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ABSTRACT 

The Life Marker Chip (LMC) instrument was developed with the aim to detect evidence 

of life on Mars. The detection was based on an inhibition immunoassay. In this work 

aptamers were evaluated as potential alternative to antibodies for the LMC. Aptamers 

were synthetic oligonucleotides able to bind specifically with high affinity to a wide 

range of target molecules, and have been also integrated as bioreceptors in several 

detection instruments. The generation of new aptamers against two small molecules 

using the FluMag-SELEX method was tested and was verified the adaptability of pre-

existing aptamers against small targets to the LMC assay type. Based on the fact that 

the LMC was going to be integrated into the space programme ExoMars, it was also 

implemented into a small scale experiment the Planetary Protection and Contamination 

Control requirements found on a life-search mission. In addition to that aptamers 

compatibility with a sterilisation procedure used in life-search missions was also tested. 

Furthermore because of the nature of the small molecules studied, multiple analytical 

chemistry techniques were assessed to verify covalent chemistry surface 

immobilisation.  

Within the project timeline it was not possible to achieve a full aptamer generation 

process but it was possible to understand the methodology behind the procedure and 

give input for future work. It was found that the direct implementation of existing 

aptamers against small molecules into the LMC assay was not successful. It was also 

seen that in the case of aptamer integration onto the LMC some assay changes would 

probably have to be made. This information was very useful to understand if aptamers 

could be an alternative to antibodies and be implemented directly into the LMC. It was 

found that aptamers survived the preliminary sterilisation method applied, which might 

open the possibility of making aptamers convenient space bioreceptors, reducing time 

and costs of instrument Planetary Protection implementation. In conclusion aptamers 

were not straightforward alternatives to antibodies for the LMC because aptamers 

interacted differently with their targets in comparison to antibodies, particularly with 

small molecules. Also the biochemical simplicity of the small molecule targets 

introduced difficulties in aptamers generation that more complex targets would have 

not. Although aptamers shown incompatibility with the LMC assay format against small 

targets, they presented resilience to a sterilisation procedure implemented on space 

missions which could lead to the development of more robust bioreceptors for space 

missions. This information was helpful in understanding which assay formats were 
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better for detection of small molecules using aptamers and that might contribute for 

future assay choices applied in detection instruments. It was also possible to make 

recommendations for the LMC regarding design and validation methods used in life-

search missions based on the lessons learn from the developed of a small scale 

experiment.  

The developed work was presented at conferences and mentioned in an article journal, 

and in that way contributed to the knowledge of the space community in general.    

Keywords: ExoMars, Mars, life-search, bioreceptor, FluMag-SELEX, ELAA, surface 

immobilisation, PP&CC, CASS·E 
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Chapter 1. Introduction – Aptamers and Planetary 
Protection in the context of the Life Marker Chip 

1.1. Preamble 

The current thesis was performed as part of the on-going Science and Technology 

Facilities Council (STFC) funded Life Marker Chip (LMC) project. The LMC consortium 

aims to develop an instrument able to detect the presence of biomarkers that could 

reveal evidence of extinct or extant life on the planet Mars. 

Cranfield is a major partner of the LMC consortium and is responsible to develop the 

biological detection system used for the biomarkers search on Mars. The LMC 

integrates a biological assay where antibodies are used as bioreceptors. This work 

tested the ability of aptamers to be alternative bioreceptors to the antibodies. In order 

to understand if this was possible the following tests were made: test the possibility of 

generating aptamers against LMC biomarkers; the integration of aptamers into the 

existing LMC assay format; and preliminary tests to the aptamer’s survival to one of the 

sterilisation procedures required in this type of space mission. Also in this work it was 

used a small scale experiment to demonstrate the implementation of specific design, 

validation and clean procedures in a life-search mission type. The experiment was 

conducted in order to contribute at an early stage to the overall LMC required Planetary 

Protection and Contamination Control (PP&CC) plan, essential to a life-search mission.  

1.2. Context for thesis – Search for life on Mars and the Life 
Marker Chip instrument 

The life on Earth as we know it could be simply characterised by the presence of the 

Carbon atom, the existence of complex metabolic pathways based on oxidation-

reduction chemistry, the passage of genetic information to the subsequent generations 

and the ability to adapt and evolve, (Schart 2009). It would be also necessary to 

address the critical need for liquid water in the biological systems. The presence of 

liquid water was justified by the fact that the Earth was around 150 million Km distance 

from the Sun giving origin to a mean planet temperature below the water freezing point. 

Also the existence of an atmosphere helped to keep the evaporated water and its 

cycle, (Plaxco, Gross 2006). 
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The actual scientific knowledge and understanding of Earth as well as the beginning of 

the space exploration in the 20th

Over the past years several missions have had the role of studying Mars and Life 

search missions such as the Viking were made with the aim of detecting organic 

compounds that could prove the presence of extant life. Currently missions, as for 

example Curiosity (NASA´s rover), are exploring the geochemistry of the planet in 

order to detect geological evidences of an environment that could have had or has life. 

The LMC instrument was developed to detect the presence of life organic molecules 

markers on Mars and it was planned to be sent as part of the ExoMars missions, led by 

the European space agency (ESA). The LMC instrument detection was based on an 

immunoassay and this work studied the possibility of using aptamers as alternative 

bioreceptors for the LMC, as well as their ability to survive a sterilisation procedure 

used in the implementation of Planetary Protection in life-search missions.  

 century, allowed the possibility of using the advances 

in technology for searching for life on other planets. Mars was traditionally a well 

observed planet and became the object of study for Astrobiology based on factors such 

as its location in the solar system, the fact that it was a solid terrestrial planet (as the 

Earth), the existence of frozen water and similar biochemistry to Earth´s. Based on this 

Mars could present similar life conditions to the ones found on Earth.  

1.3. Problems to be addressed  

1.3.1. Need for alternative molecular receptors for planetary 
exploration 

Antibodies were used as bioreceptors in life-search instruments such as the LMC, the 

Signs of Life Detector (SOLID) and the Modular Assay for Solar System Exploration 

(MASSE) (Parnell, Cullen et al. 2007). The choice of antibodies relied on their wide use 

as bioreceptors, their implementation in detection systems able to function with 

complex matrices and their ability to bind to epitopes common to family molecules. 

Those characteristics allowed detection of a specific group of molecules and in real / 

complex samples, (Cullen, Mark 2007, Parro, Rodríguez-Manfredi et al. 2005, 

Warmflash, McKay et al. 2002).  

Disadvantages of using antibodies were that antibodies generation was dependent on 

animal hosts, which made generation of antibodies difficult against toxic components 

and small biological molecules with low or no immunogenicity. Besides that it was a 
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long and expensive process and the obtained antibodies varied from batch to batch. 

Finally antibodies did not recover once denatured, losing their binding ability. Based on 

those limitations it was necessary to search for alternative bioreceptors to see if it was 

possible to overcome those issues. 

Aptamers were initially reported by Gold and Tuerk, and by Ellington and Szoztak in 

1990. Both groups reported the in vitro generation of synthetic oligonucleotides able to 

bind specifically to their target, (Tuerk, Gold 1990, Ellington, Szostak 1990). The 

advantages of using aptamers were that aptamers as synthetic oligonucleotides did not 

require animal use, were generated in shorter periods of time and presented 

reproducibility between batches, allowed chemical modifications and refinement and 

could be generated against toxic compounds or those with low immunogenicity. Also 

aptamers were compatible with high-throughput methods such as automation, and 

importantly, could suffer brief denaturation processes that would recover their initial 

conformation and binding ability. Because t

1.3.2. Need for Planetary Protection and Contamination Control for 
Life Marker Chip type instruments 

he size of aptamers was between 5 and 15 

kDa, which was significantly smaller than antibodies (IgG with 158 KDa, and scFvs 

antibodies varied from 26 to 28 kDa); it could allow better binding access than the ones 

available for antibodies, (Burtis, Ashwood 2001, Mascini 2009, Weisser, Hall 2009). For 

all those reasons aptamers were tested as alternative bioreceptors to antibodies for the 

LMC. 

The LMC aimed to detect the presence of life biomarkers on Mars. In order to do so the 

LMC would be integrated into the ExoMars rover and suffered PP&CC implementation. 

The implementation of PP&CC would diminish the probability of contamination of Mars 

with Earth microbial and organic content, prevent instrument detection of false 

positives, and in return missions protect Earth from extraterrestrial contaminants. 

As it will be explained in detail later on this document the implementation of PP&CC 

was required for space missions and its implementation was based on the mission aim 

and destination. The LMC as part of the ExoMars and being a search for life 

experiment had to comply with the PP&CC requirements. In order to give preliminary 

input to the LMC PP&CC plan, a small scale experiment was used to demonstrate the 

PP&CC implementation. This also enabled lessons learnt from the experiment to be 

taken to the LMC. Based on the fact that aptamers were tested as alternative 
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bioreceptors to the LMC their resilience to sterilisation by dry heat microbial reduction 

(a common method and one which antibodies are not compatible with) was also tested. 

1.4. Approaches to address the problems 

Based on the need to understand if aptamers could perform as alternative bioreceptors 

to antibodies and to give preliminary input on the LMC PP&CC plan, as well as to verify 

if aptamers could resist to a sterilisation method by dry heat microbial reduction, the 

following approaches were taken: 

• It was tested if aptamers could be generated against the LMC targets 

• It was tested if aptamers could be implemented into the LMC assay format 

• It was tested if the PP&CC implementation could be demonstrated 

• It was tested if aptamers could be compatible to sterilisation by dry heat 

microbial reduction 

1.5. Thesis structure 

The work presented in this thesis was structured in a total of seven chapters. Briefly the 

content of each chapter was explained to give an overview of the thesis organisation. 

Chapter 1 consisted of a brief introduction to give a general overview of the project and 

to address the problems that this thesis’ work aimed to answer. 

Chapter 2 presented an overall literature review, in which the major concepts and 

background for this work were given. At the beginning of the chapters describing the 

experiments (chapters 4, 5, and 6), a more detailed literature review was presented. 

Chapter 3 described the overall aims and objectives of this work. 

Chapter 4 was the first of three experimental chapters and addressed the issue of the 

generation of aptamers against the LMC targets. 

Chapter 5 was the second experimental chapter and addressed the question about the 

compatibility of aptamers integration as bioreceptors into the LMC assay format. 

Chapter 6 was the third experimental chapter and covered the need of LMC 

implementation of PP&CC and the response of aptamers to a sterilisation method used 

commonly on space missions. 
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Chapter 7 presented the overall thesis discussion and conclusions, and the further 

work that could be done on the subject in the future. 
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Chapter 2. Literature review – Life on Mars, the Life 
Marker Chip, Aptamers and Planetary Protection 

2.1. Aims and objectives 

The aims of this literature review were to give an overall background about life search 

on Mars and the LMC instrument part of a life-search mission.  

