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ABSTRACT

Deltastream is an on-going project carried by Tidal Energy Limited since almost

twenty years. It is a tidal energy converter with a triangular shape and one

turbine on each tower. It has gone through many evolutions of design but a first

prototype will be installed in the end of 2014 at Ramsey Sound.

The deployment and recovery operations will be carried out with a single lift

point through a heavy lift frame. Two issues have to be tackled during the

operation: the rate of flooding of the ballasts and the tension on the lift crane

cable. The most favourable sea state must be found in order to minimise the

crane cable tension as well as the best inlets and outlets configuration for the

ballasts system.

In order to tackle those issues, preliminary analytical work was conducted on

the demonstrator to assess the stability during the flooding process. A scaled

model was designed and built in order to be tested in a wave-towing tank.

The results from the tests highlight that the deployment and the recovery

operations are safe for both the barge and Deltastream for the range of wave

conditions tested in the tank. However, the sea state has an important impact

on the proceeding of the operations, especially the period of the waves.
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EXECUTIVE SUMMARY

The purpose of this project was to investigate experimentally the deployment

and recovery scenarios of the tidal energy converter “Deltastream” in order to

assess the behaviour during these two critical phases. For this purpose, a

reduced scale model was designed and built based on a CAD design of the full

scale demonstrator supplied by TEL.

The combined flooding and motion of the device at reduced scale requires

particular attention as the physical phenomena involved must respect different

scaling laws which can be difficult to re-create. The guide below presents the

transformation of the relevant physical quantities from model scale to full scale.

The similarity used is based on Froude due to the presence of inertial and

gravitational forces acting on the device. The scaled values are multiplied by the

formulas in the following table to obtain the full scale values:

Transformation from model to full scale

Rig 1:20 Numerical value

Time x √20 4.47

Length x 20 20

Mass x 1.025 x 20ଷ 8,200.00

Force x 1.025 x 20ଷ 8,200.00

Table 1 Transformation from model to full scale

The model was fully built in the workshop of the Ocean laboratory as well as the

test rig. The tests were carried out in the wave-towing tank at Cranfield. The first

aim of those tests was to assess the impact of different sea states on the

maximal tension experienced by the lift crane. The second aim was to assess

the flooding process of the structure: duration of flooding and dynamic response

of the structure during the process.

The first tests enabled to identify the different stages of the complete flooding

(during deployment) and draining (during recovery) process which would then

be the object of particular attention. The following graphs are detailing the

different phases encountered during these two operations:
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Figure 1 Time Slicing - Deployment operation

Figure 2 Position of the demonstrator given the time slicing

- Phase A (1:2): waiting phase between the beginning of the data

acquisition and the launch of the actuators.

- Phase B (2:3): beginning of the descent of Deltastream towards the

water surface.

- Phase C (3:4): first contact of the ballasts with the water line.

- Phase D (4:5): the ballasts are underwater but not completely filled.

- Phase E (5:6): the ballasts are flooded.

- Phase F (6:7): entrance of the turbine in the water.

- Phase G (7:8): DeltaStream is fully submerged.
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The data acquisition was ended when the device was completely submerged

and when no cable tension variation was no longer noticeable. This means the

full descend until the tank bottom was not conducted.

During the deployment operation, the impact of the wave height, frequency and

direction was assessed.

In total, twenty seven tests of deployment operation have been carried out. The

same approach was adopted for the recovery operations with another thirty six

tests.

Figure 3 Time Slicing - Recovery operation

Figure 4 Position of the demonstrator given the time slicing
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- Phase H: beginning of the ascending of Deltastream.

- Phase I: first part of the turbine off the water.

- Phase J: the turbine is completely out of the water.

- Phase K: the ballasts start to be drained.

- Phase L: 90% of the demonstrator is outside the water. Ballasts still

drained.

- Phase M: the actuators are stopped in their initial position but the ballasts

are not drain yet. The demonstrator is fully out of the water, the

acquisition is stopped when the ballasts are drained.

The first series of test was carried out with an inlets and outlets configuration

smaller than the one respecting the scale model. The following table is

describing the two configurations tested:

Data Configuration 1 Configuration 2

Number of inlet 6+4 6 + 4

Size of inlet
10 mm + 5mm

Diameter
25 mm + 5 mm Diameter

Number of Vents 8 8

Size of Vents 5 mm Diameter 10 mm Diameter

Table 2 Test configuration data

The tables below are summarising all the sea state tested organised by

configuration:

Configuration 1

Amplitude (m)
0 0.02 0.025 0.03 0.035

Frequency (Hz)

0 Test 1

0.5 Test 11 Test 12

1 Test 3 Test 4 Test 5 Test 6

1.2 Test 7 Test 8 Test 9 Test 10

Table 3 Test numeration and sea state - configuration 1
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Configuration 2

Amplitude (m)
Angle

0
Angle

45
Angle

90
Angle
135

Angle
180

Frequency (Hz) 0.02 0.02 0.02 0.02 0.02

0.5 Test 13 Test 16 Test 19 Test 22 Test 25

1

Test 14 Test 17 Test 20 Test 23 Test 26

1.2 Test 15 Test 18 Test 21 Test 24 Test 27

Table 4 Test numeration and sea state - configuration 2

During the tests, multiple sea states have been tested. For convenience, the

table below is summarising the inputs given to the wave maker and the

corresponding full scale value:

Wave amplitude (m) Wave frequency (Hz) and period (sec)

Reduced

scale
Full scale

Reduced

scale

frequency

Reduced

scale period

Full scale

period

0.02 0.4 0.5 2 8.94

0.025 0.5 1 1 4.47

0.03 0.6 1.2 0.83 3.73

0.035 0.7

Table 5 Reduced Scale/Full scale values for the sea states

Two phenomena were assessed during the data processing: the maximum

cable tension variation and the maximal cable tension. The first corresponds to

the variation of tension around a mean value due to the wave impact on the

device. The second corresponds to the maximal cable tension detected during

the operations. The results collected during those multiple tests are displayed in

the following table:
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MAXIMUM CABLE

TENSION VARIATION

MAXIMUM CABLE

TENSION

Worst

Case
Best Case

Worst

Case
Best Case

INPUTS

Wave

Amplitude
0.7m 0.4m 0.7m 0.4m

Wave

Period
8.94 sec 4.47 sec 8.94 sec 4.47 sec

Angle
180

degrees

45/90

degrees
0 degrees

135

degrees

Table 6 Summarised Results

Moreover, the results showed that the largest tension was during the recovery

operation when Deltastream is piercing the water surface and the ballasts start

to drain. It has to be pointed out that the limit mass of the lift crane (151 tonnes)

is not reached within the range of sea states tested in the tank. It emerged that

the period of the waves is the aspect which has the most impact on the

demonstrator and especially on the snatch load experienced by the lift crane: a

long period is the worst case scenario for the deployment and the recovery.

Concerning the orientation angle of the device through the waves, a best

position cannot be truly chosen. Even if the tendency indicates that the worst

cases are either when the Turbine (in parked position) is facing the waves or

when the waves are reaching first the back base of the device.
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1 Introduction

1.1 Context

1.1.1 International Context

In 2012, the first commitment of the Kyoto Protocol ended with a decrease of

4.2% of the collective greenhouse gas emissions between 2008 and 2012. The

aim of the Protocol, which was signed and ratified by 191 states, was to reduce

the gas emissions by 5.2% in comparison with the 1990 level. During this four-

year period, the United Kingdom managed to reduce their emissions by 12.5%.

On the 8th of December, 2012 in Doha, Qatar, the “Doha Amendment to the

Kyoto Protocol” was adopted. The objective of this amendment is to undertake

a second commitment of the Kyoto Protocol by reducing the greenhouse gas

emissions by 18% below the 1990 level between 2013 and 2020.

In this context, the European Union decided to adopt a new contract in 2009.

This contract has multiple objectives to achieve before 2020. Those objectives

are focused on emissions cuts, energy efficiency and increase of the renewable

resources. More precisely, the targets are to reduce the greenhouse gas

emissions by 20% compared to the 1990 level, increase the energy efficiency

by 20% and raise the weight of the renewable energies in the energy production

by 20%.

1.1.2 Deltastream Project

Tidal Energy Limited is the company behind the development of the Tidal

Energy Converter called Deltastream. The purpose of this device is to convert

tidal currents into electricity with horizontal axis turbines. The first prototype of

the Deltastream will be installed between the Welsh coast and Ramsey Island

before the end of this year. The further objective of the company is to develop

farms in a short time.

The original idea of Deltastream was born in 1997. At that stage, the structure

was composed of three horizontal marine current turbines installed on a

triangular frame; the diameter of the turbines was going to be 15m. The device

would be lying on the seabed without any concrete foundations linking it to the

seabed, as seen in Figure 1-1. The generation capacity of the device was

planned to be up to 1.2 MW. This first geometry will be called Deltastream 1 in

the thesis.
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Figure 1-1 Deltastream First Design

As seen in Figure 1-2, the first concept was improved to a second slightly

different structure. The geometry is basically the same with a small change for

the towers and the nacelles. The diameter of the turbines was still 15 m with the

same output power of 1.2 MW (3 x 400 kW). This second geometry will be

called Deltastream 2 in the thesis.

Figure 1-2 Deltastream Second Design
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As seen in Figure 1-3Error! Reference source not found., a third structure

has been designed in 2013 for the manufacturing of a prototype in order to be

tested for 12 months. This structure keeps a triangular shape but it is smaller

and with only one turbine installed. Moreover, the turbine is a 12 m diameter

turbine, smaller compared to the 15 m diameter used in the previous versions of

the structure. For Deltastream 1, three turbines are installed on the three towers

of the triangle, creating equilibrium for the structure. In the case of Deltastream,

installing only one turbine on one summit creates a loss of the equilibrium. The

triangle is also much smaller in the third structure. This third geometry will be

called Demonstrator in the thesis.

Figure 1-3 Deltastream Demonstrator Design

The official unveiling of the demonstrator was on Thursday 7th of August and

took place in Pembrokeshire.
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Figure 1-4 Deltastream unveiling on 07-Aug-2014

1.1.3 Cranfield University and TEL

Since 2007, Cranfield University has been involved in the Deltastream project

working through structural and experimental work phases in turbine

performance and turbine-structure interaction, structural design and deployment

process. The experimental work has been undertaken in the Towing Tank of the

Ocean Systems Laboratory at Cranfield and in the water circulation channel

facility at IFREMER-Boulogne. During those seven years of collaboration,

experimental tests have been conducted on the three different designs through

multiple reduced scale models.

1.1.4 Deployment Process

As the design evolved, the deployment process evolved too. The first idea was

a deployment under a barge to transport the structure to the area of installation.

As shown on Figure 1-5, Deltastream is installed under the barge Wilcarry 1750

before the deployment. In the case of this deployment method, a crane is not

needed to lift the structure. This one is attached under the barge by three

different points and is going to the seabed due to its own weight. In this case,

Deltastream is already flooded.
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Figure 1-5 Deltastream under the barge - Test IFREMER March 2012

Considering the change in the Deltastream design, the process of the

deployment has been modified. With the one-turbine structure, the deployment

is a more classic one. Deltastream is transported to the location of the

deployment using a barge but this time, the prototype is on the barge deck and

not under the hull. The barge is equipped with a heavy lift crane which will

handle Deltastream in/out of the water. Before the deployment, the barge must

be moored to the seabed.

This process will be used for the prototype which has been built this year and

will be installed during the autumn 2014. TEL has engaged an external

company: Keynvor Morlift Limited (KML) which is specialised in heavy offshore

structure deployment. As indicated in Figure 1-6, Deltastream will be installed in

Ramsay Sound, an area between Wales and Ramsey Island. KML has

surveyed the wave, wind and current conditions of Ramsey Sound and has

provided TEL with a procedure for the Deployment and Recovery operations, as

detailed in the document [5]. The mooring footprint is detailed in Figure 1-6 and

in Figure 1-7.
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Figure 1-6 Mooring footprint in Ramsay Sound

Figure 1-7 Mooring Arrangement of the Deployment Barge
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Once the structure is lifted to the waterline, the ballasts are filled by seawater

and are adding weight to the structure. This weight will allow the structure to be

submerged and to start the descent toward the seabed. In order to

counterbalance the lack of weight at the rear of this asymmetrical structure, two

40 tonnes weight ballasts are placed at the rear corners of the structure once

this one is resting on the seabed.

1.2 Objectives

The objectives of this work were to model some relevant deployment and

recovery scenarios of Deltastream. The main part of the work was focused on

the flooding process via the ballast system. During the deployment, the

structure was going through a phase called the splash zone which refers to the

phase in-between full flotation and complete submergence.

The rate of submergence of the structure is important and it is directly linked to

the rate of flooding of the ballast. Therefore, it was one of the most important

parameters which needed to be scaled accurately. This parameter is related to

the atmospheric pressure. The higher the atmospheric pressure is; the more

difficult it is to fill the ballast. Thus, it takes more time. To conclude, one way to

scale the rate of flooding was to scale the atmospheric pressure. However, this

parameter cannot be scaled in the Cranfield wave and towing tank. Therefore,

an analytical model was established for the flooding process.

1.3 Experimental Solutions

The aim of the tests consists in approaching as much as possible the reality of

the deployment within known limitations. Multiple criteria are needed in order to

fulfil the aim as best as possible:

- The first one is the model itself. In other words, the scale factor which

defines the geometry of the model.

- The second one is the tank size and operations (wave, current,

depressurised atmosphere).

- The last one is the price of the whole operation (design, manufacturing,

tests, post-processing)

Those criteria are resumed in the following table with a flexibility given for the

three of them. F0 means no flexibility and F1, F2 or F3 mean a variable

flexibility.
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Criteria
Criteria Features

Definition Flexibility

Model design and layout Scale factor (≥ 1:40) F2 

Tank facilities Cranfield or IFREMER Boulogne F1

Price ≤ £1,000 F0 

Table 1-1 Functional specification of the test model

Concerning the test facilities, the Ocean System Laboratory is a wave and

towing tank of 30 m long, 1.5 m wide and 1.5 m deep. The one in IFREMER

Boulogne is a water circulation channel of 18 m long, 4 m wide and 2 m deep.

The maximum scale factor is fixed at 1:40 as the model becomes very small.

The maximum price for parts and consumables was set at £1,000.

Using Table 1-1, it is clear that the parameter which can be modified easily is

the model design and layout. Thus, three different operations can be arranged

for the tests:

- Complete system with barge, mooring line and demonstrator.

- Partial system with barge and demonstrator.

- Demonstrator only under a fixed crane

For the complete system, the mooring system displayed in Figure 1-7 must be

scaled. The footprint is a rectangle approximately 1,200 m long and 600 m

wide. Scaled with the smallest scale factor (here 1:40), the footprint becomes a

rectangle 30 m long and 15 m wide. It is larger with a larger scale factor (1:20 or

1:30). To accommodate this footprint, a large tank is necessary. Both Cranfield

and Boulogne-sur-mer are not large enough to set up the complete footprint.

Note the depth of the mooring system is not taken into account here.

