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The Theory of Structures is for the most part concerned
with the calculation of stresses in a given structure under given
external conditions of loading and temperature. The real problem
of struciwral design, howcver, in aeronzutics at any rate, is to
find that structure, which will equilibrate the external loads,
without failure or undue deformation, under such conditions of .
tenperatare, as may be ap;;ropria‘ce, and wvhich at the samc time will
have the least possible weight., The solution of this'gencral design
rroblen is obviously very difficult and cannot be resolved at the
rresent time, However, on the basis of certain classical theorems
due to Maxwell and Michell and using methods and suggestions derived
fron these theorems by H.L. Cox, one can make certain progress,
and in addition point the way to profitable lines of research.

The prescnt paper reviews the classical results and their current
aprlication, develcps the mathematical theory for the two-
dilucnsional case and derives a number of speclal solutions.

It is hoped that its publication will ‘encourage research in this
very important field.
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1 Introduction

&1.1 Statcment of the General Problem

The real problem of structural design is the disposal of
naterial in such a way, that it will safely cquilibrate given systems
of applicd force, under the appropriate physical conditions of, for
exanple, temperature, without excceding permissible amounts of
defiection and at the same time using the minimum of material,

This last requirement is crucial in aircraft construction,
Practical considcratioﬁs relating to manufacture, maintenance or
function will of cowrse force a departure from this ideal solution,
but a knowledge of the optimum is clearly desiroble as a contr-l.

The Theory of Structures is for the most part concerned with
stress or deflection analysis of given structures. This mcans that
in practice, it can only be used in design by a process of trial anmd
crror, in which the structural layout and sizes are first guessed or
very roughly calculated, and are then subjected to as complete analysis
2s the theory will permit. The results of these calculations are then
used to modify the design to perhaps achieve a more uniform
distribution of stress, and the thoroughgoing analysis repeated as a
check. The theory ought to be in a position to tackle the design
problen directly, that is, to begin with the given forces and to
produce by calculation the best structure that will safely carry them,
The present report is concerned with reviewing the present position in
this little developed branch of the theory and with suggesting lines of
research, which may lead to developments of knowledge, such as to make
direct structural design a practical part of the normal techniques of

engineering.




81,2 History

The first important contribution to the Theory of Structural
Design was made by Mmellf . He proved a theorem about the
cquilibrium of a series of attracting and repelling centres of force
and applied it to a frame structure in which the bars replaced the
"actions at a distance" except in the case of the external forces,
and by this means effectively obtained the result of equation (2.1).
He commented upon the engineering significance of his theorem in these

words:

"The importance of the theorem to the engineer arises from the
circumstance that the strength of a piece is in general proportional
to its section, so that if the strength of each piece is proportional
to the stress which it has to bear, its weight will be proportionél to
the product of the stress multiplied by the length of the piece.

Hence these sums of products give an estimate of the total quantity of
naterial which must be used in sustaining tension and pressure
respectively".

Noticing that Maxwell uses the word "stress" for what we should term
"load" we see that in effect he has obtained equation (2.3) and has

drawn the practical conclusion about the required weight of the structure.

Miohellﬁmade the second important contribution to owr sub ject.
He recognised the importance of Maxwell's result and enunciated
equation (2.3) in its present form, applying it to the calculation of
optimum structural weights. However he went much further than that by
generalising one of Maxwell's proofs of his theorem by the method of
virtual work, using, instead of Maxwell's uniform dilatation, the more
general deformation of (2.6). This led him to sufficient conditions
for a structure to be an optimum. He proved the geometric restriction
of equation (3.3), which determines the classes of orthogonal ets of

T Ref.1 pp.175-7

L Ref.2



curves along which the members of an optimum structure must lie and
gave figures illustrating all the results of section §3.1 with the
exception of the general integral of equations (3.8) and (3.11).

He also gave an example of a three-dimensional structufe for
transmission of torque, the menbers of which lie on the surface of

1.

o sphere .

These important contributions to our subject passed unnoticed
for some forty years until Foulkes of the Department of Engineering at
Carmbridge University read Michell's paper and realised its theoretical
importance. He drew the attention of H.L. Cox to the paper and ty
so doing created a champion for the cause of direct structural design.
Cox has done much by lectures and papersf+t0 draw the attention of
engineers to Maxwell's and Michell's results and to convince them of
the important gains that may well be made by further development
of this subject, His own important contributions to the practical
application of, in particular, Maxwell's Theorem are outlined in
section §2.3 @

d

T Reproduced in Ref.3, Fig.12 %=

t Refs. 3,4 and much unpublished material
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2, Classical Theory for Framc Structures

§2,1 Moxwell's Theoren

o

Consider any frame structure which equilibrates a set of forces

ﬁi acting ot points with position vectars fi(i=1,2...n). Let Tt be the

load cerried in a typical tension merber with length 7., and section area At'

Let (—Tc) be the load carried in a typical compression member with length

Lc and section area Ac.

Inpose a virtual displacement on the structure which consists of a
unifornm dilatation of space of magnitude 3e, chosen so that the origin
for the vectors :Fi is at rest. Every lincar element of space is
extendcd by a strain e and so the virtual displacementsyat the points

of application of the forces are efi.

We can thus write,

n
Y Vs _'d

Virtual work of the external forces = e;iJFi o ri a
i=1

The change in energy of a tension member is
2 2
(Tt/At+Ee) ) .E_Tﬂ L w
25 2E £ T b

correct to the first order in e, where E is Young's Modulus, The change
in energy of a compression member is -TGLce and so applying the

Principle of Virtual Work, we find, cancelling e, that

Z:PtLJG - ZTCLG 2 ZFi . By wos  L2a1)

t c i=

e

¥ Refo1 pp.175-7 : ! v
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— |
where ? ’ E are sums over the tension ar 1 compression members :
t c

.
& resp stively.,
»

If ft and fc are thc permissiblie stresses in tension and
compression and if we assume that all nembers are stressed to the limit,

we can vrite,

T, = Af, » T, =Af sas (2:2)

and substituting in (2.1) obtain,
ftvt - fcvc s ZF:.L » I‘i see (2.3)
=l
where Vt is the volume of 2ll the tension members and Vc that of the

compression members,
The total volume of the framework V is given by,
V = V_b + Vc o080 (2.4}-}-)

and so using (2.3) we can write,

i‘c 1 = = ft 1\ 's -
V = VC (1 + -f-) + “i",' ZFi.ri = Vt (1 + ?")- "E Z_/Fi.r-l- so0 (205)
t t c c

: i i
We sce then that of all the possible frameworks that equilibrate the
forces Fi and sotisfy the strength requirement (2.2), the lightest
structure is the one which has the least volume of compression members ar
alternatively, the least volume of tension members-r. In particular the
framework, if it exists, all of whose members carry tension or
alternatively compression loads only, is the lightest framework
possible among all those which carry the given loads. The volume of

this optimum structure is given by (2.5) withV, =0 or Vc =0,

t

¥ B, Cox, Ref.3
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§2.2 Michell's Theoren

Consider once more as in §2.1 a series of external forces F,
acting at ;i' Let D be a domain of space containing the points Ei; | -
in particular D can be the whole of space. Consider then all possible
frameworks S , contained in D which equilibrate the forces ﬁi and
which satisfy the limiting conditions of stress (2.2). Iet us assume

#*
that there is a framework S . which satisfies the following condition:

"There exists a virtual deformation of the domain D such that

*
the strzin along all the members of S is equal to * e, where e is a small
positive nurber, and where the sign agrees with the sign of the end load
carried by the particular member, and further that no linear element of

D has a strain numerically greater than e". vos (2:6)

* #
Michell's Theorem states that the volume V of S is less than or

equal to the volume V of any of the frameworks S,
First of all we notice from (2.2),(2.3) and (2.4) that,
(f + f ) ) = (f - fc) —Il\ ' '
t c

i=t

and so the frame with the least volume is that which has the least value

of ZEJL T, + zg:chg. Secondly we apply the virtual deformation of (2.6)

Ref,.2
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to any of the frameworks S. The virtual work of the external forces

will be the same for all the frameworks and so the change in strain energy

will be the same too. It e, €, are the mean values of wvirtual direct
strain taken along the lengths of typical tension and compression members,

the change in strain energy calculated as in the proof of (2.1) is given by

Change in Strain Energy _ \ ' . KT
for any S Z‘TtLtet 2_/ Tchec
c

t

E-3
For the special case of S we find from (2.6) that,
Change in Strain Energy _ (ZT*L” i ZT"‘L*>3
A =
o— Tt c o
t c

Equating these results we find,

N R % NEEE X T : —
(ZJTtLt + ZTCLc>e £ LTtLtet - ZTchec < (ZTtLt + LTch>e
% c

t c t c

since by (2.6) we have Ieti < €, lecl < e. Dividilg by the positive
nurber e we see by (2.7) that,

