1). Soil moisture was

maintained at 60% of field capacity by daily weighing and watering. A fan was

used to improve air circulation and to lower temperatures especially on hot

days. Average daily temperature in the glasshouse for the duration of the

experiment is given in Figure 4-1.
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Figure 4-1 Recorded average nightly and daily temperatures (Co) inside the

glasshouse during the experiment
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4.2.3 Soil respiration measurements

Soil respiration measurements were made from each pot using gastight head

space made of tubes permanently fixed in the soil. The tubes were 100 mm

long, 50 mm OD 46 mm ID lengths of PVC pipe (i.e. head space volume 166

cm3). The top end was fitted with a cap containing gastight inlet and outlet with

two way lock valves and luer lock fittings (Figure 4-2). The other end was

inserted 30 mm into the soil in the centre of the pots where there were no grass

seeds.

Before respiration measurements each chamber was connected to an infra-red

gas analyser (IRGA, LICOR-820, Lincoln NE, USA) in an arrangement similar to

the diagram in the previous chapter (Figure 3-4). Each headspace was flushed

with CO2-free air at approximately 1 L min-1 for two minutes. This was sufficient

to reduce the chamber CO2 concentration to ≤ 1 ppm. The chamber was left to 

incubate for 15 minutes which was sufficient to raise CO2 concentrations well

over ambient. 5 ml air samples were taken with a gastight syringe, four from the

Figure 4-2 Headspace chamber in planted pot showing gastight

inlet and outlet ports and luer lock valve
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headspace transferred to helium purged vials for analysis by IRMS as in

Chapter 3.

4.2.4 Calculating soil respiration rate

The soil respiration rate Rs (µmol CO2-C m-2 s-1), was determined from the

measured rate of change in CO2 concentration - C (μmol CO2 mol-1 air) in the

chamber headspace coming from the area of soil under the chamber - A (m2)

over a time interval t (min) given by:

Flux =
∆େ

∆௧
×




(4.1)

The chamber volume (in litres) was initially converted to moles (n) using

equation 4.2 derived from the ideal gas law (equation 4.1).

RT = nPV (4.2)

moles (n) =


ୖ
(4.3)

where R is the gas rate constant (0.80201
L-atm

mol K
), T is the temperature 273

Kelvin(K), V is the chamber volume (L), n is moles air and P is pressure 1

atmosphere (atm).

Hence Rs (µmol CO2-C m-2 s-1) was calculated as

Rୱ =
rେ�(ஜ୫ ୭୪�େమ�୫ ୭୪

షభ�ୟ୧୰)

r୲�(୫ ୧୬)
×

ୡ୦ୟ୫ ୠ ୰ୣ�୦ ୟୣୢ ୱ୮ୟୡୣ �(୫ ୭୪�ୟ୧୰)

ୱ୭୧୪�ୱ୳୰ୟୡୣ �ୟ୰ୣ ୟ�(୫ య)
×

୫ ୧୬

�ୱୣ ୡ
(4.4)

Vial preparation for sampling

Prior to sampling, vial caps were fitted with new septa and heated overnight at

105oC. This removed any volatiles capable of diminishing the integrity of the

samples. New unused vials were then tightly covered with the heat-treated caps

and evacuated for 25 sec. They were immediately purged with helium for

approximately 100 sec at a flow rate of approx. 60 ml min-1. Vials were used on

the day of purging.
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4.2.5 Partitioning of the soil CO2 flux

Plant end member isotope ratios were determined from freshly sampled plant

roots. Samples of soil-free and soil-attached roots of approximately 0.3 g and

0.5 g, respectively were placed in 12 ml vials and incubated for 20 minutes after

Midwood et al. (2006). At the end of the incubation a 5 ml sample of the vial

headspace was transferred to a helium-purged septum-capped 12 ml vial

followed by analysis by IRMS. Isotope ratio values were expressed as per

equation. 3.10 in Chapter 3.

A two end-member mixing model described in equations 3.11 and 3.12 was

used to determine the relative proportions of total soil respiration that were plant

and soil-derived.

4.2.6 Determining plant biomass

Sixteen pots representing four replicates from each treatment were destructively

sampled at 48 days after planting (DAP), this represented the midpoint of the

clipping period, which lasted 31 days. Similarly, at the end of the experiment at

62 DAP, the remaining 24 pots were destructively sampled. Gas chambers

were removed from each pot and any soil remaining in the chambers was

collected and later homogenised with the bulk soil. In planted pots, shoots were

cut at soil level, placed into paper bags and immediately oven-dried at 100oC for

24 hours to determine the shoot biomass. The pots were transferred to the lab

for further processing. The soil was emptied in a large tray and roots were

extracted by hand and shaken lightly to remove loosely-attached soil. The roots

were then thoroughly cleaned with water to remove soil material and then oven-

dried to determine the root biomass.

Soil analyses

At the end of the experiment soil samples were collected for determination of

microbial biomass, total C and N. Samples were also immediately frozen at -80

oC for 24 hours, then freeze dried for PLFA analysis.
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4.2.7 Statistics and data analyses

The software package Statistica version 12.5 (Statsoft Inc. Dell Inc. Aliso Viejo,

USA) was used for statistical analyses. Repeated measures ANOVA were used

to assess the variation in total soil CO2 efflux and its 13Cߜ between the two

treatments and controls in both soil types. One-way ANOVAs were used to

assess treatment effects on soil microbial biomass. Two-way ANOVAs were

used to determine the significance of clipping effects on the two soils. The

differences between means were analysed using post hoc Fisher least

significant difference (LSD).
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4.3 Results

4.3.1.1 Soil CO2 efflux without plants

The measured basal soil SOM-derived efflux of soil respiration, (RSOM) in

unplanted control treatments was relatively constant throughout the experiment

(Figure 4-3). The basal respiration was not statistically different in both soils.

The TB soil produced the lowest RSOM, 0.73 ± 0.27 µmol CO2-C m-2 soil s-1, at 34

DAP, and the highest mean RSOM, 2.36 ± 0.69 µmol CO2-C m-2 soil s-1, at 55

DAP.
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Figure 4-3 Comparison of basal soil respiration (RSOM) in unplanted control

treatments of TB and SH. Data are means and error bars indicate ±SEM.
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4.3.1.2 Effect of plants on the total soil CO2 efflux

The presence of unclipped plants significantly increased the total soil respiration

(RS) over RSOM measured in unplanted controls in both soil types (Figure 4-4).

The magnitude and time course of the RS increase differed between the two

soils. In the TB soil RS was significantly greater than in the unplanted control 27

DAP, whereas in the SH soil this only happened 39 DAP. The increased RS in

TB soil was 5.95 times basal respiration and in the SH soil it was 1.95 times

basal respiration.

Clipping commenced 31 DAP and had a dramatic effect on RS in both soils. In

the clipped SH soil treatment, the measured RS was not significantly different

from the basal soil respiration (Figure 4-4). The TB soil clipping treatments also

produced depressed RS values, these were generally greater than basal

respiration but the differences were only statistically significant at 27 and 48

DAP (Figure 4-4).

At 32 DAP one day after the first clipping event, RS in the TB soil decreased by

30 % and was further reduced by 48 % on the following day (Table 4-2). The

decrease was less dramatic in the SH soil where RS initially declined by 4 %,

one day after clipping and then declined by 55 % when measured two days

after clipping. Two days after the first clipping RS in all clipped treatments

irrespective of soil type was not significantly different from unplanted controls.

There was a resurgence in RS values in both soils 48 DAP with an increase of

80% and 138 % in the SH and TB soils respectively. This was exactly 10 days

after the previous clipping event (Table 4-1 Table 4-2).
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Figure 4-4 Soil respiration rates measured in two contrasting soils (a) SH - Sandy

loam and (b) TB - clay loam that were either planted with Kikuyu grass and clipped

weekly or remained unclipped, compared to unplanted controls. Data are means and

error bars indicate ±SE (n=4). Arrows show clipping dates for both soils
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Table 4-1 Clipping effects on mean RS (µmol CO2-C m-2 s-1) ± SE per pot in SH soils

and percentage changes relative to the timing of clipping events (DAP) and compared

to RS values in unclipped treatments.

Table 4-2 Clipping effects on mean RS (µmol CO2-C m-2 s-1) ± SE per pot in TB soils

and percentage changes relative to the timing of clipping events (DAP) and compared

to RS values in unclipped treatments.

Date of

clipping

event

(DAP)

Date RS

measured

(DAP)

SH unclipped

mean RS ± SE

% Change

in RS

SH clipped

mean RS ± SE

% Change

in RS

27 1.65 ± 0.17 2.15 ± 0.17

32 1.93 ± 0.40 17 2.05 ± 0.40 -4

34 1.31 ± 0.20 -32 0.93 ± 0.20 -55

39 2.44 ± 0.24 85 1.38 ± 0.24 49

41 2.42 ± 0.34 0 1.46 ± 0.34 6

48 5.91 ± 0.76 144 2.62 ± 0.76 80

49 55 9.42 ± 0.77 59 1.72 ± 0.77 -34

58 61 20.51 ± 2.0 118 1.65 ± 2.0 -4

31

38

Date of

clipping

event

(DAP)

Date RS

measured

(DAP)

TB unclipped

mean RS ± SE

% Change

in RS

TB clipped

mean RS ± SE

% Change

in RS

27 2.27 ± 0.17 2.84 ± 0.17

32 3.47 ± 0.40 53 1.99 ± 0.40 -30

34 4.07 ± 0.20 17 1.03 ± 0.20 -48

39 5.85 ± 0.24 44 1.55 ± 0.24 51

41 6.82 ± 0.34 17 1.42 ± 0.34 -9

48 10.55 ± 0.76 55 3.38 ± 0.76 138

49 55 9.43 ± 0.77 -11 2.14 ± 0.77 -37

58 61 9.58 ± 2.0 2 1.97 ± 2.0 -8

38

31
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4.3.1.3 The13ࢾ�C values of root and rhizosphere respiration

The mean 13Cࢾ values of root respiration obtained from freshly harvested soil-

free roots and that of roots with adhering rhizosphere soil were all within the

expected range for a C4 Kikuyu grassland system, -11 to -16‰, (Figure 4-5).

