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SUMMARY 

The time response of a wind tunnel pressure measuring system, 
comprising a pressure transducer of fixed volume and a length of 
capillary tubing, is analysed and the results compared with experiments. 
It is shown that the approximate analysis of Kendall (1958), in which 
the friction losses at any given time are assumed equal to the steady 
state losses, has a wide range of validity, provided the Lilt  ratio for 
the capillary tube is large and the inlet and exit losses are included 
as equivalent lengths of the capillary tube. 
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NOTATION 

a, a
o 
	speed of sound 

c1 , c2•  C3 	
constants 

C, C 	parameter and its average value respectively 

f(r irt) 	
see equation 5.8 

Tr p 
k= 	 

&PVL 

L 

L
e 

rn 

p 

Pa 

P P1o   

= 

p 
O 

response parameter 

length of capillary tube 

effective 1(.,ngth 

rate of mass flow 

pressure 

pressure at z = L 

atmospheric pressure 

initial and final pressures respectively 

p2 - 1)2  

p  2 

2 p1  - 2 p0 
 

rate of volume flow 

(r, 0, z) 	cylindrical polar co-ordinates 

rad'u.s of capillary tube 

s 	 Laplace Transform operator 

t 

t
s 

t
o 

time, also non-dimensional time 

stabilisation time 

time constant 

a0  \\ 

L 



Notation (Continued) 

reservoir volume 

axial velocity component 

axial velocity component at r = 0 

average velocity at any section 

distance along tube, also non-dimensional 

axial length (z/L) 

see equation (7.12) 

2v-R
2
L  

VC 

complex variable 

viscosity 

density 

wall shear stress 

see equation (7.4) 

value of r corresponding to t = 1 

V 

w 

w 

z 

y 

X 

w 



1. Introduction 

In pressure measuring systems for intermittent supersonic wind 
tunnels it is important that the response time of the system for 
stabilization of the pressures is less than the overall available running 
time of the tunnel. Also in intermittent supersonic wind tunnel testing, 
it is often necessary to measure several pressures in a short time. 
Due to the limited space available, in cases where the pressure trans-
ducer has to be installed in the model itself, it is necessary to use a 
selector switch (e.g. 'Scanivalve') to select the pressure tappings in 
turn. To determine the speed at which such a selector switch may be 
operated and in order to gain useful information from such a system, 
a knowledge of the response times of 'transducer - capillary tube' 
combinations is required. The approximate calculation of the response 
time of a simplified system, comprising a capillary tube connected to 
a constant volume reservoir, has been given by Kendall (1958) and 
others. The purpose of the present note is to give a more exact treat-
ment of the response time for the same simplified system used by 
Kendall, and to give the results of some experiments to check the theory. 
It should be noted that whereas Kendall considered the case of a sudden 
decrease in the applied pressure to the transducer, for convenience, 
we have considered the case of a sudden increase in the applied pressure 
to the transducer, although the theory is applicable to the case of a 
sudden decrease in pressure also. 

2. The simplified pressure measurement system 

A capillary tube of diameter 2R and length L is connected to a 
reservoir of volume V. The initial pressure in the tube and reservoir 
is p

o
. At time t = 0 the pressure at the tube inlet is raised to pi  . 

The problem is then to find the variation of pressure with time in the 
reservoir, and to find the stabilization time, which is the time taken 
for the rressure in the reservoir to rise within 1% of the pressure 
difference (p1  - p

o
). 

3. Assumptions 

1. The flow is laminar*  and the distribution of velocity across any 
section of the tube is independent of the distance along the tube. 

2. The velocity in the reservoir is zero. 

* 
This assumption is reasonable since in most practical systems the 

Reynolds number of the pipe flow will be less than 1000 (based on radius). 



d Vp 	V dp 
dt 	 dt 

V dp 
dt 2 ao 

(4.2) 
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3. Inlet and outlet losses in the capillary tube are neglected. 