3
VgV ¢ sos (2.8)

- * =
The actual value of V follows from the Principle of Virtual
Work. If the virtual displacements corresponding to (2.6) at the points

of application of the forces, i.e. at Ei s are e\_ri » we have, dividing

#

out the e,
n
N % % % % N . -
ZJTtLt + ZTOLO = Z,bi . vy
t c i=1

and so by (2.7),



. (B ar) = (8, ~T) =, _
Vo= —-é-%—f-——'c—- Z?. . v, = """E,‘"“f.‘—'g"' Zﬁi . I‘i saas (2-9)
A 1 o te
=l =1

The character of the defcrmation of (2.6) imposes certain
restrictions upon the layout of members in S*. At a node of this frame-
work the directions of the strains % e, which are aloag the lines of
nembers of S*, are principal directions of strain and must thus satisfy
certain conditions of orthogonality. In a three dimensional framework,
at a node with three members, there will be no restriction, if the loads
in the members have the same sign, since in that case the virtual
deformation is a pure dilatation and therefore isotropic; however, if one
load is of opposite sign to the others, it must be at right angles to them,
At 2 node with four members, there is again no restriction if all loads
have the same sign; if one member has an opposite load to the other three,
then it must be orthogonal to them all and so forces them to lie in a plane;
finally if the members fall into pairs with opposite signed loads then one
of these pairs must be in line and normal to the other two. The general
nature of the restrictions is clear from these examples. Similar
requirenents follow for the layout of optimum two-dimensional frames,

Vhen the loads at a node have the same sign, there is no restriction,

A node with two members carrying loads of opposite sign must have “hese
members at right angles. A node with three members, one of whos: loads is
opposite to the two others, must have the two in line and the merl - with
the opposite load at right angles, while one with four mémbers, wi_h two
pairs having opposite signed loads, must have the pairs in line and

orthogonal to one another,

S i ——
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The optimum struc_tm"e Sal has-another very important property.
In a general sense, it has greater stiffness than any other structure of S
which satisfies (2.2) without meeting the requirement of (2.6)4'.. Let us
think of the structures S loaded by forces ?\f"i acting at Ei ,2Where A is
a parameter which varies from O to 1. The stresses developed are ?\f'T
in the tension members and ?&f’c in the compression members. The strain

energy stored W dis thus,
W= X (Vg2 v g2)
T ZE VT c o
The displacement "corresponding to the force system ﬁi" is by Castigliano's

First Theorem given by

a\ - 1y 2
(ax) = EKVTfT * chc>
A=
Substituting from (2.5) for V, and V we find

L

: n
. = 1 = =
Displacenent corresponding to F, = ¢ [ftfcv + (ft - fc)zi‘i ‘ ri] ses (2:10)

i=1

¥
The fact that S has the greatest possible stiffness then follows by (2.8).

8,3 Cox's Design Applicationsff

Applications of the theorems of Maxwell and Michell to simple
design problems have been made by H.L. Cox., He has con .dered first of
all the problem of three coplanar forces. In the case where their point
of intersection lies within the triangle formed by their points of
epplication, the optimum framework can consist of tension (or compression)

-

' H,L. Cox. Ref.3

L Refs. 3,4,
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neribers only. Some of his layouts arc given in Fig. 2.1. Others can be
obtained by superposition of these and analogous structures in suitable
proportions yielding a series of rcdundant frameworks. Equation (2.5);
with VC = 0, shows that all these structures have equal weight. Onc can
renark, as pertinent to the general philosophy, that we have herc an ..
infinity of solutions, ranging from mechanisms to simply stiff structures

to structurcs of any degree of redundancy!

The case where the point of interscction of the three forces
lics outside the triangle of points of application is more difficul..
Cox givcs solutions for a number of symmetrical cases including the case
of parallel forces illustrated in Fig. 2.2. Here the structurc consists
of a circular rod, conceived as the limit of infinitesimal chords pinned

end to end, two straight members and a continuum of spokes all lying along

radii of the circle. The radial members are all in tension ard the curved,

nerber in compression. Michell's criterion (2.6) is satisfied using a
constant deformation with direct strain e radially and -e
circunferentially. The fact that this is a consistent strain system will
be shovm later (in§ 3.1); it also follows readily fro: B.3 in poler
coordinates. The structure of Fig. 2.2 is thus an optimun. ,,

Cox uses this last construction to build up a structuwe for thé
transmission of a bending moment (see Fig. 2.3). He shows that for :
/4 >k this structure is considerably lighter than a "simple tie and strut"
and that for larger values of 1/d multiple constructions, on the lines
of Fig. 2.3, can be even lighter. He produces a competitive 14-bar
framework and a variation on Fig. 2.3, in which the circles are replaced
by spirals, which for 1/d >4 is ligher than any other construction
considered, These structures for the transmission of bending moments
are not Michell optimum structures, since they f.:a.il. to satisfy the
orthogonality conditions for members with opposite signed loads (§2.2).

They are however by Maxwell's Theorem the best of their "class".




FIG 21

FIG 22 e
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3, Developments in Two=-Dimensions

83,1 Lines of Principsl Strain

The deformations, associated with two-dimensional Michell optimum
structures, are by the criterion (2.6) of two kinds., In the first kind
the principal strains at a point are equal in magnitude and sign and so
correspond to a state of uniform dilatation. The lines of principal
strain are thus completely indeterminmate and as remarked before there is
no restriction on the layout of the corresponding structure. The
situation is quite different for the second kind of deformation in which
the principal strains are equal and opposite, say +e -nd =-e ;
here the lines of principal strain are restricted to,cc tain classés of

orthogonal curves. This can be seen as follows.

Le-l:,' us take the lines of principal strain as coordimte curves
for a system of curvilinesr coordinates (a,8). The formulae of
Appendix A will then apply with @ = g and those of Appendix B as they
stande  The statc of strain under consideration is defined by

eaa = 8 9 eﬁﬁ = =g 9 ea‘e =0 sew (3.1)

Substitution from (3.1) in the compatibility equation (B.3) yields,

cancelling (-2e)
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Equation (A.17) which rust be satisficd in any coordimnte system yislds

with © =125_

27188, 2/1aa) _,
oa\ A 2 3 \B ap - _
We sce then that our lines of principal strain must be such as to i >ly,

a /1 9B o /1 aA\ _
EE(K -ga): 0] 9 5‘5(%‘35)— O LS (3'2)

4

Reference to (A.16) shows that these results can be written

2\ &° \i{z |
_—4 — — \
Gaaﬁ = 0 oE oc g = 0 . see (303

where these last are not independent since VY, = Y4 + ®/2. This
equation can be integrated as,

W o= Fy(a) + FR2(B) = V2 -3 ves (3e4)
where ¥; and T, are arbitrary functions. Equation (A.16) then gives

the following results, which also follow directly from (3.2)

%% - _F;(a) 4 %‘-% = Fé(ﬁ) seo8 (305)

The form of equation (3.3) shows that our lines of principal strain
have the same form es the slip lines for two~dimensional perfect plastic flow'i'.

This neans that we can make use of much of the known ;ievelOPments in this
field. Scme of the integrations which follow, parallel corresponding :
processes in Plasticity Theory, but as the methods used are stamdard
mathematics, it cannot be said that we are really using the analogy.

However, it may well be that this analogy could yield fruitful suggestions.

t Sec Ref.5, Equation (23)
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The intcgration of (3.5) is by no means a streaightforwerd process.
However progress cen be made at the expense of@a slight restriction of
generality. Let us assume that the derivatives F4(a) end: FJ(B) of (3.5)
maintain a constant sign over the region of the plane in which our
structures will lie, Reference to (A.16) .show_s that, since %%1- and
-Ela:r’f; cannot vanish, there can be no points of inflexion on owr lines of
principal strain. ‘This is the meaning of our restriction in geometrical
terms.