The objectives that arose from the aims included an overview on life biomarkers that 

could be searched for on Mars, the background about the LMC instrument that has 

been developed in order to search for evidence of life on Mars, the aptamers as 

synthetic bioreceptors, and the required PP&CC implementation in Life-search space 

missions.  

2.2. Life on Mars 

The definition of life was a challenging subject and was briefly introduced in section 1.2 

(Chapter one). Earth´s life obeyed to the biology dogma where DNA was transcribed 

into RNA, which was translated into proteins. This simplistic dogma was responsible for 

generation of molecules with high specificity and functionalization in the life systems. 

Life, as we know it was the product of the Darwinian evolution because it reacted to 

environmental stimuli and sustained itself during time and reproduced into new better 

adapted generations, while it was made of the same basic components and had the 

same requirements such as the need for liquid water. Based on that and to understand 

how life arose on Earth several theories were developed. These were known as life 

theories and included the Chemical Evolution (based on the Miller-Urey model where 

the Earth´s pre-biotic conditions were re-created and simple amino acids were 

biosynthesized), the Protein World (proteins had the ability to support life because of 

their role in the biochemical reactions present in all living systems), the RNA World 

(RNA was a good template for storage and replication of genetic information in the 

early Earth´s development stages), and others such as Panspermia,.which supported 

the presence of life on other planets besides ours, for example on Mars, and that life 

could have been transported between planets by meteorites carrying life 

forms,(Sullivan III, Baross 2007, Rauchfuss 2008, Miller 1955, Dworkin, Lazcano et al. 

2003). 
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Mars presented several similarities with Earth; it was a rocky planet with a thin 

atmosphere consisting majorly of CO

Mars´ characteristics for life support 

2 and N2 

Considering the Earth life forms, it was verified that life existed even in extreme 

conditions such as temperatures values below -2 ºC or above 50 ºC, salinity values 

above 8 %, pH below 4 or above 8 and atmospheric pressure up to 20 MPa, (Natural 

History M. 2010). The existence of extremophiles on our planet maintained the 

possibility of similar life forms in twin extreme environments, such the ones found on 

Mars. Another interesting point was the analysis of Martian meteorites. It was found a 

but also with water in a concentration 

enough to cover the planet surface with 1 µm depth. It had rotation and translation with 

39 more minutes in rotation than the 24 hours of Earth’s and the planet presented 25 

degrees of inclination. The inclination gave origin to seasons as on Earth and 

influenced the insolation on the equator regions with the south hemisphere hotter than 

the north. The internal structure of the planet was believed to be similar to the Earth; 

from meteorite studies it was possible to conclude that it had three regions, the crust, 

the mantle and the core. From the observation of the irregular surface and the absence 

of a magnetic field it was deduced that the planet had an active core and probably lost 

its properties as volcanoes calderas were observed which proved the existence of 

volcano activity at some period of the planet history. It is not understood, at the 

moment, whether Mars has volcanic activity or whether the volcanoes are inactive. The 

surface presents a vast number of characteristics besides the mentioned volcanoes, 

such as valleys, mountains, channels, canyons, and depressions that could be caused 

by lakes and oceans based on the fact that sediment deposits and solid water (and 

possibly liquid in the past) were found. This information was of major importance in 

considering that life biomarkers were preserved on Mars, they could be found 

conserved at the subsurface, in a salt form or in the ice frozen areas. Also the similarity 

in the planet geological history between Mars and Earth (both had four major eons 

located more or less in the same geologic time), might had led to similar environmental 

conditions which might have been translated into alike biochemical structures that 

probably generated life forms or at least organic molecules with equivalent structural 

and functionality. The major differences between Mars and Earth were the 

environmental conditions and size and mass: Mars was colder and drier, smaller and 

with ten times lower mass than Earth’s, (Carr 2006, Pudritz, Higgs et al. 2007, Sullivan 

III, Baross 2007, Forget, Costard et al. 2008).  
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particular meteorite (ALH84001) which presented small hydrocarbons denominated 

polycyclic aromatic and aliphatic hydrocarbons (PAH) such as phenanthrene and 

pyrene. The organics origin was attributed to Mars and considered evidence of early 

life forms on Mars. It was assumed that Martian origin because similar organics were 

not found in another meteorites assuming that it was not Earth contamination That was 

a controversial statement and so far it was not possible to verify that assumption and 

prove that it was not pre-existent from Earth, (Sullivan III and Baross, 2007; Pudritz, 

2007).  

Since 1960 more than twenty spacecraft missions flew by, orbited or landed on Mars 

but until now only two missions were sent to Mars in search for life. Those were the 

Viking (1975) and the Beagle 2 (2003). Of these the only successful mission was the 

Viking, which sent data that did not support evidence of life on Mars by not detecting 

the presence of organic material at parts per billion (ppb), (Pudritz, Higgs et al. 2007, 

Navarro-Gonzalez, Enrique Iniguez et al. 2009). Besides those missions others gave 

more information about Mars geochemistry and the environment. Examples of those 

were the Pathfinder lander (1997), which gave information about atmospheric 

conditions and soil composition, the Odyssey orbiter (2002), which allowed observing 

ice water at the poles, or the Phoenix lander (2007), that revealed that atmosphere was 

rich in CO2 and accessed possible habitable zones. Currently the Curiosity rover was 

sent to study the geochemistry of Martian soil and find if it could sustain life forms 

(NASA 2010).  

Brief review of Mars exploration made to date 

2.3. Biomarkers on Mars  

The choice of biomarkers to search for life evidence on Mars using the LMC, were 

discussed by Parnell et al (2007). The biomarkers list included representatives of 

existing life forms, extinct biomolecules found on fossils (to understand if life was 

present on Mars before but not currently), biomarkers representative of organic 

compounds found on meteorites, and molecular contaminants that could be present on 

the LMC instrument for assay and contamination control. The extant biomarkers were 

representative of the basic components of the living cell; it included fatty acids (used 

also as extinct life biomarker), metabolic molecules involved in energy production 

based on oxidation-reduction reactions as ATP or phosphoenolpyruvate, and 

molecules that encoded genetic information as DNA. The chosen biomarkers for 
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searching for evidence of extinct life were simple biomolecules with a stable biological 

structure that resisted biochemical degradation, examples of them were stearanes or 

hopanoids. The chosen biomarkers for extinct life were elemental units of complex 

biomolecules as amino acids or PAH as pyrene. In the contamination control 

biomarkers, used for assay validation, it was chosen molecules signature of bacterial 

presence such as lipopolysaccharides (LPS) or dipicolinic acid, Table A-1. For assay 

development purposes the LMC targets (life Biomarkers) were organised according to 

their biochemical properties: small apolar acyclic aliphatic (e.g. phytane, squalane, 

hexadecane), small apolar polycyclic aliphatic (e.g. 5β-cholanic acid, hopanoids), small 

polycyclic aromatic (e.g. pyrene, phenanthrene, naphthalene), and small polar (e.g. 

amino acids), (Parnell, Cullen et al. 2007, Sims, Cullen et al. 2012). 

2.4. Life Marker Chip and other related instruments 

Other sensing instruments were developed with the aim of detecting life biomarkers, as 

reported in the previous chapter (section 1.3.1, Chapter one) they were the SOLID and 

MASSE. Those were tested on Earth´s extreme life condition environments that were 

considered analogues to Mars´ and succeeded in demonstrating the principle by 

detecting the presence of extremophile life forms. The referred instruments presented 

similar detection methods, both based on fluorescent detection and immunoassays. 

The LMC instrument was also developed under the same background, using an 

immune inhibition assay and fluorescence optical detection. The LMC instrument was 

made to detect the presence of life biomarkers (organic molecules) on Martian regolith 

or rock samples. The LMC instrument was organised in four individual sub-systems 

that allowed the samples analysis at Earth´s standard pressure and temperature and 

also the verification of the assay pH values. Associated to each system was a fluid 

cartridge, a pump and a laser diode. Each system had a single-use microfluidic 

channel where the microarray spots were located. The full system allowed independent 

and in parallel analysis of four Martian samples and the search of 25 targets on each 

collected sample, (Sims, Cullen et al. 2012).      

The LMC project was designed and developed with the aim of being integrated into the 

ExoMars mission flying in 2018 to Mars. The current status (late 2012) of the LMC was 

the de-selection of the mission due to payload mass and volume restrictions. 

Nevertheless it remains a candidate for integration in other life-search missions. 
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2.4.1. Assay Format  

The LMC assay format was an inhibition ELISA, where the fluorescently labelled 

antibody was mixed and incubated in solution with the free target and then exposed to 

surface immobilised target derivatives. In the LMC the drilled Martian sample was 

mixed with extraction solvents, and then the obtained fluid put in contact with the 

fluorescently labelled antibodies. The new mixture was put in contact with the surface 

immobilised target derivatives, so that the unbound labelled antibodies could bind to 

the surface. The detection would be done by optically detection of the amount of 

fluorescence present on the chip surface. The lower the signal obtained, the higher the 

presence of target in the Martian soil sample, Figure 2-1. 

 

Figure 2-1 LMC inhibition immunoassay describing the scenario of low existence of 
biomarkers on Martian sample (above figure line), and the scenario of high presence of 
biomarkers on the sample (lower figure line), (Sims, Cullen et al. 2012). 

The reagents for the array were freeze-dried packed and conserved until sample 

analyses, being solubilised in assay buffer solution before the assay detection, so that 

could maintain biochemical integrity during the flight. The current assay sensitivity was 

reported at ~10 ppb, but further work was under development, (Cullen, Mark 2007, 

Sims, Cullen et al. 2012).  

2.5. Aptamers  

As mentioned before, aptamers presented several advantages over antibodies. Those 

included the capability of recovering their shape, folding and binding ability after 
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suffering denaturation, their smaller size, the fact that were synthesised in vitro, being 

reproducible between batches and had the potential of automation. Aptamers required 

less time consuming in its creation and were cheaper than the production of antibodies. 

Aptamers could be generated virtually against any type of target. In addition to this 

aptamers have been used as bioreceptors in diagnostics, therapeutics, environmental 

analysis, food industry and biosecurity, (Tombelli, Minunni et al. 2007, Karkkainen, 

Drasbek et al. 2011). Furthermore several patents were registered giving author rights 

to aptamer development and use, in combination with that, several biotechnology 

companies started focusing their product on aptamers, developing aptamer based 

therapeutic drugs and detection methods using aptamers, (Missailidis, Hardy 2009).  

Based on the presented advantages over antibodies and already demonstrated 

applications in similar assays to the LMC, aptamers were chosen to be tested if could 

be used as alternative bioreceptors to antibodies in the LMC instrument. 

