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Abstract: In this study, we improved the variable neighborhood search (VNS) algorithm for solving uncapacitated 

multilevel lot-sizing (MLLS) problems. The improvement is two-fold. First, we developed an effective local search 

method known as the Ancestors Depth-first Traversal Search (ADTS), which can be embedded in the VNS to 

significantly improve the solution quality. Second, we proposed a common and efficient approach for the rapid 

calculation of the cost change for the VNS and other generate-and-test algorithms. The new VNS algorithm was 

tested against 176 benchmark problems of different scales (small, medium, and large). The experimental results 

show that the new VNS algorithm outperforms all of the existing algorithms in the literature for solving 

uncapacitated MLLS problems because it was able to find all optimal solutions (100%) for 96 small-sized problems 

and new best-known solutions for 5 of 40 medium-sized problems and for 30 of 40 large-sized problems. 

Key Words: Metaheuristics; Multilevel lot-sizing (MLLS) problem; ADTS local search; Variable Neighborhood 

Search (VNS) 

1.  Introduction 

The multilevel lot-sizing (MLLS) problem addresses how to best determine the trade-off cost in a production 

system with the purpose of satisfying customer demand with a minimum total cost. The MLLS problem plays an 

important role in modern production systems of manufacturing and assembly firms. Many planning systems, such as 

Material Request Planning (MRP) and Master Product Scheduling (MPS), depend heavily on the basic 

mathematical model and solution approaches for the MLLS problem. Nevertheless, the MLLS problem was proven 

to be strongly NP-hard (Arkin et al., 1989). Optimal solutions to large-sized problems with complex product 

structures are notably difficult to find. In addition, optimal algorithms exist only for small-sized MLLS problems, 

and these algorithms include dynamic programming formulations (Zangwill, 1968, 1969), an 

assembly-structure-based method (Crowston and Wagner, 1973), and branch-and-bound algorithms (Afentakis et

al., 1984; Afentakis and Gavish, 1986). Many heuristic approaches have been developed to solve the MLLS 

problem and its variants with near-optimal solutions. Early studies first applied sequential applications of 

single-level lot-sizing models to each component of the product structure (Yelle, 1979; Veral and LaForge, 1985), 
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and later studies used an approximate application of multilevel lot-sizing models (Blackburn and Millen, 1982, 

1985; Coleman and McKnew, 1991). 

The uncapacitated MLLS acts as a fundamental problem, and its solution approach could be highly meaningful to 

many of its extended versions, including the capacitated MLLS, the MLLS with time-windowing, and the MLLS 

with order acceptance. In practice, many SME firms in China’s electromechanical industry are more willing to adopt 

dynamic capability policies because they can improve their capacities during busy seasons with many methods, 

such as extra working-time, temporal employment, and rented machines. Therefore, the uncapacitated MLLS model 

caters to the situations of their ERP systems. 

Over the past decade, several metaheuristic algorithms have been developed to solve uncapacitated MLLS 

problems with complex product structures. It has been reported that these algorithms are capable of providing highly 

cost-efficient solutions with a reasonable computing load. Dellaert and Jeunet (2000) and Dellaert et al. (2000) first 

presented a hybrid genetic algorithm (HGA) for solving uncapacitated MLLS problems with a general product 

structure and introduced a competitive strategy for mixing the use of five operators in the evolution of the 

chromosomes from one generation to the next. Homberger (2008) presented a parallel genetic algorithm (PGA) and 

an empirical policy for deme migration (rate, interval, and selection) for the MLLS problem. These researchers used 

the power of parallel calculations to decentralize the large calculation load over multiple processors (30 processors 

were used in their experiments). In addition to genetic algorithms, other metaheuristic algorithms, such as simulated 

annealing (SA) algorithms (Tang, 2004; Homberger, 2010), the particle swarm optimization (PSO) algorithm by 

Han et al. (2009), the MAX-MIN ant colony optimization (ACO) system by Pitakaso et al. (2006, 2007), and the 

soft optimization approach (SOA) based on segmentation by Kaku et al. (2006, 2010), have been developed for 

solving uncapacitated MLLS problems. 

The variable neighborhood search (VNS) algorithm initiated by Mladenovic and Hansen (1997) is a top-level 

methodology for solving optimization problems. Because its principle is simple and easy to understand and 

implement, various VNS-based algorithms have been successfully applied to many optimization problems (Hansen 

et al., 2008a, 2008b, 2010). Mladenovic et al. (2012a) presented a new schema of the general variable neighborhood 

search (GVNS), which is an extended version of the basic VNS that considers multiple neighborhood structures. 

Labadie et al (2012) proposed a VNS procedure based on the idea of exploring, most of the time, granular instead of 

complete neighborhoods in order to improve the algorithms efficiency without loosing effectives. A brief 

summarization of recent successful VNS applications can be found in Mladenovic et al. (2012b). 

Xiao et al. (2011a) first developed a VNS-based algorithm for basic schema and a shift rule to solve small- and 

medium-sized MLLS problems; this algorithm performed better than the HGA in small- and medium-sized 

problems. Xiao et al. (2011b) developed a reduced VNS (RVNS) combined with six SHAKING techniques to solve 

large-sized MLLS problems. The term “reduced” indicates a simplified version of the classical VNS algorithm 

because the local search (the most time-consuming component of VNS) was removed from the basic scheme. 

Although RVNS is still a generate-and-test algorithm, it differs significantly from the single-point stochastic search 

(SPSS) algorithm (Jeunet and Jonard, 2005) because it uses a systematic method to change multiple bits (with a 

maximum Kmax) in the incumbent to generate a candidate, whereas the latter changes only a single bit. In the study 

conducted by Xiao et al. (2012), three indices (i.e., the distance, changing range, and changing level) were proposed 

for a neighborhood search based on which three hypotheses were verified and can be used as common rules to 

enhance the performance of any existing generate-and-test algorithm. Using these three hypotheses, the proposed 

iterated neighborhood search (INS) algorithm delivered notably good performance when tested against 176 

benchmark problems.  

In our previous research, the neighborhood structure is defined under a distance-based metric that measures the 

distance (of two solutions) using the number of different bits, and another type of neighborhood structure based on 

problem decomposition was also studied in the recent literature (Helber and Sahling, 2010; Lang & Shen, 2011; 

Seeanner et al., 2013). Several decomposition methods (i.e., product-oriented, time-oriented, and resource-oriented) 

combined with fix-and-optimized (or partial optimization) strategies were adapted to decompose the original 
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problem into multiple sub-problems in order to restrain the optimization to a smaller area of the binary variables.

In this paper, we developed an effective local search procedure known as the Ancestors Depth-first Traversal 

Search (ADTS) for the RVNS algorithm such that the RVNS algorithm can be restored to a standard VNS. Although 

the ADTS procedure adds a considerable amount of computing load to the algorithm, we successfully developed an 

efficient method (known as trigger) using a new formulation of MLLS problems to rapidly calculate the change in 

the objective cost during the neighborhood search process. Thus, the new VNS algorithm is both effective and 

efficient in solving MLLS problems with high-quality solutions and within an acceptable computing time. 