Let us now apply the transformation of (4.18) to (3.5). We 1ind

188 _ . dR 198 _ ., df

B “ Y& » I%m - & ‘
where the upper or lower signs nust be teken according as %%L ° gz%
is positive or negative., Choosing ¢qand ¢, so that,

Py {oq(@) 3 = 2% y Fole@ ]} = B .

or since F; and F] do not vanish, writing,

91(@) = BT 02(B) = F7(:B)

LF

where F,™', F,”'are the functions inverse to Fy , F, and the pper and lower
signs are now to be taken accordingly as F.f F, is positive or negative?a

we can write the transform of (3.5), omitting the bars, in the form,

188 | _ 18
ﬁ-% - 1 4 Aaa L) 1 ee o (3.6)

Equations (A.16) in conjunction with (3.6) show that with an appropriate

choice of reference direction for {y we can write in our new coordinates,

e .
This is cquivalent to the previous convention since F.I%-?z 215 —;: 1
and so (F{ . F3) . (d¢./a% . dg,/dB) =



A -

Yy = a+f = 4;2_‘-;5 ' — %)

When A,B have been found equation (3.7) together with (A.5) and (A.8)

will cnable the determination of intrinsic equations for the lines of

¢

principal strain.
Ecuations (3.6) yield,

024 92B
-é-{raﬁ+ﬁ. a 0 4,

1.

the first of which can be integrated in the form,

; a fg
A = Hy(a) + Hy(B) -f izf{m(a) + Hy(m} J {(g=a)(B~n)}dan ses (328)
o (o]

oL

where Hy, Hp arc arbitrary functions and J(w) is the Bessel Function |
n

ma
J = 41 % — e soe ees Lo
™ T " s
which satisfies wJ”(w) + J7 - J(w) =0 )
. 2 i) (@) ] ein (530)
J(o) = 1
The first of (3.6) and (3.8) then give
a . a £ ; ¥
B = ~H;(8)+ aHz(ﬁ)+f Hy(g)ag +f dgf {Hy (8)+ Hy(m) }(E~a)d’ { (=) (pm)}an °
° ° ° sk K35I1)

T Ref.6 Tome IIT 8499

i J(w) = 10(2\@) for @ >0 and J(w) = JO(2\/-Tn) far w<0 .
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We have obtained in (3.8), (3.11) general integrals of our equations for

A,B depending upon two arbitrary functions Hq and H,. These .'_.ssults

however are not very simple in form. i

An important special case occurs when A = kB , where k is a
positive constant. The integrals for this ere most easily obtained from
(3.6) directly, We find,

2 = kB = KeHF/K e (35%2)
where K is a positive constant. The intr‘insic equations for the

lines of principal strain are by (4.5), (A.8) and (3.7) given by

. _Keka{e-wz-a-a/z)/k ) 1}

where we have taken s4 as measured from @ =0 and s, from g = O.
The Cartesian forms follow from (A.7) and (A.10) and with a particular

choice of origin can be written,

x + iy =(E+—Ij{_-T e(k+i)‘1{r‘l"ﬁ (1{+1/1C) + Ky

and K (1=1/k)¥o+a (k+1/k)+x /2k

x-{-:'l.y:me

Substituting from (3.7) for ¥4 and ¥, and identifying the resulting

expressions, which are special cases of (A4.3), we find that Ky =0 and

X + iy =

K - e |
- cka-p/kc + iasp-ten™ (V1)1 o ssv (3u1h)

introducing polar coordimatesp, w « The equations for the coordinate

curves in polar coordinates follow from (3.14), which gives,




ve: D4 e ) #*

= -fgz:- ekaqﬁﬁk § w = a+ f =tan"(1/k)
V42

and so we find,

a k! ey
_nrT \/_IE_E ekm—,@(k.*!/k)ﬂc tan”1(1/k)
1+k s (3:418)

K —o/k+a(k+1/%)=(1/%)tan" 1 (1/k)
f=curves = ]
bomws P

We seec that both these sets of curves are equi~angular spirals with
a.ngle::* tan"1(1/k) and tan ?(~k) respectively. The two sets are

orthogonal and circulate the origin in opposite directions.

The solutions cobtained so far, besides ruling out inflexions,
rule out the case where a set of coordimnte curves are straight lines.
a\

If onc of the a-curves is a straight line 5§1 =0 or by (3.4) F{(a) =0

on this line, which neans of course %i’-i- = 0 everywhere and so all the

a-curves arc straight. This means by (3.5) that,
A =Fi(a) , B =F3(p) Fsla) + G(R)

where Pz and G are arbitrary functions,

Choosing a as the length slong our straight lines, i.e. taking Py(a) =a,

and since %—"— = F2(B), which does not vanish if the B curves have no

inflexions, choosing @ as the angle ¥, , i.e. taking F2(B) = 1, we can

write:
A sl » B=a + G(ﬁ) e (3016)

?tan ¢ = rd®/dr, where ¢ is the angle betwecen the radius vector
and the tangent.
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The g-curves are straight lines depending upon & single parameter @
and so envelope the "evolute" of the f-curves for which thcy are the
nornals, The g-curves arc of course the "involutes" and both scts of
coordinate curves are in this case completely defined by the "evolute"

which by (3.16) has the equation

o +G(ﬁ) = 0 soe (3017)
The evolute must of course be outside the region surveyed by our

coordinate system,

An interesting special case is obtained when the evolute
degenerates to a point., Our coordinate curves then become the set of
rays through the point and the set of concentric circles, This is the
leyout used in Fig. 2.2 and our present result shows that this is a

Michell optimum design.

The case where both sets of coordinate curves are straight lines is

almost trivial., Here we can take a,8 as Cartesian coordinates and write,

A=B=1 ' eee (3-18)

In summary we can say that the layouts of Michel optimunm
structures, for the case where the associated principal strains are
equal and opposite and where inflexions are ruled gut, take the forms
defined by, firstly, (3.8) and (3.11), which depend upon two arbitrary
functions, and includes the special case (3.12), secondly (3.16), which
depends upon one arbitrary function and finally (3.18) which has nothing

arbitrary about it at all,




83,2 Conlitions of Equilibriun

The considcerations of §3.1 give guidance for the choice of layout
for an optimum structwe. The deternimation of the required sizes of
nmerbers results from a consideration of equilibrium conditions. The
investigation of this matter necessitates a choice of structural fornm,

In this section we will continue to deal with frameworks, but will
specialise our studies to thé case of continuous distributions with
perhaps concentrated members along isolated lines, for example along edges.
We shall thus be treating.plane structures consisting of double arrays of
closely spaced fibres, which for the optimum case must lie along the lines
of principal strain for Michell's virtual deformation of (2.6), i.e. along

the a and P coordinate curves considered in §3.1.

The case where Michell's principal strains are equal must be
considered first., Here there is no restriction upon layout at all as long
as the structure transmits the applied loads by merbers entirely in
tension or alternatively compression, The example of §2.3 shows that
there may well be an infinite number of alternative structures, which by
Maxwell®s Theorem are of equal weight. It is quite clear that this
nultiplicity is a generel property anl so our problem is really to pick °
out simple yect adequate designs from the infinite possibilities. Te shall

therefcre restrict ourselves to orthogonal layouts of fibres.,

Since our structural eleménts are coﬁtinuously distributed, their
magnitude is properly described by their equivalent thicknesses ty and t,
in the « and B directions respectively. This means for example that
across a width BdS normal to_the a=direction, there pass membersz whose

total cross section area is t4BdB. Now in the present case the stress
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in a1l the members could be f : and so, in the notation c¢® (B.4),

%
T.‘ = t1f‘b » TZ = 'tzft ? S = 0 * . see (3019)

Substituting in (B.4) we-then obtain,

8. v OB 3 oA .,

5;(8t1) ~gx t2=0 ag(Atz) - % t, =0
which may be written, ;

9t, 1 8B ,, ot, 1 8A ,,

.okt - ki - - —_— o e e - = oo e °

aa + B a (t-i tz) =0 2 aﬁ A aﬁ (t-g *2) 0 i (3 20)

The boundary conditions (B.5) for the case where there is no edge

ncmber becomes,

f,tysineg F_sine + F_ cos @
¢ » . } wee. (3.26)

f, t,cos6 Fn cosp = Ft sin ©

t

n

Owr problem for any given layout is to find solutions t4 > O and
t2 » 0 of (3.20) which satisfy (3.21) on the boundary. We¢ shall discuss

the possibility of resolving this problem in §3,3,

The case where Michell's principal strains are equal and opposite
and where our intersecting fibres carry opposite signed stresses ft and

=f,» Will have stress resultants given by,

A g

T1 = tif

g 2 T, = "tzfo 5 S = 0 * sow (Dull)

T Or, of course (-fc)' However (3,20) is the same in both cases,

w



Equations (B.4) ani (B.5) give for this case,

Bse iy Booy 2 . T— o
aa(Bltt1) + 57 fbe =0 aﬁ(Afctz) + 55 fity =0 eve (502%)
and,
f .ty sin® = F_sing + F, cos®
k B % ] vei (%55
fct2 cosB = -Fn cosf + F‘t sing

These equaticons arce similer to those for the previous case, but it
nust be remerbered of course that here the coordimate curves are limited
to tho special forms studied in $3.1. In the general case covered by

(3.6) we can write, o

1 &) 1 5l l ¥
T:5§;§T7 5 (Afctg) =1, fﬂ§;%;7 32 (-Bftt,) =1
These are of the same form as (3.6) itself and so possess integrals

analogous to (3.8) and (3.11). We then fimd,

$

a B - *
ﬂga=m@h&@%]%ﬂ&@%&wﬂﬂwwwﬂWm

e ° ' co (3.25)
Bfyt = Kb(6)- aKz(ﬁ)-fK-l(E)dg -7 d&filﬁ (£)+ Kz (m)} (g-a)

o

" % 3 (g~a)(8-n) Jam

where Ky , Ko are arbitrary and A,B,J are given by (3.8),(3.9),(3.11).

