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ABSTRACT 

The increasing world population is putting pressure on global food production.  

Agriculture must meet these growing demands by increasing crop yields. One phenomenon 

which prevents seedling emergence and damages crop yield is soil crusting. Understanding 

of soil crusting and the factors which influence it is fundamental to ensuring good crop 

production.  An instrument which will test soil crust strength in a novel way, mimicking 

seedling growth, may lead to pre-emptive agricultural soil management which could 

increase crop production.  This work details the process of design, construction and testing 

of an ascending penetrometer to measure soil crust strength.  The full design process is 

discussed from concept generation and evaluation, using experimental methods and a 

multi-criteria decision making tool, through to final design configuration, specification, 

manufacture and testing.  

Traditionally, soil penetrometers measure soil strength by forcing a probe from the surface 

of the soil into the bulk soil below.  To more accurately measure the direct impedance a 

seedling would experience a device should measure impedance from the bulk soil upwards 

and into the soil crust, mimicking what a growing seedling would experience.  Results 

prove that the manufactured ascending penetrometer with a force resolution of 0.01N and 

displacement resolution of 0.0004mm is capable of detecting differences in soil crusts.  At 

these resolutions and accuracy to 0.1N and 0.1mm excellent repeatability was achieved.  

The machine is therefore a useful and realistic tool for quantitatively comparing soil crusts 

in soil. It is hoped that being able to compare soil crust strength will lead to improved soil 

management techniques. 

Keywords:  penetration resistance, TOPSIS, seedling emergence, instrument design 
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1 Introduction 

1.1 Context 

The availability of arable land is fast becoming a world crisis.  Population growth is putting 

huge amounts of pressure on farming to become more efficient at using reduced land 

resources to feed the world and increasingly to produce biofuels.  Any measure that is able 

to maximise crop yield is beneficial in ensuring that agriculture will meet the growing 

demands for food and energy.  Many studies and investments have been made to 

understand conditions that lead to the best crop yield. Understanding soil properties, 

conditions and how different soil managements might affect crop development will 

increase crop profitability, crop production, maintain and improve soil fertility and 

minimise soil erosion (Davies et al., 1993). 

Soil is a thin layer that covers the Earth’s surface.  It was formed from the weathering of 

rocks and minerals as a result of the interaction of five factors: 1) parent material, 2) 

climate, 3) living organisms (especially native vegetation), 4) topography and 5) time.  Soil is 

a crucial constituent of the biosphere, functioning not only in the production of food and 

fibre, but also in the maintenance of environmental quality (Doran and Parkin, 1994).  

More specifically, soil provides an environment for seed germination, root growth as well 

as ensuring the functioning of roots to provide anchorage and absorb water and nutrients 

(Powlson et al., 2011). Adverse soil conditions can lead to the development of soil crusting 

which prevents the emergence and growth of seedlings during early development.  The 

current study aims to develop a method to accurately quantify soil crust strength; an 

important soil property which directly influences seedling emergence, in a new and 

revolutionary way.  It is envisaged that this method will allow for development pre-emptive 

soil management techniques for increasing seedling emergence.  

Soil compaction increases soil strength and this is of major concern in agriculture.  A high 

strength in soils means that more energy must be expended to make the soil viable for 

plant growth (Smith, 2000).  The mechanical properties of soil including strength can be 

determined using several standard geotechnical tests.  These tests include the tri-axial 

compression and shear tests.  From these tests the relationship between stress and strain of 

the soil are obtained (Atkinson, 2007).  The tests are good at determining the bulk soil 
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properties; however, knowing the effect on soil strength of the compaction caused by 

rainfall and soil tillage is very important.  This compaction causes variable strength values 

within the top layers of soil.  Soil strength in environmental science is generally measured 

by penetration resistance (PR) using penetrometers.  These instruments are used to 

determine PR at discrete depth intervals, leading to an understanding of the change in soil 

strength per unit depth. A penetrometer generally consists of a conical tip attached to a 

shaft that is pushed into the soil.  The force is measured during insertion into the soil using 

various force sensing methods.   

Soil crusts are associated with crop loss and low crop yields causing agricultural hardship.  

A soil crust is a thin layer, with higher density, high shear strength, finer pores and lower 

saturated hydraulic conductivity than the bulk soil underneath.  Bare soils exposed to 

rainfall can develop crusts due to the kinetic action of falling rain drops.  Subsequent drying 

of the soil following rainfall further adds to the hardening of the crust (Baumhardt and 

Schwartz, 2005). The dense surface crust that forms prevents seedlings from emerging or 

hinders the development of the seedling due to loss of energy reserves.  The effort the 

seedling exerts to emerge through the hard crust can cause uneven crop development (Jury 

et al., 2004; Monsanto Company, 2013). Soil crusting also has other indirect detrimental 

effects on seedling and crop growth as it increases soil erosion, nutrient depletion, 

pollution and water run-off, and decreases water infiltration (Batey, 2009).  It is therefore 

important to study the soil crust strength and the parameters that effect crust formation in 

order to understand how to prevent soil crusting thus ensure maximum crop yield. 

1.2 Rationale for current research 

There is a gap in knowledge for studies which measure the ascending forces through a 

crust for a growing seedling.  Traditionally, as in the study by Bedaiwy (2008), 

penetrometers measure soil and crust strength by forcing the probe from the surface into 

the bulk soil below.  An ascending penetrometer would reproduce more accurately the 

forces that a growing seedling would experience.  An attempt to develop such a type of 

penetrometer was made by Aubertot et al. (2002).  Since then, to the author’s knowledge, 

no studies have tried to recreate an ascending penetrometer to understand the impact that 

soil crust strength has on the emergence of seedlings. 
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The purpose of the present research is to design and construct an instrument to measure 

the PR that a seedling would encounter during emergence.  Unlike Aubertot et al. (2002), 

the instrument will not be used to predict the emergence rate of seedlings, but to develop a 

detailed understanding of the location and magnitude of the forces that a seedling would 

encounter during emergence through a crust.  The instrument would need to be able to 

detect changes in strength within the soil crust strength to a suitable resolution.  By 

improving the resolution and accuracy of the measurement, the ascending penetrometer 

would be an improvement compared to the Aubertot et al. (2002) device and lead to a tool 

which would be effective at quantitatively comparing crusting of laboratory prepared soil 

samples. 

1.3 Aim and objectives 

The main aim of this project is to deliver a laboratory instrument that is capable of 

accurately measuring the soil crust strength within laboratory prepared soil samples. By 

designing and building a soil penetrometer which is ascending in force application, the 

device will more accurately measure the forces an emerging seedling encounters.  A clear 

understanding of the factors involved in formation of soil crusts and their resultant 

strengths relative to emergent seedlings could then be developed.  There are two 

mechanisms which cause crust formation due to rainfall.  Firstly, the impact of the rain 

drops compacts the uppermost layer of the soil forming a thin layer of higher density soil 

(Sumner and Stewart, 1992).  The skin is typically 0.1mm thick (Jury et al., 2004).  Secondly, 

the impact of the rainfall causes the breakup of aggregates into finer particles.  

Physiochemical processes cause dispersion of the fine particles into the soil immediately 

below the surface.  These finer particles clog the pores below the surface forming a 

“washed-in” zone which is typically 0.5mm – 3.0mm thick (Baumhardt and Schwartz, 

2005).  The resolution of the soil penetrometer should be fine enough to detect 

microstructure strength characteristics of the soil crust.  Ideally the instrument should be 

able to detect changes in mechanical resistance between the crust, the washed-in zone, and 

the interface between the washed-in zone and the bulk soil. 
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In order to achieve this aim, the project has been broken down into several objectives: 

• Propose a starting point for the design of a penetrometer that will be used in 

laboratory studies investigating the crust strength and properties which influence its 

formation.   Verify the ability of ascending-type penetrometers to measure forces 

within soil samples (Chapter 4). 

• To design concepts, critical evaluation of the designs, design choice, final design 

configuration and drawings and finally manufacture of the instrument (Chapter 5 

and 6). 

• Test and calibrate the device to ensure that PR was being accurately measured and 

changes in soil crust strength could be detected (Chapter 7). 

1.4 Methodology 

The design, manufacture and testing of the ascending micropenetrometer was broken 

down into methodical stages aimed at developing an understanding of the mechanics and 

design parameters.  Stages of the project were defined as follows: 

• Literature review 

To increase the understanding of current technology, theory and physical methods 

used to determine soil strength, first a literature study was conducted.  Once a base 

knowledge was established a literature review, critically comparing the design and 

results of current penetrometers, was completed. (Chapter 2) 

 

• Theory 

The main factors affecting soil crust formation and strength are explored and 

discussed.  Fundamental understanding of these properties was important so that 

their effect on penetrometer design could be assessed. (Chapter 3) 
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• Design requirements 

Using the knowledge gained through the literature review technical requirements of 

the ascending micropenetrometer were discussed with the end user from a soil 

science perspective.  These requirements would form the basis for all future work.  

Ultimately the micropenetrometer would need to meet these technical 

specifications. (Chapter 4) 

 

• Preliminary experiment – validation study 

Following the literature review it was clear that a preliminary laboratory experiment 

to validate the applicability of ascending-type penetrometers was required.  A 

preliminary experiment, designed to develop an understanding of the ascending 

penetration method as well as explore certain fundamental design characteristics for 

the micropenetrometer was conducted. (Chapter 4)  

 

• Finite element analysis model 

The results of the experiment revealed some very interesting observations which 

warranted further investigation.  To explore and further understand the 

mechanisms at work during soil penetration a Finite Element Analysis (FEA) of the 

dynamic ascending and descending penetrometer was conducted.  (Chapter 4 and 

Appendix B) 

 

• Concept generation and evaluation 

Once design parameters were explored and validated concept designs for the 

ascending micropenetrometer were developed.  Using knowledge gained from the 

preliminary experiment, FEA, reviewed components and devices from existing 

literature a total of five concepts were proposed.  Critical analysis of the proposed 

concepts was important to be able to select the design most likely to produce 

results which met the technical requirements.  Concept evaluation was carried out 

using a multi-criteria decision making tool.  (Chapter 5) 
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Final design 

• Final design selection, following design concept choice three possible systems were 

proposed using various commercially available components.  Once the final design 

and components were selected, the ascending micropenetrometer was 

manufactured and control software developed. (Chapter 6) 

 

• Testing and analysis 

Finally the ascending micropenetrometer needed to be tested to ensure correct 

functionality.  Calibration and testing results are discussed which led to the 

proposal of some future work. (Chapter 7) 
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2 Literature Review 

The aim of this review is to critically analyse the types of soil penetrometers and 

componentry currently used to measure soil strength and in particular penetrometers which 

attempt to measure surface and crust strength.   

2.1 Micropenetrometers 

The most commonly used penetrometer for environmental applications is the static cone 

penetrometer (Herrick and Jones, 2002).  These traditional penetrometers are mostly used 

to describe the macroscopic soil strength of large soil bodies only (Liu et al., 2006).  Soils 

which behave homogeneously on a macroscopic level contain spatial variations in strength 

on a smaller, microscopic scale (Smith, 2000).  General tillage and compaction effects can 

be measured using traditional penetrometers designed largely around the ASAE (American 

Society of Agricultural Engineers) standard S313.3 FEB04 described in section 3.3.  For 

studies where bulk soil characteristics and generalised effects such us bulk density and soil 

texture are investigated, finer resolution in the measurement is required. The 

micropenetrometer should have a high rigidity and constant penetration velocity. The 

measuring probe should have a small diameter and small length dimensions. These 

properties will allow detection of thin layers and breaking of soil bonds rather than 

producing a primarily compressive failure (Schneebeli and Johnson, 1998). 

Bedaiwy (2008) successfully investigated the effect of rainfall duration on the formation of 

a soil crust and its corresponding strength.  The micropenetrometer used in the afore 

mentioned study was capable of determining differences in crust strength after 10min of 

rainfall, with the smallest change in strength recorded equal to 1.2N  (approx. 100grams).  

The crust strength was measured as an average throughout the crust profile, therefore no 

information on the forces within the crust itself was obtained. 

Smith et al. (1997) determined the textural influence of soil on the soil strength in 29 South 

African soils. The device used in Smith et al. (1997) was made from a Universal Testing 

Machine to determine average penetration resistance of soils. Again here in this study no 

information of strength characteristics at discrete depths throughout the penetration was 

created.  To understand soil crust strength characteristics in more detail a finer resolution 

measurement of depth and load is required.  
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Liu et al. (2006) suggested that the microscopic strength variation of a soil can be used to 

better model the soil behaviour. The micropenetrometer developed by Liu et al. (2006) was 

able to measure at finer force resolution and smaller depth increments and could therefore 

measure surface strength variations more accurately.  Another example is the 

micropenetrometer developed by Rolston et al. (1991) which measured the soil surface 

strength and the microfabric of the soil in situ.  The aim of the study was to determine the 

instrument capability in detecting differences in surface characteristics induced by different 

soils physical properties and irrigation management (Rolston et al., 1991).  

Liu et al. (2006) developed a micropenetrometer to analyse the microstructural strength of 

soils with different texture.  The study does not specifically mention application of soil 

crust strength, however, with a depth resolution measurement of 0.1mm and force 

resolution of 0.1N it is suggested that this could easily be achieved.  There are still some 

improvements that could be made to this design though. The motor used resulted in a 

movement resolution of only 0.5mm while the depth measurement transducer was capable 

of 0.1mm resolution.  Finer motor control, down to at least the level of the transducer, 

would greatly improve the smoothness and resolution of the measurement. The 

micropenetrometer was used to determine soft soil microstructural strength for 

applications in civil engineering. This micropenetrometer differed from other devices in 

that instead of moving the probe into the soil the soil sample was forced onto a static 

probe.  Having a static probe allowed the sensitive load cell to remain fixed behind the 

probe.  It is suggested that this is a very good solution leading to greater measurement 

accuracy through reduction of signal noise which may be produced by a moving probe 

attached directly to the motor or drive. 

The results from the micropenetrometer in Liu et al. (2006) clearly shows the force 

measured throughout the soil depth (Figure 1a).  Good resolution is shown in Figure 1b 

which helps to understand the microstructure and strength variations of the soil.  From 

Figure 1b it can be seen that in a layer of soil with similar average strength, particles in the 

soil cause localised peaks in strength that must be overcome by the advancing probe.  

These peaks form waves of variation in end resistance.  The waveform has a relatively 

uniform wavelength and wave heights, thus indicating the relatively homogeneous nature 

of the sandy soil.  The peaks are caused by the hard sand particles in the homogeneous soil 
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and a force of 0.5N – 1.5N is required to force the probe past these particles.  The 

microstructure of the soil and the microscopic mechanical properties of the soil can be 

determined by being able to measure low load variations.  Displacement resolution is, 

however, quite coarse and this means that detail within a short penetration depth is limited. 

To determine forces within a crust of 3-5mm finer position resolution is required.  Finer 

resolution would most likely also smooth the measurement. 

 

Figure 1 - Penetration resistance curves of a sandy soil. (a) General resistance curve and (b) 
Enlarged detail of end resistance. Reproduced from Liu et al. (2006) 
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Drahorad and Felix‐Henningsen (2012) developed a high resolution micropenetrometer 

that was capable of detecting changes in crust strength on a sub-millimetre range.  Figure 2 

shows that at a fine force resolution of 0.0192N (2.0g) distinct layers in the crust can be 

identified, namely a top-crust and a sub-crust. 

 

Figure 2  Penetration resistance of a biological soil crust (Drahorad and Felix‐‐‐‐Henningsen, 
2012) 

 

In this study a number of measurements were taken and post processing averaged the 

results.  The range of measured results is also displayed.  For this kind of measurement 

small scale depth increments of 0.039mm are required.  The fine resolution achieved here is 

impressive, however, with such tiny increments a lot of signal variation is produced during 

measurement.  This highly variable measurement can make it difficult to analyse in post-

processing, requiring complicated signal averaging to determine strength trends. 

Aubertot et al. (2002) typical force measurement is shown in Figure 3.  Results range from 

0.05N (0.005g) to 0.80N (0.082g) for the force to break the crust; taken as the peak minus 

the plateau deemed the frictional force.  Aubertot et al. (2002) does not consider the effect 

of depth on the penetration resistance.  Instead force is measured over time with force 

recorded every 0.5 seconds at a penetration speed of 20mm/min, resulting in a position 

resolution of 0.17mm.  The resulting curve clearly indicates the peak value of the crust PR, 

however, again the position resolution is relatively course.  Better motor technology and 

position measurement would offer greater insight into the strength within the crust layer.   
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Figure 3 - Typical force measured by ascending probe.                                           
Reproduced from Aubertot et al. (2002) 

 

Rolston et al. (1991) demonstrated that some variation in the soil surface strength could be 

detected with a resolution of 0.016mm and force resolution of 0.054N (5.5g).  Results from 

the study indicate that a peak in crust strength occurs near the surface and reduces to a 

steady state (Figure 4).  The variation is, however, not very detailed since it would be 

desirable to have better resolution leading to the peak value. The authors did not attempt 

to measure the frictional effects, which likely leaded to a further over estimation of the 

surface strength.  Results, however, still showed measureable differences in penetration 

resistance of different soils, although to a level seen as inadequate for crust strength 

variations.   
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Figure 4 - For-depth curve for a shallow crust over loose soil (Rolston et al., 1991) 

2.2 Ascending micropenetrometer 

During its natural growth, a seedling penetrates the soil crust from underneath.  The forces 

exerted on the crust by emerging seedlings differ depending on the shape of the hypocotyl.  

Monocotyledonous crops, such as grasses and cereals, exert a point load while 

dicotyledonous crops have larger hypocotyls which distribute the load over a small area 

(Goyal et al., 1979). During emergence seedlings, such as beetroot and wheat, are able to 

exert forces between 0.2N (20g) and 0.29N (30g) putting the crust under bending stress, 

creating tension on the top surface (Bouaziz et al., 1990; Aubertot et al., 2002).  If the 

modulus of rupture of the soil is lower than this stress created, the crust will break and 

allow the seedling to push through (Goyal et al., 1979).  

All the micropenetrometers apart from Aubertot et al. (2002) described in section 2.1 force 

the probe through the soil from above.  Studies have shown that this greatly overestimates 

the strength of the soil, usually in the order of two to eight times greater than the force 

exerted by growing roots (Bengough and Mullins, 1990).  This overestimation is due to the 

soil being compacted in front of the advancing probe thus providing further resistance.  

Therefore in order to accurately measure the forces experienced by emerging seedlings a 

new method of force application is required. 

Therefore, an ascending penetrometer is suggested to better reproduce seedling growth.  

Aubertot et al. (2002) is the only study that has developed a micropenetrometer that 

mimics seedling emergence.  With ascending penetration the soil is free to move in the 
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direction of the force, this significantly reduces the compaction in front of advancing probe 

and should produce PR forces more similar to that which a seedling experiences (Aubertot 

et al., 2002).  A potential disadvantage of the ascending micropenetrometer is that it can 

only be used in the laboratory, where soil can be exposed from below the surface.  

Laboratory conditions should therefore reproduce field conditions as close as possible 

(Rolston et al., 1991). 

There are several potential improvements to the ascending micropenetrometer designed by 

Aubertot et al. (2002) that have been identified: 

• Aubertot et al. (2002) placed the soil to test in relatively large tanks (0.58 x 0.58 x 

0.11 m) with soil depth of 9mm. With such a large area, the controllability of the 

soil properties such as water content and bulk density is reduced. Individual 

samples would allow better control, increased repeatability and analytical 

repetitions.   

• Greater accuracy in positioning and load measurement by making use of modern 

technology, such as accurate stepper motors and control systems, would enhance 

the capability of the micropenetrometer to detect structural changes in the crust 

strength. Liu et al. (2006) achieved this goal effectively by using a load cell sensitive 

enough to detect 0.1N force changes within the soil. 

• A load cell attached to the probe and driven into the soil produces higher noise in 

the signal due to vibrations of the motor.  A better solution would be to fix the 

load cell and move the soil onto the probe. The effectiveness of this method was 

demonstrated by Liu et al. (2006) 

• Fundamentally the aim of Aubertot et al. (2002) to predict the emergence rate of 

seedlings using a penetrometer is difficult to achieve. Seedlings grow following the 

path of least resistance and will therefore find cracks in the soil matrix which a 

ridgid probe cannot.  A better aim for the study is to understand the structural 

nature of the crust strength and what is influencing it. 
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2.3 Design parameters for micropenetrometers 

Design specifications for various micropenetrometers are compared in Table 1. From the 

table it is possible to identify the kind of resolution, probe diameter and configurations that 

have been used in studies thus far. 

Table 1 - Micropenetrometer specifications 

 

2.4 Penetrometer design parameters 

2.4.1 Probe and cone 

The shape and size of the probe and cone should be carefully considered when trying to 

mimic forces experienced by the emerging seedlings.  The shape of the probe determines 

the type of soil deformation and frictional resistance at the tip.  