The remainder of this paper is organized as follows. In Section 2, we describe the new formulation of the MLLS 

problem. In Section 3, we detail a local search procedure known as ADTS which was added to our previously 

presented RVNS algorithm for effectively solving the MLLS problem. Section 4 outlines a highly efficient approach 

for rapidly calculating the cost variation of the objective function as the incumbent solution changes. In Section 5, 

we test the proposed algorithm on 176 benchmark MLLS problem instances of different scales (small, medium, and 

large) and compare its performance with that of existing methods. Finally, Section 6 presents our concluding 

remarks.  

2.  Problem formulation and neighborhood definition 

The MLLS problem under investigation is considered an uncapacitated, discrete-time, multilevel 

production/inventory system with a general product structure1 and multiple-end items. We assume that external 

demands for the end items are known throughout the planning horizon and that backlog is not allowed. Below, we 

present the notations used to model the MLLS problem, which also can be found in the reports by Dellaert and 

Jeunet (2000) and Xiao et al. (2012). 
� i: Index of items, i = 1, 2, …, m
� t (and t'): Index of periods, t = 1, 2, …, n
� Hi: Unit inventory holding cost for item i
� Si: Setup cost for item i
� dit: External demand for item i in period t 
� Dit: Total demand for item i in period t 
� Cij: Quantity of item i  required to produce one unit of item j

�

iΓ : The set of immediate successors of item i

�
1

i
−Γ : The set of immediate predecessors of item i

� li: The lead time required to assemble, manufacture, or purchase item i

The decision problem focuses on how to set the production setup for all of the items in all of the planning periods 

such that the decision variable is an m×n matrix denoted as follows: 
� Yit: Binary decision variable addressed to capture the setup cost for item i in period t.

Depending on the decision variable, two other important variables are addressed to quickly capture the inventory 

holding costs. These can be introduced as follows: 
� Pit: The period in which the demands of item i in period t will be set for production,  
� Xit: The production quantity for item i in period t.

The objective function is to minimize the sum of the setup cost and the inventory holding cost for all of the items 

over the entire planning horizon and is denoted by TC (total cost). We extend the formulation described by Xiao et al. 

(2012) to cover the external demand for non-end items. Thus, the uncapacitated MLLS problem can be modeled as 

follows:

                                                          
1In a pure assembly structure, each item has multiple immediate predecessors but at most only one direct successor; in a general
structure, each item can have multiple immediate predecessors and multiple direct successors. 
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0, (1 ) 0,1 , ,it it it itX X Y P n i t≥ ⋅ − = ≤ ≤ ∀ .   (6) 

In the above equations, Eq. (1) indicates that every item in every period will incur a setup cost, an inventory 

holding cost, or nothing if a zero demand is associated with it. Please note that it is no longer necessary to calculate 

the inventory levels of the items in the new model, which saves a substantial amount of computational effort. Eq. (2) 

states that the decision variables for the production setup Yit are binary, and Eq. (3) states that the demands of item i

in period t are always set for the production in its closest setup period (indicated by Yit'=1) prior to period t (indicated 

by t' ≤ t). Apparently, the relationship tPit ≤≤1 holds such that backlog is not allowed. Eq. (4) states that the total 

demand for item i in period t includes both its external demand and the sum of the lot sizes of its direct successors 

(items in iΓ ) multiplied by the production ratio with a lead time correction. Eq. (5) guarantees that the lot size of 

item i in period t will cover all of the latter periods of the demands that have been set for production in period t

(indicated by Pit’ = t). Eq. (6) guarantees that the lot size is non-negative and can only be positive in the periods in 

which production has been set up, which is useful for solving the mathematical programming model with certain 

commercial solvers. Fig. A1 in the Appendix section shows an example of solving this programming model using 

IBM ILOG CPLEX 12.2. 

Based on the newly formulated model, we obtain selected properties that can be used to develop efficient 

heuristic rules that may aid the algorithm in finding better solutions and enhance the search efficiency. 

Property 1 Feasibility validation:  

, 0, 0 ,
iti P it itY D if D i t⋅ > > ∀ .          (7) 

This property can be read as all positive demands have been set up for production in their corresponding periods.

Property 2 Cost uniqueness:  

( ) 0, ,it itY t P i t⋅ − = ∀ ,        (8) 

which indicates that the setup cost and the inventory holding cost cannot synchronously occur in the same period of 

time for an item. 

Property 3. Backlog forbiddance: 

1 itP t≤ ≤ , ,i t∀ ,         (9) 

which indicates that all of the demands must be set for production in the period prior to or equal to the demand 

period. Pit cannot be zero or negative. 

Property 4. No demand no setup: The optimal solution of an MLLS problem satisfies

0, 0, ,it itY if D i t= = ∀ .        (10) 
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Proof: Suppose that Y is the optimal solution of an MLLS problem and that there is a bit Yit�Y that violates this 

property by Yit=1 and Dit=0. If we can change Y into Y' by setting Yit←0 and Yi,t+1←1, we can state that TC(Y') is 

lower than TC(Y) because the production setup cost does not produce an increase but the inventory holding cost has 

been decreased by 
i

i it j it jij
h H X H X C−∈Γ

Δ = ⋅ − ⋅ ⋅∑ . Because the unit inventory holding cost of an item is 

always greater than or equal to the sum of the inventory holding cost of all of its immediate components, we can 

state that 0hΔ ≥ . Thus, the bit Yit�Y that violates this property does not exist. 

Property 5. Inner corner property for assembly structure (Tang, 2004):  

, , , ,
jit j t L iY Y i t and j −

′−≥ ∀ ∈Γ .       (11) 

Proof: For an assembly product structure without an external demand of non-end items, the demand of non-end 

items stems only from the lot size of its unique successor multiplied by the production ratio with a lead-time 

correction. In other words, if an item i is not set up for production in period t (i.e., Yit=0), then all of its immediate 

and non-immediate predecessors will have zero demand in their corresponding periods with a lead-time correction. 

According to Property 4, the production setup in these periods must be zero (it cannot be 1). Thus, Property 5 holds, 

and if Yit=1, Property 5 holds straightforwardly. 

Property 6. Lot size relationship: The relationships below hold for a feasible solution of an MLLS problem: 

( )
1 1

,
n n

it it it
t t

X Y D i
= =

⋅ = ∀∑ ∑ ,       (12) 

( )
1 1

, ,
t t

it it it
t t

X Y D i t′ ′ ′
′ ′= =

⋅ ≥ ∀∑ ∑ ,      (13) 

( ) , ,
n n

it it it it it
t t t t

Y X Y Y D i t′ ′ ′
′ ′= =

⋅ ⋅ = ⋅ ∀∑ ∑ .     (14) 

3. VNS algorithm with an effective local search for MLLS problems 

3.1 The mechanism of VNS for MLLS problems 

The VNS is a top-level heuristic strategy that can be used to conduct an efficient stochastic search for better 

solutions using predefined and systematic changes of neighborhoods. This approach implies a general principle of 

from near to far for exploration of the neighborhoods of the incumbent solution. The underlying basis for this 

principle is that, in most cases, there is always a higher probability of finding better solutions in nearby 

neighborhoods rather than farther ones. Therefore, the definition of the neighborhood structures will be highly 

important for the implementation of the VNS strategy to solve an optimization problem. Xiao et al. (2011a) first 

introduced a distance-based definition of neighborhood structures for the MLLS problem and verified this approach 

with experiments in later study (Xiao et al., 2012), which showed that the distance and the other two indices 

(changing range and changing level) are highly effective factors for conducting a variable neighborhood search. 

