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ABSTRACT 

Gas Turbines (GTs) are used extensively in pipelines to compress gas at 

suitable points. The primary objective of this study is to look at CO2 return 

pipelines and the close coupling of the compression system with advanced 

prime mover cycles. 

Adopting a techno-economic and environmental risk analysis (TERA) frame 

work, this study conducts the modelling and evaluation of CO2 compression 

power requirements for gas turbine driven equipment (pump and compressor). 

The author developed and validated subroutines to implement variable stators 

in an in-house GT simulation code known as Variflow in order to enhance the 

off-design performance simulation of the code. This modification was achieved 

by altering the existing compressor maps and main program algorithm of the 

code. Economic model based on the net present value (NPV) method, CO2 

compressibility factor model based on the Peng-Robinson equation of state and 

pipeline hydraulic analysis model based on fundamental gas flow equation were 

also developed to facilitate the TERA of selected GT mechanical drives in two 

case scenarios. These case scenarios were specifically built around 

Turbomatch simulated GT design and off-design performance which ensure that 

the CO2 is introduced into the pipeline at the supercritical pressure as well as 

sustain the CO2 pressure above a minimum designated pressure during 

transmission along an adapted real life pipeline profile.  

The required compression duty for the maximum and minimum CO2 throughput 

as well as the operation site ambient condition, guided the selection of two GTs 

of 33.9 MW and 9.4 MW capacities. At the site ambient condition, the off design 

simulations of these GTs give an output of 25.9 MW and 7.6 MW respectively. 

Given the assumed economic parameters over a plant life of 25 years, the NPV 

for deploying the 33.9 MW GT is about £13.9M while that of the 9.4 MW GT is 

about £1.2M. The corresponding payback periods (PBPs) were 3 and 7 years 

respectively. Thus, a good return on investment is achieved within reasonable 

risk. The sensitivity analysis results show a NPV of about £19.1M - £24.3M and 

about £3.1M - £4.9M for the 33.9 MW and 9.4 MW GTs respectively over a 25 - 

50% fuel cost reduction. Their PBPs were 3 - 2 years and 5 - 4 years 

respectively.  In addition, as the CO2 throughput drops, the risk becomes higher 

with less return on investment. In fact, when the CO2 throughput drops to a 

certain level, the investment becomes highly unattractive and unable to payback 

itself within the assumed 25 years plant life. The hydraulic analysis results for 

three different pipe sizes of 24, 14 and 12¾ inch diameters show an increase in 

pressure drop with increase in CO2 throughput and a decrease in pressure drop 

with increase in pipe size for a given throughput. Owing to the effect of elevation 

difference, the 511 km long pipeline profile gives rise to an equivalent length of 
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511.52 km. Similarly, given the pipeline inlet pressure of 15 MPa and other 

assumed pipeline data, the 3.70 MTPY (0.27 mmscfd) maximum average CO2 

throughput considered in the 12¾ inch diameter pipeline results in a delivery 

pressure of about 15.06 MPa. Under this condition, points of pressure spikes 

above the pipeline maximum operating allowable pressure (15.3 MPa) were 

obtained along the profile. Lowering the pipeline operating pressure to 10.5 

MPa gives a delivery pressure of about 10.45 MPa within safe pressure limits. 

At this 10.5 MPa, over a flat pipeline profile of same length, the delivery 

pressure is about 10.4 MPa. Thus, given the operating conditions for the dense 

phase CO2 pipeline transmission and the limit of this study, it is very unlikely 

that a booster station will be required. So also, compressing the CO2 to 15 MPa 

may no longer be necessary; which eliminates the need of combining a 

compressor and pump for the initial pressure boost in order to save power. This 

is because, irrespective of the saving in energy, the increase in capital cost 

associated with obtaining a pump and suitable driver far outweighs the extra 

expense incurred in acquiring a rated GT mechanical drive to meet the 

compression duty. 

Keywords:  

Gas Turbine; CO2; Pipeline; Throughput; Power Generation, TERA; NPV 

 



iii 

ACKNOWLEDGEMENTS 

All praise is due to Allah the Most High, the All-Knowing, who out of His infinite 

mercy has given me the ability to achieve this level of success in life. I am 

highly grateful to Prof Pericles Pilidis for been a source of inspiration and 

encouragement throughout this research. I am really humbled by your kind 

affection towards me. The support and advice of Dr. Giuseppina Di Lorenzo is 

equally appreciated.   

The academic and supporting staffs of the school are highly appreciated. In fact 

your contributions towards this success have made my Cranfield experience a 

memorable one. 

I must express my gratitude to the Federal Polytechnic, Nasarawa (my place of 

work) and the Petroleum Technology Development Fund (PTDF) for the study 

fellowship and scholarship. The contribution of these great institutions in no 

small measure facilitated this achievement. 

The support and prayers of my mother, only sister and brothers as well as other 

members of the Suleiman’s family are highly appreciated. Equally appreciated 

is the prayers and moral support of my in-laws, who stood by me in the most 

trying period of this research. 

I remain grateful to Dr. Pius Salami and Prof. John Ade Ajayi whose support 

and encouragement inspired this overseas degree. The singular advice of Jafar 

Muhammad currently with Usman Dan Fodiyo university teaching hospital to 

apply for the overseas scholarship is worthy of mention here. Special 

appreciation to my friend and colleague – Habeeb Ajimotokan for painstakingly 

proof reading the vital parts of this thesis. 

I am thankful to all members of the Cranfield Islamic Society as well as other 

friends and colleagues within and outside Cranfield for their good will and 

invaluable assistance. 

Finally, but not less important, the contribution of my immediate family is highly 

appreciated. To my caring and adorable wife – Rahmatullah, I remain indebted 

for all your support and understanding. And to my lovely children (the comfort of 

my eyes) - Mardiyya, Abdurrahman-Adnan, and Nusaybah fondly called 



iv 

Ozuveva, Taru, and Isozi respectively by their granny, I appreciate you all for 

your love and endurance. 

Thank you all and remain blessed. 



v 

DEDICATION 

This research work is dedicated to the less privileged in the society 

 

 





vii 

TABLE OF CONTENTS 

ABSTRACT ......................................................................................................... i 

ACKNOWLEDGEMENTS................................................................................... iii 

DEDICATION ..................................................................................................... v 

LIST OF FIGURES ............................................................................................. xi 

LIST OF TABLES .............................................................................................. xv 

NOMENCLATURE .......................................................................................... xvii 

1 General Introduction ........................................................................................ 1 

1.1 Research Background .............................................................................. 1 

1.2 Environmental Concern and the CCS Technology.................................... 1 

1.3 The TERA Philosophy ............................................................................... 3 

1.4 Aim and Objectives ................................................................................... 4 

1.5 Contribution .............................................................................................. 4 

1.6 Thesis Structure ........................................................................................ 4 

2 Literature Review ............................................................................................ 7 

2.1 Introduction ............................................................................................... 7 

2.2 The Gas Turbine ....................................................................................... 7 

2.2.1 Open and Closed Cycle Gas Turbine ................................................. 8 

2.2.2 Advanced Cycle Gas Turbine ............................................................. 8 

2.2.3 Novel Gas Turbine Cycles for Oxy – Fuel Power Generation ............ 9 

2.3 Overview of Gas Turbine Application ...................................................... 11 

2.4 The Gas Turbine Prime Mover ................................................................ 13 

2.5 Gas Turbine Availability and Reliability ................................................... 15 

2.6 Pipeline Transmission of CO2 ................................................................. 16 

2.6.1 Physical Property of Pure CO2 ......................................................... 17 

2.6.2 Impurities in the Captured CO2......................................................... 18 

2.6.3 CO2 Flow Capacity ........................................................................... 19 

2.6.4 Temperature Range of Buried Pipeline ............................................ 20 

2.6.5 CO2 Compression ............................................................................ 20 

2.7 Natural Gas Pipeline and Compression Stations .................................... 21 

2.7.1 Elements of a Pipeline System ......................................................... 22 

2.8 Comparison between CO2 and Natural Gas Pipelines ............................ 24 

2.9 Cost Evaluation of CO2 Compression Duty/ Knowledge Gap .................. 24 

2.10 Review of Techno-Economics for Gas Turbine Application in 

Pipeline ......................................................................................................... 25 

2.11 Gas Turbine Driven Compression Equipment ....................................... 26 

2.11.1 Centrifugal Compressor ................................................................. 28 

2.11.2 Centrifugal Compressor Performance ............................................ 29 

2.11.3 Centrifugal Compressor Selection .................................................. 32 

2.11.4 Centrifugal Pump ........................................................................... 32 

2.11.5 Centrifugal Pump Performance ...................................................... 33 



viii 

2.11.6 Pump Selection .............................................................................. 35 

2.12 Gas Turbine Emissions ......................................................................... 36 

2.13 Gas Turbine CO2 Emission ................................................................... 37 

2.14 Gas Turbine Cost Appraisal .................................................................. 38 

2.14.1 Capital Cost .................................................................................... 38 

2.14.2 Running Cost ................................................................................. 38 

2.14.3 Life-Cycle Cost ............................................................................... 39 

2.14.4 Emission Cost ................................................................................ 39 

2.15 Economic Evaluation Appraisal ............................................................ 39 

2.15.1 The Net Present Value (NPV) Method ........................................... 40 

2.15.2 Pay Back Period ............................................................................. 41 

2.16 Concluding Remarks ............................................................................. 41 

3 Research Methodology ................................................................................. 43 

3.1 Introduction ............................................................................................. 43 

3.2 TERA Framework for Gas Turbine- Driven CO2 Compression ............... 43 

3.2.1 The Pipeline / Compression Module................................................. 43 

3.2.2 The Engine Performance Module ..................................................... 45 

3.2.3 The Emission Module ....................................................................... 46 

3.2.4 The Economic Module...................................................................... 46 

3.3 Turbomatch Scheme Overview ............................................................... 47 

3.4 Concluding Remarks ............................................................................... 47 

4 CO2 Compression Modelling ......................................................................... 49 

4.1 Introduction ............................................................................................. 49 

4.2 Model Requirement................................................................................. 49 

4.3 Modelling Assumptions ........................................................................... 50 

4.4 Modelling the Centrifugal Compressor Power ......................................... 50 

4.4.1 Modelling the PR- EOS for Compressibility Factor (Z) ..................... 52 

4.4.2 Thermodynamic Stage Compression Ratio ...................................... 52 

4.5 Modelling the CO2 Thermodynamic Properties ....................................... 53 

4.5.1 Density and Viscosity ....................................................................... 53 

4.5.2 Discharge Pressure and Temperature ............................................. 54 

4.5.3 Specific Volume and Actual Flow ..................................................... 55 

4.6 Modelling the Centrifugal Pump Power ................................................... 55 

4.7 Simulating the Required Compression Power ........................................ 56 

4.8 Multi-stage Compression Simulation Analysis ........................................ 57 

4.8.1 Validation of the Simulated Compressibility Factor (Z) ..................... 58 

4.8.2 Compression Power Saving with Compressor and pump 

Combination .............................................................................................. 60 

4.8.3 Power Requirement for 10, 8, and 6 Staged Compression and 

Effect of Intercooler Pressure Drop ........................................................... 61 

4.8.4 Power Requirement for 3 and 2 Staged Compression and Effect 

of Intercooler Pressure Drop ..................................................................... 64 



ix 

4.8.5 Effect of Polytropic Efficiency on Compression Power ..................... 65 

4.9 Concluding Remarks ............................................................................... 66 

5 Modification of Variflow Code ........................................................................ 67 

5.1 Introduction ............................................................................................. 67 

5.2 Performance Simulation of Industrial Gas Turbine ................................. 67 

5.3 The Variflow Code .................................................................................. 68 

5.4 Modelling Variable Geometry Compressor in the Variflow Code ............ 68 

5.4.1 Performance Enhancement Using Variable Stators ......................... 69 

5.4.2 Compressor Map and Beta Line ....................................................... 69 

5.4.3 Compressor Characteristics Estimation ........................................... 71 

5.4.4 Scaling Factors ................................................................................ 71 

5.5 Developing the Subroutines to Implement Variable Stators .................... 72 

5.5.1 Modification of the Compressor Map ................................................ 72 

5.5.2 Implementing the New Compressor Maps ....................................... 74 

5.5.3 Program Controls and Error Messages ............................................ 76 

5.6 Validation of the Variflow Code Modification ........................................... 76 

5.7 Concluding Remarks ............................................................................... 81 

6 Gas Turbine Mechanical Drive Performance and Economics ....................... 83 

6.1 Introduction ............................................................................................. 83 

6.2 Case Scenario Description ..................................................................... 83 

6.2.1 Case Scenario I ................................................................................ 84 

6.2.2 Case Scenario II ............................................................................... 87 

6.3 Gas Turbine Operating Condition ........................................................... 88 

6.4 Gas Turbine Design and Off-Design Simulation ..................................... 89 

6.4.1 Selected Gas Turbine Design Point Performance ............................ 90 

6.4.2 Off Design Performance of EL2500RD and EL1200-R .................... 91 

6.4.3 Summary .......................................................................................... 98 

6.5 Gas Turbine Economic Performance Evaluation .................................... 98 

6.5.1 Capital Cost Estimate ....................................................................... 99 

6.5.2 Operation and Maintenance Cost Estimate ...................................... 99 

6.5.3 Other Cost Estimate ....................................................................... 100 

6.5.4 Revenue and Economic Performance Modelling ........................... 100 

6.6 CO2 Emission Prediction ....................................................................... 104 

6.7 Economic Evaluation of Case Scenario I .............................................. 105 

6.7.1 Data and Assumptions ................................................................... 105 

6.7.2 Results and Analysis ...................................................................... 106 

6.7.3 Summary ........................................................................................ 113 

6.8 Economic Evaluation of Case Scenario II ............................................. 114 

6.8.1 Hydraulic Analysis Data and Assumptions ..................................... 114 

6.8.2 Modelling the Pipeline Flow ............................................................ 116 

6.8.3 Techno-Economic Analysis of the Hydraulic Simulation Results .... 119 

6.8.4 Summary ........................................................................................ 125 



x 

6.9 Validation of the TERA Framework ....................................................... 125 

6.10 Concluding Remarks ........................................................................... 127 

7 Conclusion and Recommendation ............................................................... 129 

7.1 Conclusion ............................................................................................ 129 

7.2 Recommendation for Further Work ....................................................... 132 

REFERENCES ............................................................................................... 135 

Appendix A Variflow Design Point Output File ............................................ 146 

Appendix B Turbomatch Design Point Input Files ....................................... 148 

Appendix C Turbomatch Off-Design Performance Input Files .................... 153 

Appendix D Economic Performance Code .................................................. 167 

Appendix E Typical Output of the Economic Code ..................................... 180 

Appendix F Pipeline Hydraulic Analysis Code ............................................ 185 

Appendix G Typical Pipeline Hydraulic Analysis Output ............................. 192 

 

 



xi 

LIST OF FIGURES  

Figure 1-1 CO2 Capture Systems ....................................................................... 2 

Figure 2-1 Pictorial View of a Cut-Away GT Engine (Courtesy GE) ................... 7 

Figure 2-2 Principle of Oxy-Fuel Gas Turbine Combined Cycle ....................... 10 

Figure 2-3 Twin Shaft Gas Turbine .................................................................. 14 

Figure 2-4  Phase Diagram for Pure CO2 ......................................................... 18 

Figure 2-5 Pipeline Transportation Schematic .................................................. 22 

Figure 2-6 Operating Range of Centrifugal Compressor Compared to Other 
Types ........................................................................................................ 27 

Figure 2-7 Operating Range of Compressors and Centrifugal Pumps ............. 27 

Figure 2-8 Cut-Away View of a Typical Centrifugal Compressor ...................... 28 

Figure 2-9  Compressor Head versus Flow Relationship at Constant Speed ... 29 

Figure 2-10 Typical Compressor Map (Variable Speed) .................................. 30 

Figure 2-11 Composite Maps for Two Compressors Operating in Series and in 
Parallel ...................................................................................................... 31 

Figure 2-12 A Typical Gas Turbine Driven Centrifugal CO2 Pump ................... 33 

Figure 2-13 Performance Curve for a Centrifugal Pump at Constant Speed .... 34 

Figure 2-14 Gas Turbine Emissions ................................................................. 36 

Figure 2-15 Carbon dioxide Emissions ............................................................. 37 

Figure 3-1 TERA Framework for Gas Turbine–Driven CO2 Compression ........ 44 

Figure 3-2 CO2 Pipeline Profile ........................................................................ 45 

Figure 4-1 Centrifugal Compressor Selection Chart [Courtesy Hitachi Plant 
Technologies] ............................................................................................ 56 

Figure 4-2 Constant Discharge Pressure Control for a Gas Turbine Driven   ........      
Compressor ............................................................................................... 58 

Figure 4-3  Comparison between Simulated Compressibility Factor with PR- .......          

EOS Property Table from Aspen-HYSYS for Pure CO2 at 40°C ............... 59 

Figure 4-4 Comparison between [Eq. 4-7] and [Eq. 4-8] for Evaluating CO2 
Compression Power at High and Low Compression Ratio (r = 10 & 2.15 
respectively) .............................................................................................. 60 

Figure 4-5  Comparison between 1- Stage Compression Power Requirement  ....  
using Compressor only and in Combination with Pump ............................ 61 



xii 

Figure 4-6 Gas Turbine Power Requirement for a 10 - Stage CO2 Compression
 .................................................................................................................. 62 

Figure 4-7 Gas Turbine Power Requirement for an 8 - Stage CO2 Compression
 .................................................................................................................. 62 

Figure 4-8 Gas Turbine Power Requirement for a 6 - Stage CO2 Compression63 

Figure 4-9 Gas Turbine Power Requirement for a 3 - Stage CO2 Compression64 

Figure 4-10 Gas Turbine Power Requirement for a 2 - Stage CO2 Compression
 .................................................................................................................. 64 

Figure 4-11  Influence of Compressor Efficiency on Gas Turbine Power ......... 66 

Figure 5-1 Compressor Map Fitted with Beta Lines ......................................... 70 

Figure 5-2 Compressor Map 3, stator angle 0° ................................................. 73 

Figure 5-3 Compressor Map 3 characteristics with VSV angle......................... 74 

Figure 5-4 Variation of Gas Turbine Mass Flow for Varying Variable Stator Vane 
Position across Different Power Settings .................................................. 77 

Figure 5-5 Variation of Gas Turbine Power Output at Different Power Settings 
for Varying Variable Stator Vane Position ................................................. 77 

Figure 5-6  Variation of Gas Turbine Fuel Flow at Different Power Settings for 
Varying Variable Stator Vane Position ...................................................... 78 

Figure 5-7  Variation of GT EGT at Different Power Settings for Varying Variable 
Stator Vane Position ................................................................................. 78 

Figure 5-8 Comparison of Gas Turbine Power Output with EGT for Varying 
Variable Stator Vane Position ................................................................... 79 

Figure 5-9 Variation of GT Thermal Efficiency at Different Power Settings for 
Varying Variable Stator Vane Position ...................................................... 79 

Figure 5-10 Variation of GT Heat Rate at Different Power Settings for Varying 
Variable Stator Vane Position ................................................................... 80 

Figure 6-1 Electricity Generation by Fuel, 1990 – 2040 ................................... 84 

Figure 6-2 2040 Projected Average CO2 Captured from Four Different Fossil 

Fired Power Plants for the Hot Season (Max. Temperature = 𝟑𝟖°𝑪) ......... 85 

Figure 6-3 2040 Projected Average CO2 Captured from Four Different Fossil 

Fired Power Plants for the Early Rain Season (Max. Temperature = 𝟑𝟒°𝑪)
 .................................................................................................................. 86 

Figure 6-4 2040 Projected Average CO2 Captured from Four Different Fossil 

Fired Power Plants for the Late Rain Season (Max. Temperature = 𝟑𝟒°𝑪) 86 



xiii 

Figure 6-5 2040 Projected Average CO2 Captured from Four Different Fossil 

Fired Power Plants for the Harmattan Season (Max. Temperature = 𝟑𝟑°𝑪)
 .................................................................................................................. 87 

Figure 6-6 Monthly Average Temperature Variation at the Operational Site [110]
 .................................................................................................................. 88 

Figure 6-7 Variation of EL2500RD GT Power Output with Change in Ambient 
Temperature at Different Power Settings .................................................. 92 

Figure 6-8 Variation of EL1200-R GT Power Output with Change in Ambient 
Temperature at Different Power Settings .................................................. 93 

Figure 6-9 Variation of EL2500RD GT Fuel Flow with Change in Ambient 
Temperature at Different Power Settings .................................................. 94 

Figure 6-10 Variation of EL1200-R Fuel Flow with Change in Ambient 
Temperature at Different Power Settings .................................................. 95 

Figure 6-11 Variation of EL2500RD GT Thermal Efficiency with Change in 
Ambient Temperature at Different Power Settings .................................... 95 

Figure 6-12 Variation of EL1200-R GT Thermal Efficiency with Change in 
Ambient Temperature at Different Power Settings .................................... 97 

Figure 6-13 Variation of EL2500RD GT Heat Rate with Change in Ambient 
Temperature at Different Power Settings .................................................. 97 

Figure 6-14 Variation of EL1200-R GT Heat Rate with Change in Ambient 
Temperature at Different Power Settings .................................................. 98 

Figure 6-15  Economic Performance of the GT Mechanical Drive in the Four 
Power Generation Plants (25 Years Plant Life) ....................................... 106 

Figure 6-16 Economic Performance of the GT Mechanical Drives Considering 
Emission Index of 0.21kgCO2/kWh (25 years Plant Life) ........................ 108 

Figure 6-17 Effect of Discount Rate on the Net Present Value of the 33.9 MW 
GT ........................................................................................................... 109 

Figure 6-18 Effect of Discount Rate on Payback Period of the 33.9 MW GT . 110 

Figure 6-19 Effect of Discount Rate on the NPV and PBP of the 9.4 MW GT 110 

Figure 6-20 Effect of Fuel Cost on the Net Present Value of the 33.9 MW GT
 ................................................................................................................ 111 

Figure 6-21 Effect of Fuel Cost on Payback Period of the 33.9 MW GT ........ 112 

Figure 6-22 Effect of Fuel Cost on the NPV and PBP of the 9.4 MW GT ....... 112 

Figure 6-23 Variation of Pressure with Changing CO2 Throughput at Standard 

Condition (24″-Pipe Size) ........................................................................ 120 



xiv 

Figure 6-24 Variation of Pressure with Changing CO2 Throughput at Standard
 ................................................................................................................ 120 

Figure 6-25 Variation of Pressure with Changing CO2 Throughput at Standard 

Condition (12¾″-Pipe Size) ..................................................................... 121 

Figure 6-26 Variation of Flow Reynolds Number with CO2 Throughput ......... 121 

Figure 6-27 Variation of Pressure along the Pipeline Profile for the Chosen Pipe 
Sizes at Standard Condition (CO2 Throughput = 3.7MTPY) .................... 122 

Figure 6-28 Variation of Pressure along the Study Profile and Flat Profile in the 
12¾″- Pipe at Standard Condition (CO2 Throughput = 3.7MTPY) ........... 124 

 

 



xv 

LIST OF TABLES 

Table 5-1 Map Numbers and Corresponding Pressure ratios .......................... 73 

Table 5-2 Comparison of Simulated Design Point Performance Parameters with 
OEM .......................................................................................................... 76 

Table 6-1 Simulated Design Point Performance Parameters for EL2500RD 
Compared with OEM ................................................................................. 91 

Table 6-2 Simulated Design Point Performance Parameters for EL1200-R 
Compared with OEM ................................................................................. 91 

Table 6-3 Assumptions for the Economic Analyses ....................................... 106 

Table 6-4 Parameter Values of Pipeline ......................................................... 116 





xvii 

NOMENCLATURE 

∆H change in head 

∆P 

∆Pic 

pressure drop 

pressure drop in intercooler 

∆T change in temperature 

∆Z change in elevation 

°C 

°F 

Ar 

API 

ARR 

ASU 

AZEP 

degrees Celsius 

degrees Fahrenheit 

argon 

American petroleum institute 

accounting rate of return 

air separation unit 

advanced zero emission power plant 

bar 

BEP 

bhp 

CCGT 

CCGT-PP 

CCS 

CDM 

CHP 

COAL-PP 

CH4 

CO 

unit of pressure 

best efficiency point 

brake horse power 

combined cycle gas turbine 

combined cycle gas turbine power plant 

carbon capture and sequestration 

clean development mechanism 

combine heat and power 

coal power generation plant 

methane 

carbon monoxide 

CO2 carbon dioxide 

Cp specific heat at constant pressure 

Cv specific heat at constant volume 

D 

DEV 

DP 

DLE 

pipe diameter 

deviation 

design point 

dry low emission 



xviii 

EFF 

EGT 

EHM 

EIA 

EOR 

EPRI 

ft 

efficiency 

exhaust gas temperature 

engine health monitoring 

energy information administration 

enhanced oil recovery 

electric power research institute 

feet 

G 

GE 

GHG 

acceleration due to gravity 

general electric 

greenhouse gas 

GT 

GT-PP 

g/kg 

HP 

HRSG 

HF 

HCI 

gas turbine 

gas turbine power generation plant 

gram per kilogram 

horse power 

heat recovery steam generator 

hydrogen fluoride 

hydrochloric acid 

Hactual actual head 

Had adiabatic head 

Hd head at discharge 

Helevation head loss due to elevation 

Hf head loss due to friction 

Hpoly polytropic head 

Hs head at suction 

Htotal 

H2 

H2O 

H2S 

IRR 

ISA 

ISO 

total head loss  

hydrogen 

water 

hydrogen sulphide 

internal rate of return 

international standard atmospheres 

international organisation for standardisation 

K kelvin 



xix 

Km 

kgCO2/kwh 

Kg/m3 

kilometre 

kilogram carbon dioxide per kilowatt hour 

kilogram per cubic metre 

kg/sec; kg/s 

kg/min 

kilogram per second 

kilogram per minute 

KJ/kg 

KJ/kwhr 

kilo joules per kilogram 

kilo joules per kilowatt hour 

KPa kilo Pascal 

KW 

KWh 

kilo watt 

kilowatt- hour 

L 

LAER 

LHV 

M 

MJ/kg 

Max 

length of pipe 

lowest available emission rate 

lower heating value 

million 

mega joules per kilogram 

maximum 

m 

mm 

mmscfd 

mass flow rate, metre 

millimetre 

million standard cubic feet per day 

m3/kg cubic metre per kilogram  

m3/sec 

m3/min 

m3/hr 

cubic metre per second 

cubic metre per minute 

cubic metre per hour 

MPa 

MEA 

mega Pascal 

mono-ethanolamine 

MTPY  

MTBF 

MTTR 

million tonnes per year 

mean time between failure 

mean time to repair 

MW 

MWh 

mega watt 

megawatt hour 

mw molecular weight 

N number of stages; compressor speed 



xx 

NPSH 

N2 

net positive suction head 

nitrogen 

n polytropic factor 

Nm newton metre   

Nm/kg newton metre / per kilogram  

Nm/sec newton metre / per second  

NPV 

NOx 

O2 

O & M 

OEM 

ONG-PP 

OPEX 

net present value 

oxides of nitrogen 

oxygen 

operation and maintenance 

original equipment manufacturer 

oil and natural gas dual fired power plant 

operating expenditure 

P 

POLY  

PR 

psia 

psig 

power; pressure 

polytropic 

pressure ratio 

pounds per square inch atmosphere 

pounds per square inch gauge 

Pave 

PBP 

average pressure 

payback period 

Pd discharge pressure 

Ppoly polytropic power 

PR-EOS Peng –Robinson equation of state 

Ps suction pressure 

Pshaft shaft power 

Q volume flow rate, actual flow 

R specific gas constant 

R & D  research and development 

Re 

r 

Reynolds number 

compression ratio 

ri stage compression ratio 

Ro universal gas constant 



xxi 

SCADA 

SCMD 

SFADW 

SFEFF 

SFPR 

SOAP 

SOx 

SO2 

supervisory control and data acquisition 

standard cubic metre per day 

corrected non dimensional mass flow scale factor 

efficiency scale factor 

pressure ratio scale factor 

spectrometric oil analysis program 

oxides of sulphur 

sulphur dioxide 

T 

TERA 

TET 

TR 

ton 

temperature 

techno-economic and environmental risk analysis 

turbine entry temperature 

temperature ratio 

tonne  

T(in-pump) pump inlet temperature 

T(out-comp) discharge temperature of compressor 

Td discharge temperature 

Ts 

UHC 

UK 

US 

USA 

suction temperature 

unburnt hydrocarbon 

United Kingdom 

United State 

United States of America 

V 

VIGV 

VS 

VSV 

W 

£ 2013M 

specific volume; velocity 

variable inlet guide vane 

variable stators 

variable stator vanes 

mass flow 

year 2013 pounds sterling value in million 

Wpump pump power  

Wref refrigeration power  

Z 

ZEPP 

compressibility factor 

zero emission oxy-fuel power plant 

Zave average compressibility factor 



xxii 

Zs 

% 

£ 

£/kW 

£/kg 

£/kW-year 

£/kWh 

£/MWh 

£/ton CO2 

suction compressibility factor 

percentage 

British pound sterling 

pounds per kilowatt 

pounds per kilogram 

pounds per kilowatt year 

pounds per kilowatt hour 

pounds per megawatt hour 

pounds per tonne of carbon dioxide 

γ, ϵ  ratio of specific heats 

Π pi 

𝛍 dynamic viscosity  

𝛶 

δ 

θ 

specific gravity 

corrected pressure 

corrected temperature 

𝜼mech mechanical efficiency 

𝜼poly polytropic efficiency 

𝜼pump 

𝜼DP  

𝜼DP Map 

pump efficiency 

efficiency at design point 

efficiency at design point of map 

𝝆 

″ 

density  

inch 

 

 



 

1 

1 General Introduction 

1.1 Research Background 

Gas turbines are extensively used in pipelines to compress gas at suitable 

points. The objective of this study is to look at carbon dioxide (CO2) return 

pipelines and the close coupling of the compression system with advanced 

prime mover cycles. The investigation involves a comparative assessment of 

traditional and novel prime mover options including the design and off-design 

performance of the engine as well as the economic analysis of the system. The 

originality of the work lies in the technical and economic optimisation of gas 

turbines based on current and novel cycles for a novel pipeline application in a 

wide range of operating conditions. 

1.2 Environmental Concern and the CCS Technology 

There are environmental concerns that the release of greenhouse gases (GHG) 

into the atmosphere is attributed to the global warming manifestation in the 

earth’s climatic condition. The main anthropogenic GHG is carbon dioxide 

(CO2); and CO2 is produced through combined action of widespread fossil fuel 

combustion, deforestation and range of industrial processes. However, power 

generation plants burning fossil-fuel has been identified as the major source of 

anthropogenic CO2 [1-3].  

In the light of the above, there have been policy shift to generate power by 

environmentally friendly means. Sequel, much research and development in the 

use of so-called renewable energy had led to huge investment in wind turbines, 

bio-fuels, solar energy and even Nuclear power generation plants. Despite the 

environmental concerns, it is almost certain that in many years to come, there 

will be no substitute for fossil-fuel fired power generation plants due to obvious 

realities surrounding these renewables when cost and plant availability comes 

to play. In fact, the current attention to non- conventional sources of fossil fuel 

like oil sand and oil shale attest to this; so also is the current desire to use coal / 

coal-derived fuels for power generation in the so-called “clean coal” 

technologies. 
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For sustainability, it becomes imperative that power generation from fossil- fuel 

fired power plants implement strategies to mitigate the release of CO2 into the 

atmosphere. It is therefore envisioned, that in the near future new power 

generation plants will be carbon capture ready while existing ones are retrofitted 

with carbon capture systems.  

This vision currently pursued under the carbon capture and sequestration 

(CCS) technology [4; 5], essentially involves capturing the CO2 at source, then 

transporting and storing it in depleted reservoirs, saline aquifers, or its use for 

enhanced oil recovery (EOR) in depleted oil and gas fields [1]. CCS is expected 

to provide 20% reduction of CO2 in the low carbon power generation initiatives 

in order to meet the target of stabilising CO2 concentration at 450 parts per 

million by volume in the atmosphere [6].  Figure 1-1 below shows the various 

means of capturing CO2 emission from power generation plants as well as 

process plants. 

 

Figure 1-1 CO2 Capture Systems 

Source: [1] 

Large quantities of CO2 will be produced; and unfortunately, most sources of 

CO2 emission are usually not located near the point of storage. Therefore, 

transportation over long distance is envisaged. The use of vessels, tanks or 

barges as a means of transportation in this situation is deemed uneconomical. 
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For long distance and large volumes, pipeline has been identified as a primary 

means of transportation and current practice [7-10]. The requirement to 

compress the CO2 to pipeline operating pressure as well as sustain the 

pressure of the CO2 along the pipeline into the sink (point of storage) becomes 

an area of concern. 

The compression duty per se will demand a viable prime mover such as the gas 

turbine (GT) that has proven very successful in pipeline application. This novel 

application of GT will necessarily demand techno-economic analysis. Such 

analyses coupled with risk assessment will provide basis for a well informed 

decision prior to investment which this study seek to address. 

1.3 The TERA Philosophy 

TERA is an acronym for Techno-Economic and Environmental Risk Analysis, a 

concept developed in Cranfield University, UK for holistic assessment of power 

plants with the sole aim of making an educative judgement by comparing and 

contrasting competing schemes before embarking on investment [11; 12]. It was 

originally developed for the aviation propulsion system; however, over the years 

it has been extended to industrial GT applications in power generation, marine 

transport and the oil and gas sector [13-16]. It has also been employed in asset 

management by evaluating case scenarios in order to assess the trade-offs 

involved. Hence, TERA has been described by Raja etal [13] as “a 

multidisciplinary tool for modelling of GT and engine asset management”.  

TERA enable reasonable quantification of risk and it provides a formal and 

consistent platform to compare and rank novel and existing power plants. 

This becomes particularly important in areas where there are no prior 

experiences to hold unto for decision-making. Thus, scarce resources can be 

utilised in the most efficient and profitable manner.  

The core of the TERA is the performance module which is a detailed and 

rigorous thermodynamic representation of the components parameters and 

power plant by simulating the design, off-design and degraded performance of 

the power plant.  The economic, environmental and risk modules are built 
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around the performance module and integrated with an optimiser to compare 

power plants optimised for a particular duty such as fuel consumption and 

operating cost. 

1.4 Aim and Objectives 

The aim of this research is to investigate the application of GT as prime mover 

for transmission of CO2 in pipeline over long distance. This aim was achieved 

through the following set objectives: 

 Simulation of design and off-design performance of GT mechanical drive 

for pipeline application 

 Estimating CO2 pump and compressor power requirement  

 Modification of an in–house GT simulation code by developing 

subroutines to implement variable stators in the GT compressor  

 Development of economic and pipeline hydraulic models and the 

adapting of existing emission model to perform techno - economic  and 

environmental risk analysis 

1.5 Contribution 

This research has made the following contribution to knowledge: 

i. Development of computer algorithm to implement variable stators in an 

existing in-house GT simulation code (Variflow). 

ii. Development of a flexible economic simulation code based on NPV 

method for GT application assessment.  

iii. Development of a robust pipeline hydraulic model using fundamental flow 

equation to analyse the CO2 pressure distribution along a real life 

pipeline profile. 

iv. Using the TERA approach to provide an economic evaluation of 

employing GT mechanical drive for CO2 compression. 

1.6 Thesis Structure 

This thesis consists of seven (7) chapters beginning with a general introduction 

and a conclusion. Each chapter begins with a background information or brief 
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introduction. It is structured in such a way that every chapter build upon the 

previous one. Apart from the first and last chapter, concluding remarks were 

presented at the end of the chapters. Chapters 4 – 6 contain the contributions 

by the author. 

Chapter 1 presents a general introduction to the study by highlighting the 

background of the study; discussion of environmental concern about CO2 and 

technology of its capture and storage away from the atmosphere; the 

philosophy of techno-economic and environmental risk analysis (TERA); the 

aim and objective of the study and finally the perceived contribution to 

knowledge. 

Chapter 2 presents the review of necessary literature upon which the study 

revolves around and the identification of the gap in knowledge which this study 

attempts to fill. The main areas of review are on GT mechanical drive 

performance; performance characteristics of GT driven equipment i.e. 

compressor and pumps; pipeline transmission of CO2 and the technicalities 

involved; brief insight into natural gas pipeline transport and a comparison 

between natural gas and CO2 pipeline transport. Other areas reviewed in this 

chapter are GT cost and economic performance evaluation methods. 

Chapter 3 presents the methodology of the study which is based on the TERA 

frame work established in Cranfield University. The real-life pipeline profile 

adapted for this study is highlighted as well as an overview of the Turbomatch 

scheme. 

Chapter 4 presents an EXCEL based computer model to evaluate the CO2 

compression power requirement using multi-stage centrifugal compressors; 

results analysis and the effect of intercooler pressure drop on the compression 

power; simulation of CO2 compressibility factor based on the Peng-Robinson 

equation of state and its validation. 

Chapter 5 presents the modification of an in-house GT simulation code known 

as “Variflow” which has the capability of using other working fluid. The 

implementation of variable stators for performance enhancement of single-shaft 
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GT is discussed; the associated subroutine development in FORTRAN; 

compressor map modification and the validation of the code. 

Chapter 6 presents the techno-economic and environmental risk analysis of 

deploying GT in a CO2 pipeline. It begins with the description of the case 

scenarios, then the design and off-design performance analyses of selected GT 

mechanical drives; economic and pipeline hydraulic analysis modelling in 

FOTRAN; pipeline flow simulation; economic and risk performance simulation 

through case scenario studies; and a brief summary of the case scenario 

findings. 

Chapter 7 is the final chapter. It presents conclusions drawn from findings and 

results obtained in the entire research work. Recommendations for further work 

is highlighted. 
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2 Literature Review 

2.1 Introduction 

The review of relevant documents is presented here. An overview of gas turbine 

(GT), its performance and application to pipeline is conducted. The review of 

GT driven equipment (compressors and pump) and technical requirements for 

CO2 compression for pipeline transport is carried out. This chapter equally 

highlights the gap in knowledge which this study seeks to fill. 