Furthermore, the smaller the scale factor is, the lesser the accuracy of the

model is; and given the size of the demonstrator, a scale factor of 1:20 or 1:30

is advised. However, it is possible to reduce the size of the footprint by taking

into account only part a and b of the mooring line (Figure 1-7). In that case, the

rectangle is 9.5 m long and 4.25 m wide in the worst case (scale 1:40). With this

simplification, the test can be carried out in IFREMER Boulogne. The only

availability at IFREMER is in November-December 2014, so a deployment test

there is not possible. Therefore, the complete system is not possible to achieve.

The partial system consists in scaling the barge along with the demonstrator.

The mooring system is not taken into account here. These tests are practical to

see the response of the demonstrator coupled with the response of the barge.

The key parameter here is to have a non-fixed crane during the operation.

Considering the size of the barge and the fact that the demonstrator will be

deployed next to it (Figure 1-8), a scaled width of approximately 1 m is needed
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for a scale of 1:40. The length needed is the length of the barge, 1 m as well.

This footprint for the operation can be installed in the Ocean System Laboratory

but with a risk of contact with the frame with the motion of the model in waves.

Furthermore, the scale is small which means the tests will not be as accurate as

possible. Moreover, the price to build a barge with an operating crane is too

high for the budget allowed for those tests. The way it is, this system cannot be

achieved this year.

Figure 1-8 Deployment layout

The final solution consists in a fixed crane installed on the carriage of the tank in

Cranfield with only the demonstrator scaled. With the size of the demonstrator,

a larger scale is accessible. Indeed, a 1:20 scaled model is fitting in the tank.

This system is reducing the amount of data accessible by the tests because it is

reducing the deployment to its minimum. But considering the budget allowed

and the availability of the testing facilities, it is the more accessible system

available this year.
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The following table is presenting the pros and cons of each option:

Testing possibility Features Benefits Limitations

Complete System
with

Demonstrator,
Barge and Mooring

System

1:40 scale factor
- Multiple

possibilities of test
procedure

- Accuracy with the
real deployment
process

- Price (too
expensive)

- Size of the entire
system (too large)

- Size of the scaled
demonstrator (too
small)

- Not in Cranfield
Laboratory

Scaled moving Barge + Scaled
Demonstrator

30 m long / 15 m wide

IFREMER Boulogne

Partial System with
Demonstrator and

Barge

1:40 scale factor
- Multiple

possibilities of test
procedure

- Accuracy with the
real deployment
process

- Possible in
Cranfield
Laboratory

- Price (too
expensive)

- Size of the scaled
demonstrator (too
small)

Scaled moving Barge + Scaled
Demonstrator

1 m long / 1 m wide

Possible in Cranfield
Laboratory but better in
IFREMER Boulogne (less

blockage ratio)

Simplified System
with only the
Demonstrator

1:20 scale factor
- Large scale so

more accurate
- Possible in

Cranfield
Laboratory

- Price

- Simplification
important of the
deployment
process

Fixed Crane + Scaled
Demonstrator

1 m long / 1 m wide

Cranfield Laboratory

Table 1-2 Tests procedure summary
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1.4 General methodology and thesis structure

The methodology followed during this project is summarised as below:

 Preliminary analytical study of the stability of Deltastream 1

o Floating stability

o Submerged stability

o Extension to the Demonstrator

 Analytical study of the ballast flooding process of the Demonstrator

o Creation of a code with Deltastream 1

o Extension to the Demonstrator

 Scaled Model Design

 Model Manufacture

 Tests

 Comparison with numerical predictions

In order to follow this methodology, the thesis is organised as follows:

Chapter 1 introduces the context of the Deltastream project and presents the

evolutions of the project in the past few years.

Chapter 2 reviews procedures of stability and ballast flooding then experimental

procedure for deployment operations.

Chapter 3 presents the stability work undertaken analytically on Deltastream 1

Chapter 4 describes the analytical model for the ballasts flooding

Chapter 5 outlines the design process and data of the full scale model, the

scaled model and the test rig.

Chapter 6 is about the tests session carried out in July 2014.

Chapter 7 is a conclusion with a discussion of the result and a presentation of

the further work.
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2 Literature Review

2.1 Introduction

By its nature, the Deltastream project is using multiple areas of hydrodynamics

engineering during its deployment, operation and recovery. First, as an offshore

structure, its stability must be investigated. Second, as the device is fitted with a

ballast system, an assessment of those ballasts has to be undertaken. This will

be the analytical points undertaken in the thesis. One of the aims of the

literature review is to establish a method to study the two points summarised

above.

The second aim of the literature review concerns the testing procedure on

subsea structures. It will be focused on the splash zone and the scale factor for

a ballasting test. It will also describe a testing method which will be the basis for

the method used during the tests in the Ocean Laboratory.

2.2 Analytical Stability Assessment

2.2.1 Stability of an offshore structure

An offshore structure is first defined by its Centre of Gravity, Centre of

Buoyancy and its draft. An axis system is used to define the six motions of the

structure in six degrees of freedom:

 Three translations of the Centre of Gravity in the direction of the three

axes:

- Surge in the longitudinal direction (the x-axis)

- Sway in the lateral direction (the y-axis)

- Heave in the vertical direction n(the z-axis)

 Three rotations around these axes:

- Roll around the x-axis (angle)

- Pitch around the y-axis (angle)

- Yaw around the z-axis (angle)

These motions are displayed in Figure 2-1.
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Figure 2-1 Ship Motions in Six Degrees of Freedom

An offshore structure is encountering loads during its floating or flooding phase.

These loads are interacting with the structure and are creating a loss of stability.

In the case of a study of the static stability, two forces are taken into account:

 The Weight of the structure, which corresponds to the vertical down-

thrust force due to the mass of the structure and the gravitational

acceleration. Its point of application is the Centre of Gravity (CoG)

and its intensity is defined by the following equation:

ܹ ܽ= ݃݉ (2-1)

In which:

m: masse of the device (kg)

g: gravitational acceleration (m/sec2)

 The Buoyancy Force. It is the force generated by the volume of fluid

displaced by the structure. This so-called buoyancy is the vertical up-

thrust applied on the structure due to this displaced volume. Its point

of application is the Centre of Buoyancy (CoB) which corresponds to

the CoG of the submerged volume of the structure. Its intensity is

defined by the following equation:

∇ܨ = ∇݃ߩ (2-2)

Where:

: density of the displaced fluid (kg/m3)

: submerged volume (m^3)
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Those two forces lead to a state of equilibrium of the structure. This phase is

either a floating balance of the structure (ship, buoy…) or a submerged balance

(submarine, AUV…). In general, a submerged device is achieved through a

ballast system.

2.2.2 Static floating stability

2.2.2.1 Definitions and calculations

The static floating stability of a ship is here to enforce the structure in an

equilibrium position when external forces or moments are bringing it out of

balance. Those disturbances can be manifested as a translation or a rotation

about the CoG. Usually, a ship has only one plan of symmetry called the middle

line plane, a vertical plan which is considered the principal plan of reference.

The symmetry of the offshore structure ensures that the CoG is on this plan. As

for the CoB, it depends on the symmetry of the submerged part of the structure.

In order to undertake a study of a floating stability, the forces are considered

only to act in the plan of symmetry. Therefore, the CoB and the CoG are

assumed to belong to this plan of symmetry. If the longitudinal horizontal axis is

included in the plan of symmetry, the rotation is called heel. If the transversal

axis is included in the plan of symmetry, then the rotation is defined as trim

(Figure 2-2). If the fluid displaced during those rotations is constant, the centre

of those rotations is called the Centre of Flotation (CoF). The CoF is defined as

the centroid of the area of the structure in the waterline level (water plan area).

In some case, the CoG and the CoF can be the same point.

Figure 2-2 Heel and Trim rotations

When the structure is balanced, its CoG and CoB are in the same vertical line. If

it is not the case, the structure will trim or heel until those two points are once

again in the same vertical line. An external heeling or trimming moment MH is

forcing the structure to rotate around the Centre of Flotation of the structure,

thus creating a gap between the horizontal position of the CoG and the CoB.

This gap is called the righting stability lever arm തതതതandܼܩ it develops a moment

defined as the righting stability moment MS. A balance is found again when:
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ுܯ = ௌܯ (2-3)

With MS defined by:

ௌܯ = ∇݃ߩ ∗ തതതതܼܩ (2-4)

The value തതതതܼܩ is very useful because it determines the magnitude of the stability

moment. The stability of a structure can be very conveniently presented with the

righting moments or lever arms about the CoG considering the different angle of

heeling or trimming. A function is then expressed and the corresponding curve

is called the GZ-curve or the static stability curve.

Figure 2-3 Example of a GZ-curve

An aspect interesting in the study of the stability is the Metacentre point M for a

heel rotation and M for a trim rotation. It is the point of intersection of the lines

through the vertical buoyant force at a zero angle and at an angle of heel/trim.

With the തതതതതtheܯܩ stability of the equilibrium can be assessed very easily. Indeed,

if this value is negative, the equilibrium is unstable. In the contrary, if this value

is positive, the equilibrium is stable.

2.2.2.2 Stability curve characteristics and interpretations

A curve like the one displayed in Figure 2-3 is suitable to assess the stability of

an offshore structure. Four characteristics can be assessed from a GZ-curve:

- The slope at the origin is interesting because for small angle of heel or

trim, the righting level arm is proportional to the curve slope and the

metacentre is a fixed point. It can be deduced from this that the tangent

to the GZ curve at the origin is the metacentric heightܯܩ�തതതതത.
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- The maximum തതതതvalueܼܩ is indicating the biggest heeling moment that the

structure can resist without capsizing. Both the heeling/trimming angle

and the തതതതareܼܩ important.

- The Range of Stability is the range of angle for which the തതതതܼܩ is positive.

The angle where the stability becomes negative is known as the angle of

vanishing stability (s). The area below this curve represents the

maximum potential energy the structure can absorb via a roll motion.

- The area under the static stability curve corresponds to the work which

has to be done in order to reach a chosen heel/trim angle. Thus this area

defines the ability of the floating structure to absorb roll/yaw energy due

to external effect (waves, wind…):

ܲ஀∗ = න ௌܯ

஀∗

଴

ߠ݀. (2-5)

ܲம∗ = න ௌܯ

ம∗

଴

.݀߶ (2-6)

The first equation corresponds to the work for a trim angle of rotation

when the second one corresponds to a heel angle.

2.2.2.3 The inclining experiment

Much of the data needed in stability calculations can be tackled by geometrical

considerations. Knowing the submerged volume of the structure and some

loading conditions,ܯܩ�തതതതതcan be assessed for an inclination angle smaller than

ten degrees. This method is called the inclining experiment and it is using the

following equation:

=തതതതതܯܩ
݌ .ܿ

∇ߩ . tan(ߙ௜− (଴ߙ
(2-7)

In which:

αi: given angle of heel or trim (degrees)

α0: angle of the upright position (degrees)

p: mass added to the structure in order to create an inclination (kg)

c: position of the mass added (m)
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2.2.3 Static submerged stability

For a submerged stability study, a first assessment has to be done before any

plots of the stability curves can be carried out. For a submerged structure (like a

submarine) to be stable, the CoG must be below the CoB (Figure 2-4).

Figure 2-4 Submarine Stability - Stable State

Indeed when the CoG is below the CoB and the structure starts to roll, the

forces applied on the system (Weight and Displacement) will force it to go back

to its equilibrium position. In the contrary when the CoG is above the CoB, the

forces acting on the structure in the case of a roll will make the loss of stability

of the structure even worse, as displayed in Figure 2-5.

Figure 2-5 Submarine Stability - Unstable State
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2.3 Flow inside a forced conduit – Analytical Study

2.3.1 Elementary Fluid Dynamics – The Bernoulli Equation

A flow can develop three different energies: kinetic energy, pressure energy and

potential energy. Considering the no friction effect within the potential flows,

energies are conserved along a streamline. When it is assumed that the density

and the weight of the fluid are constant (in another words the flow is

incompressible), the following equation is found:

ଶݒ

2݃
+ +ݖ

ܲ

݃ߩ
= ݊ܿ݋ ݐܽݏ ݈ܽݐ݊ ݊݋ ݃ ݎ݁ݐݏ ܽ݉ ݈݅݊݁ (2-8)

Where:

v: fluid flow speed at a point on a streamline (m3)

g: gravitational acceleration (m/sec2)

z: depth of the streamline (m)

P: pressure at the chosen point (Pa)

: density of the fluid at all points in the fluid (kg/m3)

This equation is called the Bernoulli Equation. It results from the Euler

equations for a non-viscous and incompressible flow written in terms of the

velocity potential of the fluid.

When the fluid is physically constrained within a device such as a ballast tank,

the conservation of the mass ensued from the Bernoulli equation is used.

Considering a steady flow in such a situation with one or multiple inlets and one

or multiple outlets, the conservation of the mass implies that the rate at which

the flow is going into the device must be identical to the rate at which the flow is

going out of the device. The mass flow rate from an outlet or an inlet is given by

the following equation:

݉̇ = ܳߩ (2-9)

In which:

݉ሶ: mass flow rate in kg/s

: density of the fluid (kg/m3)

Q: volume flow rate in m3/sec

Given the area of the outlet/inlet and the rate of the fluid going through it, an

equation for the volume flow rate Q is determined:
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ܳ = ܣ.ܸ (2-10)

Where:

V: rate of the fluid in the inlet/outlet (m/sec)

A: area of the inlet/outlet (m2)

As the mass is conserved, the final equation of the conservation of the mass

flow rate is found:

௜௡௟௘௧ܸߩ ௜௡௟௘௧ܣ௜௡௟௘௧ = ௢௨௧௟௘௧ܸߩ ௢௨௧௟௘௧ܣ௢௨௧௟௘௧ (2-11)

With a constant density, ௜௡௟௘௧ߩ ௢௨௧௟௘௧ߩ�= thus the equation above becomes the

continuity equation for incompressible flows, depending only on the velocity and

the area.

2.4 Scaling model and tests procedure

2.4.1 Ballast Filling Tests

When a testing process is focused on the rate of filling of ballasts, two physical

data must be taken into account: the volume of the ballast and the pressure of

the air inside. Indeed, the Bernoulli equation depends, amongst other things, on

the atmospheric pressure. Translation to full scale data with a reduced scale

model cannot be applicable if the pressure has not been scaled.

As a ballast system is used to submerge Deltastream, it is interesting to wonder

how the model can be properly scaled in volume and pressure. However, a

specialised facility is needed to scale the pressure. The Maritime Research

Institute Netherlands (MARIN) has a depressurised wave and towing tank. The

atmospheric pressure can be decrease until 2.5% of its initial value:

[ܲ′௦௖௔௟௘ௗ]௠ ௜௡ = 0.025 [ܲ′௜௡௜௧] (2-12)

The maximal scale factor is issued from the formula above.

௠[ߙ] ௔௫ =
[ܲ′௜௡௜௧]

[ܲ′௦௖௔௟௘ௗ]௠ ௜௡
= 40 (2-13)

The cost to use this facility is 20,000 Euros per day on a double shift basis.