For the spccial case of (3.12) we find from (3.23) that,

at a 1 .
£y oo * K(Egh+ T6) =0, £ R - & (£,4+ £8,) = 0
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It is convenient to transform this as follows

f-[-;t‘l = Ty e-ka-h@/k » fc‘tz‘ = T2 e_ka-l-ﬁ/k J ; ( 26)
eea 3.
— 1.2 - f_ 8% . .
where, — —11/k) =1 3 r:;:7i7 5 = 1

Comparison with (3.6) gives once more a general solution of the form,

a g
%o = La()+12 (8)- agf {Ls (£)+L2 (n) 191 (&=a) (6=m) Jan [
3 vev (5:27)
[ a g
11/k = L4(B)=aly(B)=Ly (a)de-[daf {Ly (8)+L2(n) } (E-a) T’ { (E~a) (B-m) }an

where Ly and L, are arbitrary functions. A special solution anslogous

to (3.12) can be written,

Ta = -Islg- Ty = K'i e-k.[a".ﬁ/k1 se e (3.28)

where ky and Ky are positive constants.

The special case of (3.16) gives far (3.23):

d
o Logbla v GO)I) + g8, = 0, (I L) = 0

which yields,

£ty = & (8) ~ F(a) s 2 = F/(a) sse £3:29)

1 G(B) + a
where, F(a) and Gy (B8) are arbitrary functions. Finally, the particular

case of (3.18), gives the cbvious result that t; and t, must be constants.
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83,3 Fornulation of the General Problen

The problem cf deternining the optimum errangement of fibres, which
will equilibrate a given systenm of forces opplied to the boundary of a
region, caen now be formulated. The two systens of fibres must carry
constant stresses f1' and fgl which must have the values,
£, = foor-f , £, =1 or-f coe (3.30)
The loyout of the fibres must deternine an orthogonal-r curvilineeor
coordinate system (a,8) for which the functions A,B satisfy, by (4.17)

with g= 0 anl (3.2)

202D -0 (e
een (3.31)
G2 = 3¢H = 0 (1«

The cquivalent thicknesses ty and t, of the fibres must satisfy the

differcntial equations of equilibrium, which by (B.4) take the fornm,

T 3B 3
=(Bf1h) - 5= 242 =0, .-éE(Afztz) = 88 gih=0 vee (5:52)

36

The boundary, which we assume known in the intrinsic form ¢ = q_:(o‘) .
wherc ¢ is the angle between the refercnce direction used for yy in
Appendix A and the positive direction along the tangent to the boundary,
must be expressed as in (A.20) in terms of by(o) and by(o). The
relevant equations are (A.22), (A.16) and(A.11), with @ =0 ; we can

thus write,

This is of course not essential for the case f4f2 >0, but is assumed in
the interest of simplicity!
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{b1 () sb2 ()}

o(c) = (-t e+ T2 a) v 0

Vs Fls) ) ’ vee (3.33)
cosh = Afb1(d), bz(U)E - b1(6)
sind = Biby (o), b2 (o)} b;(d)

vhere (o, ,8,) is the point at which ¥4 is assumed to be zero.
The equilibrium conditions at the boundery must be satisfied.

The appropriate equations follow from (B.5) wuth T =0 i.e.

f-‘ t.[ sin6 FnSine + Ft cosf

] eoe (3.34)
fatp cos® = F cosd - T, sind |
Finally the solution for ty and t, must obviously satisfy'f;he
conditions:
t4 30 , t2>0 ves (3+35)
The nathematicel problem presented by the equations (3.30)
to (3.35) is a formidable one. Furthermore we have no guarentee that,
for any boundary and any distribution of force,*a solution exists.
Special scolutions given in §3.4 below show that the problem cz‘:.n be
solved in certain cases, but a study of the boundary conditilons (3434)
shows that for some loading conditions, solutions cannot exist unless

the boundary has special forms. A pertinent problem would thus

appear to be the determination of the restriction that nust be
imposed upon the forces and the boundaries to ensure the existence

of a Michell optimum design.

Some guidance cen be cbtained in relation to the ambiguities of

(3.30) and to other more general matters by a consideration of (3.34).



If Ft = 0 everywhere, we hnve:
- - + = F
0 =0 and £, . -1_
or Q = 'TQ/Z and f‘1 't1 = Fn ') saw (30 36)
or f'l t‘l = fz t2 = F

n
and salif Fn has the same sign, say positive, everywhc.e, we must

take £, = £, = ft' If on the other hond Fn is sonetimes positive

end sonetimes negative, the boundary must be built up of pieces of
coordinate curves, a-curves (0 = 0) say where F}1>O andiﬁ-curves

(6 = =/2) for F <O0. We shall then have f, = fon and £y = -f and
furthermore the boundary must have right angled corners at all the
zeros of Fn! B i Fn = 0 everywhere we first notice that é =0 and

t, =0 or 6 = /2 and t; = O et the zcros of F, i.c. one of the
coordinate curves must touch the boundery at these points. At these
zeros too tanb6 and cot® change sign and so fyty has the.same sign
everywherc and likewise f,t, , but opposite to fyty. It follows that
one of £y, f, is f, and the other (-fc), everywhere on the bourdary.

In the intermediate cases where the resultant of Fn’ Ft is neither
nornal nor tangential tothe boundary one can by an appropriate choice
of @ arrange that the signs of f,, f, are the same or opposed, bu? . ’
variation of the general direction of the external farce from cutwards
to inwards will give rise to similar problems like those induced by

the zeros of F .
n

The equotions (3.31) which determine the coordinate curves have,
at least in their form appropriate to f122<01, been studied thoroughly

in §3.1.

by

1LThc;se can of course be used for the case f,f,>0 as wells
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Reasonably general integrals have been obt-ined, although their form is
not too convenient. However, if one e.dopt; the point of vic :_' that the
business of optinmun structures is still partly en art, theﬁ the material |
cbtained can form the basis for the construction of an enormous variety
of layouts, which can be used as Jjudgement, intuition or even hunches may
divect, as trial arrangements for the solution of any given problems

Al iernatively, they can be used as in §3.4, below, to construct

artificial problemns,

Once appropriate values of £ and f, are chosen and a layout
decided with determinate A and B, then our remaining problems can be
resolved. The problem presented by (3.33), that of determining values
of ay f and 6 on the boundary can be resolved, if not analytically, at
least graphically, by drawing out the boundary and superimposing a grid
of ¢ and ﬁ curves. The problem of the determimation of the sizes of
members ty4 and t,, equations (3.32), (3.34), can then be resolved,
perhaps by the analysis of §3.2, but certainly by the usual numerical
ncthods of integrating step by step the hyperbolic differential
equations along their cheracteristic lines. This last step however
faces us with new difficulties. It is not usual to have to integrate
hyperbolic differential equations subject to boundary conditions on
closed curves and rightly so, since, as is easily seen, I"esh:-ictions
have to be imposed upon the possible boundary values on different parts
of a closed curve. Consider the problem of integrating (3.32) in the
region bounded by the curve ABCD of Fig.3.1. This cuwrve is the transform
of owr real bounding curve in a plane where a, S are rectangular
coordimates, We assume by (3.34) that the values of ty and t, are known

on ABCD. Since t4, t, are known on AB they can be found at all points
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within the closed region ADE bounded by the curve AB and the
characteristics AE, BE through its end points. Similarly values of

ty, t, can be found in the closed region BCF using the given values on
BC. e shnll then have two distinct determinations of t, and t, on the
linec BF, These nust agree with one another and so m;st imply
restrictions upon the boundary conditions on BC i.e. on Fn and Ft'
In fact a knowledge of t;, t; on BF and t, alone on BC determines t,
| and t, in BCF and in particular on BC! It mey be that a specially
chosen layout will avoid these difficulties, but this is a question

which cannot be answered with our existing knowledge.

§3.) Special Solutions

The gencral problem is clearly too difficult to solve and so,
as in other fields, we must turn to "inverse methods", which assune a
solution, or at any rate a layout, and examine what perticular problems
ere solved by this assumption,

Ict us begin with the special case of (3.16) which arises when
G = 0. Here the evolute becomes a point and the coordinates (a, 8 )
becone polar coordimates, with radii and concentric circles for
coordinate curves., With the values A = 1, B = a the equations (3.32)
giw ’

Fqi(a) + Fo(B)

a

Pity = f2t2 = Fi(a) ces (3.37)

where Fy, F, are arbitrary functions. On circular boundaries (6=n/2)

and radial boundaries (6=0) we have by (3.34),

i

circular boundaries %1 £it4, Ft_
radial boundaries Fn foto, Ft =0

wia (3:38)
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The part of the solution which depends on Fy cen be used to illustrate
the voints ucde in discussing (3.36). If we take Fy >0, but with

F{ <0, we must write £y = ft end £, = —fc. Taking the region bounded
by two radii and two circles, we have the case where the radial
bourdaries are under nornal pressure and the circular boundaries under
noreal tension, and, as Qredictcd, we have four right-angled corrers.