2.2 The Gas Turbine  

GTs also known as air-breathing engines work on the basic thermodynamic 

principle of the Brayton Cycle. The GT (Figure 2-1 below) is made up of three 

main interconnected components namely: compressor, combustion chamber or 

combustor and turbine [17]. Atmospheric air is basically compressed in the 

compressor; delivered to the combustor in a regulated manner where it mixes 

with fuel and ignited; and the combustion product is expanded in the turbine to 

extract power. The components are connected via shaft(s) which in modest 

configuration is referred to as a simple cycle.  

 

Figure 2-1 Pictorial View of a Cut-Away GT Engine (Courtesy GE) 

GT simple cycle could either be single shaft or multi-shaft depending on the 

operation requirement. When an operation requires flexibility like in marine or 
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pipeline application where there is changing power requirement, multi-shaft 

arrangement becomes necessary otherwise a single shaft is ideal. Part-load 

performance can also be enhanced in GT cycles by the use of bleed valves and 

variable inlet guide vanes (VIGV). 

Major manufacturers of GTs otherwise called the OEMs (Original Equipment 

Manufacturers) among others include Rolls Royce, General Electric, Siemens, 

Pratt and Whitney, Westinghouse and Alstom. 

2.2.1 Open and Closed Cycle Gas Turbine 

Most GT cycles in current use are the open cycle type in the sense that energy 

addition takes place by adding fuel directly to the working fluid in a combustion 

chamber. Upon expansion in the turbine, the combustion product is released to 

the surrounding. Another kind of GT cycle is the closed cycle, where the 

working fluid is repeatedly circulated in the system instead of discharging it into 

the atmosphere. Energy is transferred to the working fluid via heat exchanger 

which implies both the working fluid and the turbine component have no direct 

contact with the source of heat (i.e. the combustion products). The closed cycle 

GT is rarely used but still being developed with lots of advantages been 

advanced for it [17]. When used, it is of the regenerative type usually 

incorporating intercoolers for effectiveness of the regenerator. The intercooler 

reduces the temperature of the working fluid at entrance to the compressor, 

thereby reducing compressor outlet temperature for improved temperature 

gradient across the regenerator. Owing to the heat exchange surface involved, 

the turbine entry temperature in closed cycle GT is always limited to about 

1100K [18]. 

2.2.2 Advanced Cycle Gas Turbine 

Early GTs were characterised by low turbine inlet temperatures, low power 

output and poor thermal efficiency. These were tied to the level of technology 

available and mechanical integrity issues. However, with advancement in 

material technology, GT inlet temperature has risen over the years from 1200 K 

in the 1950’s to over 1800 K today [19; 20].  
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The power output of a GT is affected by component inefficiencies, compressor 

pressure ratio and turbine inlet temperature. In an effort to improve the 

performance of GT, the simple cycle GTs have been modified by introduction of 

other components and are known as advanced GT cycles [17; 21; 22]. GT 

cycles have been incorporated with systems like recuperator, intercooler, reheat 

and steam injection or combination thereof to improve the cycle efficiency and 

its overall performance. 

Other modifications include inlet air cooling; and the addition of a steam turbine 

at the hot end of a GT cycle to form a combined cycle configuration. In this 

configuration, the GT is referred to as the topping cycle while the steam turbine 

is referred to as the bottoming cycle. The bottoming cycle essentially uses the 

topping cycle’s exhaust, typically at a temperature of 500°C-600°C to convert 

water to steam in a heat recovery steam generator (HRSG) which is used to 

drive the turbine for power generation [17]. The combined cycle GT (CCGT) has 

brought tremendous improvement to both power output and cycle efficiency. 

The CCGT is widely replacing older power generating plants because of the 

added advantage of comparative environmental friendliness in its efficient 

utilisation of the exhaust gas temperature from the topping cycle. It equally 

gives a significant reduction in specific fuel consumption and improvement in 

the overall cycle efficiency [23; 24]. 

Simple cycle GTs with thermal efficiencies in the order of 40% and in combined 

cycle configuration in order of 60% are currently achieved [25-27]. Similarly, the 

latest fleets of GT offer features such as advanced combustion systems, multi-

fuel capabilities and reduced maintenance [28].. 

2.2.3 Novel Gas Turbine Cycles for Oxy – Fuel Power Generation 

A modified GT cycle which substantially eliminates emission of NOx or other 

pollutants, and which efficiently collects CO2 for beneficial use or elimination is 

explored here. Oxy-fuel combustion involves the use of nearly pure oxygen 

(O2) for combustion instead of air. The near pure oxygen (95 – 99% purity) is 

produced in a low temperature (cryogenic) air separation unit (ASU); or 

membranes in the near future [29]. It essentially removes nitrogen from the 



 

10 

combustion process, there by producing flue gas that is mainly CO2 and H2O. 

The flue gas is cooled down to condense the water vapour and subsequently 

dried and purified for pipeline delivery to storage. Oxy-fuel combustion capture 

gives nearly 100% efficient CO2 capture with the net flue gas containing 80-98% 

CO2 by volume depending on the fuel used and the oxy-fuel combustion 

process [1]. 

The modification of the GT cycle for adaptation to this process has led to novel 

GT cycles that are currently being investigated [1; 18; 18; 26; 29-33]. The 

Matiant and Graz cycles configurations are known forms of these novel cycles. 

The former employs features like intercooling between compressors, reheat and 

recuperation while the latter incorporates a heat recovery steam generator to 

add a bottoming steam cycle to the GT cycle. Other modification exists like 

replacing the GT combustor with a reactor system integrating the ASU, the 

recuperating unit and the combustion unit.  They are known by several names 

such as Semi-closed Cycle GT [33]; zero emission oxy-fuel power plant (ZEPP) 

[29] and advanced zero emission power plant (AZEP)[1; 31].  

 

Figure 2-2 Principle of Oxy-Fuel Gas Turbine Combined Cycle 

Source:  [8] 
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The working fluid is basically CO2 with some degree of impurity depending on 

the purity of the fuel and O2 used for combustion [29; 31]. The Ulizar’s semi-

closed cycle GT for instance contains argon (Ar) as an impurity [18].  

A typical configuration of the oxy-fuel GT in a combined cycle mode is shown in 

Figure 2-2 above. The working principle involves the burning of the coal gas fuel 

with high pressure O2 and recycled flue gas in the combustion chamber. The 

burning of fuel in pure O2 results in a very high temperature, thus the flue gas or 

combustion product (CO2 and H2O) is usually recycled to control this 

temperature. Upon expansion in the GT to extract power, the flue gas at a 

temperature of about 600°C is used in a steam generator to convert water into 

steam and further power extracted by expansion in a steam turbine. The 

exhaust flue gas passes through the condenser and cooler to remove H2O and 

cool down the flue gas which is majorly CO2 and traces of O2, H2O and any 

other fuel bound impurity. Part of the CO2 is recycled while a major percentage 

is captured, purified and compressed to required pressure for sequestration.  

The performance of these cycles is said to yield efficiencies in the range of 40-

47% depending on the technology and over 50% for the combined cycle 

configuration. However, these efficiencies are highly penalised by parasitic 

loads brought about by the requirement to separate O2 from air and the capture 

and compression of CO2 to desired pressure [29; 31]. 

2.3 Overview of Gas Turbine Application 

The initial development of GT was for electric power application but was 

unsuccessful due to far better performance of existing steam turbines and 

diesel engine. However, its application in military jet engine at the end of World 

War II became its first major contribution [17; 34]. GTs can be broadly divided 

into two types based on application, namely, aero GT engines and industrial GT 

engines. Aero engines are used for aircraft propulsion; they are quite compact; 

have high power to weight ratio; operate at high turbine inlet temperature and 

high pressure ratio ~ 35. They are designed to be very efficient and reliable and 

depending on either civil or military application, component life may or may not 

be a requirement.  
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The industrial GT engines are further grouped into two: the aero-derivative GT 

and the heavy duty GT [35]. They are generally designed based on the 

requirement for power, availability, reliability and maintainability (extended time 

between overhauls and ease of maintenance [36]. The aero-derivative GTs 

were designed based on aero- application requirements; hence, they retain 

similar features mentioned above. They are quick to load; majorly of the civil 

aircraft application type thereby having medium component life and good fuel 

economy; have thermal efficiency up to 42% [17; 37]. 

The heavy duty GTs have relative low power to weight ratio since they were not 

initially designed to fly and quite bulky. They are characterised by slower 

loading depending on size; have moderate pressure ratio of 10–18; and have 

thermal efficiency of about 30-38%. They are generally designed for long life of 

components. In the early 1960s, there exist significant technological gap 

between the aero-derivative and the heavy duty GTs but in the last 30yrs, this 

gap has been reduced considerably. Nowadays, they share same technological 

development there by closing in the gap [17; 38]  

Current applications of GT are as follows: 

i. Electrical power generation where they are used for base load, peaking 

load and emergency load applications. 

ii. Combine heat and power (CHP) or cogeneration 

iii. Marine propulsion primarily used in combination with either a diesel 

engine or steam turbine engine.   

iv. Pipeline transmission. 

The sizes of GTs are quantified based on application. When used for power 

generation, they are measured in Kilowatt (KW) or Megawatt (MW) and when 

used as mechanical drives, they are measured in Horsepower (HP). 
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2.4 The Gas Turbine Prime Mover 

Essentially, prime movers are used to drive a pump or compressor in a pipeline 

network. The GT is one out of four primary types of prime movers used in 

pipeline application. Others are steam turbine, reciprocating engine, and electric 

motor drive [39-43].  

The prime mover key requirements for mechanical drive in order of importance 

are [44]: 

i. Low weight, for easy transportation to remote location 

ii. Good base load thermal efficiency due to near 100% utilisation 

iii. High availability and reliability 

iv. Reasonable part power torque to allow for varying compressor/pump 

duty. 

GTs are widely used as drivers on gas transmission system especially as they 

are generally most appropriate for driving centrifugal compressors now 

commonly used in pipeline gas compression [40]. They match the operating 

range of the compressors which is usually between 50 – 105% of the 

compressor rated speed or even lower [39; 45]. GTs for pipeline application 

requires flexibility; hence they are normally designed with a mechanically 

independent turbine otherwise known as a free power turbine. This result in a 

twin shaft configuration and sometime referred to as split-shaft mechanical drive 

GT. These GTs are in two parts, namely the gas generator and the free power 

turbine (see Figure 2-3 below). 

The combination of the compressor module, combustor module, and turbine 

module is known as the gas generator. The free power turbine is 

aerodynamically coupled to the gas generator while the driven equipment is 

mechanically (directly or indirectly via gear-box) coupled to the free power 

turbine [34; 39]. This configuration allows the gas generator to run at different 

speed with the power turbine. Hence the power turbine can be designed to run 

at typical centrifugal compressor and pump operating speeds [37]. 
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Figure 2-3 Twin Shaft Gas Turbine 

Source: [46] 

In the aero-derivatives, the nozzle of either a turbojet or turbofan engine is 

replaced by a free power turbine. The modular arrangement, high power to 

weight ratio and compact size of these GTs are features that permit easy 

transportation and maintenance. This becomes very important noting the fact 

that most compressor stations are in remote areas.  

The aero-derivatives are more fuel efficient compared to the heavy frame 

industrial GTs because of their stringent design features. Compared to steam 

turbines they are even better. Similar comparison between an all motor drive 

and GT drive favours the latter from the perspective of losses due to electrical 

generation and transmission. 

GTs for pipeline application are manufactured in the power brackets of 6 - 10 

MW, 15 MW and 25 - 30 MW [44]. In these power brackets, the high power to 

weight ratio of GTs gives them an edge over the high speed diesel engines and 

steam turbines. GTs with low pressure ratio and turbine inlet temperature 

leading to thermal efficiencies ~33% are custom designed for the lower power 

bracket. Industrial engines built by Solar, Siemens and Nuovo pignone as well 
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as aero-derivatives like Allison 501 are common examples. Simple cycle, free 

power turbine aero-derivatives are usually used for the mid and high power 

brackets. Typical efficiencies of these turbines are between 35-39% with turbine 

inlet temperatures ~1450 – 1550 K across a pressure ratio of 20:1 to 25:1. The 

Rolls-Royce industrial RB211 and GE LM2500 are common GTs used in this 

power divide [17]. 

The power output of GTs could adversely be affected by changing 

environmental conditions especially ambient temperature. GTs are also 

disadvantaged by the fact that they burn expensive and clean fuel. Typical 

consumption of GTs operating on natural gas pipeline is about 7-10% of the 

pipeline throughput for compression purposes [17; 44]. However, given the 

tremendous improvement in GT cycle efficiency, widespread availability of 

gaseous fuel and current price level, the GT will remain a favoured prime mover 

in this application. 

2.5 Gas Turbine Availability and Reliability 

Availability is the amount of time equipment operates relative to the amount of 

time it is required to operate. In order words, it is the ratio between the hours 

per year that the equipment actually operates to the hours per year the 

equipment is supposed to operate [47; 48]. Thus availability takes into account 

the total equipment down time which could be due to a planned or unplanned 

maintenance. Reliability on the other hand is the ability of the equipment to 

perform the desired function without any forced outage or unplanned 

maintenance. Reliability depends on the GT design, manufacturing process, 

operating environment and quality control. 

Availability is a function of both mean time between failure (MTBF) defined by 

reliability and down time (or mean time to repair - MTTR) defined by schedule 

maintenance required for efficient operation and unplanned maintenance. 

Therefore, availability (A) may be expressed mathematically as [49]: 

𝑨 =
𝑴𝑻𝑩𝑭

𝑴𝑻𝑩𝑭+𝑴𝑻𝑻𝑹
       [Eq. 2-1] 



 

16 

When forced outages are experienced, the associated down time is hinged on 

the length of time taken to complete the repairs or maintenance action. In GT 

engine, forced outages often emanate from engine support systems such as 

control and fuel systems. The systems’ down time are efficiently managed 

through design of redundancy and holding of appropriate spares. Similarly, 

sophistication in instrumentation and the use of microprocessor based 

controllers today has further enhanced the availability of these engine support 

systems. 

The forced outage caused by the major components that make up the GT 

engine e.g. the compressor and turbine leads to a very long down time. This is 

partly due to the fact that they are rarely held in spares because of cost 

consideration and the continuous improvement in their design. However, GTs 

have high reliability and their availability has further being enhanced through 

modular design. Another enhancement of availability is through the 

implementation of engine health monitoring (EHM). EHM employs methods of 

vibration monitoring, oil analysis (e.g. SOAP or ferrography), visual inspection 

and performance monitoring to detect time-dependent failures in GT with a view 

of correcting such before causing a forced outage [50]. 

Availability affects the economic performance of GT in that revenue is lost 

because of the inability of the GT to provide the full duty required in a given 

application. The loss of income in this particular application will be the reduction 

of pipeline throughput or the cost of using alternative power supply within the 

period of carrying out repairs or maintenance. 

2.6 Pipeline Transmission of CO2 

The economics for transporting large volumes of CO2 over long distance in the 

gaseous phase is quite unfavourable [10; 51; 52]. This is because such pure 

gas phase transportation will be restricted to operate below 30 - 50 bar at which 

the densities and capacities will be too small. However, the pure gas phase will 

fit a system where the CO2 is initially transported on gathering lines from low 

CO2 producers for connection to larger trunk pipelines [10]. 
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Low pressure liquid phase is not desirable either except for transportation in 

vessels, tanks and barges. The liquid phase for pipeline transportation comes 

with problems of frost formation in cold climate and the need for pipeline 

material suitable for cryogenic application. Furthermore, unlike natural gas, the 

critical point of CO2 is near the potential compressor (and pipeline) operating 

point such that slight changes in ambient temperature or soil temperature for a 

buried pipeline can result in two-phase flow [51]. 

Abrupt pressure drops occasioned by two phase flows and the detrimental 

effect of impurities must be avoided during CO2 transmission in pipeline. Hence, 

CO2 is said to be most efficiently transported in a dense-phase state especially 

for onshore pipelines [7; 51; 53; 54]. The dense phase transport gives an 

advantage for high delivery pressure at injection to sink [1]. 

 In general, the CO2 is transported at temperature and pressure ranges of 12°C 

-  44°C and 85 – 150 bar respectively [7; 39]. The upper temperature limit is 

fixed by the compressor-station discharge temperature while the lower limit is 

fixed by winter ground temperature for buried pipelines. The lower pressure limit 

is dictated by the phase behaviour of CO2 especially with impurities present and 

the need to maintain supercritical conditions while the upper pressure limit is 

mostly due to economic concerns [7]. 

Highly recommended within this pipeline operating conditions is the “API 5L X-

70” line pipe specification in the US Code of Federal Regulations - CFR (the 

CFR regulates the design, construction and operation of CO2 pipeline transport 

in the USA) [8; 55; 55]. Similarly, the ASME-ANSI class 900# flanges are quite 

suitable since they can tolerate operating pressure of about 153 bar (15.3 MPa) 

at a temperature of about 311.15 K (38°C) [39; 51]. Further insight into CO2 

pipeline design, construction and operation are documented in references [39] 

and [56]. 

2.6.1 Physical Property of Pure CO2 

Since the captured CO2 will be transported in pipeline in a dense phase 

condition, an insight into the phase behaviour of pure CO2 (Figure 2-4 below) is 
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worthwhile for operational exigencies. CO2 in its pure state is colourless, 

odourless and non-inflammable at ambient temperature and pressure [7].   

 

Figure 2-4  Phase Diagram for Pure CO2 

Source:  [57]  

Two distinct points can be observed namely the triple point (5 bar, - 56°C) and 

the critical point (74 bar, 31°C). At the triple point, CO2 can exist as solid, liquid 

or gas. Above the critical point, the pure CO2 is in a supercritical phase where it 

acts as neither gas nor liquid [54]. At pressures above the critical pressure but 

below the critical temperature, a fluid is said to be in a dense phase else it is 

non-dense phase. Note in Figure 2-4 above, that the dense phase could be 

achieved without passing the liquid area. The dense phase is a very peculiar 

state in that on one hand it is not a liquid because it has a viscosity similar to 

that of a gas; while on the other hand its density is closer to that of a liquid and 

has similar flow conditions as that of a liquid [10; 53]. This presents the 

opportunity to pump the CO2 with either a pump or compressor during 

transmission.  

2.6.2 Impurities in the Captured CO2 

The captured CO2 due to technical and economic reasons contain impurities 

which have great impact on the physical properties of the CO2 being 
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transported [58; 59]. The consequence of this, manifest itself on the design, 

operation, and cost of CO2 transport. The type of fuel used and the capture 

process employed dictates the kind and level of impurities involved.  Li and Yan 

[53] in an exhaustive study categorised these impurities into two parts: 

impurities from air and fuels, such as oxygen (O2), nitrogen (N2), methane 

(CH4), argon (Ar) and hydrogen sulphide (H2S); and impurities from combustion 

products, such as oxides of sulphur (SOx), water (H2O) and oxides of nitrogen 

(NOx). Other air pollutants include particulates, hydrochloric acid (HCI), 

hydrogen fluoride (HF), mercury, other metals and other trace organic and 

inorganic contaminants. H2 is also present in pre-combustion processes as an 

impurity [1; 59]. 

The effect of impurities like H2, O2 and N2 in the CO2 is to operate at higher 

pressures to avoid two – phase flow in the system, hence, an increase in power 

requirement. In like manner, inert gases and CH4 must be reduced to a low 

concentration to avoid 2-phase flow [1; 59] . Although the presence of H2O 

relatively decreases the power requirement [60]; in order to prevent water 

condensation and corrosion in pipelines and to allow the use of conventional 

carbon-steel materials, the CO2 must be dried and free of H2S [1; 59; 61]. A field 

study estimated corrosion rate of 0.00025 – 0.0025 mm per year without the 

presence of H2O [54]; therefore, there is risk of increased corrosion rate if the 

CO2 is not dehydrated. 

2.6.3 CO2 Flow Capacity 

The CO2 flow capacities from source of emission are usually quantified in 

million tonnes per year which can be reduced to appropriate units during flow 

analysis in pipeline. Several factors determine the amount of CO2 flow namely 

[10; 39; 62] : 

 CO2 density which depends on the phase condition  

 Internal pipe diameter 

 Distance between booster stations  

 Hydraulic pressure gradient  
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 Temperature of the transported CO2 (both initial temperature after 

compression and the ambient temperature)  

 CO2 fluid viscosity   

 Internal pipe wall roughness and  

 The pipeline profile or terrain 

2.6.4 Temperature Range of Buried Pipeline 

Pipelines transporting fluids are usually buried for environmental, security and 

safety reasons. The stability of underground temperature compared to surface 

temperatures is also a major consideration. At ambient temperature of 36.5°𝐶, 

the ground surface temperature at noon was observed to be about 65°𝐶 while at 

one meter depth underground, the temperature was found to be 30°𝐶 [63]. 

In temperate regions the soil temperature is said to vary from below zero in 

winter to 6 − 8°𝐶 in summer while in the tropics the soil temperature may reach 

up to 20°𝐶  [10; 39; 62]. Therefore, a buried pipeline for dense phase CO2 

transmission is envisaged to be advantageous despite the associated increase 

in pipeline investment cost. 

2.6.5 CO2 Compression  

Prior to transportation in pipeline, the captured CO2 after due cleaning 

(scrubbing) is compressed to pipeline operating pressure with the aid of 

mechanical driven equipment – compressors or pumps as the case may be.  

Further compression may be necessary; hence compressor or pump stations 

are located along the pipeline profile. The main objective here is to ensure the 

CO2 is introduced into the pipeline at the right pressure and ensure the 

sustenance of the CO2 pressure above a minimum designated pressure during 

transmission along the pipeline profile. 

The amount of impurities present in the CO2 impact on the compression work 

requirement. The presence of Ar, O2 and N2 is said to increase the compression 

work while impurities like SO2 and H2O could decrease this work [60]. The 

temperature and pressure ranges that give the most economical dense phase 
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flow in pipeline are 15 - 30°C and 100 - 150 bar respectively [53]. In line with 

most studies, the CO2 is compressed from an initial pressure of 1bar to pipeline 

intake pressure of about 150bar using a combination of centrifugal compressor 

and pump. Effective compression of the CO2 is achieved with intercoolers 

(intercooler temperature always above condensing temperature of the CO2 

stream) while at inlet to the pipeline after-coolers are employed [10; 39; 54; 56; 

63-65].  

2.7 Natural Gas Pipeline and Compression Stations 

For many years, natural gas has been transported in pipeline for both domestic 

and international consumption. Being the most convenient means, natural gas 

transport in pipeline is still very popular and remains a significant mechanism for 

gas delivery to markets [66]. The pipeline could be underground, over-ground or 

subsea and the pipeline is designed in such a way as to quickly and efficiently 

transport natural gas from its origin to area of need. The size of existing gas 

pipelines range from 6″ to 56″ in diameter; e.g. the West African Gas Pipeline 

main line is 20″ while the Trinidad Cross Island Pipeline is 56″. Depending on 

the purpose, natural gas pipelines are classified in three categories as: 

i. Gathering pipelines- which are short (couple of hundred meters) and 

small diameter pipelines used for conveying natural gas from nearby 

wells to a treatment plant or processing facility.  

ii. Transportation Pipelines- these category of pipelines are usually long 

distance pipes with large diameters conveying gas between cities, 

countries and even across continents. The long distance associated with 

this pipeline makes the network to incorporate compressor station along 

the gas line. 

iii. Distribution Pipelines- these are essentially series of interconnected 

small diameter pipelines used for delivering the gas to the consumer. 

These are usually found in terminals where the gas products are 

distributed to tanks and storage facilities for onward distribution to homes 

and industrial users through feeder lines. 
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2.7.1 Elements of a Pipeline System 

The main elements of a pipeline system are shown in Figure 2-5 below. It 

comprises pieces of equipment arranged in such a way as to facilitate the safe 

movement of gas from one point to another.  The functions of these elements 

are highlighted below: 

 

 

Figure 2-5 Pipeline Transportation Schematic    

(Adapted from [66]) 

 

i. Initial Injection Station 

This is the starting point of a pipeline transport system. Here the initial 

pressure boost to pipeline operating pressure is achieved before 

introducing the gas to the pipeline. This station houses a storage facility 

and compressors/pumps.   

 

ii. Partial Delivery Station 

This is also called an intermediate station whose function is to allow part 

delivery of the gas or product being transported along the line. This is 

usually the case where the pipeline is designed to feed different locations 

along the line.  
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iii. Compressor/Pump Station 

This is otherwise known as booster station. Depending on the kind of 

fluid being transported and the pressure loss along the pipeline; pump or 

compressors are located at strategic points to boost the line pressure. 

This station maintains the line pressure to ensure the delivery point 

pressure is achieved. 

iv. Block Valve Stations 

These serve as gateway; in that they are used to divert flow along a 

certain pipe segment during maintenance work, or isolate a leak or 

rupture.  The nature of product being transported, the pipeline profile and 

conditions along the line determines the location of these stations. They 

are usually located near critical locations such as road and river crossing 

or in urban areas. They are said to be located every 20 to 30miles 

(48km) along gas pipeline.  

v. Final Delivery Station 

It is also called delivery terminal. This is the point where the gas is 

distributed to the end users via distribution network or delivered to tanks 

in case of liquid.  

Other elements include regulator stations located downhill along the pipeline 

profile for pressure relief and metering stations for flow measurement along 

the pipeline. Pigging is another element of pipeline operation where 

sophisticated robotic devices are routinely sent down the pipeline to carry out 

inspection for corrosion and detection of defects to ensure safe pipeline 

operation. The functioning of all these elements are linked together via a central 

control station facilitated by the supervisory control and data acquisition 

(SCADA) systems. Pipelines are nowadays monitored and operated using 

sophisticated SCADA systems. SCADA systems regulate pressure and flow by 

monitoring and controlling the compressor/pump stations as well as the 

positions of valves. SCADA systems work in real time to perform such functions 

as alarm processing, leak detection, hydraulic analysis, throughput analysis, 

and other functions deemed critical to the safe operation of the pipeline [7]. 
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2.8 Comparison between CO2 and Natural Gas Pipelines  

It is well known that there are extensive oil and gas pipeline network all over the 

world; hence it is often thought that these existing pipelines could be used for 

CO2 transmission. Also, the maximum design pressure for a natural gas pipeline 

system is between 50 - 150 bar [56; 59; 64; 67]. Thus the vast majority of 

existing pipeline which are made of carbon steel will be metallurgically suitable 

for CO2 transmission, especially if the CO2 is sufficiently dry and meets the 

quality specification required by the CCS. Therefore, the techno-economic 

experience of natural gas transport can easily be adopted for the CO2 case.  

While this is possible in principle, there are technical limitations. First, oil and 

gas pipelines are normally operated between pressures above 48 bar (700 psig) 

and about 82 bar (1186 psig) [7]. In other to keep the CO2 in dense phase 

pressures above 80 bar are expected while CO2 pipelines are expected to 

operate at pressures within the range of 100 – 200 bar to avoid two phase flow 

and considering the effect of impurities (existing CO2 pipelines operate at 

pressures between 85 - 150 bar). 

Second, methane which is the main component of natural gas has critical 

pressure of 46.2 bar and critical temperature of - 83°C as against critical 

pressure and temperature of 74 bar and 31°C respectively for CO2. Thus their 

flow properties differ considerably. Given the higher critical temperature of CO2, 

at typical gas pipeline operating pressure, the CO2 is in the dense or liquid 

phase. 

Third, the nature and operating condition of CO2 pipeline will require a tailored 

hydraulic design and analyses to facilitate the safe operation of the pipeline. 

2.9 Cost Evaluation of CO2 Compression Duty/ Knowledge Gap  

The literature is awash with cost prediction models of CO2 pipeline transport [9]. 

A segment of CO2 pipeline transport that has not be given desired attention is 

the system’s energy or compression duty required to move the CO2 in the 

pipeline to point of storage. In studies where the analysis of the compression 

duty is considered, the required energy for compression is either treated as an 



 

25 

efficiency penalty on the overall power generation plant’s efficiency or assumed 

to be supplied from the grid. Hence the existing energy cost models are merely 

a quantification of the power consumption by the compressor or pump through 

established thermodynamic equations [8; 54; 56; 63; 64; 68].  

The power consumption of the compression process is said to be about 40% of 

the auxiliary load and could constitute 8-12% of the power plants output [60]. 

Thus, the energy consumed is huge in economic terms and the need for an 

alternative source of energy becomes desirable. Similarly, the power 

requirement for booster stations in remote locations along a trunk pipeline 

where the cost of transporting electricity becomes prohibitive necessitates a 

suitable prime mover. On the merit of GTs being extensively used in pipelines to 

compress gas at suitable points, they become prime mover of choice for this 

duty. While considerable operational experience had been gathered in natural 

gas transmission, the same is not true for CO2 transmission especially as the 

properties and behaviour of the gases are quite different. Furthermore, the CCS 

as an emerging technology needs to explore all available alternatives to enable 

an informed decision by policy makers in the near future when its enforcement 

is envisaged. Sequel, the application of this prime mover for CO2 pipeline 

compression duty will require a techno-economic and environmental risk 

assessment. Thus a gap in knowledge exists which this study attempts to 

bridge. 

2.10 Review of Techno-Economics for Gas Turbine Application 

in Pipeline 

The only known work on this subject is the one by Nasir [69] in Cranfield 

University, UK. In this study, adapting an existing pipeline profile, the techno-

economics of using GT as prime mover on natural gas pipeline was conducted. 

The optimization of compressor station along the pipeline profile was 

investigated. The study also made comparative assessment of choosing either 

a GT or electric motor drive under a given operating condition. The study 

concludes that the cost of compression reduces with increase in pipe size; 

however, an increase in pipe size implies pipe material cost rise. Although the 
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converse is true for reduced pipe size; in comparison the increase in operating 

cost far outweighs the savings in pipe material cost. Also for a specific pipe size 

and set pressure ratio, the higher the throughput, the higher the compression 

power requirement. This implies higher operating cost due to more fuel 

consumption for any increase power demand. The study also concluded that 

under-sizing a pipe for a particular duty due to anticipated fluctuations in flow 

capacity is deemed economically unviable and unprofitable in this application. In 

addition, an economic pipe size is only determined from the interaction between 

the operating cost and pipe material cost for a particular throughput. Even so, 

the profitability could be jeopardised if the throughput is below a certain 

minimum value required to break-even. Also worthy of mention from the study, 

is the conclusion reached after a comparative analysis of GT emission with the 

off-site emission from a coal power generation plant that “electric drive may at 

first seem better in terms of environmental pollution, from the electricity 

generation today and in the near future, the use of electric motor contributes 

more to environmental pollution than does GT. Electric drive may not be a 

viable drive option for an interstate pipeline which often passes through areas 

where electricity grid is usually not available”. 

2.11 Gas Turbine Driven Compression Equipment 

Traditionally, gas compression employs the use of high speed reciprocating or 

diaphragm compressors. However, compression is achieved nowadays by 

using variable speed electric motor or GT driven centrifugal compressors 

because of advantage of better efficiency, oil free compression and less 

maintenance cost [60]. 

Compared to natural gas, CO2 has much lower speed of sound due to its higher 

molecular weight leading to high Mach numbers, thereby reducing the operating 

range of many compressors [51]. See Figure 2-6 below. 
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Figure 2-6 Operating Range of Centrifugal Compressor Compared to Other Types  

Source: [70] 

 

Figure 2-7 Operating Range of Compressors and Centrifugal Pumps 

Source: [65] 

In order to save compression power, it is proposed that compression of the CO2 

can be done using compressor /pump train. Provided there is sufficient cooling, 
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power saving of about 5 - 15% is said to be achieved when pumps are 

introduced at compressor discharge pressure of 100 – 130 bar to further 

compress the CO2 to very high pressures [54; 63; 65; 71]. Within this pressure 

range, integrally geared compressor technically gives best economy due to 

gains from intercooling. Figure 2-7 above shows the operating ranges of 

compressor/pump train as a function of inlet mas flow for a CO2 application. 

2.11.1 Centrifugal Compressor 

Centrifugal compressors belong to the category of compressors known as 

dynamic compressors or turbo-compressors. It achieves compression (pressure 

rise accompanied by a decrease in volume and increase in temperature) by 

imparting inertial force (acceleration, deceleration and turning) to the gas by 

means of rotating impellers and stationary diffusers. Centrifugal compressors 

are made up of one or more stages - a stage consists of an impeller and 

diffuser (vaned or vane less) from the manufacturer’s perspective. A stage may 

also refer to several combinations of impeller/diffuser separated by intercoolers 

within a compressor. Figure 2-8 below shows a cut-away view of a typical 

centrifugal compressor. 

 

Figure 2-8 Cut-Away View of a Typical Centrifugal Compressor 

Source: [45]  

The compact nature of centrifugal compressors and the ability to operate at 

higher speed over a fair range of inlet conditions give them the advantage to 

cope with the high density of CO2 and the high flow rate from most CO2 

recovery schemes. In particular, the CO2 centrifugal compressor has high 
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power density i.e. for the same power consumption compared to the natural gas 

compressor; it is physically smaller. 

Novel internally cooled centrifugal compressors are currently been developed 

that give some promising features in significant reduction in power 

consumption. They work on the principle of isothermal compression with 

integral gear design for inter-stage cooling flexibility and optimization of flow 

coefficient in the choice of most favourable rotating speed for each pair of 

impellers at both low and high pressure [40; 54; 60; 72]. Very high performance 

supersonic CO2 compressors have equally been proposed to reduce the 

number of stages to two or three as against the 6-staged conventional ones 

[73].  

2.11.2 Centrifugal Compressor Performance 

Compressors are designed to operate at the best efficiency point (see 

Figure 2-9 below ) corresponding to a distinct head (pressure ratio) and actual 

inlet flow, below or above which losses (aerodynamic and/or mechanical) are 

incurred; hence reduction in efficiency. 

 

Figure 2-9  Compressor Head versus Flow Relationship at Constant Speed 

Source: [45]  
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A collection of operating points over speed ranges give what is known as the 

compressor performance map or characteristic shown in Figure 2-10 below. 

This is always provided by the manufacturer and is obtained from rig test 

conducted on the equipment. The operational envelope of the compressor is 

limited by surge (or stall) for lower flows at high head; and choke (or stonewalls) 

for large flows at low head. The surge control line prevents the compressor from 

surge while depending on the manufacturer; the choke limit may be relaxed so 

long as a positive head is maintained. In practice, a choked condition is reached 

when the head falls below a certain percentage of the head at best efficiency 

point [45; 74; 75]. 

The amount of head is also limited by available power, the minimum and 

maximum speed limit of the compressor, and temperature variation. The speed 

limit which is imposed by stress limit in the compressor can be improved by the 

use of beam style compressor as against the overhung design. The addition of 

inter stage cooling reduces the effect of temperature. 

 

Figure 2-10 Typical Compressor Map (Variable Speed) 

Source: [51] 
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The compressor performance characteristics do not change and its interaction 

with the system it operates determines the operating point on the compressor. 

System parameters that determine operating point on the compressor include 

molecular weight of fluid, suction pressure and discharge pressure [75]. 

Therefore, the system (pipeline duty) must be carefully matched with the 

compressor performance to give a cost-effective compressor capacity utilisation 

[45].   

 

Figure 2-11 Composite Maps for Two Compressors Operating in Series and in 

Parallel 

Source: [74] modified 

For a power limited compression system, the range of operations of two or more 

compressors can be extended by either operating them in parallel or in 

series(see Figure 2-11 above) to obtain an increased capacity or higher head 

(pressure ratio) respectively. However, it is often economical to operate the 

compressor at full load while keeping the others shut down as stand-by than to 

operate at part-load. The centrifugal compressor is favoured by its ability to 

operate at full power [45; 51]. Compression power is dependent on the available 

driver power (often reduced by gear efficiency when a gear connection is used) 

and the compressor safe operating limits (i.e. head, mass flow and efficiency) or 

compressor characteristic. Actual power requirement of the compressor is 
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determined by stage – wise (polytropic) analysis to account for the changing 

thermodynamic parameters influenced by temperature and presence of 

impurities. The isentropic values can be used for the preliminary selection, while 

the performance is corrected with the stage wise analysis. 

2.11.3 Centrifugal Compressor Selection 

Generally, compressors are designed and manufactured to meet the process 

demand or requirements as specified by the user. The user must have a good 

understanding of the system resistance or characteristics to guide the 

recommendation of control system to the manufacturer. Hence they are said to 

be tailor made. Centrifugal compressor selection requirement include among 

others: 

 Composition of gas to be compressed 

 Flow range (mass flow in kg/min or volume flow rate in m3/min) 

 Inlet temperature and pressure ranges for each operating condition 

 Pressure ratio required or discharge pressure 

 Type of driver and 

 Economic consideration (capital and service operating cost) 

Centrifugal compressors has typical flow ranges of 500 m3/hr to 300,000 m3/hr 

and multi-stage pressure ratios of over 20 could be attained. The fact that 

compressors do not always operate at rated best efficiency point due to process 

demand, families of frames are usually developed by manufacturers that cover 

range of possible flow rate. This ensures engineering and manufacturing cost 

optimization [76]. The guidance code for centrifugal compressor selection can 

be found in API 617. 

2.11.4 Centrifugal Pump 

Centrifugal pumps fall in the class of pumps referred to as rotor dynamic 

pumps.  They are simple, compact, less expensive, and reliable. Their ability to 

operate over a wide range of pressure and flows make them well suited for 

pipeline applications, hence, they are commonly used in the oil and gas 

industries. Centrifugal pumps are highly efficient and they can operate at very 
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high speeds. Existing centrifugal pumps can give an output of 25 MPa; although 

GE Oil & Gas claimed to have successfully pushed the discharge pressure to 

about 60 MPa [65; 76; 77]. 

Supercritical CO2 share some physical properties with light hydrocarbon like 

ethane which have been transported via pipeline using multistage pump of the 

type shown in Figure 2-12 below. Thus, existing experience with centrifugal 

pumps used in the petrochemical and process industries have influenced the 

technological development of centrifugal pump for supercritical CO2 application. 