Knowing that it is possible, at a certain cost, to scale the pressure, some tests

can be carried out with a scaled volume and a scaled atmospheric pressure.
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For this scaling method, the following scales are used:

௜ܸ௡௜௧ = ଷߙ ௦ܸ௖௔௟௘ௗ ; ܲ′௜௡௜௧ = ௦௖௔௟௘ௗ′ܲߙ (2-14)

Here the volume of water and air are scaled with the same scale factorߙ��ଷ.

Using the Froude Similarity, this scaled model is ensued from the ratio of air

forces which need to be equal to ଷߙ in order to maintain dynamic similarity.

Another scaling method consists in scaling the volume with a factor of α2 and let

the pressure unmodified. This method is a result of the scale factor of the

pressure ߙ and the perfect gas equation. Moreover when the pressure is not

changed, the method is only available for gas, so for the air in the ballasts.

Therefore, the volume of air must be scaled with the scale factor α2 and the

volume of water with a scale of α3. This scale method is difficult to achieve

under certain conditions, when the volume of air and water is variable in the

case of the filling of ballasts. A perfect example of this scaling method is the

Oscillating Water Column (OWC). This device is an energy converter using the

waves to create electricity. The motion of a wave creates a pressure effect

which is creating a flow putting in motion a turbine which is going to create

energy.

Figure 2-6 Example of an OWC

In that case, it is possible for the tests to scale the volume of air differently from

the volume of water. The following figure shows the correct scaling undertaken

during these tests.
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Figure 2-7 Scale Model OWC

The volume of the submerged part of the device is unchanged but the volume of

the air chamber is enlarged (multiply by 16).

Moreover, it brings important modifications of the geometry of the device. And it

is possible in a case of a device with a submerged volume changing through

time (subsea structure being flooded).

Concerning the tests, scaling the pressure as well as the volume appears to be

the most accurate solution. Nonetheless, it is really expensive to use a tank

allowing a scale pressure. Therefore, it is worth it to look into another solution to

compensate the unmodified pressure.

According to the continuity equation, the mass flow rate of the water going in is

identical to the mass flow rate of the air going out. However, the mass flow rate

depends on the velocity of the flow and this velocity depends on the

atmospheric pressure. If this pressure is not scaled, the velocity will not be

scaled properly because according to the Bernoulli equation, it depends on it.

Indeed, the atmospheric pressure reminds the same but the depth of the inlet of

the ballast is smaller, so the velocity will be less important, implying a less

important mass flow rate and therefore a rate of filling less important. The

solution here is to scale the inlet and outlet area of the ballast in order to

approximate as much as possible the reality of the full-scaled model. To

determine suitable areas, it is the volume flow rate which is going to be scaled.

Using the Froude’s similitude to scale the model, the volume flow rate is scaled

as follows:
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ܳ௜௡௜௧ = ߤ .
ଷߙ

ߙ√
.ܳ௦௖௔௟௘ௗ (2-14)

Where:

Qinit: mass flow rate for the full-scaled model (kg/sec)

Qscaled: mass flow rate for the scale model (kg/sec)

α: scale factor 

μ: ratio between sea salt water density and tank water density 

2.4.2 Splash zone tests

The second interesting aspect while testing Deltastream is the splash zone. The

splash zone is the area immediately above and below the mean water level.

Going through this area for an offshore structure means that it goes from a

floating phase to a submerged phase.

Figure 2-8 Examples of Subsea structure in the splash zone

This area has long been a major concern for the deployment of subsea

structures because of the non-linearity of the wave load during the operation

due amongst other things to varying buoyancy and first order wave loads. In the

case of devices which are not experiencing a change of mass due to ballasts,

an experimental methodology has been developed. It is divided in five phases

where the structure is free-hanging in slings to a fixed point and kept in position:

1. Lower side of the structure just above the free surface

2. Structure half submerged (from start to completion of flooding)

3. Upper side of the structure just emerging at the free surface
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4. Structure fully submerged and descending

5. Lower side of the structure just above the seabed

Figure 2-9 Model of a subsea structure in the phase 1 of the test

2.5 Conclusion

During the deployment phase, Deltastream is being submerged due to the filling

of the ballasts. A qualitative approximation of the filling of the ballast can be

carried out through a study of the floating stability. The device has at least three

compartments and it is important to visualise in which order and at which rate

those ballasts will be filled. The second point approached in the literature review

concerns the rate of the flooding. The Bernoulli equation along with the

continuity equation can be used to model the flooding of the ballast and then

obtained the rate of the flooding. With this information, the rate of submersion of

the device can be obtained. Finally, the model scale needs to be scaled

accurately and it means that the atmospheric pressure needs to be scaled. But

an alternative has been found to avoid the very large cost of a wave tank

capable of lowering the atmospheric pressure.
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3 Stability assessment on Deltastream 1

Whether for a subsea structure (submarine, subsea offshore structure…) or a

floating structure (boat, offshore platform…), a study on the stability is a

recommended task. In the case of Deltastream, the structure is going through

multiple phases:

 Floating phase: the structure is floating; the ballasts are not being filled

yet.

 Splash-zone phase: the ballasts start to be filled; the structure is being

progressively submerged.

 Submerged phase: the structure is completely submerged; the ballasts

are full and the weight of the structure drags it toward the seabed.

Depending on the phase Deltastream is going through, the stability analysis is

different. Despite those differences, the method is the same. To complete a

stability study, first the തതതതofܼܩ the structure has to be found in the principal

directions of it (Transversal and Longitudinal). Figure 3-1 illustrates the Righting

Arm of a structure.

Figure 3-1 Display of the Righting Arm

3.1 Floating Stability

In this part, the stability of the floating structure is determined. Calculations with

Excel and the Dassault System CAD Software Catia are used. Through this

analysis, the draft of the floating structure is assessed, the Centre of Buoyancy

is determined and a method is developed to determinate the different stability

curves



48

3.1.1 Hypotheses

The following hypotheses have been used:

- The structure remains horizontal during the floating process.

- The origin of the structure is given in Figure 3-2.

- Only the Weight (Wa) and the Displacement (F) are taken into account.

- In order to calculate the initial Centre of Buoyancy (CoB), the geometry is

simplified according to Figure 3-3.

- In the calculation of the stability curves, the displaced volume of the

blade is not taken into account.

- According to TEL, the coordinate of the Centre of Gravity from the origin

are:

CoG.x (mm) CoG.y (mm) CoG.z (mm)

0.00 20,395.00 6,838.00

Table 3-1 Centre of Gravity Coordinates

Figure 3-2 Origin and axes
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The following table summarises the important data of the structure:

Mass 379,000.00 kg

Weight 3,717,990.00 N

Transversal Tube Length 33.5 m

Transversal Tube Diameter 2.032 m

Height (Without turbine) 13 m

Vertical Tube Diameter 2.5 m

Vertical Tube Height 5 m

Top Tube Diameter 1.5 m

Top Tube Height 5 m

Cone Height 3 m

Sea Water Density 1,025 kg/m3

Gravitational Acceleration 9.81 m/s2

Table 3-2 Structure Data

3.1.2 Problem-Solving Approach

First of all, the CoB of the structure is determined. The submerged volume is

first needed in order to determine the CoB. It is calculated with a simple Static

Fundamental Principal with two forces applied: The Weight and the

Displacement. Using Excel to calculate the Displacement with multiple possible

drafts, the submerged volume corresponding to the displacement at equilibrium

is found.

Figure 3-3 Simplified Structure
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3.1.2.1 Determination of the Centre of Buoyancy

The first step followed for the determination of the Centre of Buoyancy is the

calculation of the submerged volume of Deltastream. It is calculated using the

two following formulas:

ܹ ܽ + ∇ܨ = 0 (3-1)

∇ܨ = ௪௔௧௘௥ߩ ∗ ∇ ∗ ݃ (3-2)

Where

:௪௔௧௘௥ߩ density of salt water (kg/m3)

g: gravitational acceleration (m/sec2)

: volume of water displaced by the structure (m3)

The first formula corresponds to the Static Fundamental Principal applied on

Deltastream and only on the z axis. The second one corresponds to the usual

formula used to determine the Displacement of a solid in a fluid. Using those

two formulas and knowing the value of Wa, the volume of displaced water

determined is 369.76 m3 with the following equation:

∇ = −
ܹ ܽ

௪௔௧௘௥ߩ ∗ ݃
(3-3)

The second step is to determinate the Draft (D) of the structure corresponding

to this submerged volume. The method used was an iterative calculation of the

submerged volume corresponding to a chosen draft until a submerged volume

as close as possible to the one determined previously is found. The calculation

was divided in three parts:

- First, when the water line has not reached the Transversal tubes of the

structure (from 0 to 1.4 m).

- Then when the water line has reached the Transversal tubes until the

centre of those tubes (from 1.5 to 2.4 m).

- Finally, when the water line is over the tubes centre (from 2.5 to 3.5 m).

- From 0 to 1.4 m

In this case, only three horizontal cylinders are submerged. The formula of the

submerged volume is three times the formula of a cylinder, with the height of

the cylinder corresponding to the draft. The latter is changed progressively (0.1

by 0.1 m) and the submerged volume is calculated for each value of the draft.
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For a draft of 1.4 m, the value reached by the submerged volume is 20.62 m3

which is far from the total submerged volume. As a result, the draft needs to be

increase again but after 1.4 m of draft, the tubes linking the three towers of

Deltastream start to be submerged, and it brings a small change in the

calculation.

- From 1.5 to 2.4m

In this interval of draft, the cylinders of the triangle structure start to be

submerged. Therefore, this part must be taken into account in the calculation.

Figure 3-4 displays all the data needed to calculate the volume of a partially

filled horizontal cylinder.

Figure 3-4 Volume of a partially filled horizontal cylinder

The volume which needs to be determined is the volume corresponding to the

green area on the right picture (Agreen). The formulas used to determine this

volume are the following:

݀ = ݈− ܦ (3-4)

ߠ = 2 ∗ acos
݀

ܴ
(3-5)

௚௥௘௘௡ܣ =
ܴଶ

2
∗ −ߠ) sinߠ) (3-6)

஼ܸ௬௟௜௡ௗ௘௥ = ∗ܮ ௚௥௘௘௡ܣ (3-7)

Where

R: radius of the cylinder (m)
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D: draft of the structure (m)

l: length between the bottom of the structure and the centre of the cylinder (m)

L: length of the cylinder (m)

As soon as ஼ܸ௬௟௜௡ௗ௘௥ is determined, ஽ܸ௜௦௣௟௔௖௘ௗ�ௐ ௔௧௘௥ is calculated as follow:

஽ܸ௜௦௣௟௔௖௘ௗ ௐ ௔௧௘௥ = 3 ∗ ܦ) ∗ ݐܸܽ + ஼ܸ௬௟௜௡ௗ௘௥) (3-8)

For a draft of 2.4 m, the value reached by the submerged volume is 177.91 m3.

Once again, the volume is not reached. The draft still needs to be increased but

this time a slight change in the previous equations is necessary. The

modification is explained in the third part.

- From 2.5 to 3.5m

In-between those two values of draft, the white area on the right picture in

Figure 3-4 is the one which needs to be calculated. A subtraction between the

whole area and the green one is necessary:

௪௛௜௧௘ܣ = ݅ܵܣ ܥ − ௚௥௘௘௡ܣ (3-9)

஼ܸ௬௟௜௡ௗ௘௥ = ∗ܮ ௪௛௜௧௘ܣ (3-10)

∆ = 3 ∗ ܦ ∗ ܣ ܥݐܵ + 3 ∗ ஼ܸ௬௟௜௡ௗ௘௥ (3-11)

Where

݅ܵܣ ܥ : Complete area of the side cylinder (m2)

For a draft of 3.5 m, the value reached by the submerged volume is 377.07 m3.

Through those results, it is clear that the submerged volume which needs to be

reached is somewhere between 3.4 and 3.5 m. In order to be more accurate in

the determination of the volume, the same calculation is done again but with a

smaller change of draft each time (0.005 by 0.005 m first and then 0.001 by

0.001 m). The result must be close to 3.4 m as the submerged volume for this

draft is closer to the required submerged volume.
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Draft (m) – D Submerged Volume (m3) - 

3.4 368.57

3.405 369.11

3.41 369.64

3.411 369.75

3.412 369.85

3.413 369.96

3.414 370.06

3.415 370.17

Table 3-3 Submerged Volume between 3.4 and 3.415m

The exact value of the submerged volume determined in the first step of the

calculation is not reached. But the difference is of the order of 0.01 m3 which

corresponds of an error of 2.7045.10-5 which can be neglected. To conclude,

the draft corresponding to the submerged volume of the structure is 3.411 m.

Figure 3-5 shows the waterline which corresponds to the draft found earlier.

Figure 3-5 Draft in un-ballasted condition

The third and final step is the determination of the Centre of Buoyancy, knowing

the draft of the structure. To achieve this objective, two methods were used.

The first one involves a barycentre calculation when the second one is using a

CAD software.

- Barycentre Calculation

The first step of this calculation is to divide the submerged volume of the

structure in multiple smaller and simplified volumes, then attribute a weighting to

each of them. Once this has been properly defined, the coordinates of each
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volume Centre of Gravity and then the barycentre are calculated. From the Draft

Calculation method on Excel undertaken previously, the volumes of the Stand

and Side Parts are already known. Using those results, six different volumes

with their values are provided, and so their weighting by dividing the partial

volume by the Total Submerged Volume. The division of the Deltastream

submerged volume is displayed in Figure 3-6.

Figure 3-6 Volume Division

Even if this picture shows the complete volume of Deltastream, only the

submerged parts of those volumes are taken into account. The following table

displays the information of volume and weighting needed for the calculation.

Structure Volume (m3) Total Volume (m3) Weighting (%)

Turbine Tower 1 16.74

369.75

4.53

Turbine Tower 2 16.74 4.53

Turbine Tower 3 16.74 4.53

Transversal Tube 1 106.51 28.81

Transversal Tube 2 106.51 28.81

Transversal Tube 3 106.51 28.81

Total Weighting 100.02

Table 3-4 Partial Volumes and Weighting

Knowing the origin of the base from Figure 3-6, the coordinates of the centre of

gravity of each Stand Cylinder are determined. As for the Z coordinate, the draft

is divided by two. The coordinates are summarised in the following table.
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CoG.x (m) CoG.y (m) CoG.z (m)

Turbine Tower 1 18 31.177 1.7055

Turbine Tower 2 0 0 1.7055

Turbine Tower 3 -18 31.177 1.7055

Table 3-5 Coordinates of the Centre of Gravity for the Stand Cylinder

For the side tubes, the x and y coordinates are determined with geometry

calculations on an equilateral triangle. The CAD software is required to

determine the z coordinate. A section of the side’s cylinder is drawn and the z

coordinate is found using the inertia function of the software, as shown in Figure

3-7.

Figure 3-7 Z Coordinate for the side tubes

In this drawing, the origin of the base is the centre of the complete cylinder

(without the extrusion at the top). The CoG is 167.658 mm below the CoG of the

complete cylinder which is at 2.5 m from the bottom of the structure in the

complete Deltastream structure. Therefore, the value of the CoG.z is 2.33m.

The results are resuming in the Table 3-6.