During insertion the penetration resistance is created by two principal forces (Bengough 

and Mullins, 1990; Klute and Page, 1982): 

Journal

Article

Probe Specifications

1. Diameter

2. Cone/Tip Properties

3. Material

Load Cell Specifications

1. Capacity

2. Resolution

3. Sampling period

4. Type

Displacement 

Transducer

Specifications

1. Depth range

2. Resolution

Motor Drive

Specifications

1. Type

2. Penetration 

speed

3. Step increment

4. Drive train

5. Power

Drahorad

2012

1. ɸ = 3mm

2. Flat tip

3. Stainless steel

1. 20N

2. 19.2mN (0.02% 

nonleararity)

3. 39μm (by depth)

4. Althen, Germany

1. 0 – 40mm

2. 39μm 

1. Stepper motor

2. 16mm/min

3. 39μm 

4. Gear and rack 

(Leitz, Germany)

5. 62 Nm Torque

Liu 2006 1. ɸ = 0.3 –1mm

2. Flat tip (assumed)

1. 100N

2. 0.1N

3. 0.01s

1. 0 – 50mm

2. 0.1mm

1. Constant speed 

electrical rotary

2. 1 – 5mm/min

3. Stepless speed 

change device

4. Worm gear

5. Unknown

Aubertot

2002

1. ɸ = 1mm

2. Flat tip

3. Stainless steel

1. 0 -1N

2. 0.01N

3. 0.5s

4. Unknown

1. 30mm 

2. Displacement not 

measured

1. Not specified

2. 20mm/min

Rolston 1991 1. ɸ = 1.59mm

2. Flat tip

1. 23kg (225N)

2. 5.5g (0.5N)

3. 0.016mm (by depth)

4. SM-50 Interface Inc.

1. 0 – 40mm

2. 0.1mm

1. Stepper motor

2. 8mm/min
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• force to deform the soil by the wedge-action of the cone tip 

• soil-to-metal frictional force against the cone and probe surface 

Smith (2000) explains that the diameter of the probe must be less than 20 times the 

diameter of the sample core in order to minimise edge effects.  A larger diameter probe 

would laterally displace more soil pushing against the side of the core and artificially 

increase the penetration resistance.  The change in penetration resistance due to probe 

diameter is exaggerated for small cone diameters, Whiteley and Dexter (1981) determined 

that changing the cone diameter from 2mm to 1mm resulted in a 45-55% increase in PR.  

The probe must therefore be small enough to negate sample container edge effects but 

large enough to minimise the frictional contribution to the total PR.  Rolston et al. (1991) 

found that a 1.59mm cone was strong enough to penetrate soils in the field whilst 

Drahorad and Felix‐Henningsen (2012) used a larger 3mm diameter probe required for 

harder in-field soil PR measurements.  Aubertot et al. (2002) and Liu et al. (2006) on the 

other hand used smaller 1mm diameter probes in their laboratory micropenetrometers.  

Both sets of micropenetrometer were able to detect compaction layer boundaries; however, 

the edge effects are far more damaging to a reading than a slight additional friction 

component since there are methods which can measure frictional contribution. Therefore, 

the probe should be chosen to be as small as possible but still able to resist the buckling 

load.  
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Figure 5 - Diagram of (a) a penetrometer cone and (b) the force acting at a point on the 
cone surface.  Reproduced from Bengough (1992). 

Penetrometer resistance, Q, is given by the following equation (Bengough, 1992): 

Q � σ�1 � cotα ∙ tanδ� � ������ (2-1) 

Where σ is the stress normal to the cone surface, α	the cone semi-angle, δ the angle of soil-
metal friction and �� is the soil-metal adhesion.  The angles and forces acting on the cone 

are illustrated in Figure 5.  For a given cone as the cone angle decreases the cone length 

increases, increasing the cone surface area and therefore the frictional component of 

penetration resistance. As the cone angle decreases the mechanical advantage of the cone 

wedge is surpassed by the force of friction due to surface area. This causes penetration 

resistance to be at a minimum when the angle is 30° (Smith, 2000; Klute and Page, 1982).   

All of the micropenetrometers described in Table 1 have utilised a flat tip probe.  From 

equation (2-1) Aubertot et al. (2002) explains that for a cone semi-angle of 90° the 

mechanical resistance of the soil is equal to the normal stress experienced at the tip.  

Putting α=90° means that the friction terms fall away in equation (2-1) and the penetration 

resistance equals the normal stress (Q = σ).  Rolston et al. (1991) found that in a 

homogeneous surface a flat tipped probe reached constant force at lower depth than a 

pointed probe.  These results suggest that a flat probe might be more suitable for soil 

surface measurements.  However, equation (2-1) is suggested only to be used to probes 

with relatively narrow cone angles (Smith, 2000).  A review of studies in Bengough (1990) 
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have shown that narrowly tapered probes (with a tip semi-angle of 5°) and plant roots 

deform the soil in the same manner, while blunt probes cause a sphere of soil to form in 

front of the advancing probe.  This increases penetration resistance.  It is suggested that 

seedling emergence and hypocotyls growth is similar in action to root growth and therefore 

a narrow tip probe needs to be considered.  Due to the conflict of opinion in the literature, 

it is warranted that two types of probe tip should be investigated further, a 300 cone angle 

and a flat tip, to see the effect on PR and which type best identifies the compacted crust 

layer. 

2.4.2 Penetration rate 

Penetration rate has been found not to have a significant effect on penetration resistance; 

however, this depends on the soil type and water content of the soil (Smith, 2000).  

Bengough and Mullins (1990) and Rolston et al. (1991) did several studies in which 

penetration rate was varied.  Results showed that except for very wet and remoulded soils, 

PR is weakly dependant on penetration rate.  Since root and seedling growth rates are very 

slow, typically 0.17mm/min it is near impossible to reproduce this penetration rate in field 

or laboratory conditions (Smith, 2000).  High penetration rate; however, can cause surface 

cracking which would affect the accuracy of the measurement (Rolston et al., 1991).  

Drahorad and Felix‐Henningsen (2012) used a penetration speed of 16mm/min to great 

effect in determining soil crust strength on a micro-scale, while Rolston et al. (1991) 

suggests using a rate of 8mm/min. A rate within these values is suggested as preferable to 

avoid excessive surface break up. 

2.4.3 Dealing with friction 

Friction occurs between the soil and the metal of the probe and increases the measured 

penetration resistance. Therefore it is important to find methods to estimate the friction 

and deduct this value from the total measured penetration resistance.  Since seedling 

growth is very slow, typically 1.0 x 10-3 mm/min, it is suggested that friction has minimal 

effect on the seedling.  Studies which investigate the influence of the general soil 

characteristics such as bulk density, texture and water content are not concerned with the 

actual PR but rather aim to find differences between soils (Rolston et al., 1991; Bedaiwy, 

2008). In the design of these devices the effect of friction is not considered. When looking 
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to understand the finer structural characteristics of soil crust strength, friction cannot be 

ignored and must be eliminated as much as possible during or post measurement because 

Soil-metal frictional forces on the probe of a penetrometer can account for between 40% 

and 80% of the total PR (Bengough et al., 1991).  It is therefore important to try to 

eliminate friction from the penetrating probe. 

Frictional effects can be deducted post measurement as in Aubertot et al. (2002). Aubertot 

et al. (2002) uses a probe with a constant penetration rate and the frictional element is 

assumed to be the constant force measured before the probe encounters the crust.  The 

crust force is thus taken as the peak in measurement minus the friction force. This method 

is a good, simple way to measure friction but is not entirely accurate. Since the probe has 

already forced its way through the soil creating a cavity; the friction on the probe is 

reduced. 

Armbruster et al. (1990) proposed a measurement of the force from immediately behind 

the cone tip (Armbruster et al., 1990).  In this way the shaft-soil friction was eliminated.  

This method is very effective; however, it necessitates a complex load cell installation of 

miniature size.  This would be difficult to achieve and increase build costs for only a small 

gain in accuracy. 

Liu et al. (2006) measured the frictional force during withdrawal of the probe and deducted 

the frictional force from the total resistance using post processing software.  This method 

would underestimate the friction force since the cavity had been created by the probe, 

however the approximation is considered to be fairly accurate. 

Rotating the probe during penetration measurements is another way that greatly reduces 

frictional effects (Bengough et al., 1991).  Greater reduction of frictional force was found at 

higher rotational rates. Friction is reduced due to rotation of the shaft since the frictional 

force acts in the direction opposite to the probe velocity vector (Bengough et al., 1991).  

Increasing rotation increases the horizontal vector component thereby decreasing the 

vertical vector component.  Including probe rotation could be beneficial, however, this 

would add complexity to the design.   
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2.4.4 Load cell 

The main requirement of the instrument is to record the penetration resistance force of the 

crust.  Thus the core of the instrument is the device used to measure the forces, namely the 

load cell.  Position of the load cell needs to also be carefully considered. In all of the 

reviewed devices the load cell is located immediately behind the probe. This is a good 

location for the load cell since it eliminates any additional friction forces introduced by the 

drive system. 

As discussed in section 2.1 the resolution of the load cell is important to be able to capture 

changes in the soil strength throughout the crust thickness.  Schneebeli and Johnson (1998) 

developed a snow micropenetrometers to explore the thin weak layers within snow 

formations.  The microscopic physical properties of the snow layers were detected.  For 

stronger material such as soil crust the resolution of the load cell need not be as high as the 

device developed by Schneebeli and Johnson (1998), however, there should be some 

improvement on the resolution given by devices used solely for comparative studies such 

as the Rolston et al. (1991) and Bedaiwy (2008) micropenetrometers.  The load cell used by 

Liu et al. (2006) with a resolution of 0.1N (10g) is considered adequate.   

There are 5 basic types of load cell: compression, tension, S-type tension-compression, 

bending and shear (Bahra and Paros, 2010).  PR is a purely vertical force and therefore 

compression and universal tension-compression load cells are applicable to 

micropenetrometers.  Drahorad and Felix‐Henningsen (2012) used a purely compressive 

load cell with very fine resolution which was able to detect subtle changes in force within 

soil crusts.  Whilst the load cell recorded minute changes in the crust strength, no frictional 

component of the PR could be determined by measuring the tension force during probe 

withdrawal.  The high accuracy and resolution also comes at a high price, this particular 

load cell costing approximately £800.  Although less accurate with coarser resolution, both 

the Rolston et al. (1991) and the Liu et al. (2006) micropenetrometers used tension-

compression S-type load cells.  These two machines were still very effective at measuring 

the soil crust strength with the additional benefit of being able to measure tension forces 

upon probe withdrawal.  Liu et al. (2006) used this advantage by recording this frictional 

tension force and subtracting it from the total PR to get a more accurate measurement of 

actual soil strength PR. 
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2.4.5 Motor and drive selection 

In all the micropenetrometers evaluated, constant speed motors have been utilised.  

Constant speed ability is certainly the main requirement for the micropenetrometer drive 

system since static cone penetrometers (SCP) are considered best for soil science studies.  

2.4.5.1 Electric motors 

Electric stepper motors in combination with a linear drive system, comprising of either a 

rack and pinion gear or lead screw, have been used successfully in micropenetrometer 

designs.  Both the devices developed by Rolston et al. (1991) and Drahorad and Felix‐
Henningsen (2012) utilise the stepper motor for better performances.  The stepper motor 

offers excellent open-loop position control that does not require complex feedback control 

systems.  Stepping motors are easily controllable by computer or microprocessor.  

Commands from the micro-controller rotate the shaft in discrete angular steps.  The 

number of steps in one rotation gives the motor its resolution, the more steps the motor is 

capable of the finer the motion control.  This makes the motor suited to drive machine 

tool slides connected to a lead screw or rack and pinion gear set (Hughes, 1993).  The 

tolerance in achieving the ideal position for one step is the accuracy of the motor.  The 

electric stepper motor is seen to be superior to the continuous drive system utilised by Liu 

et al. (2006).  Continuous drive motors require feedback control and therefore increases the 

cost of the control system for the instrument.  An electric motor in combination with 

either lead screw or rack and pinion drive would be evaluated in our design. 

2.4.5.2 Linear Actuators 

Other types of drive system include pneumatic and hydraulic actuators. These offer the 

benefit of an incorporated linear drive system.  These types of drive system are expensive, 

complex and require additional equipment such as a compressor. Hydraulic actuators offer 

the greatest accuracy and control of position compared to pneumatic due to the 

incompressibility of oil.  

Hydraulic and pneumatic actuators used in industry to control robots would also be 

considered for the design (Drahorad and Felix‐Henningsen, 2012; Liu et al., 2006).  
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2.4.5.3 Lead screw drive systems 

Backlash is the amount of linear motion between the screw and the nut without turning the 

screw.  This is important for positional accuracy and repeatability.  There are devices which 

have been made to reduce this backlash effect, including the ball lead screw.  

Lead screws are used to convert rotation to linear motion. They offer several advantages 

(Hamrock et al., 2005): 

• Precise positioning of an axial movement can be obtained, resulting in less 

play and backlash than the rack and pinion. 

• Frictional effects can be reduced using roller bearing lead screw sometimes 

called ball lead screw. 

• Offer mechanical advantage in lifting weight. 

Lead screws can be used as linear actuators: a motor drives the lead screw and the ball nut 

or linear nut translates rotation to linear motion. The devices are used to move a table or 

work piece, in the case of the micropenetrometer the lead screw would be used to advance 

the probe into the soil sample.  If the rotating input is driven by a stepper or continuous 

motor in combination with a precision lead screw, very accurate positioning is possible 

(Norton, 2011).  The design parameters of a lead screw to work out translational motion 

and required drive torque is detailed in Appendix D.1. Rolston et al. (1991) and Liu et al. 

(2006) both used the lead screw system to achieve suitable accuracy and resolution of 

motion.  In these two micropenetrometers the advantage of the lead screw compared with 

a rack and pinion system is apparent due to the fine control achieved. Rack and pinion 

systems need to have very accurate gears to measure to the same resolution as these lead 

screws.  The lead screw is also an extremely cost effective drive system. 

2.4.5.4 Rack and pinion drive systems 

Rack and pinion drives use gears to translate rotational motion to linear motion. Teeth on a 

circular gear are attached to the motor mesh with a flat gear.  Fine precision are more 

difficult to achieve with the rack and pinion system compared to a lead screw, due to the 

relative motion between the mating gears. 
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The rack and pinion drive system is considered to be less accurate than a lead screw; 

however, this is not always the case. Drahorad and Felix‐Henningsen (2012) made use of a 

highly accurate rack and pinion gear produced for precision robotics.  This solution offers 

simplicity and good adaptability since gears could be easily swapped.  Cost of this type of 

gear needs to be considered though; a highly accurate rack and gear drive will cost 

significantly more than a lead screw system (Rolston et al., 1991; Liu et al., 2006).   

2.4.6 Depth measurement 

Depth measurement is important for understanding of the crust structure, leading to 

accurate identification of the boundary between soil strength variations (Liu et al., 2006).  

For crude measurement simple markings on the probe can be utilised (e.g. in the standard 

ASAE penetrometer designs).  Greater resolution of displacement requires better 

measurement equipment. The use of stepper or continuous electric drive motors which 

have encoders that measure the amount of rotation will measure displacement.  Here, the 

accuracy of the measurement is determined by the motor controllability; higher accuracy 

gained with increased control complexity and cost.  Accurate motor positioning can offer 

excellent accuracy and resolution determining position to within 40μm by using a stepper 

motor, achieved by Drahorad and Felix‐Henningsen (2012).  Rolston et al. (1991) used a 

less precise motor which outputted displacement to an accuracy of 0.1mm; at this 

resolution crust strength was determined but with less definition of the micro-structural 

strength variations.  Both of these penetrometers directly recorded displacement from the 

stepper motor while Aubertot et al. (2002) indirectly measured displacement by recording 

the time of penetration.  Since the penetration was at constant speed, position could be 

calculated.  This method is not as accurate because it is difficult to synchronise time with 

the recorded load.  Liu et al. (2006) uses an economic electric continuous motor with no 

position control built in. Position is instead measured using a displacement transducer.  

This adds additional equipment and complexity to the design.  By measuring depth with 

the motor position there is less likely to be accumulated error in measurement. 

Measurement error occurs in the motor drive system and additionally in the transducer 

itself, whilst displacement measurement using the motor alone would only have motor 

error. The best system for depth measurement is a compromise between the complexity of 

the design installation, cost and the total error of the measurement devices. 
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3 Theory of  measuring soil crust strength 

There are many parameters that need to be considered when designing a soil penetrometer. 

The main soil characteristic affecting soil crust strength, the considerations required to 

measure soil crust strength and to design a penetrometer will be discussed in this section. 

3.1 Main characteristics affecting soil strength 

• Soil texture 

Soil texture describes the physical composition of the soil in terms of the percentage of 

clay, sand and silt.  Clay, silt and sand are characterised by a specific particle size According 

to the British Standard (BS 5930 :1999) classification, the sizes of clay, silt and sand 

particles are: 

Clay: < 0.002mm 
Silt: 0.06mm to 0.002mm 
Sand: 2mm to 0.06mm 

The soil texture influences several important soil characteristics, including water retention 

and soil structure (Smith, 2000) 

• Water content 

Increasing the water content usually decreases the soil strength (Jury et al., 2004).  This is 

true for all cohesive soils, i.e. soils that contain a significant fraction of clay or silt (Rose, 

2004).  Higher water content slackens the cohesive forces between particles in the soil since 

particles are separated during water absorption (Marshall et al., 1996).  A study done by 

March et al. (2013) showed that for three loamy soils the mechanical impedance decreased 

with increasing water content in an exponential decay relationship (Figure 6). 
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Figure 6 - Results from March et al. (2013) illustrating the exponential decay of mechanical 
impedance with increasing water content. 

• Bulk density 

In general, increased bulk density increases the soil strength (Smith, 2000).  Bulk density 

affects penetration resistance more in dry soils than wet soils as shown in Figure 4.  

 

Figure 7  Variation of penetration resistance with water content at different bulk densities. 
Reproduced from Smith (2000). 
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• Soil Structure 

Soil structure is the physical organization of soil particles which bond together to form 

“clumps” or aggregates (Smith, 2000).  Voids form between the aggregates creating 

pathways for water movement.  Soil structure stability influences soil strength. An unstable 

soil structure means that aggregates are easily disintegrated by impact of rainfall and water 

infiltration.  This break up of aggregates can lead to formation of a crust and blockage of 

soil pores. 

The interaction of the physical properties is complex and soil behaviour cannot be 

predicted using a single property as an indicator.  To determine soil behaviour or soil 

treatment effects it is important to measure or control these properties independently 

(Gregorich and Carter, 2008). 

A correlation exists between soil strength and root growth and seedling emergence, with 

hard soils generally preventing seedling emergence and root growth (Bécel et al., 2012; 

Aubertot et al., 2002; Taylor and Ratliff, 1969).  Bécel et al. (2012) showed that increased 

penetration resistance reduced the root elongation rate in peach trees.  In this study, the 

effect of water content, bulk density and penetration resistance on the root growth of 

peach trees was tested.  It was determined that the penetration had the most statistically 

significant influence on the root growth.  This illustrates the importance of identifying the 

strength properties of a soil to inform appropriate soil management strategies for 

maximising crop yield. 

3.2 Soil crust 

Studies have been performed under laboratory conditions to understand rainfall 

characteristics that effect soil crust formation and strength.  Bedaiwy (2008) showed that 

silt-loam and clay soils developed crusts under simulated rainfall.  In this study crust 

strength was measured using a penetrometer with a flat tipped probe of 1.59mm.  The 

penetrometer was able to detect the strength of the soil crust, and it was determined that 

crust penetration resistance increased with rainfall intensity or applied kinetic energy as 

shown in Figure 8.  In addition it was observed that a silt-loam soil produced a crust with 

greater strength than a clay soil except under low intensity rainfall treatment.  
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Figure 8  Effect of kinetic energy (KE) of falling water droplets on the penetration 
resistance (PR) of soil crusts. Reproduced from Bedaiwy (2008). 

 

3.3 Penetration resistance (PR) 

Penetration resistance is usually expressed as a function of pressure, i.e. it is the force 

required to push the cone into the soil divided by the cross-sectional area of the cone. This 

is known as the cone index or CI of the soil and is usually measured in units of pascal (Pa), 

kilopascal (kPa) or megapascal (MPa)  

There are two main types of penetrometer which differ in the way that the shaft and cone 

are driven into the soil: static cone penetrometer (SCP) and dynamic cone penetrometer 

(DCP).   Static cone penetrometers are driven into the soil at a slow constant rate to avoid 

the need to include dynamic effects in the analysis.  Inserting the cone at constant velocity 

also ensures that no acceleration or impact forces are introduced to the measurement and 

only penetration and frictional forces are measured.   

 

0

10

20

30

40

0 5 10 15 20 25 30 35 40 45 50

P
R

 (
N

)

KE (J)

Silt-loam Clay

R2=0.956

R2=0.923



27 

 

Dynamic cone penetrometers are driven into the soil by a known amount of applied energy 

using the impact of a hammer or a falling weight.  This type of penetrometer is used for 

highway pavement and roadbed evaluations but has been rarely applied in soil science 

investigations (Carter and Gregorich, 2008). 