The case where Fy = -Pa(P>0), F, = O requires fy = £, = ~£5y

23

nd solves the problen of a circular disc under radial pressure P by

-

I

filling in the circle with fibres of constant equivalent thicknesses

ty = % = B/E cee (3039)

The case Fqy = 0, F; >0 consists of radial spokes

tronsmitting tensions of varying amounts, The pointa= 0 is now a
singular point and is in gencral a "centre of pressure" and the point
of apprlication of a "concentrated force". Applied to a Weé.ge this
solution gives a concentrated tension whose line of action lies within
the angle of the wedge. The case where F; is constant gives a
synmetrical load, whose reaction can be collected by a circular nember

in compression. Adding radial edge members gives us Fige. 2.2 once again.

A sccond example is furnished by (3.12) which gives coordinate
curves in the form of equi-anguler spirals (3.15)s A special solution
for t4and t, for the case fy = £, £, = -f_ is given in (3.26) ard

(3.,28)., Let us adopt this with k4 = k. We then cbtain by (3.14),

' K, K2
Bbi= Ik = ST eee (3,20
The origin p = 0 must be excluded. Let us consider a region of the

plane bounded internally by a circle p = constant, The loading at this

boundary will be of constant magnitude by (3.40) and o -onstant




inclination to the redius by the defining property of equi-anguler
spirals and so will consist of a uniform normal tension and a uniform
tangential traction. Fof a suiteble value of k (k = 1, when ft= fc)
the normal tension will be zero and we shall be left with the
tractions whose resultant will be a couple. (Fig.3.2).

The origin p = 0 is thus a "centre of pressure" and a centre of
"concentrated torque". This solution can be applied to the transmission
of torque from the inner boundary to the outer boundary of a circular

ring (Fig.3.2).
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4o Plotes

&L4.1 Michell Type Theorci for a Plete

Consider the set of plates P of varying thickness t,
which equilibrate given coplenar externel forces with a stress
4

distribution, having principal stresses f; and fz,‘ which satisfy -

maxinum shear stress criterion of yielding, namely,

(Greatest minus least of £y, £, 0) € ¥ eee (Co1)
where Y is the tension-compression yield stress. We assume that
there is a plate P* of the set P, with principal stresses £} , £3

which satisfics the conditions:

(1) (Greatest minus least of £¥ , 3 ,

0) =Y

(2) There cxists a virtuanl strain system, with principal strains

ey and e, and principal directions coinciding with those of the
principal stresses f§ , f§ , whose magnitude depends upon a constent
number e > 0 and is such that, if

- 9_1_(1'21’2)"11@:1 - 99(1"2?)21“!/&1_
== (-v2) ' %2 = (1-v2) ’

Y, one has eq= e, €= 0

then, in regions (a) where £¥>f¥>0 and f*

L. () * £HO>f3 v £4LE =Y, * " e=e, e2=-6
mooow (e) ® f;affao_ "Off =X, " " &=0, e=e
oo (@ " £R0>frv fif¥F=Y " " em-e, G2z e
L () " O>f¥fl of% =Y M M e=0, €= -e
noow (£) " oO>emfr  ~fF =Y v M gzee, €,=0

sin (4.2)'

TWe assume conventional plate theory, in spite of the varying t .




Lot us now arply the virtual strain system of condition (2) in

(4.2) to all the pletes P . Since the virtual work of the external

+

‘orces is the same in all cases, the increments of strain energy induced

5

in the plate will also have the same value. If the stress components
in a general plate P , refcrred to the principal directions of our
virtual strain, are f;,, f,, and f;, , then the increment of "strain

encrgy W for this plate is given by,

W =ff -2:% [:{f11+ -(-1%7)(0“ ve, )3+ [f?2+ (;E_—v;)(ez*" vey )}*

E B
-2v[f1 1+(m—) (31 +v82)}§f22+(t;2')(62+v31 )I+2(1+v)f122

-{f$1+f§2—2vf”f22+2(1+v)f$2j] dA
where E is Young's modulus, v is Poisson's ratio and the integration
with respect to erea is taken over the region of the plane, which is
occupied by the plate P. Developing the terms in the integrand and
neglecting second corder terms in the strains, we find, using the

definitions of e¢; and e, in (4.2) that,
v

W = /[ é(f11€1 + f2262>dA ‘ --- (11-03)

For the plate P* we have f,4 = £, £,, = £% and sa‘; taking

account of the conditions of (4.2) we fird,
W*:fft*l’ed.ex = YeV* eoe (holy)
where W* and t* apply to P* and V* is its volume,

Equation W* and W we find,
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YeV* =jft(f11€1 + fzzeg)dﬂ

f‘LfHodA +ﬁt(f11— £20 )EGA + [ftfzzedﬂ

(b)
Ut(fzz- £,4)edA +Ht(-f22)em +fft(-f11)c.d.sl v (GeB)
(a) (£)
where the region of integration has been split into the regions , .

designated (a) to (f) in (4.2) and use has been made of the veiues of
€4 , €2 given in this same equation., Now by the propertios of

principal stresses and (4.1) we see that,
114] « max. {2y |,]£2]3 < ¥ and similarly |f2,] < Y.

‘Agein by (L4e1) the mox. shear stress in the plane of the plate

cannot exceed Y/2 and so by a known formula, ©

2 12 2
e doplles  fe. o ] & X s Henoe,
E Y, Ehax¥, 2{fie )X eoo (4e6)

Applying (4.6) to (4.5) we deduce that,

YeV* € f [ t¥edAd = YeV

where V is the volume of a general plate P. Since Ye is positive

we have,
VvV ¢ V sun LHa'f)

The plate P* which satisfies (4.2) has as small a volume as any

other plate of the set P,
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The actucl volume V¥ can be ecaleulated from the virtual work of
the external forces. If the forees arc specificd as in §2.2 by Fi and
if the virtuel displaccments, at the points of application of these
forces, corresponding to the strain system of (4.2) are eﬁi then, the
virtual work is zg:@i C;i and so by (4.4) we find,

i

Ve = %ZF. .7, sin (lesB)

4.2 Development of the Theory for a Plate

The virtual strain system of (4.2) has principal strains e, ,

e, given by,

(=) f(1-20%) e1r el o = (=v){ves+(1-202) o5}
1 = TTA-50%¢ Lovt) ’ 2 ° (1=5v2+ Lv4)

¥ i )
where ey , e, are defined in (4o2)., We see that the strains are
constant and further that (e~e,) does not vanish. Substitution in
(Bo3) then gives an equation, which combined with (A.17) with w = #/2,

gives, just as in (3.2) the equations

9, 198y _ 2 (1284 _
aa (A a& ] aﬁ B aﬁ) - 0 o.2 @ (4-10)

The theory of §3.1 is thus valid for this case too and the principal
strain lines determined there can be used as principal stress lines

for optimum plate designs.

The_equations of equilibriun can be written by writing




T
T, =28 » T, =t 5 8=0 eos (4t1)
in (B.4), which yields,
6 ,,' & . A Bh o _
“"‘é,‘l:"t;:(BtJ.1) -~ -é?; t.. = » "'.(E"(A.tfz) - 'é"ﬁ‘ tl-[ = O KX (4.12)

In addition by (4.2) the stresses nust satisfy cne of the following,

Py =2Y,; WY, FHTHhaezX cva (d3)

This gives us three eauations for t, fy,-f,, which would appear to
be sufficicnt, However the strains correspondong to f3 and f; must be

compatible., This mcans by (B.3) and (4.10) that,

% '(«%(fz" vfy)} + '5%{% 'é‘%(fV' vf2)}

- 1Sl (ei-e2)} + F B 2 (81D 20 aes (4at)

Pinally by (4.11) and (B.5) we have at an unreinforced boundary,

L oo (4e15)

tf1sin6 = Fnsine + F,cos6 }

siné

tfzcose = Fncose - Ft

Our present problem has yielded a superfluity of equations,
Equaticns (4.10), (4.12), (4.“13) and (4.14) are six equations between
the five unknowns A, B, t, £y and f,. This is very restrictive on
kinds of solutions and may well mean that only very special

distributions of Fn, F  can be accommodated in (4.15). One way of

t
obtaining consistency is, as we shall see in Ske3, to assume that £y
and f, are constants. This makes (L4.14) an identity, but removes fy

and T, from the list of variebles.

TWe now omit the * on £y and f, for simplicity.
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&..3 Constont Stress Solutiors

Let us now assume that the stresses f4, f, are constant.
Equation (4.13) gives onc relation between them, but docs not fix them
completely. However (441) restricts their values to certain‘r‘anges,
but among all the possibilities, every ratio f1/f2 betv n -« amd +w
can occur, We can thus leave the values of £f; and £’ ¢ n for the

moment, until indeed wé¢ have to consider the boundary cuanditions.