CoG.x (m) CoG.y (m) CoG.z (m)

Transversal Tube 1 9 15.59 2.33

Transversal Tube 2 -9 15.59 2.33

Transversal Tube 3 0 31.18 2.33

Table 3-6 Coordinates of the CoG of the Transversal Tube
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Knowing the CoG for each one of the six volumes, the barycentre calculation

can be done using the following equations.

௚ݔ =
∑ ݉ ௜ݔ௜
଺
௜ୀଵ

∑ ݉ ௜
଺
௜ୀଵ

(3-12)

௚ݕ =
∑ ݉ ௜ݕ௜
଺
௜ୀଵ

∑ ݉ ௜
଺
௜ୀଵ

(3-13)

௚ݖ =
∑ ݉ ௜ݖ௜
଺
௜ୀଵ

∑ ݉ ௜
଺
௜ୀଵ

(3-14)

Where

:௚ݔ x coordinate of the barycentre

:௚ݕ y coordinate of the barycentre

:ݖ z coordinate of the barycentre

(݉ ௜,ݔ௜): Couple (weighting, x coordinate) of the i volume

(݉ ௜,ݕ௜): Couple (weighting, y coordinate) of the i volume

(݉ ௜,ݖ௜): Couple (weighting, z coordinate) of the i volume

With this formula, the following CoB coordinates are found:

CoB.x (mm) CoB.y (mm) CoB.z (mm)

0 20,784.53 2,247.17

Table 3-7 Coordinates of the CoB

This table is giving the results obtained with the calculation previously

described. For those coordinates and the following from Catia, the origin of the

base is the one represented in Figure 3-2.

- CAD Calculation

The second method consists in drawing only the submerged part of Deltastream

and determining its centre of gravity with the inertia function of Catia. The

drawing is showed in Figure 3-8 and the “measure inertia” window is displayed.

The centre of gravity of this structure matches with the centre of buoyancy of

Deltastream in floating stage.
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Figure 3-8 Determination of the Centre of Buoyancy

The following table resumes the results from calculation with Catia. A value of 0

is taken for CoB.x because Catia found a value 2.736e-006 mm, which can be

neglected considering the size and the symmetry of the structure.

CoB.x (mm) CoB.y (mm) CoB.z (mm)

0 20,784.66 2,375.95

Table 3-8 Centre of Buoyancy Coordinates

The difference between the first CoB.y and the second one can be neglected

because the difference is about a tenth of a millimetre. But for the CoB.z, the

difference is about fifteen centimetres. The difference between the two values

can be explained by the hypothesis used for the barycentre calculation. Indeed,

the side tubes have been approximate by cylinder but each extremity of those

tubes is not flat, some volumes are not taking into account. Those volumes are

more on the top of the structure, which explains the raise of the CoB.z.

From now, the average of those two values is used, as shown in Table 3-9.

CoB.x (mm) CoB.y (mm) CoB.y (mm)

0 20,784.60 2,311.56

Table 3-9 Final coordinates of the Centre of Buoyancy

3.1.2.2 Determination of the Righting Arm for a trim angle

Deltastream is here experiencing a trim angle. The method to plot the Stability

curve of Deltastream structure is described. With this graph, the inclination
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taken by the structure when given a specific force like the forces developed by

the waves or the current will be easily accessible. In order to plot this graph, the

CoF is first necessary. It can be determined as the centre of the surface of

flotation. The best way to obtain it is to use the Catia Software.

Figure 3-9 Determination of the Centre of Flotation

According to the software, the following coordinates are obtained:

CoF.x (mm) CoF.y (mm) CoF.z (mm)

0 20784.654 3411

Table 3-10 Coordinates of the Centre of Flotation

Figure 3-10 Floating Structure
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Figure 3-11 Origin for the GZy Calculation

Knowing the Centre of Flotation, Catia is used to calculate the CoB for multiple

inclinations, determine the corresponding GZ for each and plot the stability

curve. Figure 3-10 displays the structure floating in calm water with the CoF

represented. During the process, the structure is rotating around the longitudinal

axis passing by the CoF. Therefore, the CoG is also moving considering the

origin used (Figure 3-11). In this picture, the plan xy is a plan of symmetry for

Deltastream. The initial coordinates of the CoG of the whole structure, with the

base described earlier, are given in the following table.

CoG.x (mm) CoG.y (mm) CoG.z (mm)

0 100,000.00 28,427.00

Table 3-11 Coordinates of the initial Centre of Gravity

With Catia, it is possible to use the function “pocket” and “remove” the tip of the

structure in order to calculate the CoG of the part of structure left which

corresponds to the CoB of the entire structure. Considering the symmetry of the

structure, the x coordinate of the CoB is not taking into account as it is included

in the xy plan. The equation to calculate the GZy is a simple subtraction

between the y coordinates of the CoB and the CoG.

ܩ ௬ܼ = −ݕ.ܤ݋ܥ ݕ.ܩ݋ܥ (3-15)

The following table summarises the results obtained with the previous equation.

Θy (deg) GZy (mm)

0 -390 60 3,811

0.1 -332 70 1,696

0.5 -137.5 80 -500

0.7 -53 90 -2,709

0.85 12.5 100 -4,862

0.86 17 110 -6,895
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1 80 120 -8,749

5 2,191 130 -9,595

10 6,032 135 -8,968

15 7,310 140 -8,081

20 8,057 145 -6,963

25 8,888 150 -6,530

30 8,861 155 -6,777

35 8,228 160 -6,991

40 7,485 165 -7,179

45 6,660 170 -7,326

50 5,766 175 -5,728

55 4,812 180 290

Table 3-12 GZy according to the angle of inclination

Using the Table 3-12, the following stability curve is plotted.

Figure 3-12 Transversal Stability Curve – GZy

When the curve is above the abscissa axis, the positive stability is reached. The

righting arm helps the structure to come back in its initial equilibrium. Here the

Range of Stability is between an angle of approximately 1 degree and the angle

of vanishing stability, 77.7 degrees. The maximum തതതതvalueܼܩ is reached in the

range of stability, it corresponds to a trim angle of 25 degrees and its value is
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8,888.00 mm. Above this trim angle, the തതതതstartܼܩ to decrease until the angle of

vanishing stability is reached. On the contrary, when the curve is below the

abscissa axis, the stability is negative. The structure is unstable until it reaches

an equilibrium position. The table below summarises the different value of the

angles:

θ0 (deg) θs (deg)

25 77.7

Table 3-13 Value of the particular angles of the stability

In order to find θs, the curve between the points of 70 degrees and 90 degrees

is approximated by a linear curve; its equation is calculated and the abscissa

coordinate of the cross point between this straight line and the abscissa axe

corresponds to θs.

The small raise of the GZy in the negative stability (between 130° and 150°) can

be explained by the submersion of the turbine (Figure 3-13). Indeed, this

phenomenon brings the CoB close to the CoG, and the temporary raise of the

GZy is observed.

Figure 3-13 Floating Structure - Inclination 130°

With this curve, the angle of equilibrium of the structure can be determined.

Indeed, for an angle of zero degree, the �തതതതതܼܩ is negative, which means the

stability is negative; the structure will automatically try to reach its equilibrium
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position. This position is reached when GZy equals to zero. For Deltastream, the

angle of equilibrium is 0.82°. This result is found by the same linear method that

the one used for θ0 and θs.

Multiplying the Righting Arm by the Weight of the structure, another stability

curve is found. The shape of the curve is the same as the previously found

curve as the data are just being multiplied by a constant. This curve gives the

Righting Stability Moment (Ms) needed by the structure to reach a certain angle.

Figure 3-14 Transversal Stability Curves – Righting Stability Moment

With this curve, the amount of energy Deltastream can absorb can be

determined using the equation (2-5). The interesting part is the area under the

curve in the range of stability. Using Excel, the above curve has been

approximate using a polynomial trend line of the 6th order as displayed in Figure

3-15. The small raise of the curve 125 and 152 degree is not approximate by

the trend line but it is not a part taken into account for the determination of the

energy.
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Figure 3-15 Righting Stability Moment curve and its Trend Line

The formula under the graph is the one which is going to be integrated following

the equation (2-5). As a polynomial equation, the integration is easy. The

integration is made in the range of stability, so between 0.82 and 77.7. The

result is displayed in the following table:

∗દࡼ 1.72x10଺ ܬ

Table 3-14 Energy absorbed by Deltastream

For symmetrical reason, the Longitudinal Righting Arm is not possible to find

analytically. In this case, the CoB does not stay in the transversal plan, so the

inclination is a combined inclination between the transversal and the

longitudinal plan.

y = 4E-08x6 - 1E-05x5 + 0.0007x4 + 0.3934x3 - 64.281x2 + 2717.3x - 1841.9
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3.2 Submerged Stability

In this part, Deltastream is considered fully submerged. Therefore, the

displacement of the device is constant as well as the CoB. To assess the

flooding stability, the quantity of water needed to submerge completely the

structure is needed. Once this quantity has been found, a new CoG is

calculated, thus the new coordinates of the CoB. Finally the stability is studied

given the CoB found with the CAD Software Catia. The physical hypotheses

used are equivalent and the geometry used is the one used in the stability curve

determination carried out previously.

3.2.1 Determination of the new Centre of Gravity

According to the floating stability study, the z coordinate of the CoG is 6,838mm

above the bottom of the structure. The ballasts are located in the tubes linking

the three summits of the device. Considering their diameter and the thickness of

the steel, the volume available in those three tubes is approximately 311.8m3 if

the tubes are considered completely drain. In the following calculation, the

volume of water displayed in the ballasts is 309m3, so 103m3 in each tube. By

symmetry and knowing the origin of the system, the x coordinate is 0. The z

coordinate of each ballast corresponds to the z coordinate of the centre of the

tubes containing the ballasts. Which means it is 2.5m above the bottom of the

device. As for the y coordinate, it corresponds to the one of the centre of gravity

of an equilateral triangle. Thus, it is at a distance of two-third of the height from

the summit. The height of Deltastream is 31.177m; the two-third of this value is

20.785m. The Table 3-15 summarises those coordinates.

CoG.x (mm) CoG.y (mm) CoG.z (mm)

0 20,785 2,500

Table 3-15 CoG of the ballasts system

In order to calculate the CoG equivalent for the device fully ballasted, a

barycentre method similar to the one used in the floating assessment is used.

The information needed is displayed in the Table 3-16.

Structure Weight (kg) Total Weight (kg) Weighting (%)

Device without

ballasts
379,000.00

695725
54.50

Ballast System 316,725.00 45.50

Total Weighting 1

Table 3-16 System Information
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Using the CoG coordinates displayed in Table 3-1 and the Table 3-15 (ballast

CoG coordinates), the final CoG system of coordinate is determined and

summarises in the table below.

CoG.x (mm) CoG.y (mm) CoG.z (mm)

0 20,573.00 4,863.00

Table 3-17 Final CoG Coordinates – Ballasted Deltastream

3.2.2 Determination of the Centre of Buoyancy

Now that the CoG of the ballasted device has been determined, the CoB must

be found in order to see which one is above the other. The structure used for

this determination is the structure displayed in Figure 3-10. The CAD software is

calculating directly the CoG with this drawing.

CoB.x (mm) CoB.y (mm) CoB.z (mm)

0 20,758.00 4,506.00

Table 3-18 CoB coordinates – Fully Submerged Structure

According to Table 3-17 and Table 3-18, the CoG is above the CoB. Moreover,

the Y coordinate of the two points are not the same, which means that from the

beginning, the device is going to have an inclination. So the structure will start

naturally to be inclined and as the CoG is above the CoB, it will roll over

completely before finding a static position. Therefore the device is unstable

when it is completely submerged. The device will develop a trim angle and the

forces applied on it will not be able to stop this trimming movement, they will

increase it. A way to avoid this situation is to set up the lift point for the

deployment backward to the centre of gravity. Indeed the lifting force develop by

the lifting point will offset the loss of stability. The localisation of this point is

determined in the following part.

3.2.3 Lifting Point Position

The deployment scenario studied here is a deployment with only one point of

lifting. It is the one TEL is using for the deployment of Deltastream during the

year 2014. As explained previously, the point must be positioned in such a way

that it counterbalances the negative stability of the structure. The resulting force

of the Displacement (F) and the Lifting Force (F) must offset the Weight (P) in

direction and intensity. Moreover, the point of application of those two resulting

forces has to be the same. The table below is presenting the three forces

applied and there point of application (CoB for the displacement and CoG for

the weight). The value of the lifting force is calculated by subtracting the value

of the displacement to the value of the weight.
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Weight

CoG.x (mm) CoG.y (mm) CoG.z (mm)

0 20,573.00 4,863.00

Intensity (N)

6,825,062.25

Displacement

CoB.x (mm) CoB.y (mm) CoB.z (mm)

0 20,758.00 4,506.00

Intensity (N)

5,068,974.15

Lifting Force

F.x (mm) F.y (mm) F.z (mm)

0 Unknown Unknown

Intensity (N)

1,756,088.10

Table 3-19 Application points of the forces

As the structure is having a pitch movement, the lift point has to be ahead of the

CoG. Furthermore, the point of application of the counterbalancing force of the

weight needs to have a y coordinate equivalent to the one of the CoG. It is the

only important data of the Lifting Force point of application date which is to be

found. The method used to find this data is a barycentre method but it is slightly

changed.

∇ܨ

∇ܨ + ܨ
CoB.ݕ +

ܨ

∇ܨ + ܨ
=ݕ.ܨ ݕ.ܲ (3-16)

Where

:∇ܨ intensity of the displacement (N)

:ܨ intensity of the lifting force (N)
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Figure 3-16 Points of Application of the different forces

In this equation, the needed value is F.y. By modifying the equation above, the

y coordinate found is 20,039.00 mm ahead of the origin. The z coordinate is not

important for the balance of the device. The following figure displays the three

points of application of the three forces. The z coordinate of the lifting force has

been arbitrary put at 10,000.00mm above the bottom of the structure.
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3.3 Application to the demonstrator

Considering the lack of information on the geometry of the demonstrator when

the preliminary assessment has been done, this part has not been completed

right after the end of the previous study. Indeed, the structure designed and

presented in this extension is the one which will be fully presented in the fifth

part of the thesis. The weight of the structure is 131,000.00 kg. The figures

below show the structure, its origin and the principal geometrical data.

Figure 3-17 Principal Dimensions of the demonstrator
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Figure 3-18 Origin of the demonstrator

The main difference remains in the use of only one turbine and the reducing of

the size as a result. A loss of stability can be deduced from the use of only one

turbine. Indeed this turbine is bringing the CoG close to the principal tower. It

induces an important loss of the balance of the device. The turbine is forcing the

device to a capsizing movement with a trim angle because the rear part of the

device has an important floatability due to its geometry and the two plates

installed in the corner when around 30% of the mass is represented only by the

turbine. This behaviour has an impact on the way the ballasts will be filled.

Indeed, the trim angle experienced by the structure will prevent the multiple

ballasts to be filled at the same time, increasing the trim angle and then creating

a loss of balance during the splash zone phase.