The American Society of Agricultural Engineers (ASAE) has developed a standard for 

static cone penetrometer design (American Society of Agricultural Engineers Standards, 

1999) which is commonly used in soil-based activities (Herrick and Jones, 2002).  The 

standard includes a 30o circular stainless steel cone with a driving shaft of smaller diameter 

to minimize soil friction between the shaft and the soil. 
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4 Micropenetrometer design 

4.1 Design requirements 

From the review of existing micropenetrometer designs in chapter 2 it can be seen that 

certain parameters produce more desirable outcomes. Aspects considered important to 

make the instrument capable of measuring PR similar to seedling forces and able to detect 

structural changes in the crust would be taken from the designs reviewed. Possible 

improvements in the designs would also be incorporated. 

The following design requirements for the ascending micropenetrometer were set out 

based on the literature review:  

• A laboratory micropenetrometer, capable of holding a prepared soil sample of 

50mm diameter and penetration to a depth of minimum 100mm. 

• Ascending action, measuring PR of the soil sample from below, penetrating first 

the bulk soil and then into the soil crust (Aubertot et al., 2002). 

• A method of measuring displacement with 0.1mm resolution (Drahorad and Felix‐
Henningsen, 2012; Rolston et al., 1991; Liu et al., 2006).  

• Frictional effect should be measured independently during withdrawal of the probe.  

This is seen as a better method compared to the method used by Aubertot et al. 

(2002) where friction is recorded as the constant force reached after penetration. In 

reality friction is not constant throughout the measurement.  

• Good resolution of force needs to be recorded to capture microstructural strength 

changes in the crust. A force resolution less than or equal to 0.1N would be 

sufficient (Liu et al., 2006; Rolston et al., 1991).   

• A probe diameter less of 1.6mm.  This would eliminate edge effects since the 

diameter would be more than 20 times less than the sample (Smith, 2000; Rolston 

et al., 1991). 
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• Static cone penetrometer capable of a constant penetration rates between 8mm/min 

and 16mm/min (Drahorad and Felix‐Henningsen, 2012; Liu et al., 2006; Rolston et al., 

1991). 

4.2 Design methodology 

With the requirements finalised the design phase of the project could begin. The design, 

manufacture and testing of the ascending micropenetrometer is broken down into 

methodical stages aimed at developing an understanding of the mechanics and design 

parameters. Stages of the project were defined as follows: 

• Preliminary laboratory experiment (section 4.3- 4.4) 

First an experiment was designed and conducted to develop understanding of the 

ascending penetration method. The experiment explored certain fundamental 

design characteristics of the micropenetrometer and built an understanding of soil 

science practises.  

 

• Finite Element Analysis (FEA) (section 4.4) 

A model was developed to explore the failure mechanics of the soil during 

ascending penetration compared with traditional descending penetration. The 

model would also be used to help explain findings of the preliminary experiment. 

 

• Concept designs (section 5.1) 

Once certain design parameters were validated concept designs for the 

micropenetrometer were developed, making use of knowledge gained from the 

preliminary experiment, reviewed components and devices from existing literature. 

 

• Concept evaluation (section 5.2) 

A multi-criteria decision making tool was used to evaluate the design concepts. 
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• Final design selection (chapter 6) 

Following design concept choice three possible systems were proposed using 

various commercially available components. The final configuration chosen and the 

micropenetrometer manufactured and control software programmed. 

 

• Testing (chapter 7) 

The micropenetrometer was first calibrated and then various settings of the 

micropenetrometer were explored by testing some samples.  

4.3 Preliminary experiment 

In order to evaluate the expected range of force created by the soil crusts an initial 

experiment to investigate force application (ascending and descending), probe shape, water 

content and soil type effects was conducted.  The results of the experiment would also 

form the basis for several of the micropenetrometer design parameters as well as aim to 

demonstrate the effectiveness of measuring penetration resistance with an ascending probe.   

4.3.1 Materials and method 

The spring balance is a simple instrument that can be used to measure static applied forces 

(Bahra and Paros, 2010).  The instrument offered a low cost option to manually determine 

approximate soil crust penetration resistance. Using the spring balances with force ranges 

between 250g to 5kg six pocket penetrometers were manufactured and a simple experiment 

set up to investigate the effects of four factors on PR:   

• Ascending force application 

• 2x Soil types – Duffy’s (S1) and Pinchbeck (S2) 

• 2x Soil water contents - Air dried soil and fan dried soil 

• 2x Probes- A flat tipped and pointed probe 

By controlling the factors and investigating their effect in isolation where possible, the 

results were compared with other studies from literature.  The pocket penetrometers 

(Figure 9) were manufactured by drilling a hole into the spring balance push rod end, and 

inserting a 1.5mm needle.  The needle had two ends, a flat end and a pointed end, with a 

cone angle of 30 degrees. 
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Figure 9 - Completed pocket penetrometer and detail of probe with flat tip at base and 300 
at the top. 

Two soils were used for the experiment (Table 2).  Both soils were classed as Sandy Silt 

Loam, however, there were some significant differences in texture.  Notably, Pinchbeck 

(S2) contained a higher sand and fine sand content than Duffy (S1).  Twelve samples were 

packed into 46mm diameter PVC cores to a depth of 50mm and bulk density of 1.2 g.cm-3.  

Two different drying regimes were tested: i) air drying, ii) fan blow drying; details of the 

drying methods are found in appendix A.1. The two drying regimes generated two different 

soil water contents, and the effect of water content on the soil crust strength was 

investigated. 

Table 2 - Soils main physical characteristics 

Soil Name Soil 
Texture 

Particle-size distribution Organic 
matter 
(%) 

Initial 
bulk 
density 
(g.cm-3) 

Initial 
Water 
Content 
(%) 

Sand 
(%) 

Silt 
(%) 

Clay 
(%) 

Fine  

Sand 
(%) 

Duffy  

S1 

Sandy 
Silt 
Loam 

35.95 47.55 16.95 35.55 1.171 1.2 14.2 

Pinchbeck 
S2 

Sandy 
Silt 
Loam 

40.43 45.42 14.15 39.84 1.331 1.2 15.9 
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Crusts were formed on the samples by applying simulated rainfall with appropriate 

characteristics (i.e. duration, intensity, kinetic energy) and subsequent drying.  The cores 

were exposed to a rainfall event of 15min at an intensity of 47mm/hr and kinetic energy 

content of 12.8 – 18.9Jm-2mm-1.  Rainfall characteristics were obtained by calibrating an 

8.8m rainfall tower fitted with a randomising mesh.  Homogenous rainfall characteristics 

on the rainfall catchment area were ensured by adjusting the rainfall simulator consisting of 

73 open drip needles.  Then, using a Laser Optical Distrometer (LOD) (Model Parsivel 2), 

drop size velocity and particle size distribution was measured.  Details of the calibration 

method and results are detailed in appendix A.2.  The water content of the samples was 

measured using the gravimetric method at three depths within the cores (this allowed the 

identification of the water content profile): surface, middle and bottom of the samples.  

Two replicate measurements were considered for each soil and the average water content at 

the three depths and two drying regimes was calculated and compared.  Six soil crust 

penetration measurements were obtained from each sample, three using the flat probe and 

three using the pointed probe.  Ascending penetration measurements were taken and 

recorded by video camera so that the maximum force reached could easily be obtained 

during video playback.  

Once the samples had been prepared and subjected to the relative drying regime, PR 

measurements were performed on all samples.  The equipment (Figure 10) and procedure 

for study are detailed below. 

The following steps were used to test the soil crust strength on each of the 12 soil cores: 

1. Soil cores were clamped into stand and hold in place for penetration measurement. 

2. For ascending force measurements the probe of the penetrometer was inserted 

from underneath the soil sample into the crust. The pocket penetrometer was 

pushed upwards evenly, keeping it perpendicular to the soil surface, and the 

measurement monitored using the Nikon D3100 video camera. 

3. The maximum force at the soil crust was recorded after watching the video 

recording in slow motion.  When the applied force was not sufficient for the needle 

to break through the crust, step one and two were repeated using the next spring 

balance with greater rated force range. 
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Figure 10 - Photograph of equipment used in PR measurements 

The same procedure was repeated with the pointed tip probe and then the flat tip probe 

ensuring that each measurement taken on in a position of undisturbed crust area.  Three 

replicate measurements were taken on each soil core. All measurements were taken as close 

to centre of core as possible. A triangular probe pattern around the core centre was used to 

minimise the container edge effects. 

4.3.2 Data analyses and results 

All data analyses were performed using R (R Development Core Team, 2010) and 

Microsoft Excel 2010.  Several statistical methods were used to compare results. 

Notch boxplots were used to compare penetration resistance (PR) data. Notch boxplots 

are a good method to graphically compare data sets using the confidence intervals of the 

medians.  The range of the confidence interval for the medians of the data is represented 

by the length of notch in the boxplot.  When the notches of two data sets do not overlap 

then it can be said that the medians are statistically different to a confidence level of 95% 

(Chambers, 1983).  Notch boxplots also include the following information: minimum value 

(end of the lower whisker), 25th percentile (bottom of the box), 75th percentile (top of the 

box) and the maximum value (end of the upper whisker).  Data considered as outliers are 
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represented by separated points on the plot.  The 95% confidence interval of the median 

was calculated using the formula from: 

������ ± 1.57 ∙ "#$√�  

(4-1) 

where IQR is the interquartile range (difference between the 75th and 25th quartiles) and n 

the number of observations (Chambers et al., 1983). 

4.3.2.1 Probe tip effect on penetration resistance 

Since both probe types in this study have the same cross-sectional area, penetration 

resistance can be compared in grams force.  There were significant differences observed 

between the effects of the flat probe compared to the pointed probe.  The pointed probe 

penetrated the surface with little damage to the soil crust, while the flat probe lifted the 

crust and broke it into several fragments. Figure 11 shows clearly the effect of the shape of 

the probe on the fracture of the crust.  Both soils showed fracture in a similar manner to 

Figure 11 in samples from both drying regimes. 

 

Figure 11 - Photograph of S2 samples after flat probe (left) and pointed probe (right) 
penetration 

Figure 12 compares the penetration resistance of the two soils within the same drying 

regime.  These figures combine the effect of texture of the different soils and the water 

content on the penetration resistance.  The results show a significant difference between 

penetration resistances obtained using the two different tip types, but show no clear 

differences between penetration resistances of the two soil types.  The pointed needle type 
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recorded significantly higher PR than the flat needle in both the fan drying regime (Figure 

12 a) and air drying regime (Figure 12 b).  This is true for both soil types although the 

differences are more marked in S1 and in the fan drying regime (Figure 13). 

 

(a) (b) 

Figure 12 – Notch boxplot for soil type (S1 and S2) and needle type (pointed and flat) in the 
fan drying regime (a) and air drying regime (b). 
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4.3.2.2 Water content effect on penetration resistance (PR) 

Table 3 reports the effects of the drying regimes on the water content of the two soils and 

the resulting penetration forces recorded by the two cone tip types with further detail 

presented in appendix A.3.  The results show that the drying regime had little influence on 

the tendency of S2 to dry out, since the difference in water content between the drying 

regimes was very small i.e. 0.44%. The drying regime did, however, affect water content of 

S1 far more; resulting in a decrease in water content of 2.47% compared to 0.46% in S2.  

 

Table 3 – Effect of soil type and drying regime (fan and air) on soil water content and 
penetration resistance of two needle types (flat and pointed). 

 
Water Content [%]  

(location within sample) 

Force (Averaged Maximum) [g] 

Flat Tip Pointed Tip 

Soil 1 (S1)    

Air Dried 14.70 (surface) 

16.20 (middle) 

17.35 (bottom) 

84 108 

Fan Dried 11.56 (surface) 

14.63 (middle) 

14.62 (bottom) 

104 183 

Soil 2 (S2)    

Air Dried 18.29 (surface) 

18.45 (middle) 

19.42 (bottom) 

98 138 

Fan Dried 17.91 (surface) 

18.16 (middle) 

18.76 (bottom) 

114 168 

In order to show that the samples needed to be moist to obtain a measurement of the 

penetrative resistance of the crust, a fully dry sample was tested.  The sample was 

impossible to penetrate, even with the highest rated spring balance (5kg force).   

Figure 13a shows the effect of the drying regime and needle type on the measured 

penetrative resistance in S1.  It is evident that the notched box plots for the same tip used 

in different drying regimes do not overlap and therefore the water content on penetration 

resistance is statistically significant for soil S1.  Figure 13b shows the effect of the drying 

regime and needle type on the measured penetrative resistance in S2.  It indicates that the 

penetration resistance measured by the two tips tends to be higher in the fan drying regime 
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compared to the air dried.  The notches of the flat tip and the pointed tip for both air and 

fan drying regimes do not overlap; resulting in statistically significant differences in the 

forces recorded by the flat tip compared to the forces recorded by the pointed tip. 

(a) (b) 

Figure 13 – Comparison of drying regime (fan and air) and needle type (pointed and flat) within 
S1 (a) and S2 (b). 

4.3.2.3 Textural effect on penetration resistance 

Comparison of water contents in S1 and S2 (Table 3) shows that the air drying regime for 

soil S1 produced a surface water content of 14.70%  while the fan drying regime produced 

a surface water content of 17.92%.  The average water content (throughout the depth 

profile) of the air drying regime in S1 was 16.08% while for the fan drying regime in S2 the 

average was 18.28%.  These conditions produced the most similar water contents in the 

two soils of different texture.  The resulting PR from these conditions is compared in 

Figure 14 to investigate the influence of texture on structural strength and penetration 

resistance.  Results show that for both tip types S2 produced statistically significant higher 

penetration resistance. 
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Figure 14 - Comparison of penetration resistance in different soils (S1 and S2) with similar 
water contents (Air dried S1 and Fan dried S2) 

 

4.3.3 Discussion 

Several factors influence the penetration resistance of soil.  Among the factors that 

influence penetration are soil texture, soil-metal friction (between soil and penetrometer) 

and the soil deformation mechanism.  The factors are inter-dependant and influence each 

other so care must be taken when comparing results.  To determine effect of the drying 

regime on penetration resistance, results from samples with the same texture should be 

compared.  When evaluating the effect of soil texture on penetration resistance, samples of 

different texture but similar water content should be compared.  Using the results from the 

experiment the following discussion will explore the interactions between soil texture, 

water content and deformation mechanism on penetration resistance. These observations 

would determine some micropenetrometer design parameters and identify soil conditions 

to be used during PR measurements. 

Figure 15 explains the interaction of the different factors that affect the PR of soil crusts.  

Soil texture is the main contributor; it determines the ability of the soil to form a crust.  

Texture determines the water retention characteristics of the soil, influencing how quickly 

the soil dries out; this drying is a main contributor to crust hardening (Baumhardt and 

Schwartz, 2005). Soil texture determines the adhesion and cohesion forces within the soil 
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matrix.  These forces give the soil its structural strength. The particle shape, particle size 

and cohesion forces also determine the soil-metal friction contribution to PR.  The drying 

regime affects the final water content of the soil crust and the underlying soil; lower water 

content is associated with an increase in PR.  Frictional and deformation mechanism 

directly influence the penetration resistance; the shape and size of the probe changing the 

direction, magnitude and friction component of PR. 

 

Figure 15 - Flow diagram showing the interaction of different parameters on penetration 
resistance 

4.3.3.1 Force range 

Results from Table 3 show that the force range during ascending penetration using the 

1.5mm probe was 84 – 168g or 0.8 – 2.3 N.  This is a good indication of the expected 

forces during measurement with the micropenetrometer using a 1.5mm diameter probe, in 

soil with water content between 12 and 19%.  Uncertainty of these measurements are 

perceived to be quite high due to the quality of the spring device, the difficulty in 

controlling the penetration speed during manual insertion and the way in which the 

magnitude was recorded using video playback.  Therefore an element of risk would need to 

be applied to these forces to include a safety factor that the results of the 

micropenetrometer forces would lie within the 0.8 – 2.3 N range.  A conservative safety 

factor would be to multiply the force by 2 times; resulting in a force range of 0.3 – 5.0 N 

(Juvinall and Marshek, 2000).  Thus the results of the experiment reveal that a load cell of 
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suitable accuracy within the 0.3 – 5 N range would be ideal for the micropenetrometer.  

The repeats within each sample varied by approximately 10g or 0.1 N and thus the 

resolution of the load cell would need to be close to this value. 

4.3.3.2 Tip shape and deformation mechanism influence on penetration resistance 

There are two factors which the tip or cone angle affects during penetration, soil-metal 

friction and the soil deformation mechanism.   

Smith (2000) explains that the frictional component becomes predominant in smaller 

diameter probes.  This is true since a small reduction in cone angle results in a larger 

proportional increase in surface area compared to large diameter cones.  Therefore 

compared to the flat tip, the pointed probe is certainly measuring PR with a greater more 

soil-metal friction component.  In all soil conditions the pointed probe recorded higher 

penetration forces (Table 3).  The result is particularly highlighted in the soils with lower 

water content.  Figure 12 illustrates the significantly higher PR measured by the pointed 

probe; resulting in forces ranging between 140g -225g for the pointed probe compared to 

85g – 137g of the flat probe.   

The shape of the penetrometer cone tip determines the deformation of soil during 

penetration.  A flat cone tip compacts the soil in front of the tip causing vertical 

deformation of the soil.  On the other hand, a pointed tip with a smaller cone angle tends 

to deform the soil laterally (Smith, 2000).  During insertion the pointed tip is forcing the 

soil sideways which compresses the soil in horizontal direction.  Since the soil is confined 

laterally by the adjacent soil, forces normal to the probe tip are created and this increases 

soil-probe friction and therefore the measured penetration resistance.  The flat probe 

pushes the soil vertically upwards.  Since the soil is unconfined at the surface, the soil is 

able to deform more easily compared to the lateral deformation.  The surface of the soil is 

put into tension which the soil cannot resist due to low cohesive forces and therefore the 

surface breaks into fragments.  This fact is clearly illustrated in the photograph of the soil 

surfaces after penetration (Figure 11).  Here, the crust is cracked and lifted in which is 

similar in action to the emergence of seedlings while the pointed probe simply creates a 

neat hole. 
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The results illustrate very clearly that the shape influences the PR.  The pointed probe is 

better at measuring the differences between crusts formed in the soils of varying texture 

(Figure 14) and water content (Figure 13).  The flat probe; however, is better at deforming 

the soil in a way similar to seedling (Figure 11) and the forces obtained 80g – 175g are 

closer to the forces seedling can exert (Bouaziz et al., 1990).  Further testing using a 

micropenetrometer of greater accuracy was warranted to find the most suitable probe 

shape. 

4.3.3.3 Water content influence on penetration resistance 

PR can be determined using bulk mechanical properties of the soil (Bengough, 1992).  

However, certain properties of the soil need to be known, such as the angle of soil metal 

friction and the coefficient of soil metal adhesion.  These properties are not easy to 

determine, therefore several studies have been performed to correlate PR to other more 

easily determined soil properties such as water content and soil texture via regression 

equations (Ayers and Perumpral, 1982; Ayers and Bowen, 1987; Dexter et al., 2007; 

Hernanz et al., 2000; Vaz et al., 2011; Whalley et al., 2007). 

In the pocket penetrometer experiment the PR of the same textured soil at two water 

contents was compared.  Higher PR was recorded in samples with lower water content 

within both S1 and S2 soils (Figure 13).  This result is in line with previous studies (March et 

al., 2013; Bedaiwy, 2008).  However, PR was compared between only two different water 

contents and therefore the possibility of other factors influencing these results cannot be 

excluded.   Difference in the average of the surface water content was large for S1 at 3.13% 

and the box plots in Figure 13a reveals a statistically significant difference in PR between 

the flat probe and pointed probe.  The difference in average water content at the surface 

was only 0.38% for S1 which still resulted in measureable differences in penetration 

resistance but not as significant.  Further evidence to suggest that the water content is 

influencing the PR is that in both soils of different texture the samples with the lower water 

content recorded higher PR (Figure 13).  This was true for both the flat and pointed probe.  

In the S1 soil with average water content of 16.08% PR ranged between 84g-108g 

compared to the fan dried S1 of average water content 13.61% with PR from 104g – 183g 

(Table 3); resulting in very clear increase in PR with decreasing water content for the 

pointed probe (Figure 13).  These results confirm that PR differences can be detected 
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within soils of water content ranging between 13 and 19% but lower water content of 13% 

will result in larger differences in PR between different soil crusts.  Soil samples for the 

micropenetrometer should aim to have approximately 13% water content. 

4.3.3.4 Textural influence on penetration resistance 

In order to fully understand the influence of texture on the structural strength and 

penetration resistance the water contents of the two soils should be similar.  It can then be 

said that the effect of the water content can be eliminated.   