There were no significant differences (P=0.66) between the soils or clipping

treatments (Figure 4-5).

4.3.1.4 Measured 13Cࢾ of the soil CO2 efflux

The 13Cߜ values of the soil used for partitioning the soil efflux into its respective

C components differed significantly between soil types and clipping treatments

and over time (Figure 4-6). The adjusted mean 13Cߜ values of Rs in the planted

unclipped treatments were significantly greater than the control and clipped

treatments in both soils. Generally the 13Cߜ values in the planted and unclipped

treatments were more enriched (less negative) than the control and clipped

treatments. The differences were highly significant in the TB soil but not in the

SH soil (Figure 4-6).

Figure 4-5 Measured 13Cࢾ of (a) root and rhizosphere respiration and (b) root

respiration, determined from fresh kikuyu grass roots grown in SH and TB soils with

two clipping treatments. Data are means ±SE of mean (n=4)
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Figure 4-6 The 13Cࢾ of Rs measured from planted (clipped and unclipped) and unplanted

control pots with (a) SH soils and (b) TB soils Data are means ± SE (n=4), Arrows show

clipping dates.
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4.3.1.5 Calculated treatment effects on SOM turnover

Figure 4-7 shows the soil CO2 efflux data from Figure 4-4 partitioned according

to SOM and root-derived components. Turnover of SOM was stimulated in the

unclipped treatments in both soils and the effect increased with time and greater

plant biomass. In the SH soil SOM turnover increased 1.61-fold 48 DAP. In the

TB soil the increase occurred 12 days earlier at 34 DAP and was 2.22-fold. At

the end of the experiment (61 DAP) the increases were 6.9 and 3.3-fold in the

TB and SH soils, respectively (Figure 4-7).

There was no stimulation of SOM turnover in the SH clipped treatment. In the

TB soil, clipped treatments stimulated SOM turnover which was apparent

throughout the clipping period but was not significant (Figure 4-7).
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Figure 4-7 The partitioning of the soil CO2-C efflux (Rs) into its soil-derived (RSOM), root-derived (Rroot) components compared to the

basal soil treatment from unplanted controls in following treatments: SH soil unclipped (a) and clipped (b) and the TB soil unclipped (c)

and clipped (d). Data are means ±SE (n=4).
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The plant contribution to the total soil CO2 efflux increased gradually with time in

the unclipped treatments in both soils. The pattern of increase was different in

the two soils with TB unclipped plants making an earlier significant contribution

to RS 22 DAP compared to 34 DAP in the SH soil. Related measurements

began only 22 DAP, hence it is possible that the plant contribution to RS in the

TB unclipped could have started earlier. The overall plant contribution to RS in

the TB unclipped was 44.5% greater than the plant contribution to the SH

unclipped treatment. However the single highest plant contribution, 9 µmol CO2-

C m-2 s-1, was recorded in the SH unclipped treatment on the final sampling day,

61 DAP.
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4.3.1.6 Rhizosphere priming effects

Unclipped planted treatments

Figure 4-8 shows the priming effects calculated from the results in Figure 4-7.

Unclipped treatments in both soils produced positive priming effects. The

amount of primed C significantly increased with time in both soils. The greatest

priming effect, an additional 9.76 ± 1.66 µmol CO2-C m-2 s-1 occurred in the SH

soil. Overall the TB soils consistently produced greater priming effects than the

SH soils, except at 61 DAP.

Figure 4-8 Total primed CO2 – C from clipped and unclipped treatments in (a) SH

soils and (b) TB soils. Data are means ± SE, (n=4). Arrows show clipping dates.
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The clipping effect on priming

Clipping produced relatively weak priming effects in both soils. Four of the nine

measurements made in the SH soil produced negative priming effects, while all

measurements from clipping treatments in the TB soil produced positive priming

effects (Figure 4-8). There was no significant priming in the clipping treatments

in either soil. The timing of measurements after a clipping event 1, 2, 3 or 5

days did not significantly affect the intensity or direction of priming in both soils.

4.3.1.7 Treatment effects on plant biomass production

The treatment effects on plant biomass were measured by destructive sampling

at 48 DAP and at the end of the experiment (62 DAP). Figures 4-9 and 4-10 and

Tables 4-3 and 4-4 show the results.

Midpoint evaluation

At the midpoint evaluation shoot and root dry matter produced from the

unclipped grass treatment in the TB soil was significantly greater (P<0.001)

than in the unclipped treatment in the SH soil (Figure 4-9 and Table 4-3).

Generally the clipped treatments in the TB soils produced greater shoot and

root dry matter compared to SH soils, however there were no significant

differences in shoot and root dry matter in TB clipped treatments, unclipped

grass in SH soil and that of the clipped grass in the SH soils.
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End point evaluation

At the end of the experiment the unclipped grass in the TB soil had

accumulated the greatest plant biomass (P<0.01) with mean shoot and root

biomass of 3368 ± 119 g m-2 and 4069 ± 347 kg g m-2, respectively (Table 4-3).

The unclipped treatment in the SH soil followed with shoot and root biomass of

2,887 ± 152 g m-2 and 1,370 ± 178 g m-2, respectively (Figure 4-10 and Table

4-3). On comparison of the two destructive sampling events at 48 and 62 DAP,

plant biomass accumulation was apparently greater in the SH unclipped

treatment, where root and shoot biomass increased 50 and 20-fold,

respectively. Overall biomass production was significantly decreased in the

clipped plants in both soils. The TB clipped treatment produced significantly

Figure 4-9 Total plant biomass production partitioned into shoots and roots, retrieved

from the indicated treatments 48 DAP. Columns represent mean dry matter per pot

expressed as g m-2 and error bars indicate SE, (n=4).
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greater shoot biomass than the SH clipped. However there was no significant

difference in root biomass between the soils. Considering the total biomass,

there was significant difference between all treatments in the order TB

unclipped > SH unclipped > TB clipped > SH clipped. Comparing the effect of

time and clipping on shoot to root partitioning, in both soils the root to shoot

ratios in the clipped treatments decreased significantly while they increased

significantly in the unclipped treatments.

Figure 4-10 Total plant biomass partitioned into shoot and root components retrieved

from destructively harvested pots from all planted treatments at the end of the

experiment. Columns represent mean dry matter per pot expressed as g m-2 and error

bars indicate SE (n=4).
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Table 4-3 Root (rt) and shoot (sht) dry matter (DM) partitioning and total DM per pot for the respective

treatments in SH and TB soils measured from destructive sampling at 48 and 62 DAP data are means ±

SEM, (n=4).

Sht DM (g) Rt DM (g) Rt:sht ratio Total DM Sht DM (g) Rt DM (g)
Rt:sht

ratio
Total DM

SH Clipped 0.43 ± 0.10 0.23 ± 0.04 0.65 ± 0.21 0.66 ± 0.10 1.56 ± 0.41 0.17 ± 0.07 0.10 ± 0.02 1.73 ± 0.48

SH Unclipped 1.13 ± 0.69 0.23 ± 0.12 0.23 ± 0.03 1.35 ± 0.81 24.04 ± 1.27 11.42 ± 1.48 0.47 ± 0.04 35.46 ± 2.68

TB Clipped 0.77 ± 0.13 0.31 ± 0.07 0.46 ± 0.21 1.07 ± 0.07 7.25 ± 0.20 1.34 ± 0.20 0.18 ± 0.02 8.59 ± 0.38

TB Unclipped 10.79 ± 1.27 5.31 ± 0.92 0.48 ± 0.03 16.10 ± 2.18 28.05 ± 0.99 33.89 ± 2.89 1.21 ± 0.08 61.94 ± 3.62

48 DAP 62 DAP

Soil Treatment
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Table 4-4 The relative changes in root (rt) and shoot (sht) dry matter (DM) production

from 48 to 62 DAP.

4.3.1.8 Soil microbial biomass C

Table 4-5 provides results of soil microbial biomass C measurements

determined from soil samples collected at the end of the experiment. The

treatments did not induce any significant change to the size of the microbial

biomass in either soil. Microbial biomass in the TB soil was at least 6 times

greater than in the SH soil.