Concerning the submerged stability, as the geometry has not been significantly

modified following the z direction; it can be assumed that the CoB is once more

above the CoG, which is inducing a negative stability of the system. In the same

way as for Deltastream 1, the lift point has to be located in such a way that it will

balance the structure during the descent toward the seabed.
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4 Ballast Flooding Assessment on the Demonstrator

4.1 Principle of the Ballast

The principle of using ballasts to submerge a structure is to add water inside the

structure without changing the geometry. By adding water, mass is added to the

structure and as the geometry is not modified, the displacement is not changed

and the structure starts to be submerged. The added mass is depending on the

mass of water. Ballasts are considered as constraining structures which

constrains the flows inside it. Thus, the Bernoulli equation and the Continuity

equation can be used. The flow is considered incompressible so the Bernoulli

equation (shown in the part 2.3.1 of the thesis) for incompressible flow along a

streamline can be used. Figure 4-1 displays the streamline used:

Figure 4-1 Streamline

The scenario with no current is considered, so vwater = 0. Hence the following

equation for vopening:

௢௣௘௡௜௡௚ݒ
ଶ

2݃
= ݖ∆2 (4-1)

Where:

οݖ: difference of depth (m)

With the velocity of the water going in the tube, the mass flow rate is determined

giving the continuity equation:



71

݉̇ = ௪௔௧௘௥ߩ ∗ ௢௣௘௡௜௡௚ݒ ∗ ܣ (4-2)

Where:

A: area of the opening hole of the ballast (m2)

The added mass is calculated by multiplying the mass flow rate by a time

interval. The problem here is that the velocity of the water depends on the depth

of the structure and the depth of the structure is evolving because of the actual

motion of the structure toward the seabed due to the added mass. A simple way

to tackle this issue is to make an iterative calculation with a time interval as

small as possible. This method was implemented with Matlab.

4.2 Simulation of the time of descent

4.2.1 Code Architecture

In order to create the architecture of the code, calculations are done first with

simple geometry as a hollow cube or hollow cylinders. The structure is

considered to descent horizontally to the seabed. The frame of the code is then

determined in order to be used for Deltastream. This paragraph resumes the

main parts included in the general frame of the code.

- Common architecture

The parameters common to every calculation undertaken with Matlab are the

Counter Numbers, the Physical Constants of the problem (density, gravitational

acceleration…) and the Physical Parameters needed for the calculation

(Pressure, mass flow rate, weight…).

The counter numbers are here to define the number of iteration (n in the code),

the maximum draft of the operation (m in the code) and the step of the

calculation in the simulation (p in the code). The latter allows the definition of a

larger step than 1 for the calculation. It is useful if less data are needed.

The Physical Parameters initialised for the calculation are the following:

- M: Mass of the structure in kg.

- W: Weight of the structure in N.

- B: Buoyancy of the structure in m3.

- D: Draft of the structure in m.

- Delta_P: Pressure difference between the waterline and the depth of the

opening holes in Pa.

- U_Tube: Rate of the flows in the opening hole in m/s.

- MFR: Mass flow rate in the opening hole in kg/s.

- AM: Added mass in the ballast in kg.
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Those eight values are calculated successively once; an added mass is found

at last. Once this added mass is found, it is add to the mass of the structure and

the calculation is done once again. A loop “for” is used with Matlab in order to

process this calculation.

- Calculation architecture

For all the code, the step of calculation for the time is 0.1 second.

Figure 4-2 Numerical Predictions

A vector column indexing the time is created in order to have all the different

values of the time accessible quickly and browse all data easily.

To begin with the iterative calculation, a vector column for each parameter is

created and initialised. Then the loop “for” is created to calculate each value of

the vectors successively. The following figure is displaying the loop created with

Matlab. This loop is creating eight vectors column (one for each parameter).

The size of those vectors is the number of iteration n.

Figure 4-3 Loop For – Cube calculation

A vector is listing every values of one parameter according to the time. The

function processing the iterative calculation is defined as a matrix made up of

nine columns organised as below:

(ܶ ܽܯ ܹ ݁ ݑܤ ݎܦ ݈݁ܦ ݐܽ ݎܲ_ ݑܶ_ܷ ܴܨܯ ܯܣ )

Figure 4-4 Matrix Result



73

With this matrix, the results are accessible easily and some curves can be plot.

The following figure displayed four curves plotted with Matlab such as: Draft

over Time, Mass over Time, Opening Velocity over Draft and Buoyancy over

Time.

4.2.2 Deltastream 1 Calculation

The structure geometry used for the simplified geometry final calculation is an

equilateral triangle made of cylinders:

- Three identical horizontal cylinders to represent the edges of the triangle.

- Three identical vertical cylinders to represent the summits of the triangle.

- One smaller vertical cylinder to represent the tower holding the turbine.

It is a structure slightly different compare to Deltastream 1, the cones are

replaced by a cylinder of the size of the top cylinders. There are three opening

holes on this structure, one on each side of the structure. Those entrances are

circular with a radius of 0.05m.

The code explained in the previous part is applied with this geometry. Once the

structure is fully submerged and no more mass is added, the calculation is

stopped. Therefore, to calculate the depth of the structure over time, the

following differential equation has to be solved:

ܯ ∗
ଶݖ݀

݀ଶݐ
= ܲ+ ∇ܨ

(4-3)

Where:

M: total mass of the structure (kg)

With this formula, the z coordinate of the CoG of Deltastream over the time can

be assessed when the ballasts are full and Deltastream fully submerged. The

first values of the CoG.z are calculated using the code previously presented and

adding the known height between the calculated z coordinate of the draft and

the CoG.z.

This equation is a second order and linear differential equation in z with P and

Fconstant and must be applied for the CoG of the structure.
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Figure 4-5 Deltastream landed on the Seabed

Finally, the time it takes for the structure to reach the seabed is found. In that

case, the seabed is at a depth of 38m. And according to the code, the structure

reaches it after 670.2 seconds, so 11 minutes and 10.2 seconds.

With the code, one curve is plotted, the curve giving the z coordinate of the CoG

over the time. It gives a shape for the descent of the structure. It is plotted using

a vector time and the vector CoG.z calculated the iterative calculation and the

equation (4-3).

Figure 4-6 CoG.Z over time
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Following the same methodology with a structure close to the demonstrator, a

Matlab calculation has been undertaken. However, one of the main hypotheses

used for this calculation is that the structure remains horizontal during the whole

flooding process. In the case of the demonstrator, it has been assessed that the

structure will experience an important trim angle due to the important

percentage of mass located at the front of the device. The main hypothesis

used for the calculation cannot be applied here with this unbalanced device.

Nevertheless, the method has been applied and the results are not applicable to

the demonstrator.

Considering these issues on the device, it is difficult to assess theoretically the

duration of flooding and a mean mass flow rate for the ballasts flooding which

needs to be scaled for the reduced scale model.
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5 Design of the Model and Test Preparation

5.1 CAD Model

In order to design a scaled model of Deltastream, a full scaled model must be

drawn on Catia first. Thus the proper dimension of the structure will be

accessible such as the coordinates of the CoG and the Inertia. In this part, the

process of the design of the prototype is described. Then the chosen scale for

the model is explained. The last part is the design of the prototype.

5.1.1 Full Scaled Design

5.1.1.1 Structure Geometry

The prototype is designed according to the documents given by TEL on the

deployment and particularly the document [5] by KML. The turbine tower

geometry from the former structure of Deltastream (Deltastream 2) is also used.

Figure 5-1 Turbine Tower of Deltastream 2

In the KML document [5], some drawings of the deployment with the barge are

available. Considering those drawings and the measurements given, a

dimension for the prototype is approximated. Those principal dimensions are

given in the following table.
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Length (mm) 16,750.00

Width (mm) 14,600.00

Height (mm) (centre turbine) 11,627.00

Diameter Side Tube (mm) 2,000.00

Diameter Rear Tube (mm) 1,200.00

Table 5-1 Prototype Data

Figure 5-2 KML Document Picture Deployment 1

Figure 5-3 KML Document Picture Deployment 2
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5.1.1.2 Nacelle Geometry

The turbine used for the design is the one given by TEL. The dimensions of the

turbine are the following:

Mass Nacelle (kg) 40,000.00

Mass in the Water Nacelle (kg) 25,000.00

Length Nacelle (mm) 7,977.00

Diameter Nacelle (mm) 2,132.00

Diameter Turbine (mm) 12,000.00

Table 5-2 Nacelle Data

Figure 5-4 CAD of the Nacelle

The turbine is set on the principal tower of the structure and can rotate around

its axe of fixation. The parked position is when the turbine has an angle of 90

degrees with the axe of symmetry of the structure. The working position is the

one with the turbine in the same axe, with the blades outside the triangle.
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Figure 5-5 Turbine Diameter

5.1.1.3 Ballast Information

The ballasts are located in the tubes forming the triangular shaped frame of

Demonstrator. They are using all the volume available in those tubes.

Figure 5-6 Triangular Shaped Frame - Ballast Location

The three tubes are filled by water through multiple openings. Two entrances

are located at the bottom of the back summits and the others are near the

turbine tower. The two openings at the back are going through the summit with

pipes and are divided in two, one in each tube connected to the back summit.

As the result, each of the three tubes has two openings for the ballast. The

vents of the turbine are at the top of each tube. Three installed on each side

tube and two on the back tube.
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Figure 5-7 Vents Location

The data of the three ballasts for the full scale Model are the following:

Ballast Volume (m3) 95.63

Opening Side Tube Diameter (mm) 600.00

Vents Side and Rear Tube (mm) 200.00

Table 5-3 Ballast information

5.1.1.4 Lift Frame information

The lift frame is made of stainless steel and built with three main pieces. Those

three pieces are forming a triangular shape which is linked to the device via the

base of the turbine tower and the two side tubes. It is linked to the structure

trough a pivot link which allows the frame to be raised or lowered depending on

the operation. The total weight of the frame is 7.35 tonnes and it has been

designed for a lifting capacity of 160.00 tonnes.
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Figure 5-8 Isometric view of the Lift Frame – Full scale

5.1.1.5 Physical Data

The mass of the structure is given by the maximum weight for which the lift

frame was designed. According to the KML document [2], the lift frame was

design for a weight of 131.00 tonnes.

- Inertia Tensor (kg.mm2):

The inertia tensor is given by TEL; the axes used are displayed in the following

figure.

Figure 5-9 Origin and axes for the Inertia Tensor



83

The following matrix is giving all the results:

൭
4.48x10ଵଶ 0 0

0 1.01x10ଵଷ 2.19x10ିସ

0 2.19x10ିସ 1.24x10ଵଷ
൱ (5-1)

- Centre of Gravity:

The coordinates are found using the CAD software.

Centre of Gravity X coordinate (mm) -2.88

Centre of Gravity Y coordinate without

ballast (mm)
9,103.05

Centre of Gravity Y coordinate with ballast

(mm)
7,338

Centre of Gravity Z coordinate without

ballast (mm)
2,587.37

Table 5-4 CoG Coordinates

The origin taken for these coordinates is the same used for the inertia tensor.

5.1.1.6 General Overview of the Full Scale Model

Figure 5-10 Front (a) and rear (b) view
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Figure 5-11 Side View

In those pictures, the turbine is set in its working position. The parked position is

shown in the next picture.

Figure 5-12 Demonstrator with Lift Frame
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For the deployment, the position of the turbine is set with an angle of 90

degrees in order to set up the lift frame properly. Indeed, the lift frame cannot fit

with a turbine installed in its working position.

5.1.2 Scaled Model Design

5.1.2.1 Scale Factor

The test model is a twentieth scaled model of the previously drawn on the CAD

software. To achieve this scale process, the Froude’s Similarity is used:

Length Time Velocity Acceleration Mass Pressure Force Momentum

e e e 1 e3 e e3 e4
e the length scale factor (here 20)

the ratio between the density of the tank water and the real water

Table 5-5 Scale Factor with the Froude's Similarity

This Froude number is a ratio of inertia to gravitational forces. It is the one used

for scaling when the inertial and gravitational forces are predominating and it is

important for free surface flows.

For this design, the materials used to create each pieces of the model needs to

be chosen considering their effects on the mass and the position of the CoG.

Thus the structure is as close as possible to the full scaled model in terms of

mass, mass repartition and geometry.

5.1.2.2 Structure Geometry and Materials

To obtain the general size of the model using the Table 5-5, the data of the full

scaled model were simply divided by twenty.

Data Wanted Value CAD Value

Length (mm) 837.50 837.50

Width (mm) 730.00 730.00

Height (mm) 581.35 557.00

Table 5-6 Scaled Model Geometrical Data

Except for the height of the device, the values obtained with the CAD software

are corresponding to the reality. The relative error for the height is 4.19% which

is a small error, so with an impact which can be neglected. This difference can

be explained by the different turbine used and by the simplification brought to

the model for an easier manufacturing.



86

Figure 5-13 Scaled Model View

Threaded Rod (made of stainless steel)

Plywood and Planed Pinewood

Table 5-7 Colour Legend of the Scaled Model

The threaded rods used in the design and displayed in green in Figure 5-13 are

here to add mass to the structure without changing the geometry. The two rods

in the larger tubes are M20 threaded rods; the one in the smaller tube is a M16

threaded rod. The plywood used is 6, 12 and 18 mm thick. Some parts of the

summits are carved directly from wooden beams.

5.1.2.3 Ballast Information

In the model, the ballasts are located in the three transparent tubes made of

perspex. For the two largest tubes, the dimensions are 100.00 mm diameter

and the thickness 3.00 mm; for the smallest one, the diameter is 60.00 mm and

the thickness 3.00 mm as well. The vents of the ballasts are scaled and located

in the same area as they are on the demonstrator. Concerning the openings
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location, it has been modified on the scaled model. The main reason is because

the location has been given by TEL shortly after the model was finished and it

was impossible to modify the model in order to fit the demonstrator. The

following pictures are displaying the openings location:

Figure 5-14 Side view - Openings Location

Those two inlets are also present on the other side of the model. Concerning

the openings in the rear tube, they are displayed in the figure below:

Figure 5-15 Bottom View - Openings location

Respecting the Froude Similarity and the size of the inlets given by TEL, the

reduced scaled size of the inlets is 30.00mm diameter. However, it has been

assessed in the literature review that this scaling does not allow a fine scaling of
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the rate of flooding considering the impact of the atmospheric pressure. A

method was found to tackle this issue: scale the volume flow rate of the water

entering the ballast. However, it has been assessed that the method permitting

the theoretical study of the flooding of Deltastream 1 could not be transposed

on the demonstrator, thus the volume flow rate of the flooding cannot be

calculated accurately. In that case, it has been chosen to scale the model with

respect to the data given by TEL. It is during the transposition to the full scale

model that the volume flow rate scaling will be used. Thus, the inlets have a

diameter of 25mm and the outlets 10mm. The aim of 30mm for the inlets cannot

be reached with the tools available in the laboratory and a drill bit of 30mm is

very expensive.

The ballasts volume calculated by the CAD software is described in the

following table:

Desired Volume (m3) CAD Volume (m3) Relative Error (%)

Ballasts Volume 11.95x10-3 10.89x10-3 9.02

Table 5-8 Ballasts volume of the scale model

This difference is explained by the use of threaded rod and wooden part which

are placed inside the ballasts to ensure the strength and manufacturing of the

structure. Those pieces of material are taking space normally used by water.