Below, we introduce the definition of distance-based neighborhood structures for the MLLS problem according to 

Xiao et al. (2011a).  

Definition 1. The distance metric: For a set of feasible solutions of an MLLS problem (i.e., {Y}), the distance 

between any two solutions in {Y} (e.g., Y and Y') can be measured by the following: 

( , ) | \ | | \ |, , { }Y Y Y Y Y Y Y Y Yρ ′ ′ ′ ′= = ∀ ∈ ,
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where | \ |⋅ ⋅  denotes the number of different bits between Y and Y', e.g., 
1 1

| \ |
m n

it it
i t

Y Y Y Y
= =

′ ′= −∑∑ .

Next, based on Definition 1, the neighborhood structure of the incumbent solution can be defined as follows:

Definition 2. The neighborhood structures: A solution Y' belongs to the kth-neighborhood of the incumbent solution 

Y (i.e., Nk (Y)) if and only if it satisfies

( , )Y Y kρ ′ = ,

which can be simply expressed as ( ) ( , )kY N Y Y Y kρ′ ′∈ ⇔ = , where k is a positive integer. 

The application of the basic VNS scheme to solve the MLLS problem consists of two general phases. The first 

phase includes defining a neighborhood structure, selecting an exploring sequence, initiating a solution Y0 as the 

incumbent (Y�Y0), and defining a stopping condition. The second phase involves a neighborhood search loop in 

which better solutions in the targeted neighborhood (from near to far) are repeatedly explored and accepted. In this 

loop process, the nearest neighborhood N1(Y) is explored first (k�1); if no better solution can be found in 

neighborhood Nk (Y), then the algorithm shifts to explore a farther neighborhood by setting k�k+1 until k = Kmax.

While searching for a better solution, a shaking procedure is used to randomly generate a candidate Y', and a local 

search procedure is applied to look for the best solution Y" near Y'. If Y" is better than Y, then Y is moved to Y" by Y�

Y" and the algorithm continues to search Nk (Y) after setting k�1; otherwise, we set k�k+1. In Fig. 1, we present the 

basic scheme of the VNS algorithm introduced by Hansen and Mladenovic (2001). 

Place Figure 1 approximately here.  

3.2 An effective local search method 

Previously, Xiao et al. (2011b) proposed a reduced variable neighborhood search (RVNS) algorithm for solving 

the uncapacitated multi-level lot-sizing problem. The term “reduced” means that the local search component of the 

basic VNS scheme was removed to increase the computational efficiency. However, in this work, we suggest an 

effective local search method and add it to the RVNS algorithm because the local search method enables a 

significant improvement in the search for higher-quality solutions with an acceptable increase in the computational 

load.

The local search method is known as the Ancestors Depth-first Traversal Search (ADTS). After shaking out a new 

candidate Y' in the neighborhood Nk(Y) of the incumbent Y, we use the ADTS method to find the best solution Y"

near Y' and perform a comparison between Y and Y" (instead of Y' in RVNS) to facilitate the “move or not” decision 

accordingly. In this process, the incumbent Y will tentatively move to Y' and use the ADTS to find a Y". If Y" is better 

than Y', then the algorithm moves to Y"; otherwise, it returns to Y. When Y moves to Y', a total of k bits of Y must be 

reversed. Once one bit (i.e., Yit) is reversed, the ADTS procedure is launched to seek the largest cost reduction by 

setting (one at a time) each of the immediate and non-immediate predecessors of item i with the same setup value in 

the corresponding periods of t (with a lead-time correction if the lead time is not zero). In other words, after setting 

Yit←1-Yit, we use a depth-first traversal recursion to set all of the setup values of the ancestors of item i to 1-Yit and 

record the path that leads to the largest cost reduction. The recorded path is exactly the method used to change Y' to 

Y", which is the best solution found from a local search around Y'.

In Fig. 2, we present a simple MLLS example involving a six-item product structure over a six-period planning 

horizon to illustrate the principle of ADTS. Fig. 2 (a) describes a general product structure, and Fig. 2(b) and Fig. 2 

(c) present two solutions with zero lead time and one period of lead-time, respectively. Because the solution moves 
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into its kth neighborhood, it must reverse the values of the k bits that are selected randomly by the shaking procedure. 

The ADTS procedure will follow each change in these bits. For example, in Fig. 2(b), once bit Y33 is reversed from 

1 to 0, the ADTS procedure acts to recursively change all of its ancestors to zero and to restore the original value 

through the path Y43(1→0)→Y63(unchanged)→Y43(0→1)→Y53(1→0)→Y53(0→1). In Fig. 2(c), once bit Y24 is 

reversed to 1, the ADTS procedure changes and restores the bits through the path Y43(0→1)→Y62(0→1)

→Y62(1→0)→Y43(1→0) using the lead-time of 1 to correct the corresponding periods. Throughout the entire 

process, the largest cost reduction and its corresponding path will be recorded, and all of the changes that the ADTS 

has enacted to Y' will be restored in the end. Finally, if the largest cost reduction is positive such that the best solution 

Y" found in the local search is better than Y', then the procedure moves Y' to Y" through the recorded path. The 

formal description of the ADTS procedure is detailed in Fig. 3. 

Place Figure 2 approximately here. 

Place Figure 3 approximately here. 

The concept of ADTS arose from the new formulation of the mathematical model for the uncapacitated MLLS 

problem. According to Eqs. (1)-(5), when an item i changes its production setup value in period t (i.e., Yit←1-Yit),

this operation will only affect the setup and the inventory holding cost of item i and its ancestors in the affected 

periods. Most of the items and periods remain in the unaffected zone. Therefore, a local search that focuses only on 

the affected items and related periods will be effective for searching for the best solution close to Y'. Our 

computational experiment in the latter section confirmed this conjecture and verified the effectiveness of the ADTS 

method.

3.3 VNS algorithm with the ADTS local search 

We now describe the framework of the VNS algorithm with the ADTS local search procedure, as shown in Fig 4. 

This framework is based on the RVNS algorithm introduced by Xiao et al. (2011b) and was combined with the 

ADTS local search procedure proposed in this study. The ideas introduced by Xiao et al. (2012) to restrain the 

changing ranges and changing level in the shaking procedure were also adopted in this algorithm. This approach 

represents the latest version of the neighborhood search algorithm that we developed for the MLLS problem, and we 

have verified its effectiveness and efficiency through the computational experiments reported in Section 5. In Table 

1, we list the interpretations of the parameters and variables that appear in the VNS algorithm. 