SH Clipped -26 266 164

SH Unclipped 4974 2037 2527

TB Clipped 336 847 701

TB Unclipped 538 160 285

Total

DM

% ∆ rt 

DM

% ∆ sht 

DM
Soil Treatment

Treatment

Microbial

Biomass C

(µg g
-1

)

SH clipped 382 ± 38

SH unclipped 400 ± 26

SH control 316 ± 75

TB clipped 2230 ± 57

TB unclipped 2178 ± 52

TB control 2235 ± 58

Table 4-5 Microbial biomass C (µg g-1) of soil samples from planted pots and unplanted

controls measured at the end of the experiment. Data are means ± SE, (n=4).
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4.3.1.9 Nitrogen balance calculations

Typically N concentrations in productive pasture at low to high rates of N range

from 2.5 to 5% of plant dry matter. Moir et al. (2013) studied N uptake in 13

temperate grass species in response to N rates (0 – 700 kg N ha-1) and found N

concentrations in shoots ranged from 2.47 to 4.55% N. Nitrogen concentrations

in grass stubble and roots were generally 50% lower. Vellinga et al. (2010)

demonstrated that different soil characteristics, well or poorly-drained and high

sand or clay content did not affect N uptake or dry matter yield. I hypothesise

that in this experiment N concentration in both soils was similar and

concentrations in shoots and roots should be at least 2.5 and 1.25% N,

respectively. Nitrogen leaching losses were negligible in this experiment as all

applied water was contained within pots. Total soil N uptake by plants is inferred

from Equation 4.5. Equations 4.6 and 4.7 provide the basis for calculating total

plant-N uptake and the fertilizer-N percentage of total plant-N uptake.

Nitrogen balance for planted pots with SH an TB soils

Total soil N uptake = Total N uptake − Fertilizer N (4.5)

Fertilizer N share (%)

Fertilizer N share (%) =
 ୰ୣ୲୧୪୧ୣ ୰�

୭୲ୟ୪�ୱ୭୧୪��୳୮୲ୟ୩ୣ
× 100 (4.6)

Total plant N uptake

Total plant N uptake = (Shoot biomass × Nୱ%) + (Root biomass × N୰%) (4.7)

Ns = 2.5% =N concentration in shoots; Nr = 1.25% =N concentration in roots

Table 4-6 shows that total plant N-uptake was significantly different in the

treatments in the order TB unclipped>SH unclipped>TB clipped>SH clipped.

The total plant N-uptake per pot in the SH unclipped and TB clipped and

unclipped treatments surpassed the amount of added fertilizer-N. However N

demand in the SH clipped treatment remained very low and did not exhaust the

applied fertilizer-N. The unclipped treatments in both soils had the greatest N-

demand, which was fulfilled largely from the soil. The soil-N contribution was 6
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and nearly 4-times greater than fertilizer-N, in the TB and SH unclipped

treatments, respectively (Table 4-7).

Table 4-6 Dry matter and N uptake by shoots and roots data are means per pot ± SE,

(n=4).

Shoot dry

matter (g)

Root dry

matter (g)

Shoot N

uptake (mg)

Root N

uptake (mg)

Total plant N

uptake (mg)

SH clipped 1.6 ± 0.41 0.17 ± 0.07 39 ± 10.1 2 ± 0.99 41 ± 11.0

SH unclipped 24.04 ± 1.27 11.42 ± 1.48 601 ± 31.7 143 ± 18.5 744 ± 49.0

TB clipped 7.25 ± 0.20 1.34 ± 0.20 181 ± 5.0 17 ± 2.5 198 ± 7.2

TB unclipped 28.05 ± 0.99 34 ± 2.89 701 ± 24.7 424 ± 36.1 1124 ± 55.6

Dry matter yield (g/pot) N Uptake (mg/pot)

Treatment

Treatment
Fertilizer N

(mg)

Soil N

uptake (mg)

% Diff.

(Nsoil - Nfert)

Fertilizer N

share (%)

SH clipped 160 -119 -74 389

SH unclipped 160 584 365 22

TB clipped 160 38 24 81

TB unclipped 160 965 603 14

Table 4-7 Utilisation of fertilizer-N applied just after germination in planted pots with

SH and TB soils.
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4.4 Discussion

The influence of plants and clipping on soil respiration (RS)

The results showed clear differences in the extent and pattern of RS between

treatments and soil types. At the first measurement and prior to clipping, 22

DAP, Rs in all planted treatments was dominated by soil-derived C in both soils

with negligible plant-derived contributions. There was no significant difference

between Rs and basal soil respiration from unplanted controls. As plants grew,

the relative contributions of plant-derived C increased primarily in the unclipped

treatments in both soils. This was more acute in the unclipped TB soil, which

initially supported plant growth much better than SH (Figures 4-9 and 4-10). The

data indicated a positive relationship between plant biomass (shoot and root)

and Rs over time. The observed plant influence on increasing RS is consistent

with the results of similar studies (Thurgood et al., 2014; Uchida et al., 2011)

and entirely expected when root biomass is increasing, thus generating more

root respiration. It is likely that greater shoot and root production in the TB soil

allowed both greater C fixation through photosynthesis and greater rhizosphere

(surface area) deposition, respectively. This would contribute to the different

responses observed between the soils. The N balance calculations presented

earlier showed the N fertilizer consumption correlated positively with plant

biomass and was completely consumed in all treatments except the SH clipped

treatment. The applied fertilizer apparently did not produce any measurable

effect on Rs in the treatments. This is supported by the fact that the respective

RS in the control treatments of both soils and the SH clipped treatment

remained relatively unchanged throughout the experiment (Figure 4-3 and

Figure 4-4). Generally, there was a trend of increasing RS values in both soils

except for one occasion in either soil type when declining RS values were

observed, 34 and 55 DAP in the SH and TB soils, respectively (Table 4-1).

Although the experimental design sought to minimise soil moisture differences

by periodic watering to constant weight, it is possible that differences in soil

properties and plant biomass production may have at times led to moisture

differences between soils and treatments.
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Overall clipping significantly reduced Rs in both soils compared to unclipped

treatments. In response to the first clipping 31 DAP there was a comparable

drop in mean RS of 48 and 55% in TB and SH, respectively, two days after

clipping. The effect seemed to occur gradually, since one day after that clipping

event mean RS had only declined by 17 and 4%, in TB and SH, respectively.

The magnitude of RS reduction within two days was lower than 65% reported by

Shahzad et al. (2012) for clipped Lolium perenne over the same period.

However, Hamilton et al. (2008) reported that clipping events were

accompanied by a flush of root exudation that caused increased RS, microbial

activity and RPE. If RS increased following clipping in this experiment, it would

only be a transient effect, under 24 hours after clipping. This could have

possibly contributed to the gradual decline in RS observed. An important aspect

of this study was to quantify the effect of plants and clipping on the

mineralisation of existing SOM-derived C, rhizosphere priming effects.

Plant effects on the SOM mineralisation – rhizosphere priming effects

Planted treatments produced significantly greater levels of SOM mineralisation

compared to unplanted controls in both soils (Figure 4-7). From 34 to 61 DAP

the intensity of rhizosphere priming effects (RPE) ranged from 7 to 590% in SH

and 122 to 235% in TB soil. The results are consistent with the results

summarised in a review by Cheng et al. (2014), with the exception of the final

measurement 61 DAP in the SH soil, which was unusually high. It was

explained earlier in (Section 1.2.1.2) that RPE can be either (a) apparent -

where an observed increase in RSOM is caused mostly by turnover of microbial

biomass or (b) real - where the increased RSOM is caused primarily by enhanced

turnover of stored soil C. The extent of real or apparent priming is usually

confirmed by determining the isotope ratio of microbial biomass C after

extraction by chloroform fumigation (Garcia-Pausas and Paterson, 2011). This

is used to determine the relative proportions of the plant or SOM-derived

components that make up the soil biomass (Paterson and Sim, 2013). Higher

plant-derived proportions relative to SOM would indicate that microbial biomass
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turnover was predominant and therefore apparent priming effects occurred.

However, if the soil microbial biomass contained isotope ratios indicating that it

was composed primarily of SOM, this would indicate that SOM mineralisation

was the predominant process and therefore real priming effects had occurred. I

was not able to make these analyses due to time constraints. However, the

consistent increase in ROM in the unclipped treatments is not characteristic of

apparent PE, as progressive microbial biomass turnover rather the SOM

decomposition would result in declining contributions of soil-derived C to soil

respiration as microbial biomass became more plant-derived. The size of the

microbial measured biomass at the end of the experiment, using the chloroform

fumigation technique, showed that the size of microbial biomass was not

significantly different across all treatments (Table 4-5). This was consistent with

the findings of Tanvir et al. (2015) who assessed changes in the microbial

biomass of soils from a 55-day experiment with three grass species compared

to unplanted controls. They found that the size of the microbial biomass

remained unchanged in the planted soil compared to unplanted controls and

that the composition of the soil microbial biomass remained predominantly of

SOM origin, indicating real priming effects. Based on the results shown in Table

4-5 above, there is evidence that the rhizosphere priming effects observed were

real and reflected loss of pre-existing C from both soils as depicted in Figure 4-8

However, it was interesting to observe that the soils might have responded

differently with respect to changes in the size of the soil microbial biomass.

Clipping effects and related changes in rhizodeposition

Rhizodeposition derived from fixed C during photosynthesis is considered a

primary driver of SOM mineralisation and RPE in planted systems (Cheng et al.,

2014). Plant biomass and the plant-derived component of RS are recognised

proxies for root exudation and photosynthesis (Bahn et al., 2009). The different

clipping regimes and variable soil types used in this experiment were designed

to produced variations in photosynthesis and thereby alter the rate and volume

of root exudation and root turnover. The observed consequential effects on

SOM mineralisation was expected to provide an improved understanding of the
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mechanisms driving the processes involved. Clipping reduced plant biomass

and importantly leaf area for photosynthesis and was associated with

significantly lower root biomass. This is consistent with several previous studies

summarised by Ferraro and Oesterheld (2002). The contribution of plant-

derived C to RS was either significantly reduced in the TB soils or negligible in

SH soils for all clipped treatments. This agrees with Shahzad et al., (2012) who

reported reduced SOM mineralisation in response to clipping. However their

plants were grown for 190 days before a single experimental clipping with

measurements 1 and 30 days after. They found that clipping produced much

less drastic reductions in SOM mineralisation than I measured here.