The space available is also smaller due to the thickness of the tube more

important than in reality.

5.1.2.4 Lift Frame design

The lift frame is composed of four different parts made of plywood. The

objective is to keep the same degree of freedom of the full scale product while

simplifying it for an easier manufacturing. To create the pivot links, eye bolts

and threaded rod have been used. The lift head is built with a plate of plywood,

four eye bolts and a lift ring strong enough to support the tension during the

operations.
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Figure 5-16 Isometric view of the Lift Head - Model Size

Figure 5-17 Isometric view of the Lift Frame – Model size

5.1.2.5 Physical Data

The first physical data scaled was the mass of the device. Considering the real

mass of the device 131,000 kg, the objective is a mass of 15.98 kg for the

model scale using the Froude Similarity. According to the CAD software, the

mass of the model drawn is 15.50 kg, namely an error of 2.98%. However, the

drawing is made with a hub and a turbine different from the one finally used

during the tests. The mass will have to be assessed again with the

manufactured demonstrator.

- Centre of Gravity:
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Using the scale factor and the data summarized in Table 5-4, the coordinates of

the centre of gravity wanted are found. The CAD software is giving the

coordinates of the designed model.

Aimed value

(mm)

CAD value

(mm)

Relative Error

(%)

CoG x coordinate -0.14 -0.03 76.39

CoG y coordinate without ballast 455.15 459.30 0.91

CoG y coordinate with ballast 366.90 401.99 9.56

CoG z coordinate without ballast 129.37 165.73 28.11

Table 5-9 Desired and CAD coordinates of the CoG for the scaled model

Concerning the important error for the x coordinate, it can be neglected

considering the small difference between the two values (0.11mm). The

difference between the y coordinate with and without ballasts can be explained

by the smaller volume of ballasts available in the CAD model than expected

from the scaled factor.

- Inertia Tensor (kg.mm2):

The objective given by the scaling factor for the inertia tensor is the following:

൭
1.37x10଺ 0 0

0 3.06x10଺ 6.67x10ିଵଵ

0 6.67x10ିଵଵ 3.77x10଺
൱ (5-2)

Iyz and Izy are neglected because they are very close to zero.

According to the CAD software, the inertia tensor of the device is

൭
1.58x10଺ 0 0

0 2.55x10଺ 0
0 0 2.63x10଺

൱ (5-3)

Those values have the same order of magnitude (106 kg.mm2). However, the

difference between them is still important. It can be explained by the use of a

different turbine in the CAD design, so the impact of the mass of the turbine is

less important than it should be (smaller Izz and Iyy).
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5.1.2.6 General Overview

Figure 5-18 Isometric view of the scaled model

This figure is an isometric view of the complete design of the model. Plans have

been made out of this design in order to build it in the workshop of the

laboratory.
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5.2 Model Manufacturing

5.2.1 Manufacturing

The manufacturing was undertaken in the workshop of the Ocean Laboratory in

Cranfield.

Figure 5-19 Deltastream Model before assembly and painting

Each tower was built separately, and paint before being assembled. The rear of

the demonstrator was first assembled with the threaded rod and the perspex

tube linking the two towers.
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Figure 5-20 Rear of the demonstrator assembly

Once this part was painted and glued, the principal tower can be assembled

with the threaded rod, the two tubes and the tower supporting the turbine.

Figure 5-21 Tower Turbine & Tubes
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Two plates were built and glued to the tubes (Figure 5-22) to support the two

threaded rods in the two side tubes. These two pieces allowed the structure to

be divided in two independent parts, which are assembled to create the entire

structure of the model.

Figure 5-22 Assembly of the principal tower

The next step was to link the two parts in order to have the complete structure

assembled (Figure 5-24). Once this was done, the lift frame was installed one

the two side tubes using foam to protect those tubes again the pressure of the

hose clamps which are linked to the threaded rod used to link the lift frame to

the device (Figure 5-23). The pieces used for the lift frame were strengthened

using a stratification process with composite (epoxy).
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Figure 5-23 Lift Frame linked to the demonstrator

The turbine used is slightly bigger and has been weighted to correspond in

mass in water to the data given by TEL.

Figure 5-24 Final Assembled Model
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Mass has been added to the device in order to reach the objective of mass fixed

by the scale factor. Those added masses are place on plate located in the

corner on the rear of the demonstrator and at the bottom of the turbine tower.

The total mass of added masses is 2,366g.

Figure 5-25 Added Masses location

Another mass has been added but it is not visible on this schema. It is located

at the same place that the one visible on the turbine tower but on the other side

to preserve the symmetry of the device.

5.2.2 Physical Data

The general dimensions of the model are given in the following table.

Data Wanted Value Manufactured Value

Length (mm) 837.50 841.00

Width (mm) 730.00 737.00

Height (mm) 581.35 585.00

Table 5-10 General Dimensions of the manufactured model
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The values are close in the three principal dimensions. The differences are

explained by defaults which occurred during the manufacturing and

modifications due to an impossibility to realise the exact CAD model with the

tools and materials available in the workshop.

To determinate the CoG coordinates of the demonstrator, a balance is used.

The balance is placed below the turbine tower and supports are placed below

the two other towers with the same height of the balance to let the xy plan

horizontal during the measurement. Noting this value and using the following

formula, the y coordinate of the CoG is found.

ݕீ = −ܮ ∗݈ ( 1 −
݉ ଵ

ܯ
) (5-4)

In which:

L: length between the centre of the tower turbine and the chosen origin (mm)

l: length of the complete device (mm)

m1: mass displayed on the balance (g)

M: total mass of the device (g)

Considering the z coordinates, it has been measured qualitatively by

suspending the device by one point of lifting with a xz plan as horizontal as

possible. Once an equilibrium position is found, the distance along the z axis

between the point of lifting and the origin is taken, thus giving the z coordinate

of the CoG.

As for the x coordinate, the approximate symmetry of the device allows to put it

at zero. The following table is summarising the results with the relative error

between them and the coordinates wanted.

Measured value

(mm)
Relative Error (%)

CoG x coordinate 0

CoG y coordinate -376.09 17.37

CoG z coordinate 139.1 7.52

Table 5-11 CoG coordinates of the manufactured model with relative error
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The use of the new turbine allows a z coordinate closer to the one delivered by

the CAD software. Moreover, the y coordinate has a relative error larger which

can be explained by the new turbine as well.

To determinate the inertia tensor in the three principal directions, an experience

has been made. This methodology is explained in [9]. With this method Ixx, Iyy

and Izz are calculated. The main part of this method is to determinate for each

axes the natural period of oscillations of the device around these axes. In order

to have a look to those oscillations, an ultrasonic sensor is used with the data

acquisition software Labview. Plotting the curve of the oscillations, the period is

assessed and the following formulas are used.

ࡵ࢞ ࢞ = ൬
ࡺࢀ
૛࣊

൰
૛

∗ ࡹ ∗ ࢍ ∗ ࡳࢠ − ࡹ ∗ ࡳࢠ
૛

(5-5)

ࡵ࢟ ࢟ = ൬
ࡺࢀ
૛࣊

൰
૛

∗ ࡹ ∗ ࢍ ∗ ࡳࢠ − ࡹ ∗ ࡳࢠ
૛

(5-6)

ࢠࢠࡵ = ൬
ࡺࢀ
૛࣊

൰
૛

∗ ࡹ ∗ ࢍ ∗ ࡳ࢞ − ࡹ ∗ ࡳ࢞
૛

(5-7)

In which

TN: period of the oscillations (sec)

M: mass of the device (kg)

g: gravitational acceleration (m/sec2)

The inertia tensor of the manufactured model is:

൭
2.64x10଺ 0 0

0 2.20x10଺ 0
0 0 3.79x10଺

൱ (5-8)

The repartition of mass of the manufactured model is good along the z-axis with

a very small difference between the objective value and the one obtained.

However, the values along the x and y axes y are still far from the objective

values. This issue can be explained by a mass repartition different due to the

use of different material and weight to reach the correct mass.
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5.3 Test Rig Design

5.3.1 Functional Analysis

In order to test the model, a test rig has been designed. This test rig will allow

the complete deployment and recovery operation of the demonstrator by

modelling the action of the crane on the barge. To analyse the needs and

identify the targets of the test rig, a functional diagram is drawn

Figure 5-26 Functional diagram interaction test rig

Here, the test rig is interacting with the demonstrator, the Cranfield Wave &

Towing tank, users and energies. The Principal Function (PF) and the

Requirement Functions (RF) are listed in the functional specification table below

which is characterising the functions by criteria themselves defined by flexibility

and levels.

Functions
Functions characteristic

Criteria Levels Flexibilities

PF1: to test the
demonstrator in the
Cranfield wave and

towing tank

Stroke ≥ 2,200.00mm F0 

Pull Force ≥300.00N F0 

Rate Adaptable F1

RF1: to hold the
demonstrator

Assemblage ability Easy F1

RF2: to be adaptable
to the wave & towing

tank of Cranfield

Dimension as small as possible F0

Weight < 20.00 kg F0
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RF3: to collect data Data acquisition Easy interface F1

RF4: to use energies Electric 24V - 5A F0

Table 5-12 Functional Specifications of the test rig

5.3.2 Design

Figure 5-27 Actuator ROBO Cylinder RCP2-SA7C

In order to achieve the requirements of the principal function of the test rig, the

actuators available in the Ocean System Laboratory in Cranfield are used

(Figure 5-27).

The complete technical data are given in the 7Appendix B. According to these

data, the actuator has a stroke of 800.00 mm and can pull a weight of 35.00 kg

at a minimal speed and in a horizontal position. To match the first criteria of the

PF of the test rig, the stroke has to be multiply by three. It is reach using a

pulleys system displayed in Figure 5-28.
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Figure 5-28 Configuration of the motion transmission system

The legend of the configuration is explained below:

- Moving axis: it is the axis links to the actuator, it is moving along the x

axis.

- Moving Pulley: it is the pulley installed on the moving axis, therefore it is

also moving along the x axis.

- B1 is the point representing the initial position of the centre of the pulley.

- B2 is the point representing the moving position of the centre of the pulley

during the operation.

- B’1 is the point representing the initial position of the centre of the moving

axis.

- B’2 is the point representing the moving position of the centre of the axis

during the operation.

- d2 is the distance B1B2 which is also equal to the distance B’1B’2.

- A1 is representing the point where the demonstrator is attached to the

test rig

- A2 is representing the moving point of the demonstrator during the

operation.

- d1 is the distance A1A2.

- F1 is the tension produced by the system to lift the demonstrator.

- F2 is the tension developed by the actuator in point B.

- F3 is the tension developed by the actuator in point B’
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Considering the geometry of the system, the point B1 and B’1 are the same in

the plan xy. They have been defined separately because they have a different z

coordinate. It is the same for the point B2 and B’2.

Thanks to this configuration, when the actuator is moving of a certain distance,

the demonstrator has a movement of three times this distance. This means

that���݀ଵ = 3 ∗ ଶ݀. The stroke of the actuator has been tripled, thus reaching a

maximal stroke of 2,400.00 mm.

However, this configuration is dividing the force developed by the actuator to lift

the device by three. Indeed, if the system wants to produce a force F1 to lift the

demonstrator, it has to develop a tension three times more because the winch

lifting the demonstrator is attached once to the actuator and it is passing

through a pulley also attached to the actuator. The maximal tension which is

needed for the operation is 300.00 N. Therefore, an actuator must develop an

tension three times more, so 900.00 N. The limit of the actuator is 35.00 kg of

weight for a low velocity, which correspond to a force of 343.35 N. It is clearly

not enough for the deployment and recovery operations. A way to fix this issue

is to divide by three the force needed by attaching the demonstrator with three

winches, each one of them connected to a different actuator installed with the

same configuration. The three winches will be connected to the demonstrator at

the top of the lift system. With this configuration, each actuator will need to

produce a tension F1 of 100.00 N which corresponds to a tension of 300.00 N

as the origin of the transmission system. It is in the range of action of the

actuator for a maximal speed of 100.00 mm/sec.

The final system is displayed in Figure 5-29; it is showing the three actuators

fixed one next to the other on a wooden beam with the system of pulleys

installed. The load cell is installed vertically between the two fixed pulleys in

order to detect directly the tension F1. Prior to the test, a calibration of the

captor has been undertaken to know exactly the meaning of the values it will

give. This study has given a coefficient to apply to the results to have workable

data. This coefficient is 2.
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Figure 5-29 Final Test Rig

The power supply needed for the test rig must generate 24V of tension with an

intensity of at least 1A, even more during the operation. The software necessary

to monitor the actuators is installed on the computer used for the data

acquisition.
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6 Test Program

6.1 Set-up in the Cranfield wave-towing tank

The test rig was installed on the carriage of the wave-towing tank. By its weight,

the test rig does not need to be attached to the platform. The power supply for

the actuators is installed on the carriage with the controller of the actuators

connecting them to the laptop with the recommended software previously

installed.

Figure 6-2 Set-up on the carriage

Figure 6-1 Drawing of the complete set-up
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A second part of the set-up was installed on the desk of the platform, with

another power supply and the acquisition system for the data acquisition.

Figure 6-3 Set up on the desk

6.2 Instrumentation and data acquisition

In this part, the Labview interface is presented. It has permitted the recording of

the data during the tests. The two captors used for the data acquisition are:

- The load cell installed on the test rig to measure the lifting tension

experienced by the crane. This load cell has a 1,000.00 N limit in

tension/compression and needs to work with a tension of 16V.

- The ultrasonic sensor which is measuring the wave height during the

data acquisition. This ultrasonic sensor is installed 40.00 cm above the

waterline because it is calibrate to measure data from 20.00 cm to

60.00cm. An equation is used to calibrate the sensor to return value from

-20.00 cm to 20.00 cm. Thus, the 40.00 cm distance of the sensor

without calibration corresponds to the 0 cm distance with calibration. The

sensor also needs to work with a tension of 16V.

The signals of these sensors were acquired by an acquisition card: the NI USB

6000. The following Graphical User Interface (GUI) was created using the

software Labview 2010.
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Figure 6-4 Labview Interface of the data acquisition

The GUI is made of:

- One gauge from -1,000.00 N to 1,000.00 N for the load cell. A tare has

been created to offset the load cell to 0 in the beginning of the data

acquisition.

- A second gauge displayed as a level for the water height from -20.00 cm

to 20.00 cm. Here no tare has been use; the offset is adjusted with the

installation of the ultrasonic sensor on the tank.

- A filename window to name the file which is created during the data

acquisition.

- A stop button to stop the acquisition.

The acquisition is designed to last until the stop button is used, allowing long

acquisition for the recovery for example. The time laps is 0.01s and the

returning file is a text file which needs to be import in Excel. This acquisition is

returning three columns: one for the time, one for the load cell and one the

ultrasonic sensor.
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6.3 Test runs

The tests have been run in the wave and towing tank in Cranfield with the set-

up described in the previous part. During the test operation, 60 tests have been

carried out, 30 tests of deployment and 30 tests of recovery. The first aim was

to define the influence of the sea state on the operation by detecting the

maximal tension and the oscillations of this tension along the time. The second

aim was to determinate the time of the deployment and the time of the recovery

and the influence of the inlets/outlets of the ballast on it.