A major design consideration with pumps is sealing. A seal primarily contain the 

fluid within the pressure envelope of the pump. Dry gas seals have been proven 

to give excellent results in these pumps while liquid seals are used in very high 

pressure application [65].  

 

 

Figure 2-12 A Typical Gas Turbine Driven Centrifugal CO2 Pump  

Source: [77] 

2.11.5 Centrifugal Pump Performance 

The purpose of the centrifugal pump is to move fluid at a specified flow rate 

while increasing the head or pressure. Thus, the performance of a centrifugal 

pump is similar to the centrifugal compressor; the only difference being that the 
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former ‘compresses’ liquid while the latter compresses gas [39; 78]. 

 

Figure 2-13 Performance Curve for a Centrifugal Pump at Constant Speed 

Source: [39] modified 

Figure 2-13 above depicts the head – discharge curve of a centrifugal pump. It 

is essential that they operate close to the optimum or best efficiency point; 

because similar to the centrifugal compressor, hydraulic losses occur at both 

extreme of the best efficiency point (BEP). The system or process flow 

determines the operating point on the pump performance curve. Operating the 

pump near shut-off leads to vibration causing losses; while operating beyond 

the optimum leads to losses manifesting in the form of cavitation and water 

hammer. Therefore, operating the pump within 60 – 120% of the efficiency is 

considered within safe limits. 

Centrifugal pump for CO2 application differ from the conventional ones due to 

some thermodynamic considerations accompanying the supercritical nature of 

the CO2 [65].  

 First, higher speed is required to give the required discharge pressure to 

meet the constraints in the number of stage as the CO2 gets warmer.  

 Second, the change in density and high compressibility factor due to the 

rising temperature during pumping must be accounted for in rated 
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power; hence stage by stage analysis demanding the use of polytropic 

parameters instead of isentropic ones becomes obvious. 

 Third, the effect of impurities a times is to shift the pump duty to a higher 

pressure differential which implies more power consumption. In addition, 

impurities like N2 and CH4 entrained in CO2 stream affect performance of 

seals which is an essential component of the pump. Seals are 

manufactured and selected based on the suction temperature and 

pressure, temperature range of pump operation, rotational speed and 

diameter of the shaft. 

 Fourth, the pump will be used downstream of the compressor in this 

application, so optimization for pump suction pressure should be 

determined against the constraint of refrigeration or cooling required at 

pump suction for a cost- effective pumping. 

Pumps in CO2 application are expected to operate within pressure and 

temperature ranges of 86 – 150 bar and 26 - 35°C respectively. Therefore, net 

positive suction head (NPSH) is not a requirement even if the pressure falls to 

about 76bar since cavitation is impossible above critical pressure. NPSH is only 

a consideration when the pump is applied in cold / subcritical pressure 

operation [65; 77]. 

2.11.6 Pump Selection 

Pumps must meet the process requirement for efficient performance and cost 

savings. Optimum selection has significant beneficial effect on the life-cycle cost 

of a machine and driver. The selected pump must match the system resistance 

for known duty points. The expected flow variation and pressures must be 

carefully considered alongside the given pump performance curve. 

The driver to be selected equally guides the choice of pump. Factors like 

adequate NPSH at pump suction for all operating condition, modular 

arrangement for ease of maintenance and preference for barrel type pumps for 

multi-stage application are necessary selection criteria [79]. Other factors 

considered in pump selection include seals, bearings, couplings and 
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procurement [49]. The API 610 provides a guidance to pump design and 

selection. 

2.12 Gas Turbine Emissions 

More than ever, there is growing concern about the adverse effect of power 

generation exhaust on the environment and the need to cut down on this 

emission. The wide acceptance of GT as prime movers for both mechanical 

drive and electrical power generation has brought to the fore - front the issue of 

its emissions. In fact the thrust of this study is predicated on emission reduction 

issues.  

 

Figure 2-14 Gas Turbine Emissions  

(Adapted from [80]) 

All combustion systems including that of GTs produce pollutants namely carbon 

dioxide (CO2), oxides of nitrogen (NOx), oxides of sulphur (SOx), Carbon 

Monoxide (CO), Unburnt Hydrocarbons (UHC) and smoke / soot [17; 80]. SOx is 

a major component of acid rain while NOx in addition to acid rain, causes 

depletion of the ozone layer leading to incidence of skin cancer. Prolonged 
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exposure to NOx could cause respiratory illness, impaired vision, headache and 

allergies. 

NOx also reacts in the presence of sunlight to produce smog (brownish cloud). 

CO causes asphyxiation (reduction in oxygen carrying capacity of the blood) 

and fatal if significantly inhaled. UHC can be toxic and could combine with NOx 

in a photochemical reaction to form toxic smog.  Although some of these 

pollutants are a small portion of the GT exhaust, the large flow of exhaust gas 

could lead to large quantities being released to the atmosphere.  

Strategies have been developed to reduce the concentration of these GT 

pollutants. Figure 2-14 above shows the dynamics involved in generating these 

pollutants. Sulphur content in a fuel can be removed since it determines the 

emission of SOx. CO and UHC are concerns at low engine power especially for 

industrial GT application of this nature where part-load operation is prevalent.  

However, the development of dry low emission (DLE) combustors in GT has 

considerably reduced the emission of NOx, UHC and CO [44].  

2.13 Gas Turbine CO2 Emission 

CO2 is the product of complete and efficient combustion of fuel containing 

carbon e.g. natural gas which is the predominant fuel of GT. 

 

Figure 2-15 Carbon dioxide Emissions 

(Adapted from [80]) 
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CO2 is considered non – toxic; however, it is a GHG associated with global 

warming. The emission of CO2 depends primarily on the type, quality and 

quantity of fuel fired in the GT. The reduction of CO2 is achieved by improving 

the thermal efficiency of GT, thereby saving fuel burn.  Figure 2-15 above 

shows a modest projection of CO2 emission reduction with improved cycle 

efficiency. 

The improvement in thermal efficiency is tied to increase in combustor firing 

temperature. Incidentally, increase in firing temperature leads to formation of 

NOx. Thus, while material technology limit was thought to be a barrier to further 

improvement in efficiency, emission consideration constitutes another barrier. 

Apparently, the technological solution for carbon capture will have to be stepped 

up. 

2.14 Gas Turbine Cost Appraisal  

Important criteria that affect the economic success of GT in any application 

include initial cost, running cost (especially fuel cost), life cycle cost and 

emission. The choice of GT for a particular application has great impact on cost, 

fuel consumption, operational flexibility, as well as the availability [48].  

2.14.1 Capital Cost 

The capital cost of GT consists of the initial cost and installation cost. The initial 

cost is highly influenced by the level of technology which determines the design 

and the component materials. The requirement to derate the GT mechanical 

drive due to site ambient condition to provide the required power output is 

another factor that affects the initial cost. Installation cost include the labour and 

equipment cost required to install the GT on site. It also comprises the shipping 

cost and all operational cost incurred to bring the GT to working condition.  

2.14.2 Running Cost 

This is otherwise known as Operation and Maintenance (O & M) cost. The 

running cost includes routine maintenance (like change of lube oil and air 

filters), repairs and overhauls. It also include holding of spares and labour to 
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keep the GT in good working condition. Maintenance is either scheduled or 

condition based and could involve shut down of the engine. 

The cost of fuel contributes a large share to O & M cost in GT operation; in fact 

it could account for over two-third of the annual operating cost. The cost of fuel 

depends on the fuel consumption of the engine, the global oil and gas market 

price and the cost incurred in transporting the fuel to the point of use. In 

economic analysis, it is usually treated separately. 

2.14.3 Life-Cycle Cost 

During the life-time of the GT, other cost different from the O & M cost are 

usually incurred. These include the cost of insurance premiums and 

depreciation. It may also be in form of incentives as credit tax depending on the 

prevailing condition. 

2.14.4 Emission Cost 

The growing concern over the effect of GHG on the environment has seen 

many governments taking steps to cut down the emission especially from power 

generation plants. A major pointer to this, is the Kyoto Protocol of 1997 in Japan 

- where every participating country is saddled with the responsibility of 

restricting emissions below a certain limit [3]. Thus, regulations have been 

adopted to give CO2 (a major GHG) avoidance economic benefits. Owing to 

release of CO2 as by- product of combustion in GT engine to the atmosphere, 

the cost of its emission is considered in economic evaluation.  

2.15 Economic Evaluation Appraisal 

Generally, the deployment of GT as prime mover is a capital intensive 

investment. Its attractiveness to any potential investor will be tied to its 

economic benefit or financial gains.The GT prime movers are mostly designed 

for a plant life of about 25 years or more; thus, the value of investment projects 

into the future. The future is beclouded with uncertainties, thereby hinging the 

value of investment on factors of time, return on initial investment, and risk. The 

time factor deals with the sustainability of an investment over its entire life cycle 
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taking into account the returns. Returns are measured in terms of cash in–flow 

and out-flow in the investment taking into account the time value of money. Risk 

is a measure of uncertainty and volatility of returns because profit does not 

equal cash. Cash can have different values at different times and hence 

resulting profit. 

The bottom line being that, investment in GT prime mover for this application 

must be planned considering the dynamics of operability and marketability 

associated with futuristic projections. Several methods of evaluating the 

economic viability of projects can be found in literature [81-83]. These include: 

a. Net Present Value (NPV) method. 

b. Accounting Rate of Return (ARR). 

c. Payback and Discounted Payback methods. 

d. Internal Rate of Return (IRR) method. 

e. Levelized Costing method. 

Although all these methods could be used for economic appraisal of projects, in 

ranking of projects, some are deficient and would not give an accurate 

assessment. In comparison, the NPV method stands out to be least 

disadvantaged because it contains fewer assumptions and cannot easily be 

misapplied.  Furthermore, it is easy to interpret and it measures the value of 

investment which is of interest to the investor [81]. 

In this study, the NPV method was selected for the economic analysis 

presented in chapter 6. 

2.15.1 The Net Present Value (NPV) Method 

This is built upon a discounted cash flow analysis. The NPV takes into 

cognizance the time value of money and is defined as [81; 83]: 

𝐍𝐏𝐕 =  ∑ 𝐂𝐭 [𝟏 + 𝐢]−𝐭 − 𝐈𝐧
𝐭=𝟏        [Eq. 2-2]  

Ct  is the net cash flow at the end of year  t; i is the discount  rate; n is the 

project’s life span (in years); I is the initial cost of the investment. 
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Thus, the NPV is calculated by discounting the yearly cash flows over a 

project’s life time to a present value using a carefully selected rate of discount. 

The result obtained gives an estimate of the wealth generated by the project. 

The higher the positive value achieved, the better its attractiveness [82]. 

2.15.2 Pay Back Period 

The payback period (PBP) is an economic index used to evaluate how long it 

takes to recover the initial investment. In other words, PBP is the time taken for 

the cash out-flows of a project to equate the cash in-flows. Payback period is a 

measure of risk and does not measure profitability as it ignores cash inflows 

after payback [82]. Hence, an investment with a high positive NPV and long 

pay-back period may be potentially risky. The shorter the pay-back period of an 

investment the lesser the financial risk.  

The payback period based on the discounted cash flow analysis is defined as 

the minimum value of n that satisfies the equation: 

𝑰 −  ∑ 𝑪𝒕 [𝟏 + 𝒊]−𝒕 ≤ 𝟎𝒏
𝒕=𝟏       [Eq. 2-3] 

2.16 Concluding Remarks 

The basic essentials of the GT prime mover has been highlighted. The 

requirements of a CO2 transportation system; physical properties of CO2 and 

the performance characteristics of the GT driven equipment required for the 

compression processes has been reviewed. The very nature of the CO2 gas 

impacts on the design of the turbomachinery equipment especially the 

aerodynamics of the blades. The need to carry out assessment of the GT prime 

mover for CO2 pipeline application has also been identified as a gap in 

knowledge. Equally reviewed were the different economic evaluation criteria; 

since economic performance of the GT is of interest in this study. The next 

chapter presents the modus operandi employed to tackle the identified gap in 

knowledge.  
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3 Research Methodology 

3.1 Introduction 

This chapter presents the approach used in carrying out the analyses of this 

study in order to achieve the desired aim and objectives. It basically gives the 

description of the TERA frame work adapted to assess the application of gas 

turbine (GT) as prime mover in the pipeline transmission of CO2. 

3.2 TERA Framework for Gas Turbine- Driven CO2 Compression 

The assessment of GT for this kind of application requires accurate 

performance data of the selected GT prime mover, a robust economic model 

and considerations for technical and economic uncertainties (i.e. downtime, life-

cycle cost and annual inflation). In this light, a systematic framework for this 

assessment is embodied in the adapted TERA framework for GT – driven 

transmission of CO2 in pipeline summarized in Figure 3-1 below. It consists of 

four sets of integrated modules: Pipeline / Compression module, Engine 

Performance module, Emission module, and Economic module. The detailed 

description of the modules are itemised below. 

3.2.1 The Pipeline / Compression Module 

This module evaluates the power required by selected compressors and pumps 

to compress the CO2 from initial pressure to pipeline operating pressure. Codes 

based on standard equations for estimating energy required for the GT-driven 

equipment were developed (detailed analysis presented in the next chapter). 

The compression duty is of two kinds i.e. the initial pressure boost after capture 

and the pressure boost at booster station situated along the pipeline profile. 

Typical CO2 flow capacities from power generation plants obtained from 

literature were used for the analysis. 

In line with the reasoning adapted from [10; 54; 56; 65], the model assumes that 

at the initial pressure boost, compressor is used to boost the pressure from 1bar 

(0.1 MPa) to 100 bar (10 MPa); then a pump is introduced to compress it to 150 
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bar (15 MPa) which is the assumed pipeline operating pressure. At the booster 

station, pumps only will be required for recompression.  

 

Figure 3-1 TERA Framework for Gas Turbine–Driven CO2 Compression 
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However, the need for recompression or otherwise will have to be determined 

by evaluating the pressure distribution along the pipeline profile through 

hydraulic analysis of a given pipe diameter and CO2 throughput at stated 

conditions. In this regards, the pipeline aspect of the module employs a code 

developed by the author to simulate the pressure drop along an adapted real 

life pipeline profile (Sarir oil field to Tobruk terminal in Libya) - Figure 3-2 below 

to evaluate the pressure drop along the pipeline, hence delineating points of 

pressure boost. When the pipeline pressure falls below a set value, 

recompression is triggered. To ensure safety of pumps and in agreement with 

published works [84-86], 10MPa is set as minimum threshold for 

recompression.  

 

Figure 3-2 CO2 Pipeline Profile  

Source: [87] 

3.2.2 The Engine Performance Module 

Once the compression duty is established, a GT meeting the power requirement 

is selected and simulated in this module. The module uses in house GT 

simulation codes namely Turbomatch and Variflow to simulate the design 

point as well as predict off-design performances of the selected GT over 
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expected operating conditions. The GT simulation codes are written in 

FORTAN; hence the input files for these GTs were formulated in FORTRAN. 

 The Variflow code is especially useful for simulating purpose-built GT based on 

a novel GT cycle. The code has also been modified by the author to implement 

variable stator vanes in order to extend the off design performance simulation of 

single-shaft GT. 

3.2.3 The Emission Module 

The environmental impact of utilising GT as mechanical drive with respect to 

CO2 emission is addressed in this module. This module requires engine 

performance parameters (mass flow, fuel flow, combustor inlet pressure and 

temperature) from GT off-design performance results as input. The amount of 

CO2 in “g / kg of fuel” released into the atmosphere by the GT is obtained as 

output. Other output emission values include that for NOx, CO and UHC which 

is not considered here due to their current low level in industrial GTs. 

The Cranfield University emission code “HEPHAESTUS” is adopted for this 

work. The code uses a stirred reactor-based approach to predict gaseous 

emissions from a conventional GT combustor. It essentially quantifies the GT 

exhaust emission by the use of efficiency correlations and semi – empirical 

models [88]. 

3.2.4 The Economic Module 

The economic module code developed by the author receives technical data 

from the other modules to evaluate the profitability or otherwise of deploying GT 

as a prime mover in this application. A case scenario based evaluation of 

investment cost / risk in deploying GT using economic indices of net present 

value (NPV) and payback time (PBP) is conducted. The analysis is based on a 

year- by –year life cycle cost evaluation using a discounted cash flow model. 

The associated risk is presented as sensitivity studies on the effect of 

fluctuation in fuel price and CO2 throughput. 
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3.3 Turbomatch Scheme Overview 

The Turbomatch Scheme [89] is a GT simulation code developed in Cranfield 

University by the Department of Power and Propulsion, School of Engineering 

(now Centre for Propulsion Engineering, School of Aerospace, Transport and 

Manufacturing) to facilitate the calculation of design point and off-design point 

performance of existing and novel GT thermodynamic cycles. The code 

developed in FORTRAN programming language is user friendly and has been 

continuously improved to meet current design challenges.  

The scheme represents the thermodynamic parameters of various components 

of a GT engine with pre-programmed modular units called “Bricks” using the so 

called “Station Vectors” (the term “vector” by no means represents magnitude 

but an ordered set of numbers) and “Brick Data”. The bricks are code named 

using six capital letters which abbreviates or suggest its purpose e.g. COMPRE 

(compressor), NOZCON (convergent nozzle), TURBIN (turbine) etc. The bricks 

linked together using an interface “codeword” provides the ability to simulate the 

operational state of the engine’s different components. In so doing, result is 

obtained for the engine’s output power or thrust, fuel consumption, mass flow 

etc. The scheme assumes the GT uses kerosene fuel with lower heating value 

of 43 MJ/kg during the simulation. 

The detailed information of each component’s performance as well as the gas 

properties at every station is also provided. The simulation output or 

performance results are presented in “.txt” files; and in addition has the 

capability of extracting the parameters of the various components into excel to 

enable the user carry out desired performance analysis or comparison. The 

Turbomatch scheme is successfully used for aero, marine and industrial GT 

performance simulation in majority of projects conducted in Cranfield University 

3.4 Concluding Remarks 

The TERA framework as presented describes the content of the various 

modules. The application of the various modules in subsequent chapters to 

carry out required evaluation and analysis will give detail exposition of the 
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modules. The modules validity / level of confidence is presented in the sixth 

chapter. The compression aspect of the pipeline / compression module will be 

presented in the next chapter. 
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4 CO2 Compression Modelling 

4.1 Introduction 

This chapter presents the evaluation of the compression power requirement by 

the driven equipment (compressor/pump) to compress the carbon dioxide (CO2) 

to desired pipeline operating pressure in the dense phase state. An excel code 

was developed to simulate the required power. The simulation entails 

multistage compression power evaluation as well as consideration of pressure 

drop due to intercooling. During the initial compression, the CO2 is modelled as 

gas (vapour) up till 100 bar in the compressor and as a liquid in the pump to 

higher pressure ~ 150 bar. As the CO2 flow leaves the compressor, it is 

assumed cooled to 25°𝐶 at pump suction. Similarly, the CO2 re-compression at 

steady state isothermal transmission along the pipeline is modelled as a liquid. 

Existing works in CO2 compression / transmission [10; 54; 56; 63] adopted 

similar line of thought.  

Worthy of note however, is that internationally accepted flow simulation 

programs cannot be easily applied to CO2 in the dense phase as such 

programs simulate liquid and gaseous flows only.  The properties of the dense 

phase flow need to be studied and validated on real flow situation to modify 

these existing programs. 

4.2 Model Requirement 

The CO2 is expected to be compressed from atmospheric pressure (1 bar) to 

the pipeline intake pressure of 15 MPa (150 bar) using a combination of 

centrifugal compressor and centrifugal pump. At the suction end of the 

centrifugal compressor, the CO2 is kept at a maximum temperature of 40°C 

while the pump’s suction temperature is kept at 25°𝐶. Considering the limitation 

imposed by maximum head achievable and allowable temperature in the 

compressor, multistage compression with intercooling is simulated. 



 

50 

4.3 Modelling Assumptions 

a. The source of the CO2 is from fossil- fuelled power generation plants 

employing MEA (mono-ethanolamine) absorption method for post- 

combustion carbon capture. 

b. The CO2 is pure ignoring impurities (quality of the captured CO2 has been 

specified in the reports on CCS projects and pipeline specification found 

in references [8; 59; 90-93]  with a purity > 95.5 % by volume).  

c. The range of estimated CO2 flow rates in million tonnes per year (MTPY) 

from power generation plants are as obtained from references [1; 24; 94]. 

d. The Peng-Robinson equation of state (PR-EOS) is considered. 

e. Isothermal pipeline transmission of CO2 over an adapted pipeline profile.  

4.4 Modelling the Centrifugal Compressor Power 

Equations for evaluating the head, work or power of a centrifugal compressor in 

units of Nm/kg, Nm or Nm/sec respectively have been presented in literature. 

These equations are primarily used to evaluate the adiabatic head [Eq. 4-1]; 

and with slight modification the polytropic head [Eq. 4-2] as expressed below 

[45; 74; 76; 95].  

𝑯𝒂𝒅 = 𝑻𝒔 𝒁𝒂𝒗𝒆
𝑹𝒐

𝒎𝒘
 

𝜸

𝜸−𝟏
[(

𝑷𝒅

𝑷𝒔
)

𝜸−𝟏
𝜸

− 𝟏] (𝑲𝑱/𝒌𝒈)  [Eq. 4-1] 

𝑯𝒑𝒐𝒍𝒚 = 𝑻𝒔 𝒁𝒂𝒗𝒆
𝑹𝒐

𝒎𝒘
 

𝒏

𝒏−𝟏
[(

𝑷𝒅

𝑷𝒔
)

𝒏−𝟏
𝒏

− 𝟏] (𝑲𝑱/𝒌𝒈)  [Eq. 4-2] 

Where, 

𝜸 =
𝑪𝒑

𝑪𝒗
=  

𝑪𝒑

𝑪𝒑−𝑹
       [Eq. 4-3] 

𝒏

𝒏−𝟏
=

𝜸

𝜸−𝟏
𝜼𝒑𝒐𝒍𝒚       [Eq. 4-4] 
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Considering the “polytropic head” say, the required compression power or gas 

power as it is also called is defined by [Eq. 4-5] as 

𝑷𝒑𝒐𝒍𝒚 =
𝒎.𝑯𝒑𝒐𝒍𝒚

𝜼𝒑𝒐𝒍𝒚
  (𝑲𝑾)      [Eq. 4-5] 

And the shaft or prime mover power is given by [Eq. 4-6] as 

𝑷𝒔𝒉𝒂𝒇𝒕 =
𝒎.𝑯𝒑𝒐𝒍𝒚

𝜼𝒑𝒐𝒍𝒚
   

𝟏

𝜼𝒎𝒆𝒄𝒉
   (𝑲𝑾)     [Eq. 4-6] 

(Mechanical efficiency of about 87% was assumed in the simulation) 

In actual application, the compression process is rarely polytropic or adiabatic. 

Thus, to achieve estimate of the actual compression head, modifications such 

as the “Schultz polytropic head correction factor”; the Mollier diagrams, or the 

use of equations of state are readily explored [46; 54; 76; 96]. 

In the light of the above, the modelling of the centrifugal compressor power 

presented here was achieved using the PR –EOS [97]. The PR-EOS is said to 

be among the most precise and proper for engineering application [53; 76].  

Further reading about other equations of states, the Mollier diagram and the 

Schultz polytropic factor can be found in references [76; 96].  

[Eq. 4-1] and [Eq. 4-2] can be re-cast in terms of enthalpy difference between 

the suction and discharge states determined by any two of pressure, 

temperature and entropy of the compressed gas. Hence the actual compressor 

head, 𝐻𝑎𝑐𝑡𝑢𝑎𝑙 can be represented as [44; 56; 74; 76]; 

𝑯𝒂𝒄𝒕𝒖𝒂𝒍 = ∆𝑯 = 𝑯𝒅 − 𝑯𝒔      (𝑲𝑱/𝒌𝒈)    [Eq. 4-7] 

This is further defined as: 

𝑯𝒂𝒄𝒕𝒖𝒂𝒍 =  ∆𝑯 =  𝑯𝒅 − 𝑯𝒔 = ∆𝑯∗
𝑻𝒔 + ∫ 𝑪𝒑

𝑻𝒅

𝑻𝒔
𝒅𝑻 − ∆𝑯∗

𝑻𝒅   (𝑲𝑱/𝒌𝒈)

         [Eq. 4-8] 
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Where, the term ∆𝐻∗ is called the enthalpy departure function defined by the 

PR-EOS as: 

∆𝑯∗ = 𝑹𝑶𝑻(𝒁 − 𝟏) +
𝑻𝒅𝒂

𝒅𝑻
−𝒂

𝟐√𝟐𝒃
𝐥𝐧 (

𝒁+𝟐.𝟒𝟏𝟒𝑩

𝒁−𝟎.𝟒𝟏𝟒𝑩
)   [Eq. 4-9] 

(the terms of this equation are fully defined in [97]); 

𝑪𝒑 = 𝑪𝒑 (𝑻)        [Eq. 4-10] 

(the mathematical expression for [Eq. 4-10] specifically for CO2 is found in [44]. 

4.4.1 Modelling the PR- EOS for Compressibility Factor (Z) 

To fully solve [Eq. 4-8] for the actual head, the CO2 compressibility factor needs 

to be determined in order to evaluate ∆𝐻∗. To achieve this, an excel code was 

developed using the PR-EOS. From [97], compressibility is expressed as:  

𝒁𝟑 − (𝟏 − 𝑩)𝒁𝟐 + (𝑨 − 𝟑𝑩𝟐 − 𝟐𝑩)𝒁 − (𝑨𝑩 − 𝑩𝟐 − 𝑩𝟑) = 𝟎    [Eq. 4-11] 

Where, 

𝑨 =
𝒂𝑷

𝑹𝒐
𝟐𝑻𝟐

        [Eq. 4-12] 

𝑩 =  
𝒃𝑷

𝑹𝒐𝑻
        [Eq. 4-13] 

𝒁 =
𝑷𝒗

𝑹𝒐𝑻
        [Eq. 4-14] 

The terms a, b are fully defined in [97]. 

4.4.2 Thermodynamic Stage Compression Ratio 

The evaluation of the compression head is done in one or more stages of 

compression depending on the technology which is restricted by the allowable 

discharge temperature. The stage compression ratio is given by [39; 95; 96]  

𝒓𝒊 = (
𝑷𝒅

𝑷𝒔
)

𝟏

𝑵
        [Eq. 4-15] 
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Considering pressure drop due to intercooling, the stage compression ratio is 

defined in “Guide to European Compressors and their Applications” referenced 

in [49]  as, 

𝒓𝒊 = 𝟏. 𝟎𝟓 (
𝑷𝒅

𝑷𝒔
)

𝟏

𝑵
       [Eq. 4-16] 

1.05 is a factor of allowance for the pressure drop through intercooler and pipe 

work. 

In the course of this study, the effect of intercooler pressure drop in prime 

mover power was investigated; hence the author defines a new relationship for 

the stage compression ratio given by [Eq. 4-17] as: 

𝒓𝒊 = (𝟏 +  ∆𝑷𝒊𝒄) (
𝑷𝒅

𝑷𝒔
)

𝟏

𝑵
      [Eq. 4-17] 

Where 

 ∆Pic = % pressure drop in the intercooler. 

And for ∆𝑃𝑖𝑐 = 5%, [Eq. 4-17] reduces to [Eq. 4-16]. 

4.5 Modelling the CO2 Thermodynamic Properties 

The simulation of the power requirement for CO2 compression involves 

thermodynamic parameters that need to be adequately modelled. These include 

the following: 

4.5.1 Density and Viscosity 

The excel code of these parameters for CO2 was obtained from a personal 

communication with the author of the work in reference [98] who developed set 

of correlations for the two parameters using experimentally measured data from 

Kinder Morgan - a well-known CO2 transporter in USA. The code give density 

and viscosity estimates over temperature and pressure ranges likely to be 

encountered in CCS and is thus limited to −1.1 to 82.2 °𝐶 (temperature range) 

and 7.6 to 24.8 MPa (pressure range). Values obtained compares favourably 
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with those obtained from online CO2 property calculators like NatCarb and 

National Institute of Standards and Technology [64]. 

4.5.2 Discharge Pressure and Temperature 

The modelling of the discharge parameters from the driven equipment 

(compressor and pump) begins by specifying the suction (inlet) temperature and 

pressure. Equally important, is a reasonable assumption of compressor 

polytropic efficiency ( 𝜂𝑃𝑜𝑙𝑦  ) and pump efficiency. 

The CO2 from the carbon capture system is assumed to be at atmospheric 

pressure and cooled at inlet to the first stage of the compressor to about 40°C -

this temperature being the optimum from the capture process [8; 90; 91]. 

Constant inlet temperature is assumed at successive stages of the compressor 

for multi-stage compression. 

 With known inlet conditions, the discharge pressure and temperature are 

defined for compressor as [76; 95]: 

𝑷𝒅 = 𝑷𝒔𝒓𝒊        [Eq. 4-18] 

Considering pressure drop across intercoolers, the modelling of the suction 

pressure between stages becomes: 

𝑷𝒔 = (𝟏 −  ∆𝑷𝒊𝒄)𝑷𝒅       [Eq. 4-19] 

The average pressure due to non-linearity of flow in the pipeline is defined as 

[39]: 

  

𝑷𝒂𝒗𝒆 =
𝟐

𝟑
[𝑷𝒔 + 𝑷𝒅 − (

𝑷𝒔𝑷𝒅

𝑷𝒔+𝑷𝒅
)]     [Eq. 4-20] 

The discharge temperature on the other hand is given by the relationship, 

𝑻𝒅 = 𝑻𝒔𝒓𝒊

𝒏−𝟏
𝒏         [Eq. 4-21] 

Where the polytropic exponent - (
𝒏−𝟏

𝒏
 )  is as defined in [Eq. 4-4]. 
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At inlet to the pump, the suction temperature is maintained at 25°C through the 

use of aftercoolers. The temperature rise in the pump upon compression is 

given by [99] as: 

∆𝑻 =
𝑷(𝑲𝑾)∗(𝟏− 𝜼𝒑𝒖𝒎𝒑)

𝑪𝑷 ∗𝑸∗ 𝝆
       [Eq. 4-22] 

The value of ∆𝑻   is relevant to determine whether or not further cooling is 

required before the high pressure CO2 fluid is introduced into the pipeline. 

4.5.3 Specific Volume and Actual Flow 

The specific volume of the CO2 before and after compression can be evaluated 

accordingly by the relationship [76]; 

 𝒗 (𝒎𝟑

𝒌𝒈⁄ ) = 𝑹𝑶  
𝒁𝒔

𝒎𝒘

𝑻𝒔

𝑷𝒔
       [Eq. 4-23] 

With a known mass flow rate of the CO2, the suction volume flow rate can be 

obtained using the relationship [76]; 

 𝑸 (𝒎𝟑

𝒔𝒆𝒄⁄ ) =  𝒎𝒗        [Eq. 4-24] 

The volumetric flow rate (capacity) is used for compressor specification or size. 

Its condition is either stated as Normal [sea level, 0°𝐶 ]; Standard [101.325 KPa 

(14.7 psia), 20 °𝐶  or 68 °𝐹 , Rel. Humidity-36%] or Inlet [compressor suction 

condition] also referred to as Actual. In practice, the inlet condition is specified 

in units of ICFM (Inlet Cubic feet per minute); ACFM (Actual Cubic feet per 

minute); and Cubic metre per hour (m3/hr). 

4.6 Modelling the Centrifugal Pump Power 

The shaft power required by the pump is simulated keeping in mind the suction 

and expected discharge pressures, which in this case are 10 MPa and 15 MPa 

respectively. From [49; 56; 68];  

𝑾𝒑𝒖𝒎𝒑 =  
𝑸 (𝑷𝒅−𝑷𝒔)

𝜼𝒑𝒖𝒎𝒑
   (𝑲𝑾)     [Eq. 4-25] 

 𝑷𝒅, 𝑷𝒔 in MPa; 𝑄 in m3/sec; and  𝜼𝒑𝒖𝒎𝒑 in % 
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4.7 Simulating the Required Compression Power  

The power required for compression is evaluated for CO2 flow rate that will meet 

both available driver power and pipeline compressor actual suction capacity.  A 

maximum of 25 MW driver power is considered while the compressor is 

expected to operate at best efficiency over the chosen CO2 flow range. A design 

actual CO2 flow rate of 1.5 MTPY (~100,000m3/hr) at design speed which is 

within the operational limit specified for pipeline compressor (PCH) as shown in 

Figure 4-1 below is maintained. Inlet flows above and up to twice this capacity 

will be assumed driven by the same driver in a parallel flow arrangement. All 

simulated result is assumed to be at steady state. 

 

Figure 4-1 Centrifugal Compressor Selection Chart [Courtesy Hitachi Plant 

Technologies] 

A constant compressor polytropic efficiency value of 80% per stage was 

assumed for the simulation considering existing technology [73; 95; 100; 101]. 

However, it should be noted that the compressor efficiency value decreases in 

successive stages for multi-stage compression due to fouling, speed matching 

and mechanical constraints. A polytropic efficiency value of 90% was also used 

in the simulation to evaluate the effect of change in efficiency on the 

compressor head. A Pump efficiency of 75% was assumed in the simulation. A 
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10% increment on simulated power is applied to meet the API 617 minimum 

power margin specification for GT driver selection. 

4.8  Multi-stage Compression Simulation Analysis 

The simulated required CO2 compression power is presented in a graph of GT 

power against the CO2 flow rate for selected multistage compression. The 

choice of compression stages is guided by the need to evaluate the power 

requirement of existing CO2 compressor technology and novel compression 

processes. It is necessary to recall that compressor inlet temperature “𝑇𝑠” for 

each stage is specified as 40 °C and the discharge pressure “Pd” after the last 

stage as 100 bar.  Then, the CO2 is introduced into the pump after cooling to 25 

°C for further compression and cooling to pipeline inlet condition of Pin  = 150 

bar; Tin = 25 °C.  

The results obtained must be interpreted alongside an understanding of the 

system demand or characteristic, the compressor characteristic and available 

power to drive the compressor. The system demand in this case is such that a 

constant discharge pressure of 100 bar is required, thus the compressor must 

operate against a fixed head or discharge pressure irrespective of the amount 

of CO2 being compressed.  

To achieve this, consideration is given to the performance characteristic of the 

centrifugal compressor which to a very large extent is governed by the “Affinity 

laws” or “Fan-laws”. According to these laws, the behaviour of the centrifugal 

compressor at speeds other than design is such that the capacity varies directly 

as the speed; the head developed as the square of the speed and the power 

required as the cube of the speed. Thus, the compressor meets the process 

demand per se operating as close as possible to its best efficiency point by 

means of controls determined by the choice of driver. The controls include [48] : 

(i) variable speed control (refer to Figure 2-10), (ii) adjustable inlet guide vanes 

(iii) suction or discharge throttling, and (iv) recycle 
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Figure 4-2 Constant Discharge Pressure Control for a Gas Turbine Driven   

     Compressor  

(Adapted from [102]) 

Figure 4-2 above brings to light the issues being highlighted. Assuming a 10% 

head rise from the compressor’s design point to surge; the Affinity law dictates 

an approximate minimum speed of 95% of design speed to keep the discharge 

pressure constant with reducing capacity. The implication being that the 

compressor will operate safely at design operating point down to a minimum of 

about 50% rated flow to maintain desired system requirement. 

4.8.1 Validation of the Simulated Compressibility Factor (Z) 

The compressibility factor is crucial to the evaluation of required compression 

power. Therefore, the simulated CO2 compressibility values from the code 

developed using the PR-EOS was validated against the values obtained using 

Aspen HYSYS – commercial pipeline simulation software with built-in PR-EOS 

library.  
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Figure 4-3  Comparison between Simulated Compressibility Factor with PR- 

         EOS Property Table from Aspen-HYSYS for Pure CO2 at 40°C 

The simulated values show good agreement with Aspen-HYSYS as evident 

from the plot obtained in Figure 4-3 above. However, the PR-EOS like all other 

equations of state has limits of applicability. Thus, the code will give useful 

results from zero pressure and temperature to pressures and temperatures of 

about 30 MPa and 589.29 K respectively.  

The limitation highlighted above implies that the compressor head evaluation 

with [Eq. 4-8] will become inaccurate when fewer compression stages are 

analysed due to the very high discharge temperature. Interestingly, as one 

approaches this limit, there is no noticeable discrepancy between the result 

obtained with [Eq. 4-8] and [Eq. 4-7] which is without the enthalpy departure 

function term [Eq. 4-9]. 
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Figure 4-4 Comparison between [Eq. 4-7] and [Eq. 4-8] for Evaluating CO2 

Compression Power at High and Low Compression Ratio (r = 10 & 2.15 

respectively)  

Figure 4-4 above shows a comparison between results of compressor head 

obtained using [Eq. 4-7] and [Eq. 4-8] for a two-stage ( 𝒓 = 𝟏𝟎) and six-stage 

( 𝒓 = 𝟐. 𝟏𝟓) compression.  

The deviation between the two equations at the lower compression ratio can 

easily be observed due to the effect of the enthalpy departure factor [Eq. 4-9] 

accounted for in [Eq. 4-8]. However, at a higher compression ratio (𝒓 = 𝟏𝟎)  

with discharge temperature - “Td = 380K”, the two equations give similar results. 

Therefore, results obtained at temperatures above 589.29 K, when the PR-EOS 

become inapplicable is adjudged reasonable. It is worthy of mention that the 

maximum pressure required for the CO2 pipeline is 15 MPa which is within the 

EOS applicability range. 

4.8.2  Compression Power Saving with Compressor and pump 

Combination  

A saving in compression power requirement is said to be achieved when the 

CO2 compression is undertaken using a combination of compressor and pump.  