In this experiment, soil type contributed to the variable clipping effect on SOM

but the timing and frequency of clipping events were likely to be significant.

Plants were clipped at four times at 7, 11, 7, and 4-day intervals and flux

measurements taken 1, 2, 4 and 5 days after clipping. Based on the resolution

of the dataset gathered and especially previous work assessing C partitioning in

response to clipping (Kuzyakov, 2002; Schmitt et al., 2013) and specifically in

Kikuyu grass (Roper et al., 2013), I inferred that root exudation and the

measured plant-derived C component of SOM mineralisation had similar

patterns of flow and magnitude.

The SH soils appeared to severely limit early plant growth compared to the TB

soil. These limitations apparently restricted the regeneration process, after

clipping events recovery in the TB soils was always faster. Clipping reduced the

available labile C for energising the microbial community into SOM

mineralisation and thus the nutrient limitations were not satisfied. Clipping

changed the C partitioning within plants as clipped plants allocated more

resources to regrowth. This is supported by a significant reduction in root to

shoot ratio in response to successive clipping events from 48 to 62 DAP (Table

4-3). Compared to the clipped plants the root to shoot ratio in the unclipped

treatments increased significantly over the same period indicating a greater

allocation of C resources belowground which related to greater SOM

mineralisation in both soils.
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Interactions of plant and soil processes driving RPE

While RPE on SOM mineralisation is commonly demonstrated, the mechanisms

driving this effect are not well understood (Cheng et al., 2014; Zhu et al., 2014).

This study provides additional evidence supporting the microbial activation

hypothesis and relevance of plant N demand as potential mechanisms

underlying RPE. The results show a gradual increase in microbial activity that is

consistent with the increase in plant biomass and increasing levels of

rhizodeposits. This trend is consistent for the unclipped treatments in both soils.

With the exception of a one off N application that would be consumed shortly

after germination, all the resources required for plant growth were acquired from

the soil. For all intents and purposes both soils were resource poor and

especially N limited. The growing plants increasingly partitioned more resources

below ground for root production, thus rhizodeposits would have increased.

Consequently, energised microbes were able to mineralise SOM to release

stored nutrients with potential for greater plant development. This process

occurred faster in the TB soil possibly because it initially contained a microbial

community better adapted and able to quickly decompose SOM in that soil. This

is supported by the pattern of SOM decomposition in the microcosm study

reported in the previous chapter and PLFA studies conducted on these soils

confirmed that their microbial community phenotypes were distinctly different

(Chapter 5). The SH soil was inherently acidic and sandy (82%) with less stable

aggregates for occluding nutrients compared to TB. Apart from having a

reduced overall nutrient supply it is possible that its low inherent pH (4.4) may

have contributed to chemical bounding nutrients that could be otherwise

available. These hurdles contributed to the late surge in biomass production

and dramatic rise in RPE and SOM mineralisation in SH. The results depict the

synchronised communication and alignment of plant requirements and

processes (photosynthesis and rhizodeposition) with microbial support to mine

existing soil resources for nutrients.
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4.5 Conclusion

The study demonstrated that the presence of plants in a soil system is not

necessarily sufficient to stimulate SOM turnover and priming effects. The plants

must develop a certain productive capacity before these processes can set in.

When left unclipped, plants generated sufficient root biomass to thoroughly

colonise the soil. As plant biomass developed, the rate of photosynthesis and

rhizodeposition increased and this stimulated greater plant demand for N and

other nutrients. Rhizodeposits provided energy for the soil microbial biomass

which allowed greater SOM mineralisation to most likely meet plant nutrient

requirements. Soil type, growing conditions and management will influence the

rate and intensity of RPE but not the direction. This study indicates the

possibility for generating greater value from similar research efforts if soil

nutrient dynamics are considered rather than the primary focus on soil carbon

turnover with respect to climate change. It is important to understand these

processes in relation to (a) the effects of increased atmospheric CO2 and

climate change on soil C turnover, and (b) agronomic management and plant

breeding efforts for manipulating soil C and nutrient fluxes and enhancing

nutrient use efficiency.
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An assessment of an automated fieldChapter 5:

system for measuring NEE, plant and soil respiration

and their dependence on key drivers

5.1 Introduction

In this Chapter I test an automated lysimeter system for measuring net

ecosystem exchange (NEE) and plant and soil respiration (Reco), and the

sensitivities of these to diurnal and seasonal changes in soil temperature and

moisture and photosynthesis.

The system I used is the Wolfson Field Laboratory (WFL) at Cranfield

University. The WFL comprises 24 lysimeters containing intact soil monoliths

and fitted with automated closing chambers for measuring gas fluxes (CO2, CH4

and N2O) and their isotope composition near-continuously. The lysimeters

contain two soil types (12 replicates of each): an infertile sandy loam (SH) and a

more-fertile clay loam (TB). The soils are the same as the ones used for the

incubation and glasshouse experiments reported in Chapters 3 and 4. Their

main properties are given in Chapter 3.

The study was conducted over five months from May to September 2014.

Periodic measurements of NEE were made in chambers with transparent lids,

and of Reco in chambers with opaque lids. Simultaneously, depth-resolved

measurements of soil temperature and moisture were made in each lysimeter.

Light energy, rainfall, ambient temperature and relative humidity were also

continuously measured at the site. Multiple regression analysis was used to

determine the extent to which the soil temperature and moisture and

photoperiod – as a proxy for photosynthesis – contributed to the observed

patterns of Reco and NEE.

My original intention was to measure the δ13C of the CO2 efflux from plants and

soil, so as to separate the flux into plant- and soil-derived components.

However, the state of development of the isotope measurement system in the

WFL at the time I made my study was such that this was not possible.
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5.1.1 Research objective

The broad objective was to evaluate the WFL for measuring Reco and NEE and

their sensitivities to environmental drivers. To this end I tested the following

specific hypotheses:

1. The WFL system can reliably measure Reco and NEE so as to evaluate

their relationships with key drivers (soil temperature and moisture, solar

radiation and day length).

2. The system can accurately measure short-term changes in soil moisture

and temperature and photosynthesis.

3. Short-term changes in soil moisture and temperature are different in the

two soils.

4. Plant and soil respiration rates have different sensitivities to changes in

soil moisture and temperature in the two soils.

5. Carbon balance estimates based on NEE fluxes match C stock inventory

changes (principally from harvested dry matter).
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5.2 Materials and methods

5.2.1 The Wolfson Field Laboratory

The experiment was performed between 10 April 2014 and 09 September 2014

at the Wolfson Field Laboratory (WFL) at Cranfield University. The WFL was

constructed three years before the start of the experiment. It comprises a set of

24 lysimeters (0.8-m diameter and 1-m deep) containing intact soil monoliths,

12 each of the two soils described in Chapter 3. The lysimeters were buried so

the soil level is flush with the surrounding soil. Each lysimeter was fitted with soil

moisture and temperature sensors (Delta-T SM 300) at depths of 60, 120, 250

and 500 mm, connected to data loggers. Measurements were recorded every

30 minutes.

Each lysimeter is fitted with a gas flux chamber, with cylindrical walls and

pneumatically-operated lids, made of 10-mm thick clear acrylic plastic

(Perspex). The lid makes a gas-tight seal with the cylinder wall when closed,

and contains a 5-cm diameter vent valve which closes a few seconds after the

lid to dampen pressure changes. The chamber walls are 20 cm high, so the

height of the lid above the soil surface is 26 cm and the chamber volume is

approximately 130 L. Gases accumulating when the lids are closed are passed

through a continuous sampling loop to an infrared gas analyser (IRGA; a Licor

LI-840A), and an isotope ratio mass spectrometer (IRMS; a Sercon 20-22)

housed in an instrument building (Figure 5-1). The flow through the sampling

loop is at 10 L min-1. The opening and closing of the chamber lids and the

switching of valves in the sample loops directing the air flow is controlled by the

IRMS software (Sercon Callisto), such that the chambers can be sampled in

any sequence with pre-set times for the lids closing and opening.

There is a complete weather station at the WFL site, containing a Vaisala

WXT520 weather transmitter for wind speed and direction, precipitation,

atmospheric pressure, temperature and relative humidity and Delta-T ES2

energy flux sensors for solar radiation. During the experiment this data was

measured at five-minute intervals and accumulated on data loggers along with
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the soil moisture and temperature data from the lysimeters, and periodically

transferred to web-accessible servers.

Figure 5-1 Plan of the Wolfson Field Lab site at Cranfield University.
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5.2.2 Experimental design

A randomised block design was used for the experiment comprising four blocks

of transparent and opaque chamber lids and three replicates each of the two

soils, for a total of 24 lysimeters (Figure 5-2).

Figure 5-2 Layout of lysimeters in the Wolfson Field Laboratory, indicating soil type

and arrangement of opaque and transparent chamber lids. The blue lines represent the

gas sampling loops connecting individual chambers to the IRGA and IRMS in the

instrument building.