The equilibrium equations (4,12) integrate in the forms:

3¢ 2 .
EE{f1log t +(fy-f2) log B} =0 , _aﬁ{leog t'=(£y-f,) log A} =0

We see immediately that if f, = f, ,
t = constant (£4=f,) cee (4e16)
Substituting in the boundary conditions (4.15) and writing by (4.13)

fy = f, =+Y we then find

P o=ty , F =0 _ (h—-"?)

The case £y = £, thus solves any problem of uniform normol stress

applied to a boundary by the not unexpected solution of a uniform

:w

thickness plate!
Assuning from now on that fy £ £ and writing,
I}_[ = '_fﬁ' » P2 = - f.j_, I LR (4018)
(fy-f, f4-T2)
we see that the equilibrium conditions inmply,

a = Fi(a)t?t , B = Fy(B)t7* ~

where Fy and F, are arbitrary functions., However using a
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Atew (A.18) nasely,

i@ a '1(1) sy B = 'a(ﬁ) :
S t.“ﬁm;Mﬁuﬁuhnor.uﬂt,l‘mﬁ
are one signed namely positive, we find |

B L A = EP(a), B = BPr.UB)
~ and ®, omitting the bars, we con write finally,

o Ad = tp‘ » B = tpz CRY ] (1‘019)

The equatioms (4.10) integrate :ln.th- forn

Borr, Boirnp
. ®ea Py, P, are arbitrary functions. Substitution from (4.19)
,--'-;' '\‘.hi'-_minte.mﬁm. sinoe py + p2 + 1 =0,
2pe+1

e - 1), iy ¢ )

sse (k‘m) F

o -‘ln. Pq = %ua then
-Bog t = g0 (a)+ Py(a), - Fog t = am(O)e Re(8)  eus (he21)

> where ¥ and Py are arbitrary fumotions., The consistency of (4.20)
e (ha21) dnmﬂmh

u;;ﬁhgm ﬁ:éc)* Ps()}aP4(8)+ 4(8)] se (he2)

WA A 3 ™
‘il w0 Sl 43 A > an™t

.:; . ﬂ'(c} + !.(.) = a?,(8) + Py() _ o Guls) ]
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The specinl case py =Dy = = %- gives, by (4.18), :f, = =5,

Equation (14..13) then shows that we must hove

f1 = i-y-;/z 3 fz = ;T. Y:/Z s ee (4-2-’-{-)
which may be compered- to the kichell solution of Section 3 with

£y = fp, £, = -f,,  Equation (4.23) has the solution,

Fy(a) =cqa +c5 , F(B) =cip +c, 5 Fsla) = coa + ¢4

Fe(8) = c3p + c4
where €45 Cpy Czy C, are constants, and so by (4.19), (4.21) we can
write,

A = B = t- 1/2 = (‘301 Qﬁ+02a+C3ﬁ+C4 e00 (4.25)

A special case can be studied using (3.12) with k =1 if

we write,
-c.,=o, c, =1, ¢cz3==1, e

The linecs of principal stress are equi-angular spirals with angle
7/b [sec(3.15)]. Fig.3.2 applies to this case and shows that the
external loading for a circular hole is a uniform tangential traction,
whose resultant is a torque. Comparison between (4. 25) and (3.14)
shows that t varies as,

t = wie (4e26)

57
where p is the distance from the centre of the circle. We thus see
that the optimum design for the transmission of a uniformly epplied
torque from a circular hole in a plate consists of a plate whose
thickness varies inversely as the square of the distance from the

centre of the hole. Inspection of (3.14.0) for the case of a fibre

mesh shows direct comparison with this case.
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Another interesting example can be obtained by writing,

Cqy =tz =0

~

% l - -
Equation (£.15) gives 'gj"l‘ =0 aonl so the a-curves are straight lines.

Also === = ¢, and so Jp = ¢ for an cpypropriate reference direction.

Equation (i.i, gives,

5, Qe AT o Yo Czb+Cs
I.2 CZ

neasuring s, fron B = 0, This is a circle of radius p given by,

1]

4 Co+4C
Cz

.Our prineipal dircetions are thus radii and concentric circles ard
the load on a circular hole is a uniforn normal tension or pressure.
Equation (L4.25) shows that the optimum voriation of t is given by,
£ = - (4.27)
- cz 2 ' oo o Ls
2P
Anothef spceial case is given by py =0 , p, = =1 or

f =0 , fy = Y. Tor this we have,

A=1, B=t"zaP,(8) + Fe(B) evs (1:28) .
The a-curves are straight lines which cnvelope an evolute given by

a F4(B) + Fe(p) =0 ces (U4.29)
and the fg-curves are the involubtes. The degenerate case of
concentric circles and radii can be applied to a wedge under tension
due to normal traction on the circular boundaries, but not to a hole in
a plate since in that case the displacenments given by (B.2) are not _ _\)li"_]?“:!--‘i U,

consistent; we have in fact a dislocation.




iy

The gencral case of arbitrary oy, P yiclds by (4.22),

';7_-:1 C1 2 ) p{ c,":

B (o) = (2pg+1)(c2a+cs ) T ) = (2py+1)(coat+cs)
_ PsCh & PrCx

PlB) = i (eives) Pol8) = To5,417 (5, 5v05)

where ¢4, Cp, C3, C4 ore arbitrary constants.

Equation (4.20) then gives,

>(f1 -£2)/(£4+£2) con (4230)

and (L419)

L (Eiﬁ_tgi>f2/(f1+f‘2) . (m>-f1/(f1+fz) ol

Co04+C3x Ca0+C3z

The resulting coordinate curves are of spiral form and as in the
case of (4.25) with ¢y # 0 reveal the novel feature of containing
"points of inflexion". These were ruled out in ouwr previous

discussion in §3.1.

Sholp Alternative Approsch

A direct attack upon the problem of the opti.um design of plate

structures has been suggested by the present writerT. Let us refer our

-

plate to rectangular Cartesisn axes O(x,y)s The components of the

JE'Rce £ 7



stress tenzor f and £, when multiplicd by the veriable
xx’ .YY xy

thickness t , mny be derived from a strces function U by,

ne 227 a2u
tr =88 gp =0 gp oo S ows (5a52)
¥ 0y2 vy o ux2 Xy oxay

This cnsurcs that equilibriun is sotisficd throughout the plate.

Compatibility of strain requircs,

9 e aﬂ
—m{ - pf ) + "—-2.(]:‘ = uf ) = 2(1 +U) eve (4-33)

ox2 Y yy XX ay?t xx vy y

A yicld condition, such as the lises-licncky criterion, must be

impesced, giving,

2 f2 - i 2 0w e
f2 42 =L o+ 32 & 3 . e 3k)

where g is the yield stress for pure shear, Finally equilibriur. .

conditions at the boundary give,

1(tr, )+u(tf ) = F_, l(tfxy) +m(tfyy) = Fy (4e35)

where (1, m ) are direction cosines for the outward normal and
(FK ,I‘y) arc Coartesian components of the external traction per unit
length of bouwndary.

Elimination of the stress components gives:

Lyp4 D4\ 8 y2 A
()70 + 2 52(3)7(VP0) + 2 5 t) %(v20)

32U 3% 1y .8%0 32U
'a"x-?(t)(asz -V ayz) + ayz(z)( = axz)

9%u

Bxay( ) . .é;c-é_j; 0 s [85436)

+2(1 +v)



-6 =

2 ~2 ~2 17 A2 2
2 - U o U - 2 U 2.2
(v20) 3{5-.@. 37 - Gy } <3q%t | vos (837)
4 (y .y 20y |
575'(53? =B 5" “y . s (4.38)

where s is the src length of the boundeory.  Assuming that the

optinum design is given by taking the equality in (4.37), we can

climinate t from (4.36),(4.37) and obtain a fourth order equation for

U to be solved sdbjéct to (4.38). It mey be that a numerical process

like Reloxation could be used to resolve this fOrmidable prob}em,‘but

we cannot say, with our present knowledge, that a physically acceptable
solution exists. Again, since the equations are non-linear; it nay

be that several solutions are possible, but in this case we can presunsbly
pick out the lightest one of the alternatives. Finally sir-e we have '
not used a condition of least weight, we cannot really be sure that our
rrocedure gives us the lightest structure*. It is Conceivable that

the use of the inequality in (4.37) might yield a structure of less

weight, although a structure which is just ebout to yield everywhere at

its working load is clearly a very good engineering design.

OQur equations can be put into a variational form. Let us vary
the stress components and the thickness by arunts 6f , & , &f
\ XX yro . Xy
and &t subject to the conditions of equilibrium and a yieldingw
condition like (4.34), with only an equality sign, being satisfied.