Soil strength has been shown to be influenced by soil texture (Gerard, 1965; Smith et al., 

1997).  Smith (1997) compared PR in 29 South African soils of varying textures, water 

contents and bulk densities.  Smith (1997) found that clay content and organic matter 

strongly influence PR.  Organic matter content was found to increase the soil strength and 

therefore PR in samples in wet soils (soils with greater than 5% water content) and 

decrease soil strength in samples with dry soils (soils with less than 5% water content) 

(Causarano, 1993).  Gerard (1965) showed that PR of remoulded samples, at varying water 

contents, increased with increasing silt and clay contents.  By contrast other studies have 

correlated an increase in sand content to an increase in PR and an increase in clay content 

to a decrease in PR (Spivey Jr. et al., 1986).  Spivey Jr. el al. (1986) compared 17 samples of 

varying soil texture.  To simulate field conditions, where soil is compacted by rainfall and 

gravitational forces, samples were compacted by water consolidation.  Samples were first 

slowly saturated by submerging them in water and then lowering the water table allowing 

for consolidation.  The samples were then dried for 24hrs and then the water content was 

equilibrated to a tension of -100kPa.The samples in our study were prepared by simulated 

rainfall and then allowed to drain, therefore sample conditions can be considered similar to 

those in Spivey Jr. el al. (1986) and the results compared.  

In our study the two soils are of the same texture class, sandy silt loam (Table 2), however, 

S2 soil has a larger sand and fine sand content.  S2 presented higher PR of 114g and 168g 

for the flat and pointed probe respectively  compared to S1 with PR of 84g and 108g 

despite that fact that S2 was wetter at an average water content of 18.28% compared to 

16.08% of S1 (Figure 14 and Table 3).  Therefore the structural strength given by the 

texture of the soil has had more of an influence on penetration resistance than water 

content.  The increase in PR of S2 is consistent with the results found in Spivey Jr. el al. 
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(1986) and is attributed to the fact S2 has higher sand content (40%) and lower clay content 

(14%) compared to S1 which has 35% sand and 17% clay content.  The organic matter 

content was higher in S2 (1.331 %) than S1 (1.171 %) and the water content higher than 

5% in both soils, therefore lower PR was expected in S1; results are in agreement with 

Causarano, (1993).  Again when investigating different textural crusts the pointed probe 

produced greater differences in PR (Figure 14). 

4.3.3.5 Limitations of ascending penetration experiment 

Measuring PR using ascending penetration is unusual.  The results in many respects are 

incomparable with other penetration studies and the method does not conform to the 

ASAE Standards for measuring PR.  

In the experiment with the pocket penetrometer the frictional forces could not be assessed, 

however, they are considered significant. The method to measure friction in itself presents 

some limitations.  Since the probe creates a cavity in the soil sample, during withdrawal of 

the probe the friction would be reduced compared to during insertion. 

There was no control sample measurement taken during this experiment to compare the 

crust measurements to a sample with no crust. Thus there is no certainty that the maximum 

PR recorded is actually caused by the crust or the underlying bulk soil. The depth at which 

the maximum force occurs is unknown and therefore a micropenetrometer which records 

position accurately as well as force would be advantageous.  

The method of application of force and recording of force gives a wide range of results. 

This means that only very general trends can be observed. 

4.3.4 Conclusions 

Influences of drying regime, soil texture and needle type have been observed to affect crust 

penetration resistance.  The trends observed in our experiment, for the most part, agreed 

with the literature.  The study has proven that even with a crude instrument and 

measurement technique differences in penetration resistance of the crust can be detected.  

Results confirm the effectiveness of ascending measurement and an ascending 

penetrometer should be designed and built to study PR of soil crusts. The 
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micropenetrometer needs to be able to record both position and force in order to fully 

understand where the maximum forces are occurring within the sample. 

Frictional effects play a large role in the measured penetration resistance; therefore the 

ascending micropenetrometer should measure friction.   

The flat tip experienced less frictional effect compared to the pointed tip, however, greater 

differences in penetration force were shown using the pointed probe.  The flat tip causes 

vertical deformation, fragmenting the soil surface while the pointed tip pierces the surface, 

deforming the soil laterally, causing sideways compression, and increasing friction.  The 

shape of the probe should be investigated further in the ascending penetrometer of 

increased accuracy and resolution. 

The fan drying regime produced more obvious differences in penetration resistance 

between needle types.  Therefore in order to produce good results, the crust should be 

produced using a more extreme drying regime (applying large amounts of energy to the 

surface of the sample.  The water content of the samples should be approximately 13% for 

testing of sandy silt loam soils similar to those used in the experiment The ideal water 

content could be different for various soil textures, therefore it is important to test a range 

of water contents to find ideal soil characteristics for highlighting soil strength variations. 

For all measurements taken, the measured force range falls between 0.8 N and 2.3 N.  

Applying a safety factor of 2 would result in a force range of 0.3 -5 N.  A load cell capable 

of measuring this range to a resolution of 0.1 N would be suitable for the 

micropenetrometer.  

4.4 Modelling soil behaviour 

Simply explained, soils rely on two properties for their strength; cohesion and friction.  The 

particles in the soil determine these two properties.  Finer particles such as clay and silt are 

cohesive, while sand particles are frictional (Faber et al., 1976).  Soil under the influence of 

stresses behaves, for the most part, as an elastic-plastic material (Fielke, 1999).  This means 

that under initial stresses the soil will deform under load but return to the original shape 

when unloaded until the stress reaches a yield stress and permanent plastic deformation 

occurs.  Several failure models for soils have been developed, some of them very complex 

and involve many parameters.  For most engineering purposes only the key features of soil 
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behaviour are of importance and therefore often simple models can be used to illustrate the 

mechanics of soil (Huang et al., 2004).  One such simple model, Drucker-Prager model, 

assumes elastic plastic material behaviour and includes material hardening under 

compression.  

Descending soil penetration by a rigid body penetrometer has been modelled in studies 

using FEA and ABAQUS 6.10 modelling software (Huang et al., 2004; Mouazen, 2002; 

Naderi-Boldaji et al., 2013; Tekeste et al., 2007).  ABAQUS 6.10 is a finite element analysis 

tool which is capable of modelling Drucker-Prager hardening and was used to first perform 

a case study based on the Tekeste et al. (2007) study and then to model ascending and 

descending penetration of a crust zone similar to the pocket penetrometer experiment. 

Tekeste et al. (2007) modelled descending penetration using a 2D axisymmetric model in 

order to determine the location of the hardpan in a sandy loam soil.  Tekeste et al. (2007) 

considers a compacted soil layer in the middle of the sample while in our study the 

compacted layer will be the soil crust at the surface. 

4.4.1 Definition of the FEA problem. 

To investigate the failure mode and stress distributions in the soil during ascending and 

descending penetration a simplified model of the soil with a crust zone was created. 

ABAQUS/Explicit was used as this solver is good for dynamic simulations.  The explicit 

technique is used to solve complex dynamic problems where the implicit solver is 

inefficient.  The explicit solver is better suited to complex contact problems with large 

deformations in reduced computational time (Susila and Hryciw, 2003). 

Soil properties of the crust and underlying bulk soil were estimated using previous studies, 

since tri-axial tests could not be performed and the purpose of the model was simply to 

visualise the soil deformation and compare resistance force between force application 

methods and probe shapes.   

The crust is not a discrete layer of denser, higher strength soil but rather a non-uniform 

layer of variable density (Roth, 1997).  The strength and density decreases from most dense 

at the surface until convergence with the density of the underlying bulk soil.  Therefore, for 

the model the crust layer was modelled in two layers, with strength decreasing with depth.  



47 

 

Two layers were chosen to represent the crust since increasing the number of layer would 

make the problem too complex and greatly increase computing time. 

The FEA modelled the soil with a hard crust layer from 0 – 2.5mm depth a softer crust 

layer from 2.5 – 5mm and a soft bulk soil layer from 5mm to 50mm.  Drucker-Prager 

strength properties for the layers with are given in Table 4. 

 

Table 4 – Soil layer material properties used in FEA model 

Soil Layer 

Depth 

Bulk Density & (g.cm)3 Elastic modulus (kPa) 

Crust Layer1 

0 -2.5mm 

1.71 364 

Crust Layer 2 

2.5-5.0mm 

1.54 222 

Bulk Soil  

5mm– 50mm 

1.20 134 

Common input values for the remaining parameters were used for all soil layers  

(see Table 5).  

These parameters have been approximated using the information from Fielke (1999), 

Mouazen (2002), Tekeste et al. (2007) Nareri-Boldaji et al. (2013).  For the Drucker-Prager 

hardening properties values from Tekeste et al. (2007) at compaction III were chosen due 

to the similar bulk density and elastic modulus compared with our soil samples (see 

appendix B.1 for calculation of parameters). 

 

Table 5 - Soil properties for the Drucker-Prager model 

Parameter Value 

ν, Poisson’s ratio 0.3 

β, Internal friction angle, Drucker-Prager (degree)  38 

ψ, Dilation angle (degree) 38 

µ, Soil-metal friction 0.5 

K, Flow stress ratio 1 
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4.4.2 Results and discussion 

Unfortunately the case study of modelling the conditions described by Tekeste et al. (2007) 

produced results that were out by a factor of ten (appendix B.6).  The produced output PR 

curves did; however, have a very similar shape so it was assumed that the error was caused 

by an incorrect soil parameter inputted into the model.  After much investigation the 

reason for the error could not be determined and so the FEA study results cannot be 

presented with confidence.  Therefore the results and explanation of method are only 

detailed in appendix B.  Even though the results are not conclusive and magnitudes of PR 

under-estimated, there were some good general observations which help to clarify the 

results of the pocket penetrometer experiment which are worth discussing here. 

Modelling of large deformations proved extremely difficult due to simulation instability.  

Excessive distortion of the finite grid elements meant that often the simulation could not 

be computed.  To overcome the excessive distortion Tekeste et al. (2007) used an inbuilt 

adaptive re-meshing algorithm called Arbitrary Lagrangian-Eulerian (ALE) method.  When 

ALE was attempted on our soil model there was little success.  Eventually a method of 

manual re-meshing was adopted.  The method is described in Roberts (2012) and involved 

dividing the penetration sequence into smaller discrete steps.  Once a small penetration 

depth was completed the deformed mesh of the soil body was converted into a new 

geometric shape.  The new shape was then repartitioned and meshed to allow for a further 

penetration step.  This method proved very successful and should be used in future large 

deformation studies of soil penetration. 

The FEA model illustrated that the flat probe produces compaction and higher stresses in 

front of the advancing probe.  With improved accuracy the FEA model can be used to 

detect changes in crust strength and distinguish the interface between layers of compaction.   

With development of an effective model the simulation could be expanded to test a variety 

of probe shapes in order to find one which best highlights soil strength variations. The 

advantage of the FEA model would be the ability to test several shapes in a short amount 

of time. Ultimately a growing seedling could be modelled to determine the actual seedling 

forces experienced. 
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5 Concepts 

Traditionally micropenetrometers are configured to measure from the soil surface down 

into the soil.  In the ascending micropenetrometer, the vertical translation of the probe and 

application of force through the soil is similar to traditional devices, only the direction of 

force application changes.  Therefore the same drive mechanism and assembly 

configuration used by traditional micropenetrometers could be adapted for the ascending 

measurement.   

The main types of power drive system considered were: 

• Electric motor 

• Hydraulic actuator 

• Pneumatic actuator 

These power drive systems could be used to create vertical translation using the following 

drive trains: 

• Rack and pinion gearing 

• Lead screw or power screw 

• Direct drive from Hydraulic or Pneumatic actuator 

5.1 Concept generation 

Using these basic building blocks, five concepts were proposed based on already available 

penetrometers and the findings from design parameters discussed in section 2.4.  Some 

minor modifications to the five designs were also considered as options.  In total 11 

configurations were defined and put forward for evaluation using a multi-criteria decision 

making tool.  Concept designs were drawn using the 3D CAD package Solidworks. 
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Concept 1 

The device utilises a rack and pinion gear and electric motor to force the probe into the 

sample which is fixed to the top of the micropenetrometer frame.  The load cell is located 

underneath the probe. 

 

Concept 2 

Concept 2 uses an hydraulic actuator to drive the sample.  The hydraulic actuator system is 

used in many triaxial load machines testing machines.  The sample is driven down onto a 

fixed probe and load cell at the base of the micropenetrometer. 
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Concept 3 

A lead screw system is at the core of concept 3.  Lead screws or power screws are used 

extensively in axial load machines.  The lead screw could directly drive the load cell and 

probe (similar to concept 1).   

 

Concept 4  

This is a variation of concept 3; the motor remain stationary.  A pair of gears drives the 

load cell and probe into the fixed sample at the top of the micropenetrometer. 
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Concept 5 

Two lead screws are driven by the motor using a drive belt system.  The lead screws drive a 

vertical cross beam which moves the sample up and down.  This concept is based purely 

on traditional axial load devices such as the INSTRON universal testing machine.  The 

load cell and probe are fixed at the base (similar to concept 2) 

 

5.2 Concept Evaluation (TOPSIS) 

In order to evaluate the design concepts, a multi-criteria decision making tool was used:  

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS).  The TOPSIS 

method was used to: 

• Obtain an expert opinion about design considerations. 

• Identify a final design concept objectively, by ensuring qualitative and quantitative 

evaluation of each concept relative to each other. 

The outcomes from this analysis were crucial to select the components to be used in the 

ascending micropenetrometer final design. 

TOPSIS was developed in 1981 by Hwang CL(1981).  This method is a multi-criteria 

decision making tool and an excellent means to find the optimal design solution for 
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problems with multiple design criteria.  The technique asks experts to objectively score the 

design concepts and is fairly simple in computation.   

In this method two artificial alternatives are hypothesised: 

1. Ideal solution: the solution which has the best values for all attributes considered 

2. Negative ideal solution: the solution which has the worst attribute values  

TOPSIS selects the solution that is closest to the ideal solution and farthest from the 

negative ideal solution.  

Figure 16 presents the full procedure for TOPSIS method.  A full explanation of TOPSIS 

with formulae is described in appendix C1. 

 

Figure 16 - TOPSIS procedure flow diagram. Adapted from (Kolios et al., 2010) 

For the purposes of this study a survey was compiled and distributed to 27 experts.  Survey 

participants were divided into three groups depending on their area of expertise.  13 

Engineering experts, 12 Soil Science experts and two Manufacturing experts completed the 

survey. 

5.2.1 Design Criteria 

Very few researchers evaluate the relationships between the criteria (Ginevicius, 2011).  In 

most cases the criteria are very much interrelated and this should not be ignored.  The 

accuracy of the expert’s evaluation of the criteria largely depends on the number of criteria.  

When the number is large it becomes difficult for the experts to mentally do comparisons 

of the criteria.  For this reason the number of criteria was limited to eight.   

The design criteria were defined after consultation with Soil Science and Engineering 

experts.   
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1. Accuracy - Ability of device to measure force and displacement precisely 

2. Repeatability – Ability of device to repeat the exact same measurement consistently 

3. Durability – Robustness of device, strength and resistance to environmental factors 
such as rust and dirt 

4. Manufacture and Integration – Ease of manufacture and integration of components 
into assembly 

5. Adjustment and Control – Ease of adjustment and control of components within 
assembly 

6. Ease of use  - Ability of end user to perform measurements 

7. Adaptability – Ability to change and adapt configuration  

8. Low Cost – Relative price of device 

Once the criteria were chosen a survey questionnaire was prepared using the marketing 

software Qualtrics.  The questionnaire was sent out to experts to fill out electronically (see 

appendix C2 for survey document). 

5.2.2 Weighting Vector 

Part A of the survey requested experts to assign an importance score to each criterion.  The 

results would determine various weighting vectors applying a relative importance to each 

criterion.  In total three opinion weighting vectors were determined i) Engineering, ii) 

Manufacturing and iii) Soil Science.  The scores for each criterion (within each group) were 

averaged to give a relative weight to each criterion.   

A baseline weight and a weighted weight vector were also used for extra comparison.  The 

baseline vector gave equal weight to each of the criteria.  The weighted weight vector 

attempted to assign more importance to the opinion of experts whose expertise were 

judged to be most valuable.  In this case engineering experts were judged to have the most 

relevant expertise to score the concepts since these experts have extensive knowledge of 

design and engineering projects.  Manufacturing experts score were weighted next highest 

at 30%, followed by Soil Science experts at 20% and Phd Students (engineering) at 10%.  

The final weighting vectors are given in Table 6. 
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Table 6 - Weighting Vectors 

 Accuracy Repeatability Durability  Manufacture 

and 

Integration 

Adjustment 

and control 

Ease 

of 

Use 

Adaptability Low 

Cost 

Engineering 9.5 9.3 6.2 5.4 7.2 6.5 6.5 5.7 

Manufacturing 9.0 9.5 6.5 7.5 7.5 7.5 3.0 5.0 

Soil Science 9.3 9.6 8.8 6.4 7.5 8.3 6.9 6.4 

Weighted  9.2 9.5 6.8 6.2 7.4 6.9 5.8 5.4 

Baseline 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

A sensitivity study was performed to evaluate the variability of the weighted vectors (Table 

7).  The weighting given to each group was increased by 5% and the percentage change in 

the vectors determined.  Results indicate that the apart from the Ease of Use Criterion, 

which varied by up to 3.3%, the vector obtained does not depend on the weighting of the 

group of experts. 

Table 7 - Sensitivity study of the obtained vectors 
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Weighted Vector (Engineering 40%, 

Manufacturing 30%, Soil Science 20%, 

PhD Students 10%) 9.2 9.5 6.8 6.2 7.4 6.9 5.8 5.4 

  Sensitivity Analysis 

Vector increasing Engineering weight by 

5% 9.3 9.5 6.7 6.2 7.4 6.7 5.9 5.4 

% Change 0.5 0.7 -1.2 0.7 -0.6 -2.9 2.4 1.5 

  

Vector increasing Soil Science weight by 

5% 9.1 9.4 6.7 6.1 7.3 6.7 5.8 5.4 

% Change -1.0 -0.6 -1.8 -0.2 -1.8 -3.3 0.6 0.6 

                

Vector increasing Manufacturing weight 

by 5% 9.2 9.5 6.7 6.2 7.3 6.7 5.8 5.4 

% Change -0.4 0.0 -1.6 0.9 -1.1 -2.7 0.1 0.9 
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5.2.1 Decision Matrix 

Part B of the survey asked experts to score the concepts relative to each other.  A score 

was given for the ability of each concept to meet each design criteria.   The scores were 

averaged from all participants’ scores to form the decision matrix.  Using this logic the 

decision matrix is unbiased towards any one group or opinion.  Opinion judgement was 

incorporated using the weighting vector.  The final decision matrix is detailed in Figure 17.  

 

Figure 17 - Averaged decision matrix 

5.2.2 Results 

Statistical analysis performed on the survey results was based on Thiel (2008) where the 

number of participants was low (n<30).  Thiel, 2008 proposes some statistical analysis of 

the calculated means from the relative importance of the criteria scoring.  In this way the 

reliability of using the means as the weights vectors in the TOPSIS method was assessed 

before going ahead.  Descriptive statistics were used to evaluate the data.  Variance, 

Standard deviation, rate of change, asymmetry rate or skewness and concentration rate 

were used and the results analysed.  The samples where hypothesised to follow a normal 

distribution.  A student t-test was used to find the 95% and 90% confidence intervals of 

the mean.  Results are presented in Table 8. 
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Table 8 - Values of descriptive statistical measure for criteria scores 

Criterion Mean 

'( 
Variance 

)(')* 
Standard 
Deviation 

)(') 
Dispersion 

+)(') 

Accuracy 9.4 0.69 0.83 8% 

Reliability 9.4 0.62 0.79 8% 

Durability 7.4 2.90 1.70 23% 

Manufacture & Integration 6.0 3.63 1.91 32% 

Adjustment & Control 7.4 1.57 1.25 17% 

Ease of use   7.3 3.63 1.91 26% 

Adaptability 6.4 4.02 2.01 31% 

Low Cost 6.0 3.52 1.88 31% 

 

The results of the TOPSIS analysis are presented in Table 9.  After evaluation of the main 

five concepts for all weight vectors, concept 3 was deemed the best concept (closest to 1).  

When the modifications were considered, all weight vectors, except the baseline vector, 

produced Concept 1 with modification 2 as the best solution.  It should be noted, however, 

that Concept 2 also scored very well (above 0.6 for all weight vectors).  Three experts 

indicated in the survey that having the load cell fixed at the base of the frame would help 

eliminate extra signal noise produced by the rotation of the actuator.   
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Table 9 - TOPSIS Concept score results, green highlights concept closest to positive ideal 
and red highlights concept closest to negative ideal. 