5.2.3 Gas flux measurements

Since the lysimeters were continuously covered with grass, it was only possible

to measure combined soil and plant-derived CO2 fluxes. To measure plant and

soil respiration (Reco) and net ecosystem exchange (NEE), half of the chamber

lids (six of each soil type) were covered with a reflective aluminium bubble

insulation foil material (Multifoil Limited, Exeter, UK) making them opaque, and

so preventing photosynthesis when the lids were closed. The other 12 lids were

left transparent. The walls of both sets of chambers were covered with foil so

that the grass in both sets of chambers had the same light regimes when the

lids were open. Soil CO2 flux measurements in opaque and transparent

chambers allowed for disaggregation of the NEE flux into ecosystem C uptake

(photosynthesis) and Reco.
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Flux rates were calculated from the linear increases in CO2 concentration in the

chambers over 2 min during a 15-min lid-closure period. Based on observed

equilibration rates in the chambers, data from the first 5 min following lid closure

was discarded, and fluxes calculated from data captured during the 5th to 7th

minute after lid closure. The fluxes were then calculated as described in Section

4.2.4. Correlations of concentration vs time (sec) were conducted to ensure

linearity of the concentration change over the selected measurement period (5-

7 min). Another 2 min section of the sample period was chosen if the correlation

values were less than 0.95

The sequence of lid closures and openings was randomized using the Callisto

IRMS software (as described in Chapter 2). A batch of 24 lysimeters was

sampled in approximately 7 h. On average, seven batches were completed in a

single sampling event, which lasted approximately 48 h.

The actual time course of lid closure and opening was recorded with the Callisto

software, whereas the time course of CO2 concentration measurements was

recorded with the Licor IRGA software. It was therefore necessary to

synchronise them on a common time-scale, and this was done with a program

written in Microsoft Excel VBA software. The environmental data (soil

temperature and moisture, and weather) were also synchronised using this

program. The sampling order within any batch of the 24 was randomized to

prevent any bias. Hence any given lysimeter could be sampled at any time of

the day. This meant that the interval between measurements for Reco and NEE

in the respective soils was variable, ranging from 0.3 to 3.75 h.

5.2.3.1 Solar radiation and photosynthesis

Solar radiation as light energy (kW m-2) was recorded every 5 min. The day

length was calculated as time interval between the first and the last recorded

light measurement on a particular day. The calculated instantaneous flux

measurement per lysimeter at the 6th minute after lid closure was matched with

the nearest light measurement (within 3 min). This represented the light

intensity associated with the particular flux measurement. The minimum

recorded light measurement of 0.01 kW m-2 was deemed to have wavelengths
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within the photosynthetically active range and therefore consistent with

photosynthesis.

5.2.3.2 Estimating photosynthesis

Photosynthesis C uptake or net primary productivity (NPP) was initially

estimated for each soil using the global means of all efflux measurements

(during the day) from opaque chambers (Reco) less the actual measured efflux

from the transparent chambers (NEE).

Estimated NPP = Mean (All Reco) – NEE (5.1)

The estimated NPP values were then compared with the light measurements

associated with the respective NEE efflux using linear regression analysis.

Strong relationships would provide a suitable model for predicting

photosynthesis based on light measurements.

NPP was also estimated on a daily basis. For a particular day, flux

measurements from the opaque chambers were used to determine the mean

ecosystem respiration in the two soils. Flux measurements from transparent

chambers representing the NEE were subtracted from the mean ecosystem

respiration to determine the estimated NPP.

Estimated NPP = Mean (daily Reco) – NEE (5.2)

The estimated NPP was then plotted against the associated light intensity to

determine the extent of correlations between NPP and light for the respective

soils. These relationships were used to generate models using light data to

estimate photosynthesis in the lysimeters. High quality models would allow for

estimating NPP values over the experiment, May to September 2014 and to

draw comparison with dry matter harvested from the lysimeters over the period

in order to establish a soil carbon balance for the WFL system.

5.2.4 Measuring and modelling the influence of key drivers

Soil moisture and temperature measurements were made every 30 min and

recorded over the duration of the experiment. Reliable measurements of soil

temperature at depths of 60 mm and 120 mm, along with soil moisture
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measurements at 250 mm, were used to evaluate patterns of temperature and

moisture changes in both soils and the respective sensitivities of their Reco to

moisture and temperature changes. The Reco measurements were matched to

the corresponding or nearest records (within 5 to 15 min) of soil moisture and

temperature, solar radiation and day length. Linear regression models were

used to predict Reco and NEE for the entire season.

5.2.5 Harvesting and processing dry matter

Grass from the lysimeters was harvested on four dates: 09/04/14, 29/05/14,

09/07/14 and 24/09/14. The last three harvests were used to calculate plant

growth and C accumulation during the experiment. All material was collected,

oven dried at 60 - 70 oC for 48 h and weighed to determine the net primary

production during the experiment. The grass samples collected were analysed

for total C and N. The results were used to determine the quantity of C removed

from the lysimeter systems over the season.

5.2.6 Soil sampling and analyses

I took samples from each of the lysimeters to assess the soil properties. The

soil processes related to soil CO2 efflux are mediated by the soil microbes

(Nannipieri et al., 2003). I therefore assessed the microbial community profiles

of the two soils, as well as their basic soil properties.

Soil samples were collected from each lysimeter using a corer made from a

single stainless-steel tine (9 mm OD) used for turf aeration. The corer had to be

small enough to fit between the lattice of heating cables embedded in the top 1

cm of the lysimeter soils, and to minimise disturbance to the lysimeter soil

system. Six sub-samples were taken from each lysimeter at the points shown in

Figure 5-3. The collected samples were homogenised and sieved at 2 mm to

remove debris and plant material and then separated into portions for chemical

and microbial analysis. Samples for microbial analysis were stored in plastic

zip-lock bags and frozen at 80oC for 24 hours and then freeze-dried until ready

for analysis. The other samples were air-dried and stored until processing.
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Figure 5-3 Depiction of the surface of a lysimeter showing the points used for soil

sampling. The grey lines indicate heating cables embedded 1 cm below the soil

surface, which had to be avoided.

5.2.6.1 Laboratory analyses

Phospholipid fatty acid (PLFA) extraction and analysis was used to investigate

differences between microbial community profiles in the two soils, as described

by Bligh and Dyer (1959) and as modified by White et al. (1979) and used by

Bardgett et al. (1996). The samples were processed as described in Chapter 2.

5.2.7 Lysimeter carbon budget calculations

The dried plant material samples were finely ground and analysed for total C

using an elemental analyser, (Vario EL III, Elementar Analysensysteme, Hanau,

Germany). Mean total dry weight of the sample was 34 ± 4 mg.
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5.2.8 Statistical analysis

Statistical analyses were carried out using Statistica version 12.5 (Statsoft Inc.

Dell Inc. Aliso Viejo, USA). Initially, analysis of covariance (ANCOVA) was used

to establish whether there were statistically significant differences in variates

between the soils. Multiple linear regression analysis was then used to generate

a model for fitting the data for each soil type. One-way ANOVA was used to

assess differences between night and day time fluxes and the consistency of

NEE estimates. Two-way ANOVA was used to assess differences in flux

measurements from replicate lysimeters in the two soils.

5.3 Results

5.3.1 Respiration measurements

Figure 5.4 shows the measured daily Reco in the two soils over the

measurement period (17 May to 8 September 2014). The gas flux chamber

system at the WFL provided measurements of both soil Reco and NEE that

allowed for the study and analysis of relationships with their key drivers over

diurnal cycles. Soil ecosystem respiration was significantly greater (p<0.0001) in

the more fertile clay loam (TB) soil compared to the infertile sandy (SH) soil.

The greatest daily mean Reco of 7.24 µmol CO2-C m-2 s-1 was measured in the

TB soil on May 18th, while the lowest of 2.45 µmol CO2-C m-2 s-1 in the SH soil

on September 8th. Peak Reco appeared to have coincided with the period of

maximum soil moisture content.

Figures 5.5 and 5.6 compare night- and day-time Reco measurements in the two

soils. Overall there was no significant diurnal difference in measured Reco from

opaque chambers in both soils (insets in Figs 5.5 and 5.6). However, this did

not hold on every sampling day. Significant diurnal differences were observed

for May 18th, 23rd, 25th June 20th, 28th, 29th and September 8th in the TB soil

(Figure 5-5) and similarly during June 29th, July 12th and August 31st in the SH

soil (Figure 5-6). At these points Reco was significantly greater during the day

than the night.
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There were no significant differences in the measured NEE in the two soils

(Figure 5-7). The NEE was sensitive to changes in the incident light during the

daytime (Figure 5.7). Variable cloud cover during the day contributed to rapid

and frequent short-term changes in light intensity during the experiment.

Figure 5-4 Mean daily Reco measured in the opaque lysimeter chambers with SH and

TB soils. Points show means of the six replicate chambers per soil (the actual number

of measurements per day was randomly varied) and bars indicate standard errors.
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Figure 5-5 Comparison of night- and day-time Reco measurements in lysimeter

chambers with transparent lids and the sandy loam (SH) soil. Points show means of

the six replicates (the actual number of measurements per day was randomly varied)

and bars indicate standard errors. Columns in the inset graph show overall means and

bars indicate standard errors. Both graphs have the same y-axis.
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Figure 5-6 Comparison of night- and day-time Reco measurements in lysimeter

chambers with transparent lids and the clay loam (TB) soil. Points are daily means for

measurements from six replicate chambers (the actual number of measurements per

day was randomly varied) and bars show standard errors. Columns in the inset graph

show overall means and bars indicate standard errors. Both graphs have the same y-

axis.
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Figure 5-7 Measured NEE in opaque chambers with TB and SH soils and the

corresponding solar radiation. Data points are daily mean NEE for six replicate

chambers (the actual number of measurements per day was randomly varied) and bars

show standard errors. Dotted line shows the daily mean solar radiation

5.3.2 Soil temperature and moisture measurements

The data retrieved from the moisture and temperature sensors at 60, 120, 250

and 500 mm were generally reliable with exceptions detailed below. Reliability

was judged by their self-consistency over time, and by good correlations with

rainfall and air temperature records. The exceptions were moisture readings at

60 and 120 mm which were very inconsistent and mostly erratic, particularly in

the sandy loam, SH soil. Moisture records from 250 mm were most reliable

throughout the experiment across all soil types and replicates.