Place Figure 4 approximately here. 

Place Table 1 approximately here. 

The initial method is a modified RCWW (randomized cumulative Wagner and Whitin) algorithm that was first 

introduced by Dellaert and Jeunet (2000) and represents a sequential use of the Wagner and Whitin (WW) algorithm 

from an end item to the raw materials with a randomized cumulative production setup cost. The detailed WW 

algorithm can be found in the study published by Wagner and Whitin (1958; republished in 2004). Xiao et al. (2011b) 

extended the RCWW algorithm using both the modified setup cost and the modified inventory holding cost, which 

are also adopted in the new VNS algorithm of this paper.  

The shaking procedure in Step 7 (a) randomly produces a candidate Y from the incumbent Y', and the constraints 

on distance, changing range of item/period, and changing level are controlled by the input parameters Kmax, tΔ , and 

α , respectively. For additional details on these constraints, please see the manuscript by Xiao et al. (2012). Other 

techniques, i.e., limiting the changed bits between the first period and the last period that have positive demand

described by Dellaert and Jeunet (2000), trigger recursive changes described by Dellaert and Jeunet (2000) and 

Jeunet and Jonard (2005), setup shifting rule described by Xiao et al. (2011a), and the no demand no setup principle 

described by Xiao et al. (2011b), are included in the shaking procedure. All of these techniques will help improve 

the quality of the solution or the efficiency of the algorithm. 

The stop condition in Step 9 can be either a maximum span between two consecutive improvements or a fixed 
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computing time elapsed. The first stop condition, i.e., a maximum improvement span Pmax, can be used for a 

small-sized problem because finding the optimal solution requires only a few (or even less than 1) seconds in this 

case. For medium/large-sized problems, the second stop condition, i.e., a fixed computing time, is suggested 

because different problems may require considerably different computing times if using the first stop condition. 

When a fixed computing time is used as the stop condition, the maximum improvement span (i.e., max(P)) can be 

treated as an evaluation index that indicates the extent to which the current solution has been optimized. A small 

value of max(P) indicates that the current solution still has much potential for optimization, whereas a large value 

indicates that the current result is an already optimized solution of the algorithm obtained with great effort.  

4.  An efficient method for quickly calculating the cost variation 

Although the ADTS local search is quite effective in searching for better solutions, it is also a notably 

time-consuming procedure because it must recalculate the objective cost of the incumbent solution at each step of 

the recursive path (in theory). To improve the computational load, we propose an efficient method to calculate the 

cost variation of a solution change using the advantages of the new formulation for the MLLS problem shown in Eq. 

(1)-Eq. (5). The new approach is a recursive accumulation of the cost reduction (or variation) (RACR in short) for 

recalculation of the objective function when the incumbent solution is changed. The RACR is highly efficient 

because it directly calculates the cost reduction from the changed point and the lot size in related periods. 

It can be observed from Eq. (1) that the setup cost is determined only by the decision variable Y, and the inventory 

holding cost is determined only by the dependent variables P and D. When a bit in Y (i.e., Yit∈Y) is changed, the 

objective cost will increase by one unit of the setup cost of item i if Yit moves from 0 to 1 or decrease by one unit if 

Yit moves from 1 to 0. This change also triggers subsequent changes in Pit and Xit according to Eq. (3) and Eq. (4), 

respectively. Therefore, the inventory holding cost for item i will be influenced: it will increase if Yit moves from 1 

to 0 or decrease if Yit moves from 0 to 1. Subsequently, the varying lot size of item i (i.e., Xit) continues to recursively 

influence the demands for its immediate and non-immediate predecessors (components) in the corresponding 

periods (with a lead-time correction if Li is non-zero). This scenario also causes an inventory holding cost variation. 

Note that all of these changes are occurring only in the area related to the ancestors of item i (not to all of the items) 

during a few periods (not in all of the periods). Therefore, the calculation of the cost reduction that results from the 

related area is much faster than the complete recalculation of the objective cost for all of the items throughout all of 

the periods. This insight helps us develop an efficient method for calculating the cost reduction in the neighborhood 

search and may also be applicable for any other generate-and-test algorithms to enhance their computing 

efficiencies. In Fig. 5, we provide the detailed steps of the RACV procedure when the incumbent Y moves to Y'.

Place Figure 5 approximately here.  

We note that the efficiency of the algorithms shown in Fig. 3 and Fig. 5 can be reciprocally related to the 

complexity of the product structure because the algorithm must call the recursive function to traverse the entire 

ancestor tree of the changed item. Therefore, the number of ancestor tree nodes can be used to measure the 

complexity of the product structure, which will considerably influence the computing efficiency. We use the 

notation Ti to denote the number of ancestor tree nodes of item i and accordingly define a complexity index (CI) of 

the product structure using the average number of ancestor tree nodes for all of the items as follows: 

1

1 m

i
i

CI T
n =

= ∑                                   (15) 

5.  Computational experiments 

5.1 Problem instances and test environment 
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Three classes of uncapacitated MLLS problems of different scales (small, medium, and large) were used to test 

the performance of the new VNS algorithm with the ADTS local search. Class 1 consists of 96 small-sized MLLS 

problems involving a five-item assembly structure over a 12-period planning horizon, as developed by Coleman and 

McKnew (1991) based on the work of Veral and LaForge (1985) and Benton and Srivastava (1985). Class 2 consists 

of 40 medium-sized MLLS problems involving 40/50-item product structures over a 12/24-period planning horizon, 

based on the product structures proposed by Afentakis et al. (1984), Afentakis and Gavish (1986), and Dellaert and 

Jeunet (2000). Class 3 covers 40 large-sized problems with a size of 500 items over 36/52 periods, as synthesized by 

Dellaert and Jeunet (2000) and used as a benchmark by Pitakaso et al. (2007), Homberger (2008, 2010), and Xiao et 

al. (2011b, 2012). Thus, a total of 176 problem instances will be used to test the VNS algorithm. For the 136 

problems classified as Class 1 and Class 2, the lead times of the items were all set to 0, whereas the lead times for all 

of the items in the 40 large-sized problems were set to 1.  

The VNS algorithm was coded in VC++6.0 and run on a PC computer equipped with an Intel(R) Core(TM) 

3i-2100 3.1G CPU operating under a Windows 7 system. We used the maximum improvement span as the stop 

condition for the small-sized problems in Class 1 and a fixed computing time as the stop condition for all of the 

medium and large-sized problems in Class 2 and Class 3. We compared the performances of the VNS with those of 

six other existing algorithms in the literature: the hybrid genetic algorithm (HGA) developed by Dellaert and Jeunet 

(2000), the MAX-MIN ant system (MMAS) developed by Pitakaso et al.(2007), the parallel genetic algorithm 

(PGA) developed by Homberger (2008), the ant colony algorithm (SACO) developed by Homberger and Gehring 

(2009), the RVNS developed by Xiao et al. (2011b), and the ISN algorithm developed by Xiao et al. (2012). 