2.5.1. Aptamer generation 

Aptamers were synthetic oligonucleotides sequences that due to adopting a specific 

three-dimensions folding bound to target molecules, were classified as affinity probes. 

They could be DNA or RNA aptamers and compete with other bioreceptors in the 

choice of the most appropriate molecule to capture targets of interest. The principle of 

aptamer generation was based in well-known scientific pillars such as the biology 

central dogma, the Darwin’s evolution theory, the Watson-Crick base- pairing principle, 

and the RNA world theory. In the first, the nucleic acids had the ability to be templates 

in the replication and transcription processes for the generation of other nucleic acids; 

this allowed artificial amplification by polymerase chain reaction (PCR) and molecular 

interaction between oligonucleotides and targets. In the second, the Darwinian 

evolution principle was mimicked by the in vitro selection, where the strands that bound 

to the target were selected and amplified in each iteration, until it was obtained a low 

diverse pool with high specificity from the original pool that had high diversity but low 

specificity. Aptamer generation was also based on the theory that RNA in the 

primordial world had the ability of self-replication and catalytic properties such as seen 

in ribozymes and riboswitches in gene expression mediation. Based on that principle 

RNA was considered able to bind cofactor molecules (Gold, Tuerk 1995, Jayasena 

1999, Klussmann 2006, Roth, Breaker 2009).  
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The aptamers generation method was named SELEX (systematic evolution of ligands 

by exponential enrichment) and consisted simplistically on successive iterations of the 

steps selection, elution, amplification and positive strand separation. The selection step 

was the mixing of the target of interest and a random ssDNA library with around 1013 to 

1015 different strands1.The library ssDNA strands presented two fixed regions at its 

extremities for primer annealing in the amplification step. During the target and library 

mixing some ssDNA strands interacted with the target and bound to it. The elution was 

the step in which it was separated from the initial mix the complexes formed between 

target and strands, and the ssDNA that showed target affinity was recovered after the 

preliminary separation. Gopinath et.al, (2007) reviewed the separation methods used 

within the SELEX method, (Gopinath 2007). The following step was the amplification by 

PCR of the eluted ssDNA. In the PCR amplification it was possible to introduce any 

desired modifications to the ends of the strands by annealing of modified primers. Once 

amplified the ssDNA became dsDNA. Because it was used only the positive strand 

(ssDNA pool) in the selection, and since it was those strands that showed affinity, the 

positive strand was separated from the negative strand by a denaturing procedure and 

recovered. A new ssDNA pool was made with the recovered positive strands. That pool 

was used in the following iteration. The method was repeated until the pool affinity 

showed no improvements in its binding ability to the target. In order to reduce the 

iterations number, the stringency conditions could be increased during the cycles by 

changing slightly the selection conditions or doing counter-selection with biochemically 

similar molecules to the targets of interest. Once the ssDNA pool presented the 

enriched ssDNA, the selected strands were cloned by bacterial vector transformation 

and the achieved colonies sequenced. The sequences could show similar conserved 

regions that indicated the sequence that gave origin to a specific binding secondary 

structure. Subsequently the potential aptamers were implemented in binding assays 

and the sequences that showed better affinity and specificity were classified as 

aptamers against the initial target. In some cases the molecular interaction between 

target and aptamer was studied by X-ray crystallography or NMR, (Stoltenburg, 

Reinemann et al. 2007). I

                                            
1 The random ssDNA library complexity could be calculated as 4N, where N was the length of 
the sequences. That information helped to understand which amount of ssDNA library should 
be used in the selection, considering nevertheless that the maximum experimental screened 
amount will not exceed the given range of 1013 to 1015 different strands, (Sampson 2003). 

n the case of generating RNA aptamers, it was necessary to 
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do in vitro transcription before the selection step, and the process was the same as 

explained.  

The generation of aptamers since its beginning had many variations (more than 20 

different SELEX methods exist nowadays) but kept the explained initial SELEX 

principle. That showed the adaptability and high ability of modelling the creation in vitro 

to the demands of each experiment and scientific work, making aptamers a versatile 

bioreceptor and suitable for applications in almost every area. Besides modifying the 

method to specific requirements it also introduced the possibility of making chemical 

modifications to aptamers after their generation. That was mainly a response to prevent 

enzymatic degradation provoked by RNAses or DNAses. The modifications could be in 

the phosphodiester backbone or in the nucleotide bases, usually these last were in the 

sugar skeleton 2´position or at the pyrimidine C5. Another way of overcoming the 

enzymatic cleavage was the use of aptamers enantiomers, known as spielgelmers. 

Spielgelmers were chemical mirror images of aptamers generated against a target 

mirror image. The final spielgemer bound to the original target and was not sensitive to 

degradation, (Eulberg, Klussmann 2003).  

2.5.2. Aptamers for small molecules 

Small molecules were considered more difficult targets to generate bioreceptors 

against. This was because naturally they had a lower number of charged groups or 

complex structures, compared to larger molecules such as proteins, which stimulated 

molecular interactions such as hydrogen bonds, π-π stacking or van der Waals 

interactions, all necessary to occur molecular binding, (Roth, Breaker 2009). 

Nevertheless based on the fact that RNA should present natural binding ability to small 

molecules such as cofactors, it was attempted with success to generate RNA and DNA 

aptamers against small molecules. It was seen however that in their majority were 

small molecular targets that presented complex structures such as aromatic rings or 

were rich in charged groups. Several reviews were made regarding the existing 

aptamers generated against small molecules, (Stoltenburg, Reinemann et al. 2007, 

Klussmann 2006, Famulok 1999), and the latest reviewed the existence of more than 

40 aptamers against small molecules. The authors organised the targets according to 

their classification which included examples of cofactors, nucleotides, antibiotics, 

drugs, carcinogenics, organic dyes, amino acids, carbohydrates and other 

biocompounds. The same authors referred that the lowest reported affinity value was 
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regarding the RNA aptamer to its target tobramycin (KD of 0.77 nM), and that the 

general binding affinities presented by aptamers against small molecules were located 

in the μM level. It was also reviewed by the same authors examples of excellent 

specificity of aptamers (the theophylline RNA aptamer did not bind to caffeine), and 

ability to discriminate between enantiomers (the thalidomine DNA aptamer bound 

preferentially to the (R) form), (Lau, Li 2011). In some cases it was reported that after 

generation of aptamers those went by a second selection in order to improve the 

binding affinity performance, (Stoltenburg, Reinemann et al. 2007). Another example of 

increment of affinity and also changing of specificity was reported by Mannironi et al., 

(2000) who changed the affinity of an aptamer by inserting mutations up to 30%. From 

the initial dopamine binding aptamer pool, the authors generated an aptamer with 

affinity to L-tyrosine. (KD of 35 µM),(Mannironi, Scerch et al. 2000). This could be 

advantageous in the case of the LMC instrument in order to obtain aptamers with 

detection limits

2.5.3. Aptamer applications in assays 

 from the nM to the pM range. 

Aptamers ability to recover their conformation after denaturation allowed the 

development of reusable biosensors, also properties such as being stable molecules 

with low molecular weight, allowed standard biochemical modifications; presented 

versatility in transduction systems implementation, and their low affinity values made 

them adaptable and robust bioreceptors, (Baldrich 2011, Cass, Zhang 2011). Both 

RNA and DNA aptamers were implemented as bioreceptors in detection systems used 

in diagnostic, (Hesselberth, Robertson et al. 2000), therapeutics, (Lassalle, Marchal et 

al. 2012), biosecurity,(Fischer, Tarasow et al. 2007) general detection of microbes and 

viruses, (Torres-Chavolla, Alocilja 2009), or in separation and purification processes, 

(Ravelet, Grosset et al. 2006). Aptasensors used optical, electrochemical, mass 

change and oligonucleotides amplification as detection methods. Those included 

aptamer incorporation of fluorophores that changed their fluorescence initial 

characteristics after aptamer binding conformation changed; the use of nanoparticles 

as quantum dots, whose fluorescence allowed cells in vivo visualisation, and gold 

nanoparticles which gave quick assessment by colour change according to the level of 

molecular binding. Other options included the use of electrochemical detection 

methods, which detected the electron flux according to oxidation-reduction reactions 

caused by aptamer binding interaction, and label free systems as the surface plasmon 

resonance (SPR), which detected mass changes that occurred with aptamer binding. 
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Cho et al (2009) described the technique where binding confirmation was made by 

amplifying the bound aptamers with real-time PCR, (Cho, Lee et al. 2009). The majority 

of the detection assays used a solid platform to which was immobilised one of the 

assay components. Also the demonstrated assays presented different formats, as 

single-site binding (direct), double-site (sandwich) binding or competition binding. 

Examples of each format assay using aptamers was reviewed by Mascini et al (2012), 

the authors also mentioned that the most applied aptamers in aptasensors were the 

aptamers against thrombin, vascular endothelial growth factor (VEGF), platelet derived 

growth factor (PDGF), immunoglobulin E (IgE), lysozyme, theophylline, cocaine and 

ATP, (Mascini, Palchetti et al. 2012).  

Sassolas et al (2011) reviewed the use of aptamers in assays occurring only in 

solution. The detection was based in colorimetric, fluorescence, electrochemical and 

magnetic resonance imaging (MRI) changes that occurred with the aptamer-target 

binding. The detection format was similar to the ones referred previously with the 

exception that the obtained signal occurred because it was depended in specific 

aptamer conformation or on a linker molecule that would work as a binding reporter, 

not requiring separation of the formed target-complex from the initial mixture. An 

example was the structure-switch in which a fluorophore and a quencher were present 

in complementary sequences to the aptamer, after the aptamer bound to target the 

quencher strand was released and the fluorophore gave a stronger signal. The better 

affinity value reviewed by the authors was of 4x10-5

Small molecules detection with aptasensors was reviewed by Walter et al (2012). The 

authors presented five types of detection based on the aptamers´ ability of target 

binding and conformation change. The detection methods were the ones already 

described but with a different perspective, based on the aptamers interaction with the 

target. The binding interaction could be made in a sandwich, in a competition, based on 

the target-induced dissociation mode, on the target-induced structure switching, and on 

the target-induced re-arrangement methods. The lower limit of detection reviewed was 

also regarding adenosine aptamer but used in an electrochemical detection assay with 

2x10

 nM, regarding adenosine detection 

using gold nanoparticles, (Sassolas, Blum et al. 2011).  