4. The flow is isothermal. (See footnote after equation 5.4). 

5. The flow does not involve slip. 

4. The approximate solution of Kendall (1958) 

In addition to the assumptions listed under paragraph 3 Kendall 
makes the assumption that the pressure squared distribution along the 
tubing is linear with distance fcr all time. Thus the flow along the tube 
at any time is determined from the end pressure difference. If p is 
the variable pressure at z = L then the rate of mass flow m(t) in the 
tube is given by (see paragraph 6 below): 

It4 	
2 	p 2 

in(t) = 	 (4.1) 
16 u a2  

0 

where R = tube radius 

L = tube length 

viscosity 

a
o 	

speed of sound (for isothermal flow) 

The rate of change of fluid mass in the reservoir of volume V is 

since p = A a2  in isothermal flow. 

Now the rate of mass flow in the tube must equal the rate of change 
of fluid mass in the reservoir, so that 

dp 
dt 

IT R4 

16uV 
Pi2 - P2  

L 
(4.3) 

with p po  when t 0. 



and when 

We find for air at 15°C that 

2 
R, 	R k 	 . 	. 	. 5.68 x 10

9 
sec

-1 

	

8V

2 
L 

 L 	Pa 

(4.7) 

(4.8) 

( 4 .9 ) 

where pa  - atmospheric pressure. 

i
s 

= 

In (
200 p 

Pi  - Po 
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The solution of 4.3 is 

131 	P 
4 

P - P 	f ITEL 0  
(4.4) 

1)1- 	

1 

 -I-  Po 

exp 
\ 	811VL t  ) p1  p 

If Pi 
 >> 	

then for small t 
17,7  

p1 
	

1 - exp(-.lit) 
	

( 4 .5 ) 

where 	k = 7r R
4 

pi  

8 LiVL 

Similarly for large time with 	>> 1 
Po 

1 - 2 exp(-kt) 
p1  

( 4 .6 ) 

If we define the stabilization time t as the time taken for the 
pressure in the reservoir to reach within 1% of the overall pressure 
difference (p 	p

o
) 
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In Figure 1 the variation of pressure with time is shown together 
with the small and large time approximations. In this example 

R = 0.1 cm 

L = 200 cm 

V = 3000 c. c. 

Pi  /Pa  = 1 	pi  /pa  = 1000 

t
s 

= 14 secs. 

5. 	Unsteady flow in a capillary tube 

Let us use cylindrical polar co-ordinates r, 0, z with z measured 
along the tube axis. If the radial and circumferential components of 
the velocity are zero the equations of continuity and motion become 
if w 	r, z) and p 	r, z) 

ap 	apw 
at az - 

Equations of1Viotion 	 0 = 
ap 
or 

  

apW 	ap w2 	aP+  u C1 w  
at 	3 z 	az 

Equation or Continuity  0 	 (5.1) 

(5.2) 

(5.3) 

where 	V2  

	

a 2 	1 a+ a2 

	

are 
	r ar 

3 Z
2 

and /2 is constant since the flow is isothermal. 

If the z differential of 5.3 . is subtracted from the t differential of 5.1 
we obtain 

	

a2p 	a2p 
-az 

aw 

	

t2 	0 z2 	az2  
(5.4) 

We can eliminate the density p by substituting the isothermal relation. *  

The reason for assuming the flow is isothermal is that since all 
velocities are assumed small (in fact for large time they must necessarily 
be so - for wry small time they will in general not be so) the dissipation 
energy and pressure work terms will be very small since they are of 0(w2 ). 
Hence the temperature changes must necessarily be small and we are 
justified in neglecting them. It is for this reason that we do not need to 
introduce the energy equation into our formulation of this problem. 
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Thus 

2 
p = p a

o 

32  p 	a2C)  P + 
D 2  p w 2 	

a 2 aW 
— 	 11 

 

at 	 a z2 	0 	az  

(5.5) 

(5.6) 

Some simplification results if we integrate the equations of motion and 
continuity with respect to r 2  and make the assumption that the radial 
velocity distribution is independent of z. Thus on writing w—(z,t) as 
the average velocity at any section we have 

r 
/.- t) = 	w dir

2
/ 
	

(5.7) 

and if 

with
* 

w(r, z, t) = Tv(z, t)) 
iR 

f( 	d n
2 	

1 
f

i 

1 	Jo 

C2 
= f f2(n) de 

IIai 

 
C3 = 

On 
71=1 

(5.8) 

the integral form of the equations of con+inuity and motion become 

p 	ce p  
t 	3 z 

0 	 (5.9) 

1 	T) Tr 	3 	\ 	3p 
a- \ 	

c 
t 	2 az P 	 az 

0 

2c3 p7v a2  

z2  
2 

(5.10) 

respectively, on making use of (5.5) and (5.2). 