0

5

10

15

20

25

30

35

40

45

0.0 0.5 1.0 1.5 2.0 2.5

P
ri

m
e
 M

o
v

e
r 

P
o

w
e
r 

(M
W

)

CO2 (MTPY) 

[Eq. 4-8]; r = 10 [Eq. 4-7]; r = 10

[Eq. 4-8]; r = 2.15 [Eq. 4-7]; r = 2.15



 

61 

 

Figure 4-5  Comparison between 1- Stage Compression Power Requirement 

  using Compressor only and in Combination with Pump 

Indicated compression power saving of 5-15% is mentioned in literature for the 

compressor and pump combination [54; 63; 65; 71]. Ignoring material and seal 

restrictions, Figure 4-5 above technically demonstrates the proof of concept 

from the huge difference in GT power requirement when a compressor alone is 

used compared to its combination with pump. Analysis of the results obtained 

show a pump power of about 400 KW is required at maximum design CO2 

capacity and 15.2% saving in power with such combination.  

4.8.3  Power Requirement for 10, 8, and 6 Staged Compression and 

Effect of Intercooler Pressure Drop 

Figure 4-6, Figure 4-7, and Figure 4-8 below depict the GT power required for 

10, 8 and 6 compressor stages of CO2 compression respectively within the 

operating conditions earlier highlighted. The process requirement is to give a 

constant discharge pressure which is accomplished by varying the speed of the 

GT driver. In so doing, the compressor efficiently develops a constant head by 

lowering its speed at flows below the rated flow. As a result it can be observed 
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from the graphs that as the CO2 mass flow rate increases, the power 

requirement increases. 

 

Figure 4-6 Gas Turbine Power Requirement for a 10 - Stage CO2 Compression 

 

Figure 4-7 Gas Turbine Power Requirement for an 8 - Stage CO2 Compression 
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Figure 4-8 Gas Turbine Power Requirement for a 6 - Stage CO2 Compression 

Also deducible from the plots is the steady increase in compression power 

requirement as the intercooler pressure drop increases. This is necessary to 

ensure the required discharge pressure is attained during the compression 

process. 

At the rated flow of 1.5 MTPY, the power required considering 5% intercooler 

pressure drop (say) are 22.98 MW, 23.03 MW and 23.41 MW for the 10, 8, and 

6 compression stages respectively. The values indicate about 2% increase in 

power requirement as the number of stages reduces from 10 to 6 (compression 

ratios varying from 1.58 - 2.26). The rise in compressor head or otherwise rise 

in stage compression ratio with fewer stages accounts for this development.  

From the operational point of view, the increase in required power means 

increase in energy cost. However, this is a trade-off for the compactness and 

comparative light weight of centrifugal compressors with fewer numbers of 

stages which is advantageous during installation and scheduled maintenance. 

Another merit of the increase compressor head from the GT driver performance 

point of view is the ability to operate near design speed at rated compressor 

operating point, thus minimizing part load operation. This is so considering the 

fact that higher head per stage is achieved at higher compressor speed. 
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4.8.4  Power Requirement for 3 and 2 Staged Compression and 

Effect of Intercooler Pressure Drop 

Ignoring seal restriction with hope of advancement in material and 

manufacturing technology the power required for a 3 and 2- staged CO2 

compression as simulated are shown in Figure 4-9 and Figure 4-10 below. 

 

Figure 4-9 Gas Turbine Power Requirement for a 3 - Stage CO2 Compression 

 

Figure 4-10 Gas Turbine Power Requirement for a 2 - Stage CO2 Compression 
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The major motivation of going to this extreme is that this concept is being 

pursued by some CO2 centrifugal compressor manufacturers in recent times 

[73]. 

The 3-stage compression process gives a discharge temperature of about 198 - 

211°C over stage pressure ratio of 4.64 – 4.87.  On the other hand, the 2-stage 

compression whose stage pressure ratio varied from 10 - 10.5 has discharge 

temperature varying from 309 - 324°C respectively. The discharge temperatures 

from these processes are quite high. Assuming the CO2 is stable in the 

temperature range, given an effective cooling system, the amount of heat 

released could be tapped for other beneficial use e.g. in heat pumps. However, 

this is a subject that is beyond the scope of the current study. 

At the assumed rated compressor operating point and considering 5% 

intercooler pressure drop, the GT power required is 26.29MW and 30.38MW for 

the 3 and 2 –staged compression respectively. Although the power requirement 

is relatively high, its compactness and the competitive low price advocated by 

the OEMs will be a huge advantage over the conventional multistage centrifugal 

compressors. The required power could be lowered with better efficient designs 

making it more attractive for CO2 compression application.  

It could also be inferred from the plots obtained that compared to the 10, 8 and 

6 - staged compression, the effect of intercooler pressure drop is not so evident. 

This could be attributed to reduction in the number of intercoolers. 

4.8.5 Effect of Polytropic Efficiency on Compression Power 

Most centrifugal compressor technologies have efficiencies above 75% but 

below 90% [95]. The more efficiently the compression is achieved the lower the 

power required from the prime mover. The plot obtained in Figure 4-11 below 

buttress this point as a marked reduction in compression power is observed 

with increase in efficiency. In this particular efficiency variation, there is a 

remarkable 20% difference in the required compression power which is huge in 

economic terms. 
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Figure 4-11  Influence of Compressor Efficiency on Gas Turbine Power 

4.9 Concluding Remarks 

The requirement to compress CO2 to supercritical pressure brings the need for 

intercooling in multistage compression process. Thus, issues around the heat 

exchanger would require all necessary investigation to determine an optimum 

design for the CO2 system. The pressure drop across the intercooler need to be 

considered in the preliminary analysis of the required GT power. Although pure 

CO2 has been assumed, the impact of impurity on the compression power is still 

an area that should be researched. It will also be worthwhile to consider the use 

of other equations of state in order to compare values. 

The next chapter presents a modification of one of the in-house GT simulation 

code used for performance analysis. 
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5 Modification of Variflow Code 

5.1 Introduction 

Variflow is an in-house gas turbine (GT) performance simulation code 

developed in Cranfield University. Over the years it has been subject to 

improvement through modification of its subroutines to cater for specific needs. 

The need to further extend the off-design performance prediction of single shaft 

GT using this code prompted the modification discussed in this chapter. The 

modification done here is the implementation of variable stators. 

5.2 Performance Simulation of Industrial Gas Turbine 

The ability to represent GT engine data with models or codes that reflect the 

thermodynamic behaviour of such engines has become a necessity to OEM and 

users. The use of GT simulation codes or software in the design studies, 

performance prediction and diagnostic as well as life cycle analysis is a 

common trend nowadays. Performance prediction methods are well described 

in reference [17] and they form the basis of any GT simulation software / code. 

The area of interest in the current study, is performance prediction of industrial 

GT for mechanical drive application. The GT simulation consists of design point 

and off-design performance evaluation of selected GT from the public domain. 

The engine manufacturers will normally provide performance specification of GT 

at ISO (International Organisation for Standardisation) condition i.e. at 101.325 

KPa (14.696 psia), sea level, ambient pressure; 15 °𝐶  ambient temperature; 

60% relative humidity; and zero installation pressure losses [44]. Information 

usually provided include the power output, thermal efficiency (or heat rate), 

compressor pressure ratio, exhaust gas flow (or mass flow) and exhaust gas 

temperature. The design point performance of a selected engine is simulated to 

closely match its specification at ISO. Once the GT engine leaves the 

manufacturer’s bench, all measured performances are off-design. Hence, 

informed decisions or analysis are made based on the ability to predict the 

performance of the GT over its expected running range. A major off-design 
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variable is ambient temperature change whose influence over the GT power 

output is of utmost importance to the user. 

Economic consideration borne out of the likely nature of the CO2 pipeline 

operation requiring the GT driver to cope with varying power settings brings to 

fore the necessity for performance analysis. 

5.3 The Variflow Code 

The initial version of the Variflow code was developed and validated by a 

doctoral researcher in Cranfield University to enable the performance analysis 

of single shaft GT power cycles [103]. It is used for design point and off-design 

performance analysis and has the capabilities of handling different fuels and 

working fluids. In fact, the code was used extensively in Cranfield University to 

conduct research related to CO2 abatement in GT power cycles for the “IEA 

Greenhouse R&D Programme". The detailed simulation procedures and 

assumptions for the design point and off-design calculations can be found in 

reference [103].   

The Variflow code is written in FORTRAN and has undergone several 

modifications over the years. The most recent modification (in 2006) is the 

inclusion of water injection and division of the compressor into four parts by an 

MSc student [104] in Cranfield University. In the existing (as handed) version, 

the code consists of a main program which calls twenty-eight (28) other 

subroutines to carry out performance simulation of single shaft GT cycle.     

5.4 Modelling Variable Geometry Compressor in the Variflow 

Code  

The existing Variflow code is only able to simulate GT performance with a fixed 

geometry compressor. In order to extend the off-design performance prediction 

capabilities of the code, the author modified the existing Variflow code by 

developing subroutines to implement variable stator vane angles. The details of 

this modification will be discussed in section 5.5. However, it will be worthwhile 

to highlight some basic principles considered in developing the algorithm for 
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implementing the variable geometry in the GT axial compressor as well as the 

effect on performance.  

5.4.1 Performance Enhancement Using Variable Stators 

The GT mechanical drive is expected to perform satisfactorily within the 

required power variation envisaged in the pipeline CO2 compression 

application. At low power settings and during start up, there is high propensity 

for surge in the GT axial compressor with undesirable effect if left unchecked. 

One of the methods employed to ensure an acceptable surge margin for start 

and load acceptance conditions is the use of variable inlet guide vane and 

stators (VIGVs and VSVs) or simply variable stators (VS) in axial compressors 

(others include multi-spooling and use of blow-off valves)[105]. The use of VS 

essentially involves repositioning stator blade passages (vane angles) to control 

the amount of air mass flow into the compressor [106]. In so doing, the 

compressor characteristics or geometry is altered; hence such compressors are 

referred to as variable geometry compressors [36]. IGV adjustment, enhance 

the part-load performance of the GT drive as it gives better matching of various 

components in industrial GT. In addition, the application of variable stators is 

especially useful in single shaft GT as a power control strategy for improving 

combined cycle efficiency through the control of turbine exhaust gas 

temperature [36; 107]. 

5.4.2 Compressor Map and Beta Line 

In order to consider variable stators in the performance simulation, compressor 

performance maps for several vane angles were employed. These maps relate 

the basic thermodynamic parameters that define the overall characteristics of a 

GT axial compressor which are usually represented using “non-dimensional 

groups” (the groups are actually quasi-dimensional). These are: 

 Pressure ratio (𝑃𝑅) 

 Non-dimensional Mass Flow (𝑊√𝑇/𝑃) 

 Non-dimensional speed (𝑁/√𝑇) 

 Isentropic efficiency (𝜂) 
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It is usual practice to refer (or correct) the parameters to standard inlet condition 

of 101.325 KPa and 288.15 K. Hence the pressure and temperature terms in 

these non-dimensional groups are replaced by 𝛿  and 𝜃  respectively and are 

otherwise known as referred or corrected parameter groups. Therefore,  

𝜹 = 𝑷/𝟏𝟎𝟏. 𝟑𝟐𝟓       [Eq. 5-1] 

𝜽 = 𝑻/𝟐𝟕𝟑. 𝟏𝟓        [Eq. 5-2] 

Implementing compressor maps in a computer model of this nature is facilitated 

through the use of an auxiliary parameter known as Beta line. Beta lines are 

arbitrary lines drawn parallel to the surge line whose point of intersection with 

the speed lines serves as an array address (see Figure 5-1 below).  

 

Figure 5-1 Compressor Map Fitted with Beta Lines    

(Adapted from [44]) 

In addition, the introduction of beta lines helps to overcome the problem 

associated with defining points at high values of non-dimensional speed for low 

values of PR. A feature of the compressor characteristic is that at such points, 

the speed lines become vertical. Thus for a given value of (𝑊√𝑇/𝑃) and 𝑁/√𝑇 

there are several values of PR. 
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5.4.3 Compressor Characteristics Estimation 

Compressor map data, like all other GT component data are highly proprietary 

to the manufacturers; which are not usually provided for sake of marketing 

competitions. However, at intervals of time, component characteristics may be 

published in the open literature. Similar to all other GT components, the GT 

compressor is designed to specific performance at the nominal design point of 

the engine. Adequate estimate of compressor data relative to the design 

condition is obtained as follows [50]: 

𝑷𝑹𝑹 = (𝑷𝑹 − 𝟏) (𝑷𝑹𝑫𝑷 − 𝟏⁄ )      [Eq. 5-3] 

 𝑾𝑹 =  (
𝑾√𝑻

𝑷
) (

𝑾√𝑻

𝑷
)

𝑫𝑷
⁄       [Eq. 5-4] 

𝑵𝑹 = (
𝑵

√𝑻
) (

𝑵

√𝑻
)

𝑫𝑷
⁄        [Eq. 5-5] 

𝑻𝑹𝑹 = (𝑻𝑹𝝐 − 𝟏) (𝑻𝑹𝑫𝑷
𝝐 − 𝟏)⁄      [Eq. 5-6] 

where    𝝐 =  𝜸 𝜸 − 𝟏⁄      [Eq. 5-7] 

(PR, W, N, and TR are the pressure ratio, mass flow, speed and temperature ratio 

respectively; TR is related to PR through the isentropic efficiency of the 

compressor. Subscripts DP and R refer to design and relative values). 

5.4.4 Scaling Factors 

The code has compressors maps representative of different technologies 

preloaded into it. Usually, the simulation require generation of component maps 

other than the default ones in the code depending on the engine been 

modelled. Although component characteristics are engine specific, the default 

compressor maps can be adapted to simulate other engines by scaling the 

corrected parameters using factors defined thus [106; 108]: 

𝑺𝑭𝑷𝑹 = (𝑷𝑹𝑫𝑷 − 𝟏) (𝑷𝑹𝑫𝑷 𝑴𝒂𝒑 − 𝟏⁄ )    [Eq. 5-8] 

 𝑺𝑭𝑨𝑫𝑾 =  (
𝑾√𝜽

𝜹
)

𝑫𝑷
(

𝑾√𝜽

𝜹
)

𝑫𝑷 𝑴𝒂𝒑
⁄      [Eq. 5-9] 

𝑺𝑭𝑬𝑭𝑭 = 𝜼
𝑫𝑷

𝜼𝑫𝑷 𝑴𝒂𝒑⁄       [Eq. 5-10] 
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(SFPR, SFADW and SFEFF are the pressure ratio scale factor, corrected non-

dimensional mass flow scale factor and efficiency scale factor respectively. 

Subscript DP is the design point values of scaled components and DP Map is the 

design point map values of known component).  

The Variflow code employs the above method to scale the compressor 

parameters during design point and off-design performance. However, it is 

desirable to keep the pressure ratio scale factor to as near unity as possible.     

5.5 Developing the Subroutines to Implement Variable Stators 

A major task in modifying any existing simulation code such as the Variflow 

code is the need to understand the algorithm of the main program and all 

subroutines used in building the code. The Variflow code is written in 

FORTRAN; hence all modifications were carried out in FORTRAN. However, it 

is worthy of note that the code as currently modified is in the FORTRAN free 

form source (FORTRAN 90)  as opposed to the fixed form source (FORTRAN 

70) of the existing one. This implies that non-conforming syntaxes were 

modified to suit the current format in the absence of which the code will fail to 

compile.  

In the course of modifying the existing code, entirely new subroutines were 

created while some of the existing ones where amended where necessary.  

5.5.1 Modification of the Compressor Map 

The anchor of this modification is on the compressor map. The existing Variflow 

code works with five different in built compressor maps numbered one to five 

over a pressure ratio range of 1.7 to 11.0 respectively [104]. Each map is 

characterised by ten speed lines, with each speed lines defined by five points.  

The current version of the code is equally fitted with five different compressor 

maps of variable geometry characteristics obtained from the Map Library of the 

Cranfield University Turbomatch 2.0. The range of pressure ratios for these 

maps (1 – 5) are shown in Table 5-1 below. 
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Table 5-1 Map Numbers and Corresponding Pressure ratios 

Map Number 1 2 3 4 5 

Maximum Pressure Ratio 2.0 4.5 7.0 11.0 15.0 

Each map contains twenty relative speed lines with each speed line defined by 

twenty points’ parameter co-ordinates for pressure ratio, corrected mass flow 

and efficiency. The compressor characteristics are defined for parameter values 

at stator vane angles of 0°, 10°, 20°, 30°, 40° and 50°. The compressor is 

assumed to be fully opened and fully closed at stator vane angles of zero 

degrees and 50° respectively. Figure 5-2 below depicts map no. 3 showing the 

twenty speed lines (6.5% - 130% relative speed).  

 

 

Figure 5-2 Compressor Map 3, stator angle 0° 

Similarly, Figure 5-3 below shows the changing geometry of compressor map 

no. 3 for the different stator vane angle positions (the speed range shown is for 

50% - 130% relative speed).  
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Figure 5-3 Compressor Map 3 characteristics with VSV angle 

5.5.2 Implementing the New Compressor Maps 

The parameters of the existing compressor map was implemented using a 10 x 

5 two - dimensional array. Owing to the need to represent the six variable 

geometries of each compressor map as shown above, the current maps were 

implemented in the code using a three – dimensional array of size 20 x 20 x 6. 

In order to implement the new compressor maps the following tasks were 

executed: 

a. Input data files for each of the compressor maps along with their variable 

geometries were created. Parameter values for the pressure ratio and non-

dimensional flow were captured as elements for each speed line and 

replicated for the different variable stator vane angles. Hence each file 

contains six different parameter values for the six variable stator vane 

positions of 0°, 10°, 20°, 30°, 40° and 50°. The maps characteristics are 

known as COMPCHICVAR1, COMPCHICVAR2, COMPCHICVAR3, 

COMPCHICVAR4, and COMPCHICVAR5 respectively. 

b. The existing subroutine “FILEREADER” that reads the map at the start of 

the code was modified to reflect the change in array size for each map. 

Similarly modified existing subroutines include “COMPMAP”, 
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“CPRGUESSMAP”, “JACOBIAN1S”, “MATCHINGVALIS”, 

“Comp_Evap_Converge”, and “SCALEFACT”.  

c. In addition to the modification above, the entire algorithm of the subroutine 

“SCALEFACT” where the parameters scale factors are calculated was 

modified. It enabled the subroutine accept the user defined surge margin 

for a chosen map design point parameters from a newly created subroutine 

known as “POINT_LOCUS”.  The surge margin is defined by specifying the 

value of beta.   

d. The subroutine “POINT_LOCUS” is used at the design point calculation to 

enable the user enter the compressor map with known values of speed and 

beta to obtain the corresponding map design point values of pressure ratio 

and non-dimensional mass flow. The beta lines is defined such that for a 

given speed line, it has a value of “1” at maximum pressure ratio and “0” at 

minimum pressure ratio.  

e. The subroutine “VREAD” created to calculate the values of beta across the 

speed lines and convert the VSV angles into radians.  

f. The subroutine “V_FILEREADER” is equally added to the code which 

functions like the existing “FILEREADER” subroutine but at off-design 

simulation. It combines the function of the “FILEREADER” subroutine with 

the ability to select compressor maps at other variable stator vane angles. 

The subroutine has capabilities of generating compressor maps for 

variable stator vane angles between the fully opened and fully closed 

positions.  

g. Generation of compressor map parameters for user defined input of 

variable stator vane positions (angles between 0° and 50°), speed and beta 

values. This is accomplished through linear interpolation of the compressor 

map parameters taken advantage of the close intervals between the speed 

and beta lines. 
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5.5.3 Program Controls and Error Messages 

In order to protect the code from crashing when put to use, the newly developed 

programs or subroutines exert some measure of checks on the user input. The 

subroutines employs a control that prevents beta from exceeding 0.999 and it 

also prevents the user from selecting variable stator vane angle other than 0° at 

design point simulation. Furthermore, at off-design the program restricts the 

user to select variable stator vane angle within the defined fully closed and fully 

opened positions. Similarly, restriction is placed on user input speed less than 

or equal to the minimum speed and greater than or equal to maximum speed of 

the compressor map. In all cases, the code will not run, instead an error 

message will be displayed that will enable the user fix the problem.  

5.6 Validation of the Variflow Code Modification 

In order to validate the modifications made, the running of the current code 

must give results that compares favourably with established trend when variable 

stators are used. In order to achieve this, the code was tested with the 

simulation of EL200 industrial GT inspired by the 7.68 MW (10,300 bhp) 

SGT200 GT engine. Using a fuel with lower heating value of 48.17 MJ/kg, the 

design point simulated output is shown in Appendix A. The design point 

parameters obtained from the public domain [109] in comparison with simulated 

result are shown in Table 5-2 below.  

Table 5-2 Comparison of Simulated Design Point Performance Parameters with 

OEM 

Performance 

Parameters 

PR EGT 

(K) 

Efficiency 

(%) 

Exhaust 

Gas Flow 

(kg/s) 

Heat 

Rate 

(KJ/kwhr) 

Power 

(MW) 

TET(K) 

OEM 12.6 762.59 33.50 29.50 10 740.92 7.68 - 

Variflow 12.6 764.01 33.74 29.50 10 669.43 7.68 1326.15 

% Error - -0.19 -0.72 - +0.67 - - 
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Having simulated this engine, off-design performance simulation at varying 

variable stator vane angles were performed and the results obtained are as 

shown in Figure 5-4 to Figure 5-10 below. 

 

Figure 5-4 Variation of Gas Turbine Mass Flow for Varying Variable Stator Vane 

Position across Different Power Settings 

 

Figure 5-5 Variation of Gas Turbine Power Output at Different Power Settings for 

Varying Variable Stator Vane Position 
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Figure 5-6  Variation of Gas Turbine Fuel Flow at Different Power Settings for 

Varying Variable Stator Vane Position 

 

Figure 5-7  Variation of GT EGT at Different Power Settings for Varying Variable 

Stator Vane Position 
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Figure 5-8 Comparison of Gas Turbine Power Output with EGT for Varying 

Variable Stator Vane Position 

 

Figure 5-9 Variation of GT Thermal Efficiency at Different Power Settings for 

Varying Variable Stator Vane Position 
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Figure 5-10 Variation of GT Heat Rate at Different Power Settings for Varying 

Variable Stator Vane Position 

Figure 5-4 above depicts the displacements of the curves for the different stator 
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shown. There is this advantage of maintaining a constant EGT in employing 

variable stators during part load performance of GT used in combined cycle 

application or co-generation. This trend is shown in Figure 5-8 above where the 

GT is conveniently run at part-load by changing the variable stator vane angles. 

Figure 5-9 and Figure 5-10 above show similar trends with respect to the 

thermal efficiency and heat rate of the GT. GT thermal efficiency and heat rate 

are inversely proportional to one another, hence the opposing nature of their 

curves. However, two characteristic features in the figures are noteworthy. First, 

it is noted from the plots, that at very low power settings (1000 – 1045 K), the 

thermal efficiency or heat rate is best for the variable stator vane position at 35° 

closed. This is a benefit derived from using variable stator vanes for the overall 

improvement of surge margin at low power settings or low engine speed which 

especially useful in idle speed and decreasing starting power requirement of the 

GT [17; 36; 50; 47].  

The second noticeable feature is the inflexion exhibited in the curves. This is a 

phenomenal movement of the compressor operating point towards surge as the 

GT power setting is increased or during acceleration to full power. This is said 

to happen with rise in firing temperature (hence turbine entry temperature) 

accompanied by increase in fuel flow before the increase in speed required to 

increase the mass flow [17]. This inflexion is often thought to occur in high 

performance axial compressors when they operate with several of the early 

stages stalled. 

Finally, mention must be made that the code is unable to converge at extreme 

closing of the variable stators unless the design point temperature is increased 

which is an obvious limitation in this modification.  

5.7 Concluding Remarks 

The foregoing has demonstrated the ability of the code to predict the effect of 

variable stators especially for a single shaft GT within the limits of the 

implemented program. Furthermore, the highlighted limitations give room for 

future improvement on the code. The development of subroutines to implement 
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variable stators in this code is one of the contribution of this work. The next 

chapter presents the main outcome of implementing the TERA framework in 

analysing the use of GT prime movers in pipeline transportation of CO2 for 

sequestration. 
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6 Gas Turbine Mechanical Drive Performance and 

Economics 

6.1 Introduction 

The thrust of this work is on the technical, economic and environmental risk 

assessment of gas turbine (GT) in application to CO2 compression for pipeline 

transmission. In doing this, the methodology described in chapter 3 will be 

employed in two different case scenarios analyses. The case scenarios are 

predicated on the demand to meet the CO2 compression duty of the GT driven 

equipment at two points. Firstly, to compress the captured CO2 (at source) 

assumed to be at atmospheric pressure to pipeline operating pressure of 150 

bar using a combination of compressor and pump; and secondly for 

recompression along a trunk pipeline which is assumed to convey the CO2 to 

the point of sequestration.  

The analyses were facilitated by carrying out design and off-design point 

simulation of selected GT mechanical drives to meet the yearly compression 

duty for CO2 throughput spread across four (4) seasons within the year against 

a projected plant life of twenty-five (25) years. Then the economic performance 

as well as the associated risk of deploying the GT drives were assessed using 

an economic model based on the net present method (NPV) and payback 

period (PBP) developed by the author. A code was also developed to carry out 

the hydraulic analysis of the CO2 flow in the pipeline to determine the point of 

recompression upon the pressure dropping to a set minimum value.  

6.2 Case Scenario Description 

The case scenarios are built across an adaptation of the 2040 electricity 

generation projection from the United States’ Annual Energy Outlook 2014 

shown in Figure 6-1 below. The outlook shows a decline in coal fired power 

plants and an increase in natural - gas fired power generation plants due to 

concerns over emission of GHG. Similarly, it takes into account the 

improvement in harnessing renewable energy (e.g. solar) for power generation. 

With the nuclear power plant out of the scenario, the trend shown in the forecast 
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can easily be adapted to suit the Nigerian electricity generation projection. 

Nigeria is signatory to the Kyoto Protocol and pursues the vision of GHG 

abatement through the adoption of clean development mechanism (CDM). 

Nigeria also has abundant sunshine, oil and gas as well as a fair share of coal. 

Furthermore, Nigeria is a developing economy with a growing population which 

translates into increasing demand in electricity. Against these facts, the 

projection per se could well represent a typical forecast for Nigeria. Two case 

scenarios were considered and explained below. 

 

Figure 6-1 Electricity Generation by Fuel, 1990 – 2040 

Source: US EIA 

6.2.1 Case Scenario I 

This case scenario deals with the GT providing power to a turbo-compressor for 

initial compression of CO2 captured from power generation plants from 

atmospheric pressure to 100 bar. The control employed to meet the output 

pressure requirement and the ability of the turbo-compressor to meet the 

changing capacity of the CO2 being compressed will impart greatly on the off-
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design performance of the selected GT mechanical drives being employed. 

Thus, imparting on the economic performance of the investment.  

The amount of CO2 generated by the power plant is dependent on the type of 

power plant [1]. Similarly, the amount of captured CO2 available for 

compression is dictated by the power plants’ load swing since demand varies 

on an hourly, daily, monthly or seasonal basis. In addition to the influence of 

ambient conditions (especially temperature) on the off-design performance of 

the GT mechanical drive it is increasingly important at the very least to evaluate 

all season conditions for techno-economic assessment of this kind. Hence, with 

the site location in mind, this case scenario was analysed considering CO2 

captured from four types of power generating plants at four different seasons 

experienced in Nigeria within a year shown in Figure 6-2 to Figure 6-5 below. 

The four different seasons are:  

 Hot Season (March – May) 

 Early Rain Season (June- August) 

 Late Rain Season (September - November) 

 Harmattan Season (December- February) 

 

Figure 6-2 2040 Projected Average CO2 Captured from Four Different Fossil Fired 

Power Plants for the Hot Season (Max. Temperature = 𝟑𝟖°𝑪) 

Source:  [116] 
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Figure 6-3 2040 Projected Average CO2 Captured from Four Different Fossil Fired 

Power Plants for the Early Rain Season (Max. Temperature = 𝟑𝟒°𝑪) 

Source:  [116] 

 

Figure 6-4 2040 Projected Average CO2 Captured from Four Different Fossil Fired 

Power Plants for the Late Rain Season (Max. Temperature = 𝟑𝟒°𝑪) 

Source:  [116] 
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Figure 6-5 2040 Projected Average CO2 Captured from Four Different Fossil Fired 

Power Plants for the Harmattan Season (Max. Temperature = 𝟑𝟑°𝑪) 

Source:  [116] 

6.2.2 Case Scenario II 

This case scenario involves recompression of CO2 transmitted along the 

pipeline profile (Figure 3-2, page 45) in a booster station. Here the GT driven 

equipment is a CO2 centrifugal pump. The profile is a buried onshore 511 km 
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The factors affecting the temperature profile for buried pipeline include the 

pipe’s material thermal conductivity, insulation, the soil temperature, overall 

heat transfer coefficient and the fluid temperature. However, a simplified 

assumption of isothermal flow and a constant CO2 flowing temperature of 25 °𝐶 
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and CO2 throughput. 
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6.3 Gas Turbine Operating Condition 

The primary use of the GT prime mover is to transmit torque to the driven 

equipment. The available GT power and efficiency is majorly impacted by the 

prevailing ambient condition among other factors. The variation of site specific 

ambient pressure and temperature are factors that must be considered on both 

performance and operation. The altitude at which the GT is being operated 

affects the performance of the GT because it influences sites’ ambient pressure 

and temperature. Ambient temperature decrease of 1.98 °𝐶/1000 ft. (304.8 m) is 

established by the International standard Atmospheres [17]. Given the 

maximum pipeline profile elevation of about 180 m for this study, temperature 

change is not a concern. However, the reduction in atmospheric pressure with 

altitude is a thing of concern since it affects the pressure ratio across the power 

turbine and hence power output. 

It is an established fact that GT performance is better in cold days compared to 

hotter days [17; 36; 44]. Therefore, variation in site temperature must be 

considered.  In the current study, the operating ambient temperature is for a site 

located in Kano – a city in the Northern part of Nigeria shown in Figure 6-6 

below. Typically, the temperature is highest (about 38 °𝐶 ) during the months of 

March – May and lowest (about 14°𝐶) between December - January. Like most 

tropical countries, the electricity demand is highest during the hottest months 

 

Figure 6-6 Monthly Average Temperature Variation at the Operational Site [110] 
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due to massive air-conditioning and refrigeration requirements; hence most 

power plants are operated at their maximum output which means more CO2 is 

expected to be captured from the power plants. This fact is reflected in the 

relative higher CO2 flow rate shown in Figure 6-2 above.  

A major economic concern about the GT operating condition is the fuel 

consumption, which varies depending on whether the operating conditions 

impacts negatively or positively on the thermal efficiency. The concern during 

operation is always aimed at achieving low fuel consumption for a given 

compression duty. In this regard, it must be stressed that the performance of 

the GT and the driven equipment must be such that enables the best overall 

efficiency. Thus the main goal of the close coupling of the compression system 

with the GT is to achieve the highest overall package efficiency to enhance 

lower fuel consumption. 

6.4 Gas Turbine Design and Off-Design Simulation 

GT performance prediction to establish the operating parameters for a desired 

power output is pertinent to this analysis. This is especially useful in predicting 

the fuel consumption which is a major contributor to the overall operating cost 

(OPEX). Once the compression power requirement is established, the GT 

mechanical drive is selected and simulated to extract necessary performance 

data (fuel flow, thermal efficiency & power output) for the techno-economic 

assessment. As earlier highlighted in the methodology, the GT engine 

simulation carried out in this study were accomplished using in-house GT 

simulation code - Turbomatch developed in Cranfield University.  

The design point performances were inspired by selected GT from the open 

domain that meet the required compression power. In order to provide the 

varying compression duty, selected GTs were de-rated using the maximum site 

ambient temperature. Mention must be made though that GT can produce far 

more power at colder ambient temperatures; so design based on worst case 

ambient conditions may not be optimal in some situation. However, considering 

the fact that more volume of CO2 is compressed during the hottest period of the 
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GT operation, the de-rated power output used for the GT selection may be 

within optimal design.  

Having established the design point, the effect of different compression duty 

requirement and varying ambient condition on the GT parameters were 

simulated to provide the off-design performance. 

6.4.1 Selected Gas Turbine Design Point Performance 

In this particular case scenario, two GT mechanical drives were simulated 

namely: 33.9 MW simple cycle DLE GT, EL2500RD, inspired by GE LM2500RD 

and 9.4 MW advanced cycle GT (recuperated) EL1200-R inspired by THM1304-

10R [109]. The choice of these two GTs stem from two major considerations. 

First, the required operational flexibility: in that the power generation plant with 

the lower CO2 emission or throughput will be catered for using the 9.4 MW 

EL1200-R GT while the higher CO2 throughput will be driven by the 33.9 MW 

EL2500RD GT. Second: the recuperated cycle is carefully chosen to take 

advantage of the improved performance (fuel saving) associated with the use of 

heat exchanger in small power plants where the pressure ratio is low.  The heat 

exchanger essentially enables the pre-heating of the GT compressed air with 

the exhaust gas before entering into the combustion chamber. Also, the choice 

of the dry low emission (DLE) GT was informed by environmental concern for 

lowest available emission rate (LAER).    

The Turbomatch input files are shown in Appendix B while the simulated design 

point performance parameters in comparison with the OEM [109] are presented 

respectively in Table 6-1 and Table 6-2 below. The fuel lower heat value is 43 

MJ/kg. 
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Table 6-1 Simulated Design Point Performance Parameters for EL2500RD 

Compared with OEM  

Performance 

Parameters 

PR EGT (K) Thermal 

Efficiency 

(%) 

Mass Flow 

(kg/s) 

Power 

(MW) 

TET(K) 

OEM 23.0 798.2 39.7 91.2 33.9 - 

Simulation 23.0 797.2 39.6 91.2 33.9 1550.0 

% Error - -0.1 -0.3 - - - 

 

Table 6-2 Simulated Design Point Performance Parameters for EL1200-R 

Compared with OEM 

Performance 

Parameters 

PR EGT (K) Thermal 

Efficiency 

(%) 

Mass Flow 

(kg/s) 

Power 

(MW) 

TET(K) 

OEM 10.0 - 36.3 45.4 9.4 - 

Simulation 10.0 748.71 36.3 45.4 9.4 1200.0 

% Error - -    - - - - 

 

6.4.2 Off Design Performance of EL2500RD and EL1200-R 

The selected GT mechanical drives should effectively cope with the changing 

demand of the compression equipment. Assuming the turbo-compressor are 

operated at best efficiencies, in order to assess the ability of the prime movers 

in providing the required compression duty, the influence of changing ambient 

temperature and different power settings on the performance of the GTs 

(EL2500RD and EL1200-R) were simulated. In so doing, the site (profile) 
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altitude of 100m at the point of initial compression was put into consideration. 

Performance simulations at ambient temperatures of 5°𝐶, 10°𝐶, 15°𝐶, 20°𝐶, 

25°𝐶 , 30°𝐶 , 35°𝐶  and 40°𝐶  represented by deviation from the design point 

temperature (15°𝐶) - ISA DEV, as “ISA DEV -10”, “ISA DEV -5", “ISA DEV 0”, 

“ISA DEV 5”, “ISA DEV 10”, “ISA DEV 15”, “ISA DEV 20”, and “ISA DEV 25” 

respectively were conducted. The simulation for the maximum site temperature 

of 38°𝐶 (ISA DEV 23) is also included. The turbomatch input files are appended 

in Appendix C while the performances are presented below.  

 

 

Figure 6-7 Variation of EL2500RD GT Power Output with Change in Ambient 

Temperature at Different Power Settings 
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Figure 6-8 Variation of EL1200-R GT Power Output with Change in Ambient 

Temperature at Different Power Settings 

 

Figure 6-7 and Figure 6-8 above depicts the variation of the GT power output 

for different power settings or TETs as the ambient temperature changes for the 

simple cycle GT (EL2500RD) and the advanced cycle GT (EL1200-R) 

respectively. As expected, the power output increase with increasing TET and 

decreasing ambient temperature. In GT engines, different power settings or 

TETs are usually accomplished by the control of fuel flow to the combustor. This 

is depicted by the similar trends obtained in Figure 6-9 and Figure 6-10 below 

for EL2500RD and EL1200-R respectively for the fuel flow at different power 

settings with changing ambient temperatures.  

The plot in Figure 6-7 shows the possibility of firing the GT above its design 

firing temperature for increased power output. While this could be achievable 

within limits, it is highly detrimental to the creep life of the turbine blade, hence 

should be avoided. 
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The GT power output is limited by the firing temperature or TET and the 

maximum gas generator speed. With increase in fuel flow, both the TET and 

gas generator speed increase, until one of the two operating limits is reached. 

At the design point temperature (ISA), both limits are attained at the same time. 

However, at ambient temperature below ISA the speed limit is reached first 

while at ambient temperatures above ISA the TET becomes the limiting factor. 

Thus, although at ambient temperature below ISA the power output increases; 

such increase is constrained by the speed limit. Similarly, at ambient 

temperature above ISA it is noteworthy from Figure 6-7 and Figure 6-8 above 

that there is a minimum firing temperature below which the GT is unable to give 

power output. This phenomenal occurrence is due to a minimum speed limit 

constraint which unless attained the GT will not give a useful power output 

thereby fixing the minimum firing temperature or TET. 

 

 

Figure 6-9 Variation of EL2500RD GT Fuel Flow with Change in Ambient 

Temperature at Different Power Settings 
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Figure 6-10 Variation of EL1200-R Fuel Flow with Change in Ambient 

Temperature at Different Power Settings 

 

 

Figure 6-11 Variation of EL2500RD GT Thermal Efficiency with Change in 

Ambient Temperature at Different Power Settings 
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[Figure 6-11 - Figure 6-12] and [Figure 6-13 - Figure 6-14] show the thermal 

efficiencies and heat rates for the designated GT mechanical drives 

respectively. At ambient temperatures below the design point (ISA) the thermal 

efficiencies are on the increase because less compression work is required by 

the gas generator compressor due to the reduced inlet air temperature, hence 

much of the energy of combustion will be converted into useful work or power 

output. Similarly with increasing TET, there is increase in heat input and so the 

thermal efficiency will obviously increase. 

The trend depicted by the plots for the heat rate is such that increase in power 

output (increasing TET or decreasing ambient temperature) causes a reduction 

in the heat rate. This is expected as heat rate is inversely proportional to 

thermal efficiency.  