The maintenance of the equilibrium conditions in the varied state

yields

TEquation (4el41) below only gives stationary weight with the Haigh
Ticlding Criterion W = constant!
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‘ / N —
= {11 A o J:f XAy = o6 a8 °
/f[u}ma\tfm) + ewaulw) + 2o 5 XB_)JJ: 1y =0 (4.39)

where ¢ 3 C s © cre the connenents of the strain tensor,
ot yyroxy

Introducing the Strain Encrgy density W, which is given by,

Bk 2, ofa 2 £
,?"ﬁ{(fm...fyy) r 2t ev)(E2, - g W)]

- 11_‘2..& a )° ﬁjﬁ_’-’_), 2 - 2 ' \
- (fmﬂw) + 555 (fxx+fw fxxfﬁ + foy) - (4.{40;

-‘_?

v
we can write (4.39) in the form,

'/j[(t&? + 2Wdt)axdy = 0 (4.1;1)

Introdueing the Mises-Hencky yield condition and using the second

exprescion for W in (4.40), we can write (L.41) as,

r

Motes .3 2 6(14v) - _
J/J,- Es(fxx"“yy) (6fxx+6fyy) +[(fxx+fyy) + (-5_—2;3- q }St]dxdy =0

ces (4o42)

The veriational equation (4.42) can be used for approximate
soluticn of optimunm design problems., One might begin by finding a
stress function U , which satisfies (4.38), and which depends upon
a nurber of arbitrary poarameters or functions. The thickness t
follows from (4.37), with the equal sign, and the stress components
fron (4.32). Equation (4.42) then gives, by the usual processes of
the calculus of variations, equations for the parameters ar
functions, which though complicated will undoubtedly yield to the

process of numerical analysis,



Bs Surcestions for Lines of Research |

- o e N

The theorics discussed in previous sections exhibit many gaps
both in their scove and in their foundations. Application of the
theories is held up in many cases by mathematical difficulties and
in others by the need to carry out possible, but lengthy, special
investigations, Future research con thercfore take two forns.

In the first place, one can fill in the details in those parts of the
suwbject, where the next steps are reasonnbly clear and where the
nccessary mathematical techniques are known, Secondly one can

tackle the fundamental problems, attempting to clear up some of the
nysteries and to broaden the coverage of the theories. The
pedestrian first fornm may well be suggestive for solution of the more

profound problems of the second.
Reasonably straightforwerd problems include:

1) Systematic study of the coordinate curves corresponding to the
ng
general integrals for A,B obtained in equations (3.8), (3.11).

(2) Systematic study of the possible forms that can be assumed by
involute curves and their normals. Inspection of known
solutions with a view to application to design problems.
(See equations (3.16), (3.29)),

(3) Use of the analogy with slip lines in plastic flow to make use of
known results in this field. In particular one might study
equation (3.12) with k a complex number.

(4) Detail study of the constant stress solutions for plates, [ sce
equations (4.25), (4.28) and (4.30),(4.31)]. This might throw
come light on the use of coordinate curves with inflexions,

which are ruled out in the general study based on (3.8),(3.11).

(5) Development of practical methods either analytical or graphical-
numerical for the determination of t; and t; using equations
of the type (3.32) and (3.34) when the coordinate curves are
known, Study of the restrictions imposed on the external forces.




(6) Use of the expericnce gained Dion research projects like (1),(2),
Fat ey . 15 develon the art of drawing in a sct of
(3),(&) ebove io develop the art of drawing s¢
cocrdinate curves to mect a given loaded boundary at
qualitatively epprojriate angles so that consistent signs can

be given to £ and f,,

(7) Solution of o nwiber of simple probleus using the veriational

equation (4.42).

Purdanmental investigations into the existing theory include:

(8) Proof of an existence theorem for a lidchell optimum framework to

equilibrate a finite number of given forces.

(9) Investigation of the cquations of scction §3.3. Development of
teehniques for their solution. Proof of an existence theorem
for a lidchell optimum layout of fibres.

(10) Study of the equations of section §4.2 with a view to developing
solutions for plates with varisble stresses. Existence theorem
for the optimum plate.

(11) Investigation of the general problem of integrating hyperbolic
prrtial differential equations with boundary conditions on

closcd curves,

Investigations dirccted towards broadening the scope of the existing
theory include:

(12) Developuent of Michell type theorems for other types of
construction, e.g. reinforced plates and shells,

(13) Developnent of less restrictive conditions thun the Michell type
for plates. The restrictions imposed by the theorem of &4.1
scen to rule out most practical problems.

(14) Development of theories to deal with several alternative

loading conditions and stiffness requirements.

(15) Investigation of the stability of Michell optimum structures.
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6. Conelusicns

(1) The classical thecrems, such as that of Maxwell, Tz = be used
viith considerchle, success to-produce economical 1 _ suts

for frame struciures.

(2) The theorem of Michell can be used to create a complete theory
for the economiczl design of a plate-like structure
consisting of a double array (weave) of closely spaced fibres.,
It nay well be that the optimum layouts cen only be achieved
by restrictions on the distribution of the external forces
or in some cases on the shape of the plate, but the
development of techniques for the sclution of the mathematical
problems involved, should lead to many solutions of practical

interest,

(3) The extension of Michell's methods to continuous plates leads to
interesting, but rather restricted results, It would seem that
here, a less specialised approach is called for ard it may well
be that the varintional theorem of section $h.k and its
associated approximate methods of analysis could be of greater
use in the problem of plate design. '

(4) The subject of this report offers great scope far research, both
' in the detail development of the classical methods and their

extension to thecries of greater breadih.,
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Appendix A - Curvilinear Coordinates

Consider a plane referred to rectangular Certesian axes o(x,y)
(Fig.fs1). Let us define functions a(x,y), B(x,y) in a region R of
the plane, which are continuous and possess continuous first
derivatives in R ond for which the Jaccbian =~ is positive at all

points in R, l.e, .

_2z 28 _ 2a_ 2p
J—xo',";'_ ay-a:{)O I-cc(A.'i)

We vwrite,
alz,y) = a, B(x,y) = B eee (402)

where @ , B are porameters. Equation (A.2) then defines two sets

of cuwrvilinear arcs, which continuously fill the region R as the
parameters « , B are varied. We observe that onc curve of each set
passes through each point of R . If (a,B). are taken as represented
by points referred to a Cartesian coordinate system (a,8) in a plane,
then (a,B) will vary in a region R’ of this plane for (x,y) in R.

The condition (A.1) is known' to ensure that (A.2) can be
solved for x,y in the neighbourhood of any point (a,B8) of R", i.e.

we can write,
v = mlep) , vy = y(ap) eoo (4:3)

where the functions x(«,8), y(a,F) are continuous, as well as all the
first derivatives with respect to @ ,8 .« The validity of (4.3) for
the whole region R’ does not follow in general from our hypothesesﬂ,
We shall thercfore make the additionsl assumption, that any pair of
values (,5) in R’ dctermines one and only one point (x,y) of our
region R . The points of R and R’ are thus in one t one
correspondence with one another and so the parameter pair (a,{i‘) can

be used as "cwrvilinear coordinantes" for points in R .

TRef.é Tome I &40, .

Tt
Iden. $117
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1

pa 3¢ ol o] ar ’
i L G G

de = == ET\ T o e dw d{j = == "*t 3 = d'd' w
ox oy J o2 ox oy ’

Solution for dx, dy yields,

1798 oa 1 oA o
9 == . S ..o+ = - ot e
dx = ={== da = > 5 dy = J( i da + dﬁ)

which is always valid by (4.1). The following important
relationships then follow, '

0x 1 3a g aa

wr Cheli)

cx _ 198 £x Lo oy _ 188 ay . L
o« ~Jay? o8 "Joy’ oa "~ Jox?® 9f  Jox

The curves given by 8 = constant, along which o varies, are
termed "g-coordinate curves"; those given by a = constant, along
which f veries, are termed '"S-coordinate curves". "Positive
directions" on these curves are defined as those directions for which
the corresponding coordimte ¢ or f is increasing. On an a=-curve
(# = constont) we have,

0
ax = a=d d_y:%ay-da

and sc the corresponding element of arc dsy; is given by

ds‘I = Adf.t ee e (Ao 5)

where, using (&.4) and (A.1),

N 2 i/2 . 172
= o (X gy 1 _ LN (3BY L (&Y
=@ G - G @5 vee (26)
The arc length sy - is mcasured in the positive direction on the
a-curve, Now if §4 is the angle between Ox and the positive tangent-{
to the a=-curve measwred with the convention that a rotation Ox to Oy

is positive, we have, (sce Fig.ﬁ.."i),

The one whose direction coincides with the positive direction on the
CUL'VE,



< A < S O 1<
COS¥1 = gs, T A &a AJ 8y } 5.7
; s B o il 4 & el
sinys = 55 % Z%a ~ T AT ox

where (A.l;.) has been used once more.