Concerning the first objective, multiple inputs are modified during the tests:

- Wave amplitude: the range of amplitudes is from 0.01 to 0.035 m. It

corresponds at full scale to a range in-between 0.2 and 0.7 m from the

waterline to the crest. So 0.4 to 1.4 m crest to crest.

- Wave frequency: the range of frequencies used is from 0.5 Hz to 1.4 Hz.

It corresponds to wave periods in-between 0.7 and 2 seconds. At full

scale, it means wave periods from 3.13 to 8.94 seconds.

- Positioning of the model: the orientation of the demonstrator through the

wave is changed from 0 to 180 deg. Five positions are tested to see their

impact (Figure 6-5).

Figure 6-5 Deltastream orientations
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As for the second aim, two different configurations have been test. They are

explained with Figure 6-6 and Table 6-1.

Figure 6-6 Inlets/Outlets Position

On the figure, the inlets A are the principal inlets for the filling when the inlets B

are the secondary inlets, smaller. C represents the vents of the ballasts.

Data Configuration 1 Configuration 2

Number of inlet A (6x) + B (4x) A (6x) + B (4x)

Diameter of inlet 10.00 mm + 5.00 mm 25.00 mm + 5.00 mm

Number of Vents C (8x) C (8x)

Diameter of Vents 5.00 mm 5.00 mm

Speed of Descent 8.00 mm/sec 8.00 mm/sec

Table 6-1 Two configurations data

- The first configuration is made to have a first idea of the behaviour of the

demonstrator with a longer time of submersion.

- The second configuration is the scaled one.
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6.4 Data processing

6.4.1 Tests with the first configuration

6.4.1.1 Presentation

Twenty-four tests have been carried out in this configuration, twelve for the

deployment and twelve for the recovery. Only the sea state has been modified

in those tests. The first test was made without waves. It has for objective to

calibrate the other tests by observing the behaviour of the demonstrator and

setting a time slicing which allows a clear understanding of all the phases the

demonstrator is going through during both deployment and recovery.

Figure 6-7 Deployment curve with time-slicing

The curve is divided in seven phases described below:

- Phase A: waiting phase between the beginning of the acquisition and the

launch of the actuator. The vibrations can be explained by the jerks

experienced by the actuators while they are stopped.

- Phase B: the demonstrator is starting its descent toward the waterline;

the diminution can be explained by the beginning of the motion of the

actuators in the same direction that the force developed by the

demonstrator on them.
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- Phase C: the demonstrator starts to be submerged. The drop is due to

the Displacement developed by the raising submerged volume of the

demonstrator. The ballasts are also starting to be filled but the filling is

slower than the submersion of the device, so the drop is experienced.

- Phase D: during this phase, the actuators are stopped until the ballasts

filling are complete. The slight raise is explained by the fact that the mass

raises without a change of the displacement.

- Phase E: the device is starting is descent toward the seabed. The drop is

explained by the displacement being raise by the submersion of the

turbine.

- Phase F: the demonstrator is completely submerged and descending

toward the seabed, the tension is constant. The value of the tension here

corresponds to the weight in water of the device.

- Phase G: the device is landed on the seabed, the actuator are not

experiencing tension anymore so the load cell is returning 0 N.

Figure 6-8 Recovery curve with time-slicing

The curve is divided in six phases described below:

- Phase H: the device is starting its recovery; it is progressively being

detached from the seabed, so the augmentation of the tension is

progressive.

- Phase I: this phase is the equivalent of the phase F during the recovery.
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- Phase J: the structure is getting progressively out of the water, inducing

a reduction of the displacement. So the tension is rising.

- Phase K: the ballasts start to be drained. But the process is slower than

the diminution of submerged volume, so a raise is experienced. During

this raise, a small drop is experienced (red circle in the figure). It can be

explained by the interruption of the actuator. The demonstrator is still

partly submerged but the ballasts are being drained, so the tension is

slightly dropping.

- Phase L: during this phase, 90% of the demonstrator is outside the

water, the displacement is constant while the draining of the ballasts is

still on-going. Thus the tension is dropping.

- Phase M: the actuators are stopped in their initial position but the ballasts

are not drain yet. The demonstrator is fully out of the water, a drop is

once again experienced. The oscillations are due to the immobility of the

actuators and the jerks they are experienced because of it.

In addition to those phases, eight actuator phases have been used for the first

tests: three phases for the deployment, one when the demonstrator is landing

on the seabed and four for the recovery (Table 6-2).

Actuator Phase Deltastream Estate

0
Holding the structure above

the waterline
Completely unsubmerged structure and holding

in position

1 Descending to the waterline
Partly submerged structure, flooding of the

ballasts

2 Descending to the seabed Equilibrated structure, simply descending

3 Landing on the seabed Equilibrated structure, landing on the seabed

4 Ascending to the water line
Slow recovery operation until the structure

starts to go of the water - Start Draining of the
ballasts

5
Holding the ballasts inlets

above the waterline
The demonstrator is hold in position to allow the

water to come out of the ballasts

6 Second ascending
Slow ascending until the structure is fully out of

the water

7
Holding the structure above

the waterline
Completely unsubmerged structure and holding

in position

Table 6-2 Actuator phases and Deltastream estate during tests
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The shape of the graphs plotted with the data and the actuator phases is the

following:

Figure 6-9 Deployment Test 2 - Graph Shape

Figure 6-10 Recovery Test 2 - Graph Shape

The horizontal axis is representing the time of the acquisition. The grey curve is

the curve of the tension developed during the deployment and the recovery.
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The following table is giving the different sea states used during the tests:

Amplitude (m)
0 0.02 0.025 0.03 0.035

Frequency (Hz)

0 Test 1

0.5 Test 11 Test 12

1 Test 3 Test 4 Test 5 Test 6

1.2 Test 7 Test 8 Test 9 Test 10

Table 6-3 Wave Data for the first configuration

6.4.1.2 The influence of the wave height

In this part, the influence of the amplitude is assessed through two key points:

- Influence of the wave height on the shape of the curve.

- Influence of the wave height on the maximal tension measured.

To determinate the impact of the wave height, the frequency is fixed and the

wave height is modified. For the impact on the shape, the deployment tests 3 to

10 are used. The oscillations during deployment and recovery are similar, the

data are equivalent. The oscillations are the strongest while the ballasts are

flooded. The actuators are stopped and the demonstrator is progressively

flooded (beginning of phase D).

Figure 6-11 Deployment Test 3 - Configuration 1
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Figure 6-12 Deployment Test 6 with zoom-in– Configuration 1

For a direct understanding, the following histograms drawn are done with the

values divide by two, the coefficient needed to obtain the tension on the cable.

Figure 6-13 Influence of the wave amplitude on the amplitude of the oscillations

of tension – deployment tests 3/4/5/6
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This histogram is representing the different amplitude of oscillation detected by

the load cell during the test 3, 4, 5 and 6. The tendency shown on this

histogram is that the amplitude of the oscillations is rising in proportion to the

raise of the wave height.

Wave Height (m)
Amplitude of the oscillation

of tension (N)
Mass equivalent (kg) % of the total mass

0.02 11.5 1.17 7.31

0.025 16 1.63 10.19

0.03 20.5 2.09 13.06

0.035 27.5 2.8 17.5

Table 6-4 Summarised Results and percentage – deployment test 3/4/5/6

For 0.02 m amplitude, the oscillations are of 7.31% of the total weight

(unballasted) of the device in the worst condition. But for 0.035 of amplitude, the

percentage is 17.5%, almost one fifth of the total weight. At full scale, this

percentage represents 22.93 tonnes (trough to crest) so a variation of the

tension of ± 11.47 tonnes. The snatch load in that case is very important and

cannot be neglected.

To confirm this tendency, another histogram was plotted with the tests 7, 8, 9

and 10. The results are in the following table:

Wave Height (m)
Amplitude of the oscillation

of tension (N)
Mass equivalent (kg) % of the total mass

0.02 17 1.73 10.81

0.025 21.5 2.19 13.69

0.03 28 2.85 17.81

0.035 35 3.57 22.31

Table 6-5 Summarised Results and percentage – deployment test 7/8/9/10

The tendency is identical; the oscillations are more significant here because the

frequency is smaller, so the waves longer. A percentage of 22.31% is obtained,

corresponding to a variation of the mass at full scale of ± 14.61 tonnes. The

snatch load experienced by the crane is again very important and cannot be

neglected.

Those snatch loads are experienced from the first contact with the waterline to

the descent toward the seabed. During the descent, the demonstrator is pulled

away from the waterline so the impact of the waves drops.
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Concerning the maximal tension detected by the load cell, a histogram has

been plotted to evaluate the evolution of this tension with a variation of

amplitudes.

Figure 6-14 Influence of the wave amplitude on the maximal tension – Recovery

test 7/8/9/10

The tests used here are the number 7, 8, 9 and 10 (frequency 1.2 Hz). The

maximal tension has been detected each time during the recovery operation, at

the end of phase K in Figure 6-8. The tendency observed is an augmentation of

the maximal tension with the raise of the wave amplitude. For those four tests,

the difference between 0.02 and 0.035 of amplitude is 6.85 N. At full scale, this

raise corresponds to an augmentation of the tension of 56,170 N.

In order to confirm this tendency, the tests 3, 4, 5 and 6 have also been

compared with a histogram (frequency 1Hz). The same tendency is observed,

with a slight diminution of the difference with 3.8 N. At full scale, this is

corresponding to a raise of 31,160 N of the tension.

6.4.1.3 The influence of the frequency

In this part, the same key aspects are investigated, with the same methodology.

But this time the amplitude is fixed and the frequency modified.
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The following graphs are displaying the curves for the deployment test 10 and

12 with identical amplitude (0.035m) but a different frequency (respectively 1.2

and 0.5Hz).

Figure 6-15 Deployment test 10 - Configuration 1

Figure 6-16 Deployment test 12 with zoom-in - Configuration 1



119

Figure 6-17 Influence of the frequency on the amplitude of the oscillations of

tension – deployment test 12/6/10

In opposition to the wave height impact, the amplitude of the oscillations is not

evolving in proportion to the frequency. As shown on Figure 6-17, a frequency

of 1Hz is the most favourable for the deployment.

Frequency (Hz) Oscillation (N) Mass equivalent (kg) % of the total weight

0.5 87.5 8.92 55.75

1 27.5 2.80 17.5

1.2 35 3.57 22.31

Table 6-6 Summarised Results and percentage – deployment test 12/6/10

The impact of the change of frequency is more important than the impact of a

change of wave height. The worst case is with a frequency of 0.5 Hz, with a

fluctuation of the cable tension of 55.75% of the unballasted mass of the

demonstrator. At full scale, it corresponds to a variation of ± 36.52 tonnes of

mass on the crane.
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To confirm this tendency, a histogram has been plot with the test 11, 5 and 9.

Figure 6-18 Influence of the frequency on the amplitude of the oscillations of

tension – deployment test 11/5/9

The results are showing a similar tendency, with a maximal oscillation once

more for a frequency of 0.5 Hz. These oscillations correspond to a fluctuation of

51.92% of the unballasted mass of the device. Full scale, it is equivalent to a

variation of 34.01 tonnes of the mass applied on the crane.
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Concerning the maximal tension detected by the load cell, a histogram has

been plotted to evaluate the evolution of this tension with a variation of

frequencies.

Figure 6-19 Influence of frequency on the maximal tension – recovery test 11/5/9

The tests used here are the number 11, 5 and 9 (wave height 0.03 m). The

tendency observed is that the most favourable scenario is with a frequency of 1

Hz because it is the one with a smaller tension on the cable. However, the

difference between those values is small.

The same histogram was plotted with the tests 12, 6 and 10 (wave height 0.035

m). The tendency observed is the same; the most favourable scenario seems to

be the one with a frequency of 1 Hz. Due to the raise of the wave height, the

difference of maximal tension between the scenarios is slightly higher but still

small.
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Figure 6-20 Influence of frequency on the maximal tension – recovery tests

12/6/10

A general conclusion of the influence of the frequency on the demonstrator is

that a frequency of 1 Hz is preferable. The lowest pick of tension and the

smallest oscillations of the tension are observed with a frequency of 1 Hz.

However, the impact of the frequency on the maximal tension is not significant

considering the small differences of tension between the different frequencies

(max 5 N).

6.4.1.4 Phase shift between oscillations of tension and wave

The waves during the tests are inducing oscillations of the tensions collected by

the load cell. The aim of this part is to study the phase shift between the period

of the oscillations and the period of the waves. The deployment test 12 is used

to assess this aspect. The sea state during test 12 is the following:

Frequency (Hz) Period (sec) Wave height (m)

Input wave maker 0.5 2 0.07

Full Scale 0.11 8.94 1.4

Output ultrasonic

sensor
0.5 2 0.087

Full Scale 0.11 8.94 1.74

Table 6-7 Sea state of the test 12
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A small difference is observed for the wave height in output, but the period is

the same. Figure 6-21 is displaying the results obtained during the data

acquisition according to the time. Here the actuator phases are not displayed.

During this state, the demonstrator will be floating in the beginning and then

submerged. The phase shift will be assessed in those two different cases.

Figure 6-21 Deployment Test 12 – Configuration 1

To begin with, the phase shift during the floating phase of the device is

assessed. To comprehend this aspect, a graph has been plot with the tension

and the wave height with an identical time scale from 15 to 47 seconds. During

this interval, the device is reaching the waterline and then starts its floating

phase. The impact of the waves here is a lack of the tension during a crest and

a pick during a trough.
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Figure 6-22 Zoom-in from 15 to 47 seconds

According to this graph, the phase shift is . The oscillations are in opposition

of phase. It can be explained by the motion of the demonstrator which is similar

to the motion of the waterline. The device is being raise during a crest and

lowered during a trough inducing a release of the tension during the crest and

an over tension during the trough.

However, a change of the phase shift is observed during the operation. Indeed,

a second zoom-in has been plot while the demonstrator is completely

submerged and the phase shift is different.

Figure 6-23 Zoom-in from 100 to 128 seconds
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Here the phase shift is close to zero. The lacks on the cable are experienced

during the troughs and the over-load during the crest. This phenomenon can be

explained by a loss of buoyancy during a crest and a gain of buoyancy during a

trough.

6.4.2 Tests with the second configuration

6.4.2.1 Presentation

Thirty tests have been carried out in this configuration, fifteen for the

deployment and fifteen for the recovery. Here the sea state was changed only in

frequency as well as the orientation of the demonstrator and we are on

configuration two, with larger inlets/outlets for the ballasts. The aim of those

tests is to assess the impact of the orientation of the demonstrator as well as

the impact of the inlet/outlet size of the ballasts. A time slicing has been

undertaken again to have a clear understanding of the different phases of the

tests.