Soil moisture content at 250 mm depth and daily rainfall for the duration of the

experiment are shown in Figure 5-8. As expected the sandy SH soil was
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significantly drier than the clay loam TB soil. At two time points, in May and

August there were abrupt increases in soil moisture in both soils. Analysis of

representative data for May 17th to June 23rd 2014 shows that the moisture

fluctuations in the two soils were more variable at 60 and 120 mm compared to

250 and 500 mm (Figure 5-9).

Mean soil temperature values at 60 mm were not significantly different in the

two soils. Maximum mean temperatures of 25.0 and 24.4 oC were observed in

the SH and TB soils, respectively. The minimum mean temperature values in

the SH and TB soils were 15.2 and 15.5 oC, respectively (Figure 5-10).

Recorded air temperature during the experiment and total daylight hours are

shown in Figure 5-11 and Figure 5-12, respectively.

Figure 5-8 Volumetric soil moisture content in the lysimeter soils, SH and TB, at 250

mm depth and rainfall measured over the duration of the experiment (dates in 2014).

Moisture data points show the means (n=12). Bars representing standard error are

included but not visible.
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Figure 5-9 Comparison of daily volumetric soil moisture measurements from functional

sensors in the representative lysimeters from TB and SH soils from May 17 to June 23,

2014. Points show means N=48 and bars show standard error.
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Figure 5-10 Mean daily soil temperature at 60 mm depth in lysimeters containing SH

and TB soil. Data points are means of the 12 replicate lysimeters (except where

sensors are faulty) and bars indicate standard errors.
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Figure 5-11 Recorded air temperature at the WFL at 30-minute intervals over the

duration of the experiment
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Figure 5-12 Total daily hours of measured light intensity greater than or equal to the

minimum light energy measurement (0.01 kW m-2) at the WFL. Points indicate actual

period in hours.

5.3.3 The effect of environmental drivers on soil respiration

As was shown earlier in Figure 5-4 the analysis of covariance in Table 5-1

confirmed that the Reco efflux patterns were different in the two soils. Overall,

soil type interactions with moisture had the most significant impact on Reco efflux

(Table 5-1, p<0.001). When each soil was analysed separately using multiple

linear regression analysis of the Reco efflux against the drivers it showed that

soil moisture and temperature had a significant positive linear relationship with

Reco in the sandy loam (SH) soils (R2 = 0.505, P<0.001). Peak Reco occurred

when soil temperature (60 mm) was 25.42 oC and soil moisture at 250 mm was

20.24 %. In the clay loam (TB) soil temperature and day length had a significant

and positive linear relationship with Reco, with the peak Reco occurring at soil

temperature 25.42 oC and day length 15.42 hours (R2 = 0.185, p<0.001).
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Table 5-1 Analysis of covariance comparing the effect of selected drivers on Reco in the

two soils.

SS Degr.

of

MS F p

Intercept 4623.584 1 4623.584 2221.591 <0.0001

Soil 33.677 1 33.677 16.182 <0.0001

Soil*Soil temp 60 mm 6.367 1 6.367 3.059 0.08

Soil*Soil moisture 250 mm 23.541 1 23.541 11.311 0.00083

Soil*Light kW/h 1.377 1 1.377 0.662 0.416

Error 1109.282 533 2.081

Effect

Univariate Tests of Significance
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5.3.3.1 The effect of drivers on net ecosystem exchange (NEE)

There were no significant differences between the NEE measurements across

the two soil types (p=0.941, n=538). Soil temperature and interactions between

soil temperature and soil moisture appeared to have significant relationships

with the NEE flux in both soils (Table 5-2). Multiple regression analysis showed

a significant but weak positive relationship between the NEE flux and the

combined effects of soil moisture and temperature (R2 = 0.056, p<0.001).
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Table 5-2 Results of multiple regression analysis indicating the drivers or their combinations, shown in red, having the strongest

relationship with the NEE flux in both soils

Level of NEE Flux NEE Flux NEE Flux NEE Flux -95.00% 95.00% Flux Flux -95.00% 95.00%

Effect Param. Std.Err t p Cnf.Lmt Cnf.Lmt Beta (ß) St.Err.ß Cnf.Lmt Cnf.Lmt

Intercept 36.1082 14.59861 2.47340 0.013701 7.429 64.78746

Soil type -1.0651 14.59861 -0.07296 0.941865 -29.744 27.61410 -0.38213 5.237405 -10.6711 9.90685

Temp -2.5077 0.75339 -3.32857 0.000935 -3.988 -1.02766 -2.70815 0.813606 -4.3065 -1.10980

Soil moisture -1.2226 0.75325 -1.62311 0.105169 -2.702 0.25716 -0.67753 0.417429 -1.4976 0.14251

Solar R -29.5177 43.00453 -0.68639 0.492774 -114.001 54.96550 -2.31035 3.365958 -8.9228 4.30214

Soil type * Temp 1 -0.0865 0.75339 -0.11480 0.908652 -1.567 1.39356 -0.63789 5.556777 -11.5543 10.27850

Soil type * moist 1 0.1314 0.75325 0.17450 0.861542 -1.348 1.61122 0.91600 5.249361 -9.3965 11.22847

Temp * moisture 0.1029 0.03814 2.69852 0.007190 0.028 0.17784 3.00594 1.113923 0.8176 5.19426

Soil type*Solar R 1 -43.7525 43.00453 -1.01739 0.309438 -128.236 40.73072 -5.43479 5.341877 -15.9290 5.05943

Temp *Solar R 3.3759 2.15717 1.56496 0.118197 -0.862 7.61371 5.77454 3.689890 -1.4743 13.02340

Moisture*Solar R -0.7412 2.24907 -0.32956 0.741863 -5.160 3.67713 -1.10525 3.353702 -7.6937 5.48316

Soil type* Temp *Moisture 1 0.0011 0.03814 0.02771 0.977901 -0.074 0.07598 0.15349 5.538583 -10.7272 11.03415

Soil type*Temp * Solar R 1 2.5947 2.15717 1.20282 0.229590 -1.643 6.83251 6.83082 5.678983 -4.3257 17.98729

Soil type*moisture * Solar R 1 1.9061 2.24907 0.84753 0.397090 -2.512 6.32449 4.53257 5.347999 -5.9737 15.03882

Temp*Moisture*Solar R -0.0813 0.11062 -0.73510 0.462610 -0.299 0.13600 -2.72290 3.704135 -9.9997 4.55394

Soil type*Temp *Moisture*Solar R 1 -0.1185 0.11062 -1.07082 0.284744 -0.336 0.09886 -6.06240 5.661440 -17.1844 5.05961
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5.3.4 Estimating photosynthesis

Using the global mean Reco values to estimate NPP a weak positive relationship

was observed between estimated NPP and solar radiation in both soils (Figure

5-13, R2 = 0.264 and R2 = 0.227) in TB and SH, respectively. Using the daily

mean values several strong relationships were observed on a few occasions.

Some of the stronger relationships are given in Figure 5-14 (R2 = 0.810,

p<0.001), Figure 5-15 (R2 = 0.671 p<0.001) and Figure 5-16 (R2 = 0.818,

p<0.001)

Figure 5-13 Regression of solar radiation vs estimated NPP based on the mean of all

Reco values in (a) the TB soil and (b) SH soil for the duration of the experiment
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Figure 5-14 Regression of solar radiation vs estimated NPP values in SH soil for May

4th 2014 based on mean daily Reco values

Figure 5-15 Regression of solar radiation vs estimated NPP values in TB soil for May

4th 2014 based on mean daily Reco values
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Figure 5-16 Regression of solar radiation vs estimated NPP values for June 22nd 2014

based on mean daily Reco values
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5.3.5 Dry matter and carbon content analysis

Total dry matter and carbon content and mean values per lysimeter and per unit

area are shown in Table 5-3. The total harvested material coincides with a

period which spans a slightly longer than the duration of the experimental

measurements.

Table 5-3 Mean dry matter and C harvested per unit area in 12 of each soil type

Soil

dry

matter

(gm
-2
)

Sterr
TotalC

(gm
-2
)

Stderr

SH 212.79 24.81 94.48 11.02

TB 300.40 16.75 133.38 7.44
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5.3.6 Microbial community profile

Figure 5-17 shows distinct soil microbial phenotype differences between the SH

and TB soils from the WFL lysimeters. Most of the variability (73.63%) was

explained in principle component (PC) 1, while PC 2 accounted for 6.09% of the

variability. Statistical significance of the differences between the soils is shown

in Figure 5-17. The PLFAs 14:00, 15:00, 15:0ai 16:00, 16:0i, 16:1ω5, 17:0, 

ai17:0, cy17:00, 18:1ω9c and 18:2ω6, contributed most to differentiating the soil 

microbial phenotype. The SH soil had a significantly higher fungal to bacterial

ratio compared to the TB soil (Figure 5-18).