-5

Besides the mentioned methods, aptamers were also introduced in microarrays for 

simultaneous detection of several targets. In that case the binding signal was detected 

by fluorescence and was developed against proteins with detection limit in the nM - pM 

 nM, (Walter, Heilkenbrinker et al. 2012). 
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range, (Cho, Collett et al. 2006, Baldrich 2011). A microarray was also developed 

which allowed the simultaneous detection of more than 800 proteins at once present in 

blood serum. In that case the aptamers were initially generated with a 5´-end modified 

bases library (each base was side-chain modified with simple amino acids structures) 

which gave origin to a new version of aptamers denominated SOMAmers. Those were 

presented as having increased binding ability to previously considered difficult targets 

for aptamers to successfully bind. The microarray was reported to detect protein 

concentrations in the pM range, (Gold, Ayers et al. 2010). 

2.6. Planetary Protection and Contamination Control  

Planetary Protection importance in space missions was reviewed by Bergstrom, S. et al 

(2004), in which it was mentioned that the principal objectives of PP were to keep the 

explored planet initial conditions as unspoiled as possible to allow future missions, to 

avoid compromising the exploited planet by minimising its contamination with Earth 

microbial or organic material, and also to preserve the planet Earth from possible 

extraterrestrial contamination present in returning missions´ material. In order to 

regulate the procedures required to reach those objectives the Committee on Space 

Research (COSPAR) was created in 1958 (Bergstrom, Rummel 2004). COSPAR 

classified the different space missions into categories based on their mission type and 

destination, and suggested that PP&CC implementation was made, Table 2-1. 
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Table 2-1 Missions categories based on mission type and destination, adapted from 
Office of planetary protection, NASA, (NASA 2013). 

Planet targets/ locations Mission Type Mission 
Category 

Undifferentiated, metamorphosed asteroids; Io; others TBD.  Flyby, Orbiter, 
Lander  

I  

Venus; Earth’s Moon; Comets; non-Category I Asteroids; 
Jupiter; Jovian Satellites (except Io and Europa); Saturn; 
Saturnian Satellites (except Titan and Enceladus); Uranus; 
Uranian Satellites; Neptune; Neptunian Satellites (except 
Triton); Kuiper-Belt Objects (< 1/2 the size of Pluto); others 
TBD.  

Flyby, Orbiter, 
Lander  

II  

Icy satellites, where there is a remote potential for 
contamination of the liquid-water environments, such as 
Ganymede (Jupiter); Titan (Saturn); Triton, Pluto and Charon 
(Neptune); others TBD.  

Flyby, Orbiter, 
Lander  

II*  

Mars; Europa; Enceladus; others TBD (Categories IVa-c are 
for Mars).  

Flyby, Orbiter  III  
Lander, Probe  IV(a-c)  

Venus, Moon; others TBD: “unrestricted Earth return”  unrestricted 
Earth-Return  

V 
(unrestricted)  

Mars; Europa; Enceladus; others TBD: “restricted Earth 
return”  

restricted 
Earth-Return  

V (restricted)  

It was defined several subtypes of category IV, according to whether it was or not a life-

detection mission and what zone of the planet Mars was intended to be explored, Table 

2-2.  

Table 2-2 Sub-categories dedicated for missions to Mars, adapted from Office of 
planetary protection, NASA, (NASA 2013). 

Planet targets/ locations Mission Type Mission 
Category 

Lander systems not carrying instruments for the 
investigations of extant Mars life.  

Lander, Probe  IVa  

Lander systems designed to investigate extant Martian life.  Lander, Probe  IVb  
Missions investigating Martian Special Regions, even if they 
do not include life detection experiments. Martian Special 
Regions include those within which terrestrial organisms are 
likely to replicate and those potentially harboring extant 
Martian life.  

Lander, Probe  IVc  

The COSPAR recommendations were transformed in standards to be performed, by 

the European Cooperation for Space Standardization (ECSS) The LMC instrument 

within the PP&CC context was classified as part of a mission category IVb, because it 

aimed to search for evidence of life on Mars. According to that mission type, the LMC 

needed to present microbial burden less than 300 bacterial spores per square meter, 

while the external landing system needed to present per square meter less than 2x105 

spores. Besides microbial contamination organic contamination had also to be 
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controlled and kept at 1 ng of total organic carbon per gram of analysed sample, 

(Pillinger 2009). 

In order to reduce the microbial presence, it was necessary to implement 

contamination control procedures. The contamination control included all the 

procedures that reduced the total spacecraft microbial presence, until it reached the 

desired level, in order to meet the COSPAR guidelines. Those were achieved by the 

implementation of cleaning and sterilisation procedures during the assembling, 

integration and verification (AIV) of the spacecraft, by following the ECSS standards, 

and by adopting a spacecraft design compatible with PP&CC implementation and 

prevention of re-contamination (Debus 2006). 

2.7. Summary and conclusion  

Mars was considered a planet with similar characteristics to Earth in which might be 

present or had existed simple life forms similar to the ones found on Earth. In order to 

discover that, the LMC instrument was developed; the instrument was designed to 

detect evidence of life on Mars. It was an instrument in which antibodies were used as 

bioreceptors in an inhibition assay. These were developed against a group of 

biomarkers which were chosen with the aim of covering the essential biochemical 

groups present on extant and extinct life forms found on Earth, in meteorites, and in 

molecules that could be used as contamination control. Based on that it was concluded 

that aptamers presented examples of applications in similar detection assays 

instruments and that had been generated against similar molecules to the chosen 

biomarkers, and for that reason could be tested as possible bioreceptors for the LMC. 

Another conclusion was the need to test early on the aptamers compatibility with 

PP&CC requirements and also to understand PP&CC basic procedures and 

implementation into an instrument for life detection missions. 
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Chapter 3. Thesis Aims and Objectives 

3.1. Aims 

The overall aim of the PhD study was to consider specific development aspects of the 

LMC instrument and development programme which could then be used to guide work 

and technology choices with the LMC programme. 

That overall aim broke down into two major parts: 

• To determine if aptamers could be used in an LMC instrument and 

development programme. 

• To discuss, at an early stage, design and protocols for PP&CC 

implementation that could aid in the LMC development process, and also to 

have a preliminary understanding whether aptamers could contribute to the 

improvement of the LMC PP&CC implementation.  

Those two parts were divided into more detailed aims: 

• To understand if aptamers could successfully be developed against LMC 

low molecular weight targets. 

• To ascertain whether aptamers could be developed within a timescale and 

resource level that was compatible with the LMC development programme.  

• To comprehend if aptamers could be integrated into the existing LMC assay 

format. 

• To recognise if there were aspects of instrument design and protocols 

needed to allow an LMC instrument to meet the PP&CC requirements in the 

development process.  

• To understand if the use of aptamers could be the easy route to produce an 

LMC instrument that would meet PP&CC requirements. 

3.2. Objectives 

Resulting from the project aims, the following thesis objectives arose: 

• To choose an aptamer generation method and test it against specific LMC 

targets to understand the process and its limitations within the context of the 

LMC programme. 
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• To test implementation of existing aptamers against small molecule targets 

in the LMC assay format. 

• To use a small scale experiment to apply design modifications for PP&CC 

requirements, to implement standard cleaning PP&CC protocols for 

microbial reduction, a sterilisation procedure and validation methods, and to 

demonstrate resultant experiment in flight conditions. 

• To test aptamers compatibility with a sterilisation procedure required for 

PP&CC implementation in the LMC.  

• To make recommendations in terms of the development and use of 

aptamers and PP&CC implementation in the context of the LMC 

development programme for the ExoMars 2018 mission. 

. 
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Chapter 4. Can aptamers be easily generated against 
small-molecule LMC targets? 

4.1. Chapter introduction  

The LMC baseline bio-receptors were antibodies; however it was desired to explore the 

potential of aptamers as alternative candidates. It was decided to verify if aptamers 

could be generated against LMC targets. These were molecules with low molecular 

weight, the majority were hydrophobic and all presented minimal functionality2

It was chosen to test aptamer generation against representative LMC targets. The 

method involved immobilising the targets to a surface. Due to the simple nature of the 

targets it was necessary to use derivatives with reactive groups that allowed covalent 

chemistry. An aptamer generation method was implemented and the details of the 

process evolved dependent on the on-going findings. 

. When 

searching for already existing aptamers generated against targets with similar 

physiochemistry to the LMC targets, only a few examples were found. It was for this 

reason that it was decided to test if it would be possible to generate aptamers against 

LMC targets, within the restricted time frame of approximated three years allocated for 

the LMC part of the ExoMars mission, and resources structure of a typical planetary 

exploration flight programme. 

4.2. Literature review on aptamer generation and techniques to 
detect small molecules during aptamer generation 

4.2.1. Chemical properties of LMC targets and LMC target 
derivatives 

The LMC target molecules had low molecular weight and their simple chemistry and 

absence of functional/reactive groups made them atypical targets for aptamer 

generation this was reviewed in detail in section 2.3 (Chapter 2). Aptamer targets were 

                                            
2 By “minimal functionality” –within the context of this thesis meant low presence of chemical 
groups able to form hydrogen bonds, electrostatic interactions, etc. 
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commonly proteins or other macromolecules and in the case of small molecules, these 

were rich in charged groups or in aromatic rings, (Klussmann 2006). 

The LMC targets derivatives were versions of the LMC targets that presented reactive 

groups as carboxylic acids or primary amines, for example, at one side of the molecule, 

but were equal at the rest of the structure. The derivatives allowed surface 

immobilisation via the functional end, exposing the LMC target structure. The 

derivatives reactive groups served as linkers for covalent chemistry of the LMC targets. 

Although derivatives had reactive functional groups (to allow immobilisation to a solid-

support), these were not sufficient for simple detection using standard analytical 

chemistry techniques. The LMC targets derivatives did not present heavy ionic charge, 

secondary or tertiary structures and had less overall reactivity than traditional targets, 

such as proteins. Some derivatives were also hydrophobic which increased 

incompatibility with biological aqueous buffers. This was critical when working with 

ssDNA that required this type of matrix. 

4.2.2. Aptamer generation against small molecules 

It was found in literature only few examples of aptamers against small molecules, 

which were reviewed in section 2.5.2 (Chapter 2). This occurred despite the fact that 

small molecules were desirable targets in most of scientific fields, and because of their 

simplicity are present in the most degraded forms of the compounds or are usually 

products difficult to eliminate that nevertheless might have an unwanted high impact, 

(Tombelli, Minunni et al. 2007).  

This fact showed that potentially generating aptamers against small molecules could be 

more difficult than generating aptamers against large molecules as proteins. 

The approaches found in literature, taken for aptamer generation against small 

molecules, were modifications of the initial standard SELEX method, developed by 

Ellington et al (1990). The SELEX involved immobilising the target onto the surface of 

agarose beads packed in an affinity chromatography column. The bound 

oligonucleotides were eluted by addition of free target to the column, (Ellington, 

Szostak 1990).  

Another method used to generate aptamers against small molecules was the FluMag-

SELEX. This was a variation of the initial method where instead of using a column, 
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magnetic beads were used as solid surface, (Stoltenburg, Reinemann,C., Strehlitz,B. 