Figure 6-24 Deployment curve with time-slicing

The curve is divided in seven phases described below:

- Phase A: waiting phase between the beginning of the acquisition and the

launch of the actuator. The vibrations can be explained by the jerks

experienced by the actuators while they are stopped.
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- Phase B: the demonstrator is starting its descent toward the waterline;

the diminution can be explained by the beginning of the motion of the

actuators in the same direction that the force developed by the

demonstrator on them.

- Phase C: the phase starts after the first contact of the ballasts with the

water line. As the rate of the submersion of the demonstrator is more

important than the rate of the raise of the mass due to the ballast

flooding, a drop is observed.

- Phase D: during this phase, the ballasts are underwater but not

completely filled. The slight raise is explained by the fact that the mass

raises without an important change of buoyancy.

- Phase E: the ballasts are flooded, the mass is constant. The slight drop

is explained by a small raise of the displacement.

- Phase F: the important drop here is due to the entrance of the turbine in

the water.

- Phase G: the demonstrator is fully submerged; the tension is constant

and corresponds to the weight in water of the device.

The following figure is illustrating the multiple phases describe hereinabove.

Figure 6-25 Deltastream position during deployment operation
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Figure 6-26 Recovery curve with time-slicing

The curve is divided in six phases described below:

- Phase H: the device is starting its recovery; the weight is constant

because the demonstrator is not starting yet to be out of the water.

- Phase I: the first part of the turbine is off the water; the displacement is

decreasing causing a raise of the tension.

- Phase J: the turbine is completely out of the water, the structure is still

going out of the water, inducing a reduction of the displacement. The

tension is then rising. The slope is less important because it is the

structure of the tower which is going out and it has a less important

volume than the turbine.

- Phase K: the ballasts start to be drained. But the process is slower than

the diminution of submerged volume, so a raise is experienced.

- Phase L: during this phase, 90% of the demonstrator is outside the

water, the displacement is constant while the draining of the ballasts is

still on-going. Thus the tension is dropping.

- Phase M: the actuators are stopped in their initial position but the ballasts

are not drain yet. The demonstrator is fully out of the water, a drop is

once again experienced. The oscillations are due to the immobility of the

actuators and the jerks they are experienced because of it. The

acquisition is stopped when the ballasts are drain.
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Figure 6-27 Deltastream position during recovery operations

During those tests, the demonstrator is not landed to the seabed. Indeed, the

data will be equivalent to the one collected during the tests in configurations

one.

For this configuration, the actuator phases are identical except that the

actuators are not going to bring the demonstrator to the seabed.

The following table is giving the different sea states used during the tests:

Amplitude (m) Angle 0 Angle 45 Angle 90 Angle 135 Angle 180

Frequency (Hz) 0,02 0,02 0,02 0,02 0,02

0,5 Test 1 Test 4 Test 7 Test 10 Test 13

1 Test 2 Test 5 Test 8 Test 11 Test 14

1,2 Test 3 Test 6 Test 9 Test 12 Test 15

Table 6-8 Wave Data and angle for the second configuration

6.4.2.2 Influence of the angle

Five different angles have been tested. The same aspects as in the

configuration one are assessed:

- Influence of the angle on the maximal tension on the cable

- Influence of the angle on the shape of the curve

Considering the maximal tension applied on the cable, three groups of test are

used; they are distinguished by a different frequency and once again the

maximal tension is detected during recovery operations.

- Group 1: Recovery tests 1/4/7/10/13 with 0.5 Hz frequency
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- Group 2: Recovery tests 2/5/8/11/14 with 1 Hz frequency

- Group 3: Recovery tests 3/6/9/12/15 with 1.2Hz frequency

For each group, a histogram is plotted with the maximal tension corresponding

to the angle. The aim is to determinate the most favourable angle for the

maximal tension.

Figure 6-28 Influence of the angle of the demonstrator on the maximal tension –

recovery tests 1/4/7/10/13

According to this histogram, the impact of the angle is not significant. The

higher difference is 5.01N between the 0 angle and the 135/180 angle.

However, the angle of 135 and 180 degrees are the one with a lower maximal

tension when the 0 angle is the worst scenario (turbine facing the waves). A

second histogram is displayed to confirm this tendency.
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Figure 6-29 Influence of the angle of the demonstrator on the maximal tension –

recovery tests 2/5/8/11/14

The second histogram is partly confirming the tendency displayed in the first

one. The most favourable angle is 135 degrees and the worst scenario is an

angle of 0 degree (turbine facing the waves). Those results can be explained

given the fact that the turbine is the part of the demonstrator with the higher

inertia; the energy developed by its movement is higher inducing a higher

tension on the cable. The movement of the turbine is more important when it is

facing the waves. In the opposite, with an angle of 135 or 180 degree, the

movement of the turbine are less important, developing less energy so a

tension less important.

Concerning the impact of the angle on the oscillations of the tension, the same

histograms have been plot with the amplitude of the oscillations corresponding

to the angle of the model.
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Figure 6-30 Influence of the frequency on the angle of the oscillations of tension

– deployment test 1/4/7/10/13

According to this graph, the most favourable angle is 90 degrees. The angle 0

and 180 degrees seem to be the less favourable angle for a deployment, the

oscillations are more important on this case. A second histogram is plotted to

confirm or not this hypothesis.

Figure 6-31 Influence of the angle on the amplitude of the oscillations of tension

– deployment test 2/5/8/11/14

62.5

56

49
54

69

0

10

20

30

40

50

60

70

80

0 45 90 135 180

A
m

p
lit

u
d

e
o

f
o

sc
ill

at
iio

n
(N

)

Angle (deg)

Amplitude of the oscillations of tension

Amplitude of the oscillations of tension

13

10.5

19

16

21.5

0

5

10

15

20

25

0 45 90 135 180

A
m

p
lit

u
d

e
o

f
o

sc
ill

at
io

n
(N

)

Angle (deg)

Amplitude of the oscillations of tension

Amplitude of the oscillations of tension



132

The tendency is not confirm by the second series of tests. A hypothesis cannot

be accurately deduced from those tests. However, the disparities between the

different angles are not very significant, so the impact of the angle is small.

6.4.2.3 Influence of the inlet/outlet size

The first impact assessed is the time of the flooding. The time elapsed between

the first water going in the ballast and the end of the flooding has been timed for

each test in order to compare between the configurations one and two. The

second impact assessed is the impact of the flooding rate on the general shape

of the curves and thus the general behaviour of the tension on the crane.

Concerning the flooding rate, a histogram is plotted to have a quick view of the

different phases and their respective timing.

Figure 6-32 Tine of Deployment - Configuration one and two

The impact of the size of the inlets and outlets of the demonstrator is the time of

the flooding. The flooding is shortly quicker. The main impact is on the recovery

operation, with a difference for the rate of draining greater.

The mass flow rate is assessed using this time and the volume of water stored

in the ballasts. Using Table 5-8, the mass of water stored in the ballasts is

10.89kg. Divided by the time of flooding, a mass flow rate of 0.189kg/sec for the

configuration 1 and 0.346kg/sec for the configuration 2 are found for the

deployment. For the recovery, the results are: 0.06kg/sec for the configuration 1

and 0.068kg/sec for the configuration 2.
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Figure 6-33 Time of Recovery - Configuration one and two

The second assessment undertaken is on the behaviour of the tension. In order

to compare, two tests has been made with the same wave configuration. The

two set of data collected have been plotted in the same curve to compare the

shape:

- Deployment and recovery test 3 of the configuration 1 compared with the

test 14 of the configuration 2.

 Wave height: 0.02 m

 Frequency: 1 Hz

 Deltastream orientation: 180 degrees

- Deployment and recovery test 7 of the configuration 1 compared with the

test 15 of the configuration 2

 Wave height: 0.02 m

 Frequency: 1 Hz

 Deltastream orientation: 180 degrees



134

Figure 6-34 Comparison Graph – Deployment tests

The main differences between those two curves are located in the phase C and

D of the time slicing. Those phases correspond to the phases of the flooding

process of the device. During the first drop (phase C), when the openings are

larger (test 14) the drop is not as significant because the ballasts are flooded

more quickly. So the ratio between the raise of the displacement and the raise

of the weight is smaller. Concerning the small raise after the drop (phase D), it

is shorter due to the rate of the flooding. The demonstrator is being flooded

more quickly so the second phase of the descent can be started sooner. The

impact is mainly on the time of the operation. However, the tension is higher

during the flooding operation but during a shorter time.
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Figure 6-35 Comparison Graph - Recovery

Concerning the recovery operations, the difference of time is not significant. The

main difference is in the pick of tension detected at the end of the operation. As

the ratio between the rate of the loss of weight and the rate of the loss of

displacement is larger, the slope of the raise during the phase K of the

operation is less important and the pick of tension as well. The drop of the

maximal tension is of 10.4%, which corresponds to a drop of 159,900 N for the

full scale. Divided by two, the equivalent in real weight is 8.15 tonnes of

difference.
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6.5 Analysis and comparison with numerical predictions

6.5.1 Analysis and best scenarios

6.5.1.1 Deployment scenario

According to the KML document [3], the maximal tension supported by the

heavy lift crane of the barge is 150 tonnes with an inclination of 20 degrees for

the crane. It can already be assessed that the maximal tension on the crane will

not be experienced during a deployment scenario in the range of the sea states

tested. During most case of deployment tested, the maximal tension is around

150N. This correspond full scale to a tension of 122.32 tonnes.

Considering the sea state, it can be assessed from the results that the quieter

the sea is the better. The parameter with the most important influence is the

frequency of the waves. With a low frequency (i.e. long waves), the

demonstrator will experienced important movements when it will be floating and

submerged close to the water surface. Those movements will induce important

variations of tension on the lift crane. The cable will be successively tighten and

untighten. Thus the snatch loads experienced by the crane can be very

important and induce a risk for the safety of the deployment. The maximal

oscillations detected during the tests are with the longer waves with a frequency

of 0.5Hz which correspond full scale to a wave period of 8.94sec. With this

wave period and an important wave height, the variations of tension can reach a

value of 87.5N trough to crest. At full scale, this value corresponds to a variation

of the tension of ± 36.52 tonnes on the lift crane. However, those snatch load

experienced cannot bring the lift crane to an overload situation because they

occur when the demonstrator is already partly submerged or completely

submerged, so with a buoyancy reducing the tension. The impact of the wave

height for an identical frequency is not as important.

6.5.1.2 Recovery scenario

Considering the maximal tension experienced by the lift crane, the recovery

scenario is worse than the deployment scenario in the range of sea state tested.

Indeed, the maximal tension experienced during a recovery test was 196N. This

correspond full scale to a tension of 159.84 tonnes. This value is above the

maximal tension supported by the lift crane. This tension is experienced when

the demonstrator is fully unsubmerged but the ballasts are still containing water,

adding mass to the system. However, this tension was detected in the first

configuration, when the inlets and outlets of the ballasts were not scaled yet.

The maximal tension experienced during the second configuration was

173.05N. This correspond full scale to a tension of 141.12 tonnes. It is below
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the crane limit. Concerning the sea state, the impact on the recovery operation

is equivalent to the impact on the deployment.

6.5.2 Comparison with numerical predictions

The behaviour of the device examined during the tests while the structure is

floating and the ballasts flooded is in accordance with the hypothesis made in

3.3 in the range of the sea state tested. The stability of the demonstrator is first

unbalanced and the device cannot be left loose floating. To counterbalance this

effect, the device must be constrained to a certain depth during the flooding

process. A quick flooding is also recommended to limit the time of over-tension

experienced by the crane during the operation. In the tests carried out and

presented previously, a slow flooding process was inducing a waiting time while

the descent was stop and the crane was experienced an over-tension. With a

flooding quite faster, no stopping was necessary during the deployment

process. The cap sizing of the device was limited and the over-tension was

shorter even if it was a slightly more important over-tension which was

experienced. However, during the descent between the end of the ballasts

flooding and the beginning of the submersion of the turbine, the device is still

experiencing a trim angle not favourable to the tension on the crane and the

strength of the lift frame. However, the buoyancy of the turbine is

counterbalancing this issue by rebalancing the device and lowering the trim

angle to almost the zero value. The turbine which is an issue to the floating

stability and the flooding process is becoming an advantage important for the

submerged phase of the deployment and recovery operation. Figure 6-36

displays the aspect described above.



138

Figure 6-36 Floating Deltastream with a trim angle

The following table is summarising the mean volume flow rate determined

during the experiments and the full scale value corresponding:

Configuration 1 Configuration 2

Deployment Recovery Deployment Recovery

Reduced Scale

Volume flow rate

(m3/sec)

1.84 ∗ 10ିସ 0.6 ∗ 10ିସ 3.46 ∗ 10ିସ 0.68 ∗ 10ିସ

Full Scale

Volume flow rate

(m3/sec)

3.37 ∗ 10ିଵ 1.1 ∗ 10ିଵ 6.34 ∗ 10ିଵ 1.25 ∗ 10ିଵ

Table 6-9 Comparative results of volume flow rate

The average full scale volume flow rate given above are used to calculate

analytically the time needed for the ballasts to be flooded. Indeed, the volume of

ballasts available is known from TEL. By dividing the total volume by the volume

flow rate, a duration for the flooding is obtained. However; it is not possible to

determine the inlet and outlet full scale size corresponding to the tests carried

out: Indeed, the average flow velocity at the entrance of the ballasts is needed

but it cannot be found accurately.
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7 Conclusions

Through this thesis, a literature review has been done to present the analytical

methodologies used during the research. The stability of a simplified structure

has been assessed along with a work on the ballasts flooding process. The test

session presented in the thesis has given a great deal of information on the

deployment and recovery operations with a single lift point: snatch load effect,

maximal tension experienced, and rate of flooding.

The tests carried out in the wave-towing tank of Cranfield are an introduction to

further tests, more complicated and more complete in the modelling of the

scenarios. For instance, other tests can be carried out with a more complete

modelling of the operation including first the barge in a fixed position and then

with the complete mooring system. However, in order to achieve these tests, a

larger tank is needed.

Further work can be undertaken in the post processing such as a physical

explanation of the change in the phase shift between the oscillations of the

tension and the wave height. Why Deltastream is experiencing sudden

buoyancy effects which are inducing those oscillations while it is fully

submerged and the influence of the wave in those buoyancy effects. A full

assessment can be carried out on the flooding process with a scaled pressure

and inlets and outlets scaled accurately.
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APPENDICES

Appendix A Cranfield Wave-Towing tank

The facility has the following characteristics:

 Tank Length: 30.0 m
 Tank Width: 1.5 m
 Tank Height: 1.8 m
 Water depth: 1.5 m
 Wave height: 280mm peak to trough
 Working frequency: 0.10Hz to 1.1Hz
 Towing speed: 0-2.5m/s
 Max drag: 200 N
 Max payload: 30 kg
 Multi-Component Balances

Figure_Apx A-1 Wave maker

Figure_Apx A-2 Towing carriage
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Appendix B Actuator Technical Data
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Appendix C Tests Pictures

This appendix is regrouping a sample of pictures taken during the test

operations.

Figure_Apx C-1 Underwater Picture – On-going operation

Figure_Apx C-2 Underwater Picture – Landed



147

Figure_Apx C-3 Test operation - Deltastream lifted above the water

Figure_Apx C-4 Test operation - Deltastream entering in the water