* 
For a parabolic velocity distribution 

c2 = 4/3 and c3 -= 4. 
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If we subtract the z - derivative of (5.10) from the time derivative 
of (5.9) there results 

	

82, 	 3 '- 
02  p 	 c ti a2 

3 	0 	a wf 	 a2  p Tr2  ---7- a
2 

b a
2 3 w 

+ c 2 
a t 	0 a z2 	R

2 	a z 	0 az3 	a z2  

(5.11) 

which is the 'integral form' of (5.6), and is the wave equation for 
pressure fluctuations in a tube allowing for viscous dissipation. 
Of course equation (5.11) can only be solved when w is replaced by 
a function of p. 

Now from (5.10) we find that 

1,7„, 	_ Bt2  a p 
2 	az c3   

112  	

( at 	 2
apTv_ 	ap Tv2)+ 	

2 
 a2W 

2 c a2  
-2 az 	c3  3z2  

3  0 

(5.12) 

and if R/L is sufficiently small so that 

2 

131  R 
a

o 
L 

< 1 we may retain 

only terms in R4  giving 

R
2 

OP 	R4 a 3 p 	R4 	32 

= - 
	

P 

,..„ 2 	

6 a Z at + ") 
4w 	

— — - — ...---- + 	 

2 03  az 4 c
2 

a  Z
3 

3 	8 c3a0
22 

 It  
(5.13) 

If (5.13) is substituted into either (5.11) or (5.9) and only terms 
in R2  are retained we find that 

R2  
at 	4 c3 p 

82 p2 

a z2  
(5.14) 

showing that p2  is only proportional to z in the steady case. 

If we multiply (5.14) by 2p then 

a p2 _ 	:R2  p a 2 p2 

aZ2  

(5.15) 
t 	4jic3  

which is a one-dimensional diffusion equation, where the diffusivity 
R2, 

, is a function of pressure. 
4p c3 



P: 
(on dropping the bars on t and z) 

2 
P, 

F = z/L (1.15) becomes 

2 

P - Po 
0 

t ao  

4 c
3

g a
o 

L 

aP R2  p, 
at - (5.16) 

Pi 	a z2  

7 

The solution of (5.15) is made more complicated by the form of 
the boundary conditions. Thus on writing P = p2  - p2 with 

with the boundary condition (associated with a step function change in 
pressure at the tube inlet) 

P = 0 
	

t < 0 	 allz 

P = P
o 
	 z = 0 	 t > 0 

P = P
o 
	 allz 	 t = co 

	 (5.17) 

and 
a P 	_ 
at 

4 
R 

2 c 	a
o

V 
3 

p 	a P 	at z = 1, 
pi 	a z 	for t> 1 

= 0 	at z = 1 for r< 1 

This last boundary condition arises from the necessary condition that 
the rate of mass flew out of the tube equals the rate of change of mass 
in the reservoir of volume V. 

According to our assumptions we have not considered in detail the 
wave motion set up in the tube as a result of the step-function change 
in the inlet pressure. We see from equation (5.6) that the shock wave 
propagated down the tube would be attenuated and decelerated, and that 
the pressure would not begin to rise in the reservoir until a time 
t = L/a

o 
after the initiation of the shock wave. Consequent reflections 

of the shock wave would result in further changes in pressure but these 
changes in pressure will be small, and in any case the times over which 
they occur will be small compared with the stabilisation time provided 
L/R » 1. 
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Hence provided we accept the fact that for our purpose the details 
of the wave motion in the tube are not required in detail, we see that 
our problem reduces from a pressure wave problem to a pressure 
diffusion problem. 

Before the solution of (5.16) together with (5.17) is attempted we 
will return to the corresponding steady flow problem in order to justify 
the approximate forms used for W above. 