𝑯𝒆𝒂𝒕 𝑹𝒂𝒕𝒆 =  𝟑𝟔𝟎𝟎 𝑻𝒉𝒆𝒓𝒎𝒂𝒍 𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚⁄     [Eq. 6-1] 

 

The concept of heat rate is usually quoted by GT manufacturers as a measure 

of efficiency because it enables the evaluation of fuel cost directly since fuel 

prices are usually quoted in £/MJ or $/MJ. However, it is worth noting that 

inefficiencies in the GT driven equipment will result to more power demand from 

the GT which implies more fuel consumption. Hence for economic evaluation, 

the end user should ignore the heat rate and deal with the direct value GT fuel 

consumption. 
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Figure 6-12 Variation of EL1200-R GT Thermal Efficiency with Change in Ambient 

Temperature at Different Power Settings 

 

Figure 6-13 Variation of EL2500RD GT Heat Rate with Change in Ambient 

Temperature at Different Power Settings 
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Figure 6-14 Variation of EL1200-R GT Heat Rate with Change in Ambient 

Temperature at Different Power Settings 

6.4.3 Summary 

The trends of the selected GTs performances are in agreement with established 

results during operation. Having established the expected performance of the 

GT mechanical drive, the next step in the techno-economic and environmental 

assessment is to apply this in the case scenarios economic evaluation. 

Therefore, the simulated performances will now be narrowed down to the 

average site operating ambient temperature of 38°𝐶  to extract all necessary 

parameters for the required analysis.   

6.5 Gas Turbine Economic Performance Evaluation 

The investment in GT mechanical drive for CO2 compression comes at a cost. 

The cost associated with the deployment of GT prime mover will consist of the 

capital cost of the GT (initial and installation costs) and cost incurred throughout 

the entire service life of the plant. Therefore, like any other investment, this 

must be driven by economic returns. It is a statement of fact that the future is 

hard to predict, however, some predictions and scenario studies could be useful 
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in risk reduction of the investment. In this light, a discounting technique based 

on NPV method is presented for the initial assessment of the economic 

performance of GT prime movers for CO2 transmission in pipeline. All cost data 

were converted to 2013 British Pound Sterling value using UK GDP deflator 

[111] and annual currency exchange rate [112]. 

6.5.1 Capital Cost Estimate 

The capital cost varies with the capacity of GT and can be obtained from 

references [27; 113] which are updated annually. Where the price of the engine 

is not quoted directly, the cost is scaled to the capacity of interest using the 

generic scaling relation [114]: 

 𝑪𝒐𝒔𝒕 𝑪 = 𝑪𝒐𝒔𝒕 𝑪𝟎 ∗  (𝑺
𝑺𝟎

⁄ )
𝒇

     [Eq. 6-2] 

      

Where cost of a component, 𝐶𝑜𝑠𝑡 𝐶 of size 𝑆 is related to the cost of a reference 

component, 𝐶𝑜𝑠𝑡 𝐶0  of size 𝑆0 by means of a scaling factor 𝑓. Installation cost 

could be estimated at around 10% of the initial capital cost [115]. 

6.5.2 Operation and Maintenance Cost Estimate 

During the service life of the GT prime mover, the operation and maintenance 

(O & M) cost comprises of fixed and variable charges. O & M cost to some 

extent depends on the decision taken during the design and manufacturing 

phase of the equipment. Likewise, personnel cost which contributes to the O & 

M costs depends on the equipment size and degree of automation. 

Maintenance cost depends on such factors as the technology of the GT prime 

mover, operating environment, operation cycle and type of fuel. Insurance 

covers for equipment failure, loss of income, loss of savings and business 

interruption also add to the operation costs. The cost of insurance could vary 

depending on the GT performance history, system design and operating mode. 

It may be within the range of 0.25 – 2% of the initial capital cost while it could be 

covered by the operator’s overall insurance program at no additional cost. 
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Among the variable cost is the unit - fuel cost which is usually accounted 

separately because it contributes the largest cost item (fuel contributes about 

70% of the total O & M cost). The O & M cost in essence depends a lot on the 

price of fuel which in turn is subject to the global price of oil. Consequently, oil 

price is one of the important factors that determine the profitability of deploying 

the GT mechanical drives. These prices are influenced by the laws of demand-

supply, global political scene and the stock market deals. In specific terms, the 

amount of fuel consumed is determined by the efficiency and operating range of 

the GT prime mover subject to the driven equipment’s performance. 

In the absence of any available data, the fixed and variable (except fuel) O & M 

cost is usually estimated as percentage of the capital cost. However, in this 

study, the O & M costs estimates are 2012 figures quoted from the updated 

capital cost estimates for utility scale electricity generating plant by the US 

Energy Information Administration [116]. Similarly, despite the fact that fuel 

price is dynamic, a simplistic approach of assuming a fixed price in the analysis 

was adopted. 

6.5.3 Other Cost Estimate 

The total capital invested in line with the Electric Power Research Institute 

(EPRI) cost estimating guidelines has in addition to the above, annual taxes 

paid on emission  (CO2 levy), income and credit as well as depreciation cost 

[117].  

In this study, the emission tax is represented by carbon tax assumed to be 

proportional to the mass of CO2 emission. The income tax is assumed while a 

straight-line method is assumed for the depreciation cost estimate. The credit 

tax is assumed to be zero. 

6.5.4 Revenue and Economic Performance Modelling 

The revenue is the market value of the power consumed for the CO2 

compression. In order words, the power generated by the GT mechanical drive 

is assumed to be sold at current electricity price. In this work, the electricity 
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price is carefully selected having considered industrial electricity prices 

published in the 2014 quarterly energy price in the UK [118].  

The economic performance analyses were simulated using a FORTRAN based 

computer code developed by the author shown in Appendix D. The code input 

files are simulated compression power requirements and corresponding 

turbomatch or Variflow simulated fuel flow for the power required (typical input 

file also shown in Appendix D). The input file parameters (GT power and fuel 

flow) were implemented in the code using a three – dimensional array of size 4 

x 25 x 2. Here the “4” represents the four seasons highlighted above; “25” 

represents the number of years or assumed plant life; and “2” represents the 

input parameters. Thus the GT power is defined by 4 x 25 x 1 while the 

corresponding fuel flow is defined by 4 x 25 x 2. Each power generation plant 

has a separate input file that is read into the program during simulation. The 

economic performance was modelled using the following calculation steps [114; 

119]: 

If 𝐼 is the Capital Cost of the investment and subscript 𝑡 is the year count (𝑡 =

 1,2, … . , 𝑛) 

i. Revenue 

 𝑹𝒕 =  𝑬𝑷𝒕 ∗ 𝑷𝒕 ∗ 𝒍𝒇
𝒕

∗ 𝟖𝟕𝟔𝟎 ∗ 𝟏𝟎𝟎𝟎     [Eq. 6-3]  

 Where   𝑅 = Revenue (£) 

    𝐸𝑃 = electricity price (£/kWh) 

    𝑃 = GT nominal output (MW) 

    𝑙𝑓 = load factor 

ii. Expenses 

 

 Fuel Cost 

 𝒇𝒖𝒆𝒍
𝒕

=  𝒄𝒇
𝒕

∗  𝒇𝒇
𝒕

∗ 𝒍𝒇
𝒕

∗ 𝟖𝟕𝟔𝟎 ∗ 𝟑𝟔𝟎𝟎   [Eq. 6-4] 
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 Where   𝑐𝑓 = cost of fuel (£/kg) 

    𝑓𝑓 = GT fuel flow (kg/s) 

 Operation and Maintenance Cost (other than fuel) 

 𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆 𝑪𝒐𝒔𝒕𝒕 =  𝒗𝒄𝒕 ∗  𝑷𝒕 ∗  𝒍𝒇𝒕 ∗ 𝟖𝟕𝟔𝟎   [Eq. 6-5] 

 Where   𝑣𝑐 = variable cost (£/MWh) 

 𝑭𝒊𝒙𝒆𝒅 𝑪𝒐𝒔𝒕𝒕 =  𝒇𝒄 ∗  𝑷 ∗ 𝟏𝟎𝟎𝟎    [Eq. 6-6] 

 Where   𝑓𝑐 = fixed cost (£/kW-year)  

 Other Cost 

  𝑫𝒆𝒑𝒓𝒆𝒄𝒊𝒂𝒕𝒊𝒐𝒏 𝑪𝒐𝒔𝒕𝒕  =  𝒅 ∗ 𝑰 /𝟏𝟎𝟎    [Eq. 6-7] 

 Where 𝑑 = annual depreciation (%) 

  𝑬𝒎𝒊𝒔𝒔𝒊𝒐𝒏 𝒄𝒐𝒔𝒕𝒕 =   𝑬𝑰𝒕 ∗  𝑬𝑻𝒕 ∗  𝑷𝒕 ∗  𝒍𝒇𝒕 ∗ 𝟖𝟕𝟔𝟎   [Eq. 6-8] 

 Where   𝐸𝐼𝑡 = Emission index (kgCO2/kWh) 

    𝐸𝑇𝑡= Emission tax (£ /ton CO2) 

 Total expense is the sum of all expenses given by: 

 𝑬𝒙𝒑
𝒕

=  𝒇𝒖𝒆𝒍
𝒕

+  𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆 𝑪𝒐𝒔𝒕𝒕 +  𝑭𝒊𝒙𝒆𝒅 𝑪𝒐𝒔𝒕𝒕 + 𝑫𝒆𝒑𝒓𝒆𝒄𝒊𝒂𝒕𝒊𝒐𝒏 𝑪𝒐𝒔𝒕
𝒕

+

 𝑬𝒎𝒊𝒔𝒔𝒊𝒐𝒏 𝑪𝒐𝒔𝒕𝒕       [Eq. 6-9]  

  Where    𝐸𝑥𝑝𝑡  = Total expense at year t 

iii. Operating Income (𝑶𝑰𝒕) 

 𝑶𝑰𝒕 =  𝑹𝒕 −  𝑬𝒙𝒑𝒕      [Eq. 6-10] 

 

iv. Profit (𝑷𝒓𝒕) 

The profit yielded for the given year is the operating income less the 

annual capital pay back. 
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The capital cost of investment is converted into stream of equal annual 

payment within the life span of the project by using the annuity factor 

defined as: 

 𝒂𝒏𝒇 =  [
𝒊∗ (𝟏+𝒊)𝒏

(𝟏+𝒊)𝒏−𝟏
]      [Eq. 6-11] 

 Where     𝑖 = interest rate 

      𝑎𝑛𝑓 = annuity factor (yr -1) 

      𝑛 = project life span (years) 

 Thus, 

 𝒊𝒏𝒗𝒕 =  𝑰 ∗ 𝒂𝒏𝒇      [Eq. 6-12] 

 Where    𝑖𝑛𝑣𝑡= annualised capital investment (£/yr) 

 𝑷𝒓𝒕 = 𝑶𝑰𝒕 − 𝒊𝒏𝒗𝒕      [Eq. 6-13] 

v. Net Cash Flow 

Considering taxable income or tax on profit, the net cash flow at the end 

of year 𝑡 becomes 

 𝑪𝑭𝒕 =  𝑷𝒓𝒕 ∗ (𝟏 −
𝒓𝒕

𝟏𝟎𝟎
) −  𝒊𝒏𝒗𝒕     [Eq. 6-14] 

Where      𝑟𝑡 = profit tax rate (%) 

vi. Net Present Value 

Discounting the cash flow to the present using a discount rate (interest or 

inflation rate are most often used), the net present value is given as: 

 𝑵𝑷𝑽 =  ∑ 𝑪𝑭𝒕 [𝟏 + 𝒊]−𝒕 − 𝑰𝒏
𝒕=𝟏      [Eq. 6-15] 

 Where     𝑖 = discount rate 

vii. Payback Period 

 The payback period is defined as the minimum value of n that satisfies 

 the equation: 

 𝑰 −  ∑ 𝑪𝒕 [𝟏 + 𝒊]−𝒕 ≤ 𝟎𝒏
𝒕=𝟏      [Eq. 6-16] 
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6.6 CO2 Emission Prediction 

The environmental aspect of this assessment deals with the quantification of 

CO2 emission from the GT mechanical drives and placing a price penalty on it 

(carbon tax). The means of predicting the amount of CO2 emission has been 

described in section 3.2.3 of this compendium where an in-house prediction 

code (Hephaestus) is used for the simulation. 

The simulated average CO2 emission index for EL2500RD GT is 0.49 

kgCO2/kWh while that of EL1200-R is 0.56 kgCO2/kWh. The fuel consumption 

by the small GT (EL1200-R) is about 37% relative to the consumption of the 

large GT (EL2500RD). However, the power output of the small GT is about 28% 

of the output from the large GT. In order words, the small GT consumes more 

fuel per kWh compared to the large one. Hence, the CO2 emission index of the 

small GT should be higher than that of the large GT as revealed by the numbers 

mentioned above. Furthermore, the engines which inspired EL2500RD and 

EL1200-R were manufactured in 2007 and 1980 respectively [109]. This means 

there is a huge technology gap between the efficiency of the two combustors. 

The “efficiency” factor affects CO2 emission in GT engines. 

At this juncture, it is necessary to mention that CO2 emission index value of 

0.21 kgCO2/kWh is quoted for natural gas fuel used by GT in Defra – a UK 

Department of Energy and Climate Change document for calculating GHG 

emission [120]. However, this value is for a fuel lower heating value of 47.37 

MJ/kg as against 43 MJ/kg used for the simulation. More so, the reader must 

bear in mind that de-rating the GT prime movers to meet site ambient condition 

and part-load performances will negatively impacts on the GT thermal efficiency 

and hence the CO2 emission index (refer to Figure 6-11 and Figure 6-12).  

In economic terms, the emission cost burden adversely impacts on the 

profitability of the venture. The comparative nature of analysis carried out will 

naturally distribute this impact across board; thus minimising the error in the 

findings which in itself are estimates and could be highly subjective. 

Notwithstanding though, this value was used in the simulation to assess its 



 

105 

impact on the GT economic parameters especially as it applies to the worst 

case obtained.   

6.7 Economic Evaluation of Case Scenario I 

The first step in this analysis is to establish the power required for compression 

across the four seasons highlighted above, representing the varying power 

demand. The simulation of the compression power requirement for different 

CO2 throughput had been presented in section 4.8 of this work. The power 

evaluation is based on six–staged intercooled integral geared centrifugal 

compressor with 5% inter-stage pressure drop consideration (2.3 pressure ratio 

per stage). The next step is the data and assumptions considered for the 

analyses which are presented below.  

6.7.1 Data and Assumptions 

For this case scenario, the following key assumptions in the operation of the GT 

prime movers should be considered: 

a. The smaller GT mechanical drive is used to provide the required 

compression power for the CO2 emission captured from the Oil and 

Natural Gas Dual fired power plant while the larger one is used for the 

CO2 emission from the remaining power plants. 

b.  The availability of the GT mechanical drives are such that they are shut 

down for maintenance within the early rain season (June – August) when 

the power demand from the power generation plants are relatively low.  

c. 25 years projected plant life - from 2013 to 2037. 

 

The values and parameters required to analyse the economic performance of 

the GT mechanical drives are shown in Table 6-3 below. 
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Table 6-3 Assumptions for the Economic Analyses 

Parameter Values 

Plant Designation 
Plant Capital Cost(£/kW) 
Plant life (years) 
Discount rate, Interest rate (%) 
Plant load factor 
Plants capacity (MW) 
Auxiliary consumption 
Fixed O & M cost (£/kW-year) 
Variable O &M cost (£/MWh) 
Fuel cost (£/kg) 
Fuel Lower Heating Value (MJ/kg) 
Annual Depreciation (%) 
CO2 Emission Indices (kgCO2/kWh) 
Emission tax (£/ton CO2) 
Profit tax rate (%) 
Electricity price (£/kWh) 

EL2500RD; EL1200-R 
283.67; 377.62 
25 
15 
0.90 
33.90;  9.40 
Nil 
4.80; 5.01 
7.08; 10.54 
0.12 
43 
2.5 
0.49, 0.56 
50 
20 
0.12 

Fuel cost values of £0.09/kg and £0.06kg as well as discount rates of 6, 8, 10, 

and 12% were considered for sensitivity studies. 

6.7.2 Results and Analysis 

 

Figure 6-15  Economic Performance of the GT Mechanical Drive in the Four 

Power Generation Plants (25 Years Plant Life)  

Figure 6-15 above show the main economic results obtained using the 

parameters itemised in Table 6-3 above for deploying GT mechanical drives in 
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compressing CO2 captured from four power generation stations. A typical result 

is shown in Appendix E. The capital cost of the two GT prime movers or 

mechanical drives are about £9.6M and £3.6M for the 33.9 MW and 9.4 MW 

respectively. Clearly, the economic performance of the GT mechanical drive 

applied to the CO2 throughput from the “Coal Power Plant (COAL-PP)” stands 

out to be more attractive (NPV of about £13.9M) while that of the “Oil and 

Natural Gas Dual Fired Plant (ONG-PP)” is most unattractive leaving the 

investor with a deficit NPV of about £7.6M at the end of the 25 years plant life. 

The GT mechanical drive’s NPV for the Combined Cycle Gas Turbine Power 

Plant (CCGT-PP) is about £3.2M which makes it relatively attractive. However, 

the return on investment in the GT application to the COAL-PP is higher and 

offers the best choice. 

The investment on GT driven compression of the CO2 throughput from the Gas 

Turbine Power Generation Plant (GT-PP) is equally attractive as a NPV value of 

about £1.2M is obtained. It should be noted here that the GT prime mover used 

in compressing CO2 from the GT-PP (EL1200-R) is different and smaller in size 

compared to that (EL2500RD) used for the other three power generation plants. 

Therefore, comparison will depend on the GT prime mover in relation to the 

power generation plants. 

In terms of investment risk or time taken to recoup the initial capital invested in 

the GT prime movers, the COAL-PP shows a payback period (PBP) of three 

years. The period is quite short hence making it less risky and further enhanced 

its attractiveness. On the other hand, the PBP for the GT prime mover 

application to the CCGT-PP is thirteen years which is just a year above half of 

the prime mover’s life. Although a relatively profitable investment, the PBP put 

the investor at a medium risk level.  In the case of the GT prime mover used in 

the GT-PP, its PBP is seven years; and were we to judge the risk associated 

with it, in comparison to the GT size and capital cost it could pass as a low risk 

investment.  
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Figure 6-16 Economic Performance of the GT Mechanical Drives Considering 

Emission Index of 0.21kgCO2/kWh (25 years Plant Life) 

Assuming an equal emission index of 0.21 kgCO2/kWh; the investment analysis 

brings to bear the impact of cut in expenses as can be deduced from 

Figure 6-16 above. The economic performance trend is similar to the one above 

despite the fact that emission cost was paid on a very low CO2 emission index 

compared to that of Figure 6-15 above; especially the fact that the ONG-PP still 

returns a negative NPV. However, one can observe that the reduction on 

expense has virtually placed the prime movers’ application to the remaining 

three power generation plant in a favourable economic climate. The NPV and 

PBP are respectively over £24M and two years; £11M and six years; and £5.3M 

and three years for the GT compression duties in the COAL-PP, CCGT-PP and 

GT-PP respectively. This is a huge improvement. 

The economic performance of the 33.9 MW GT mechanical drive in application 

to the three power generation stations (COAL-PP, ONG-PP and CCGT-PP) as 

shown above could also be analysed in terms of changing CO2 throughput 

(refer to CO2 throughput in Figure 6-2 to Figure 6-5 above). Assuming the CO2 

being compressed is captured from a single power generation station with load 

swings which changes the CO2 throughput. This possibility especially comes to 

play considering the fact that renewable power generation will force most power 
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plants to work at intermediate load condition. One could easily infer that the 

more the CO2 throughput decreases from the design maximum throughput, the 

lower the NPV, the higher the risk and in the worst case scenario (considering 

the ONG-PP CO2 throughput) the investment would operate at a loss. Given the 

necessity of CO2 abatement from power generation plants as earlier 

established, some initial investment projections could guide government’s policy 

in creating a healthy economic climate to prospective investors. This takes us to 

the influence of two major cost components that affects revenue generation 

assuming constant electricity price i.e. discount rate and fuel cost.  

 

Figure 6-17 Effect of Discount Rate on the Net Present Value of the 33.9 MW GT 

Figure 6-17 above  and Figure 6-18 below show the influence of discount rate 

on the NPV and PBP respectively of 33.9 MW GT compression duty. The lower 

the discount rate the better the NPV and PBP for the investment. At very low 

CO2 throughput typified here by ONG-PP, a maximum discount rate of 10% will 

ensure the economic performance by the GT prime mover is such that the 

capital invested is recouped just before the end of the plant life. In this light, 

government policy aimed at reducing inflation and interest rates to a single digit 

percentage will be an encouragement to investors in the CO2 pipeline transport. 

-15

-5

5

15

25

35

45

55

65

4 6 8 10 12 14 16

N
P

V
 [

£
 2

0
1
3
M

]

DISCOUNT RATE [%]

COAL-PP ONG-PP CCGT-PP



 

110 

 

 

Figure 6-18 Effect of Discount Rate on Payback Period of the 33.9 MW GT 

 

  

Figure 6-19 Effect of Discount Rate on the NPV and PBP of the 9.4 MW GT 

Figure 6-19 above depicts the influence of discount rate on the NPV and PBP of 

the GT mechanical drive used in compressing captured CO2 from the GT-PP. 
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The trend is similar to the ones presented above. Owing to the fact that this GT 

drive was originally selected to meet the low CO2 throughput from the power 

generation station; in comparison to Figure 6-17 and Figure 6-18 above, the 

economic performance in the worst case here i.e. 15% discount rate is still 

appreciable. At this rate the NPV is over £1.2M while the PBP is seven (7) 

years compared to a deficit NPV of £7.6M at the end of the plant life for the 33.9 

MW GT compression duty of the ONG-PP. In this light, one might be pushed to 

suggest that two different sizes of GT prime mover could be provided to cope 

with changing CO2 throughput. However, the prohibitive cost of owning and 

operating a GT engine will hardly give room for such arrangement especially as 

applied to CO2 pipeline whose investment knowledge is still at infancy stage. 

Reduction in variable operation and maintenance cost whose major contribution 

is from fuel consumption is another alternative explored here.   

 

Figure 6-20 Effect of Fuel Cost on the Net Present Value of the 33.9 MW GT 

Figure 6-20 above and Figure 6-21 below show the effects of changes in fuel 

price on the NPV and PBP respectively of the 33.9 MW GT mechanical drive. 

Similarly, Figure 6-22 below depicts the effect of fuel price on the NPV and PBP 

of the 9.4 MW GT mechanical drive. Three natural gas prices were assumed: a 

current price of £0.12/kg and two other prices at 25% and 50% reduction 
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considering the current trend of fall in oil and gas price at the global market 

(note that these prices are mere assumptions for the purpose of analysis only 

and by no way represent current market prices). 

 

Figure 6-21 Effect of Fuel Cost on Payback Period of the 33.9 MW GT 

 

Figure 6-22 Effect of Fuel Cost on the NPV and PBP of the 9.4 MW GT 

In Figure 6-20 and Figure 6-21 above, with decreasing fuel price, the economic 

performance of the GT mechanical drive increase in its value save for its 
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application on the ONG-PP which is still in deficit. However, the deficit in the 

ONG-PP reduced from about £7.6M to about £0.6M with 50% reduction in the 

price of fuel. In application to the remaining two power generation plants, at 

50% reduction in the price of fuel, the NPV with the COAL-PP nearly doubled its 

value (£13.9M - £24.3M)  while that of the CCGT-PP nearly quadrupled (£3.2M 

- £11.9M). The high impact of fuel cost on the profitability of this investment is 

highlighted by this trend. Similarly, the lowering of fuel prices also impact 

positively on the risk of recouping the initial investment as observed in the 

downward trend of the PBP especially with the CCGT-PP where it improved 

from thirteen to five years. 

In the particular case of the 9.4 MW GT mechanical drive, the NPV appreciated 

from over £1.2M to about £4.9M in value with 50% reduction in the assumed 

current fuel price. The PBP is also lowered to nearly half of the initial time 

frame. In the medium price range, the NPV nearly tripled its initial value while 

the PBP reduced to five years from the initial seven years. 

One economic parameter that has been kept constant so far is the price of 

electricity which is the only source of revenue ascribed to this model. The NPV 

and the PBP are positively influenced by increase in electricity price all other 

cost being constant. The selling price of electricity may naturally increase 

because of the additional cost incurred in making the power generation plants 

carbon capture ready. However, the envisaged reduction in natural gas price 

might force it to remain steady keeping the economic performance trending as 

above. Nevertheless, an increase in electricity price will affect the economic 

performance of the GT prime mover in same manner as a decrease in discount 

rate or fuel price explained above 

6.7.3 Summary 

The success of GT application to CO2 pipeline is hinged on the ability to 

maintain the available CO2 throughput as close as possible to the rated 

throughput that guided the selection of the prime mover at onset. Cut in 

expenditure in the form of reduced discount rate and fuel cost will in no 
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measurable terms ensure desired profitability is achieved because return on 

investment is increased. 

6.8 Economic Evaluation of Case Scenario II 

The case description has already been presented in section 6.2.2. In order to 

evaluate the economic performance of the GT prime mover, the hydraulic 

analysis of the pipeline profile for a given pipe diameter and CO2 throughput 

need be carried to delineate the positioning of the booster station. With a 

pipeline inlet pressure of 150 bar, 100 bar is set as minimum threshold for 

recompression to avoid two-phase flow which ensures that pumps are safely 

used for boosting the pressure. This 100 bar minimum pressure limit set for the 

CO2 flow along the pipeline is in accord with recommendation in literature [64; 

68; 84-86]. 

6.8.1 Hydraulic Analysis Data and Assumptions 

The dense-phase CO2 flow in the buried pipeline is assumed to be isothermal at 

a constant flowing temperature of 25°𝐶  (77°𝐹 ). Since the pipeline operating 

pressure is fixed at 150 bar, the prevailing factors that will drive this analysis 

(i.e. to determine the pressure drop during transmission) will be the pipe size 

(internal diameter), the CO2 throughput, the minimum pressure limit and the 

elevation change (due to the high density of the CO2). The CO2 throughputs 

were corrected to standard conditions (14.696 psia; 60°F) while pressure loss 

due to pipe connections and valves were neglected. 

It was earlier revealed that the dense phase have a viscosity similar to that of a 

gas and a density near that of a liquid, hence literature has documented the 

pressure drop modelling of CO2 flow in the liquid phase using Bernoulli equation 

[68] while the gaseous phase has been employed by the vast majority [2; 10; 

55; 57]. The mere fact that the CO2 flow in pipeline still undergo expansion and 

contraction; in order words compressibility, inevitably dismisses analysing the 

pressure drop as an incompressible flow or liquid.  

The influence of impurities in the hydraulic analysis of the captured CO2 per se 

is a matter of concern. However, in order to simplify the hydraulic analysis, the 



 

115 

current study assumes the CO2 is pure while employing established gas flow 

equations to evaluate the pressure drop caused by the high density CO2 flow. 

The compressibility properties were estimated using the PR-EOS - widely used 

for CO2 pipeline flow analysis and said to be among the most precise and 

proper for engineering application [9; 53; 55; 63].  

Three API 5L X-70 line pipe sizes of 323.9 mm (12¾″), 355.6 mm (14″) and 610 

mm (24″) were assumed. Meanwhile, the 12¾″ and 14″ pipe sizes were 

specifically chosen in order to keep the CO2 flow velocity as close as possible to 

within 1.5 – 4m/s said to be the most cost effective velocity for dense phase 

CO2 transmission [8; 9]. Furthermore, these two pipeline sizes are similar to the 

existing Weyburn CO2 trunk pipeline connecting USA and Canada where the 

CO2 is used for enhanced oil recovery (EOR) [2; 55]. The pipe wall thickness  

𝑡(𝑚)  for a pipe of outside diameter 𝐷(𝑚) is evaluated using the relationship 

specified in the US Code of Federal Regulation (CFR 2005) as [55; 85]: 

 

𝒕 =
𝑷𝒎𝒂𝒙𝑫

𝟐𝑺𝑭𝑬
        [Eq. 6-17]  

 

Where 𝑃𝑚𝑎𝑥  (𝑀𝑃𝑎) is the maximum operating pressure of the pipeline which is 

chosen as 15.3𝑀𝑃𝑎; 𝑆 (𝑀𝑃𝑎) is the minimum yield strength of the pipe specified 

as 483 𝑀𝑃𝑎 for the API 5L X-70 line pipe selected; 𝐹 is design factor for safety 

taken as 0.72 and 𝐸 is the seam joint factor set to 1.0 based on seamless weld 

pipe assumption [39; 55; 68]. The summary of the pipeline parameters are 

shown in Table 6-4 below. 
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Table 6-4 Parameter Values of Pipeline 

Parameter Values 

Maximum Operating Pressure(MPa) 
Initial Pipe Inlet Pressure(KPa) 
CO2 Density at Inlet (kg/m3) 
CO2 Viscosity at Inlet(Pas) 

Isothermal Flow Temperature(°C) 

Base Temperature(°C) 

Base Pressure (KPa) 
Pipe Outside Diameters (mm) 
Pipe Outside Diameters (inch) 
Minimum Yield Stress (MPa) 
Longitudinal Joint Factor 
Design Factor 
Absolute Pipe Roughness (mm) 
Pipe Thickness (mm) 
CO2 Throughput (MTPY) 
CO2 Specific Gravity 
Profile Horizontal Distance (km) 

15.3 
15000,10500 
876.3 
9.2605x10-5   [98] 
25 
25 
101.325 
610, 355.6; 323.9 
24; 14; 12¾ 
483 
0.72 
1.0 
0.045   [49; 121] 
13.45; 7.84; 7.14 
3.70; 2.41; 2.78; 3.33 
5.12 
511 

6.8.2 Modelling the Pipeline Flow 

The flow of the CO2 in the pipeline was modelled using the fundamental flow 

equation cast in two different forms as obtained from literature. The first form of 

the equation (in SI units) said to be widely used in the pipeline industry is cast 

thus [122]: 

𝑸 = 𝟒𝟕𝟖𝟖𝟎 ∗
𝑻𝒃

𝑷𝒃
𝑬 ∗ 𝑫𝒊𝒏

𝟐.𝟓 [
𝒑𝟏

𝟐−𝒑𝟐
𝟐−

𝟎.𝟎𝟑𝟕𝟓∗𝑺𝑮∗(𝑯𝟐−𝑯𝟏)∗𝒑𝒂
𝟐

𝒁∗𝑻𝒂

𝑺𝑮∗𝒁∗𝑻𝒂∗𝑳∗𝝀𝑫𝑾
]

𝟎.𝟓

 [Eq. 6-18] 

The second form of the equation also in SI units and considering the effect of 

elevation difference between the upstream and downstream ends of the 

pipeline segment is cast as [121]: 

𝑸 = 𝟓. 𝟕𝟒𝟕𝟑 ∗ 𝟏𝟎−𝟒 ∗ 𝑭
𝑻𝒃

𝑷𝒃
∗ 𝑫𝒊𝒏

𝟐.𝟓 [
𝒑𝟏

𝟐−𝒆𝒙𝒑𝒔𝒑𝟐
𝟐

𝑺𝑮∗𝒁∗𝑻𝒂∗𝑳𝒆𝒒
]

𝟎.𝟓

[62][62]  [Eq. 6-19] 

Or 
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𝑸 = 𝟏𝟏. 𝟒𝟗𝟒𝟔 ∗ 𝟏𝟎−𝟒 ∗
𝟏

√𝝀𝑫𝑾

𝑻𝒃

𝑷𝒃
∗ 𝑫𝒊𝒏

𝟐.𝟓 [
𝒑𝟏

𝟐−𝒆𝒙𝒑𝒔𝒑𝟐
𝟐

𝑺𝑮∗𝒁∗𝑻𝒂∗𝑳𝒆𝒒
]

𝟎.𝟓

[62][62] [Eq. 6-20] 

With: 

𝑷𝒂 =
𝟐

𝟑
[𝑷𝟏 + 𝑷𝟐 − (

𝑷𝟏𝑷𝟐

𝑷𝟏+𝑷𝟐
)]       [Eq. 6-21] 

𝒔 =
𝟎.𝟎𝟑𝟕𝟓∗𝑺𝑮∗(𝑯𝟐−𝑯𝟏)

𝒁∗𝑻𝒂
      [Eq. 6-22] 

𝑳𝒆𝒒  =  
𝑳(𝒆𝒙𝒑𝒔−𝟏)

𝒔
       [Eq. 6-23] 

And for n number of segments 𝐿1, 𝐿2, 𝐿3 ,…., 𝐿𝑛 that make up the pipeline length 

𝐿, the equivalent length is defined as: 

𝑳𝒆𝒒  =  𝒋𝟏𝑳𝟏 + 𝒋𝟐𝑳𝟐𝒆𝒔𝟏 + 𝒋𝟑𝑳𝟑𝒆𝒔𝟐 + ⋯ + 𝒋𝒏𝑳𝒏𝒆𝒔(𝒏−𝟏) [Eq. 6-24] 

Where 

𝑄 = gas flow rate at standard conditions (𝑚3/𝑑𝑎𝑦) 

𝑇𝑏  = base temperature (𝐾) 

𝑃𝑏  = base pressure (𝐾𝑃𝑎) 

𝑇𝑎  = average flow temperature (𝐾) 

𝑃𝑎  = average pressure (𝐾𝑃𝑎) 

𝑃1  = upstream pressure (𝐾𝑃𝑎) 

𝑃2  = downstream pressure  (𝐾𝑃𝑎) 

𝐻1  = upstream elevation (𝑚) 

𝐻2  = downstream elevation (𝑚) 

𝐿 = pipeline segment length (𝑘𝑚) 

𝐿𝑒𝑞  = equivalent pipeline segment length (𝑘𝑚) 

𝑍 = gas compressibility factor (𝑛𝑜𝑛𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙; 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑎𝑡 𝑇𝑎𝑎𝑛𝑑 𝑃𝑎) 

𝑆𝐺 = gas specific gravity (𝑛𝑜𝑛𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙) 

𝐷𝑖𝑛  = inside diameter of pipe (𝑚) 
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𝐸 =  pipeline efficiency (decimal value less than 1.0) 

𝜆𝐷𝑊 = Darcy-Weisbach friction factor (𝑛𝑜𝑛𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙) 

𝐹 = transmission factor (nondimensional, 𝜆𝐷𝑊 = 4/𝐹2) 

𝑠 = elevation correction factor (𝑛𝑜𝑛𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙) 

The Darcy-Weisbach Friction factor is obtained using the Colebrook-White 

equation defined as: 

𝟏

√𝝀𝑫𝑾
=  −𝟐𝒍𝒐𝒈𝟏𝟎 (

𝒆

𝟑.𝟕𝑫𝒊𝒏
+

𝟐.𝟓𝟏

𝑹𝒆√𝝀𝑫𝑾
)     [Eq. 6-25] 

Or in terms of the transmission factor; 

𝑭 =  −𝟒𝒍𝒐𝒈𝟏𝟎 (
𝒆

𝟑.𝟕𝑫𝒊𝒏
+

𝟏.𝟐𝟓𝟓𝑭

𝑹𝒆
)     [Eq. 6-26] 

(For 𝑅𝑒 > 4000) 

𝑒 =  absolute pipe roughness( mm ) 

𝑅𝑒 =  Reynolds number (nondimensional) 

The Reynolds number is given by the expression 

𝑹𝒆 = 𝟎. 𝟓𝟏𝟑𝟒 
𝑷𝒃∗𝑺𝑮∗𝑸

𝑷𝒃∗𝝁∗𝑫𝒊𝒏 
      [Eq. 6-27] 

𝜇 = dynamic viscosity (Pas)           

A FORTRAN code was developed by the author to model the flow [Eq. 6-20] 

which is adopted for this study. The CO2 compressibility factor for flow along the 

pipe segments were computed via a subroutine containing the PR-EOS 

algorithm (the PR-EOS formulations are highlighted in section 4.4.1). At any 

point along the segments that the pipeline flow pressure falls below a set 

minimum, a warning message “POINT OF RECOMPRESSION” is displayed. 

The code reads the pipeline profile through an input file containing values for 

the segments lengths and corresponding upstream and downstream elevation 

values. The design of the code to read from an input file gives it the ability to 
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simulate pressure drop of any given profile with slight modification. Given the 

available pipeline profile data, a total of thirty-one (31) pipeline segments of 

unequal lengths - a maximum of 28 km and minimum of 7 km are read as input. 

The code and its input file are as shown in Appendix F. 

6.8.3 Techno-Economic Analysis of the Hydraulic Simulation Results  

Considering four seasons in a year as earlier established in the preceding 

sections (see Figure 6-2 to Figure 6-5 above), average CO2 throughput values 

of 3.70 MTPY (0.27 mmscfd), 2.41 MTPY(0.18 mmscfd), 2.78 MTPY(0.20 

mmscfd) and 3.33 MTPY(0.24 mmscfd) for the hot, early rain, late rain and 

harmattan seasons respectively were simulated to obtain the pressure 

distribution along the pipeline profile (a typical output is shown in Appendix G). 

Owing to the elevation differences in the chosen profile, the 511 km horizontal 

distance has given rise to an equivalent length of 511.52 km. The behaviours of 

pressures along the pipeline profile with the average seasonal flows at standard 

conditions are discussed below.  

In actual practice, pipelines are sized and selected for maximum flow capacity 

or throughput to reduce pressure drop in the system within economic limits. 

Thus the larger the pipe size for a given flow, the lower the pressure drop. 

Similarly, for a given pipe size, a reduction in flow from the design capacity 

gives a lower pressure drop. This phenomenon is illustrated in Figure 6-23 to 

Figure 6-25 simulated for the 24″- diameter, 14″- diameter and 12¾″- diameter 

pipelines respectively. The seasonal CO2 throughputs values are quite close, 

hence the clustered nature of the plots. 