 

5.2.3 Discussion 

Results show that criteria 1 and 2 (i.e. accuracy and reliability) have the smallest standard 

deviation (approximately 0.8) and smallest dispersion (8%), which suggests that all of the 

participants agreed unanimously on their value (Table 8).  Criterion 5 (adjustment & 

control) also has a relatively low standard deviation of 1.2 and dispersion of 17%.  The 

other criteria have relatively large values of standard deviation with a maximum of 2 for 

adaptability, however, the dispersion about the mean is still moderate at approximately 

30%.  Thus, statistical analysis of the weighting of criteria indicates agreement between the 

experts in evaluating the importance of the criterion.  The sensitivity analysis (Table 7) 

confirms a general homogeneity of the results, therefore the mean values of the criteria 

scores are suitable for the TOPSIS study.  The only criterion which perhaps gives some 

doubt is adaptability with a deviation of over 2 across the experts’ responses.  Therefore, 

the values used in the TOPSIS study were not modified to account for statistical variance.  
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Concept 1 0.297 0.274 0.278 0.279 0.311

Concept 2 0.664 0.630 0.655 0.641 0.672

Concept 3 0.792 0.802 0.778 0.797 0.746

Concept 4 0.462 0.489 0.449 0.473 0.423

Concept 5 0.091 0.090 0.086 0.087 0.098

Concept 1 0.314 0.281 0.279 0.285 0.339

Concept 2 0.544 0.500 0.531 0.515 0.557

Concept 3 0.668 0.648 0.656 0.655 0.656

Concept 4 0.409 0.403 0.389 0.401 0.393

Concept 5 0.168 0.155 0.141 0.151 0.188

Concept 1. MOD 1 0.615 0.627 0.623 0.626 0.595

Concept 1. MOD 2 0.727 0.751 0.747 0.748 0.688

Concept 2. MOD 1 0.442 0.431 0.389 0.419 0.465

Concept 4. MOD 1 0.705 0.686 0.682 0.693 0.693

Concept 4. MOD 2 0.712 0.724 0.717 0.724 0.670

Concept 5. MOD 1 0.213 0.230 0.235 0.228 0.216

Incl. Modifications

Relative Closeness to Ideal (1.00)

Relative Closeness to Ideal (1.00)
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TOPSIS results clearly indicated that the concepts that should be considered for the design 

are Concept 3, Concept 2 and Concept 1 with modification 1.  Concept 3 received the 

highest scores in the TOPSIS study (Table 9); however, elements from the other concepts 

would be considered for the final design. 

Concept 1 modification 1 scored the highest of the modified concepts (Table 9), however, 

concept 1 without modification scored very low (second lowest of all main concepts) and 

therefore the result is unreliable.  The number of participants that scored the modified 

concepts was considerably less than those that scored the main concepts (14 compared to 

5). For these reasons concept 1 modification 1 was rejected for consideration of the final 

design. 

Having the load cell located in a fixed position would eliminate the much of the load noise 

produced by the rotating motor drive.  For this reason, and the fact that it scored a close 

second behind concept 3, concept 2 would be considered for the final design.  From the 

decision matrix shown in Figure 17) concept 2 scored 7; equal to concept 3 for accuracy 

and repeatability but lower for adjustment and control (6 compared to 7).  Utilising an 

electric motor similar to concept 3 would improve the adjustment and control of concept 

2, whilst keeping the accuracy of the configuration. 

5.2.4 Conclusions 

The final micropenetrometer design was based on the configurations of concept 2 and 

concept 3.  A lead screw and electric stepper motor would be used to drive the system.  A 

slight modification to concept 3 was implemented in order to keep the load cell fixed.  

Fixing the load cell is considered highly advantageous since this would exclude noise and 

eliminate the need for post processing of the load signal.  An electronic stepper motor and 

a good tolerance lead screw (as utilised in concept 3) would give smooth motor control and 

precision motion.  The lead screw also has increased durability compared to gearing and 

rack and pinion options.  An appropriate lead screw and stepper motor with accurate load 

cell would be sourced from available manufacturers for the final design proposal. 
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6 Final Design Selection 

6.1 Final design configuration 

Using the results of the TOPSIS study final component selection and integration into a 

manufacturable design was completed; resulting in three possible final instrument design 

systems presented in section 5.3. Commercial components were reviewed and selected 

based on their price and ability to achieve the technical requirements.  

6.1.1 Load Cell 

The technical requirements for the load cell were as follows: 

• Based on the experiment, the expected force range was 0.3N – 5N.  To increase the 

micropenetrometer ability to measure larger samples in future studies, an expanded 

load range capability would be advantageous.  Thus a range of 0.3 – 10N was 

deemed good for larger samples (twice as large) Juvinall and Marshek (2000) stated 

that when materials and loads are well defined, a reasonable safety factor of two can 

be applied to design calculations.  An additional safety factor of 2 was applied to 

this final force, meaning the load cell would need to be able to measure up to 20N.   

• Required accuracy of the load cell was based on literature and previous 

micropenetrometer devices (Liu et al., 2006; Drahorad and Felix‐Henningsen, 

2012).  An accuracy of approximately 0.01 N was considered adequate to detect 

microstructural changes in strength, as described in Liu (2006).  This accuracy 

would need to be achievable throughout the 0 – 20N range of the load cell. 

A review of available load cells (Table 10) revealed several that would yield the desired 

requirements.  The Richmond Industries 900 Series load cell was selected as the final 

choice. 

This load cell had many advantages: 

• 20N force range 

• Excellent minimum accuracy of 0.012 N throughout range 

• S-type load cell, providing good durability 
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• Easy installation: the load cell could be mounted into the frame using a simple M6 

bolt.  No other mechanical considerations or mounting plates required. 

• 500% Mechanical force overload protection. 

• Direct USB connection to the PC via an analogue to digital module.  Module 

manufactured by supplier and offered excellent resolution of 10Hz or 120 000 

steps, far more than required.  The module also included signal filtering and noise 

cancellation for improved signal. 

• Price: both the USB module and the load cell together would cost £330 excl. VAT. 

Table 10  - Load Cell Specifications Comparison 

 

6.1.2 Frame 

Weight and portability was deemed not important to the design criteria.  However, 

durability and reliability was valued highly, therefore, corrosion needed to be avoided.  

Aluminium 6082T6 section was selected as the most economical and durable, corrosion 

resistant material to manufacture the instrument frame.  Due to the very low loads 

expected, 1.2Kg maximum, the smallest available box section (25.4 mm x 25.4mm x 

16SWG) was chosen.  Deflection of the frame was calculated to be minimal. 
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Load Cells

OMEGA

PN: LCL-454G
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PN: LCMFD-10N
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PN: LCMKD-20N

HONEYWELL

PN: FSS1500NSB

RICHMOND INDUSTRIES

PN: 900 Series – 20N    ����

Type Thin Beam Compression/Tension Compression – Push 

Button

Compression – Push Button Compression/Tension

Range 0 – 454g 0 – 20N 0 – 20N 0 – 1.5kg

0 – 15N

0 – 20N

Advantages Inexpensive

Potentially 

tension/compressi

on

Durable

Accuracy

Accuracy

Price

Inexpensive Ease of Installation

Accuracy

Tension/Compression

Disadvantages Difficult 

Installation

Very fragile

Expensive Compression only Push button

Low 

accuracy/repeatability

Compression only

None

Non-linearity N/A N/A N/A 1.5% FSO

0.2255N

0.03 % FSO

0.006 N

Repeatability N/A 0.2% FSO

0.04N

N/A 0.7% FSO

0.105N

N/A

Total Accuracy 0.25% FSO

1.14g or 0.012N

0.15% FSO

0.03N or 3.06g

0.25% FSO

0.05N or 5.10g

1.5% FSO

0.225N or 22.9g

0.06 % FSO

0.012N or 1.22g

Cost £50 £510 £375 £43 £160
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Clamp design 

The clamp is an important component of the frame design.  It needed to hold the sample 

securely to motion error during measurements.  The clamp was therefore designed to hold 

the sample around its entire circumference (Figure 18a).  The initial design did not ensure 

that the sample was located at the same position for every measurement.  To ensure the 

sample started at a fixed location a base plate was incorporated (Figure 18b). 

(a)  (b) (c) 

 

 

Figure 18 – Design progression of the sample clamp. (a) Simple clamp with circular grip to 
hold sample firmly. (b) Base plate introduced to ensure starting datum position of sample. 
(c) Final clamp design including slotted key mount allowing repositioning of sample before 
penetration measurement. 

Since the clamp and probe in the final design would be fixed, only a single point in the 

sample could be penetrated.  With the probe located at the centre of the sample, the centre 

of the sample was the only penetration point (Figure 19a).  Having a single possible 

penetration point in the sample amplifies the risk of having an inaccurate measurement, 

since the centre of the sample could contain a crack in the soil or localised hard spot.  To 

increase the possible penetration points, the probe would be offset from the centre, thus 

creating an annulus, around the centre but not including the centre, of possible penetration 

points( Figure 19b).  The final clamp design (Figure 19c) includes a slotted key mount 

which allows the circular clamp to be moved sideways and fixed in multiple positions.  This 

configuration creates the possibility of penetrating the centre of the sample as well as 

several annuli around the centre (Figure 19).  Due to the damage that is caused to the crust 

surface during penetration measurements the number of penetrations per sample was 

limited to a maximum of two. 
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(a)  (b) (c) 

Figure 19 – Possible penetration patterns available for the clamp designs from  

(a) Clamp and probe fixed at centre point. (b) Probe fixed at offset position from sample 
centre point. (c) Final design, multiple penetration annuli possible. 

6.1.3 Motor 

Application requirements should be assessed when selecting an electric motor (Alciatore 

and Histand, 2003): 

• Will the motor start and will it accelerate fast enough? Starting torque of the motor 

needs to be high enough to overcome the applied static loads. 

• What is the maximum speed a motor can reach? The corresponding torque at the 

maximum required speed must be high enough to overcome loads. 

• Is accurate position or speed required? For accurate positioning at discrete 

locations and incremental motion a stepper motor is well suited. Stepper motor can 

also operate over a wide range of speeds and open loop control is simpler, 

eliminates the need for a position sensor.  

• Are there any size and weight restrictions? Direct current (DC) stepper and servo 

motors offer good torque at small size. 

The motor would need to be able to apply 20N of vertical force whilst being well within 

the maximum torque capability.  This would ensure that the stepper motor would not lose 

pulse count and therefore position control would remain accurate. To calculate the 

required torque of the motor the efficiency of the lead screw, motor and load inertia, the 

maximum speed/acceleration and maximum loads were required. The total torque 

requirement was calculated using three methods, two theoretical calculations and a using 
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commercial software package for motorised stages (COOLWORKS), and produced similar 

results.  For safety the largest of these values was used as the maximum resultant torque 

(0.133Nm).  Full calculation methods are described in appendix D.2.  Table 11 tabulates 

the obtained motor requirements.  

Table 11 - Motor technical requirements for the micropenetrometer. 

Requirement Value 

Maximum Load 20(N) / 2 (kg) 

Maximum Speed 100 (mm/min) 

Maximum Acceleration 9600 (mm/min2) 

Motor Resolution (best) 0.001 (mm) 

Minimum Torque 0.133 (Nm) 

6.1.4 Electronic components 

Data measurements need to be captured and stored so that the force measurements can be 

reviewed and displayed.  The data logger system needs to integrate with the load cell and 

displacement transducer.  The signal from the load cell will most likely be analogue and will 

need to be converted by an analogue to digital converter (ADC) (Liu et al., 2006). 

6.1.5 Analogue to Digital Converter 

The output signal from the load cell and displacement transducer will be in the form of a 

continuous analogue voltage signal.  This signal will need to be converted to a digital signal 

that can be measured and displayed by the controller or PC.  In order to accurately measure 

the continuous output signal from the components the data must be sampled at a discrete 

time interval which is small enough to give a good representation of the original signal 

(Kularatna et al., 2003).  An analogue signal with frequency fa must be sampled at a rate of  

fs > 2fa to avoid loss of information (Kularatna et al., 2003).  For a penetration rate of 

12mm/min and a measurement resolution of 0.005mm the frequency of sampling is 4Hz.  

Therefore the ADC needs to be capable of a sampling frequency of 10Hz. It is important 

when selecting the ADC to check the dynamic specifications of the device.  The effective 

frequency is a parameter which incorporates the signal-to-noise-plus distortion errors. Most 

commercial ADC’s will offer effective noise cancellation through signal filtering, this 

should be checked when deciding which device to use. 
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6.2 System Options 

Selection of the drive and control systems depended largely on price.  There was a plethora 

of components available that could achieve the desired accuracy and control of the 

micropenetrometer.  For this reason three possible systems were proposed, full details are 

shown in Appendix D.3.  All three systems would meet the technical specifications and be 

within the build budget of £3000. 

6.2.1 System 1 – “Rolls Royce” Most Expensive 

The most expensive system proposed boasted a highly configurable, fast and accurate 

control system from National Instruments (NI).  The NI Compact RIO control system is 

fully “stand-alone”, meaning no PC connection would be required to run the 

micropenetrometer load cell and drive devices.  Included in the Campact RIO control 

system is a stepper motor controller, capable of micro-stepping the stepper motor, a load 

cell excitation and data acquisition module.  Further modules could also be added to this 

system if additional measurement devices are required at a later stage, to measure for 

example water content, temperature or displacement using an LVDT.  The NI controller 

would control a standard stepper motor which drives a lead-screw incorporated in a 

mechanical linear stage manufactured by IGUS. 

6.2.2 System 2 – Intermediate 

This system utilises an integrated motorised linear stage manufactured by Reliance 

Precision Ltd.  The linear stage incorporates a “Cool Muscle” motor with an integrated 

lead screw, motor and controller in one unit.  The motor offers very fine controllability, 

accuracy and resolution through the use of micro-stepping.  Software to control the motor 

is provided, alternatively LabView could be used.  To control the motorised stage the unit 

is connected to a Personal Computer (PC) via a Universal Serial Bus (USB) cable.  The load 

cell would be powered and controlled via USB ADC amplifier from Richmond Industries 

and connected to the PC in another USB slot.  The Richmond industries PC-USB in-line 

ADC load cell amplifier was chosen for the micropenetrometer as it offered the correct 

technical requirements described in section 5.1.4.  Additionally this amplifier connected to 

the (PC) via USB the same as the Reliance Cool Muscle motorised stage; thus minimising 

incompatibility of the two devices. 
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6.2.3 System 3 – Economical 

This system uses base components; standard stepper motor with USB motor drive and a 

controller.  The motor would drive an “off the shelf” lead screw linear actuator from 

IGUS.  The system would need to be programmed using MATLAB or controller software 

such as Arduino language.  The load cell would be controlled using the manufacturer USB 

module.  It was understood that this configuration would take the most amount of time to 

build and program.  The Arduino or similar controller would have some limitations in fine 

motor control.  The resolution would most likely be less than both the “Rolls Royce” and 

Intermediate systems due to the lack of fine micro-stepping capability. 

6.3 Final System Design 

Advantages of the Intermediate System led to it being chosen for the final design presented 

in Figure 20.  Price, accuracy and ease of manufacture were the main characteristics for 

selection.  Comparison of the three systems (Table 12) highlights that the Intermediate 

System offered the easiest manufacture including time for manufacture, high accuracy, 

control ability and reasonable cost. Compared to commercially available 

micropenetrometers the intermediate system offers a significant cost savings. The 

micropenetrometer (TA.XTPlus) used by March et al. (2013) for example costs £12684. 



67 

 

Table 12 - Comparison of systems 

 

Full component technical specifications are given in Appendix D.4.  Pertinent 

specifications of the device are summarised below:  

• Drive system – Reliance Cool Muscle motorised stage. 

o 5kg - Maximum vertical load 

o Torque (dynamic) – 0.38Nm. This would allow the motor run at 40% 

maximum load for the worst sample load case. 

o Accuracy of 0.0006mm/mm or 0.12mm over full 200mm guide length. 

o Variable resolution and speed settings. 500 pulses per revolution to 50000 

pulses per revolution. Speed settings increased from 10 pulses per second in 

10 pulses per second intervals. Resulting large range of speeds. 

System Description Cost Accuracy Time Ease of Use Controlability Adaptability

"Rolls Royce" 

(Expensive) Version Medium Accuracy Intermediate High High High

Expensive Control £2900 - £3000 Fully automated Stand Alone Unit

Mechanical Actuator

Would only require 

PC to download 

data or change the 

sequence of 

motion

No PC Required 

for controlling 

motor or data 

logging

2 Free slots for 

expansion can add 

other units, for 

accurate 

displacement 

measurement 
Standard Stepper 

Motor

Intermediate Version High Accuracy Shortest Medium - High Medium - High Low

Integrated Linear 

Actuator

£1800 - £2000 Would require 2 x 

USB channels Require PC control

Motor and 

configuration 

unchangable

Cool Muscle Motor                                                     

Fully Integrated 

Controller, Encoder for 

Highly Accurate 

Positioning and Linear 

Actuator

Program launch 

from PC LABVIEW Interface

Economical Version Medium Accuracy Longest Medium - Low Medium Medium

Standard Control 

System

£900 - £1100

Program for PC 

would be written 

and basic GUI

LABVIEW or 

Matlab GUI 

Interface

Low cost to add or 

change componentsMotor, Controller and 

Drives bought and 

programmed from 

fundamental 

prinicples.          
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o The motorised stage is easily programmable and configurable. An encoder 

allows micro-stepping of the stepper motor, resulting in very fine control of 

the motor rotation. Memory is in-built into the motor allowing storage of 

program sequences. This means that the codes during operation of the 

motor are reduced.  

o Offers torque protection and displacement protection mechanisms. 

• Load Cell – Richmond Industries 900 Series 

o Maximum measurable load 20N (compression and tension) 

o 500% Overload protection 

o Accuracy 0.06% or 0.012N 

o USB Module Analogue to Digital Converter – The module offers superior 

sampling rate of up to 1000Hz more than sufficient for the required 10Hz 

sampling rate desired. This module also includes full noise cancelling filters. 

When purchased with the load cell the load cell and module are pre-

calibrated and certified for accuracy. 

All these specifications were well within the requirements allowing for larger samples to be 

used in future experiments adding to the systems flexibility. Final specifications of the 

micropenetrometer are detailed in Table 13. 
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Table 13 - Mechanical and electronic specifications of the micropenetrometer 

Parameter Mechanical Electronic 

Force Maximum Load 20N or 2kg Load Cell Richmond Industries 

PN: 900-020N2U 

Resolution 0.00001N Interface USB 

Accuracy ±0.006N or 0.6g Data format Excel Spreadsheet 

Maximum 

Sample Weight 

600g Control 

Software 

LabView 2013 and 

DSC Toolkit 3.0.0 

Displacement Maximum 

Penetration  

170mm Motor Reliance Cool Muscle 

Motorised Stage 

RCMS17L-M02-C-1-12 

Maximum 

Speed 

300mm/min 
Interface 

USB 

Resolution 0.001mm 

Accuracy 0.0006mm/mm Control 

Software 

 

LabView 2013 and 

CoolWorks Lite 
Maximum 

Motor Torque 

0.129Nm   

45% Peak 

Motor Torque 

Using all the selected system components, the configuration and materials the final design 

was completed.  Drawings of the frame and integrated components were created using 

Solidworks 2011 (full details in Appendix D.4).  Included for the workshop to manufacture 

were the instrument frame to house the components, the sample clamp to support the 

sample and the probe collar, needed to house the probe and attach it to the load cell.  The 

manufactured ascending micropenetrometer and layout diagram is illustrated in Figure 20. 
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Figure 20 - Layout (a) photograph and (b) diagram of the Ascending Micropenetrometer 

  

(a) 

(b) 
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6.3.1 Data acquisition and programming 

The fundamental requirement of the micropenetrometer was to accurately measure the 

penetration force on the probe from the load cell, and, at the same instant, to record the 

displacement of the probe within the sample.  In this manner a good description of the PR 

throughout the penetration can be achieved.  It is therefore important that the two signals 

be “tied” together and recorded at an instant in time as close to each other as possible.  

Since the load cell and the motor use separate software to drive and record the respective 

instruments, a program was needed to control both components simultaneously.  There are 

several programming software packages available which could achieve this.  Software that 

was considered suitable for the program development were Microsoft Visual Basic, C++ 

and National Instruments LabView.  The first two packages are text based programming 

languages, with Visual Basic offering a simpler visual interface.  LabView, however, is a 

visual based programming language allowing the user to drag and drop blocs of code and 

“stitch” these together to carry out the desired function.   

LabView was chosen to be the most suitable for the micropenetrometer, because it offered 

several advantages in instrument programming.  LabView was developed specifically for 

data acquisition and management making it easy to configure and communicate with 

components.  The visual nature of the program language also makes it very easy to learn 

and understand data flow; complex code can be implemented quickly since code is built 

using building blocks.  Visual programming does; however, make it difficult to debug the 

program due to the inherent parallel processing. 

6.3.2 Micropenetrometer sample sequencing 

All programming for the micropenetrometer was performed using LabView 2013. The 

program needed to ensure that the sample sequence and timing of the measurements was 

accurate.  It was also essential that the program incorporated some protection mechanisms 

to safeguard the expensive load cell and motorised stage. Additional requirements:  

• Variable speed of penetration measurement, enabling the end user to explore the 

effects of penetration speed on the crust PR profile. 

