
An AD-Enabled Optimization ToolBox in

LabVIEWTM

Abhishek Kr. Gupta and Shaun A. Forth

Abstract LabVIEWTM is a visual programming environment for data acquisition,

instrument control and industrial automation. This article presents LVAD, a graph-

ically programmed implementation of forward mode Automatic Differentiation for

LabVIEW. Our results show that the overhead of using overloaded AD in LabVIEW

is sufficiently low as to warrant further investigation and that, within the graphi-

cal programming environment, AD may be made reasonably user friendly. We fur-

ther introduce a prototype LabVIEW Optimization Toolbox which utilizes LVAD’s

derivative information. Our toolbox presently contains two main LabVIEW proce-

dures fzero and fmin for calculating roots and minima respectively of an objec-

tive function in a single variable. Two algorithms, Newton and Secant, have been

implemented in each case. Our optimization package may be applied to graphically

coded objective functions, not the simple string definition of functions used by many

of the optimizers of LabVIEW’s own optimization package.

Key words: Forward mode AD, LabVIEW, graphical programming, optimization

Abhishek Kr. Gupta

Department of Electrical Engineering, IIT Kanpur, Kanpur 208016, India, g.kr.abhishek@

gmail.com

Shaun A. Forth

Applied Mathematics and Scientific Computing, Cranfield University, Shrivenham, Swindon SN6

8LA, UK, S.A.Forth@cranfield.ac.uk

1

li2106
Text Box
In: Recent advances in algorithmic differentiation, Berlin Heidelberg: Springer, p. 285-295.Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE) Volume 87DOI:10.1007/978-3-642-30023-3_26

li2106
Text Box
Published by Springer. This is the Author Accepted Manuscript.The final published version (version of record) is available online at DOI:10.1007/978-3-642-30023-3_26. Please refer to any applicable publisher terms of use.

2 Abhishek Kr. Gupta and Shaun A. Forth

1 Introduction

LabVIEW1 is a programming environment for data acquisition, instrument control

and industrial automation [7]. LabVIEW programs are written in the visual pro-

gramming language G [7]. Visual programming languages facilitate writing com-

plex codes as flow diagrams by dragging and dropping inbuilt graphical icons rep-

resenting an instrument, module or a subprogram and wiring icons together to estab-

lish the program’s data flow. Visual programming eliminates the writing of programs

as a collection of text commands making it popular among non-programming engi-

neers and scientists. LabVIEW programs are called virtual instruments (VI) as they

typically represent actual laboratory equipment. Each LabVIEW VI has two compo-

nents: the Front Panel containing the VI’s controls (inputs) and displays (outputs);

and the Block Diagram which defines the VI’s data flow.

Many scientific and engineering applications involve optimization so necessitat-

ing an optimization package in LabVIEW. LabVIEW provides a handful of opti-

mization algorithms but many of these are limited to optimizing objective functions

coded as simple equation expressions within a string [7]. Further, there appears to

be no way for the user to provide derivative information.

AD tools exist for a wide number of programming languages e.g., C, C++,

Fortran, MATLAB, Python2. However, AD of visual programming languages,

such as LabVIEW, appears under-researched. The equation-based simulation lan-

guage Modelica3 is frequently programmed via a visual programming environment.

Elsheikh et al. [2] considered AD of Modelica by source transformation of the

model’s representation in the Modelica programming language and also by a sym-

bolic approach [1]; differentiation of the visual program was not considered.

Our LVAD package implements forward mode AD using operator overloading

in LabVIEW’s visual programming language G as described in Sect. 2. This is the

first presentation of LVAD outside of the student competition paper [6]. Section 3

describes the implementation of our Optimization toolbox with results presented in

Sect. 4 and conclusions in Sect. 5.