A comparison between the figures revealed that the delivery pressures of the 

CO2 throughputs from the 24″- diameter pipeline are relatively higher compared 

to those from the 14″- diameter and 12¾″- diameter pipelines. Similarly, the 

delivery pressures of the CO2 throughputs from the 14″- diameter pipeline are 

relatively higher compared to that from the 12¾″- diameter pipeline. Obviously, 

the pressure drop in the 12¾″- diameter pipeline is highest since the smaller the 

cross - sectional area of flow, the higher the resistance to flow and vice-versa.  
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Figure 6-23 Variation of Pressure with Changing CO2 Throughput at Standard 

Condition (24″-Pipe Size) 

 

Figure 6-24 Variation of Pressure with Changing CO2 Throughput at Standard  

Condition (14″-Pipe Size) 
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Figure 6-25 Variation of Pressure with Changing CO2 Throughput at Standard 

Condition (12¾″-Pipe Size) 

Again, considering the figures individually, one observes that the higher the CO2 

throughput, the more the pressure drop and hence the lower the delivery 

pressure. This can be attributed to the fact that, for a given pipe size, an 

increase in throughput increases the degree of turbulence or Reynolds number; 

which invariably increases the pressure loss and hence lower the delivery 

pressure. 

 

Figure 6-26 Variation of Flow Reynolds Number with CO2 Throughput  
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The variation of Reynolds number with the seasonal CO2 throughput for the14″- 

diameter pipeline is shown in Figure 6-26 above. These trends on their own 

merits validate the code used for these hydraulic analyses. 

 

Figure 6-27 Variation of Pressure along the Pipeline Profile for the Chosen Pipe 

Sizes at Standard Condition (CO2 Throughput = 3.7MTPY) 

Against this back drop, the need for recompression or otherwise will be built 

upon the maximum seasonal CO2 throughput (3.70 MTPY) established in this 

study. From the engineering point of view, the choice of maximum throughput is 

to base the analysis on the worst case scenario since the highest pressure drop 

in the pipeline is obtained at the maximum throughput. The satisfaction of the 

worst case automatically satisfies the other lower flow capacities associated 

with the pipeline in the current study.   

Figure 6-27 above depicts the pressure variation along the pipeline at the 

maximum CO2 throughput used for this analysis. Having established the fact 

that the pressure drop is lowest in the 24″- pipe compared to the 14″ and 12¾″- 

pipes, the pressure distribution along the pipeline profile is comparatively higher 

in the 24″- pipe. An immediate eye catching feature of this plot is that the outlet 

pressure at the receiving terminal is higher than the pipeline inlet pressure. 
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Thus the overall effect of the profile’s elevation difference is the minimising of 

pressure losses and to a very large extent gain in pressure during the CO2 

transmission. This positive influence on the pressure distribution along the 

pipeline profile therefore negates any need for an intermediate booster station. 

To corroborate this finding, the Weyburn CO2 pipeline which consist 14″ and 12″ 

pipe sizes, transporting over 1.8MTPY of CO2 (contains 96% CO2 + other 

impurities) along a 330 km pipeline has a delivery pressure of 15200 KPa 

without an intermediate compressor station [1]. Although the inlet pressure was 

not mentioned, it is obvious that it would not exceed 15300 KPa which is the 

maximum allowable operating pressure with ASME-ANSI 900# flange for the 

line-pipe used in transporting the CO2.  

Another aspect of concern in this plot is the pressure spike above the pipeline 

maximum allowable operating pressure which brings about issues of 

mechanical integrity and pipeline safety requiring pressure relief. Assuming this 

is a preliminary assessment of the flow, it therefore suggest a reduction of the 

initial inlet pressure of the CO2 into the pipeline to keep the flow pressure within 

limits for this particular pipeline profile. This being the case, huge savings in 

economic terms is achieved since the attendant cost of booster station is 

eliminated; which means the projected cost of applying the GT prime mover in 

the CO2 pipeline will be reduced. 

In the light of the above, simulation was carried out to obtain the minimum inlet 

pressure that can be obtained along this profile to keep the flow within safety 

limits. The plot shown in Figure 6-28 below depicts that at pipeline inlet 

pressure of 10500 KPa, the delivery pressure for the pipeline profile is about 

10448 KPa. This eliminates the need of combining a compressor and pump for 

the initial pressure boost as suggested in literature because the increase in 

capital cost associated with owning a pump and associated driver far outweighs 

the extra expense incurred in acquiring a rated GT mechanical drive for this 

compression duty. 
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Figure 6-28 Variation of Pressure along the Study Profile and Flat Profile in the 

12¾″- Pipe at Standard Condition (CO2 Throughput = 3.7MTPY) 

Perhaps the only advantage of employing a pump for pressure boost will be at 

the injection site where the scenario may warrant increase in discharge 

pressure beyond delivery pressure due to build-up of pressure within the 

storage cavity. Equally noteworthy is that at this inlet pressure, the pressure 

spike along the pipeline profile is maintained well below the maximum allowable 

operating pressure.  

Assuming the profile is flat, Figure 6-28 also depicts the simulated pressure 

distribution along the pipeline profile. Using same inlet pressure of 10500 KPa, 

the delivery pressure is about 10359 KPa. Obviously, the difference in delivery 

pressures between the profiles is due to the contribution from elevation in the 

study’s profile.  In essence, with an inlet pressure of 10.5 MPa, the given flow 

pressure will not fall below the 10 MPa specified minimum up to triple the 

current pipeline distance for this given pipe size. Thus the requirement for 

recompression is once again defeated. Similar conclusion was arrived at in a 

case study using similar equation on same pipe size over a flat profile but with a 

CO2 inlet pressure and throughput of 15.2 MPa and 1.46 MTPY respectively 

[85]. A delivery pressure of 14.7 MPa over a length of 2562 km was obtained for 

an average flow temperature of 14°C [85]. This case study indicates the 
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pressure loss during transmission is quite low and is relatively similar to those 

obtained from the simulation results discussed so far. Therefore, the simulation 

results as obtained could be said to be justifiable within the set constraints.  

6.8.4 Summary 

Given the study assumptions and the selection of an economically optimized 

pipe diameter, the pressure drop along the pipeline is determined by the CO2 

throughputs. The pressure drop is high when the magnitude of the throughput is 

high and vice-versa. Judging by the results obtained, it may prove difficult for 

one to accept that during transmission, the high pressure CO2 pipeline might 

require a booster station before the point of delivery within 1500 km for a flat 

terrain if the inlet pressure is maintained at 10.5 MPa, let alone 15M Pa. More 

obvious is this submission when a real life profile is considered; except for the 

situation where the pipeline profile climbs uphill for a considerable distance 

which is uncommon. In addition, the need of combining a compressor and pump 

for the initial pressure boost becomes uneconomical especially as the difference 

in pressure is no longer 5 MPa but 0.5 MPa as obtained from the simulation. 

Equally, the increase in capital cost associated with obtaining a pump and 

associated driver will not be justified when compared to the expense incurred in 

acquiring a rated GT mechanical drive to meet the compression duty. 

6.9  Validation of the TERA Framework  

The entire assessment is built around the TERA framework comprising of the 

four different modules discussed in chapter 3. The validity of the analysis is 

hinged upon the validity of the individual modules that make up the TERA 

framework. 

The Pipeline/Compression module as presented is based on established 

equations for compression and fluid flow analysis. Thus, the results obtained 

under the stated assumptions are within reasonable accuracy in principle. 

Furthermore, the employed compression equations are those used for the 

preliminary design analysis of compression equipment while the flow curves 

obtained follow established trends. However, the presence of impurity in the 
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captured CO2 which affects fluid properties during compression and 

transportation and hence amount of GT power required, is an issue to be 

considered. Another issue worthy of consideration lies with the state (dense-

phase) of the CO2 been transported. The dense-phase shares the 

characteristics of both liquid and gas as expounded by literature. This unusual 

characteristics equally affects properties of density and compressibility of the 

CO2 being transported. 

The existence of issues of this nature, could reduce the reliability of the 

module’s results. However, the effect of impurity is minimised by the high level 

of purity expected from the CO2 capture plants before initial compression to 

pipeline operating pressure. Hence, for a preliminary assessment, the 

Pipeline/Compression module gives substantial accuracy. To conclude, it is 

worth mentioning that the best method to validate this module will be a field 

study especially as the very nature of CO2 in the dense-phase is still been 

researched. This is beyond the scope of this work. 

The design point and off-design performance outputs used for this assessment 

under the Engine Performance Module are based on validated in house gas 

turbine performance codes. These codes are propriety to Cranfield University 

and it is no gain saying that they compete favourably with existing commercial 

gas turbine simulation software like GasTurb. These codes are continuously 

improved to meet with current challenges in performance analysis of the gas 

turbine engine. 

The result obtained from the Emission Module is quite generic and could be 

more accurate if the geometry of the individual combustors were captured in the 

emission simulation code. However, owing to the flexibility in the choice of the 

CO2 emission levy during evaluation and the comparative nature of the 

assessment carried out; the error introduced could be ignored. Hence the 

reliability of the analysis is not compromised. 

The nature of assessment carried out in the Economic Module is predictive and 

can only be validated over time. However, a vote of confidence in the results 

obtained can be passed from the fact that the economic performance 
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assessment is based on universally accepted economic evaluation techniques. 

Although, the economic performance results as obtained cannot be immediately 

verified, but like every feasibility studies, the results provides the prospective 

investor a forecast about the business climate. 

6.10 Concluding Remarks 

The outcome of the case studies indicates that having selected a gas turbine, 

the profitability of its use will depend on the nearness of the CO2 throughputs to 

the amount of CO2 throughput that initially guided its selection. Also, the 

economic performance of the GT is more favourable with higher CO2 

throughput ab initio because very high positive NPV and low PBP is obtained. 

Giving the pipeline sizes under the assumed flow conditions, the need for a 

booster station across the pipeline profile may not be necessary since the 

pressure at delivery is still within the set limit. Additional conclusions and 

recommendation is provided in the next chapter to conclude this study. 

 





 

129 

7 Conclusion and Recommendation 

7.1 Conclusion 

The primary objective of this doctoral thesis is to assess CO2 return pipelines 

and the close coupling of the compression system with advanced prime mover 

cycles. This investigation provides a comparative assessment of traditional and 

novel prime mover options including the design and off-design performance of 

the engine as well as the economic analysis of the system. The originality being 

the technical and economic optimisation of GTs based on current and novel 

cycles for a novel pipeline application in a wide range of operating conditions. 

To sum up, the following were presented:  

a. Modelling and evaluation of CO2 compression power requirements for 

GT driven equipment (pump and compressor). The results show that the 

modelled CO2 compression power increase as the CO2 throughput 

increases. In compression using multi-stage compressors, reducing the 

number of stages cause an increase in the compressor duty for an 

average CO2 throughput due to rise in compressor head or otherwise 

rise in stage compression ratio. Although the increase in required power 

means increase in energy cost, it is a trade-off for a compact and relative 

light weight centrifugal compressor which is advantageous during 

installation and maintenance. In the same vein, the effect of pressure 

drop due to intercooling during compression is an increase in 

compression power requirement. The modelled results also show that, in 

a combination of compressor and pump to compress the CO2 to 150 bar, 

15.2% power saving is achieved if the CO2 is introduced into the pump at 

a pressure and temperature of 100 bar and 25°C respectively. 

b. Subroutines implementing variable stators were developed to modify 

Variflow - an in-house GT simulation code. This modification was 

achieved by altering the existing compressor maps and main program 

algorithm of the code. The validation of the modified code was carried 

out by simulating the design point and off-design performance of a GT 

engine inspired by an existing industrial GT. The performance trend from 
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the results obtained agreed well with established and published GT 

behavior that employs variable stators. The code is especially important 

in simulating GT cycles using working fluids other than air. 

c. Bearing in mind that captured CO2 throughput vary depending on the 

utilization factor of power generation plants at specific time of the year, 

two case scenarios were analysed over a 25-year projected CO2 

throughput spread across four seasons in a year for a typical tropical 

climate. The first case scenario involves the application of GT in 

providing the initial compression duty to compress the seasonal CO2 

throughputs from atmospheric pressure to 100 bar. The second case 

scenario involves the determination of suitable compression point (hence 

GT application) along a real life pipeline profile for the seasonal CO2 

throughputs in three different sizes of pipe.  

Economic model based on NPV method and pipeline hydraulic analysis 

model based on fundamental gas flow equation were developed in 

FORTRAN to facilitate the techno-economic and environmental risk 

analysis of selected GT mechanical drives in the case scenarios. In order 

to provide the required compression duty, two GTs of which one 

incorporates a recuperator (9.4 MW capacity) while the other utilizes a 

dry low emission combustor (33.9 MW capacity) were modelled. The 

design point and off-design performances of the GT were simulated 

using Turbomatch and analysed to extract necessary parameters 

required for the economic performance. When de-rated to the operating 

ambient condition, their power outputs were 7.6 MW and 25.9 MW 

respectively  

The economic performance of deploying the GT prime movers in the first 

case scenario show a very high positive net present value (NPV) in as 

much as the available CO2 throughput is maintained as close as possible 

to the rated throughput that guided the selection of the prime movers at 

onset. Thus, a good return on investment is expected. Similarly, at rated 

CO2 throughput, the associated risk is quite low with a payback period 

within 3 - 7 years. However, as the CO2 throughput drops, the risk 
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becomes higher with less return on investment. In fact, when the CO2 

throughput drops to a certain level, the investment becomes highly 

unattractive and unable to payback itself within the assumed 25 years 

plant life. 

Reduction in discount rate positively influence the investment, which 

suggests that government policy aimed at interest rate reduction will 

create a healthy economic climate to prospective investors. The results 

equally show that cut in expenditure in the form of fuel cost reduction 

brings tremendous increase in NPV as well as reduction in the payback 

period assuming the selling price of electricity remain unchanged. 

The results of the second case scenario has shown that for a given 

pipeline, the amount of pressure drop is directly proportional to the 

magnitude of the CO2 throughput and hence the pressure distribution 

along the pipeline. On the other hand, the amount of pressure drop is 

inversely proportional to the pipe size. Given the assumed pipeline 

operating pressure of 15 MPa and the minimum 10 MPa threshold for 

recompression; considering the worst case (i.e. least pipe size and 

maximum CO2 throughput) of this study along the given pipeline profile, 

the outlet pressure obtained at the receiving terminal is higher than the 

pipeline inlet pressure. In fact, pressure spikes above the pipeline 

maximum allowable operating pressure were obtained putting to test the 

pipeline’s mechanical integrity and safety. Thus, the effect of the profile’s 

elevation is to minimise the pressure losses and to a very large extent 

increase the pressure of the CO2 flow during transmission.  

d. Further investigation revealed that maintaining the pipeline inlet pressure 

at 10.5 MPa along the study’s pipeline profile gives a discharge pressure 

of about 10.45 MPa. It is worthy of note that at this pressure, the flow is 

not only kept within safety limits but huge savings in energy is achieved 

since it is no longer necessary to compress to 15 MPa. Simulating the 

same flow over a flat profile of same distance and pipeline inlet condition; 

the resulting drop in pressure is about 142 KPa. This implies that the flow 

pressure will not fall below the 10 MPa specified minimum were it to be 
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transported along thrice the current pipeline distance. Therefore, within 

the limits of the current study, no booster station is required. This equally 

eliminates the need of combining a compressor and pump for the initial 

pressure boost as widely advocated especially as the difference in 

pressure is no longer 5 MPa but 0.5 MPa. This is because irrespective of 

the saving in energy, the increase in capital cost associated with 

obtaining a pump and suitable driver far outweighs the extra expense 

incurred in acquiring a rated GT mechanical drive to meet the 

compression duty. 

Under the stated assumption for the CO2 pipeline transmission, it is very 

unlikely that a booster station will be required especially when a real life 

profile is considered; except for the situation where the pipeline profile 

climbs uphill for some considerable distance which is rare. Therefore, 

this will limit the use of GT mechanical drives to the initial pressure boost 

to pipeline operating pressure leading to reduced investment cost. 

7.2 Recommendation for Further Work 

In the course of this analysis, pure CO2 has been assumed in simulating the 

compression power requirement. It will be worthwhile to perform similar analysis 

with CO2 containing known impurities in order to ascertain the impact on the 

compression power requirement and selected GT power.  

The Variflow code as currently modified and validated can be used to predict 

the off-design performance of single-shaft GT. However, further improvement 

will be necessary especially in the handling to enable the simulation and 

performance analysis of the semi-closed cycle GT that is currently being 

researched. It is envisaged that this modified Brayton cycle employing oxy-fuel 

combustion process in a novel application of GT, adds another dimension to the 

technological option in CO2 capture from power generation plants. The main 

essence of which is to take advantage of the high compression ratio of the GT 

axial compressor to compress the CO2 to some appreciable level before being 

introduced into the CO2 compressor. Thus, the size and power requirement of 

the CO2 pipeline compressor will be highly reduced. 
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Furthermore, the extraction of CO2 from the GT compressor will naturally results 

in an inefficient engine. However, its ability to burn cheap fuel like syngas from 

coal; the reduction in CO2 compression power requirement and the gains in the 

efficient control of CO2 emission  are trade-offs that are worth exploring. 

Finally, hydraulic analysis of other real life pipeline profiles should be conducted 

to ascertain whether or not CO2 recompression will be required in the CO2 

pipeline transport. Such findings will in no small measure empower prospective 

investors and power generation plant owners to engage government 

constructively in coming up with appropriate legislation to implement CCS. 
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APPENDICES 

Appendix A Variflow Design Point Output File 
 

VARIFLOW SIMULATION OF EL200 INSPIRED BY SGT200 INDUSTRIAL GAS TURBINE 

BY A. ELSULEIMAN, OCT 2014 

  D E S I G N   P O I N T   S U M M A R Y  

 

               T              P              W 

           1   288.1500       101325.0       29.03000     

           2   288.1500       101314.9       29.03000     

           3   288.1500       101314.9       29.03000     

           4   288.1500       101314.9       29.03000     

           5   288.1500       101314.9       29.03000     

           6   288.1500       101314.9       29.03000     

           7   288.1500       101314.9       29.03000     

           8   288.1500       101314.9       29.03000     

           9   629.3137       1276567.       29.03000     

           10   1326.150      1206356.       26.88995     

          11   1326.150       1206356.       26.88995     

          12   776.3839       105649.2       26.88995     

          13   764.0139       105649.2       29.50265     

          14   764.0139       105649.2       29.50265     

 

  INTPLOSS=.000  CPOLY=.908  CBLF=.090  OBLF=.000  CCPLOSS=.055  

TPOLY=.911 

 

  WFFI=1                                    LHV= 48.172 MJ/kg 

  P1=101325.0 Pa   T1=288.15 K    W1=  29.030 kg/sec 

  CPR1= 1.00       CPR2= 1.00     CPR3= 1.00     CPR4=12.60 

  TET=1326.15 K    M14=.250 

  ADN1= 8.80       ADN2= 8.80     ADN3= 8.80     ADN4= 8.80       

(RPM*sec/m)  N=3000.000 RPM 

POWER=  7.68 MW  ETATH=33.74%   SP.PWR=0.265 MW*sec/kg   HR=10113.20 

BTU/kWhr        

 

CFR  CF(kg/sec)  SFC(kg/MWhr) 

CH2  0.00000  0.000    0.000      M2=.450             ADW2=0.0698 m^2 

CH4  0.01543  0.408    191.043      A2=0.1748 m^2    A11=0.0208 m^2 

C2H6 0.00000  0.000      0.000      M91=.100        ADW4=0.0698 m^2 

C3H8 0.00194  0.051     24.021      A91=0.0757 m^2      P10/P12=11.419 

 CO  0.00000  0.000      0.000      CCPLF= 8.02         P14/P1=1.0427 

CO2  0.00009  0.002      1.115      EGT= 764.01 K 

H2   0.00000  0.000      0.000      PHITRB=0.00     W14= 29.503 kg/sec 
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H2O  0.00000  0.000      0.000      PSITRB=1.70       A14= 0.4715 m^2 

N2   0.00043  0.011      5.323 

O2   0.00000  0.000      0.000 

TOT  0.01789  0.473    221.503 

 SFADN1=  0.9948651     SFADN2=  0.9948651     SFADN3=  0.9948651     

SFADN4=  0.9948651     

 SFADW1=  0.5884801     SFADW2=  0.5884801     SFADW3=  0.5884801     

SFADW4=  0.5884801     
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Appendix B Turbomatch Design Point Input Files  

B.1  EL2500RD Gas Turbine Design Point Input File 

REF_TITLE: Performance simulation modelling of EL2500RD inspired by GE 

LM2500RD using the TURBOMATCH scheme 

BY A. EL-SULEIMAN 

ADAPTED AND MODIFIED FROM THE MODEL by Paul H. Wilkinson 

REF_DATE: OCT 2014 

______________________________________________________________________ 

!Turbomatch Programme: DESIGN POINT SIMULATION OF EL2500RD INDUSTRIAL 

GAS TURBINE DLE ENGINE 

 

//// 

DP SI KE VA XP 

-1 

-1 

INTAKE  S1,2       D1-4            R100  

COMPRE  S2,3       D5-11           R102     V5    V6 

PREMAS  S3,4,22    D12-15    

PREMAS  S4,5,23    D16-19                 

BURNER  S5,6       D20-22          R104 

MIXEES  S6,23,7 

TURBIN  S7,8       D23-30,102,31            V24 

MIXEES  S8,22,9                              

TURBIN  S9,10      D32-41                   V32 V33 

NOZCON  S10,11,1   D41             R110 

PERFOR  S1,0,0     D32,43-45,110,100,104,0,0,0,0,0,0,0,0,0 

CODEND 

 

DATA ITEMS //// 

1 0.0                ! INTAKE DATA : ALTITUDE 

2 0.0                ! DEV FROM STANDART TEMP 

3 0.0                ! MA-NUMBER 

4 0.999              ! PRESSURE RECOVERY 

! COMPRESSOR 

5 -1.0               ! COMP : Z 

6 -1.0               ! RELATIVE ROTATIONAL SPEED 

7 23.0               ! PRESSURE RATIO 

8 0.89               ! ISENTROPIC EFFICIENCY0.87 

9 0.0                ! ERROR SWITCH 

10 3.0               ! MAP-NUMBER 

11 0.0               ! STATOR ANGLE RELATIVE TO DP 

!PREMAS 
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12 0.975             !Cooling bypass: LAMBDA W (BLEED AIR)0.975 

13 0.0               ! DELTA W FLOW LOSS 

14 1.0               ! LAMBDA P PRESSURE RECOVERY  

15 0.0               ! DELTP PRESSURE DROP 

!PREMAS 

16 0.927             ! Cooling bypass: LAMBDA W (BLEED AIR) 

17 0.0               ! DELTA W FLOW LOSS 

18 1.0               ! LAMBDA P PRESSURE RECOVERY  

19 0.0               ! DELTP PRESSURE DROP 

!BURNER 

20 0.05              ! PRESSURE LOSS DP/P 

21 0.997             ! COMB. EFF. 

22 -1.0              ! FUEL FLOW  

!HP TURBINE 

23 0.0               ! AUXWORK 

24 -1.0               ! DESIGN NON DIM FLOW / MAX 

25 0.8              ! DESIGN NON DIM SPEED 

26 0.89              ! ISENTROPIC EFF 

27 -1.0              ! ROT SPEED OF PT 

28 1.0               ! NUMBER OF COMPRESSOR DRIVEN 

29 5.0               ! MAP NUMBER  

30 -1.0              ! POWER LAW INDEX   

31  0.0              ! NGV ANGLE RELATIVE TO DP 

!POWER TURBINE 

32 33897494.0        ! AUXWORK 

33 -1.0              ! DESIGN NON DIM FLOW / MAX 

34 -1.0              ! DESIGN NON DIM SPEED 

35 0.89              ! ISENTROPIC EFF 

36 1.0               ! ROT SPEED OF PT 

37 0.0               ! NUMBER OF COMPRESSOR DRIVEN 

38 5.0               ! MAP NUMBER 

39 3.0              ! POWER LAW INDEX  

40 -1.0              ! COMWORK  

41  0.0              ! NGV ANGLE RELATIVE TO DP 

!NOZCON 

42 -1.0              ! FIXED CONVERGENT NOZZLE(THROAT AREA) 

!PERFOR 

43 1.0               ! PROPELLER EFF 

44 0.0               ! SCALING SWITCH 

45 0.0               ! REQUIRED THRUST at Design point 

 

-1 

1 2 91.17            ! item 2 at station 1 (INLET MASS FLOW) 

6 6 1550.0           ! Item 6 at station 6 TET OR COT 
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-1 

-3 

B.2 EL1200R Design Point Input File 

REF_TITLE: Performance simulation modelling of EL1200-R inspired by 

MAN Turbo THM1304-10R using the TURBOMATCH scheme 

    BY A. EL-SULEIMAN 

REF_DATE: OCT 2014 

______________________________________________________________________ 

!Turbomatch Programme: DESIGN POINT SIMULATION OF EL1200-R RECUPERATED 

INDUSTRIAL GAS TURBINE 

 

//// 

DP SI KE VA XP 

-1 

-1 

INTAKE  S1,2       D1-4            R100  

COMPRE  S2,3       D5-11           R102     V5    V6 

PREMAS  S3,4,22    D12-15    

HETCOL  S4,5       D16-19                 

BURNER  S5,6       D20-22          R104 

MIXEES  S6,22,7 

TURBIN  S7,8       D23-30,102,31            V24 

TURBIN  S8,9       D32-41                   V32 V33                       

HETHOT  S4,9,10    D42-45   

NOZCON  S10,11,1   D46             R110 

PERFOR  S1,0,0     D32,47-49,110,100,104,0,0,0,0,0,0,0,0,0 

CODEND 

 

DATA ITEMS //// 

1 0.0                ! INTAKE DATA : ALTITUDE 

2 0.0                ! DEV FROM STANDART TEMP 

3 0.0                ! MA-NUMBER 

4 0.999              ! PRESSURE RECOVERY 

! COMPRESSOR 

5 -1.0               ! COMP : Z 

6 -1.0               ! RELATIVE ROTATIONAL SPEED 

7 10.0               ! PRESSURE RATIO 

8 0.88               ! ISENTROPIC EFFICIENCY 

9 0.0                ! ERROR SWITCH 

10 5.0               ! MAP-NUMBER 

11 0.0               ! STATOR ANGLE RELATIVE TO DP 

!PREMAS 

12 0.975             !Cooling bypass: LAMBDA W (BLEED AIR) 
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13 0.0               ! DELTA W FLOW LOSS 

14 1.0               ! LAMBDA P PRESSURE RECOVERY  

15 0.0               ! DELTP PRESSURE DROP 

!HETCOL 

16 0.0               ! COLD SIDE TOTAL PRES. LOSS/COLD SIDE INLET 

TOTAL PRES(DP/Pin) 

17 0.8               ! EFFECTIVENESS 

18 1.0               ! HEAT EXCHANGER TYPE-RECUPERATOR (SWITCH)  

19 0.0               ! MASS FLOW LEAKAGE (COLD SIDE TO HOT SIDE/COLD 

SIDE INLET MASS FLOW=DW/DWin) 

!BURNER 

20 0.05              ! PRESSURE LOSS DP/P 

21 0.999             ! COMB. EFF. 

22 -1.0              ! FUEL FLOW  

!HP TURBINE 

23 0.0               ! AUXWORK 

24 -1.0               ! DESIGN NON DIM FLOW / MAX 

25 0.8              ! DESIGN NON DIM SPEED 

26 0.89              ! ISENTROPIC EFF 

27 -1.0              ! ROT SPEED OF PT 

28 1.0               ! NUMBER OF COMPRESSOR DRIVEN 

29 6.0               ! MAP NUMBER 

30 -1.0              ! POWER LAW INDEX   

31  0.0              ! NGV ANGLE RELATIVE TO DP 

!POWER TURBINE 

32 9404076.0        ! AUXWORK 

33 -1.0              ! DESIGN NON DIM FLOW / MAX 

34 -1.0              ! DESIGN NON DIM SPEED 

35 0.89              ! ISENTROPIC EFF 

36 1.0               ! ROT SPEED OF PT 

37 0.0               ! NUMBER OF COMPRESSOR DRIVEN 

38 6.0               ! MAP NUMBER 

39 3.0              ! POWER LAW INDEX  

40 -1.0              ! COMWORK  

41  0.0              ! NGV ANGLE RELATIVE TO DP 

!HETHOT 

42 0.0               ! HOT SIDE TOTAL PRES. LOSS/HOT SIDE INLET TOTAL 

PRES(DP/Pin) 

43 0.8               ! EFFECTIVENESS 

44 1.0               ! HEAT EXCHANGER TYPE-RECUPERATOR (SWITCH)  

45 0.0               ! MASS FLOW LEAKAGE (COLD SIDE TO HOT SIDE/COLD 

SIDE INLET MASS FLOW=DW/DWin) 

!NOZCON 

46 -1.0              ! FIXED CONVERGENT NOZZLE(THROAT AREA) 

!PERFOR 
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47 1.0               ! PROPELLER EFF 

48 0.0               ! SCALING SWITCH 

49 0.0               ! REQUIRED THRUST at Design point 

 

-1 

1 2 45.36            ! item 2 at station 1 (INLET MASS FLOW) 

6 6 1200.0           ! Item 6 at station 6 TET OR COT 

-1 

-3 
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Appendix C Turbomatch Off-Design Performance Input 

Files 

C.1 EL2500RD Off- Design Performance Input File 
REF_TITLE: Performance simulation modelling of EL2500RD inspired by GE LM2500RD 
using the TURBOMATCH scheme 
    BY A. EL-SULEIMAN 
    ADAPTED AND MODIFIED FROM THE MODEL by Paul H. Wilkinson 
REF_DATE: OCT 2014 
______________________________________________________________________ 
!Turbomatch Programme: OFF DESIGN POINT SIMULATION OF EL2500RD INDUSTRIAL GAS 
TURBINE DLE ENGINE 
 
//// 
OD SI KE VA XP 
-1 
-1 
INTAKE  S1,2       D1-4            R100  
COMPRE  S2,3       D5-11           R102     V5    V6 
PREMAS  S3,4,22    D12-15    
PREMAS  S4,5,23    D16-19                 
BURNER  S5,6       D20-22          R104 
MIXEES  S6,23,7 
TURBIN  S7,8       D23-30,102,31            V24 
MIXEES  S8,22,9                              
TURBIN  S9,10      D32-41                   V32 V33 
NOZCON  S10,11,1   D41             R110 
PERFOR  S1,0,0     D32,43-45,110,100,104,0,0,0,0,0,0,0,0,0 
CODEND 
 
DATA ITEMS //// 
1 0.0                ! INTAKE DATA : ALTITUDE 
2 0.0                ! DEV FROM STANDART TEMP 
3 0.0                ! MA-NUMBER 
4 0.999              ! PRESSURE RECOVERY 
! COMPRESSOR 
5 -1.0               ! COMP : Z 
6 -1.0               ! RELATIVE ROTATIONAL SPEED 
7 23.0               ! PRESSURE RATIO 
8 0.89               ! ISENTROPIC EFFICIENCY0.87 
9 0.0                ! ERROR SWITCH 
10 3.0               ! MAP-NUMBER 
11 0.0               ! STATOR ANGLE RELATIVE TO DP 
!PREMAS 
12 0.975             !Cooling bypass: LAMBDA W (BLEED AIR)0.975 
13 0.0               ! DELTA W FLOW LOSS 
14 1.0               ! LAMBDA P PRESSURE RECOVERY  
15 0.0               ! DELTP PRESSURE DROP 
!PREMAS 
16 0.927             ! Cooling bypass: LAMBDA W (BLEED AIR) 
17 0.0               ! DELTA W FLOW LOSS 
18 1.0               ! LAMBDA P PRESSURE RECOVERY  
19 0.0               ! DELTP PRESSURE DROP 
!BURNER 
20 0.05              ! PRESSURE LOSS DP/P 
21 0.997             ! COMB. EFF. 
22 -1.0              ! FUEL FLOW  
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!HP TURBINE 
23 0.0               ! AUXWORK 
24 -1.0               ! DESIGN NON DIM FLOW / MAX 
25 0.8              ! DESIGN NON DIM SPEED 
26 0.89              ! ISENTROPIC EFF 
27 -1.0              ! ROT SPEED OF PT 
28 1.0               ! NUMBER OF COMPRESSOR DRIVEN 
29 5.0               ! MAP NUMBER  
30 -1.0              ! POWER LAW INDEX   
31  0.0              ! NGV ANGLE RELATIVE TO DP 
!POWER TURBINE 
32 33897494.0        ! AUXWORK 
33 -1.0              ! DESIGN NON DIM FLOW / MAX 
34 -1.0              ! DESIGN NON DIM SPEED 
35 0.89              ! ISENTROPIC EFF 
36 1.0               ! ROT SPEED OF PT 
37 0.0               ! NUMBER OF COMPRESSOR DRIVEN 
38 5.0               ! MAP NUMBER 
39 3.0              ! POWER LAW INDEX  
40 -1.0              ! COMWORK  
41  0.0              ! NGV ANGLE RELATIVE TO DP 
!NOZCON 
42 -1.0              ! FIXED CONVERGENT NOZZLE(THROAT AREA) 
!PERFOR 
43 1.0               ! PROPELLER EFF 
44 0.0               ! SCALING SWITCH 
45 0.0               ! REQUIRED THRUST at Design point 
 