6. Steady flow in a long capillary tube 

For steady axi-symmetric flow in a tube of constant radius E the 
equations of continuity and motion are 

Equation of Continuity 	 ap w 
(6.1) 

a z 

Equations of Motion 	ap w2 
ap 

12172  W 	 (6.2) z 	 z 

0 
ap 
ar 

(6.3) 

Equation (6.1) shows that 0w is a function of r only while equation 
(6.3) shows that p is a function of z only. If the flow is isothermal 
p = 	pa2o' say, and then 

2 
ap W 2 	 dp 
az 	2  dz ao  

with (6.2) becoming 

(6.4) 

0 	= 	- (1 - w2  j 	P + 	aa w1, 	
a2w2 a 	dz 	ar r 	r) 	a z2  n 

(6.5) 

f
o 

and w
o 

are taken as the reference density and velocity 

respectively then 
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a Pi 	2 
/ 	 \ u l a w 

T 

	

0 	 [ 1 
0 = - 1- w2 / a2  

0/ 	
0  

	

d 
z
/L 	

R R
e r 

2 
2 aw/w 

a (z /02  

ar 

aw/w
o  

ar 

(6.6) 

where = r/R, and Re  = Powo 	It is assumed that 

1 a 
awiw 	 a2 wiw  

and 	 are the same order of 
iz al (7 	 a 	( z/ L)2 

magnitude. It follows that when w/a c<1 and 	« 1 equation (6.5) 
o 

 

approximates to 

= dp 
dz 

" 3  (r 8w\  
r ar 	Dr, 

(6.7) 

The first integral of (6.7) with respect to r is 

r dp aw 
= 2 dz +" 

and the second integral is 

w w  = _ r2  dp 
1 	 4 	dz 

where w1  is the axial velocity at r = 0. 

(6.8) 

(6.9) 

dp 
4 il dz 

Hence 	WI  - 	
2 	

(6.10) - 
_ R 

_ (01Ar 	_ R dp 
= 	 = 	 (6.11) T 

W 	Li  \,ar jr.h 	2 dz 

W 
_ 	I - r2/ 13,2 	 (6.12) wi  

= w1/2 	 (6.13) 

as in standard Poiseuille flow except that dp/dz is not constant. 
(See equation 6.15 below). 

The rate of volume flow 

ffIt4  
8,u 	dz 

(614) Q = Tr R2  TV 



We see from (6.14) that under steady flow conditions 

2 
R dp 

8u dz 
w (6.19) 
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If the flow is isothermal p = a2
, say , and then the rate of 

mess flow is 

2 
rn. = PI" R w = 

ir R4 
dri 

2 

16//a2c, 	dz 
(6.15) 

Under steady flow conditions the rate of mass flow will be constant 
so that if the pressures at z = 0 and z = L are p1 and p* respectively 

2 
IT R 4 	P12P 

m 	 (6.16) 
2 

16 11 a
o 

and 
w(z) = J22 

16 pz 
R 2 

16u z 

 

2 	2 
P 

  

 

(p, - p) 

 

(6.17) 

whereas under conditions of constant density 

2 

(p 	p) = c On St . 
8E u z  

(6.18) 

Hence as p 	p, in equation (6.171 

R2  
8 p z

(p~p) and Tv is then independent of z. 

In the latter case equation (6.7) is exact and not approximate since then 
w = w(r) only with 

Ow 
P w 

z 
0 	and 

a 2 	
= 0. 

a z 

and hence the approximation to W made in paragraph 5 for the unsteady 
case is essentially that of replacing W by its value in the steady case, 
allowing for the fact that the velocity distribution in the unsteady case 
will not be exactly parabolic. 



Equation (3.16) gives the expression used by Kendall (see 4.1 
above) for the rate of mass flow through the tube. 

7. The solution of the pressure equation for the unsteady flow in 
a reservoir connected to a capillary tube. 

It was shown above that the approximate pressure equations is 

4 c 
3 
 p a

o
L 

a P 	
- 
_ 

a t .112 p i  

a2 p 
(7.1) 

a z2  

with the boundary conditions 

P 
	

t < 0 
	

all z 

P 	= 	P
o 
	 z = 0 
	

> 0 
	

( 7 .2 ) 

P 	P
o 
	 all z 
	

t = 

= 

t 

  

0 <t <1 

 

z=1 

 

ir R4  pi  

 

p 	a P 

P1 	a z 
t 	1 

    

 

2 c tia V 
3  0 

  

2 	2 	 2 	2 
P = P P° , with P

o 
=  	13° 

n2 
P 

and t and z are non-dimensional quantities. z = 0 corresponds to the 
open mouth of the capillary tube while at z = 1 the tube, of length L, 
is connected to the reservoir of volume V, having the initial and final 
pressures of pc)  and pi  respectively. The significance of t = 1 is 

that according to our assumptions the shock wave of initial strength 
p 	- p

o 
at time t 0 takes a time t = 1 (non-dimensional time) to 

travel the length L of the capillary tube. 