Interested readers can download all of our experimental data, including the benchmark problems, experimental 

outcomes, best solution found, executable program, and source code in VC ++6.0, from the following website: 

http://semen.buaa.edu.cn/Teacher/Templet/DefaultDownLoadAttach.aspx?cwid=1224.  

5.2 Computational experiments 

First, we ran the VNS algorithm once for the Class 1 problems using the control parameters Pmax=100, Kmax=5,

Nmax= 100, α= 0.5, and ΔT = 6. The parameter Pmax=100 indicates that the algorithm stops after 100 consecutive 

attempts to improve Ybest without success. The average results are shown and compared with those of the existing 

algorithms in Table 2. It can be observed that the VNS algorithm is able to discover the optimal solutions for 100% 

of the 96 small-sized problems within a rather short computing time (much less than one second). 

Place Table 2 approximately here. 

Second, we ran the VNS algorithm once for the 40 problems classified as Class 2 using the control parameters 

Tmax=30 (seconds), Kmax=5, Nmax= 1000, α= 0.5, and ΔT = 6. The parameter Tmax=30 s indicates that the algorithm 

stops after 30 seconds have elapsed. The average results are shown and compared with those of the existing 

algorithms in Table 3, and the detailed results are listed in Table 4 and compared with the previous best-known 

solutions (to date). It can be observed from Table 3 that the VNS algorithm delivers the best performances among all 

of the compared algorithms with respect to the Average Cost, Deviation from the best-known (%), and the 

best-known found (%). The RCWW in the second row shows the average initial solutions resulting from the RCWW 

method. The VNS– in the third row indicates the VNS algorithm without use of the ADTS procedure, which 

demonstrates the advantages of the local search method. The fourth row (VNS (Pmax=100)) is the performance of the 

VNS algorithm with the stop condition Pmax=100 (where RACR is used) and can be compared with that of the fifth 

row (VNS* (Pmax=100)) (where RACR is not used, and the objective value is always fully recalculated from the 

changing item toward top materials). A comparison of these two rows reveals that, when the same solution quality is 

reached, the RACR method saves a marked amount of computational time. The detailed list in Table 4 indicates that 

five problems were updated with new best-known solutions, and 75% of the problems (30 of 40) reached their 

best-known solutions in this run. The column Max(P) in Table 4 indicates that certain problems with lower values, 

such as Problems 20 and 38, could be further optimized if the maximum computing time was extended. The latest 

list of best-known solutions from Class 2 problems has been updated in Table A1 in the Appendix. 
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Place Table 3 approximately here.

Place Table 4 approximately here.

Third, we ran the VNS algorithm once on the 40 problems classified as Class 3 using the control parameters 

Tmax=1800 (seconds), Kmax=6, Nmax= 2000, α= 0.5, and ΔT =8. The results are listed in Table 5. As shown in Table 5, 

the VNS algorithm performs quite well on large-sized MLLS problems because 75% (30 out of 40) of the tested 

problems were updated with new best-known solutions. We summarize the results in Table 6 and compare them 

with those from the existing methods in the literature. It can be observed that the VNS algorithm delivers the best 

performances among all of the algorithms with respect to Deviation from Best (%) and Best solutions found (%) and 

delivers the second-best performance in terms of Average Cost. It is notable that the Average Cost is the arithmetic 

mean of the solutions for the 40 tested problems and is thus primarily influenced by those problems with large 

objective values, e.g., Problems 15 and 35, which have the largest and second-largest objective values. If Problem 

15 or 35 has a deviation from the best-known solution of merely 0.2% (increase in the objective value), this 

deviation will cover up all of the good performances (decrease in the objective value) from the remaining 38 

problems in terms of Average Cost for the entire problem class. For this reason, although the VNS algorithm 

updated 30 of the 40 problems with new best-known solutions (Problems 15 and 35 were not updated), the Average

Cost is not the lowest among all of the existing methods. The numbers in column CI of Table 5, as defined in Eq. (15) 

in Section 4, indicate the complexity of the product structures of the problems. The experimental results show that a 

notably large CI can greatly decrease the efficiency of the ADTS local search method and will also result in a low 

value for Max(P), which may indicate that the current solution is still far from the optimal solution and has potential 

for further optimization. For example, Problems 15 and 35 are associated with a large CI and therefore output a 

small Max(P); it is therefore assumed that better solutions would be very likely to be obtained if the computational 

times are extended. The latest version of the best-known solutions for Class 3 problems has been updated in Table 

A2 in the Appendix. An example of the new best solution of the NO.39 instance of Class 3 can be found at 

http://semen.buaa.edu.cn/Teacher/Templet/DefaultDownLoadAttach.aspx?cwid=1224.

Place Table 5 approximately here.

Place Table 6 approximately here.

In Table 7, we show a comparison of the total number of evaluated candidate solutions throughout the search 

process, which demonstrates the logic and computational effort defined by Alba et al. (2002) that a 

generate-and-test algorithm uses to reach the best-found solution. The penultimate row in Table 7 (VNS’s shaking 

solutions) is the total number of candidate solutions generated by the shaking procedure, i.e., the number of Y'. The 

last row (VNS’s bit changes) in Table 7 shows the total number of times that one bit change (including 1→0 and 

0→1) occurred in the incumbent solution, which are the shifts that primarily conducted by the shaking procedure of 

VNS (Y→Y') and the ADTS procedure (Y'→Y"). The comparison in Table 7 shows that, although the VNS 

algorithm delivered the best performance in terms of solution quality, it required much more logic and 

computational effort than other methods. This result demonstrates the benefits of the proposed RACR method for 

the rapid calculation of the objective function when a bit change occurs. In other words, RACR enables the VNS 

algorithm (and other generate-and-test algorithms, in our opinion) to test a larger number of candidate solutions 

within the same computational time.

Place Table 7 approximately here.

Finally, a parameter Nmax was added to our VNS algorithm to indicate the extent to which a neighborhood should 

be explored before moving to the next neighborhood by k←k+1; in contrast, in the basic scheme of the classical 
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VNS algorithm, the parameter Nmax is fixed to 1. We then performed the following experiment to verify the role of 

Nmax in the VNS algorithm. We used the 40 Class 2 medium-sized problems as the benchmark problem set to test the 

parameter Nmax, which was varied from 1, 10, 50, 100, 200, 500, 1000, to 2000. The other parameters were fixed at 

Tmax=30 s, Kmax=5, ΔT = 6, and �= 0.2, the stop condition was fixed at 30 seconds of computing time for each 

problem. The Average Cost, Deviation from best (%), and best solutions found (%) are recorded in the experiments 

with respect to every value of Nmax. The experimental results are shown in Table 8. It can be observed that, with the 

same computing time, the VNS algorithm tends to obtain a better quality of solutions as the parameter Nmax

increases. The best value for Nmax is approximately 1000, and a continued increase of Nmax to values higher than 

1000 will not improve the solutions. It is notable that the solution quality is quite poor when Nmax=1, which is 

exactly the case for the basic VNS scheme shown in Fig. 1 without the Nmax parameter. In Table 9, we performed 

similar experiments for parameter Kmax, which was increased from 1 to 10 at intervals of 1, and the other parameters 

were fixed at Tmax=30 s, Nmax=1000, ΔT = 6, and � = 0.2. The experimental results are shown in Table 9. It can also 

be observed that the VNS algorithm tends to obtain better solutions as the parameter Kmax increases, and an optimal 

value of Kmax=8, which gave even better outcomes than those observed in the previous experiments with Kmax=5

shown in Table 3, was found. We believe that a proper Kmax will also improve the solutions shown in Table 5 for the 

large-sized problems, because the Kmax=6 used is relatively small. Interested readers can download our program to 

perform their own experiments 

(http://semen.buaa.edu.cn/Teacher/Templet/DefaultDownLoadAttach.aspx?cwid=1224). Note that when Kmax=1, the 

VNS algorithm will degrade to the single-point stochastic search (SPSS) studied by Jeunet and Jonard (2005). 