2 Implementation of AD in LabVIEW: the LVAD Package

Our LVAD package’s forward mode AD [5, Chap. 3] differs from that for standard

operator overloading [5, Chap. 6] since it is implemented in LabVIEW’s visual pro-

gramming paradigm. In Sect. 2.1 we define an LVAD class whose objects posses

1 LabVIEWT M is a trademark of National Instruments. This publication is independent of National

Instruments, which is not affiliated with the publisher or the author, and does not authorize, sponsor,

endorse or otherwise approve this publication.
2 See www.autodiff.org for a list of such tools.
3 https://modelica.org/

Optimization Toolbox in LabVIEW 3

value and derivative components, in Sect. 2.2 we use visual programming to over-

load arithmetic operations and we present an example of use in Section 2.3.

2.1 LVAD Class

Figure 1(a) shows the visual programming of a LVAD object’s set operation that

takes as input the Value and Deriv supplied by a front panel, say, and assigns

them to the appropriate components of an LVAD object. The attributes of Value

and Deriv indicate that these are both arrays (the i,j,k attribute) and contain

numeric data (the 1 2 3 attribute) of type double (the DBL attribute). Figure 1(b)

shows the get method for extracting an object’s two components.

(a) The LVAD set method (b) The LVAD get method

Fig. 1 Visual programming of an LVAD object’s set and get methods

2.2 Operator Overloading

The usual arithmetic operations for forward mode AD [5, Sec. 3.1] are defined by

overloading LVAD objects. Figure 2 implements the product rule for multiplication

of two LVAD objects. Note how the get operation of Fig. 1(a) is used to access the

Value and Deriv components of X and Y and then the intrinsic addition and mul-

tiplication operations form the product’s value and derivatives before set assigns

them to the product object’s components.

Similarly, other arithmetic operations and intrinsic functions (e.g., sin) may be

overloaded [6].

4 Abhishek Kr. Gupta and Shaun A. Forth

Fig. 2 Overloaded multiplication of two LVAD objects Z = X ∗Y

2.3 Examples

Consider obtaining the derivatives ∂ f/∂x and ∂ f/∂c of the scalar function,

f (x) = (x− c)2
sin

4πecos(x)

√

(x− a)
, (1)

with constant a = 2 and variable c = 2. The front panel of Fig. 3 permits the user

Fig. 3 Front panel to enable differentiation of the function (1)

to set the value and derivative of both x and c and observe the computed function’s

value and derivative. The function value and derivative are correct for ∂ f/∂x at

x = 3 and c = 2. To perform this overloaded AD computation the function was

programmed using the arithmetic operations and functions of the LVAD class by

standard LabVIEW techniques as seen in Fig. 4.

Optimization Toolbox in LabVIEW 5

Fig. 4 Visual programming to differentiate function (1)

3 Implementation of a LabVIEW Optimization Toolbox

The two main Subroutine Virtual Instruments (subVIs) of our optimization toolbox

are Sect. 3.1’s fzero (1-D root finding) and Sect. 3.2’s fmin (1-D minimization).

3.1 Root finding - the fzero subVI

Figure 5(a) depicts the fzero front panel and Fig. 5(b) the corresponding subVI in

the case of Newton iteration; derivative-free Secant iteration may also be employed.

The front panel allows the user to: nominate an objective function VI which must

have a single LVAD input and single LVAD output; set an initial value for the it-

eration, or two such values for the Secant method; set solver options (tolerances,

maximum iterations, method) within the LabVIEW equivalent of a structure termed

a cluster4. On completion the calculated root x∗, function value f (x∗) and, via a

cluster, iteration summary outputs are displayed.

The subVI of Fig. 5(b) shows that, depending on the method selected, fzero

calls either the fzeroNR or the fzerosecant VI5. For this proof-of-concept

work we adopt iteration without any global convergence enhancements [8]. Iteration

4 A further VI (details omitted for brevity) is supplied to set these options within the cluster.
5 Both block diagrams omitted for brevity.