An approximate solution of the non-linear equation (7.1) with the 
non-linear boundary conditions (7.2) can be obtained if we assume that 
the term NA on the right hand side of (7.1) can be replaced by a 
function of t only. Thus if 13'10 is the value of p at z = 1 then let 

In cur notation 
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p 	C(t) p*(t)  
P, 

(7.3) 

where C is an adjustable parameter, whose value is of the order of unity. 

If R2  pi  C p*  
4cuaLp 

0 	1  
0 

(7.4) 

then (7.1) and (7.2) become respectively 

 

a 2 p 
(7.5) 3r 

 

e 
with the boundary conditions 

P = 0 
	

T < 0 
	

all z 

P = 0 
	

z = 0 
	

r > 0 

P 	•P 0 	all z 	
(7.6) 

= - y -7)-• 	z = 1 	T ;'-' T i 

*2 2  

where 	P* . p  - Po 	y = 2ir R2 I.,  
is assumed to have 

R2 	 v 

a constant value, by replacing C by its average value a, and 

	

i 	2  

T I 	

1 	R pi  C 	
P* dt . 

	

o 	
4 c3i-iaoL 	pi  

If s is the Laplace Transform operator the 'subsidiary equation' is 

cry 
I 

= 	
1 	d 2  7/3  

dz2 (7.7) 

where 15  = 	P e
-ST 
 dT , and the boundary conditions are replaced by 

0 

J. 
a P- 

.--77- = 0 	z . I 	Or r <z 1 

a p* 
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= Pois 

* 

The solution of (7.7) 

171P0  

and when z = 1 

I7P
o 

S 
ye 

sinh 

satisfying 

z 	= 	0 

T 
1 	(IT 

z 	= 	1 
dz 

(7.8) is 

S T 

fs (1 -z) 	+ 	cosh (1 -z)V-S-- 

(7.8) 

(7.9) 
s 

<< 

S 

I sinh 1,r-W + 	y es r'cosh -rs 

(7. 10) 
S Ti  

Y e 

[ -FS-  sinh 	+ ye
ST  

l coshll 

From the inversion theorem we obtain 

P 
0 2 if i 

(7-1-7) 
e-  I d 

sinh 	+ y e cosh 

= 	 0 < T < T 

exp ( av2  r ) 
1 - 2y 

-a2T 
= 1 

bev  [T(1 +y e 	)sin 0[01-av  (1 + 
for T 

	 are the roots of the equation 1.vhere al 	+ 
2 

-°V1  
2y Ti  e 	)cos a., 

the tube volume to the re 

Now in our problem 

a tan a 
- CC 2 

T 
= y e 

2 
	"

_2L 
, which is roughly the ratio of 

V C - a2 T 
servoir volume, and in general ye <ri  1. 
-Ct2  

(7. 12) 

In this case a = 	y e 
and on retaining only the 
t by real time,  

with sin a1 c.1 and cos al 	1, 
first term in the series in (7.11) and replacing 

    



0 
aa*  
dt 

- 14 - 

0 < t < Liao  

k 	t 	
.-:-'4cdt') 

C J 	p1  
Liao  

fort 
L

/a 

P
o 
	0 

1 	exp 

4 

where 	k = 	
R 

2 3 L 

(7.13) 

0 

The solution to (7.13) easily follows when C is a constant. On 
differentiating both sides of (7.13) with respect to t and rearranging we 
find that 

0< t< L
ia 
0 

k 

( P2  

P 
*2  \ 

 

(7.14) 

2 

  

for t L
/ao 

 

which we found above was the approximate equation derived by Kendall. 
The solution of (7.14) is therefore 

Po 
A, po  

exp 	k (t Liao) 1 	(7.1E) 

and the stabilisation time, for pi  po  » 1, is 

5.3 
k 	a 

It would appear at first sight a little surprising that our various 
assumptions, all of which seem justifiable, merely add up to Kendall's 
local steady flow approximation. The only modification to Kendall's 
result is the addition of the term Lia

o
. 