• Variable penetration depth, allowing the end user to test PR in various sizes of 

sample. 
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• Output of penetration depth and PR at the same instant in time. These data would 

be saved in an Excel CSV file for later analysis. Saving of the sampling parameters 

and sample ID would need to be added to the file. 

• Safety to prevent the motor pushing the sample too far and onto the load cell, 

protecting the motor and load cell from overload. 

• Safety to stop the program and motor if the load cell reached its maximum load of 

20N. 

• Limit the maximum torque of the motor to 40% allowing a maximum load of 20N. 

This would add redundant protection of the motor and load cell. 

It was important to know that the absolute position of the motor is correct at the time the 

sampling starts, since no additional hardware such as a linear displacement transducer was 

being used to determine the position.  The motor would first execute an origin search to 

zero the motor position.  This would be done by forcing the motor to the physical limit of 

the sliding stage. Then the motor would execute the sampling sequence, recording position 

relative to the origin. This method ensures that the motor is reset for each sample, and the 

position control is not out of synchronisation if the motor was by chance overloaded in the 

previous measurement. 

Sampling sequence would start 10mm above the probe, wait 2sec and then start the 

penetration through the entire sample.  The load cell and position data acquisition would 

start once the sampling sequence has begun. Once the probe had penetrated the sample, 

the motor would stop and wait to allow for a period of zero load in the data.  The zero 

load period would allow for easy post-processing of the data since there would be a clear 

distinction between the PR and friction measurements.  

After the wait the motor would extract the probe by 10mm while continuing to record 

position and load. This extraction measurement would serve to determine the friction 

component on the PR (Liu et al., 2006). 

Depth of penetration and speed would be stipulated by the end user and these sent to the 

motor at program execution. 
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7 Micropenetrometer testing 

7.1 System setup 

Calibration of the load cell resulted in excellent linearity.  Force measured by the load cell 

compared with calibrated weights produced a calibration curve with 100% linear 

correlation.  The conversion equation from measured load to actual load is given in 

equation (7-1).  Full calibration results can be found in appendix E.   

Actual	force = (Load	Cell	Force) ×1.0031+0.0005 (7-1) 

To prove that the micropenetrometer was sensitive enough to detect strength variations in 

soil samples and to find the ideal settings for the micropenetrometer, effects of certain 

settings were investigated.  Different motor resolution, speed and probe shapes were tested 

to find the settings most likely to produce results good at detecting soil crusts.  A simple 

flour dough experiment was conducted.  This type of test has been used in structural 

strength distribution analysis of soft soils (Liu et al., 2006).  The flour was mixed and 

kneaded with water to create dough with 40% water content.  The dough was then inserted 

into the sample container to a depth of 50mm and allowed to dry for 30min.  Flour made 

of fine consistent particles is a good way to make a homogeneous material for strength 

testing.  With the top surface exposed to air drying a “crust” is formed.  A series of 

penetration tests, at settings given in Table 14, were then performed to determine whether 

or not the micropenetrometer could detect the crust zone and which settings were best at 

doing so.  Measurement readings were taken at intervals of 0.05mm which is sufficient to 

capture variations within small crust zones of 1 – 3mm (Liu et al., 2006; Rolston et al., 

1991). A test for direct comparison with the Liu et al. (2006) study was also conducted by 

inverting the dough sample and driving the probe into the material from above, creating a 

penetration test equivalent to traditional descending penetrometers. 
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Table 14 - Test settings for the micropenetrometer dough experiment 

7.2 Test results 

Direct comparison of probe shapes was achieved by plotting the PR curves of the flat 

probe and pointed probe at penetration rate of 12mm/min (Figure 21a).  Results indicate 

that the pointed probe measures consistently higher PR throughout the sample with a peak 

in PR at 50.2mm of 0.224N.  The flat probe produced a peak at 51.5mm of 0.162N.  

Although the pointed probe produce a higher PR the inflection at the start of the crust 

zone was not as sharp as the flat probe PR curve. In fact it is extremely difficult to notice 

an inflection point on the pointed probe, while on the flat probe penetration curve the 

micropenetrometer clearly hits a harder crust zone at 48.5mm (Figure 21b).  

 

Motor 

Resolution 

(Pulses per 
revolution) 

Linear Resolution 
(mm) 

Speed (mm/min) 

Flat Probe 

Speed (mm/min) 

Pointed 300 Probe 

500 0.005 6 6 

12 12 

24 24 

2000 0.001 6 6 

12 12 

24 24 

5000 0.0004 6 6 

12 12 

24 24 
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(a) 

 

(b) 

 

Figure 21 - PR during dough test for flat and pointed shape probes at 12mm/min (a) full 
penetration; (b) detail of penetration in the crust zone. 
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(a) 

 

(b) 

 

Figure 22 - PR results at different penetration rates with (a) flat probe and (b) pointed 
probe 
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Speed settings resulted in PR curves of very similar shape for both the flat (Figure 22a) and 

pointed (Figure 22b) probe. Generally PR has slightly increased in-line with increasing 

penetration rate. 

Since the Cool Muscle Motorised Stage is capable of multiple position resolutions three 

resolution settings were tested to see if this affected the accuracy and repeatability of the 

PR measurements.  A single dough sample was penetrated twice at each setting of 500, 

2000 and 5000 position steps (or pulses) per revolution (Figure 23).  The results indicate 

that the repeatability increases with increasing resolution. At 5000 pulses per revolution 

(0.0004mm linear resolution) the two repeat measurements are almost identical (Figure 

23c).  Looking at the 500 pulses/revolution (Figure 23a) the PR curves have different 

shapes and PR values while the 2000pulses/revolution curve (Figure 23b) shows similar 

shape curves which start off identical but diverge at 35mm producing different peak values.  
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Figure 23 - PR results at resolution (a) 500pulses/revolution, (b) 2000pulses/revolution and 
(c) 5000pulses/revolution 
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In order to compare the micropenetrometer results with existing penetrometer studies the 

sample was flipped so that the crust surface faced downwards and penetration performed 

at 12mm/min for both flat and pointed probes.  This setup created a traditional descending 

penetrometer very similar to the Liu et al. (2006) device.  Figure 24 shows that the PR is 

again greatest in the crust zone (within 3mm of surface) with a peak in PR of 0.16N for the 

flat probe and 0.13N for the pointed probe with the pointed probe producing the peak 

slightly earlier than the flat probe; at 1.2mm compared to 1.5mm. 

 

Figure 24 – PR results for descending penetration at 12mm/min 

7.3 Testing discussion 

As with the pocket penetrometer experiment (Section 4.3) the pointed probe produces 

higher PR values.  What the micropenetrometer shows; however, is that the flat probe has 

detected the harder crust zone of the dough more clearly than the 300 pointed probe since 

the inflection point at the crust zone and peak in the PR more pronounced (Figure 21b).  

This was not expected since in the pocket penetrometer experiment the pointed probe was 

better at detecting differences between PR in varying soil conditions and so it was thought 

that pointed probe would be more sensitive to changes in strength within the crust zone.  

Results indicate that due to the slow, smooth and more controlled nature of the 

penetration from the instrument the flat probe is more sensitive to strength variations.  At 

a fine level of control it is therefore best to limit friction by increasing the cone angle and 

using a flat probe.  The flat probe detects a crust of 1.5mm thick which given that the 

sample had only 30min drying time is a reasonable result; a thin crust was expected.  
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Speed settings did not affect PR to extremes; in the range of 6mm/min to 24mm/min the 

resulting PR curves are similar in shape.  PR increases with increased speed, the exception 

being the 12mm/min penetration of the flat probe which produced the highest PR of the 

three speeds tested.  Previous study by Rolston et al. (1991) proved that speed should have 

little effect on PR so this result is in-line with theory.  The increase in load was attributed to 

an increase in friction due to higher speed.  To prove this, friction was measured during 

10mm withdrawal of the probe after penetration through the crust.  Plotting the friction 

during withdrawal shows that the friction reaches a steady state between 2mm and 4mm 

for the flat probe and between 6mm and 10mm for the pointed probe (Figure 25). 

A frictional force, for each PR curve, was calculated by averaging all PR readings between 

these two positions.  The resulting averaged frictional force was then deducted from the 

PR to produce Figure 26.  Both the flat and pointed probe curves correlated much more 

closely confirming that friction is the main contributing factor for differences in PR at 

higher penetration rates.  What is not expected is that after friction has been subtracted, the 

resulting PR curve from the flat probe has a negative load throughout penetration (Figure 

26a).  The reason for this highlights a disadvantage of measuring friction during 

withdrawal; during penetration particles adhere to the probe and collect on the tip.  Then 

during withdrawal the clump of particles is pulled back into the sample, exacerbating the 

frictional force.  The pointed probe does not produce a fully negative PR curve (Figure 

26b).  This is because the flat surface of the flat tipped probe collects more particles during 

penetration and thus produces a more exaggerated frictional force compared to the pointed 

probe. 

An interesting observation is that during the first stages (0-0.5mm) of probe withdrawal the 

load is still positive and not a negative frictional force.  This load is present due to the 

particles of dough which have adhered to the probe during penetration. 

The large frictional component of the PR measurement highlights the need to implement 

ways to reduce friction during sampling. Due to the small diameter of the shaft a large 

amount of friction can be attributed to the friction between the shaft and the soil, or skin 

friction. To reduce skin friction a probe with a slightly relieved shaft ( the shaft made of 

smaller diameter compared to the probe cone/tip) should be used.   
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Figure 25 – Frictional load during probe withdrawal for (a) flat and (b) pointed probe. 
Vertical lines represent region for average friction value calculation 
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Figure 26 – PR results for (a) flat probe and (b) pointed probe after average frictional value 
deducted. 
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500pulses/revolution each step of the motor results in a linear motion of 0.005mm which 
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is causes too great a position increase making repeatability difficult because strength 

variations within small zones are not captured.  Figure 27 presents an exaggerated 

illustration of the difference between fine 5000pulses/revolution and coarse 

500pulses/revolution.  Course resolution results in a large position step between each 

discrete pulse of the motor. At pulse 1 the 500pulses/revolution probe reading 1 is taken as 

0.05mm and a low load recorded as the probe is in the low load zone.  Pulse 2 records the 

load at position 0.10mm and a high load.  The 5000pulses/revolution probe; however, due 

to the smaller position change per pulse compared to the coarse probe, the position is still 

0.05mm at pulse 2 recording a low load and at pulse 3 the position reading is 0.10mm but 

the load is still low.  So, the coarse probe records a high load and the fine probe records a 

more accurate low load at position 0.10mm.  Strength variation is minimal in the bulk of 

the dough sample underneath the crust, meaning a coarse resolution will capture the 

strength similar to the fine resolution.  It is near the crust where the change in strength 

with position varies quickly and this makes fine resolution necessary.  This is why the 

500pulse/revolution and 2000pulse/revolution measurements start out with good 

correlation but diverge within the crust zone (Figure 23a and Figure 23b).  The 

5000pulses/revolution is fine enough to capture the variation well and thus we see good 

correlation between the repeat measurements in Figure 23c. 

Figure 27 – Diagram illustrating the effect of motor resolution on PR load readings 
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The descending penetration test produced results which could be directly compared with 

Liu et al. (2006).  Comparing the two curves reveals that the curves are very similar in 

nature.  Liu et al. (2006) found that the dough produced a peak PR of 0.75N within a crust 

zone of 1mm, while the manufactured micropenetrometer measured only 0.25N peak PR 

within a crust zone of 1.5mm.  There are several factors that could be sighted for the 

differences in the results.  Although both dough samples were made with 40% water 

content there is no mention of the type of flour used in the Liu et al. (2006) study.  The 

flour used in our test was plain flour and could be of finer grain than that of Liu et al. 

(2006).  Drying conditions could also cause the discrepancy; ambient temperature was low 

and humidity high during the drying of the dough used in our test.  The fact that the tests 

exhibit the same response curve, albeit not in magnitude, is taken as confirmation that the 

manufactured micropenetrometer is working effectively. 

  

Figure 28 – Comparison between obtained PR curve with the micropenetrometer test and 
Liu et al. (2006) results for descending penetration.  Reproduced from Liu et al. (2006) 

7.4 Testing conclusions 

The dough test has proved that the micropenetrometer is sensitive enough to detect very 

small variations in material strength.  At a linear resolution of 0.0004mm or 

5000pulses/revolution the micropenetrometer also produces excellent repeatability 

between measurements.  The “crust” zone of the dough was successfully identified by both 

the flat and pointed probe; however, the flat probe is more sensitive to changes in PR 

strength and should be used in future soil testing using the micropenetrometer.   
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Frictional effects on the probe are very high contributing to almost 100% of the total load 

in the case of the pointed probe and over 100% in the flat probe results.  This fact is 

attributed to the nature of the dough; being sticky, and is not expected with soil samples.  

Care should be taken, however, to minimise friction further in future soil testing.  One way 

to ensure more accurate friction measurement would be to clean the probe before friction 

measurement, ensuring adhered particles are not adding false frictional load. 

Finally, the penetration rate of 12mm/min is considered to be ideal for PR tests.  The 

results of the ascending penetrometer prove that the instrument is well suited for soil 

penetration studies and should be successful in identifying differences in soil crust strength 

between samples of varying preparation or material. 
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8 Conclusions 

The project set out to validate the value of creating a micropenetrometer for measuring soil 

crust strength by mimicking seedling growth rather than conventional downward 

penetration. During development of the micropenetrometer the study sought to answer the 

following questions: 

1. What are the required design specifications of a micropenetrometer to achieve 

effective soil crust strength measurements? 

2. Is ascending penetration a useful method for measuring soil crust strength and does 

it require development of a micropenetrometer? 

3. What is a good design for an ascending micropenetrometer sensitive enough to 

capture micro-structural strength variations within thin soil crust regions? 

4. Is TOPSIS and effective multi-criteria decision making tool for evaluating design 

concepts? 

Validation of ascending penetration method was confirmed during preliminary experiments 

using a manufactured pocket penetrometer. Conclusions from the experiment were as 

follows:  

• Ascending penetration is a valid method which could be used to compare crusts of 

different strength. Using the hand held pocket penetrometer two soil textures at 

two water contents were tested and compared. The results confirmed that the 

ascending penetration method was as effective as conventional descending 

penetration methods. Trends in soil strength were identified in-line with existing 

theory. Penetration decreased with increasing water content and increased with 

increasing sand content. These results proved that an ascending micropenetrometer 

with increased resolution and accuracy would be helpful in more precisely 

comparing soil crusts and evaluating micro-structural strength variations within 

small crust regions. 

• Penetration forces obtained varied between 84g and 168g. This force range was 

found to be above what seedling can physically exert (30g for wheat seedlings); 

however, the force was 50% less exaggerated compared to conventional methods 
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with produce forces ten times greater than seedling forces. The range was used to 

identify suitable load cells for use in the ascending micropenetrometer.  

• A 300 pointed probe was more effective than a flat probe at highlighting differences 

in soil strength between soil samples. The flat probe; however, fractured the crust 

surface in a manner more similar to how a seedling would penetrate the soil. These 

results identified the need to further investigate the probe shape. 

A finite element analysis (FEA) of the dynamic soil penetration was explored using 

ABAQUS 6.10 with the objective of identifying differences of deformation mechanism 

between ascending and descending penetration as well as various probe shapes. The FEA 

proved complex and results were somewhat inconclusive; however, some points were 

identified:  

• The ABAQUS in-built Drucker-Prager deformation model can be used to model 

large soil deformations; however, soil properties need to be clearly defined and 

these can be difficult to obtain without significant soil testing.  

• The ABAQUS adaptive remeshing technique used in isolation is not a very 

effective method for solving complex large deformations. Instead a sequential 

approach using manual remeshing of the soil matrix in combination with adaptive 

remeshing is more promising. Manual remeshing of the soil matrix after small 

deformation increments should be used for large deformation modelling. 

• By further developing the model a tool could be developed to explore different 

probe shapes and their effectiveness at identifying strengths variations. Ultimately a 

comparison between a growing seedling forcing its way through the soil and probe 

penetration could be achieved. 

A literature review was carried out to determine what specifications are required for a 

micropenetrometer capable of measuring soil crust strength. The review identified the 

following conclusions: 

• Several conventional micropenetrometers did not accurately measure position to a 

high enough resolution. Accurate position measurement to at least 0.1mm 

accuracy was imperative for an effective ascending micropenetrometer. Higher 

resolution of position would prove advantageous. Position measurement in 
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combination with force measurement to 0.01N or 1g accuracy would produce 

excellent results and allow for understanding of strength variations within the crust 

region. 

• Several ways to measure probe-soil frictional effects were compared. Measuring 

friction during probe withdrawal is the most effective.  

• Three main drive trains were identified as effective for micropenetrometer design. 

Electric motor in combination with either a lead screw or rack and pinion gear or 

hydraulic drive would be the best options. 

Concept selection was achieved using a multi-criteria decision making tool, TOPSIS. 

Results proved that this is an effective method to achieve confidence in a chosen design 

solution. It should be noted; however, that it is important to be pragmatic and consider 

other design improvements that could be made. A design should be adaptive and evolve to 

include novel ideas to improve the device. This ethos led to the modification of the final 

design concept to incorporate a fixed load cell, eliminating potential signal noise produced 

from motor vibrations. 

 A review of available components and technology identified three effective final design 

solutions for the micropenetrometer. Further evaluation identified the following: 

• Using cost, time to manufacture and ease of manufacture as criteria an effective 

and highly accurate ascending micropenetrometer could be manufactured. 

• The resulting micropenetrometer could be manufactured for £2050, well within the 

available budget of £3000. This cost included unexpected repair costs and eight 

weeks of development time lost due to repair turnaround time. This proves that an 

effective micropenetrometer can be produced for approximately 30% of a 

commercially available conventional micropenetrometer. 

Upon final micropenetrometer manufacture final testing of the device revealed: 

• A simple dough test whereby the micropenetrometer penetrates flour dough is an 

effective and rapid testing method for finding optimal penetration parameters.   

• Penetration speed and resolution settings which allow for best results in detecting 

strength variations were found using this method. With a penetration rate of 
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12mm/min and step increments of 0.0004mm the ascending micropenetrometer 

could detect a crust of approximately 1mm on a dried dough sample. 

• The dough test results prove that the micropenetrometer will be effective in future 

soil science studies, capable of detecting very small strength variations within crust 

regions. Due to the accurate position resolution, the micropenetrometer can also be 

used to explore exactly where within a sample strength variations occur. 

Due to the ascending action of the penetration the emergence of the probe is similar to 

growing seedlings and so studies can be made to quantitatively determine whether or not 

seedlings will be able to emerge through different types of soil crust.  The 

micropenetrometer could be used to determine the strength characteristics of the soil 

which would ultimately lead to developing a method which could be used to advise farmers 

whether or not their soils need treatment for ensured seedling emergence.  Different soil 

treatment regimes should be investigated to determine an effective method to make soil 

conditions suited for seedling emergence and therefore improve crop yields.  A decision 

diagram is presented in Figure 29 as a possible model for ensuring good seedling 

emergence in agriculture.  The micropenetrometer would be used to determine crust 

strength characteristics and whether or not the strength is low enough to allow good 

seedling emergence. 

Other uses for the micropenetrometer could include characterisation of the soil or the 

effect of water content and bulk density on PR.  Comparisons to current studies could be 

made to further validate the effectiveness of the ascending micropenetrometer compared 

to traditional devices.  Understanding the effects of soil properties like bulk density, water 

content and organic matter could lead to empirical characterisation of soils. One could 

develop a method that predicts the PR curve of a soil given the pertinent soil properties or 

vice versa. This would allow farmers to know when to plant or what crops might emerge 

better given the soil they have available. 
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Figure 29 - Decision flow diagram for ensuring seedling emergence. The red blocks 
indicate areas where the ascending micropenetrometer would be used. 
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9 Future Work 

During operation of the micropenetrometer some improvements have been identified.  

These ideas could form the basis for future work to improve the functionality and accuracy 

of the instrument.   

9.1 Programming 

The uncertainty of position readings is determined by two factors; component specification 

and the ability of the LabView program to read the load cell and motor at the same time.  

Due to the nature of the LabView program first the load is obtained and then the position 

is read.  To determine the error produced by the delay between readings, time taken to 

make each reading was measured in LabView.  The resulting 6ms delay will produce a 

position error of 0.0012mm at a penetration rate of 12mm/min.  The position error due to 

the motor specifications is 0.0006mm/mm so for a typical 50mm sample the position error 

is 0.03mm giving a total possible position error of 0.0312mm between readings.  This error 

is considered acceptable but there could be improvements made to the sequencing within 

the LabView program to try get more synchronous readings of load and position. 

During operation it was discovered that sometimes a false reading is returned from the load 

cell and motor.  This false reading is probably caused due to the sequencing of the 

programming.  A way to filter out the false readings within the LabView program or 

investigation into stopping the readings from happening should be developed. 