2005). 

In the previous methods, the targets were always surface immobilised. An example 

was found where selection was performed in solution. The structure-switch method 

allowed selection in solution with an unmodified target. It consisted in a selection with a 

ssDNA pool with three fixed regions, the flanked ends and a middle region. After 

selection the central fixed region would be bound to a biotinylated complementary 

sequence and in that way free the bound target into solution. The separated strands 

would be amplified and used in the following iteration, (Nutiu, Li 2005). A new method 

is under development for aptamer generation against small molecules and consisted in 

using gold nanoparticles as solid surface during the SELEX, (personal communication 

of Y.S. Kim). The gold nanoparticles allowed an easy visual detection of surface 

immobilised molecules because they presented different colours according to the light 

path distance to the nanoparticle surface, (Yang, Wang et al. 2011). 

4.2.3. Importance of target immobilisation and confirmation of 
immobilisation to solid-phase supports during aptamer 
generation 

As reviewed in the last point, in the majority of aptamer generation, targets were 

surface immobilised. The immobilisation was based on covalent chemistry.  

When using Dynabeads® as solid phase, the target was directly immobilised while in 

some examples, when using agarose beads, was mentioned the use of carbon spacers 

to add length from the surface to the target, and in both cases, counter-selection to 

increase specificity and affinity, (Ellington, Szostak 1990). 

The most common approaches used were the formation of a carbodiimine to promote 

the bond between a carboxyl groups and an amino group. This was used in attaching 

proteins to surfaces which have naturally available primary amine and carboxylic 

groups in their structure. The immobilisation chemistry of small molecules depended on 

their functional groups, (Thermo Scientific Pierce 2010). The LMC targets derivatives 

chemistry was simple, which lead to reduced options of covalent chemistry and made 

them difficult to detect and quantify. 

Those characteristics made immobilisation confirmation even more important given the 

likely difficulty of generating aptamers against the LMC target derivatives. Aptamer 
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generation depended on how efficient the target immobilisation was, and for this 

reason it would be important to always confirm the quality of this step. Knowing that 

immobilisation occurred would prevent the use of resources in aptamer generation and 

would decrease the chance of selecting aptamers against unmodified surfaces. 

Confirming target immobilisation should be done systematically because of the 

previous point but also to validate the selection step.  

Despite this only one example was found in literature, where aptamers were generated 

against a small target using the FluMag-SELEX and the Dynabeads® immobilisation 

was confirmed. In that case the target chemistry allowed UV detection and the 

immobilisation was verified by quantification in solution of the initial and final target 

concentrations and the difference was assumed covalently attached, (Kim, Hyun et al. 

2010). In the case of the traditional SELEX it was more common the quantification of 

bound target into agarose beads, also by calculating the difference of target prior and 

after column passage (Klussmann 2006). 

4.2.4. Detection methods for confirmation of target immobilisation 
to solid-phase supports during aptamer generation 

As mentioned before, only one example was found in literature, when using FluMag-

SELEX, of a routine analytical technique that confirmed target immobilisation, (Kim, 

Hyun et al. 2010).  

It was considered testing if it would be possible to detect directly immobilisation on the 

Dynabeads® surface. It was then necessary to search for analytical chemistry 

techniques that could confirm the presence of specific functional groups on their 

surface. 

This was first based on the nature of the targets analogues. It was tough that the same 

functional groups that allowed covalent chemistry would also confirm immobilisation. 

This could be done either by reacting free reactive groups that would be present only 

after immobilisation or by decrease of magnetic beads reactive functional groups. 

Indirect detection was also considered but as a second choice due to lower liability. 
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The chosen working Dynabeads® were either surface modified with primary amine 

groups or with carboxylic groups. This was according to the desired immobilisation 

chemistry to covalently bind the targets.  

Direct Analytical Chemistry detection methods of amino groups  

It was chosen to use a spacer that would allow the target exposure further distant of 

the surface, and in that way, expected to decrease the surface interference in the 

aptamer generation.   

To confirm immobilisation it was tested using direct analytical chemistry reaction 

methods. Because the majority of Dynabeads® and targets had at some point of the 

immobilisation primary amine groups, it was tested methods that would react directly 

with those. This was tested either by reacting un-coupled primary amines in the 

Dynabeads® surface before and after immobilisation or by reacting immobilised 

material that would have available primary amine groups. 

The standard methods found in literature for primary amine detection were 
trinitrobenzenesulfonic acid (TNBS), fluorescamine, σ-phthaldialdehyde (OPA) and 

ninhydrin, (Cooper, Packer et al., 2001, Wallace, Fox 1998). The products obtained 

with these chemicals, after reaction with primary amines, allowed for either colorimetric 

or fluorescent detection.  

TNBS reacted in solution with primary amines (trinitrophenylation), giving origin to a 

yellow product named N-trinitrophenyl-protein (TNP-NH-R). The product was detected 

by absorption spectroscopy and was directly proportional to primary amine 

concentration, Figure 4-1, (Cayot, Tainturier 1997).  
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Figure 4-1 TNBS reaction mechanism with primary amino groups, (Cayot, Tainturier 
1997). 

Fluorescamine, widely used for protein quantification, when reacting with primary 

amines gives origin to a fluorescent product, fluorophore, Figure 4-2. Chen et al 

(2010) patented a method for quantification of biomolecules immobilised onto the 

surface of nanoparticles based on the fluorescamine reaction, (Chen, Bieniarz et al. 
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2010). Stein et al (1973) reported that fluorescamine allowed amino acids detection 

down to the picomolar concentration, (Stein, Bohlen et al. 1973). 

 

Figure 4-2 Chemical structure of Fluorescamine and the reaction product with primary 
amines, adapted from Stein et al (1973), (Stein, Bohlen et al. 1973). 

OPA also, when reacting with primary amines, gives origin to a fluorescent product, 

Figure 4-3. Both Fluorescamine and OPA are known for being very sensitive detection 

methods, with detection limits reviewed by Danielson, et al (2000), of 0.3 ng and 200 

fmol respectively, (Danielson, Gallagher et al. 2000). 
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O + R1 SH
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OH + R2 NH2 R2

R1
S

N

 

Figure 4-3 OPA reaction with primary amines, adapted from Kyprianou et al (2010), 
(Kyprianou, Guerreiro et al. 2010). 

Ninhydrin was also a well-known colorimetric method that has been used to confirm 

surface function. Sano et al (1993), used ninhydrin to access polyethylene solid surface 

modification with proteins, (Sano, Kato et al. 1993). 
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Figure 4-4 Ninhydrin reaction with primary amines, adapted from Sano et al (1993), (Sano, 
Kato et al. 1993). 
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There were alternative methods for detection of primary amine groups and also other 

techniques that could be used to confirm surface immobilisation that did not necessary 

react with primary amines. 

It was considered the targets specific chemistry and in one case there was a thiol 

group which allowed the test of Ellman’s reagent. The Ellman’s reagent reacted with 

thiol groups giving origin to a chromophoric product,

Indirect detection methods of amino groups and other relevant techniques 

Figure 4-5 (Aslam, Dent 1998). 

(HO)2C

(HO)2N

S
S

N(OH)2

SHR
S2R

(HO)2C

(HO)2N

C(OH)2

+ +
SH

(HO)2C

(HO)2N

 

Figure 4-5 Ellman´s reaction with thiols giving origin to the chomophoric 2-nitro-5-
mercaptobenzoate anion, adapted from Aslam et al (1998), (Aslam, Dent 1998). 

When using HPLC, to detect small molecular weight molecules, usually chemical 

derivatisation was used, as explained by Danielson et al (2000), (Danielson, Gallagher 

et al. 2000). Another example where small targets were detected using HPLC was the 

detection of amines as cadaverine, bilic acids, cysteine or ibuprofen, (Chiavari, Galletti 

et al. 1989, Amarnath, Amarnath et al. 2003, Battu 2009, Iida, Shinohara et al. 1988). 

In the majority of the cases the detection was done using reverse phase HPLC and, as 

mentioned before, for simpler targets derivatisation was often mentioned. This was 

found to be used in food and environmental analysis, where the targets of interest were 

similar in size and properties to the LMC, (Corradini, Philips 2011). In the case of the 

LMC targets, derivatisation was not considered for a routine side-technique due to its 

complexity. 

In alternative to the previous detection methods there were infra-red (IR), Fourier 

transform spectroscopy (FTIR), elemental analysis and x-ray photoelectron 

spectroscopy (XPS).  

IR and FTIR were spectroscopy techniques where according to the absorbed 

wavelength was possible to characterize compounds. Gaber et al (2013) used IR to 
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confirm the chemical modification of nanoparticles, (Gaber, El-Sayed et al. 2013) and 

Saikia et al (2013), applied FTIR to confirm the presence of functional groups in 

polyphenols, (Saikia, Konwarh et al. 2012).  

Elemental analysis consisted on determining the atomic composition of a sample by its 

combustion products. Yan et al (1998) used it to quantify a surface modification, (Yan, 

Jewell Jr. et al. 1998). In that case, elemental analysis was used in parallel to other 

techniques such as IR, FTIR or X-ray. Also elemental analysis was used for the 

characterization of modified cellulose surface, for the characterization of Cu-

nanoparticles, and in the synthesis of cadmium ligands, (Yu, Tong et al. 2013, Zhang, 

Zheng et al. 2013, Gaber, El-Sayed et al. 2013). 

The XPS was a surface analysis technique where, by counting emitted electrons, it was 

possible to get information about the chemistry and space arrangement of the sample 

atoms. The sample was placed under vacuum and exposed to X-ray photons. In result 

the atoms present on the surface of the sample released core electrons. These 

electrons were collected, separated and quantified according to their energy level. This 

technique was optimal because the electrons energy was signature of the element and 

its surrounding molecular environment. In that way it was possible to collect information 

about the chemical composition of the surface material, (Fairley 2009). 

Several groups have used XPS to access surface quality and chemical modifications. 

Like in the case where nanoparticles were build and modified, (Wang, Zhou et al. 

2008), or where surface modification of iron particles was confirmed, (Chen, Peng et al. 

2007). Graf et al (2009) did a study where amino groups were immobilised onto 

surfaces and accessed by XPS, (Graf, Yegen et al. 2009), and lysine was also studied 

after surface adsorbed by Eralp et al (2011), (Eralp, Shavorskiy et al. 2011). XPS was 

also used in bioreceptors where a caffeine MIP was surface analysed, (Ebarvia, 

Cabanilla et al. 2005). 

It was found several examples in literature that were used to analytically detect the 

presence of specific functional groups ( thiol, primary amines and carboxylic acids) but 

it was necessary to test if they were adequate to  confirm the targets derivatives 

immobilisation onto the surface of Dynabeads®.  