Several new best-known solutions were observed in the experiments, but we did not add them to the best-known list 

of Table A1 because they were found using multiple runs. 

Place Table 8 approximately here. 

Place Table 9 approximately here.

6. Conclusions 

The uncapacitated MLLS model represents a basic form of many extended versions of the MLLS problem 

under various constraints. The solution approach is foundational and plays a basic role in the solution of many other 

extended problems. We recently conducted studies on this problem using a variable neighborhood search and 

presented certain effective and efficient techniques and algorithms. In this paper, we continue our contributions to 

this topic and focus primarily on two points. First, we suggest an effective local search method that can be added to 

our previously presented RVNS algorithm; as a result, the solution quality can be markedly improved because many 

of the well-known benchmark problems were updated with new best-known solutions obtained from our 

computational experiments. Second, a highly efficient approach for the rapid calculation of the cost variation of the 

objective function when the incumbent solution is changed was presented. This approach can significantly improve 

the efficiency of the VNS algorithm and, more importantly, may be helpful in improving the efficiency of many 

other generate-and-test algorithms for MLLS problems that have been historically presented in the literature.
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Place Figure A1 approximately here.

Place Table A1 approximately here.
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Place Table A2 approximately here.
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Captions of the Figures.  

Fig 1. The basic VNS scheme

Fig. 2 An example for illustrating the PDTS local search 

Fig 3. Algorithm for the PDTS local search procedure 

Fig 4. The VNS algorithm with a PDTS local search for the MLLS problem 

Fig 5. An efficient way (RACR) to quickly calculate the cost variation 

Fig A1. An example of solving the model by using IBM ILOG CPLEX 12.2.
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Table 1. Interpretation of the parameters and variables that appear in Algorithm 2. 
Pass NO. Notation Physical means 

1 Kmax The largest neighbourhood, i.e., the maximum number of changed bits between Y and Y'.
1 Nmax The maximum consecutive unsuccessful attempts allowed to search a neighbourhood. 
1

�
A parameter in [0.05, 1] used to control the item level of changed bits. See Xiao et al.(2012) 

1 tΔ A parameter used to restrict the period scope of the changed bits. See Xiao et al.(2012) 

2 Pmax The maximum span between any two abutting improvements on Ybest.
2 Tmax The maximum computing time in seconds. 
3 Ybest The best solution found. 
5 Y The incumbent solution. 
6 k The current neighbourhood. 
6 N The number of continuous unsuccessful attempts in searching the current neighbourhood. 
6 P The number of unsuccessful attempts at improving Ybest.

7(a) Y' The current candidate solution. 
7(a)

�(Y, Y') The distance between Y and Y'. See Definition 1 in Xiao et al. (2012). 

7(a)
�i(Y, Y') The changing range of items. See Definition 2 in Xiao et al. (2012). 

7(a)
�t(Y, Y') The changing range of periods. See Definition 2 in Xiao et al. (2012). 

7(a) L(Y,Y')�P(�) The changing level between Y and Y' must obey the line probability distribution of �.
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Table 2. Comparison of the VNS algorithm with existing algorithms on Class 1 problems 

(Pmax=100, Kmax=5, Nmax= 100, �= 0.5, ΔT = 6) 

Method Avg. Cost Optimality (%) Avg. Time (s) CPU  Source
RCWW 861.05 4.17 <0.01 3i 3.1G This study 
VNS 810.67 100.00 0.1 3i 3.1G This study 
HGA50 810.74 96.88 5.1 PIII 450 M Dellaert and Jeunet (2000) 
MMAS 810.79 92.71 1.0 PIV 1.5G Pitakaso et al.(2007)
GA100 811.98 75.00 5.0 PIV 2.4G Homberger (2008) 
GA3000 810.67 100.00 5.0 PIV 2.4G Homberger (2008) 
PGA 810.67 100.00 5.0 PIV 2.4G Homberger (2008) 
SA-NM(1) 810.67 100.00 4.0 I.C.2D 1.83G Homberger (2010) 

810.67 100.00 1.8 NB 1.6G Xiao et al. (2011a)

RVND 810.67 100.00 0.3 I.C.2D 1.6G Xiao et al. (2011b)
INS 810.67 100.00 3.0 I.C.2D 1.6G Xiao et al.(2012) 
OPT. 810.67 -- -- -- - 

Note: The best values are indicated in bold face. MMAS’s CPU time had been adapted by the factor of Dongarra (2005).



  

Table 3. Comparing VNS with existing methods on 40 medium-sized problems 

Method
Avg.
Cost

Dev. from best 
known (%)

Best known
found (%)

Avg.
time(s) CPU type Sources

RCWW 279,258 5.71% 0 <1 Int.3i 3.1G This study
VNS 263,254 0.05 80 30 Int.3i 3.1G This study
VNS 263,316 0.07 57.5 30 Int.3i 3.1G This study, without ADTS
VNS (Pmax=100) 263,275 0.06 70 2.4 Int.3i 3.1G This study
VNS*(Pmax=100) 263,275 0.06 70 135 Int.3i 3.1G This study, without RACR
HGA250 263,932 0.76 10 <60 PIII 450M Dellaert and Jeunet (2000)
MMAS 263,796 0.24 15 <20 PIV 1.5G Pitakaso et al. (2007)
PGA 263,360 0.07 55 60 PIV 2.4G Homberger (2008)
SACO 263,347 -- -- 32 PIV 2.4G Homberger and Gehring (2009)
SA-NM(1) 263,292 -- -- 40 I.C.2D 1.8G Homberger (2010)

263,571 0.16 -- 26.7 NB 1.6G Xiao et al. (2011a)
RVND 263,399 0.10 45 26.7 I.C.2D 1.6G Xiao et al. (2011b)
INS 263,323 0.07 55 34.2 I.C.2D 1.6G Xiao et al.(2012)
Best known 263,140 0 -- -- -- --