However the solution to (7.13) is based on the fact that C is a constant. 
But when C is taken as a function of time and noting that C/? is less than 
unity, and takes on its smallest values for small values of t - L/a , 
we see that the effective  value of k in (7.15) will be less*  than Keedall's k 

* It is assumed that the velocity distribution is parabolic so that c3  = 4. 

t
s 

(7.16) 
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for small values of t Lia
o
, and will approach its value for large time. 

This part of the difference between the theoretical and experimental curves 
shown in Fig. 8 may be due to this overestimate of k at small times. 

The above solution can be extended to the case of a series of tubes 
of different lengths and diameters by reducing them to an 'equivalent 
length' of constant diameter tubing. In addition allowance can be made 
for entry and exit losses, as well as the loss at a rapid expansion, by 
adding 'equivalent lengths' of constant diameter tubing. For example, if 
in addition to a tulle of radius R and length L there are a number of tubes 
of radius R. each of length L., then the 'equivalent length' of tube of 

radius R is 

4 
L

e 	
L + 	L. 

1 
1 

(7.17) 

frf. 

fFr
L L 	 7-777'/ 

The equivalent length of tubing of radius R for the above arrangement 
making allowances for entry, exit and rapid expansion losses is 

/ 	• 4 R 
 R L

e 	
L 	

1  
L. (

R 
 /11.

1  + 16 • 
\ 	 L 

where R
e 

- 	 

L /1.48 + 	(7.18) R. 

and suffix '1, ' denotes conditions at the entry to the tube 
of radius 

It might be noted that if the entry hole (say a diameter of 2R
0

) is of 

different diameter than the tube of diameter 2R, the term in brackets in 
(7.18) is replaced by/  

R
4 

1.48
R 	

+1 

Ro  
when — < 1. The equivalent length of tube is thereby increased many times. 

7if
- 
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In most pressure systems for supersonic wind tunnels, where Re  <1000, 

the last term can be neglected. Further details of the application of the 
'equivalent tube' method to the response of pressure measuring systems 
should be made to Kendall (1958) and Heyser (1958). 

8. Apparatus used in the experiments  

The basic apparatus consisted of a Langham Thompson type UP.4i 
150/325 No. 808 pressure transducer having a range of ±15 p. s.i. and 
a chamber volume of 0.0941 cu. in. (1540 rnm3 ). This was connected in 
turn to various lengths of steel capillary tubing having a bore of 1 mm. 
diameter. The other end of the capillary tube was connected to the vacuum 
chamber of a 'Speedivac' vacuum pump and the chamber was sealed off 
with a cellophane diaphragm (Fig. 2). The output of the Langharn Thompson 
pressure transducer was connected to a 'Tektronix' type 545 oscilloscope 
fitted with a 'Polaroid' camera for permanent recording. 

The pressure in the capillary tube and transducer chamber was first 
reduced to approximately 10 mm of mercury. The subsequent bursting 
of the diaphragm produced a good approximation to a step input of pressure 
to the system. Also fitted to the vacuum chamber was an S. L.M. PZ.14 
piezoelectric pressure transducer. This was used initially to measure the 
pressure in the vacuum chamber but later, due to its very rapid response, 
it was used to trigger the oscilloscope. In the latter case it was used with 
a direct coupled amplifier. 

9. Description of tests  

The tests were made with capillary tube lengths from zero (i. e. the 
transducer mounted flush with the wall of the vacuum chamber) to a 
maximum of 68 in. The longer tubes comprised 2 or 3 shorter lengths 
butted together and sealed with short pieces of rubber tubing. The results 
are shown in Table 1 and Figures 3 to 6 inclusive. 

10. Discussion 

The response of the S. L. M. transducer to the bursting of the diaphragm 
is shown in Fig. 3. It can be seen that the pressure in the vacuum chamber 
reaches its final value (atmospheric) after 300 micro seconds and then, 
after about 5 overshoots, finally settles down to a steady value after 2.5 
milliseconds. This is the 'step input' to the capillary tubing. 

Since the stabilisation time, that is the time required for the pressure 
to reach 99% of As final value, is difficult to measure in practice, a more 
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accurate measure of the response is found from the determination of the 
'time constant', t

c
, of the system. We will define the 'time constant' as 

the time required for the pressure to reach its final value at the maximum 
response rate. It will be seen from Figs. 4, 5 and 6 that the measurement 
of the maximum slope can be made with reasonable accuracy. 