 

29 

4.3. Chapter Aims and Objectives 

The aim of the work presented in this chapter was to determine if aptamers could be 

generated against small-molecule LMC targets within the context of the LMC 

programme. 

That aim lead to the following objectives: 

• To select and produce LMC targets derivatives immobilised on solid-phase 

for subsequent aptamer generation. 

• To decide upon an analytical methodology that allowed the direct detection 

of the small hydrophobic molecule LMC targets analogues on beads or to 

indirectly show that they have been immobilised. 

• To implement method(s) to produce beads with immobilised targets for 

subsequent aptamer generation. 

• To choose an aptamer generation method and test it to understand the 

process and its limitations within the context of an LMC programme. 

4.4. Chapter experimental rationale 

In order to understand if aptamers could be generated against the LMC targets of 

interest this chapter was divided in three major sections. The first section described the 

choice of the aptamer generation method and the targets to generate aptamers 

against. Because the targets were very simple, with low molecular weight and had to 

be surface immobilised, in order to apply the chosen generation method, a second 

section of work was developed. The second section described the search for an 

appropriated side thecnique to confirm targets Dynabeads® surface immobilisation. 

The initial approach taken was to identify the presence of primary amino groups 

attached to the Dynabeads®, and in that way confirm the surface immobilised spacer 

or target rich in amino groups, The first assay was performed with TNBS because it 

was a well-known technique used in protein detection. The obtained data pointed out 

that it was not indicated for the detection of Dynabeads® surface immobilised targets. It 

was then tested Fluorescamine and OPA because were more sensitive techniques. It 

was expected to be possible to detect the presence of immobilised targets or spacers 

rich in primary amino groups. And also to assume immobilisation by signal difference in 

Dynabeads® surface modified with primary amines that were afterwards reacted with 

targets that did not present amine groups. In both cases it was shown to be impossible 
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to obtain significant data due to light scattering. For that reason these two techniques 

were not incorporated in the main experimental part and only described here and at the 

chapter discussion and summary. Afterwards the approach taken was changed and 

Ellman´s reagent was used to detect the presence of thiol groups in solution and in that 

way extrapolate if target surface immobilisation was successful or not. The obtained 

data was inconclusive and HPLC was used to quantify in solution the unbound target 

and extrapolate if immobilisation had occurred or not. It was discovered with HPLC that 

secondary reactions could interfere with the detection and that most of the targets were 

too simple to be detected by that technique. Once again a new approach was taken 

and it was analysed the elemental composition of the immobilised surfaces versus the 

unmodified ones to search for differences. The same comparison was made using IR 

and FTIR. Because it was not obtained any clear difference between immobilised and 

unmodified surfaces those three techniques were not expanded in the main 

experimental section and only mentioned here, at the chapter discussion and 

summary. The following step taken was to test Ninhydrin which was used to detect the 

presence of primary amines that could be present on the Dynabeads® surface. 

Because the detection was made by quantifying the obtained product in solution and 

not bound to the surface it was possible to understand that this technique could be 

used as a side-technique to verify the surface immobilisation of rich in primary amine 

targets and spacers. Despite that it was found that it was only useful for surface direct 

immobilisation and not to the immobilisation of spacers and targets as desired. The 

final technique tested was XPS for surface analysis, and that indicated the atomic 

neighbourhood, allowing the understanding if covalent bonds had been made or not. 

That technique proved to be the most appropriated as side-technique to verify the LMC 

targets and spacers immobilisation on Dynabeads® surface. 

The third part of this chapter was dedicated to the aptamer generation method and the 

need to have full working steps prior to perform the full generation system. It was 

necessary to develop in special the amplification step and the separation step. In the 

first a new approach was taken, which was the implementation of real-time PCR 

instead of traditional PCR. This was done to improve the knowledge of the amount of 

strands selected from each round and also to verify the quality of the amplified product. 

In the separation step it was tested two different published methods to choose the most 

appropriated one. Because the confirmation of targets surface immobilisation took 

longer than expected, only a few rounds of aptamer generation were made to each 

target. Also it was found that the chosen method presented small but important details 
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that became challenges in the iterative process. In this chapter it was seen the 

challenges that generating aptamers against small targets presented and the lessons 

learned from that.   

4.5. Choice of aptamer generation method and LMC targets 

4.5.1. Choice of method to test aptamer generation and LMC 
targets 

It was decided to test the generation of aptamers against the LMC derivatives using 

one of the methods reviewed in section 4.2.2. All the methods had the same standard 

methodology and were either the standard SELEX or adaptations of it.  

In the most common method in literature, (SELEX), the target was immobilised onto the 

surface of agarose beads. The second method found was the FluMag-SELEX, which 

used Dynabeads® as solid surface and modification of the positive and negative DNA 

strands so quantification and separation were controlled during the generation process, 

(Stoltenburg, Reinemann,C., Strehlitz,B. 2005). A third method was a less established 

procedure named structure-switch. This was very interesting because it did not require 

target immobilisation, (Nutiu, Li 2005).  

Aptamer generation was tested using the FluMag-SELEX method. This method 

presented several advantages as allowing interaction in solution between ssDNA and 

immobilised target, easy magnetic partition, easy washing steps for stringency and 

easy visualization and quantification of positive strand at each iterative round due to 

fluorescein modification after first round, (Stoltenburg, Reinemann,C., Strehlitz,B. 

2005). Furthermore LMC target derivatives presented, in the majority of times, low 

solubility in aqueous matrices and the use of magnetic beads allowed change of buffer 

matrices from the targets chemistry immobilisation to a biological matrix compatible 

with DNA for aptamer selection.  

This method was chosen also due to the number of examples found in literature when 

in comparison with the structure-switch, and because it was seen as an updated 

version of the standard SELEX. FluMag-SELEX, in similarity to SELEX, consisted of an 

iterative process of rounds of selection, elution, amplification, and separation. An initial 

ssDNA pool was incubated with Dynabeads® immobilised targets derivatives. The 

complexes target-ssDNA formed were separated from the original pool using the 
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magnetic properties of Dynabeads®. The selected ssDNA was eluted and amplified 

with polymerase chain reaction and during this process the positive strands were 

modified with fluorescein and the negative strands with either a biotin or a poly A tail. 

These modifications were subsequently used to separate the positive strands. 

Afterwards the positive strands were used as a new selection pool and the method 

repeated. The iterations were made until at least 70% of the strands showed affinity to 

the immobilised target. Afterwards the selected strands were amplified E-coli 

transformation. The strands were sequenced and tested for target affinity and 

specificity in order to determine the best aptamer candidate against the target, Figure 

4-6.  

 

Figure 4-6 FluMag-SELEX schematic representing the steps of the process, adapted from 
Stoltenburg et al (2007),(Stoltenburg, Reinemann et al. 2007).  

Despite the choice of the FluMag-SELEX, the structure-switch was found very 

appealing to this project because instead of working with derivatives it would allow to 

work directly with the LMC targets, Figure 7-1. It was considered to be used as a 

second aptamer generation method if time and resources would allow it. The structure-

switch was not the principal generation method because it was considered less 

established.  
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The chosen aptamer generation method required the immobilisation of the LMC target 

derivative into the surface of Dynabeads®. The chosen LMC targets for aptamer 

generation were alanine and coprostane. 

 

Figure 4-7 L- Alanine isomer (MW 89.09 g/mol). 

Alanine, Figure 4-7, was chosen because of the interest in generating aptamers 

against an amino acid, and its simplicity would allow the aptamer to detect the amino 

acid backbone and it that way be generic to the amino acids family. The same principle 

was applied for coprostane, it would allow the generation of an aptamer able to 

recognise stearanes, Figure 4-8.  

 

Figure 4-8 Coprostane (MW 330.59 g/mol). 

The targets were chosen because of the desire to detect amino acids as simple units of 

organic compounds with nitrogen and carbon, and the stearanes were considered as a 

difficult target to antibody generation. Aptamers generation was tested against two very 

simple LMC targets. This simplicity made them very difficult targets due to their lack of 

charges, functional groups and in the case of coprostane, hydrophobicity. 

After choosing the targets to test aptamer generation it was necessary to decide on 

derivatives and immobilisation chemistry. 
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4.5.2. Choice of initial targets derivatives, spacer chemistry and 
beads for testing immobilisation  

The initial LMC target derivatives chosen to be immobilised onto the surface of 

Dynabeads® were L-cysteine (MW 121.16), and 5β-cholanic acid, (MW 360.57). L-

cysteine was the L-alanine derivative and the L- form was naturally the most abundant. 

L-alanine presented a reactive thiol group at one end and the generic amino and 

carboxyl groups. 

The chosen spacer was N-[ε-maleimidocaproyloxy] succinimide ester (EMCS), which 

allowed the coupling between an amino group and a thiol group and would give a 

length of 9.4 Ᾰ, (Pierce 2013). L-cysteine was used with Dynabeads® surface modified 

with primary amino groups. EMCS was immobilised on the amino Dynabeads® surface 

and then reacted with L-cysteine via thiol, Figure 4-9. L-cysteine solubility was high in 

aqueous buffers which also made it a preferable target derivative to work with. 

 

Figure 4-9 Amino modified Dynabeads® immobilised with EMCS spacer and L-cysteine. 

The derivative for coprostane was 5β-cholanic acid. This presented a carboxylic group 

which could react with primary amines, so the di-amine spacer cadaverine was used to 

link the target derivative and carboxyl Dynabeads®, Figure 4-10. Cadaverine would 

give a length of five carbons after immobilisation.  
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Figure 4-10 Carboxyl modified Dynabeads® immobilised with spacer cadaverine and 5β-
cholanic acid 

After choosing the targets and spacers the Dynabeads® immobilisation was performed. 

4.6. Immobilisation of LMC target derivatives to magnetic beads 
and confirmation of the target immobilisation 

To generate aptamers, using the chosen method FluMag-SELEX, it was required the 

immobilisation of LMC target derivatives on Dynabeads® surface.  

This lead to the need of confirmation how efficient the immobilisation was. This was 

because of the nature of the derivatives, (low molecular weight and some 

hydrophobic), to prevent the use of resources in vain, and because it was found that it 

was not common to verify covalent immobilisation in aptamer generation using this 

method. 

It was decided to search for a technique that could be used as a routine side-technique 

to confirm Dynabeads® immobilisation. The technique (s) was required to be 

compatible with the chemical nature of the derivatives and the Dynabeads® that were 

used a solid support, as well as to any of the immobilisation chemistry used. 

The first step was the Dynabeads® immobilisation with spacers and derivatives.  