Note: The best values are indicated in bold face; Int.3i 3.1G is abbreviated for Intel(R) Core(TM) 3i-2100 CPU 3.1G; VNS- indicates 
the VNS algorithm without the PDTS local search; MMAS s CPU time had been adapted by the factor of Dongarra (2005).
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Table 4. Results of the experiment on Class 2 problems (Tmax=30s, kmax=5, Nmax=1000, ΔT = 6, �= 0.2) 

Prob. S D I P Prev. Best known This study 
Dev. from best 

known(%)
MAX(P)

0 1 1 50 12 194,571 196,084 0.78 4,548

1 1 2 50 12 165,110 165,632 0.32 3,190

2 1 3 50 12 201,226 201,226 0.00 4,085

3 1 4 50 12 187,790 188,010 0.12 4,576

4 1 5 50 12 161,304 161,561 0.16 5,148

5 2 1 50 12 179,761 179,761 0 2,378

6 2 2 50 12 155,938 155,938 0 2,619

7 2 3 50 12 183,219 183,219 0 2,579

8 2 4 50 12 136,462 136,462 0 2,222

9 2 5 50 12 186,597 186,597 0 1,841

10 3 1 40 12 148,004 148,004 0 1,969

11 3 2 40 12 197,695 197,695 0 1,772

12 3 3 40 12 160,693 160,693 0 2,115

13 3 4 40 12 184,358 184,358 0 1,848

14 3 5 40 12 161,457 161,457 0 2,075

15 4 1 40 12 185,161 185,161 0 2,578

16 4 2 40 12 185,542 185,542 0 2,999

17 4 3 40 12 192,157 192,794 0.33 2,845

18 4 4 40 12 136,757 136,757 0 2,594

19 4 5 40 12 166,041 166,041 0 1,655

20 1 6 50 24 342,916 343,138 0.06 786

21 1 7 50 24 292,908 292,820 0 1,375

22 1 8 50 24 354,919 354,834 0 1,057

23 1 9 50 24 325,212 325,174 0 2,472

24 1 10 50 24 385,936 385,936 0 1,654

25 2 6 50 24 340,686 340,705 0.01 1,274

26 2 7 50 24 378,845 378,845 0 1,153

27 2 8 50 24 346,313 346,313 0 1,363

28 2 9 50 24 411,997 411,997 0 1,046

29 2 10 50 24 390,194 390,194 0 1,238

30 3 6 40 24 344,970 344,970 0 1,644

31 3 7 40 24 352,634 352,634 0 1,398

32 3 8 40 24 356,323 356,323 0 1,203

33 3 9 40 24 411,438 411,438 0 1,391

34 3 10 40 24 401,732 401,732 0 1,347

35 4 6 40 24 289,846 289,846 0 2,014

36 4 7 40 24 337,913 339,053 0.34 1,423

37 4 8 40 24 319,905 319,781 0 1,671

38 4 9 40 24 366,848 366,409 0 699

39 4 10 40 24 305,011 305,011 0 1,775

    Avg. 263,160  263,254 0.05 2,090

Note: S denotes the product structure type; D represents the external demand type; I is the number of items; P is the number of periods; 

boldface type denotes the best-known; and italic type denotes the new best-known solution.
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Table 5. Results of experiments on Class 3 problems (Tmax=30 m, Kmax=6, Nmax=2000, ΔT = 8, �= 0.2) 

 I P CI Prev. best known This study Dev. from best known(%) MAX(P) 
0 500 36 13 591,585 597,560 1.01 5151 
1 500 36 9 816,043 815,716 0 5478 
2 500 36 6 908,616 927,716 2.10 5873 
3 500 36 4 929,929 943,403 1.45 4717 
4 500 36 3 1,145,749 1,144,209 0 3436 
5 500 36 177 7,639,920 7,595,372 0 87 
6 500 36 50 3,921,407 3,873,241 0 222 
7 500 36 21 2,694,924 2,628,883 0 571 
8 500 36 9 1,880,021 1,833,488 0 737 
9 500 36 5 1,502,194 1,487,855 0 1173 

10 500 36 1966 59,121,845 59,152,662 0 25 
11 500 36 239 13,422,827 13,349,944 0 61 
12 500 36 56 4,718,146 4,617,206 0 186 
13 500 36 18 2,908,634 2,856,389 0 408 
14 500 36 8 1,737,525 1,722,205 0 657 
15 500 36 13228 468,463,630 470,266,674 0.38 2 
16 500 36 500 18,677,678 18,666,341 0 56 
17 500 36 103 7,292,340 7,277,613 0 88 
18 500 36 25 3,519,932 3,455,399 0 276 
19 500 36 11 2,278,214 2,253,609 0 721 
20 500 52 13 1,187,090 1,187,246 0.01 2107 
21 500 52 9 1,341,412 1,340,695 0 1558 
22 500 52 6 1,400,480 1,401,630 0.08 3362 
23 500 52 4 1,382,150 1,379,391 0 2835 
24 500 52 3 1,657,248 1,656,209 0 3245 
25 500 52 177 12,671,808 12,640,011 0 29 
26 500 52 50 7,159,416 7,158,729 0 176 
27 500 52 21 4,148,783 4,057,733 0 407 
28 500 52 9 2,889,151 2,829,847 0 703 
29 500 52 5 2,183,815 2,162,356 0 1594 
30 500 52 1966 101,497,679 101,619,428 0.12 10 
31 500 52 239 18,028,225 18,003,896 0 30 
32 500 52 56 6,780,986 6,747,357 0 101 
33 500 52 18 4,055,536 3,944,879 0 310 
34 500 52 8 2,559,885 2,529,417 0 586 
35 500 52 13228 755,506,278 757,276,966 0.23 3
36 500 52 500 33,309,777 33,332,938 0.07 22 
37 500 52 103 10,464,662 10,409,592 0 22 
38 500 52 25 5,116,338 4,989,034 0 177 
39 500 52 11 3,391,440 3,331,201 0 304 

 Avg.  823 39,522,583 39,586,601 0.14% 1,188

Note: I is the number of products; P is the number of periods; CI is the Complexity Index of the product structure defined in Eq.(15); 

boldface type denotes the best known solution; and italic type denotes the new best solution found.
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Table 6. Comparing VNS with existing algorithms on 40 large-sized problems 

Method Avg. Cost 
Dev. from 

Best known (%) 
Best solutions 

found (%) 
Time
(m) CPU type Source 

RCWW 42,263,980 12.57 0 0.2s Int.3i 3.1G This study 
VNS 39,586,601 0.14 75% 30 Int.3i 3.1G This study 

HGA1000 40,817,600 5.31 0 63.5 PIII 450M Dellaert and Jeunet (2000) 
MMAS 40,371,702 4.03 5 40 PIV 1.5G Pitakaso et al. (2007)

PGA 39,809,739 3.02 ≤10 60 PIV 2.4G Homberger (2008) 
SACO 39,790,184 -- ≤25 46.7 PIV 2.4G Homberger and Gehring (2009) 

SA-NM(1) 40,178,548 <1.24 <15 33.0 I.C.2D 1.8G Homberger (2010) 
RVNS 39,869,210 1.44 0 44.4 I.C.2D 1.6G Xiao et al. (2011b)