9.2 Micropenetrometer design 

Currently the loads onto the load cell are kept vertical by “pinching” the probe collar 

between two normal roller bearings.  Better horizontal load restriction would be achieved 

by using a V slot with V-bearings instead of the square groove for the normal bearings.  

This would create less allowable movement between the bearings and the guide groove.  

Figure 30 illustrates how the V-bearing will restrict motion in both horizontal directions 

whilst the normal bearing only restricts a single direction. 
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Figure 30 - Diagram illustration differences between V-bearing and normal bearing guide 

 

Probe shape and design is an area that needs further investigation. It is suggested that a 

relieved shaft would produce advantages of reducing frictional effects on the shaft. The 

frictional component of the penetration measurement would then be due to the cone only 

and not the shaft. 

9.3 Results interpretation 

The penetration tests result in a PR curve of depth versus load.  Multiple soil samples of 

different soils will produce a large amount of data.  These data need to be characterised in 

order to compare the resultant curves.  Important areas within the curve have been 

identified such as the inflection point at the start of the crust zone, the peak of the curve 

and the drop-off after penetration including the friction measurement.  To compare the 

curves a method needs to be developed so that the differences in the soil types or 

treatments can be quantitatively measured.  
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APPENDICES 

 - Pocket penetrometer experiment Appendix A

A.1 Drying regimes 

It was hypothesised that the fan blow dried samples would produce a good crust by 

applying energy to the top surface of the soil while allowing the deeper soil layers to remain 

moist. For best results a high amounts of energy would need to be applied to the surface in 

order to prevent capillary action.  For the air dried soil, the samples were left to dry at 

ambient temperature for 24 h and for a further 24hr in a dry cupboard at 40 oC.  Samples 

exposed to the fan drying regime were placed in front of a standard household fan which 

blew air continuously over the samples for a period of 48hr. 

A.2 Rainfall Intensity Calibration 

The characteristics required to fully define a rainfall event are: 

• Drop size distribution and median drop size (D50) 

• Kinetic energy of the falling droplets 

• Rainfall intensity 

• Drop velocity 
 

The rainfall tower was calibrated to produce the 10-year return period rainfall event for the 

Bedford area. For 15min rainfall duration the 10 year return period rainfall intensity 

corresponded to 49mmh-1. The aim was to achieve a uniform intensity of 49mmh-1on the 

catchment area at the base of the tower so that all samples received the same characterised 

rainfall. 

The values for the rainfall duration and return period have been selected based on the 

following considerations: 

• Previous experiments conducted by Dr. Armenise observed that a 15min duration 

rainfall event is often sufficient for the formation of a structural crust.  The crust 

produced was developed enough to be detected by 3D X-Ray scans of the soil core 

and therefore appropriate for the purposes of the study. 
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• A 10 year return period storm corresponds to a rainfall event that is probable in 

urban areas of England and Wales. 

To generate information about the homogeneity of produced rainfall, the rainfall tower 

catchment area was covered with 30 catch cups of 72mm mm diameter producing a spatial 

catchment array of 6 x 5 positions (Figure 31). Exposure time of cups to rainfall was 15 

min.  The catchment area was also divided into five regions: top, bottom, left, right and 

middle (Figure 31).  

 

Figure 31 - Spatial arrangement of catch cups on catchment area and associated regions 

A.2.1 Rainfall intensity calibration results  

In total three rainfall intensity calibration measurements were carried out, adjusting 

rainfall tower parameters to achieve a more uniform rainfall intensity distribution over 

the catchment. Results for the calibration measurements are shown in Table 15 where 

average, minimum, maximum and range of intensity for the catchment area are given.  

Ideally the range should be as small as possible and the average intensity as close to the 

desired 49mmhr-1 as possible. Table 15 shows that the Calibration 3 produced more 

desirable characteristics for the rainfall intensity.  Results also show that this rainfall 

event was repeatable since Repeat Calibration 3 gave similar results. 
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 Average  

[mmhr-1] 

Minimum  

[mmhr-1] 

Maximum  

[mmhr-1] 

Range  

[mmhr-1] 

Calibration 1 66.4 43.3 91.5 48.2 

Calibration 2 56.2 35.7 69.7 33.9 

Calibration 3 49.1 34.8 60.6 25.8 

Repeat 

Calibration 3 

46.8 34.7 59.0 24.3 

Table 15 – Catchment Rainfall Intensity Characteristics  [mmhr-1] of the Rainfall Tower 
Calibration Measurements 

 

42.4 44.4 44.8 43.2 41.2 34.8 

47.7 56.4 54.8 49.3 47.0 49.0 

47.4 51.6 60.6 57.2 53.3 51.2 

44.3 49.1 54.7 56.5 52.9 51.8 

44.9 47.3 52.2 47.5 46.0 48.0 

Figure 32 - Spatial Distribution of Rainfall Intensity (mmhr-1) on Catchment Area 
Calibration 3 

 

A second replication of the rainfall produced with the Calibration 3was run to ensure that 

the rainfall event was uniform in time and well characterised.  This produced an average 

rainfall intensity of 47mmhr-1 which was taken as the overall rainfall intensity for the 

catchment area. 

A.2.2 Application of simulated rainfall 

The average rainfall intensity of the two replicates was calculated for each of the 30 

different positions. Similarly, the coefficient of variation (CV%) between the replicates was 

computed for each position . Subsequently, two constrains were applied to the dataset: 

average intensity range between 47 and 55mmhr-1; CV% less than 11%.  The constraints 

reduced the number of optimal positions to 13 (Figure 33).  
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NA NA NA NA NA NA 

NA 53 51 50 48 50 

NA 51 NA NA 54 53 

NA 49 53 54 52 55 

NA NA NA NA NA NA 

Figure 33 - Spatial Distribution of Rainfall Intensity (mmhr-1) at Optimal Positions (purple 
cells) 

The soil cores were placed on the catchment area in the optimal positions previously 

identified.  10 positions were used in total: position 8 to 12 and 20 to 24 (Figure 33). The 

20 cores were therefore split in two batches.  Each batch of 10 samples received a  15min 

duration simulated rainfall event.  The soil water content in the samples was brought to 

field capacity by allowing the cores to drain for 48 h. The top of the cores were covered 

with plastic foil in order to avoid loss of water via evaporation. 

A.2.3 Kinetic energy 

Van Dijk et al. (2002) reviewed 19 studies of the relationship between rainfall drop sizes, 

intensity and kinetic energies from 24 locations around the world. The results showed that 

kinetic energy ranged from 11.6 to 35.9J m -2 mm -1, with maximum values averaging 

around 28.3J m -2 mm -1 and minimum values of about 13.5J m -2 mm -1. It was also found 

that high-intensity storms typical of rainfall simulator studies (> 40 mm h-1) result in 

average kinetic energies of 23 to 24 J m -2 mm -1.  Values of applied kinetic energy should 

be as close to this average as possible. 

The generic equation for kinetic energy is given by the following formula: 

9:; = 1
2�=> 

(A-1) 

Where m is the mass and v is the velocity of the applied mass. 

There are two forms of rainfall kinetic energy that can be related to rainfall intensity 

(Fornis et al., 2005): 

• Rate of kinetic energy expenditure (KEr = J m-2 h-1): is the kinetic energy per unit 

area per unit time; 
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• Kinetic energy content (KE = J m-2 mm-1): is the kinetic energy per unit area per 

unit depth. 

These are related by the following expression: 

 

9: = 9:?
"  

(A-2) 

Where I is the rainfall intensity in mm h-1. 

In order to estimate the spatial variability of the rainfall KE and drop size distribution in 

the rainfall tower catchment area, the LOD was moved during the experiment to five 

different positions: top, middle, bottom, left and right were used. Three measurements 

were taken in each position and each measurement had a 1 minute duration. For the 

simulated rainfall in this experiment the average intensity applied to the catchment area was 

found to be 47mmhr-1.   

Results from the LOD and rainfall intensity measurement indicate that the kinetic energy 

content is between 18.9 and 12.8J m-2 mm-1 (Figure 34) which was slightly less than the 

average desired, however, it was above the minimum obtained by van Dijk et al. (2002) and 

was therefore considered acceptable. 

 

Figure 34 - KE content of the simulated rainfall 
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The spatial distribution of rainfall intensity obtained from the catch cups was compared to 

the spatial distribution of KE content obtained using the LOD.  To do this the catchment 

area was divided into regions similar in orientation to the LOD positions (top, middle, 

bottom, left and right).  The average intensity per region was then calculated and plotted 

against the KE content.   

 

Figure 35 - Comparative results of rainfall intensity and KE content per catchment region 

A.2.4 Drop size distribution (DSD) 

In order to test what kind of distribution had the best fit to the analytical data produced by 

the rainfall simulator; a skewness-kurtosis assessment was performed (Cullen and Frey, 

1999).  The Cullen and Frey graph produced in R using the fistdistplus package and descdist 

function displays which type of distribution the data is likely to fit.   

The gamma distribution is given by the following equation: 

 

@(A) = BCDEACDE�DFG
Γ(I)  

(A-3) 

Where λ and I are called the rate and shape parameters. 
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These parameters determine the shape and position of the curve.  Given a set of data, the 

fitdist command in R can estimate the parameters of the gamma curve which would result in 

the best fit to the empirical data.  The command is part of the fitdistplus package in R used 

for distribution fitting.  The method that fistdist uses to find the parameters follow the 

Maximum Likelihood method which is a form of regression analysis.  Iteratively, fitdist finds 

the parameters of the gamma function which maximises the likelihood function, where the 

likelihood function is the probability of obtaining the particular data set given the chosen 

gamma function. 

Goodness-of-fit tests were performed to further validate that the random sample comes 

from a Gamma distribution. 

The chi-square goodness of fit test compares the difference between the observed 

frequency for bin i (JK) and the expected frequency for bin i (:K) from the histogram 

having k bins.  The chi-square test is defined for the hypothesis: 

H0: the data follow a specified distribution 

HA: the data do not follow the specified distribution. 

 The test statistic is calculated as follow: 

LM> =N(JK − :K)>
:K

P

KQE
 

(A-4) 

The test statistic is compared to the chi-squared distribution with k-p-1 degrees of 

freedom, where p is the number of parameters in the hypothesized distribution and k the 

number of observations.  If the statistic is higher than the tabled value, HA is accepted and 

H0 rejected, i.e. the hypothesized distribution does not fit the data well. 

The Kolmogorov-Smirnov test is a comparison between the empirical cumulative 

distribution function and the theoretical CDF (Crawley, 2012).  This test is preferred when 

the sample size is low as with the data from the drop size distribution.  In this test the test 

statistic D is compared to that obtained from tables, for a given significance level α.  If the 

D statistic is found to be greater than the critical value from tables the H0 is rejected. 
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The results from Cullen and Frey’s graph indicate that the gamma distribution is indeed the 

best fit for the data set (Figure 36).  Following this result a gamma probability density 

function was fitted to the data set. 

 

Figure 36 – Cullen and Frey graph illustrating which distribution best fit the data 

Using R, the gamma distribution parameters which best fit the data were calculated.  The 

shape (r) and rate (λ) parameters obtained were 9.87 and 16.62 respectively.  Using these 

values, the gamma probability density curve was plotted and superimposed to the 

histogram plot of the empirical data (Figure 37).  Figure 37 shows good agreement between 

the empirical and fitted distribution. 

A.2.5 Chi-square test 

At a level of significance α = 0.05, and 6 degrees of freedom, the tabled chi-squared 

statistic is equal to 12.59. The LM> computed from the data set was equal to 16.39. Since the 

test statistic exceeded the tabled value, the null hypothesis (H0) is rejected and therefore 

data do not follow a gamma distribution. 



108 

 

A.2.6 Kolmogorov-Smirnov test 

The D obtained from the drop size distribution data was 0.448 which was greater than the 

critical D for significance level α = 0.05 of 0.352, therefore the data null hypothesis is 

rejected and the data does not follow a gamma distribution.  

 

Figure 37 - Density plot of simulated rainfall drop size distribution 

  

The results suggest that the rainfall event created cannot be considered gamma distributed.  

There is, however, other evidence to suggest that the rainfall event is suitable for 

comparison with a natural rainfall event.  These included the median drop size, the kinetic 

energy and rain fall intensity. 

The median drop size (D50) was computed using the raindrop size distribution. Figure 38 

illustrates the median drop size (D50) vs. intensity relationship of natural rainfall obtained in 

several studies.  This figure suggests that drop sizes of approximately 2mm may be 

appropriate for the simulated rainfall intensity of this experiment. 
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Figure 38 - Relationship between rainfall intensity and D50 (from Cerda 1997) 

Figure 39 shows the median drop size obtained in the 5 different positions. Results 

indicated that the median across all regions was 1.53mm, thus within the desired range at 

the rainfall intensity of 47mmhr-1. 

 

Figure 39 - Median drop size from each position of the LOD 

A.3 Water content results 

S2 soil did not dry out as much as S1 soil (Figure 40 a).  In addition, S1 soil clearly shows a 

drying process occurring from the surface through the entire body of the core, whereas in 
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S2 the evaporative flux is somehow impeded and low water evaporation occurs thorough 

the depth profile (Figure 41).  The fan drying regime was far more effective in drying out 

the soil and resulted in lower water content in both soils (Figure 40 b).   

Figure 40 - Comparison of water content between two soil types (S1 and S2) and Soils (a) 
and water content within S1 and S2 for the two drying regimes (b) 

(a) (b) 

 

 

Figure 41 - Water content profile of S1 and S2
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 – FEA Study Appendix B

B.1 Drucker-Prager failure criterion 

Under compression loading, soil usually exhibit material hardening, resulting in an increase 

in yield strength (Naderi-Boldaji et al., 2013).  The extended Drucker Prager model is an 

elaboration of the Mohr-Coulomb model which includes material hardening characteristics.  

Drucker-Prager model is typically used to model granular materials which exhibit pressure 

dependant yield (material hardening) (ABAQUS, 2010).  Using the linear form of the 

Drucker-Prager failure criteron is most appropriate for soil as parameters can be obtained 

using triaxial test data or with data in terms of Mohr-Coloumb cohesion and internal angle 

of friction (ABAQUS, 2010).  The Drucker-Prager failure criterion as shown in is defined 

as: 

F � � � R. ���S O �	 (B-1) 

where F is the yield function, p is he normal stress, t the deviatoric stress, S is the Drucker-

Prager internal friction angle and d is the t-axis intercept in the p-t plane.The parameters S 

and d are similar but not exactly the same as T and c in the Mohr-Coulomb criterion. 

. 

Figure 42 - Linear Drucker-Prager model: yield surface and flow direction in the p–t plane.  
Reproduced from (ABAQUS, 2010).  

 

Where K (the flow stress ratio) is the ratio of yield stress in triaxial compression to yield 

stress in triaxial tension.  K can be determined using the triaxial tests or using Eq.(B-2)) 
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K � 3 O V��T3 � V��T 

(B-2) 

For the finite element analysis (FEA) modelling of the ascending and descending soil 

penetration with different shaped probes, the Drucker-Prager criterion was used.   

B.2 Model geometry and boundary conditions 

Due to symmetry of the soil sample the problem was simplified to an axisymmetric model 

of two bodies, the rigid probe and deformable soil body.  The probe was modelled as a 

discrete rigid body of diameter 1.5mm as was used in the actual experiment.  The soil body 

was meshed using CAX4R ABAQUS elements, while the probe was modelled as an 

analytical rigid body.  Mesh refinement ensured that the elements potentially in contact 

with the probe were approximately one-fifteenth the probe diameter in order to make the 

explicit procedure stable and convergent. A velocity boundary condition was applied to the 

probe pushing it into the soil at a rate of 12mm/min for a penetration depth of 10mm.  

Thus the penetration through both crust layer and 5mm into the bulk soil were simulated. 

Ascending and descending penetration with a flat probe and a pointed probe with 30 

degree cone angle were simulated. 

Descending penetration 

The soil body with radius of 25mm (radius of the soil cores) and depth of 50mm was 

partitioned into three layers.  The first two layers formed the assumed 5mm crust and the 

bottom layer 45mm of the bulk soil (Figure 43(a)).  The boundaries on the sides and 

bottom of the soil body were constrained in the radial (U1) and vertical (U2) degrees of 

freedom respectively.  The top surface of the soil was left unconstrained.  A reference node 

was attached to the probe to govern its motion.   

Ascending penetration 

For ascending penetration the soil body was 10mm deep. The probe was located 10mm 

below the surface and moved up into the soil (Figure 43b).  Penetration was simulated to a 

probe displacement of 15mm. This increase in penetration depth was chosen to 

accommodate for the soil body being pushed up above the probe. Unlike the descending 

case, the ascending penetration meant that the surface was free to displace vertically, 
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making the simulation more complex than the descending case. Soil weight of the full 

volume of sample was applied to the top surface of the soil using a uniformly distributed 

pressure.  

Several limitations of the ascending penetration soon emerged during the simulation: 

• It became difficult to redefine the regions of the soil layers due to the vertical 

displacement of the soil body. For the purposes of simplicity the layer regions were 

chosen reference to the original undeformed soil body, making the final crust layers 

increase in thickness (Figure 48 and Figure 49) 

• Even with increased penetration depth, the probe still did not exit the soil matrix as 

was the case in the pocket penetrometer experiment. Results would be higher than 

if the probe were to emerge. 
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(a) 

 

(b) 

 

Figure 43 - Axisymmetric finite-element mesh and boundary conditions for (a) 
descending and (b) ascending penetration analysis 

Diameter = 50mm 

Diameter = 50mm 
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B.3 Adaptive meshing  

The problem is broken done into several small steps allowing only a small amount of 

penetration during each simulation. This smaller penetration does not cause as much mesh 

distortion and the simulation will complete.  Once the small penetration simulation is 

complete, the deformed mesh of the soil body is converted to a new geometric shape 

which is repartitioned into the bulk soil and crust layers. The deformed shape is then 

remeshed and the cone placed into the cavity left by the previous penetration. A new 

simulation is run, increasing the overall depth of penetration.  This process is repeated until 

the full penetration depth is achieved. Each penetration was broken down into discrete 

steps (Table 16). 

 

Table 16 - Penetration steps used in the simulation of ascending and descending 
penetration using two types of probe. 

Increment  Descending Penetration  Ascending Penetration 

Flat Probe Pointed Probe 

(30◦ cone angle) 

Flat Probe Pointed Probe 

(30◦ cone angle) 

Step 1. 0 - 4 mm 0 - 3mm 0 - 6mm 0 – 6mm 

Step 2. 4 - 6 mm 3 – 5mm  6 – 9mm 6 – 10mm 

Step 3. 6 -10mm 5 – 10mm 9 – 15mm 10 – 15mm 

 

B.4 Assumptions of the model 

There were assumptions made to this model in order to simplify the problem:  

1. The Drucker-Prager model with hardening only models hydrostatic compaction 

behaviour.  Other soil failure modes which occur in reality such as tension, shear 

and cutting have been ignored.  

2. The soil properties were taken from literature and pertinent to  a sandy loam soil 

(Tekeste et al., 2007). Although in a similar textural class to the soil used in the 

experiments (sandy-silt-loam), these properties could be significantly different in 

reality.  For accurate soil properties tri-axial tests need to be performed on the soil. 
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3. Poisson’s ratio was assumed constant at 0.3. It has been suggested that to better 

model soil strength the Poison’s ratio should be varied with depth and soil strength 

(Raper and Erbach, 1990). 

4. The two crust layers and bulk soil layer are assumed to be homogenous material. As 

discussed, in actual fact the strength of the crust layer decreases exponentially and 

layers are not discrete. 

5. Manual adaptive remeshing required the partitions of the crust and soil body layers 

to be redefined after each step.  This meant that, once the simulation had moved 

the probe past the initial depth of the discrete crust and soil layers, it was assumed 

that the probe had penetrated through the layer. In reality this is not strictly true 

and during penetration the advancing probe would compact the soil layer in front 

of the probe, pushing it into the sub-layers and the soil strength increases due to 

plastic hardening. Thus this assumption  underestimates the PR. 

6. The left boundary layer of the soil body restricts the movement of the soil 

horizontally. This boundary was required to keep the simulation stable, however, 

during actual penetration the soil would move horizontally past and around the 

advancing probe. This extra boundary condition is expected to increase the value of 

PR artificially. 

B.5 Cone-soil interface 

The soil-probe interface was simulated by surface to surface contact pair interaction with a 

frictional behaviour type.  The frictional co-efficient of 0.5 was used based on Tekste et al. 

(2007).  The relative motion of the probe and soil body surfaces was modelled using a finite 

sliding formulation that allows sliding, separation and rotation of the surfaces (ABAQUS, 

2010).  The kinematic contact algorithm was used to describe the contact interface.  For 

this algorithm ABAQUS/Explicit calculates the value of the contact force at the mesh 

nodes from the mass of the node, the distance the node has slipped, and the time 

increment (ABAQUS, 2010).   