Figure 5-17 First and second principle components (PCs) of the phospholipid fatty-acid

profiles derived from SH and TB lysimeter soil samples. The points show the mean

value of coordinates for the PLFA profiles in the SH and TB soil. Bars show the

standard error. Percent variation accounted for by PC shown in parentheses on each

axis.
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Figure 5-18 Fungal to bacterial ratio determined from the relative mole% of

representative fungal and bacterial PLFA biomarkers. Columns show means and bars

show standard error.
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5.4 Discussion

Gas flux measurements

The findings in this study demonstrate the potential of the WFL system to

measure and monitor soil respiration components and investigate relationships

with key drivers on diurnal and seasonal scales. Overall, the system performed

consistently without failures. Gaps in data collection were mainly due to

alternative use of the system for concurrent experiments and analyses.

However, there were important considerations that future work at this facility will

benefit from. These are concerned with improving overall performance and

particularly related to measuring and monitoring the key drivers of soil

respiration. These are discussed in Chapter 6. I now focus on the significance

of the results.

The range of values obtained for soil ecosystem respiration in this experiment

was within the ranges reported for temperate grasslands systems (e.g. Bahn et

al., 2008). Consistent with the incubation and glasshouse experiments, the

more-fertile clay loam soil (TB) produced significantly greater levels of soil

respiration (Figure 5-4). Although it was not possible to separate the flux into its

soil and plant-derived components, it is likely that the greater Reco values in the

TB soil were due to greater contributions from plant respiration, and potentially

also greater turnover of soil C through priming effects fuelled by plant C. This

was supported by significantly greater dry matter production from the TB soil

during the experimental period (Section 5.3.5).

Overall, there were no significant diurnal differences in the measured Reco in

either soil. On some days the day-time efflux was significantly greater than at

the night-time efflux. These differences could have been due to variability in the

number of measurements per day and the interval between measurements, as

these were not standardised in this experiment (because the order of sampling

the lysimeters was randomised). Varying diurnal responses with vegetation,

climatic conditions and season are reported in the literature. Wood et al. (2013)

found no diurnal differences in soil respiration measured in a humid tropical

forest, while Barron-Gafford et al. (2011) reported significant diurnal differences
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in soil respiration in a semi-arid temperate grassland, using chamber

measurements.

Solar radiation and photosynthesis

Estimated NPP values showed positive correlations with light measurements

when the NPP estimates were based on both global (all recorded values) or

daily mean values of Reco. However, high R2 values, up to 0.818, were only

found using daily estimates. The best relationships were found on days with at

least 12 measurements of NEE efflux, with short time intervals between. The

variability in the number of measurements per day and the time interval

between measurements, in combination with available light on the respective

days, could have account for the variable predictions of global and daily NPP.

Key drivers of Reco and NEE

Temperature is highlighted in several studies as the primary driver of soil and

ecosystem respiration (Thurgood et al., 2014; Lloyd and Taylor, 1994; Schimel,

1994; Yang et al., 2011). In this study, ecosystem respiration was consistently

related to soil temperature measured at 60 mm depth in both soils. However,

the maximum mean flux obtained for both soils did not correspond with the

maximum temperature. This indicates that other drivers were also significant. In

the sandy loam (SH) soil moisture was the other significant driver of respiration.

Typically, a sandy soil would have lower moisture retention capacity compared

to a clay loam. This is evident by the much lower available moisture in the SH

soil compared to TB (Figures 5-8 and 5-9). It is likely that the sandy SH soil had

moisture limitations not present in the clayey TB soil. Thus moisture was a more

important driver of soil respiration in the SH soil. Moisture and temperature

dependence of soil respiration has been explored by many researchers (e.g.

Davidson and Janssens, 2006; Lamparter et al., 2009; Bahn et al., 2008; Wood

et al., 2013; Barron-Gafford et al., 2011; Yang et al., 2011; Carbone et al.,

2008). There is evidence that the temperature sensitivity of soil respiration can

be affected by soil moisture availability, and conditions of both limited and

excess moisture can complicate assessments of the temperature dependence

of soil respiration (Davidson and Janssens, 2006; Yang et al., 2011). A
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comparison of moisture data from functional sensors in Figure 5-9 indicates that

moisture measured at 250 mm depth may have underestimated soil moisture at

the zone of temperature measurements. The temperature dependence of soil

respiration in field experiments has been shown to vary with soil depth (Graf et

al., 2008) and accurate descriptions of moisture conditions at depths relevant to

temperature are essential to reliably account for any covariance effects.

However, analysis of moisture measurements at 120 mm in SH soil and 60 mm

in TB soil using the limited dataset (Figure 5-9) did not improve the covariance

and regression relationships with Reco and NEE in either soil.

In the clay loam soil (TB), soil temperature and day length were the most

significant drivers of Reco. Unlike the SH soil, moisture was not as limiting and

therefore did not feature as a major driver, although the soils were under the

same climatic conditions. Photoperiod (day length) was taken as a surrogate for

photosynthesis (NPP), consistent with its use as an integral component models

predicting C assimilation in grasslands (Wulfes et al., 1999). Considering that

the clay loam was more fertile and had greater dry matter production than the

sandy soil, it is likely there was greater C assimilation with increasing day-

length, and that this increased root exudation. The experiments reported in

Chapters 3 and 4 clearly indicated that the TB soil had the greater potential for

priming effects and this could have contributed to the observed effect of

photoperiod on soil respiration. Priming effects probably did not occur in the SH

soil or occurred at much lower levels because of soil moisture deficits and soil

fertility limitations discussed in Chapters 3 and 4. Another consideration is the

distinct difference in the microbial community profiles between the two soils

shown by PLFA analysis (Section 5.3.6). The higher proportion of fungal to

bacterial microbes in the SH relative to the TB soil are consistent with the

greater acidity of the SH soil and the high volume of woody fragments in it, they

being decomposed mostly by fungi. Greater bacterial dominance and microbial

biomass in the TB soil could be indicative of greater capacity to utilise labile C

for the production of enzymes for microbial decomposition (Bardgett et al.,

1996).
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There were no significant differences in NEE estimates between the two soils.

NEE was most influenced by soil temperature and interactions between soil

temperature and moisture. While the effect of moisture and temperature stood

out from the covariate analysis, the regression analysis of NEE against moisture

and temperature produced very weak results and the resulting models could not

reliably predict NEE efflux for periods not measured.

Modelling Reco and NEE

An objective of this study was to measure and model Reco and NEE. There was

success in measuring Reco and NEE but not in generating valid models. This

was largely related to the poor model fitting from the regression analysis. Since

the values of carbon inputs (NPP) and outputs (Reco) could not be reliably

estimated over the growing season, it was not possible to compare this with the

carbon balance predicted from harvested dry matter.
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5.5 Conclusions

It was demonstrated that the automated chamber system at the WFL can be

used to:

(1) Produce reliable measurements of Reco and NEE for use in obtaining

relationships with key drivers.

(2) Reliably measure short-term changes in soil temperature and moisture at

different depths, though not soil moisture at depth <250 mm in the sandy

(SH) soil.

The results also confirmed that:

(3) The short-term changes in soil moisture were significantly different in the

two soils but there was no significant difference in their soil temperature

variations.

(4) Soil temperature was a major diver of Reco in both soils. In the clayey soil

day length also featured as a driver of Reco and in the sandy soil,

moisture featured as a driver.

(5) It was not possible to obtain reliable estimates of NEE over the season

from the data collected in this experiment.
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5.5.1 Further considerations

The dates reflected in this thesis might suggest that most of the work was

concentrated in a few months during 2014. However, it must be noted that the

WFL was a newly constructed facility without any history or much background

information. This was the first study at the WFL. Commissioning and validation

of the IRMS was prolonged and thwarted by several teething issues. Operating

procedures had to be developed and much of the work initially concentrated on

method development and operationalising the WFL systems. There were

several pre-experiment glasshouse trials to evaluate different grass species for

suitability to growing conditions and susceptibility to shading. Shading then

gave way to clipping as the option for altering rhizodeposition in the glasshouse

experiment.
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Synthesis and recommendations for futureChapter 6:

work

6.1 Summary

This study was conducted to contribute to a better understanding of the

processes regulating soil carbon balances, specifically the mechanisms of soil-

plant interactions that release stored C from soils through rhizosphere priming

effects (RPE), using two contrasting soils. The project also supported continuing

work at the Wolfson Field Laboratory (WFL) at Cranfield to monitor and model

greenhouse gas emissions from soils, initially CO2. The initial plan was to use a

combination of laboratory incubation, glasshouse (with potted plants) and field

experiments to investigate RPEs in two contrasting soils. As the field system

was not yet fully developed for making the isotope measurements required for

priming studies, the RPE study was limited to the laboratory and the glasshouse

(Chapters 3 and 4). Additionally, the capacity of the WFL to measure and

monitor soil ecosystem respiration and net ecosystem exchange and their

dependence on key drivers was evaluated (Chapter 5).

The results highlight characteristic differences in RPEs between the two soils in

both the unplanted and planted systems used in Chapter 3 and 4, respectively.

Generally, the direction of RPEs was the same in both soils but the amount and

intensity of priming were different in the two soils. The WFL automated chamber

system produced reliable measurements of ecosystem respiration and net

ecosystem exchange that were useful for monitoring and evaluating their

relationships with moisture, temperature and photosynthesis. The capacity of

the WFL for high resolution measurements of the soil C turnover processes and

associated drivers over diurnal and seasonal time scales is a tremendous

platform for future research.