Fig. 7 shows that the experimental results agree with our predictions 
and those of Kendall, provided the tube length is not too short and the inlet 
and exit losses are included. When the tube length is zero the above theory 
is not applicable but a simple calculation for this case (see Appendix) 
shows that the 'time constant' will be about 12 milliseconds, in agreement 
with the experimental results. On the other hand, Fig. 8 shows that the 
experimental time variation of the pressure in the reservoir at small 
times differs greatly from_ the theoretical. A partial explanation for this 
difference lies in the inexactness of our approximations for small times 
especially the neglect cf the initial wave motion. It has already been 
explained above that a more exact solution of our equations should give a 
smaller slope at small times than that shown in Fig. 8, and this would have 
the effect of bringing the theoretical curve nearer the experimental curve. 
The difference between the theory and experiment is further demonstrated 
in Fig. 9 and in this case it would appear that we have overestimated the 
losses due to inlet and exit. 

The high frequency signals superimposed on both the Langham Thompson 
and S. L. M, transducer traces are due to the gauges 'ringing'. The ringing 
frequencies are seen to be 1500 cis for the Langham Thompson and 5000 cis 
for the S. L . transducers. 

When the diaphragms were burst they always shattered leaving small 
pieces of cellophane 	to block up the end of the capillary tube. Although 
the possibility of this occurring was reducad by placing the end of the 
capillary tube under the centre of the diaphragm, it did occur in cases 
where the transducer was mounted flush with the wall of the t'acuum chamber. 
Fortunately when this happened it could easily be detected from the 
oscilloscope record (see Fig. 5d (49); Fig. Ed (44); Figs. 4b and 4c (61)). 

11. 	Conclusions 

The response of a pressure measuring system to a step-function input 
is analysed and it is shown that the approximate solution of Kendall (1958) 
has a wide range of validity. This solution gives results in reasonable 
agreement with experiment provided the length/diameter ratio of the 
capillary tubing is sufficiently large and allowance is made for the inlet 
and exit losses. 
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APPENDIX  

The response time of a zero length capillary tube  

pressure system  

When a pressure transducer is subjected to a step function input the 
response time will be a function of the orifice size and chamber volume. 
If we assume the orifice discharge coefficient is 0.64, then on equating 
the rate of mass flow through the orifice to the rate of increase of mass 
in the chamber we find that 

0.64 p 
irR2 	dP ;A. 1) 

t Vt 	V - dt 

where R and V are the orifice radius and chamber volume respectively 
and P

t 
V
t 

is the rate of mass flow per unit area of orifice. In the case 

where the applied pressure ratio exceeds the critical pressure for sonic 
conditions at the orifice we have, for small times that 

0.64. y py 	PH
2 

dt 	1.728 al 	V 	
a

2 
(A. 2) 

On the assumption that a2  is constant, the time constant tc, when 
p

1 
 » p 

o
, is given by 

1.728  
t
c 	0.64. y ai  

V 

7TR2  
(A.3) 

In our experiment V = 1540 mm3  and R = 0.5 mm so that 

t
c 	

12 millisecs 

which is equal to the value found by experiment. 
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TABLE I 

Fig. No. Record No. Length of 1 mm 
bore capillary 
tube (in.) 

Vertical scale 
mV/cm 

Horizontal scale 
ins/cm 

3a 64 0 10 10 

3b 63 0 10 2 

3c 62 0 10 0.2 

4a 61 0.01 5 2 

4b - 0.01 5 2 

4c 0.01 5 2 

60 ) 
5a 59) 9.9 5 2 

58 ) 

43 ) 
5b 42) 5.8 5 5 

41 ) 

5c 48 9.8 5 5 

47 13.8 5 5 

46 18.8 5 5 

5d 51 42.9 5 10 

50 26.8 5 10 

49 22.8 5 10 

40 ) 
6a 39) 31.0 5 10 

38 ) 

6b 54 55.4 5 10 

53 50.9 5 10 

52 46.9 5 10 

6c 57 67.9 5 10 

56 63.9 5 10 

55 59.9 5 10 

6d 45 ) 
44 ) 67.88 5 10 
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