B.6 Tekeste et al. (2007) case study 

The FEA model was found to be effective in locating the transition interface between the 

three soil layers of varying hardness. The top soil layer was 5.15cm above the compacted 

hardpan layer, the hardpan layer was 4.09cm thick and the soil below the hardpan was the 
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remaining 15.87cm of soil profile. Penetration was modelled using a rigid 30° cone at a 

constant speed of 1.65cm/s to a depth of 12cm. 

Due to the high level of signal noise obtained a moving average was required to smooth 

these data.  Tekeste et al. (2007) did also use some moving average smoothing. The 

variation of the signal makes it quite difficult to reproduce exact results since the amount 

of smoothing is unknown.  It was observed that the level of frequency of adaptive meshing 

significantly changed results.  After consulting the author, it emerged that a low frequency 

of adaptive meshing was used. The model was also extremely unstable, failing due to 

excessive distortion.  With improved mesh and increased adaptive meshing the model 

would likely improve, however, this would come at a computational cost. 

Results from the validation show similar trends to those observed by Tekeste et al. (2007). 

The PR was, however, an order of magnitude out (Figure 44). This discrepancy is most 

likely due to the high sensitivity to changes in elastic modulus and hardening parameters.  

The results do, however, validate that the model can detect the location of the hardpan 

layer to within good proximity of Tekeste et al (2007). Since the purpose of the FEA model 

was to detect changes in the crust strength layers, the validation parameters were deemed 

sufficient for the full model of ascending and descending penetration study.  
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Figure 44 - Penetration resistance from FEA Model validated against Tekeste et al. (2007) 
figure 2, compaction III. 

B.7 Results 

Descending penetration 

Figure 45 and Figure 46 display the results of the stress distributions from the descending 

penetration simulations. The plots clearly distinguish the differences in mechanical 

behaviour of the two cone shapes on the deformation of the soil.  The flat cone (Figure 46) 

produces an area of compaction ahead of the advancing probe, consistent with discussed 

theory. Conversely, the pointed cone has more evenly distributed stresses, concentrated 

along the inclined length of the cone edge (Figure 45). This longer contact length indicates 

that the pointed cone is more affected by friction.  The magnitudes of stresses produced 

were largely similar from the two shapes, with the pointed cone producing initially larger 

stresses at low depth. This is due to the smaller initial contact area of the cone. Stresses 

reduce throughout the depth profile which is to be expected due to the reduction in 

strength between the layers. 
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Figure 46 - Plots of stress distribution (Pa) from descending flat probe showing plastic 
zone at cone penetration depths of (a) 4mm, (b) 6mm and (c) 10mm 

The PR results showed two deflection points, confirmed through the addition of trend 

lines, occurring where the material changes in the soil layers. At 2.5mm (depth of crust 

layer 1) the deflection is less apparent than the deflection when the probe moves from 

crust layer 2 into the soft bulk soil at 5.0mm depth (Figure 47).  

Figure 45 - Plots of stress distribution (Pa) from descending pointed probe showing plastic 
zone at cone penetration depths of (a) 3mm, (b) 5mm and (c) 10mm 
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(a) (b) 

Figure 47 - Predicted penetration resistance (force) of the FE simulation for (a) descending 
and (b) ascending penetration using a flat and pointed probe. 

 

Ascending penetration 

Inflection points at the interface of the crust layers, during ascending penetration for the 

pointed needle, were less distinguishable compared to descending case (Figure 47). Soil 

stress distributions are similar to the descending penetration, with greater stresses localised 

in the harder crust layers (Figure 48 and Figure 49).  
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Figure 48 - Stress distribution (Pa) from ascending pointed probe showing plastic zone at 
cone penetration depths of (a) 6mm, (b) 10mm and (c) 15mm 

 
Figure 49 - Stress distribution (Pa) from ascending pointed probe showing plastic zone at 
cone penetration depths of (a) 6mm, (b) 9mm and (c) 15mm 

In general, the flat probe shows the inflection points more clearly, whilst the pointed probe 

is more sensitive showing a greater change in gradient between layers (Table 17).  

Descending penetration leads to more distinct change in PR gradient between the layers. 

 
Table 17 - Change in gradient between the crust and bulk soil layers for ascending and 
descending penetration. 

Penetration 
application 

Layer Interface Flat Probe 

Change in gradient 
(%) 

Pointed Probe 

Change in gradient 
(%) 

Descending Crust Layer1 – Crust Layer 2  22 17 

Crust Layer 2 – Bulk Soil  78 210 

Ascending Crust Layer1 – Crust Layer 2  1 35 

Crust Layer 2 – Bulk Soil  108 59 



122 

 

B.8 Drucker-Prager hardening characteristics 

Figure 50 was used to calculate the Young’s moduli and stress vs. plastic strain hardening 

characteristics for the soil used in the FEA modelling. 

 

Figure 50 – Natural volumetric strains vs. stress for (a) Compaction I, (b) Compaction II 
and (c) Compaction III. Modified Figure 2 reproduced from Tekeste et al. (2007)  

 

E averaged from Volumetric Strain Graphs – Example for Within Hardpan 

Compaction I – Volumetric strain = 0.38, Stress = 50kpa 

 Convert Vol. Strain to Plastic Volumetric Strain � 0.38 x 0.926 = 0.35 

 Since have plastic volumetric strain can work out Bulk Modulus  

 Bulk Modulus K = (Normal Stress)/(Volumetric Plastic Strain)=50/0.35=142 kPa  

 Convert Bulk Modulus to Elastic Modulus �E=3K(1-2ν) = 3*142(1-2*0.3) = 171 kPa 

Did this procedure for each compaction curve and averaged the values to get the average 

Young’s modulus for each soil section. 

Curves also yielded strains at rated stresses for each soil section. The results are tabulated in  
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Soil Layer 

Depth 

Bulk Density & 
(g.cm)3 

Elastic modulus 
(kPa) 

Young’s modulus 

Plastic Strain Stress (kPa) 

Crust Layer1 

0 -2.5mm 

1.71 364 0 45 

0.10 50 

0.17 100 

0.21 150 

0.23 200 

0.26 250 

Crust Layer 
2 

2.5-5.0mm 

1.54 222 0 45 

0.19 50 

0.27 100 

0.30 150 

0.33 200 

0.35 250 

Bulk Soil  

5mm– 
50mm 

1.20 134 0 45 

0.37 50 

0.44 100 

0.48 150 

0.54 200 

0.55 250 
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 - TOPSIS Appendix C

C.1 TOPSIS Method 

For the TOPSIS analysis the design options and criteria against which they are evaluated 

make up the decision matrix.   

Step 1. Decision Matrix 

The alternatives of m design options (vector A) and n design criteria (vector C) form the 

decision matrix [X].  The decision matrix is presented in the following matrix format: 

															�1 			�2 ⋯ 			�� 
L � XEX>⋮XZ [

AEE AE>A>E A>> ⋯ AE\A>\⋮ ⋱ ⋮AZE AZ> ⋯ AZ\^ 
In the m x n decision matrix each element represents the score given to the j-th option 

with respect to the i-th criterion.  In this TOPSIS analysis experts in the Soil Science and 

Engineering field were asked to score the concepts relative to one another against the given 

criteria.  These results were then averaged to form the decision matrix. 

Step 2. – Normalise the decision matrix.  This step transforms the various attribute 

dimensions into non-dimensional attributes, which allows comparisons across criteria.  

Each element of the decision matrix is normalised using the following formula: 

IK_ � AK_∑AK_>  

The IK_ elements form the normalised matrix [R] 

Step 2. – Construct weighted normalised decision matrix.  The weighting vector [W] is 

formed by assigning a weight to each criterion, wj for j = 1,…,n criteria.   Multiply each 

column of the normalised decision matric by its associated weight.  Each element of the 

new matrix [V] is:  

=K_ �	a_ ∙ IK_ 
Step 3. – Determine the ideal and negative ideal solutions.  
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The ideal solution [A*] is defined as the solution which has the best score for every 

criterion, regardless if the scores are from different options/concepts.  In this study the 

maximum score is always the best.  

X∗ � {=E∗, … , =\∗}, where =E∗ � {maxi=K_j �@	k ∈ m;mini=K_j 	�@	k ∈ mp}	  

Negative ideal solution [A’] is defined as the solution which has the worst score for every 

criterion, regardless if the scores are from different options/concepts.  In this study the 

minimum score is always the worst.  

Xp = {=Ep , … , =\p }, where =Ep = {mini=K_j �@	k ∈ m;maxi=K_j 	�@	k ∈ mp}	  

Step 4. - Calculate the separation measures for each alternative.  

This is the distance from the positive and negative ideal solution of each solution.  

Distance from ideal solution for the i-th solution is calculated as follows: 

 qK∗ = [∑(=_∗ − =K_)>]
t
u 

Distance from ideal negative solution for the i-th solution is calculated as follows: 

qKp = [N(=_p − =K_)>]
E
> 

Step 5. – Calculate the relative closeness to the ideal solution 

The relative closeness of each solution C* is calculated as follows: 

 �K∗ = vwx
(vw∗yvwx)
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C.2 TOPSIS Questionnaire 

Micropenetrometer for soil crust penetration resistance measurement.  

Traditional penetrometer devices which measure soil penetration resistance do so by 

forcing a probe into the soil from above and recording the reaction force.  In an 

attempt to mimic the real forces which a seedling would encounter during emergence 

through the soil crust, ascending probe penetration is suggested.   

This questionnaire proposes several concepts which are seen to fulfil the design 

purpose. The TOPSIS study is a way to obtain an objective opinion from several 

experts. This will highlight which design criteria are most important and which design 

should be developed for the final solution.  

The micropenetrometer will need to fulfil the following technical requirements: 

• Hold soil sample core of 50mm diameter 

• Detect resistance force within 3mm soil crust. Expected forces 0 – 5N 

• Force resolution of 0.1N 

• Probe (1.5mm diameter) driven into crust at constant speed between 8 – 16mm/min 

• Ascending measurement, probe forced through crust from base of sample 

Secondary requirements (not essential but ideal) 

• Depth resolution 0.1mm 

• Descending measurement capability  

Rating criteria definitions  

1. Accuracy - Ability of device to measure force and displacement precisely 

2. Repeatability – Ability of device to repeat the exact same measurement consistently 

3. Durability – Robustness of device, strength and resistance to environmental factors 

such as rust and dirt 

4. Manufacture and Integration – Ease of manufacture and integration of components 

into assembly 

5. Adjustment and Control – Ease of adjustment and control of components within 

assembly 

6. Ease of use  - Ability of end user to perform measurements 

7. Adaptability – Ability to change and adapt configuration  

8. Low Cost – Relative price of device 
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Part A – Relative weighting of criteria 

Experts are asked to rate the criteria by importance for the design. The importance 

should be judged from the point of view of the expert and their expertise.  A score of 

between 1 and 10 is assigned, 10 being highly important, 1 being low. 

Criteria Score (1 – 10) 10 being high  

Accuracy  

Repeatability  

Durability  

Manufacture and Integration  

Adjustment and Control  

Ease of Use  

Adaptability  

Low Cost  

Example: Scoring the relative importance of the criteria from the perspective of a 

scientist, accuracy and repeatability could be viewed as far more important than cost 

or ease of use. Please score the criteria from your own view point.   

Criteria Score (1 – 10) 10 being 

high  
Accuracy 10 

Repeatability 9 

Durability 5 

Manufacture and Integration 3 

Adjustment and Control 8 

Ease of Use 3 

Adaptability 3 

Low Cost 2 

Part B – Scoring concepts against criteria 

Concepts and descriptions are presented.  Experts are then asked to score the 

concepts against the criteria.   In some cases modifications to the original concepts 

are proposed.  This is a comparative study, so the concepts are scored relative to each 

other.  A score between 1 and 10 is given, 10 being high and 1 being low. 

PLEASE NOTE: This is not mandatory for the study. Please only complete this part of 

the survey if you feel you have the expertise to be able to do so. Not all criteria need to 

be scored, only the criteria you feel are applicable to your expertise. 
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CONCEPT 1 

A - Electric motor mounted on side of simple mild steel frame and drives pinion gear 

B - Rack and pinion gear mounted on vertical slide drives probe upwards into the sample 

C - Inner rail (orange) slides vertically between outer guide rail (red) 

D - Sample clamped at the top of frame 

E - Load cell located beneath probe 

F - Displacement measured by potentiometer which measures rotation of the motor shaft 

G - Load cell and probe could be detachable and mounted on bottom of rack for descending 

measurement  
 

Potential Modifications to Concept 1 

Modification 1 - replaces potentiometer described in point (F) with accurate motor 

control to measure displacement 

 

Modification 2 - replaces potentiometer described in point (F) with an LVDT (Linear 

variable differential transformer) to measure displacement between load cell and 

reference point at base of the sample 

  

CONCEPT 2 

A - Simple mild steel frame with vertical shafts over which crossbeam can slide vertically 

B - Soil sample clamped to crossbeam 

C - Crossbeam and sample pushed down onto probe by small hydraulic actuator. 

D - Actuator shaft extends from actuator body to push crossbeam down. 

E - Force measured by load cell. Probe and load cell fixed to frame at the base 

F - Displacement measured by Linear variable differential transformer (LVDT) 

 

Potential Modification to Concept 2 

Modification 1 - replaces hydraulic actuator described in point (C) with a pneumatic 

actuator 



129 

 

 

CONCEPT 3 

A - Electric motor driven 

B - Motor housed between guide rails, shaft with bearings allow for vertical travel of the 

motor and leadscrew 

C - Motor guide rails are clamped to instrument frame 

D - Motor directly drives a leadscrew. The leadscrew is held in place by leadscrew nut fixed 

to cross bar. Leadscrew advances upwards through the nut, pulling the motor with it. 

E - Crossbar fitted with pin and pivot which allows the motor, leadscrew and probe to rotate. 

This means that descending measurements could also be achieved. The motor housing will 

pivot and then be clamped at the top of the frame. Sample clamp detachable so that sample 

can be clamped at the base of frame. 

F - Load cell mounted to the end of leadscrew and probe mounted to load cell. A slip ring and 

or thrust bearing located at the base of the leadscrew so that the load cell and probe do not 

rotate with the rotating leadscrew. 

  

CONCEPT 4 

A - Electric motor driven. 

B - Similar concept to concept 3, however, instead of the leadscrew turning, the leadscrew 

nut turns. 

C - Motor fitted with pinion gear which drives threaded leadscrew nut. The nut rotates 

pushing leadscrew vertically. Thrust bearing connects rotating leadscrew nut to the frame 

crossbar to allow rotation. 
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D - Leadscrew is prevented from rotating with the nut by the guide rail crossbar which is 

attached to the leadscrew. The guide rails allow for vertical movement of the leadscrew. 

E - Whole unit can pivot around to allow for descending measurement if desired. 

F - Displacement measured through control of the motor. 

Potential Modifications to Concept 4:  

Modification 1 - measures displacement using potentiometer that measures motor shaft 

rotation, replacing measurement by motor control described in (F). 

Modification 2 - measures displacement using LVDT located between load cell and sample 

base (not shown in drawing), replacing measurement by motor control described in (F). 

 

CONCEPT 5 

A - Electric motor driven. 

B - Similar in design to traditional axial load frames or universal testing devices. 

C - Motor housed inside the base of the load frame. 

D - Pulley drive belt system rotates leadscrews in each of the vertical support columns. 

E - Leadscrew nuts fixed to the cross beam convert the rotation of leadscrew into vertical 

translation. 

F - Sample is lowered onto probe and load cell at the base of the frame. 

G- Displacement measured using precise motor control. 

Potential Modification to Concept 5:  

Modification 1 - LVDT measures displacement between crossbar and reference point on 

vertical column.  Replaces precise motor measurement (G). (Not shown on drawing) 
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Scoring of Main Concepts – Please score concepts relative to each other, score between 1 (low) and 10 (high) 

 

• Criteria Concept 1 Concept 2 Concept 3 Concept 4 Concept 5 

Accuracy      

Repeatability      

Durability      

Manufacture and 

Integration 

     

Adjustment and 

Control 

     

Ease of Use      

Adaptability      

Cost      
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Criteria Concept 1 

Modification 1 

 

replaces 

potentiometer with 

accurate motor control 

to measure 

displacement 

 

Concept 1 

Modification 2 

 

replaces 

potentiometer with an 

LVDT  to measure 

displacement  

Concept 2 

Modification 1 

 

replaces hydraulic 

actuator with a 

pneumatic actuator 

Concept 4 

Modification 1 

 

measures 

displacement using 

potentiometer that 

measures motor shaft 

rotation, replacing 

measurement by 

motor control 

Concept 4 

Modification 2 

 

measures 

displacement using 

LVDT, replacing 

measurement by 

motor control  

Concept 5  

Modification 1 

 

LVDT measures 

displacement between 

crossbar and reference 

point on vertical 

column.  Replaces 

precise motor 

measurement 

Accuracy       

Repeatability       

Durability       

Manufacture and 

Integration 

      

Adjustment and 

Control 

      

Ease of Use       

Adaptability       

Cost       
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 - Design Characteristics Appendix D

D.1 Lead screw design parameters 

�> = �Mz = �M�R (D-1) 

m = number of threads 
n0 = number of revolutions 
p = pitch 
d2= axial displacement 

Design proposal: for one full rotation displacement of  

o Equation relating torque required to drive lead screw to the pitch/lead of 

leadscrew 

{(|�) = }(|) × z(�)2 6 ~� 6 �  

η = Efficiency, for Ball Lead Screw 0.9 and for leadscrew 0.4 recommended 

Must consider application demands, including thrust, speed of linear motion required, 

accuracy, repeatability and resolution before choosing suitable leadscrew.  There are 

friction losses in the lead screw this decreases the efficiency of the lead screw and therefore 

increases the amount of torque required to drive the lead screw.  

Maximum lead screw load is calculated using Euler buckling formula 

~�? = ��>:"
�>  

Where n is the load factor, for column with 1 end fixed and other free n = 0.25 
For stainless steel lead screw the equation is as follows:  

~�? �
��>:"

�>
 

For circular lead screw 
Accuracy and repeatability 
Accuracy is the ability to of the lead screw to move within a desired tolerance. While 
repeatability is the how well the lead screw can move the load to the exact same location. 
It is possible for leadscrews to have good repeatability but low accuracy. For the 
application of the micropenetrometer good accuracy is required. 

(D-2) 



 

134 

 

D.2 Motor torque calculations 

Figure 51 - Torque calculations using (a) (THK CO., 2011; Altintas, 2000) and (b) Altintas, 
(2000) and (c) results. 

(a) 

 

(b) 

 

Motor Torque Calculations

Method 1. 

T=
�∗�

>�∗�

D

Sample

Carriage

Leadscrew

M*gMoment=M*g*D

F/2=M*g*D/H

H

F/2=M*g*D/H

η=Efficiency lead screw

p= lead screw pitch

F=Force to overcome

From graph obtain η

With μ=0.2 – Co-efficient friction (conservative) 

Get η=0.28 from Graph

tanβ=
�

�∗�

d=Mean diameter lead screw

p= lead screw pitch

β =lead screw angle

Worst load case

• Weight + Force onto needle (during pull up)

FORCE BODY DIAGRAM

Motor Torque Calculations
Method 2. 

Td=Je

��
��+Bw+Tsr

Je=Total inertia on motor shaft

B= viscous damping co-efficient =0

Tsr=Total static force = Tgf+Tlf +Tf

Tf=cutting forces

Tlf=Torque in bearing

Tgf=Torque to overcome guide friction

Worst load case

• Weight + Force onto needle (during pull up)

Tgf=
�

>∗�K
μgf[(mt+mw)*g+Fz]

p=leadscrwew pitch

Fz= normal cutting force on table = 10%of max 

resultant cutting force

μgf =guide friction = 0.1 usually

Mt = table mass – negligible 

Mw = workpiece mass

Tlf=
�

>
μb(Ff)

Ff =- feed force

μb = bearing friction = 0.2 (conservative)

Tf=
�

>y�K
(Ff)

Jle=Jtw + Jl +Jm

Jtw= inertia of table and workpiece

Jl= inertia of leadscrew

Jm = inertia of motor shaft

Jtw=(
�

>∗�K
�^2��� � �a�

Jl=(
�

>
�^2�0.5*ml)
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(c) 
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D.3 – System Options 

Configuration and component details of the three proposed systems are shown in Figure 

52. 

Figure 52 – Micropenetrometersystem options (a) Most Expensive “Ferrari” version (b) 
Intermediate version and (c) Economical version. 

(a) 
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(b) 

 

(c) 
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D.4 – Component Specifications 

Load Cell 

Richmond Industries Series 900 – 20N Capacity. 

 

 

A=50mm 

B=12.5mm 

C=48mm 
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Reliance Cool Muscle Motorised Stage PN: RCMS17L-M02-C-1-12
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D.5 - Design Drawings 
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 - Calibration Appendix E

Calibration of the load cell was achieved by comparing the load call force readings with 

calibrated weights converted to force using gravity at 9.80665m/s2.  At weights above 20g 

the error in the readings dropped significantly to below 1%.  The final calibration curve is 

presented below together with the obtained calibration conversion equation and 

confirmation of 100% linear correlation. 
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