6 Abhishek Kr. Gupta and Shaun A. Forth

(a) fzero front panel

(b) fzero block diagram when Newton-Raphson selected

Fig. 5 The fzero subVI

continues until simple convergence conditions are met (|x|< tolX, | f (x)|<tolF,

or maximum iterations exceeded).

Optimization Toolbox in LabVIEW 7

3.2 Minimization - the fmin subVI

Minimizing a function in a single variable is performed by Newton or Secant itera-

tion on the stationary equation f ′(x) = 0 by the fminVI. The user must provide the

objective function f (x) in the form of a subVI. The program calculates f ′(x) from

f (x) by overloaded AD for both the Secant and Newton methods. For the Newton

method, the second derivative f ′′(x) is calculated by one-sided differencing of f ′(x).

4 Results

We present a simple example of our package use for root finding in Sect. 4.1 and

then present performance testing in Sect. 4.2.

4.1 Simple Example

The objective VI of Fig. 6 corresponds to the objective function

f (x) = cos(x)− x3, (2)

The input, output and all arithmetic operations and function calls are of LVAD class.

Fig. 6 Objective function VI for f (x) = cos(x)− x3

Figure 7 shows a suitable front panel and block diagram for use of Fig. 5’s

fzero to find a zero of (2); the zero is found in 5 iterations at x = .865474. The

function may similarly be minimized using fmin of Sect. 3.2.

8 Abhishek Kr. Gupta and Shaun A. Forth

a) Front Panel

b) subVI

Fig. 7 Front panel and subVI for function zero example

4.2 Performance Testing

For objective function (2) and a tolerance of 1.0× 10−6, Table 1 compares perfor-

mance of: our Secant fzero method without overloading the objective; our Secant

and Newton Raphson methods when overloaded with LVAD; and the inbuilt Lab-

VIEW Newton Raphson zero finder [7]. Our Newton method used an initial x = 1

and all others used the initial pair x = 1,−3. As the root is located at x ≈ 0.865 this

avoids giving an unfair advantage to the latter three methods. The timing difference

between the two Secant methods is due to the overhead of overloaded AD (n.b.,

the derivatives computed are not used). The improved convergence rate of Newton

makes up some of this overhead by using one less iteration. The inbuilt method has

least execution time owing to its optimized implementation as an executable.

Table 2 gives CPU times to minimize f (x) = x2 − sin(x) to a tolerance of

1.0×10−6 with: our package’s Secant and Newton methods (with overloaded AD);

and LabVIEW’s inbuilt Quasi-Newton and Brent’s methods. We indicate whether

Optimization Toolbox in LabVIEW 9

Table 1 Performance testing

for fzero: variation in num-

ber of iterations per solution

and mean CPU time (ms)

per solution with method for

1,000 repeated solutions. A

dash indicates unavailable

information

Method AD iterations CPU time

(ms)

LVAD:Secant no 4 2.232

LVAD:Secant yes 4 14.52

LVAD:Newton yes 3 9.670

inbuilt:Newton no - 0.199

the objective is supplued as a VI or string. For the (Quasi) Newton methods an initial

value of x = 1 was used; for Secant the pair x = −1.2,1; and for Brent’s the triplet

x = −1.2,1,2.2 (n.b., the minimum is located at x ≈ 0.45). The inbuilt functions

have least execution time owing to their optimized implementation as executables;

the large number of function evaluations is possibly due to poor derivative accu-

racy preventing asymptotic superlinear convergence. Our LVAD:Secant method is,

encouragingly for a one-dimensional optimization, only some 30% slower. We are

currently unable to explain the high CPU time for LVAD:Newton..