4.6.1. Initial immobilisation of LMC target derivatives to magnetic 
beads and the confirmation of the target immobilisation 

The LMC targets derivatives were, as seen before, the targets L-cysteine and 5β-

cholanic acid. Which were immobilised via the spacers EMCS and cadaverine, Figure 

4-9 and Figure 4-10.  
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5β-cholanic acid was also directly immobilised onto the surface of amino Dynabeads® 

but just to aid in the confirmation of immobilisation in some tests. The Dynabeads® 

used were surface modified with primary amino groups or surface modified with 

carboxyl groups. The immobilisation was done with 1-Erhyl-3-[3-dimethylaminopropyl] 

carbodiimide hydrochloride and N-hydroxysuccinimide, (EDC/NHS) activation in the 

case of binding carboxylic acids to primary amines, or EMCS with reactive maleimide 

and ester groups in the case of thiols and amino groups.  

It was found several problems with target derivatives solubility and Dynabeads® 

solvents compatibility, so buffers composition, chemicals and Dynabeads® were first 

tested. 

Compatibility of Dynabeads® and cadaverine spacer with working buffers  

a) Materials and Methods 

i. Materials and chemicals 

Carboxyl M-270 Dynabeads® from Invitrogen (14305D), phosphate buffered saline 

(PBS) pH 7.3; dimethyl sulfoxide (DMSO, CAS 67-68-5; D8418), methanol (CAS 67-

56-1; 34860), 1-Erhyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC, 

CAS 25952-53-8; 22980), all from Sigma, cadaverine (CAS 462-94-2; 33211) from 

Fluka,1.5 ml tubes rotator, 1.5 ml tubes from Eppendorff.  

ii. Methods to study Dynabeads® compatibility with working 

buffers and LMC target derivatives solvents 

To study the impact of working with different buffers, three buffers were tested at 

different percentages. The solvents were methanol, PBS and DMSO. These were used 

to solubilise derivatives and spacers. The buffers were tested on: i) carboxyl 

Dynabeads® with cadaverine activated with EDC, ii) carboxyl Dynabeads® with 

cadaverine and no activation, and iii) carboxyl Dynabeads®. It was only used carboxyl 

Dynabeads® because the standard composition of Dynabeads® was the same, 

(Invitrogen 2013).  

b) Experimental and Results 

i. Dynabeads® compatibility with working buffers and LMC targets 

derivatives solvents 

The test consisted in washing Dynabeads® with different percentages of buffers to see 

if agglomeration (A), flocculation (F) or precipitation (P) occurred, Table 4-1. 
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Table 4-1 Dynabeads® compatibility with working buffers during immobilisation steps - 
agglomeration (A), flocculation (F), precipitation (P) or in solution (S). 

 DB + EDC + 
cadaverine 

DB + 
cadaverine DB 

50 % PBS : 50 % DMSO P P P 
50 % PBS : 50 % methanol F A S 
70 % PBS : 30 % DMSO S S S 
70 % PBS : 30 % methanol S S S 

30 % PBS : 70 % DMSO P P P 
30 % PBS : 70 % methanol F A P 

100 % DMSO S S S 

It was observed precipitation when organic buffers were at equal or higher part with 

aqueous buffers. Agglomeration in clusters was obtained of Dynabeads® when 

methanol was presented at higher percentage than 30%, and flocculation when EDC 

and cadaverine were added to those agglomerates. No problems were registered in 

aqueous solutions with low percentages of organic solvents. 

c) Discussion  

It was tested different percentages of the three solvents used to solubilise LMC target 

derivatives and spacers; this was relevant because of the need of immobilisation of a 

spacer and a target derivative sometimes with different polarity.  

Precipitation was seen when organic solvents were present at 70% and PBS at 30%. 

On the other hand when PBS was 70% and the organic solvents were 30% 

Dynabeads® did not precipitated, flocculated, or aggregated. These were considered 

the best buffers to use in the need of solubilise an organic compound in an aqueous 

buffer.   

Also the carboxyl Dynabeads® in 50 % DMSO and methanol changed their colour into 

a darker brown but no precipitation occurred. This changed when the spacer 

cadaverine was added. Moreover it was seen that using a solution of 100% cadaverine 

and then adding DMSO promoted Dynabeads®  precipitation, which did not happen if 

cadaverine was diluted in DMSO first. No explanation was found for these situations, 

but it was decided to dilute cadaverine in DMSO and to use 100 % DMSO in the cases 

were spacers and targets were both hydrophobic, and to use 70 % PBS with 30 % 

organic solvent in the cases where the spacer was hydrophobic and the derivative 

hydrophilic. In all the other situations an aqueous buffer was used.   

Once the Dynabeads® compatibility with working buffers was tested, it was proceeded 

to surface immobilised the chosen spacers and LMC target derivatives. 
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Amino Dynabeads® were used to immobilise L-cysteine via EMCS and to immobilise 

directly 5β-cholanic acid. The L-cysteine immobilisation chemistry used was the 

reaction between the Dynabeads® primary amines and the EMCS ester, and then the 

maleimide reaction with thiol groups. The 5β-cholanic acid immobilisation was via 

EDC/NHS forming a covalent bond between the amines and the carboxylic groups. 

Immobilisation of spacers and target derivatives to Dynabeads®  

a) Materials and Methods 

i. Materials and chemicals 

Amino M-270 Dynabeads® (14307D) and carboxyl M-270 Dynabeads® from 

Invitrogen, 5β-cholanic acid (CAS 546-18-9; C7628), from Sigma (appropriated 

dissolved), EMCS (CAS 55750-63-5; 22308) from Pierce (appropriated dissolved), PBS 

pH7.3; DMSO, methanol, L-cysteine (CAS 52-90-4; C7352), all from Sigma, NHS (CAS 

6066-82-6; 130672), cadaverine from Fluka, and EDC from Thermo scientific, magnetic 

support, rotator, 1.5 ml tubes DNAse free from Eppendorff.  

ii. Method for L-cysteine immobilisation to amino Dynabeads® 

using EMCS activation 

100 µl of Dynabeads® were removed from the stock solution and the buffer removed 

by magnetic separation. The Dynabeads® were washed three times with 500 µl PBS. 

Each wash consisted in the addition of buffer, strong agitation with vortex and 

separation of liquid by magnetic separation. It was added to the beads 450 µl of PBS 

and 50 µl of EMCS (previously dissolved in DMSO at 10 mM). The mixture was 

incubated at RT for 1 hour with agitation. The liquid was removed using magnetic 

separation and the Dynabeads® were washed four times with 500 µl of PBS. It was 

added to the Dynabeads® 500 µl of L-cysteine at 10 mg/ml in PBS and incubated at 

RT for 30 min with agitation. The Dynabeads® were separated from the liquid and 

washed four times with 500 µl of PBS. All the wash-liquid was collected for further 

analysis. The Dynabeads® were re-suspended in 100 µl PBS and kept at 4ºC until 

further use. 

iii. Method for 5β-cholanic acid immobilisation to carboxyl 

Dynabeads® via cadaverine and EDC/NHS 

100 µl of Dynabeads® were removed from the stock solution and the buffer removed 

by magnetic separation. The Dynabeads® were washed three times with 200 µl DMSO 

(wash-steps as previously explained). Cadaverine was added to the Dynabeads® (100 
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µl stock solution in 400 µl DMSO) and 100 µl of EDC at 5 mg/ml in cold DMSO and 100 

µl of NHS at 5 mg/ml in cold DMSO were also added. The Dynabeads® were mixed at 

RT with agitation for 2 hours. The liquid was collected and the Dynabeads® washed 

three times with 200µl DMSO, all the wash-liquid was collected and kept for further 

analysis. Afterwards it was added to the beads a solution of 5β-cholanic acid (5 mg/ml) 

and fresh solutions of EDC/NHS as explained. The mixture was treated as before and 

after the last washing step, the Dynabeads® were re-suspended and kept in the cold 

room to avoid DMSO freezing. 

iv. Method for 5β-cholanic acid direct immobilisation to amino 

Dynabeads® via EDC/NHS 

Same method as explained in the previous point, but without the immobilisation of the 

spacer. This direct immobilisation was tested only for confirming covalent chemistry 

reaction.  

b) Experimental and Results 

L-cysteine immobilisation to amino Dynabeads® via EMCS spacer and 5β-cholanic 

acid immobilisation to carboxyl Dynabeads® via cadaverine spacer and directly to 

amino Dynabeads® occurred as expected as no obvious problems were found. The 

subsequent analysis to confirm the successful immobilisation was explained in this 

chapter following sections. 

c) Discussion  

The surface immobilisation occurred as expected and suffered a few changes from the 

manufacturer´s recommended protocol. The working volumes were performed at a 

higher volume than recommended to ensure a visual mix during the washes and 

incubation, and the incubations were made for longer than recommended to ensure 

that the reactions had time to occur. 

After obtaining three sets of immobilised Dynabeads®, it was necessary to confirm how 

efficient that immobilisation was before starting aptamer selection. This was, as 

explained before, necessary to do because of the targets derivatives nature, to reduce 

the risk of generating aptamers against unmodified Dynabeads® and because it was 
not found in literature a routine side-technique that would allow a direct, fast and 

reliable confirmation. 
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The Dynabeads® immobilised sets for aptamer generation were L-cysteine via EMCS 

and 5β-cholanic acid via cadaverine. A third set was 5β-cholanic acid directly 

immobilised without any spacer. This set was used only to confirm surface 

immobilisation. 

Test of trinitrobenzenesulfonic acid (TNBS) reagent for primary amine detection 
to confirm immobilisation Dynabeads® 

The carboxyl Dynabeads® were first immobilised with cadaverine and then with the 5β-

cholanic acid. In order to confirm cadaverine immobilisation it was tested the presence 

of primary amino groups. This was done with a standard method, using the TNBS 

reagent. 