Corresponding results follow for the g-curves., We find in

a similar way that

ds, = Bd4s «so [AB)

5 2 Y2 2 2 /2
B = +{-§§) +(~2*§)] = +%‘[(‘S’?§ +(%{'§' }>0 see (£:9)

oonly & BB g &8 & Lawis

o B gy ] veo (4.10)
. _ 4y _ 1dy _ 4 2
B = 50 " EW "B E

Let the angle between the positive tangents to the  ,p
curves at a point be denoted by w . We can then write,
W = qu - llf-] ) i es o (A|11)

The value of sinw then fvollows from (A.7),(A.10) and (A.1).

We find,
sing = sin{lp=Y4) = siny, cosyy = cosl, sinyy
_ .1 _(oa 3B _ %a 3B
T ABJ2\ox 9y Oy ox
, .
=55 > 0, by (Ae1),(A.6),(A.9)
It follows that w must lie between O amd® or,

0 < @ < T s A=Ay



\n

The direction of roteotion ot any paint from a positive tangent on an
a=-curve to a positive toengent on a g-curve is thus the samc over the

whole region R, The velue of cosw follows in o similar way, we fird,

1 f6x ©Ox @y 8y 1 /éa 298 922 0of :
| Wi e st s S i R v - v = b - i 1
COuL = I‘B aa 8;‘3 aa L] a';), P-—E ]_-_: v\ ':\.’ e + Oy ay. (A 3)

The length of the lincar element ds between (@:5) and

(a+da, £+32) is given by,
2 2 2 _ [ox ©ox # oy v 2
ds” = dx” + dy _(g&'da-;-eﬁdﬂ) +<a&da+aj-}dﬁ
Using (4.6),(A.9) and (4.13) we find, *

as? = (ada)® + (Bdﬁ)2 + 2/Bdadfcosw < was (8.%)

If ¥ is the angle betwecn directions defined by (da,dB),

(8a 8B) ot o yoint we have,

L _dx & gy &y . ax Sy 4y O
COS-' - el - + ._-| - n‘ A N—— = —
¥ ds " 6s "ds * & ? sioy ds * 8s ~ds °* &8s

s 2 i dx . ; P "
Substituting for oy etc, in terms of derivatives with respect to

@y f and using (4.6),(A.9) and (A.13) we fimd,

oy = A28 O Ldf 85 de 98 dB8 &
co”l‘lI"Ads'Bs'*Bds'&s ABds‘és+ds‘ﬁs cosw

i da  § da \ .
siny = AB(EQ . Sg- - %‘g o -g)smw

vou CAalS)”
Let us now assume that the functions x(a,B), y(a,B)
possess all their second derivatives with respect to a,2., The

following importeaut formulae can then be demons trated:
L1 R, iy g - - |
o« ~ " Bsing [ 38  ba (BCOS‘“)} '

8l —_ | 8B _ 28
35 Ting { 52 = 35 (Acosa)

I

T ——
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The proofs are straightforwerd and will not be g..en in detail.
They are cbtained by diffcrentiation of (4.6), (A.9) and (A.13) with
respect to a , B ard (4.7) with respect to a and (4.10) with respect
to # . Simple transformation then yields the formulae .of (A.16).
Recalling (A.11) we can then obtain by elimination of yy and

the following important relation between A, B ard w :

&, 1 oB _E.)_ A | i
EEL\ﬁmw[ aa aﬁ(ﬂcosm')] . 8[5‘] op IBSm [aﬁ Ja (BCOSG}')}J

Cee (R417)

The parancters a , B corresponding to definite coordinate
curves are not unique and this fact can be used on occasion to

simplify calculations. Let us write,
a = 4 (a.) ] g = (PZ(B) ' oo (3018)

where ¢4, 92 are continuous functions, with continuous first
derivatives, which do not vanish in the ranges of @ , § which correspond
to the region R'.  The equations (A.18) can be solved uniquely for

@ ,F and so it is possible to take (@ ,F ) as new cwvilincar
coordinates in our region R, The coordinate curves are of course
unchanged, If A , B and T are the new functions which define ds

as in (A.14) we find,

- A = d¢e ?
A = AITS B = Bl=—=
az | ’ ag
—_ i desy dipa . T
and w = w or 7m~w according as Frgl a—g‘- is positive or

negative
von (8:19)

Finally, -let us consider the analytical representation of an
arbitrary curve, for example the boundary of region R (Fig. A.1).

Any curve can be written

a=b4(c) , B =0,(c) sae (A.80)
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where ¢ is & parameter and by , by are continuous functions, with -
continuous first derivatives, wihdch do not vanish sinultaneous: y.
The paranmeter g con be taken as the are length of the curve,

This requires, as substitulion from (A.20) into (A.14) shows,
that
f- 2 2 : !
{4(c)bg ()T + [B(c)o2(0)} + 2{a(o)by ()} {B()b2(0)]cos{m(o)} = 1

(3.21):

where 4(0) = Afb4(0), ba(o)} cte. If 6 is the angle between

ct

he pesitive tangent to an a-curve anl the positive tangent to
our arbitrary curve (A.20) at any point o , we find writing

da =ds/A , 38 =0 and &s = &¢ in (4.15) that,

cosd

1]

A(@)b1(0) + B(c)ba(c)cos{u(o)]
| sve (5,52)

D'}.
b
D
1

B(c)b (0)sin{w(o)]
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Aprendix B - Defornmation and Equilibrium Conditions in

- v e ————

Orthogonal Curvilincar Coordinates

T

Consider a two=dinmensionsl pleone structure referred to
orthogonal curvilinear coordinates (a,3). The condition of

orthogonality meons thot we must write

w = 7/2 ven (Bal)

in

o]

11 the formulac of Appendix A.

Let the vector displacement at eny point (a,B) be resolved
into orthogonal componcnts (u,v) parallel to the positive directions
of the tangents to the a and £ coordinate curves,. The cmnmnponents of
lirect strain Cu? CPB in the directions of these tangents and the
half chear strain o associated with these directions can be

calculated in the usual woy using Fig.B.1. We find, using (A.16),

oqy = L& _ v _ 12w v o2 )
@@ = A" A%x T RAoatIBE
or = 2L BB, 13y u BB
%48 T B *TBE * BH YIS o
= so 0 (3.2)
= Afi%y leu ud v OYp
Cag = 2[1&8&"'}36{3"{'&8& -Baﬁ} "
1 (B @ A D
= 5|3 37®) + § /) ]

If we continue to use the coordinates (a,f) to describe the
defornud state, we must make certain changes to our nmetric. The
quentitics 4,B must be replaced by A(1 + e,,) and B(1 =« 9;3[3)
respectively, since dsy and ds, of (A.5), (A.8) are increased by
the factors (1 + epg), (1 + egp)s and & = /2 must be replaced by
o =%x/2 - 20&5” by the definition of shear strain,
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If these new valucs be substituted in (4.17) and the resulting ‘
formila developed correctly to the first order in the strains, we

find, cancelling the finite part using (A.17) with @ =x /2, that

) N Tegp -
Ba A oa_ dﬁ ep gagg
3 (1 8.(1 84
- 3&'{.& 5a (Caa” eﬁ‘ﬁ)} ¥ 'é,'é[B e (eqq- eﬁ’ﬁ)]

9 (1 2A 0
-2 m= (Aaﬁ aﬁ )"'25&'(%%‘%9aﬁ ) = 0 cee (BOS)

v

This is the equation of compatibility of strain in owr present
coordinate system,

Let our structure carry stress resultants Ty, T, and S,
where T4 is the direct load per unit length parallel to the a=-curve,
T, that parallel to the p-curve and S the shear per un.c length.
The differential equation of equilibrium can be set up by considering

an element da by df as in Fig.B.2. We fird,

- A . @B ~
aa(BJ..,)-t- (AS) 68 aaT = 0
eee (Bek)
d 9 QA
=B g) + aﬁ(A T,) - % Ty + s = 0
vhere (A.16) has been used to elinminate Y3 = 1 ¥, o FigeB.2 also
verifies the equality of complementary shears per unit length.

The equilibrium conditions at a boundary can be written using
FigeBe3. The angle between the a-curve and the tangent to the boundery
The direction cosines of the normal to the boundary referred

to the local directions of a and B at a point o on the bourdary are then
(sinf, = cosB). Hence if F »F

is @ .

§ oTe the components of external traction
rer unit length in the directions of the normel and tangent respectively




m

and if T is the end load in an elge merber ot the boundary,

which contributes comnonents

m/ . of to F yrl
- ond ey =) I
¥ < bo n® "t

respechtively, we can wrile

1}
Fan
3

Ty5ing = Scos6 = T/p )sind + (Ft + %_)cosa

n
’ e (BOE’)
: i i
S 5inf = Tycosb = -(17‘n - T/p)cose + (I‘t + dc'}“me

length o and the angle 6 were introduced in equations (A.Q’f),
(As21) and (A.22). The radius of curvature p is defined in Fig. B.3.
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