6.2 Rhizosphere priming effects in the unplanted system

The laboratory incubation experiment simulated rhizosphere priming effects in

grassland systems by adding carbon substrates to two contrasting, unplanted

soils at rates consistent with rhizodeposition in temperate grasslands at the
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peak of the growing season. The substrates used were a maize root extract and

sucrose, i.e. with C4 isotope signatures, and the soils had C3 isotope signatures,

so it was possible to determine priming effects on the basis of the isotope

composition of respired CO2. The soils differed strongly in their physical,

chemical and biological properties. As far as I am aware, no similar study has

been made before, especially on contrasting soils.

The root extract represented a more realistic substrate having variable water

soluble compounds and nutrients known to be largely responsible for RPEs. By

comparison sucrose was expected to have a unidirectional high value impact as

an energy source. I therefore hypothesised that the substrates would generate

different priming effects in each soil and the soils would have different priming

effects based on their inherent differences.

In the acidic sandy SH soil, the two substrates had similar patterns of priming.

However in the fertile clayey TB soil, sucrose produced greater priming effects

per unit of C applied than the maize root extract, and the priming increased over

time with sucrose but decreased after one week with the maize root extract. I

explain these differences in terms of microbial access to soil N. I hypothesise

that in the more-fertile TB soil, provision of sucrose provided energy for growth

of the microbial community while generating greater demand for N, which was

met by increasing SOM turnover over time. Whereas in the TB soil with maize

root extract, the supply of N increased over time with continuing addition of the

substrate, which contained N, so the need for accessing soil N through priming

declined. By contrast, in the infertile SH soil, the availability of mineralizable soil

N was such that the N supply continued to limit microbes with either of the

substrates, so SOM mining progressed at the same rate with either substrate.

Because the addition of substrate was in proportion to the soil microbial

biomass, which was smaller in the SH soil, the cumulative addition of N in the

SH soil was smaller. The results in this study agree with the theory of microbial

N mining generated by stoichiometric C:N imbalances in the soil microbial

biomass.
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6.3 Rhizosphere priming effects in the planted system

Results from the glasshouse experiment corroborated the findings in Chapter 3.

In this experiment, a C4 grass was grown in the two C3 soils from Chapter 3,

and priming effects assessed based on the isotope signature of soil respiration.

To produce differences in rhizodeposition, the grass was either clipped or left

unclipped.

The patterns of soil respiration (Rs) and rhizosphere priming effects (RPE) were

strongly influenced by differences in gross primary production (GPP) between

the soils and clipping treatments. Plant growth was much better in the TB soil

and was associated with earlier onset of RPE and greater overall RPEs

compared to the SH soil. Clipping the grass drastically reduced GPP, and

resulted in reallocation of photo-assimilates to shoot regeneration, and so

probably reduced rhizodeposition. Rhizosphere priming effects were negligible

in the clipped treatment in the SH soil. The clipping frequency was such that

grass growth in the SH soil was severely impaired. The results clearly show that

GPP is a key driver of RPEs in these soils and potentially even greater losses of

stored soil C could occur during the more active growing periods when GPP is

highest.

6.4 Evaluation of the WFL automated chamber system

High resolution field measurements of soil respiration with simultaneous

measurement and monitoring of key drivers are essential for improving

understanding of soil C turnover. The automated chamber system at the WFL

provides a platform that has now been validated for the conduct of future

studies on soil carbon dynamics (Chapter 5).

Several issues have surfaced, particularly related to the experimental design

and scheduling of sampling events to obtain data with sufficient frequency to

characterise short- and medium-term patterns. The results showed that while

continuous sampling is valuable, it is also important to maximize day-light hours

for NEE flux measurements. The number of measurements made from each

soil is also important; equal measurements will allow for more accurate analysis



140

of soil effects on flux measurements. As data is now available on the system’s

diurnal Reco patterns, a way forward can be to focus on improving the linkages

with drivers. Standardization of measurements is likely to improve outcomes

and generate data suitable for modelling. This might be achieved by limiting

measurements to daylight hours and setting a prescribed minimum number of

samples from both opaque and transparent chamber measurements in each

soil.

The assessment of the relative dependence of Reco and NEE on the drivers

explored in this study was hinged on the reliability of the measurements made.

Overall, measurements of soil respiration and their drivers allowed for a

deliberate evaluation of the sensitivity of the soil respiration to soil moisture and

temperature changes in two contrasting soils. The availability of more data

would mostly likely have improved the outcomes and enhanced the possibility of

generating sensitivity models for the system. The malfunctioning of sensors

during the experiment needs to be minimized and addressed properly to reduce

the risk similar occurrences in the future. While routine checks were attempted,

the system design does not allow for easy access to sensors that may need to

be repaired or replaced. An appropriate maintenance regime that can minimize

the risk of disruptions and malfunctioning components is essential going

forward.

The lysimeters are now well into their fifth year and may need replacing at some

point. Consideration should be given to replacing the current mixed-grass

species (including 70% perennial rye grass) with a single cultivar. This could

contribute to reducing variability across and within the soil types. A possibility

could be the C4 species Bermuda grass, Cynodon dactylon, which performed

very well on both soils in glasshouse trials. It has also adapted to parts of

Southern England and these locally available cultivars are likely to perform well

at the WFL. The primary benefit being the ability to separate of soil- and plant-

derived C in future lysimeter studies, using stable isotope techniques.

Overall, the study demonstrated the immense potential of the WFL, which must

be harnessed to explore the functionality of the soil system in field conditions.
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6.5 Future work

In Chapter 3, the quality of substrate in conjunction with soil characteristics

appeared to influence how RPEs influenced soil C turnover in the two soils

studied. The maize root extract was analysed for C and N and polysaccharides.

However it is likely that the extract contained nutrients and other compounds

that impacted on the experiment. These factors and nutrient mineralization rates

in the soils need be studied further to test the priming mechanisms proposed

here.

The results in Chapters 3 and 4 are consistent with several previous priming

studies. It would have been helpful to have analysed the δ13C of the soil

microbial biomass during and immediately after incubation and upon destructive

sampling in Chapters 3 and 4, respectively. This would have provided further

confirmation of priming effects. Future work could include a larger experiment

with more replicates to allow for periodic sampling to measure soil microbial

changes, and to analyse for critical enzymes linked to SOM mineralisation and

N release. The possible effects of added mineral N and P should be further

explored by measuring N and P dynamics. It would be interesting to observe

whether declines in PE would occur in the SH soil if the experiment was

extended, and likewise in the TB soil, whether further additions of maize root

extract would reduce priming to negative values. Hence this experiment could

be repeated for an extended period. The results may provide further evidence in

support of the priming mechanisms proposed.

In Chapter 4, the subtropical grass species Kikuyu grass (Pennisetum

clandestinum) was selected as a C4 plant with a growth habit similar to rye

grass, Lolium perenne. However I was not able to determine whether this

species induced changes to the microbial community phenotype relative to the

microbial assessments of the WFL lysimeter soils, which contained mostly

ryegrass species (Chapter 5). The possible consequences of C substrate

identity and diversity on soil functions require investigation, particularly as
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regards whether the different sources of fresh C in Chapter 3 and 4 induced

significant changes in the soil microbial community profiles.

In Chapter 5, time constraints precluded the use of non-linear statistical

methods to analyse the data generated. However it is possible that non-linear

models could better account for the seasonal flux dynamics based on the

drivers evaluated. Automation of chamber lid closure and opening relied on the

IRMS software. Therefore measurements were only possible when the IRMS

was not otherwise in use. This limited the frequency of measurements which

could have improved outcomes. The light measurement system installed at the

facility was not the most appropriate for this study. It measured the full spectrum

of solar radiation as opposed to photosynthetically active radiation (PAR), which

would have been more relevant for modelling NPP. The approximation that all

measured light was within the PAR range could have contributed to the poor

correlations between light and estimated NPP. Another contributing factor may

have been reduced light incidence from the Perspex material of the chamber

lids and the reflection of light from the chamber walls which had a white inner

surface. Faulty moisture sensors particularly in the uppermost layers of the

sandy soil profile precluded a more realistic assessment of the covariance of

moisture and temperature with respiration measurements. Once the issues

highlighted above are addressed, this experiment could be repeated and

extended over an entire year or consecutive years, if possible, to investigate

how C dynamics change in the systems during the cooler months and in

transition periods between cooler to warmer seasons and vice-versa.

Once the capability of the WFL is improved to facilitate isotope labelling and PE

studies in the field, the results generated can be compared with those reported

in this study. This could potentially provide some guidelines as to how well the

experimental conditions in the laboratory and glasshouse reflect actual field

scale C dynamics and related processes.
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Notwithstanding an expanding body of knowledge on rhizosphere priming

effects, this study makes a unique contribution to elucidating the mechanisms

underlying the related processes. It is rare to have multiple assessments of

contrasting soils on the scales studied in this experiment. Use of a maize root

extract and comparison with sucrose on contrasting soils has not been reported

before. Studies reporting on the effects of substrate diversity on priming have

deliberately excluded nutrients or nutrient containing compounds to avoid so-

called ‘confounding’ effects. However, these confounding effects are not

excluded in isotope (plant) labelling experiments, which have been helpful to

advance current understanding of priming mechanisms. I advance that the use

of plant root extracts as reported in this study may provide more realistic

representations of rhizodeposition in laboratory incubation studies investigating

rhizosphere priming effects. There are still many unknowns about the

mechanisms driving RPEs and further research is required. However, microbial

nutrient mining of SOM best explained my findings in the both priming

experiments. The methods developed in this study will allow for high temporal

and spatial resolution measurements of Rs and NEE in field conditions, using

stable isotope methods to separate fluxes into plant- and soil-derived

components.
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