INS 39,539,091 1.19 10 46.6 I.C.2D 1.6G Xiao et al.(2012)
Best known 39,491,868 0 -- -- -- --

Note: The best values are indicated in bold face; Int.3i 3.1G is abbreviated for Intel(R) Core(TM) 3i-2100 CPU 3.1G; MMAS’s CPU time had 
been adapted by the factor of Dongarra (2005).  
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Table 7. Comparison of logic computational efforts 
AVG of Class 1 AVG of Class 2 AVG of Class 3  

Method Logic efforts time Logic efforts time Logic efforts time CPU type 
HGA 12,500 5s >62,500 60s 250,000 3810s PIII 450M 

MMAS 520 1s 1520 20s 5,020 2400s PIV 1.5G  
PGA 930,781 5s 1,950,322 60s 2,578,855 3600s PIV 2.4G

VNS’s shaking solutions 81,069 1s 23,274,630 30s 426,623,946 1800s Int.3i 3.1G 
VNS’s bit changes 336,894 1s 219,813,273 30s -- 1800s Int.3i 3.1G 

Note: the data for PGA and MMAS comes from Homberger (2008), and the data of HGA is estimated; MMAS’s CPU time had been 
adapted by the factor of Dongarra (2005). 
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Table 8. Performances of VNS on 40 medium-sized problems with Nmax varying 

(Tmax=30s, kmax=5,ΔT = 6, and �= 0.2) 

Nmax 1 5 10 30 50 100 200 500 1000 2000 

Avg. Cost 264,930  264,411  263,771 263,362 263,299 263,264 263,259 263,252  263,250 263,252

Dev. from best (%) 0.68 0.48 0.24 0.084 0.060 0.047 0.045 0.042 0.042 0.042 

Best known found (%) 22.5 27.5 32.5 47.5 57.5 67.5 70.0 77.5 80.0 77.5

Note: boldface type denotes the best values.
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Table 9. Performances of VNS on 40 medium-sized problems with Kmax varying

(Tmax=30s, Nmax=1000, ΔT = 6, and �= 0.2) 

Kmax 1 2 3 4 5 6 7 8 9 10 

Avg. Cost 263,372 263,287 263,278 263,254 263,254 263,248 263,248 263,247 263,248 263,248 

Dev. from best (%) 0.088 0.056 0.052 0.043 0.043 0.041 0.041 0.041 0.041 0.041 

Best known found (%) 47.5 60.0 67.5 72.5 77.5 77.5 80.0 82.5 77.5 82.5

Note: boldface type denotes the best values.
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Table A1. New best known solutions for Class 2 
Prob. ID S D I P Best solution Method

0 1 1 50 12 194,571 B&B 
1 1 2 50 12 165,110 B&B 
2 1 3 50 12 201,226 B&B 
3 1 4 50 12 187,790 B&B 
4 1 5 50 12 161,304 B&B 
5 2 1 50 12 179,761 RVND 
6 2 2 50 12 155,938 B&B 
7 2 3 50 12 183,219 B&B 
8 2 4 50 12 136,462 B&B 
9 2 5 50 12 186,597 B&B 
10 3 1 40 12 148,004 PGAC 
11 3 2 40 12 197,695 PGAC 
12 3 3 40 12 160,693 MMAS 
13 3 4 40 12 184,358 PGAC 
14 3 5 40 12 161,457 PGAC 
15 4 1 40 12 185,161 SA-NM(1)  
16 4 2 40 12 185,542 PGAC 
17 4 3 40 12 192,157 MMAS 
18 4 4 40 12 136,757 SA-NM(1) 
19 4 5 40 12 166,041 PGAC 
20 1 6 50 24 342,916 SA-NM(1) 

21 1 7 50 24 292,820 VNS

22 1 8 50 24 354,834 VNS

23 1 9 50 24 325,174 VNS
24 1 10 50 24 385,936 INS 
25 2 6 50 24 340,686 HGA 
26 2 7 50 24 378,845 HGA 
27 2 8 50 24 346,313 INS 
28 2 9 50 24 411,997 HGA 
29 2 10 50 24 390,194 INS 
30 3 6 40 24 344,970 HGA 
31 3 7 40 24 352,634 PGAC 
32 3 8 40 24 356,323 SA-NM(1) 
33 3 9 40 24 411,438 RVND 
34 3 10 40 24 401,732 HGA 
35 4 6 40 24 289,846 RVND 
36 4 7 40 24 337,913 MMAS 

37 4 8 40 24 319,781  VNS 

38 4 9 40 24 366,409  VNS 
39 4 10 40 24 305,011 SA-NM(1) 

Average 263,140  

Note: bold face indicates the new best values found in this paper.
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Table A2. New best known solutions for Class 3 

Prob.  ID I P I Best solution Method 
0 500 36 500 591,585 SA-NM(1) 
1 500 36 500 815,716 VNS 
2 500 36 500 908,616 SA-NM(1) 
3 500 36 500 929,929 SACO 
4 500 36 500 1,144,209 VNS 
5 500 36 500 7,595,372 VNS
6 500 36 500 3,873,241 VNS
7 500 36 500 2,628,883 VNS
8 500 36 500 1,833,488 VNS
9 500 36 500 1,487,855 VNS

10 500 36 500 59,121,845 INS 
11 500 36 500 13,349,944 VNS
12 500 36 500 4,617,206 VNS
13 500 36 500 2,856,389 VNS
14 500 36 500 1,722,205 VNS 
15 500 36 500 468,463,630 INS 
16 500 36 500 18,666,341 VNS
17 500 36 500 7,277,613 VNS
18 500 36 500 3,455,399 VNS
19 500 36 500 2,253,609 VNS
20 500 52 500 1,187,090 MMAS 
21 500 52 500 1,340,695 VNS
22 500 52 500 1,400,480 MMAS 
23 500 52 500 1,379,391 VNS
24 500 52 500 1,656,209 VNS
25 500 52 500 12,640,011 VNS
26 500 52 500 7,158,729 VNS
27 500 52 500 4,057,733 VNS
28 500 52 500 2,829,847 VNS
29 500 52 500 2,162,356 VNS
30 500 52 500 101,497,679 INS 
31 500 52 500 18,003,896 VNS
32 500 52 500 6,747,357 VNS
33 500 52 500 3,944,879 VNS
34 500 52 500 2,529,417 VNS
35 500 52 500 755,506,278 INS 
36 500 52 500 33,309,777 SA-NM(1) 
37 500 52 500 10,409,592 VNS
38 500 52 500 4,989,034 VNS
39 500 52 500 3,331,201 VNS

Average 39,491,868  

Note: bold face indicates the new best values found in this paper.
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Research Highlights 

� A new VNS algorithm for solving uncapacitated multilevel lot-sizing problems is developed.

� A local search called the Predecessors Depth-first Traversal Search is embedded in VNS.  

� An approach for fast calculation of the cost change for the VNS algorithm is proposed.  

� The experimental results show that the new VNS algorithm outperforms all of the existing algorithms.