-1 
1 2 91.17            ! item 2 at station 1 (INLET MASS FLOW) 
6 6 1550.0           ! Item 6 at station 6 TET OR COT 
-1 
1  100.0 
2   -10.0              ! OD Calculation; DT = -10, CHANGE IN AMB TEMP WRT ISA 
(ISA = 15 DEG C) 
-1 
6  6  1650.0           ! DT = -10 ; TET = 1650 
-1 
-1 
6  6  1600.0           ! DT = -10 ; TET = 1600 
-1 
-1 
6  6  1550.0           ! DT = -10 ; TET = 1550 
-1 
-1 
6  6  1500.0           ! DT = -10 ; TET = 1500 
-1 
-1 
6  6  1450.0           ! DT = -10 ; TET = 1450 
-1 
-1 
6  6  1400.0           ! DT = -10 ; TET = 1400 
-1 
-1 
6  6  1350.0           ! DT = -10 ; TET = 1350 
-1 
-1 
6  6  1300.0           ! DT = -10 ; TET = 1300 
-1 
-1 
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6  6  1250.0           ! DT = -10 ; TET = 1250 
-1 
-1 
6  6  1200.0           ! DT = -10 ; TET = 1200 
-1 
-1 
6  6  1150.0           ! DT = -10 ; TET = 1150 
-1 
-1 
6  6  1100.0           ! DT = -10 ; TET = 1100 
-1 
-1 
6  6  1050.0           ! DT = -10 ; TET = 1050 
-1 
1  100.0 
2   -5.0              ! OD Calculation; DT = -5, CHANGE IN AMB TEMP WRT ISA (ISA 
= 15 DEG C) 
-1 
6  6  1050.0           ! DT = -5 ; TET = 1050 
-1 
-1 
6  6  1100.0           ! DT = -5 ; TET = 1100 
-1 
-1 
6  6  1150.0           ! DT = -5 ; TET = 1150 
-1 
-1 
6  6  1200.0           ! DT = -5 ; TET = 1200 
-1 
-1 
6  6  1250.0           ! DT = -5 ; TET = 1250 
-1 
-1 
6  6  1300.0           ! DT = -5 ; TET = 1300 
-1 
-1 
6  6  1350.0           ! DT = -5 ; TET = 1350 
-1 
-1 
6  6  1400.0           ! DT = -5 ; TET = 1400 
-1 
-1 
6  6  1450.0           ! DT = -5 ; TET = 1450 
-1 
-1 
6  6  1500.0           ! DT = -5 ; TET = 1500 
-1 
-1 
6  6  1550.0           ! DT = -5 ; TET = 1550 
-1 
-1 
6  6  1600.0           ! DT = -5 ; TET = 1600 
-1 
-1 
6  6  1650.0           ! DT = -5 ; TET = 1650 
-1 
1  100.0 
2   0.0              ! OD Calculation; DT = 0, CHANGE IN AMB TEMP WRT ISA (ISA = 
15 DEG C) 
-1 
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6  6  1650.0           ! DT = 0 ; TET = 1650 
-1 
-1 
6  6  1600.0           ! DT = 0 ; TET = 1600 
-1 
-1 
6  6  1550.0           ! DT = 0 ; TET = 1550 
-1 
-1 
6  6  1500.0           ! DT = 0 ; TET = 1500 
-1 
-1 
6  6  1450.0           ! DT = 0 ; TET = 1450 
-1 
-1 
6  6  1400.0           ! DT = 0 ; TET = 1400 
-1 
-1 
6  6  1350.0           ! DT = 0 ; TET = 1350 
-1 
-1 
6  6  1300.0           ! DT = 0 ; TET = 1300 
-1 
-1 
6  6  1250.0           ! DT = 0 ; TET = 1250 
-1 
-1 
6  6  1200.0           ! DT = 0 ; TET = 1200 
-1 
-1 
6  6  1150.0           ! DT = 0 ; TET = 1150 
-1 
-1 
6  6  1100.0           ! DT = 0 ; TET = 1100 
-1 
-1 
6  6  1050.0           ! DT = 0 ; TET = 1050 
-1 
1  100.0 
2   5.0              ! OD Calculation; DT = 5, CHANGE IN AMB TEMP WRT ISA (ISA = 
15 DEG C) 
-1 
6  6  1150.0           ! DT = 5 ; TET = 1150 
-1 
-1 
6  6  1200.0           ! DT = 5 ; TET = 1200 
-1 
-1 
6  6  1250.0           ! DT = 5 ; TET = 1250 
-1 
-1 
6  6  1300.0           ! DT = 5 ; TET = 1300 
-1 
-1 
6  6  1350.0           ! DT = 5 ; TET = 1350 
-1 
-1 
6  6  1400.0           ! DT = 5 ; TET = 1400 
-1 
-1 
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6  6  1450.0           ! DT = 5 ; TET = 1450 
-1 
-1 
6  6  1500.0           ! DT = 5 ; TET = 1500 
-1 
-1 
6  6  1550.0           ! DT = 5 ; TET = 1550 
-1 
-1 
6  6  1600.0           ! DT = 5 ; TET = 1600 
-1 
-1 
6  6  1650.0           ! DT = 5 ; TET = 1650 
-1 
1  100.0 
2   10.0              ! OD Calculation; DT = 10, CHANGE IN AMB TEMP WRT ISA (ISA 
= 15 DEG C) 
-1 
6  6  1650.0           ! DT = 10 ; TET = 1650 
-1 
-1 
6  6  1600.0           ! DT = 10 ; TET = 1600 
-1 
-1 
6  6  1550.0           ! DT = 10 ; TET = 1550 
-1 
-1 
6  6  1500.0           ! DT = 10 ; TET = 1500 
-1 
-1 
6  6  1450.0           ! DT = 10 ; TET = 1450 
-1 
-1 
6  6  1400.0           ! DT = 10 ; TET = 1400 
-1 
-1 
6  6  1350.0           ! DT = 10 ; TET = 1350 
-1 
-1 
6  6  1300.0           ! DT = 10 ; TET = 1300 
-1 
-1 
6  6  1250.0           ! DT = 10 ; TET = 1250 
-1 
-1 
6  6  1200.0           ! DT = 10 ; TET = 1200 
-1 
-1 
6  6  1150.0           ! DT = 10 ; TET = 1150 
-1 
-1 
6  6  1100.0           ! DT = 10 ; TET = 1100 
-1 
1  100.0 
2   15.0              ! OD Calculation; DT = 15, CHANGE IN AMB TEMP WRT ISA (ISA 
= 15 DEG C) 
-1 
6  6  1150.0           ! DT = 15 ; TET = 1150 
-1 
-1 
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6  6  1200.0           ! DT = 15 ; TET = 1200 
-1 
-1 
6  6  1250.0           ! DT = 15 ; TET = 1250 
-1 
-1 
6  6  1300.0           ! DT = 15 ; TET = 1300 
-1 
-1 
6  6  1350.0           ! DT = 15 ; TET = 1350 
-1 
-1 
6  6  1400.0           ! DT = 15 ; TET = 1400 
-1 
-1 
6  6  1450.0           ! DT = 15 ; TET = 1450 
-1 
-1 
6  6  1500.0           ! DT = 15 ; TET = 1500 
-1 
-1 
6  6  1550.0           ! DT = 15 ; TET = 1550 
-1 
-1 
6  6  1600.0           ! DT = 15 ; TET = 1600 
-1 
-1 
6  6  1650.0           ! DT = 15 ; TET = 1650 
-1 
1  100.0 
2   20.0              ! OD Calculation; DT = 20, CHANGE IN AMB TEMP WRT ISA (ISA 
= 15 DEG C) 
-1 
6  6  1650.0           ! DT = 20 ; TET = 1650 
-1 
-1 
6  6  1600.0           ! DT = 20 ; TET = 1600 
-1 
-1 
6  6  1550.0           ! DT = 20 ; TET = 1550 
-1 
-1 
6  6  1500.0           ! DT = 20 ; TET = 1500 
-1 
-1 
6  6  1450.0           ! DT = 20 ; TET = 1450 
-1 
-1 
6  6  1400.0           ! DT = 20 ; TET = 1400 
-1 
-1 
6  6  1350.0           ! DT = 20 ; TET = 1350 
-1 
-1 
6  6  1300.0           ! DT = 20 ; TET = 1300 
-1 
-1 
6  6  1250.0           ! DT = 20 ; TET = 1250 
-1 
-1 
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6  6  1200.0           ! DT = 20 ; TET = 1200 
-1 
-1 
6  6  1150.0           ! DT = 20 ; TET = 1150 
-1 
-1 
6  6  1100.0           ! DT = 20 ; TET = 1100 
-1 
1  100.0 
2   23.0              ! OD Calculation; DT = 23, CHANGE IN AMB TEMP WRT ISA (ISA 
= 15 DEG C) 
-1 
6  6  1150.0           ! DT = 23 ; TET = 1150 
-1 
-1 
6  6  1200.0           ! DT = 23 ; TET = 1200 
-1 
-1 
6  6  1250.0           ! DT = 23 ; TET = 1250 
-1 
-1 
6  6  1300.0           ! DT = 23 ; TET = 1300 
-1 
-1 
6  6  1350.0           ! DT = 23 ; TET = 1350 
-1 
-1 
6  6  1400.0           ! DT = 23 ; TET = 1400 
-1 
-1 
6  6  1450.0           ! DT = 23 ; TET = 1450 
-1 
-1 
6  6  1500.0           ! DT = 23 ; TET = 1500 
-1 
-1 
6  6  1550.0           ! DT = 23 ; TET = 1550 
-1 
-1 
6  6  1600.0           ! DT = 23 ; TET = 1600 
-1 
-1 
6  6  1650.0           ! DT = 23 ; TET = 1650 
-1 
1  100.0 
2   25.0              ! OD Calculation; DT = 25, CHANGE IN AMB TEMP WRT ISA (ISA 
= 15 DEG C) 
-1 
6  6  1650.0           ! DT = 25 ; TET = 1650 
-1 
-1 
6  6  1600.0           ! DT = 25 ; TET = 1600 
-1 
-1 
6  6  1550.0           ! DT = 25 ; TET = 1550 
-1 
-1 
6  6  1500.0           ! DT = 25 ; TET = 1500 
-1 
-1 
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6  6  1450.0           ! DT = 25 ; TET = 1450 
-1 
-1 
6  6  1400.0           ! DT = 25 ; TET = 1400 
-1 
-1 
6  6  1350.0           ! DT = 25 ; TET = 1350 
-1 
-1 
6  6  1300.0           ! DT = 25 ; TET = 1300 
-1 
-1 
6  6  1250.0           ! DT = 25 ; TET = 1250 
-1 
-1 
6  6  1200.0           ! DT = 25 ; TET = 1200 
-1 
-1 
6  6  1150.0           ! DT = 25 ; TET = 1150 
-1 
-3 
 

C.2 EL1200R Off-Design Performance Input File 

REF_TITLE: Performance simulation modelling of EL1200-R inspired by MAN Turbo 
THM1304-10R using the TURBOMATCH scheme 
    BY A. EL-SULEIMAN 
REF_DATE: OCT 2014 
______________________________________________________________________ 
!Turbomatch Programme: OFF DESIGN SIMULATION OF EL1200-R RECUPERATED INDUSTRIAL 
GAS TURBINE 
 
//// 
OD SI KE VA XP 
-1 
-1 
INTAKE  S1,2       D1-4            R100  
COMPRE  S2,3       D5-11           R102     V5    V6 
PREMAS  S3,4,22    D12-15    
HETCOL  S4,5       D16-19                 
BURNER  S5,6       D20-22          R104 
MIXEES  S6,22,7 
TURBIN  S7,8       D23-30,102,31            V24 
TURBIN  S8,9       D32-41                   V32 V33                       
HETHOT  S4,9,10    D42-45   
NOZCON  S10,11,1   D46             R110 
PERFOR  S1,0,0     D32,47-49,110,100,104,0,0,0,0,0,0,0,0,0 
CODEND 
 
DATA ITEMS //// 
1 0.0                ! INTAKE DATA : ALTITUDE 
2 0.0                ! DEV FROM STANDART TEMP 
3 0.0                ! MA-NUMBER 
4 0.999              ! PRESSURE RECOVERY 
! COMPRESSOR 
5 -1.0               ! COMP : Z 
6 -1.0               ! RELATIVE ROTATIONAL SPEED 
7 10.0               ! PRESSURE RATIO 
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8 0.88               ! ISENTROPIC EFFICIENCY 
9 0.0                ! ERROR SWITCH 
10 5.0               ! MAP-NUMBER 
11 0.0               ! STATOR ANGLE RELATIVE TO DP 
!PREMAS 
12 0.975             !Cooling bypass: LAMBDA W (BLEED AIR) 
13 0.0               ! DELTA W FLOW LOSS 
14 1.0               ! LAMBDA P PRESSURE RECOVERY  
15 0.0               ! DELTP PRESSURE DROP 
!HETCOL 
16 0.0             !  
17 0.8               !  
18 1.0               !   
19 0.0               !  
!BURNER 
20 0.05              ! PRESSURE LOSS DP/P 
21 0.999             ! COMB. EFF. 
22 -1.0              ! FUEL FLOW  
!HP TURBINE 
23 0.0               ! AUXWORK 
24 -1.0               ! DESIGN NON DIM FLOW / MAX 
25 0.8              ! DESIGN NON DIM SPEED 
26 0.89              ! ISENTROPIC EFF 
27 -1.0              ! ROT SPEED OF PT 
28 1.0               ! NUMBER OF COMPRESSOR DRIVEN 
29 5.0               ! MAP NUMBER 
30 -1.0              ! POWER LAW INDEX   
31  0.0              ! NGV ANGLE RELATIVE TO DP 
!POWER TURBINE 
32 9404076.0        ! AUXWORK 
33 -1.0              ! DESIGN NON DIM FLOW / MAX 
34 -1.0              ! DESIGN NON DIM SPEED 
35 0.89              ! ISENTROPIC EFF 
36 1.0               ! ROT SPEED OF PT 
37 0.0               ! NUMBER OF COMPRESSOR DRIVEN 
38 5.0               ! MAP NUMBER 
39 3.0              ! POWER LAW INDEX  
40 -1.0              ! COMWORK  
41  0.0              ! NGV ANGLE RELATIVE TO DP 
!HETHOT 
42 0.0             !  
43 0.8               !  
44 1.0               !   
45 0.0               !  
!NOZCON 
46 -1.0              ! FIXED CONVERGENT NOZZLE(THROAT AREA) 
!PERFOR 
47 1.0               ! PROPELLER EFF 
48 0.0               ! SCALING SWITCH 
49 0.0               ! REQUIRED THRUST at Design point 
 
-1 
1 2 45.36            ! item 2 at station 1 (INLET MASS FLOW) 
6 6 1200.0           ! Item 6 at station 6 TET OR COT 
-1 
1  100.0 
2   -10.0              ! OD Calculation; DT = -10, CHANGE IN AMB TEMP WRT ISA 
(ISA = 15 DEG C) 
-1 
6  6  1200.0           ! DT = -10 ; TET = 1200 
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-1 
-1 
6  6  1150.0           ! DT = -10 ; TET = 1150 
-1 
-1 
6  6  1100.0           ! DT = -10 ; TET = 1100 
-1 
-1 
6  6  1050.0           ! DT = -10 ; TET = 1050 
-1 
-1 
6  6  1000.0           ! DT = -10 ; TET = 1000 
-1 
-1 
6  6  950.0           ! DT = -10 ; TET = 950 
-1 
-1 
6  6  900.0           ! DT = -10 ; TET = 900 
-1 
-1 
6  6  850.0           ! DT = -10 ; TET = 850 
-1 
-1 
6  6  800.0           ! DT = -10 ; TET = 800 
-1 
-1 
6  6  750.0           ! DT = -10 ; TET = 750 
-1 
1  100.0 
2   -5.0              ! OD Calculation; DT = -5, CHANGE IN AMB TEMP WRT ISA (ISA 
= 15 DEG C) 
-1 
6  6  750.0           ! DT = -5 ; TET = 750 
-1 
-1 
6  6  800.0           ! DT = -5 ; TET = 800 
-1 
-1 
6  6  850.0           ! DT = -5 ; TET = 850 
-1 
-1 
6  6  900.0           ! DT = -5 ; TET = 900 
-1 
-1 
6  6  950.0           ! DT = -5 ; TET = 950 
-1 
-1 
6  6  1000.0           ! DT = -5 ; TET = 1000 
-1 
-1 
6  6  1050.0           ! DT = -5 ; TET = 1050 
-1 
-1 
6  6  1100.0           ! DT = -5 ; TET = 1100 
-1 
-1 
6  6  1150.0           ! DT = -5 ; TET = 1150 
-1 
-1 
6  6  1200.0           ! DT = -5 ; TET = 1200 
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-1 
1  100.0 
2   0.0              ! OD Calculation; DT = 0, CHANGE IN AMB TEMP WRT ISA (ISA = 
15 DEG C) 
-1 
6  6  1200.0           ! DT = 0 ; TET = 1200 
-1 
-1 
6  6  1150.0           ! DT = 0 ; TET = 1150 
-1 
-1 
6  6  1100.0           ! DT = 0 ; TET = 1100 
-1 
-1 
6  6  1050.0           ! DT = 0 ; TET = 1050 
-1 
-1 
6  6  1000.0           ! DT = 0 ; TET = 1000 
-1 
-1 
6  6  950.0           ! DT = 0 ; TET = 950 
-1 
-1 
6  6  900.0           ! DT = 0 ; TET = 900 
-1 
-1 
6  6  850.0           ! DT = 0 ; TET = 850 
-1 
-1 
6  6  800.0           ! DT = 0 ; TET = 800 
-1 
1  100.0 
2   5.0              ! OD Calculation; DT = 5, CHANGE IN AMB TEMP WRT ISA (ISA = 
15 DEG C) 
-1 
6  6  800.0           ! DT = 5 ; TET = 800 
-1 
-1 
6  6  850.0           ! DT = 5 ; TET = 850 
-1 
-1 
6  6  900.0           ! DT = 5 ; TET = 900 
-1 
-1 
6  6  950.0           ! DT = 5 ; TET = 950 
-1 
-1 
6  6  1000.0           ! DT = 5 ; TET = 1000 
-1 
-1 
6  6  1050.0           ! DT = 5 ; TET = 1050 
-1 
-1 
6  6  1100.0           ! DT = 5 ; TET = 1100 
-1 
-1 
6  6  1150.0           ! DT = 5 ; TET = 1150 
-1 
-1 
6  6  1200.0           ! DT = 5 ; TET = 1200 
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-1 
1  100.0 
2   10.0              ! OD Calculation; DT = 10, CHANGE IN AMB TEMP WRT ISA (ISA 
= 15 DEG C) 
-1 
6  6  1200.0           ! DT = 10 ; TET = 1200 
-1 
-1 
6  6  1150.0           ! DT = 10 ; TET = 1150 
-1 
-1 
6  6  1100.0           ! DT = 10 ; TET = 1100 
-1 
-1 
6  6  1050.0           ! DT = 10 ; TET = 1050 
-1 
-1 
6  6  1000.0           ! DT = 10 ; TET = 1000 
-1 
-1 
6  6  950.0           ! DT = 10 ; TET = 950 
-1 
-1 
6  6  900.0           ! DT = 10 ; TET = 900 
-1 
-1 
6  6  850.0           ! DT = 10 ; TET = 850 
-1 
-1 
6  6  800.0           ! DT = 10 ; TET = 800 
-1 
1  100.0 
2   15.0              ! OD Calculation; DT = 15, CHANGE IN AMB TEMP WRT ISA (ISA 
= 15 DEG C) 
-1 
6  6  800.0           ! DT = 15 ; TET = 800 
-1 
-1 
6  6  850.0           ! DT = 15 ; TET = 850 
-1 
-1 
6  6  900.0           ! DT = 15 ; TET = 900 
-1 
-1 
6  6  950.0           ! DT = 15 ; TET = 950 
-1 
-1 
6  6  1000.0           ! DT = 15 ; TET = 1000 
-1 
-1 
6  6  1050.0           ! DT = 15 ; TET = 1050 
-1 
-1 
6  6  1100.0           ! DT = 15 ; TET = 1100 
-1 
-1 
6  6  1150.0           ! DT = 15 ; TET = 1150 
-1 
-1 
6  6  1200.0           ! DT = 15 ; TET = 1200 
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-1 
1  100.0 
2   20.0              ! OD Calculation; DT = 20, CHANGE IN AMB TEMP WRT ISA (ISA 
= 15 DEG C) 
-1 
6  6  1200.0           ! DT = 20 ; TET = 1200 
-1 
-1 
6  6  1150.0           ! DT = 20 ; TET = 1150 
-1 
-1 
6  6  1100.0           ! DT = 20 ; TET = 1100 
-1 
-1 
6  6  1050.0           ! DT = 20 ; TET = 1050 
-1 
-1 
6  6  1000.0           ! DT = 20 ; TET = 1000 
-1 
-1 
6  6  950.0           ! DT = 20 ; TET = 950 
-1 
-1 
6  6  900.0           ! DT = 20 ; TET = 900 
-1 
-1 
6  6  850.0           ! DT = 20 ; TET = 850 
-1 
-1 
6  6  800.0           ! DT = 20 ; TET = 800 
-1 
1  100.0 
2   23.0              ! OD Calculation; DT = 23, CHANGE IN AMB TEMP WRT ISA (ISA 
= 15 DEG C) 
-1 
6  6  800.0           ! DT = 23 ; TET = 800 
-1 
-1 
6  6  850.0           ! DT = 23 ; TET = 850 
-1 
-1 
6  6  900.0           ! DT = 23 ; TET = 900 
-1 
-1 
6  6  950.0           ! DT = 23 ; TET = 950 
-1 
-1 
6  6  1000.0           ! DT = 23 ; TET = 1000 
-1 
-1 
6  6  1050.0           ! DT = 23 ; TET = 1050 
-1 
-1 
6  6  1100.0           ! DT = 23 ; TET = 1100 
-1 
-1 
6  6  1150.0           ! DT = 23 ; TET = 1150 
-1 
-1 
6  6  1200.0           ! DT = 23 ; TET = 1200 
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-1 
1  100.0 
2   25.0              ! OD Calculation; DT = 25, CHANGE IN AMB TEMP WRT ISA (ISA 
= 15 DEG C) 
-1 
6  6  1200.0           ! DT = 25 ; TET = 1200 
-1 
-1 
6  6  1150.0           ! DT = 25 ; TET = 1150 
-1 
-1 
6  6  1100.0           ! DT = 25 ; TET = 1100 
-1 
-1 
6  6  1050.0           ! DT = 25 ; TET = 1050 
-1 
-1 
6  6  1000.0           ! DT = 25 ; TET = 1000 
-1 
-1 
6  6  950.0           ! DT = 25 ; TET = 950 
-1 
-1 
6  6  900.0           ! DT = 25 ; TET = 900 
-1 
-1 
6  6  850.0           ! DT = 25 ; TET = 850 
-1 
-1 
6  6  800.0           ! DT = 25 ; TET = 800 
-1 
-3 
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Appendix D Economic Performance Code 

D.1 Main Economic Program 

  PROGRAM ECONOMICMODULE2014 
 
  IMPLICIT NONE 
 
! THIS CODE USED FOR THE ECONOMIC MODULE OF TERA IN APPLICATION TO CO2 PIPELINE 
WAS DEVELOPED  
!BY A. EL-SULEIMAN AS PART OF THE PhD THESIS IN CRANFIELD UNIVERSITY, UK- 2014. 
 
!ASSUMPTIONS 
 
!CASE 1 IS FOR COAL POWER GENERATION PLANT VALUES 
!CASE 2 IS FOR OIL AND NATURAL GAS DUAL FIRED POWER GENERATION PLANT VALUES 
!CASE 3 IS FOR CCGT POWER GENERATION PLANT VALUES 
!CASE 4 IS FOR GAS TURBINE POWER GENERATION PLANT VALUES  
 
!I = 1 = SZN1, SEASON 1 - Hot Season (March – May) 
!I = 2 = SZN2, SEASON 2 - Early Rain Season (June- August) 
!I = 3 = SZN3, SEASON 3 - Late Rain Season (September - November) 
!I = 4 = SZN4, SEASON 4 - Harmattan Season (December- February) 
 
!K = 1 = GAS TURBINE POWER OUTPUT REQUIRED 
!K = 2 = GAS TURBINE FUEL FLOW REQUIRED FOR THE GT POWER OUTPUT 
 
!LF1 = LOAD FACTOR FOR SEASONS 1,3 & 4 = 0.25 
!LF2 = LOAD FACTOR FOR SEASON 2 = 0.15 
!GT ASSUMED TOTAL LOAD FACTOR IS 0.9 
 
 
! J = 1,2,3,................,25 REPRESENTS YEARS 2013,2014,.................,2037 
! ------------------------------------------------------------------ 
! TWO GAS TURBINE MECHANICAL DRIVES WERE USED FOR THE COMPRESSION 
 
! ------------------------------------------------------------------ 
 
    INTEGER,PARAMETER :: S1 = 12, S2 = 75, S3 = 3 
    INTEGER :: I,J,K,IMAX,JMAX,KMAX,ITER,L1,L2, L3, L4, PBP 
    REAL, DIMENSION(S1,S2,S3) :: SZN,SZN2,SZN3,SZN4  
    REAL, DIMENSION(S1,S2) :: RVN, EXP1, EXP2,EXP3,EXP4 
    REAL, DIMENSION(1:25) :: DCF, REV,REV1,REV2,REV3,REV4, EXPEND, OPINCOM, 
   PROFIT, NCF, EXPEND1, EXPEND2,EXPEND3,EXPEND4,EXPEND5 
    REAL :: LF1, LF2, PCC1, PCC2, EI1, EI2, EP, CF, ANF, TXRT, LF, TDCF,NPV, NPV2 
  ,P1,P2 
    REAL :: SUM, SUM1, SUM2, SUM3, SUM4, SUM5, SUM6, VC1, VC2, FC1, FC2,  
  ITRT,INVST1,INVST2, ADP, ETX, PL, VSTH 
    CHARACTER (LEN=10) :: DUMMY 
! ------------------------------------------------------------------ 
!    FORMATS 
200 FORMAT(' ',A55,/) 
210 FORMAT(I4,F13.2,F13.2,F13.2,F13.2,F13.2,F13.2,F13.2,F13.2,F13.2)  
215 FORMAT(I4,F13.2,F13.2,F13.2,F13.2,F13.2,F13.2)  
220 FORMAT(/'NPV(£)= ',F13.2,2X,'YEARLY CAPITAL COST SPREAD(£) = ',F10.2,2X,'PAY 
BACK PERIOD = ',I2,/,'ANNUITY FACTOR = ',F10.4,2X,'DISCOUNT FACTOR = 
',F10.4,2X,'FUEL PRICE(£/kg) = ',F9.2,2X,'ELECTRICITY PRICE(£) = ',F10.2) ! 
600 FORMAT(4(1X,F13.2))   
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! ------------------------------------------------------------------ 
     
    OPEN(UNIT=10,STATUS='REPLACE',FILE='PERFORMANCE_RESULTS.DAT') 
    OPEN(2,FILE='COAL_POWER_GENERATION_PLANTNPV.DAT') 
 OPEN(4,FILE='OILNGAS_DUAL_FIRED_POWER_GENPLANTNPV.DAT') 
 OPEN(6,FILE='CCGT_POWER_GENERATION_PLANTNPV.DAT') 
    OPEN(8,FILE='GT_POWER_GENERATION_PLANTNPV.DAT') 
    
! ------------------------------------------------------------------ 
! INPUT DATA AND ASSUMPTIONS  
! ------------------------------------------------------------------ 
        IMAX = 4 
        JMAX = 25 
        P1 = 33.9   !EL2500RD GT NOMINALPOWER  
        P2 = 9.4   !EL1200-R GT NOMINAL POWER 
         
        PCC1 = 9615702.69   !EL2500RD GT CAPITAL COST (£) USED FOR CASES 1,2,& 3  
        PCC2 = 3551167.17   !EL1200-R GT CAPITAL COST (£) USED FOR CASE 4 
        LF1 = 0.25          !SEASONAL LOAD FACTOR X 3 = 0.75 
        LF2 = 0.15          !SEASONAL LOAD FACTOR X 1 = 0.15 
        PL = 25         !PLANT LIFE IN YEARS 
        EP = 0.12       !ELECTRICITY PRICE (£/kW) 
        CF = 0.09       !FUEL PRICE (£/kg) 
        VC1 = 7.08       !VARIABLE COST (£/MWh) EL2500RD 
        VC2 = 10.54     !VARIABLE COST (£/MWh) EL1200-R 
        FC1 = 4.80       !FIXED COST(£/KW-YR) EL2500RD 
        FC2 = 5.01      !FIXED COST(£/KW-YR) EL1200-R 
        ITRT = 0.15      !INTEREST RATE 
        TXRT = 20       !PERCENTAGE TAX RATE 
        ADP  = 2.5      !ANNUAL DEPRECIATION (%) 
 
        EI1 = 0.49     !EMISSION INDEX (kgCO2/KWh) OF EL2500RD AS PREDICTED USING 
     HEPHAESTUS  
        EI2 = 0.56     !EMISSION INDEX (kgCO2/KWh) OF EL1200-R AS PREDICTED USING 
     HEPHAESTUS  
        ETX = 50       !EMISSION TAX (£/tonCO2) 
         
               
     ! DEFINING SOME CONSTANT VALUES 
     
      ANF = (ITRT*(1 + ITRT)**PL)/((1 + ITRT)**PL - 1)     ! ANNUITY FACTOR 
       
      INVST1 = ANF * PCC1         !YEARLY SPREAD OF CAPITAL COST FOR EL2500RD GT 
      INVST2 = ANF * PCC2         !YEARLY SPREAD OF CAPITAL COST FOR EL1200-R GT 
     
 !1. READING GT POWER AND FUEL FLOW FROM THE INPUT FILES 
      OPEN(UNIT=5,FILE='COALPOWERPLANT.inp') 
  
        !CHECK- READING ALL VARIABLES   
    
        DO K=1,2 
         READ(5,'(A10)'),DUMMY 
  
        DO J=1,JMAX 
 
            READ(UNIT=5,FMT= *) (SZN(I,J,K),I=1,IMAX) 
        END DO 
            END DO 
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    ! REVENUE EVALUATION**************************************************** 
        DO J = 1, JMAX  
         
        SUM = 0 
        K = 1 
        DO I = 1, IMAX 
        IF (I == 2) THEN 
        LF = LF2  
        ELSE 
        LF = LF1 
        END IF 
    RVN(I,J) = EP * SZN(I,J,K) * LF * 8760 * 1000         !SZN IS THE REQUIRED 
POWER OUTPUT 
        SUM = SUM + RVN(I,J) 
        END DO 
    REV(J) = SUM 
     
    ! CALCULATION OF EXPENSES*************************************************** 
    ! FUEL COST 
      SUM1 = 0 
        K = 2 
        DO I = 1, IMAX 
        IF (I == 2) THEN 
        LF = LF2  
        ELSE  
        LF = LF1 
        END IF 
        EXP1(I,J) = CF * SZN(I,J,K) * LF * 8760 * 3600         !SZN K = 2  IS THE 
GT FUEL FLOW IN KG/SEC 
        SUM1 = SUM1 + EXP1(I,J) 
        END DO 
       EXPEND1(J) = SUM1 
        
    ! VARIABLE O & M COST  
     SUM2 = 0 
        K = 1 
        DO I = 1, IMAX 
        IF (I == 2) THEN 
        LF = LF2  
        ELSE  
        LF = LF1 
        END IF 
        EXP2(I,J) = VC1 * SZN(I,J,K) * LF * 8760          !SZN K = 1 IS THE 
REQUIRED POWER OUTPUT IN MW 
        SUM2 = SUM2 + EXP2(I,J) 
        END DO 
       EXPEND2(J) = SUM2 
         
             
   ! FIXED COST 
    
        EXPEND3(J) = FC1 * P1 * 1000 
         
    ! DEPRECIATION COST  
     
     EXPEND4(J) = ADP * PCC1/100 
     
    ! EMISSION COST 
        SUM4 = 0 
        K = 1 
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        DO I = 1, IMAX 
        IF (I == 2) THEN 
        LF = LF2  
        ELSE  
        LF = LF1 
        END IF 
     
        EXP4(I,J) =  EI1 * ETX * SZN(I,J,K) * LF * 8760  
         SUM4 = SUM4 + EXP4(I,J) 
        END DO 
        EXPEND5(J) = SUM4 
         
    ! TOTAL EXPENITURE  
        EXPEND(J)= EXPEND1(J) + EXPEND2(J) + EXPEND3(J) + EXPEND4(J) + EXPEND5(J)    
! TOTAL EXPENDITURE 
             
      ! CASH FLOW   
        OPINCOM(J) = REV(J) - EXPEND(J) ! OPERATING INCOME 
         
        PROFIT(J) = OPINCOM(J) - INVST1 !PROFIT 
         
        NCF(J) = PROFIT(J)*(1 - TXRT/100) - INVST1  ! NET CASH FLOW 
        END DO 
       
    ! DISCOUNTING THE CASH FLOW 
        SUM5 = 0 
        DO J = 1, JMAX 
        DCF(J) = NCF(J)/(1 + ITRT)**J    !DISCOUNTED CASH FLOW 
        SUM5 = SUM5 + DCF(J) 
        END DO 
        TDCF = SUM5                         !SUM OF DCF  
        NPV = TDCF - PCC1 
         
        !EVALUATING PAY BACK PERIOD 
        SUM6 = 0 
        DO J = 1, JMAX 
        DCF(J) = NCF(J)/(1 + ITRT)**J     
        SUM6 = SUM6 + DCF(J)     
        IF ((PCC1-SUM6) <= 0)THEN  
        GOTO 1000 
        END IF 
        !ELSE 
        END DO  !SUM5 = SUM5 
         
1000    PBP = J  
     
        PRINT 200, ' E C O N O M I C   O U T P U T   S U M M A R Y ' 
        PRINT 200, ' COAL POWER GENERATION PLANT ' 
        WRITE(10,200)' E C O N O M I C   O U T P U T   S U M M A R Y ' 
         WRITE(10,200)' COAL POWER GENERATION PLANT ' 
         PRINT*,' YEAR','  REVENUE(£)','  EXPENDITURE(£)',' PROFIT(£)','    
   NCF(£)','      DCF(£)' 
     WRITE(10,*)' YEAR',' REVENUE(£)','  EXPENDITURE(£)','  PROFIT(£)','  
    NCF(£)','       DCF(£)' 
            DO J=1,25 
  PRINT 215, J, REV(J), EXPEND(J), PROFIT(J), NCF(J), DCF(J) 
  WRITE(10,210)J, REV(J), EXPEND(J), PROFIT(J), NCF(J), DCF(J) 
            END DO 
        PRINT 220, NPV,INVST1,PBP,ANF,ITRT,CF,EP 
        WRITE(10,220) NPV,INVST1,PBP,ANF,ITRT,CF,EP 



 

171 

         
    !2.READING GT POWER AND FUEL FLOW FROM THE INPUT FILES 
    OPEN(UNIT=5,FILE='OILNGDUALFIREDPLANT.inp') 
  
    !CHECK- READING ALL VARIABLES   
    
    DO K=1,2 
    READ(5,'(A10)'),DUMMY 
  
        DO J=1,JMAX 
 
    READ(UNIT=5,FMT= *) (SZN(I,J,K),I=1,IMAX) 
        END DO 
    END DO 
     
         
    ! REVENUE EVALUATION**************************************************** 
        
    DO J = 1, JMAX  
       SUM = 0 
       K = 1       
        DO I = 1, IMAX 
        IF (I == 2) THEN 
        LF = LF2  
        ELSE 
        LF = LF1 
        END IF 
    RVN(I,J) = EP * SZN(I,J,K) * LF * 8760 * 1000         !SZN IS THE REQUIRED 
POWER OUTPUT 
        SUM = SUM + RVN(I,J) 
        END DO 
    REV(J) = SUM 
     
    ! CALCULATION OF EXPENSES*************************************************** 
    ! FUEL COST 
      SUM1 = 0 
        K = 2 
        DO I = 1, IMAX 
        IF (I == 2) THEN 
        LF = LF2  
        ELSE  
        LF = LF1 
        END IF 
        EXP1(I,J) = CF * SZN(I,J,K) * LF * 8760 * 3600         !SZN K = 2  IS THE 
GT FUEL FLOW IN KG/SEC 
        SUM1 = SUM1 + EXP1(I,J) 
        END DO 
       EXPEND1(J) = SUM1 
        
    ! VARIABLE O & M COST  
       SUM2 = 0 
        K = 1 
        DO I = 1, IMAX 
        IF (I == 2) THEN 
        LF = LF2  
        ELSE  
        LF = LF1 
        END IF 
        EXP2(I,J) = VC1 * SZN(I,J,K) * LF * 8760          !SZN K = 1 IS THE 
REQUIRED POWER OUTPUT IN MW 
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        SUM2 = SUM2 + EXP2(I,J) 
        END DO 
       EXPEND2(J) = SUM2 
         
             
   ! FIXED COST 
    
        EXPEND3(J) = FC1 * P1 * 1000 
         
    ! DEPRECIATION COST  
     
    EXPEND4(J) = ADP * PCC1/100 
     
    ! EMISSION COST 
        SUM4 = 0 
        K = 1 
        DO I = 1, IMAX 
        IF (I == 2) THEN 
        LF = LF2  
        ELSE  
        LF = LF1 
        END IF 
     
        EXP4(I,J) =  EI1 * ETX * SZN(I,J,K) * LF * 8760  
         SUM4 = SUM4 + EXP4(I,J) 
        END DO 
        EXPEND5(J) = SUM4 
         
    ! TOTAL EXPENITURE  
        EXPEND(J)= EXPEND1(J) + EXPEND2(J) + EXPEND3(J) + EXPEND4(J) + EXPEND5(J)    
! TOTAL EXPENDITURE 
                 
      ! CASH FLOW   
        OPINCOM(J) = REV(J) - EXPEND(J) ! OPERATING INCOME 
         
        PROFIT(J) = OPINCOM(J) - INVST1 !PROFIT 
         
        NCF(J) = PROFIT(J)*(1 - TXRT/100) - INVST1  ! NET CASH FLOW 
   END DO 
       
    ! DISCOUNTING THE CASH FLOW 
        SUM5 = 0 
        DO J = 1, JMAX 
        DCF(J) = NCF(J)/(1 + ITRT)**J    !DISCOUNTED CASH FLOW 
        SUM5 = SUM5 + DCF(J) 
        END DO 
        TDCF = SUM5                         !SUM OF DCF  
         
        NPV = TDCF - PCC1 
         
        !EVALUATING PAY BACK PERIOD 
        SUM6 = 0 
        DO J = 1, JMAX 
        DCF(J) = NCF(J)/(1 + ITRT)**J     
        SUM6 = SUM6 + DCF(J)     
        IF ((PCC1-SUM6) <= 0)THEN  
        GOTO 2000 
        END IF 
        !ELSE 
        END DO  !SUM5 = SUM5 
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2000    PBP = J  
        PRINT 200, ' E C O N O M I C   O U T P U T   S U M M A R Y ' 
        WRITE(10,200)' E C O N O M I C   O U T P U T   S U M M A R Y ' 
        PRINT 200, ' OIL AND NATURAL GAS DUAL FIRED PLANT ' 
        WRITE(10,200)' OIL AND NATURAL GAS DUAL FIRED PLANT ' 
         PRINT*,' YEAR','  REVENUE(£)','  EXPENDITURE(£)',' PROFIT(£)','    
   NCF(£)','      DCF(£)' 
     WRITE(10,*)' YEAR',' REVENUE(£)','  EXPENDITURE(£)','  PROFIT(£)','  
    NCF(£)','       DCF(£)' 
            DO J=1,25 
  PRINT 215, J, REV(J), EXPEND(J), PROFIT(J), NCF(J), DCF(J) 
  WRITE(10,210)J, REV(J), EXPEND(J), PROFIT(J), NCF(J), DCF(J) 
            END DO 
        PRINT 220, NPV,INVST1,PBP,ANF,ITRT,CF,EP 
        WRITE(10,220) NPV,INVST1,PBP,ANF,ITRT,CF,EP 
         
         
 !3. READING GT POWER AND FUEL FLOW FROM THE INPUT FILES 
     OPEN(UNIT=5,FILE='CCGTPOWERPLANT.inp') 
  
    !CHECK- READING ALL VARIABLES   
    
    DO K=1,2 
    READ(5,'(A10)'),DUMMY 
  
        DO J=1,JMAX 
 
    READ(UNIT=5,FMT= *) (SZN(I,J,K),I=1,IMAX) 
        END DO 
    END DO 
     
         
    ! REVENUE EVALUATION**************************************************** 
       
         
    DO J = 1, JMAX  
        SUM = 0 
         K = 1       
        DO I = 1, IMAX 
        IF (I == 2) THEN 
        LF = LF2  
        ELSE 
        LF = LF1 
        END IF 
    RVN(I,J) = EP * SZN(I,J,K) * LF * 8760 * 1000         !SZN IS THE REQUIRED 
POWER OUTPUT 
        SUM = SUM + RVN(I,J) 
        END DO 
    REV(J) = SUM 
     
    ! CALCULATION OF EXPENSES*************************************************** 
    ! FUEL COST 
      SUM1 = 0 
        K = 2 
        DO I = 1, IMAX 
        IF (I == 2) THEN 
        LF = LF2  
        ELSE  
        LF = LF1 
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        END IF 
        EXP1(I,J) = CF * SZN(I,J,K) * LF * 8760 * 3600         !SZN K = 2  IS THE 
GT FUEL FLOW IN KG/SEC 
        SUM1 = SUM1 + EXP1(I,J) 
        END DO 
       EXPEND1(J) = SUM1 
        
    ! VARIABLE O & M COST  
        SUM2 = 0 
        K = 1 
        DO I = 1, IMAX 
        IF (I == 2) THEN 
        LF = LF2  
        ELSE  
        LF = LF1 
        END IF 
     
        EXP2(I,J) = VC1 * SZN(I,J,K) * LF * 8760          !SZN K = 1 IS THE 
REQUIRED POWER OUTPUT IN MW 
        SUM2 = SUM2 + EXP2(I,J) 
        END DO 
       EXPEND2(J) = SUM2 
         
             
   ! FIXED COST 
    
        EXPEND3(J) = FC1 * P1 * 1000 
         
    ! DEPRECIATION COST  
     
    EXPEND4(J) = ADP * PCC1/100 
     
    ! EMISSION COST 
        SUM4 = 0 
        K = 1 
        DO I = 1, IMAX 
        IF (I == 2) THEN 
        LF = LF2  
        ELSE  
        LF = LF1 
        END IF 
     
        EXP4(I,J) =  EI1 * ETX * SZN(I,J,K) * LF * 8760  
         SUM4 = SUM4 + EXP4(I,J) 
        END DO 
        EXPEND5(J) = SUM4 
         