Method AD objective function CPU time

supplied as evaluations (ms)

LVAD:Secant yes VI 19 0.531

LVAD:Newton yes VI 6 3.620

inbuilt:Quasi-Newton no string 47 0.447

inbuilt:Quasi-Newton no VI 47 0.400

inbuilt:Brent’s no string - 0.433

Table 2 Performance testing for fmin: variation in number of iterations per solution and mean

CPU time (ms) per solution with method for 1,000 repeated solutions. A dash indicates unavailable

information

5 Conclusions

Following Sect. 2’s description of our overloaded forward mode AD package,

Sect. 3 detailed how we utilized AD in Newton methods for single variable root

finding and minimization in a prototypical LabVIEW optimisation package. Our

package accepts graphically coded definitions of the objective function, an advan-

tage over the restrictive string definitions of many of LabVIEW’s inbuilt optimiza-

tion functions. Section 4’s performance testing showed that overloading overheads,

though noticeable, are not sufficiently large to warrant discarding our approach.

A disadvantage of our LabVIEW approach, compared to AD in compiled lan-

guages, is that the objective function must be re-coded by replacing all the subVI’s

10 Abhishek Kr. Gupta and Shaun A. Forth

inbuilt class function calls and arithmetic operations by those of the LVAD class.

In compiled languages one simply changes, perhaps automated by scripting or tem-

plating, the class or type of the objects [4, 9]. This task is unnecessary in MATLAB

as objects acquire the class of the result of the assignment that creates them [3].

The LVAD class might be extended to vector forward mode, perhaps by utilizing

a specialized vector derivative storage and linear combination class [3]. Then we

might extend our optimization toolbox for functions with x ∈ R
n.

Finally, we note that LabVIEW saves VIs in a propriety format making source-

transformation AD approaches almost impossible without the cooperation of Lab-

VIEW’s owner National Instruments.

6 Acknowledgements

The authors thank National Instruments for permission to include LabVIEW screen-

shots.

References

1. Elsheikh, A., Noack, S., Wiechert, W.: Sensitivity analysis of Modelica applications via auto-

matic differentiation. In: 6th International Modelica Conference, vol. 2, pp. 669–675. Bielefeld,

Germany (2008)
2. Elsheikh, A., Wiechert, W.: Automatic sensitivity analysis of DAE-systems generated from

equation-based modeling languages. In: C.H. Bischof, H.M. Bücker, P.D. Hovland, U. Nau-

mann, J. Utke (eds.) Advances in Automatic Differentiation, pp. 235–246. Springer (2008).

DOI 10.1007/978-3-540-68942-3 21
3. Forth, S.A.: An efficient overloaded implementation of forward mode automatic differentiation

in MATLAB. ACM Transactions on Mathematical Software 32(2), 195–222 (2006). URL

http://doi.acm.org/10.1145/1141885.1141888

4. Griewank, A., Juedes, D., Utke, J.: Algorithm 755: ADOL-C: A package for the automatic

differentiation of algorithms written in C/C++. ACM Transactions on Mathematical Soft-

ware 22(2), 131–167 (1996). URL ftp://info.mcs.anl.gov/pub/tech_reports/

reports/TM162.ps

5. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic

Differentiation, 2nd edn. No. 105 in Other Titles in Applied Mathematics. SIAM, Philadelphia,

PA (2008). URL http://www.ec-securehost.com/SIAM/OT105.html

6. Gupta, A.K., Agrahari, A.: LVAD package: Implementation of forward mode automatic dif-

ferentiation in LabVIEW using operator overloading. VI Mantra Technical Paper Writ-

ing Contest, National Instuments (2008). URL https://sites.google.com/site/

gkrabhishek/projects/publications

7. LabVIEW 2011 Help (2011). URL http://digital.ni.com/manuals.nsf/

websearch/7C3F895E4B50A03D862578D400575C01

8. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)
9. Pryce, J.D., Reid, J.K.: ADO1, a Fortran 90 code for automatic differentiation. Tech. Rep.

RAL-TR-1998-057, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11

OQX, England (1998). URL ftp://ftp.numerical.rl.ac.uk/pub/reports/

prRAL98057.pdf