    ! TOTAL EXPENITURE  
        EXPEND(J)= EXPEND1(J) + EXPEND2(J) + EXPEND3(J) + EXPEND4(J) + EXPEND5(J)    
! TOTAL EXPENDITURE 
                 
      ! CASH FLOW   
        OPINCOM(J) = REV(J) - EXPEND(J) ! OPERATING INCOME 
         
        PROFIT(J) = OPINCOM(J) - INVST1 !PROFIT 
         
        NCF(J) = PROFIT(J)*(1 - TXRT/100) - INVST1  ! NET CASH FLOW 
   END DO 
       
    ! DISCOUNTING THE CASH FLOW 
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        SUM5 = 0 
        DO J = 1, JMAX 
        DCF(J) = NCF(J)/(1 + ITRT)**J    !DISCOUNTED CASH FLOW 
        SUM5 = SUM5 + DCF(J) 
        END DO 
        TDCF = SUM5                         !SUM OF DCF  
         
        NPV = TDCF - PCC1 
         
         !EVALUATING PAY BACK PERIOD 
        SUM6 = 0 
        DO J = 1, JMAX 
        DCF(J) = NCF(J)/(1 + ITRT)**J     
        SUM6 = SUM6 + DCF(J)     
        IF ((PCC1-SUM6) <= 0)THEN  
        GOTO 3000 
        END IF 
        !ELSE 
        END DO  !SUM5 = SUM5 
         
3000     PBP = J  
        PRINT 200, ' E C O N O M I C   O U T P U T   S U M M A R Y ' 
        WRITE(10,200)' E C O N O M I C   O U T P U T   S U M M A R Y ' 
        PRINT 200, ' CCGT POWER GENERATION PLANT ' 
        WRITE(10,200)' CCGT POWER GENERATION PLANT ' 
         PRINT*,' YEAR','  REVENUE(£)','  EXPENDITURE(£)',' PROFIT(£)','    
   NCF(£)','      DCF(£)' 
     WRITE(10,*)' YEAR',' REVENUE(£)','  EXPENDITURE(£)','  PROFIT(£)','  
    NCF(£)','       DCF(£)' 
            DO J=1,25 
  PRINT 215, J, REV(J), EXPEND(J), PROFIT(J), NCF(J), DCF(J) 
  WRITE(10,210)J, REV(J), EXPEND(J), PROFIT(J), NCF(J), DCF(J) 
            END DO 
        PRINT 220, NPV,INVST1,PBP,ANF,ITRT,CF,EP 
        WRITE(10,220) NPV,INVST1,PBP,ANF,ITRT,CF,EP 
         
 !4. READING GT POWER AND FUEL FLOW FROM THE INPUT FILES 
     OPEN(UNIT=5,FILE='GASTURBINEPOWERPLANT.inp') 
  
    !CHECK- READING ALL VARIABLES   
    
    DO K=1,2 
    READ(5,'(A10)'),DUMMY 
  
        DO J=1,JMAX 
 
    READ(UNIT=5,FMT= *) (SZN(I,J,K),I=1,IMAX) 
        END DO 
    END DO 
     
         
    ! REVENUE EVALUATION**************************************************** 
       
    DO J = 1, JMAX  
       SUM = 0 
       K = 1 
        DO I = 1, IMAX 
        IF (I == 2) THEN 
        LF = LF2  
        ELSE 
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        LF = LF1 
        END IF 
    RVN(I,J) = EP * SZN(I,J,K) * LF * 8760 * 1000         !SZN IS THE REQUIRED 
POWER OUTPUT 
        SUM = SUM + RVN(I,J) 
        END DO 
    REV(J) = SUM 
     
    ! CALCULATION OF EXPENSES*************************************************** 
    ! FUEL COST 
      SUM1 = 0 
        K = 2 
        DO I = 1, IMAX 
        IF (I == 2) THEN 
        LF = LF2  
        ELSE  
        LF = LF1 
        END IF 
        EXP1(I,J) = CF * SZN(I,J,K) * LF * 8760 * 3600         !SZN K = 2  IS THE 
GT FUEL FLOW IN KG/SEC 
        SUM1 = SUM1 + EXP1(I,J) 
        END DO 
       EXPEND1(J) = SUM1 
        
    ! VARIABLE O & M COST  
        SUM2 = 0 
        K = 1 
        DO I = 1, IMAX 
        IF (I == 2) THEN 
        LF = LF2  
        ELSE  
        LF = LF1 
        END IF 
        EXP2(I,J) = VC2 * SZN(I,J,K) * LF * 8760          !SZN K = 1 IS THE 
REQUIRED POWER OUTPUT IN MW 
        SUM2 = SUM2 + EXP2(I,J) 
        END DO 
       EXPEND2(J) = SUM2 
         
             
   ! FIXED COST 
    
        EXPEND3(J) = FC2 * P2 * 1000 
         
    ! DEPRECIATION COST  
     
    EXPEND4(J) = ADP * PCC2/100 
     
    ! EMISSION COST 
        SUM4 = 0 
        K = 1 
        DO I = 1, IMAX 
        IF (I == 2) THEN 
        LF = LF2  
        ELSE  
        LF = LF1 
        END IF 
     
        EXP4(I,J) =  EI2 * ETX * SZN(I,J,K) * LF * 8760  
         SUM4 = SUM4 + EXP4(I,J) 
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        END DO 
        EXPEND5(J) = SUM4 
         
    ! TOTAL EXPENITURE  
        EXPEND(J)= EXPEND1(J) + EXPEND2(J) + EXPEND3(J) + EXPEND4(J) + EXPEND5(J)    
! TOTAL EXPENDITURE 
                 
      ! CASH FLOW   
        OPINCOM(J) = REV(J) - EXPEND(J) ! OPERATING INCOME 
         
        PROFIT(J) = OPINCOM(J) - INVST2 !PROFIT 
         
        NCF(J) = PROFIT(J)*(1 - TXRT/100) - INVST2  ! NET CASH FLOW 
   END DO 
       
    ! DISCOUNTING THE CASH FLOW 
        SUM5 = 0 
        DO J = 1, JMAX 
        DCF(J) = NCF(J)/(1 + ITRT)**J    !DISCOUNTED CASH FLOW 
        SUM5 = SUM5 + DCF(J) 
        END DO 
        TDCF = SUM5                         !SUM OF DCF  
         
        NPV = TDCF - PCC2 
         
         !EVALUATING PAY BACK PERIOD 
        SUM6 = 0 
        DO J = 1, JMAX 
        DCF(J) = NCF(J)/(1 + ITRT)**J     
        SUM6 = SUM6 + DCF(J)     
        IF ((PCC2-SUM6) <= 0)THEN  
        GOTO 4000 
        END IF 
        !ELSE 
        END DO  !SUM5 = SUM5 
         
4000     PBP = J  
        PRINT 200, ' E C O N O M I C   O U T P U T   S U M M A R Y ' 
        WRITE(10,200)' E C O N O M I C   O U T P U T   S U M M A R Y ' 
        PRINT 200, ' GAS TURBINE POWER GENERATION PLANT ' 
        WRITE(10,200)' GAS TURBINE POWER GENERATION PLANT ' 
         PRINT*,' YEAR','  REVENUE(£)','  EXPENDITURE(£)',' PROFIT(£)','    
  NCF(£)','      DCF(£)' 
     WRITE(10,*)' YEAR',' REVENUE(£)','  EXPENDITURE(£)','  PROFIT(£)','  
    NCF(£)','       DCF(£)' 
            DO J=1,25 
  PRINT 215, J, REV(J), EXPEND(J), PROFIT(J), NCF(J), DCF(J) 
  WRITE(10,210)J, REV(J), EXPEND(J), PROFIT(J), NCF(J), DCF(J) 
            END DO 
        PRINT 220, NPV,INVST2,PBP,ANF,ITRT,CF,EP 
        WRITE(10,220) NPV,INVST2,PBP,ANF,ITRT,CF,EP 
         
                
    END PROGRAM ECONOMICMODULE2014 
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D.2 Typical Input File of the Economic Module 

   COAL POWER PLANT 

GT POWER FOR THE FOUR SEASONS 

23.22756 15.09791 17.42067 20.90480 

23.10885 15.02075 17.33164 20.79797 

21.99545 14.29704 16.49659 19.79591 

20.18578 13.12076 15.13933 18.16720 

20.02611 13.01697 15.01959 18.02350 

19.90550 12.93858 14.92913 17.91495 

19.90550 12.93858 14.92913 17.91495 

19.88405 12.92463 14.91304 17.89564 

19.83841 12.89496 14.87880 17.85456 

19.81859 12.88208 14.86394 17.83673 

19.81859 12.88208 14.86394 17.83673 

19.81859 12.88208 14.86394 17.83673 

19.81859 12.88208 14.86394 17.83673 

19.81859 12.88208 14.86394 17.83673 

19.81859 12.88208 14.86394 17.83673 

19.81859 12.88208 14.86394 17.83673 

19.81859 12.88208 14.86394 17.83673 

19.81859 12.88208 14.86394 17.83673 

19.81859 12.88208 14.86394 17.83673 

19.81859 12.88208 14.86394 17.83673 

19.81859 12.88208 14.86394 17.83673 

19.81859 12.88208 14.86394 17.83673 

19.81859 12.88208 14.86394 17.83673 

19.81859 12.88208 14.86394 17.83673 

19.81859 12.88208 14.86394 17.83673 



 

179 

GT FUEL FLOW FOR THE FOUR SEASONS    

1.467600 1.052200 1.168600 1.348100 

1.465400 1.047200 1.163400 1.342100 

1.403500 1.013000 1.121900 1.288900 

1.314700 0.956700 1.050400 1.210100 

1.305100 0.952100 1.047200 1.199200 

1.299200 0.947600 1.047200 1.193800 

1.299200 0.947600 1.047200 1.193800 

1.297200 0.947600 1.042300 1.193800 

1.293400 0.946200 1.041300 1.193800 

1.291400 0.945100 1.041300 1.193800 

1.291400 0.945100 1.041300 1.193800 

1.291400 0.945100 1.041300 1.193800 

1.291400 0.945100 1.041300 1.193800 

1.291400 0.945100 1.041300 1.193800 

1.291400 0.945100 1.041300 1.193800 

1.291400 0.945100 1.041300 1.193800 

1.291400 0.945100 1.041300 1.193800 

1.291400 0.945100 1.041300 1.193800 

1.291400 0.945100 1.041300 1.193800 

1.291400 0.945100 1.041300 1.193800 

1.291400 0.945100 1.041300 1.193800 

1.291400 0.945100 1.041300 1.193800 

1.291400 0.945100 1.041300 1.193800 

1.291400 0.945100 1.041300 1.193800 

1.291400 0.945100 1.041300 1.193800 
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Appendix E Typical Output of the Economic Code  

            E C O N O M I C   O U T P U T   S U M M A R Y  

                    COAL POWER GENERATION PLANT  

 

  YEAR REVENUE(£)  EXPENDITURE(£)  PROFIT(£)  NCF(£)       DCF(£) 

   1  18556772.00   9653382.00   7415846.50   4445134.00   3865334.00 

   2  18461940.00   9612910.00   7361486.50   4401646.00   3328276.75 

   3  17572428.00   9211251.00   6873633.50   4011363.50   2637536.75 

   4  16126660.00   8572606.00   6066510.50   3365665.00   1924330.00 

   5  15999102.00   8514003.00   5997555.50   3310501.00   1645904.12 

   6  15902744.00   8475400.00   5939800.50   3264297.00   1411245.88 

   7  15902744.00   8475400.00   5939800.50   3264297.00   1227170.38 

   8  15885605.00   8464362.00   5933699.50   3259416.00   1065509.00 

   9  15849138.00   8449430.00   5912164.50   3242188.00    921632.31 

  10  15833308.00   8442747.00   5903017.50   3234870.50    799610.62 

  11  15833308.00   8442747.00   5903017.50   3234870.50    695313.62 

  12  15833308.00   8442747.00   5903017.50   3234870.50    604620.56 

  13  15833308.00   8442747.00   5903017.50   3234870.50    525757.06 

  14  15833308.00   8442747.00   5903017.50   3234870.50    457180.03 

  15  15833308.00   8442747.00   5903017.50   3234870.50    397547.88 

  16  15833308.00   8442747.00   5903017.50   3234870.50    345693.81 

  17  15833308.00   8442747.00   5903017.50   3234870.50    300603.31 

  18  15833308.00   8442747.00   5903017.50   3234870.50    261394.19 

  19  15833308.00   8442747.00   5903017.50   3234870.50    227299.31 

  20  15833308.00   8442747.00   5903017.50   3234870.50    197651.56 

  21  15833308.00   8442747.00   5903017.50   3234870.50    171870.94 

  22  15833308.00   8442747.00   5903017.50   3234870.50    149453.00 

  23  15833308.00   8442747.00   5903017.50   3234870.50    129959.12 
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  24  15833308.00   8442747.00   5903017.50   3234870.50    113007.94 

  25  15833308.00   8442747.00   5903017.50   3234870.50     98267.78 

 

NPV(£)=   13886469.00  YEARLY CAPITAL COST SPREAD(£) = 1487543.62  PAY 

BACK PERIOD =  3 

ANNUITY FACTOR =     0.1547  DISCOUNT FACTOR =     0.1500  FUEL 

PRICE(£/kg) =      0.12  ELECTRICITY PRICE(£) =       0.12 

          

   E C O N O M I C   O U T P U T   S U M M A R Y  

                   OIL AND NATURAL GAS DUAL FIRED PLANT  

 

  YEAR REVENUE(£)  EXPENDITURE(£)  PROFIT(£)  NCF(£)       DCF(£) 

   1   8695422.00   5277094.50   1930783.88     57083.50     49637.83 

   2   8689431.00   5273361.00   1928526.38     55277.50     41797.73 

   3   8663972.00   5260700.00   1915728.38     45039.12     29613.96 

   4   8786194.00   5314965.50   1983684.88     99404.25     56834.71 

   5   8769392.00   5310544.00   1971304.38     89499.88     44497.26 

   6   8782578.00   5317798.00   1977236.38     94245.50     40744.93 

   7   8944026.00   5395177.00   2061305.38    161500.75     60714.12 

   8   9121522.00   5475777.50   2158201.00    239017.25     78135.17 

   9   9318165.00   5567754.00   2262867.50    322750.38     91745.81 

  10   9556299.00   5662533.50   2406222.00    437434.00    108127.02 

  11   9842310.00   5789817.00   2564949.50    564416.00    121317.41 

  12  10161383.00   5934676.00   2739163.50    703787.12    131542.88 

  13  10355977.00   6007931.00   2860502.50    800858.38    130161.91 

  14  10453566.00   6065572.00   2900450.50    832816.88    117700.93 

  15  10597240.00   6128320.50   2981376.00    897557.12    110304.85 

  16  10874790.00   6249234.00   3138012.50   1022866.38    109308.42 

  17  11083402.00   6340823.00   3255035.50   1116484.88    103750.38 



 

182 

  18  11259254.00   6418492.00   3353218.50   1195031.12     96564.66 

  19  11432952.00   6498905.50   3446503.00   1269658.88     89213.02 

  20  11481794.00   6518287.00   3475963.50   1293227.12     79016.57 

  21  11858247.00   6683261.50   3687442.00   1462410.12     77698.88 

  22  12160592.00   6820369.00   3852679.50   1594600.12     73671.50 

  23  12435184.00   6935092.00   4012548.50   1722495.12     69200.29 

  24  12711784.00   7062264.50   4161976.00   1842037.12     64350.28 

  25  12967383.00   7178537.00   4301302.50   1953498.38     59342.70 

 

NPV(£)=   -7580710.00  YEARLY CAPITAL COST SPREAD(£) = 1487543.62  PAY 

BACK PERIOD = 26 

ANNUITY FACTOR =     0.1547  DISCOUNT FACTOR =     0.1500  FUEL 

PRICE(£/kg) =      0.12  ELECTRICITY PRICE(£) =       0.12 

 

            E C O N O M I C   O U T P U T   S U M M A R Y  

                            CCGT POWER GENERATION PLANT  

 

  YEAR REVENUE(£)  EXPENDITURE(£)  PROFIT(£)  NCF(£)       DCF(£) 

   1  11797410.00   6656219.50   3653647.00   1435374.12   1248151.50 

   2  12071232.00   6783266.00   3800422.50   1552794.38   1174135.62 

   3  12185738.00   6829162.00   3869032.50   1607682.38   1057077.38 

   4  12612710.00   7018084.00   4107082.50   1798122.38   1028082.38 

   5  12628616.00   7022270.00   4118802.50   1807498.38    898646.19 

   6  12652090.00   7033386.00   4131160.50   1817384.88    785705.69 

   7  12688754.00   7056204.00   4145006.50   1828461.62    687386.56 

   8  12781377.00   7093824.50   4200009.00   1872463.62    612111.75 

   9  12855402.00   7129124.00   4238734.50   1903444.12    541077.69 

  10  13050316.00   7209729.00   4353043.50   1994891.12    493106.66 

  11  13431044.00   7381996.00   4561504.50   2161660.00    464634.25 
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  12  13868881.00   7580152.50   4801185.00   2353404.50    439868.25 

  13  13968880.00   7617803.50   4863533.00   2403283.00    390600.78 

  14  14423426.00   7821001.50   5114881.00   2604361.00    368070.97 

  15  14960318.00   8052814.00   5419960.50   2848425.00    350055.81 

  16  15344301.00   8220337.00   5636420.50   3021593.00    322901.97 

  17  15780118.00   8418664.00   5873910.50   3211585.00    298439.50 

  18  16181762.00   8596057.00   6098161.50   3390986.00    274009.12 

  19  16630204.00   8800865.00   6341795.50   3585893.00    251964.03 

  20  17213440.00   9057382.00   6668514.50   3847268.00    235069.23 

  21  17469390.00   9164740.00   6817106.50   3966142.00    210723.89 

  22  17772460.00   9303400.00   6981516.50   4097670.00    189314.86 

  23  18137800.00   9464276.00   7185980.50   4261241.00    171193.00 

  24  18453204.00   9602854.00   7362806.50   4402702.00    153805.31 

  25  18744358.00   9741159.00   7515655.50   4524981.00    137458.31 

 

NPV(£)=    3167886.00  YEARLY CAPITAL COST SPREAD(£) = 1487543.62  PAY 

BACK PERIOD = 13 

ANNUITY FACTOR =     0.1547  DISCOUNT FACTOR =     0.1500  FUEL 

PRICE(£/kg) =      0.12  ELECTRICITY PRICE(£) =       0.12 

           

   E C O N O M I C   O U T P U T   S U M M A R Y  

                     GAS TURBINE POWER GENERATION PLANT  

 

  YEAR REVENUE(£)  EXPENDITURE(£)  PROFIT(£)  NCF(£)       DCF(£) 

   1   5928081.50   3536133.50   1842584.50    924704.12    804090.56 

   2   5897863.00   3520713.75   1827785.75    912865.12    690257.19 

   3   5847811.00   3493910.50   1804537.00    894266.12    587994.56 

   4   5803305.50   3471442.50   1782499.50    876636.12    501219.56 

   5   5700221.00   3421987.00   1728870.50    833732.88    414512.62 
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   6   5557013.50   3345567.50   1662082.50    780302.50    337346.34 

   7   5367618.00   3249375.25   1568879.25    705739.88    265313.81 

   8   5292015.00   3212265.50   1530386.00    674945.38    220640.88 

   9   5220184.00   3177199.50   1493621.00    645533.38    183500.91 

  10   5137563.50   3136113.75   1452086.25    612305.50    151352.58 

  11   5106397.00   3118724.50   1438309.00    601283.75    129241.89 

  12   4922094.50   3020970.50   1351760.50    532044.88     99443.02 

  13   4811953.50   2971444.00   1291146.00    483553.31     78590.95 

  14   4746804.50   2936688.25   1260752.75    459238.69     64903.61 

  15   4700766.50   2915109.50   1236293.50    439671.31     54033.20 

  16   4572182.00   2850482.25   1172336.25    388505.50     41517.57 

  17   4455721.00   2793097.75   1113259.75    341244.31     31710.44 

  18   4420815.50   2775094.25   1096357.75    327722.69     26481.68 

  19   4344582.50   2736684.50   1058534.50    297464.12     20901.42 

  20   4301636.00   2715947.25   1036325.25    279696.69     17089.55 

  21   4297896.00   2714746.00   1033786.50    277665.69     14752.57 

  22   4287935.50   2707422.25   1031149.75    275556.31     12730.87 

  23   4279458.50   2702712.75   1027382.25    272542.31     10949.24 

  24   4279458.50   2702712.75   1027382.25    272542.31      9521.08 

  25   4279458.50   2702712.75   1027382.25    272542.31      8279.20 

 

NPV(£)=    1225207.25  YEARLY CAPITAL COST SPREAD(£) =  549363.50  PAY 

BACK PERIOD =  7 

ANNUITY FACTOR =     0.1547  DISCOUNT FACTOR =     0.1500  FUEL 

PRICE(£/kg) =      0.12  ELECTRICITY PRICE(£) =       0.12 
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Appendix F Pipeline Hydraulic Analysis Code 

F.1 Main Pipeline Hydraulic Analysis Program 

PROGRAM PIPELINE_HYDRAULIC_ANALYSIS 
IMPLICIT NONE 
     
! THIS CODE IS USED FOR THE PIPELINE/COMPRESSION MODULE FOR TERA IN APPLICATION 
!TO CO2 PIPELINE DEVELOPED  
!BY A. EL-SULEIMAN AS PART OF THE PhD THESIS IN CRANFIELD UNIVERSITY, UK- 2014. 
     
    !ASSUMPTIONS 
 
 
! J = 1,2,3,................,25 REPRESENTS YEARS 2013,2014,.................,2037 
! ------------------------------------------------------------------ 
! THE PROFILE IS SHOWN IN FIG 3-2 OF THE MAIN THESIS 
 
! ------------------------------------------------------------------ 
 
    INTEGER,PARAMETER :: S1 = 12, S2 = 75, S3 = 3 
    INTEGER :: I,J,K,IMAX,JMAX,KMAX,ITER,ITMAX 
    INTEGER, DIMENSION(0:S2) :: K1 
    REAL, DIMENSION(S1,S2) :: ELV, EXP2,EXP3,EXP4 
    REAL, DIMENSION(0:S2) :: LNT, S, LEQV, SLP, POUT,Z1 
    REAL :: P,P1, P2,P21,PGUESS,PB,TB, TF,TFAV, EPS, FF, TOL, FFGUESS, 
WF,RHO,VIS,PAVE,PMAX,EXP,MAIR,Q1,Q2 
    REAL :: REYNO, MCO2, RUNIV, Pcrit, Tcrit, PI, QFL, QFL2, A1, A2, A3, A22, 
VEL,TCK, DIN, DOUT, PL, RCO2  
    REAL :: LEQVT, SUM, X, Z, PAV, Q3, Q4, A4, SGCO2, PAVE1, X1, A,QFLCO2, T1, 
T2, T3,VSP 
    CHARACTER (LEN=10) :: DUMMY 
! ------------------------------------------------------------------ 
!    FORMATS 
200 FORMAT(' ',A55,/) 
215 FORMAT(I7,F18.2,F18.2,F18.2,I10,F13.2,F13.2) 
220 FORMAT(/'PIPE INLET PRESSURE(KPa) = ',F8.2) 
230 FORMAT(/'PIPE EQUIV LENGTH(KM) = ',F7.2,1X,'REYNOLDS NO = ',F8.2,1X,'FRICTION 
FACTOR =',F8.4,/,'FLOW(SCMD) = ',F9.4,1X,'PIPE SIZE(m) =',F8.4) 
 
! ------------------------------------------------------------------ 
     
    OPEN(UNIT=6,STATUS='REPLACE',FILE='PRESSURE DROP RESULTS.DAT') 
        
! ------------------------------------------------------------------ 
! INPUT DATA AND ASSUMPTIONS  
! ------------------------------------------------------------------ 
        IMAX = 4 
        JMAX = 31 ! NUMBER OF SEGMENTS                      
        ITMAX= 1000 
        KMAX = 1000 
         
         
        OPEN(UNIT=5,FILE='FLAT PROFILE.inp') 
  
        ! READING ALL PROFILE VAR  
     READ(5,'(A10)'),DUMMY 
        READ(5,*) (LNT(J),J=1,JMAX) 
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    READ(5,'(A10)'),DUMMY 
  
        DO J=1,JMAX 
 
    READ(UNIT=5,FMT= *) (ELV(I,J),I=1,2) 
        END DO 
    
       ! DATA ASUMPTIONS 
         
      MCO2 = 44.01 ! MOLECULAR WEIGHT OF CO2 
      RUNIV = 8.314 ! UNIVERSAL GAS CONSTANT 
      TB = 25+273.15 !BASE TEMPERATURE IN K 
      PB = 101.325  ! BASE PRESSURE IN KPA 
      Pcrit = 7.38E+06 ! CRITICAL PRESSURE OF CO2 in Pa 
      Tcrit = 31.1 !CRITICAL TEMPERATURE OF CO2 IN Degrees Centrigrade 
             
       RCO2 = RUNIV*1E+3/MCO2 ! SPECIFIC GAS CONSTANT 
       MAIR = 28.9625  ! MASS OF AIR 
       SGCO2  = MCO2/MAIR  !0.8763 !MCO2/MAIR !SPECIFIC GRAVITY OF CO2 
       
       !INPUT 
        PAVE = 15000  !INLET PRESSURE IN KPa 
       TF = 25        ! AVERAGE FLOW TEMP IN DEGREE CELSIUS 
       TFAV = TF+273.15 ! 
       !RHO = P/(Z*RCO2*T) 
        
       ! CALCULATING INITIAL COMPRESSIBILITY OF THE CO2 AT PIPELINE INLET 
       
       CALL Z_FACTOR(PAVE,TFAV,Z) 
       P = PAVE*1E3 
       VSP = 8314*Z*TFAV/(MCO2*P) 
       QFLCO2 = 3.33         !CO2 THROUGHPUT IN MTPY 3.70,2.41,2.78,3.33 
       QFLCO2 = QFLCO2*1E6/365  !CO2 THROUGHPUT IN TPD 
       QFLCO2 = QFLCO2*1E3/24  !CO2 THROUGHPUT IN KG/HR 
       WF = QFLCO2/3600  !CO2 THROUGHPUT IN KG/SEC MASS FLOW RATE 
        
       QFLCO2 = QFLCO2*VSP  !CO2 THROUGHPUT IN M3/HR 
       QFLCO2 = QFLCO2*1E3/(1.179869)  !CO2 THROUGHPUT IN FT3/D 
       QFLCO2 = QFLCO2/1440  !CO2 THROUGHPUT IN FT3/MIN 
         
       T1 = 9*TF/5+32   ! TEMPERATURE IN DEGREES FARENHEIGHT 
       T1 = T1 + 460 
       P = P/(PB*1E3) 
       P = P/14.696 
       QFLCO2 = QFLCO2*P*520/(14.969*T1) !CO2 THROUGHPUT IN SCFM 
       QFLCO2 = QFLCO2*60*24 !CO2 THROUGHPUT IN SCFD 
       QFL2 = QFLCO2*1.179869*1E-3 !CO2 THROUGHPUT IN SCMH 
       QFL = QFL2*24  !CO2 THROUGHPUT IN SCMD 
        
        PMAX = 15.3 ! IN MPA 
        EXP = 2.718281828 
        PI = 4.0 * ATAN(1.0) 
        RHO = 876.3 ! CO2 DENSITY IN KG/M3 OBTAINED FROM CO2 PIPELINE OPERATORS 
        VIS = 9.2605E-5 ! DYNAMIC VISCOSITY OBTAINED FROM EMPIRICAL RELATIONSHIP 
        DOUT= 0.3556 ! 0.3556m, 0.3239m or 14" 12and3/4"; 
        TCK = PMAX*DOUT/(2*482*1*0.72) 
        DIN = DOUT-2*TCK 
        VEL = 4*WF/(PI*RHO*DIN**2) 
        
        !QFL2 = 327.1964082 
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        REYNO = 0.5134*PB*SGCO2*QFL/(TB*VIS*DIN*1000) 
         
        ! FINDING THE FRICTION FACTOR, FF USING COLEBROOK'S-WHITE EQUATION 
1000     TOL = 1E-6 
         EPS = 0.045 
         FFGUESS= 0.0001 
        DO ITER = 1,ITMAX 
        A22 = EPS/(3.7*DIN*1000)+2.51/(REYNO*SQRT(FFGUESS)) 
   A2 = -2*LOG10(A22) 
         A3 = 1/SQRT(FFGUESS) 
         A1 = ABS(A2-A3) 
         FFGUESS = (1/A2)**2 
        IF (A1<=TOL .OR. ITER == ITMAX) THEN        
        FF = FFGUESS 
        GOTO 2000 
        END IF 
        END DO 
                   
         
2000      P1 = 15000  !INLET PIPE PRESSURE IN KPA 
           PRINT 220, P1 
           WRITE(6, 220) P1 
2500      DO J = 1, JMAX        
           I = 1 
           P2 = P1-500 !GUESSED VALUE FOR POUT 
           K = 1     
            
           IF (P2<=10000) THEN 
           PRINT *, ' POINT OF RECOMPRESSION' 
           END IF 
             DO 
         X = P1+P2 
         PAV = P1*P2/(P1+P2) 
         PAVE1 = X-PAV 
         PAVE = 2*PAVE1/3   !2/3*(P1+P2-(P1*P2/(P1+P2)))! AVERAGE PRESSURE 
         CALL Z_FACTOR(PAVE,TFAV,Z) 
         Z1(J) = Z 
             
        ! ELEVATION CORRECTION FACTOR 
         
         A4 = ELV(I+1,J)-ELV(I,J)   
        
        S(J) = 0.0684*SGCO2*A4/((TF+273.15)*Z)! ELEVATION ADJUSTMENT TERM 
                  
        ! DEFINING J PARAMETER 
        IF (A4 == 0) THEN 
        A = 1 
        SLP(J) = 1 
        ELSE 
        SLP(J) = (EXP**S(J)-1)/S(J) 
        A =  EXP**S(J-1) 
        END IF   
         
        ! EQUIVALENT LENGTH 
         
        LEQV(J) = LNT(J)*SLP(J)*A    !LEQV(J) = LNT(J)*SLP(J)*EXP**S(J-1) 
         
                 
        !CALCULATING P2 FROM THE GENERAL FLOW EQUATION 
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5000    Q1 = (QFL*SQRT(FF)*PB*1E4/((DIN*1E3)**2.5*TB*11.4946))**2 
         
        X1 = SGCO2*TFAV*LEQV(J)*1000*Z  
          
        Q4 = Q1*X1 
        Q2 = P1**2-Q4 
        Q3 = Q2/EXP**S(J) 
        P21 = SQRT(Q3) 
               
        A1 = ABS(P2-P21) 
        P2 = P21 
               
        IF (A1<=TOL .OR. K == KMAX) EXIT 
        K = K+1 
            END DO 
        POUT(J) = P2 
        K1(J) = K 
          P1 = P2 
     END DO 
        SUM = 0 
        DO J = 1, JMAX 
        SUM = SUM + LEQV(J) 
        END DO 
        LEQVT = SUM         
             
       PRINT 200, ' HYDRAULIC RESULT   S U M M A R Y '  
       WRITE(6,200)' HYDRAULIC RESULT   S U M M A R Y ' 
            
       PRINT*,' SEGMENT NO  ',' OUTLET PRESSURE(KPa) ',' EQUIV LENGTH(km) ',' 
COMP FACTOR',' NO.OF ITER ' 
       WRITE(6,*)'/ SEGMENT NO  ',' OUTLET PRESSURE(KPa) ',' EQUIV LENGTH(km) ',' 
COMP FACTOR',' NO.OF ITER /' 
       DO J=1,JMAX 
       PRINT 215, J,POUT(J),LEQV(J),Z1(J),K1(J) 
       WRITE(6, 215) J,POUT(J),LEQV(J),Z1(J),K1(J) 
       END DO 
       PRINT 230, LEQVT,REYNO,FF,QFL,DOUT 
       WRITE(6, 230) LEQVT,REYNO,FF,QFL,DOUT 
 
    END PROGRAM PIPELINE_HYDRAULIC_ANALYSIS 

F.2 Subroutine for Compressibility Factor Using PR-EOS 

SUBROUTINE Z_FACTOR(PAVE,TFAV,Z) 
     
IMPLICIT NONE 
     
!THIS CODE IS USED FOR THE PIPELINE/COMPRESSION MODULE FOR TERA IN APPLICATION TO  
!CO2 PIPELINE DEVELOPED  
!BY A. EL-SULEIMAN AS PART OF THE PhD THESIS IN CRANFIELD UNIVERSITY, UK- 2014.  
 
REAL :: MCO2, RUNIV, Pcrit, TcritC, TcritK,TK, AFAC, EPS, BT, T, P, B, A, H1, H2, 
  H3, H4,TFAV,PAVE 
REAL ::  PR,  TR, VTH, AOFT, BOFT, A1, A2, A3, B1, B2, DET, C1, C2, RCO2, Z, BT1, 
  B21, G1, G2, Z1 
!----------------------------------------------------------------------- 
! SIMULATION CO2 COMPRESSIBILITY FACTOR USING THE PENG-ROBINSON EQUATION OF STATE 
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!---------------------------------------------------------------------- 
         
       MCO2 = 44.01 ! MOLECULAR WEIGHT OF CO2 
       RUNIV = 8.314 ! UNIVERSAL GAS CONSTANT 
       TK = 273.15 !  
       Pcrit = 7.38E+06 ! CRITICAL PRESSURE OF CO2 in Pa 
       TcritC = 31.1 !CRITICAL TEMPERATURE OF CO2 IN Degrees Centrigrade 
       TcritK = TcritC + TK 
       AFAC = 0.22394  !ACCENTRIC FACTOR 
       
       RCO2 = RUNIV*1E+3/MCO2 ! SPECIFIC GAS CONSTANT 
       
        
        P = PAVE*1E3 
        T = TFAV 
        PR = P / Pcrit   
        TR = T / TcritK 
        EPS = 0.37464+1.54226*AFAC-0.26992*AFAC**2 
        BT1 = 1-SQRT(TR) 
        BT = (1+EPS*BT1)**2 
        
        AOFT = 0.45724*BT*RUNIV**2*TcritK**2/Pcrit 
        BOFT = 0.0778*RUNIV*TcritK/Pcrit 
         
        A = AOFT*P/(RUNIV**2*T**2) 
        B = BOFT*P/(RUNIV*T) 
         
        A1 = -1*(1-B) 
        A2 = A-3*B**2-2*B 
        A3= -(A*B-B**2-B**3)       
         
        B1 = (A1**2-3*A2)/9   
        C1 = B1**3 
        B21 = (2*A1**3)-(9*A1*A2)+(27*A3) 
        B2= B21/54    
        C2 = B2**2 
         
        H1 = C2-C1 
        Z1 = H1**0.5 
         
        H2 = ABS(B2)+Z1 
        G1 = FLOAT(1)/FLOAT(3) 
        H2 = H2**G1 
         
        H3 = B1/H2 
         
        H4 = H2+H3-A1/3 
         
        Z = H4 
         
       
        RETURN 
    END  
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F.3  Pipeline Profile Input File 

PROFILE SEGMENT LENGTH  

17 22.4 19.6 19.7 20 21.3 20 19 13 12 17 19

 19 22 28 31 14 10 15 18 16 15 13

 8 9 13 13 7 8 17 15   

SEGMENT ELEVATION    

117 111  

111 101 

101 111 

111 122 

122 114 

114 104 

104 104 

104 104 

104 93.9 

93.9 82 

82 67.6 

67.6 69.7 

69.7 72.8 

72.8 83 

83 96.1 

96.1 106 

106 94.9 

94.9 86.4 

86.4 74.5 

74.5 94.1 

94.1 112 

112 131 

131 150 
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150 164 

164 177 

177 159 

159 140 

140 128 

128 114 

114 106 

106 99.9 
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Appendix G Typical Pipeline Hydraulic Analysis Output  

 HYDRAULIC SIMULATION OUTPUT FILE 

PIPE INLET PRESSURE(KPa) = 15000.00 
                       HYDRAULIC RESULT   S U M M A R Y  
 
 / SEGMENT NO   OUTLET PRESSURE(KPa)  EQUIV LENGTH(km)  COMP FACTOR 
NO.OF ITER / 
      1          15049.65             16.94              0.31         
4 
      2          15133.03             22.12              0.31         
4 
      3          15046.04             19.49              0.31         
4 
      4          14950.61             20.05              0.31         
4 
      5          15016.98             20.16              0.31         
4 
      6          15100.41             20.99              0.31         
4 
      7          15098.67             20.00              0.31         
3 
      8          15097.02             19.00              0.31         
3 
      9          15182.11             12.93              0.31         
4 
     10          15282.81             11.79              0.31         
4 
     11          15404.66             16.64              0.31         
4 
     12          15385.05             18.72              0.31         
4 
     13          15356.85             19.08              0.31         
3 
     14          15267.64             22.20              0.31         
4 
     15          15153.24             28.53              0.31         
4 
     16          15066.04             31.64              0.31         
4 
     17          15159.52             14.07              0.31         
4 
     18          15231.29              9.83              0.31         
4 
     19          15331.80             14.76              0.31         
4 
     20          15162.68             17.96              0.31         
4 
     21          15008.58             16.52              0.31         
4 
     22          14845.57             15.47              0.31         
4 
     23          14683.15             13.43              0.30         
4 
     24          14563.86              8.24              0.30         
4 
     25          14453.16              9.22              0.30         
4 
     26          14604.22             13.06              0.30         
4 
     27          14764.18             12.59              0.30         
4 
     28          14865.51              6.80              0.30         
4 
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     29          14983.95              7.83              0.31         
4 
     30          15050.67             16.66              0.31         
4 
     31          15101.40             14.81              0.31         
4 
 
PIPE EQUIV LENGTH(KM) =  511.52 REYNOLDS NO = 57706.77 FRICTION FACTOR 
=  0.0207 
FLOW(SCMD) = 6851.5410 PIPE SIZE(m) =  0.3556 
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