TNBS reacted with primary amino groups and cadaverine as a di-amine presented two 

reactive primary amines. Cadaverine, if efficiently immobilised to carboxyl beads, would 

present one reactive primary amino group. TNBS was reacted with carboxyl 

Dynabeads® with immobilised cadaverine to confirm the efficiency of the covalent 

chemistry. The absorbance intensity would be proportional to the amount of available 

primary amine groups and in that way the presence of immobilised cadaverine could be 

confirmed. 

a) Materials and Methods 

i. Materials and chemicals 

TNBS (CAS 2508-19-2; 28997) from Pierce, borate buffer pH 9.0, 4 % sodium 

bicarbonate, all from Sigma, carboxyl M-270 Dynabeads® from Invitrogen reacted with 

cadaverine via EDC/NHS reaction, IKA KS 4000 control incubator, 96 well Nunc 

microtiter plate, 1.5 ml Eppendorf tubes and Thermo Scientific Varioskan Flash Plate 

Reader. 

ii. Method for TNBS reaction with primary amine groups 

A solution of 0.1% w/v TNBS, was prepared by diluting 1:50 TNBS 5 % (w/v) solution in 

18 MΩ.cm water. The samples and the positive controls at different concentrations 

were prepared in borate buffer. 100 µl of sample or positive control was pipetted to 

1.5ml tubes and in another tube 100 µl of borate buffer was used as blank. To each 

tube was added 100 µl of 4 % sodium bicarbonate buffer and mixed. Afterwards, to 

each tube, was added 100 µl of 0.1 % TNBS and mixed. All the tubes were incubated 

for 1 hour at 37 ºC. After it was transferred from each tube 200 µl into the wells of a 96 
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well microplate and the absorbance was read between 300 to 700 nm. The results 

were plotted graphically. 

b) Experimental and Results 

The best absorbance wavelength was determinate by reading the absorbance from 

300 to 700 nm with ranges of 10 nm. Primary amines reacted with TNBS were reported 

to have an absorbance peak at 340-350 nm or at 410-420 nm, (Goodwin, Choi 1970, 

Staden, MacCormack 1998).  

i. Detection of cadaverine primary amino groups in solution 

TNBS was run with cadaverine in solution at concentrations that could mimic the 

presence of cadaverine on the Dynabeads® surface if immobilised efficiently. This was 

done to study the assay in solution without the Dynabeads® presence. Cadaverine was 

diluted 1:4 with a higher concentration of 1 mg/ml (5.7x10-9 M) and the lower of 0.001 

mg/ml (5.7x10-12 

At that stage it was noticed and confirmed in literature that TNBS spontaneously 

hydrolysed to picric acid affecting the reaction efficiency. Picric acid was also 

detectable at 340-350 nm. The same author reported that higher pH values promoted 

the secondary product reaction with primary amine groups. To improve the reaction the 

assay was run at pH 7.5 in PBS buffer instead of borate buffer at pH 9.0. The 

concentrations of cadaverine were kept, (Surovtsev, Fjodorov et al. 2001). 

M). The assay worked well but the higher concentration of cadaverine 

showed to be too high and lower concentrations were used.  

The obtained results were similar to the ones using borate buffer at pH 9.0, except for 

the higher concentration of cadaverine where it was possible to detect also the 

presence of the reaction product at 410 nm, Figure 4-11.  
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Figure 4-11 Reaction of TNBS with cadaverine at different concentrations and reagent 
buffer at A) pH 9.0 and B) pH 7.5. 

There was a decrease in signal obtained between 420 and 450 nm and a shift of the 

obtained peak from 420 to 350 nm. The results became more defined at lower pH and 

there was an increase in signal at 350 nm, but at the same time it was not possible to 

distinguish between the different lower concentrations of cadaverine. The obtained 

results showed the two absorbing peaks for the highest concentration of cadaverine 

tested, 3.6 x10-10 M. At higher pH it was possible to detect also two peaks with 

cadaverine at 8.6 x10-10

ii. Detection and quantification of immobilised cadaverine onto the 

surface of Dynabeads® 

 M, but at 370 and 400 nm. The chosen conditions were to 

perform the assay at pH 7.5 because it gave a clear detection peak at 350 nm and a 

second peak at 400 at the highest cadaverine concentration. It was then tested the 

detection of surface immobilised cadaverine. 

When absorbance was read after reacting TNBS with 1x108

c) Discussion  

 (~100 µl) Dynabeads® 

immobilised cadaverine, the obtained results were very high due to light scattering. It 

was then tested lower numbers of Dynabeads® with immobilised cadaverine, but in all, 

included the unmodified carboxylic acid Dynabeads® used for controls, it was verified 

light scattering. 

The obtained results of cadaverine reaction in solution were similar to the ones found in 

literature, and the assay performed at lower pH reduced the existence of secondary 

products and allowed the detection at 350 nm. This was supported by the work of 
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Cayot et al. (1997) that observed similar results, (Cayot, Tainturier 1997). When TNBS 

was tested with cadaverine immobilised Dynabeads®, no differences were recorded 

between modified and unmodified carboxyl Dynabeads®, showing that absorbance 

detection was not an adequate technique or that no immobilisation occurred. 

It was decided to pursue another detection method for primary amino groups. 

It was immobilised 5β-cholanic acid using the spacer cadaverine into carboxyl 

Dynabeads®, and L-cysteine into amine Dynabeads® using the EMCS spacer. The 

immobilisations were made as expected and analytical techniques were implemented 

to verify the cadaverine immobilisation. The tested analytical techniques were found to 

be unsuitable to confirm immobilisation of Dynabeads®. This was because the 

Dynabeads® caused light scattering, making impossible to detect differences between 

immobilised Dynabeads® and unmodified with direct optical detection.  

Summary and Conclusion 

There was the need to test other techniques that were compatible with the 

Dynabeads® or where the detected product would be in solution instead of surface 

immobilised. 

4.6.2. Use of alternative analytical technique to confirm target 
immobilisation to address sensitivity and background issues 

The fact that the reacted product with the primary amino groups was covalently 

attached to Dynabeads®, interfered with direct optical detection. A different approach 

was taken and it was opted to search for a method that would allow the difference of 

concentration in target derivative before and after covalent chemistry to be tested. This 

separation was possible because of Dynabeads® magnetic properties. This allowed 

the separation of the unreacted target derivative from the covalently attached to 

Dynabeads®. This detection would be in solution and without the presence of 

Dynabeads®.  

Research into a technique that would allow the detection in solution of unreacted target 

derivative was conducted. At this stage no method was found to test primary amines in 

solution that would not require surface immobilisation, so the immobilisation of L-

cysteine was considered. A new method was found, the Ellman´s reagent. The 

Test of Ellman’s reagent for thiol groups detection present in L-cysteine to 
confirm Dynabeads® immobilisation 
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Ellman’s reagent reacted with free L-cysteine and the product remained in solution. By 

depletion it was possible to assume if immobilisation occurred or not and extrapolate its 

efficiency from a standard calibration curve. 

a) Materials and Methods 

i. Materials and Chemicals 

Sodium phosphate pH 8.0 from Sigma, EDTA from Fisher, L-cysteine, from Sigma, in 

house immobilised amine M-270 Dynabeads®3 from Invitrogen, Ellman’s reagent (CAS 

69-78-3; 22582) from Thermo scientific, 1cm3

ii. Method for Ellman’s reaction with thiol groups 

 polystyrene cuvettes from Fisher, 

Beckman Coulter DU series 700 spectrophotometer. 

A reaction solution of 0.1 M sodium phosphate with 1 mM EDTA was prepared. Several 

dilutions of known concentrations of L-cysteine were made using the reaction solution 

as solvent. The same was done for the unknown solutions (immobilised amine 

Dynabeads®). A solution of Ellman’s reagent was made adding 4 mg of reagent into 1 

ml of reaction solution. New tubes were prepared to which it was add 50 µl of Ellman’s 

reagent in 2.5 ml of reaction solution and 250 µl of standard or sample. The mixture 

reacted at RT for 15 min and 1 ml of solution was transferred to a 1cm3

Equation 4-1

 polystyrene 

cuvette and absorbance was read at 412nm. The values of absorbance obtained for 

the L-cysteine standards were plotted and the unknown sample concentrations 

extrapolated from the calibration curve. The calculations of thiol groups concentration 

presented in each sample were made based on L-cysteine molar absorptivity, the 

absorbance values obtained and the light path length taken in the measurement. That 

relation was described in . 

𝜀 =
𝐴
𝑏𝑐

 

Equation 4-1 Formula to calculate concentration - c - (M) of thiol groups based on the 
absorbance obtained - A- , light path length - b - (cm), and TNB product molar 
absorptivity (E = 14.150 M-1cm-1

b) Experimental and Results 

), (Pierce 2010). 

i. Detection and quantification by depletion of thiol groups present 

in immobilised L-cysteine  

                                            
3 The immobilisation of amino Dynabeads was made as explained in section 4.5.1(Chapter 4) 
but with L-cysteine solution of 1 mg/ml instead of 10 mg/ml, and five washing steps instead of 
four. 
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Solutions of known L-cysteine concentration were made and quantified with the 

Ellman´s reagent. The obtained calibration curve of L-cysteine was performed with r2 

Figure 4-12

of 

0.997, .  

 

Figure 4-12 Content extrapolated of L-cysteine (mg/ml) in wash-liquid obtained after 
immobilisation, A) graph including all parameters, B) graph with lower scale showing 
values under 0.01 mg/ml. 

The calibration curve presented concentration values wide spaced because of the need 

to cover the initial amount of L-cyteine added to the Dynabeads® (1mg/ml) and the 

lower values expected to cover the small difference of immobilised target. The content 

of thiol groups present on the standard solutions were calculated based on Equation 

4-1, and represented on Table 4-2. 

Table 4-2 Content of thiols in L-cysteine calibration curve. 

Calibration curve 
L-cysteine 

(mg/ml) 

Abs values Thiol content in 
reading volume 

(M) 

Thiol content in 
sample 
(mol) 

1.000 3.36 2.37E-01 6.65E-04 

0.100 0.191 1.35E-02 3.78E-05 

0.010 0.087 6.15E-03 1.72E-05 

0.001 0.008 5.65E-04 1.58E-06 

Afterwards the Dynabeads® were immobilised with EMCS and L-cysteine, and the 

wash-liquid solutions obtained after the immobilisation were collected and reacted with 
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Elman´s reagent. The concentration of L-cysteine was extrapolated from the calibration 

curve (Figure 4-12), and the thiol groups calculated (Table 4-3) using the Equation 4-1. 

Table 4-3 Quantity of thiol present in wash-liquid after L-cysteine immobilisation in 
sample and in control solutions. 

 

 Sample 

Abs values 
Thiol content in 
reading volume 

(M) 

Thiol content in 
sample 
(mol) 

Wash1 3.364 2.38E-01 6.66E-04 

Wash2 0.089 6.29E-03 1.76E-05 

Wash3 0.007 4.95E-04 1.39E-06 

Wash4 0.003 2.12E-04 5.94E-07 

Wash5 -0.004 -2.83E-04 -7.92E-07 

 

 Control 

Abs values 
Thiol content in 
reading volume 

(M) 

Thiol content in 
sample 
(mol) 

Wash1 3.306 2.34E-01 6.54E-04 

Wash2 0.034 2.40E-03 6.73E-06 

Wash3 0.006 4.24E-04 1.19E-06 

Wash4 0.009 6.36E-04 1.78E-06 

Wash5 0.002 1.41E-04 3.96E-07 

The thiol sum obtained in the sample was 6.84E-04 mol and in the control 6.64E-04 

mol, which was similar to the amount added initially to both (6.65E-04). Based on this 

and on the extrapolated concentrations, a significant difference between initial and final 

added L-cysteine was not achieved.  

It was decided to calculate the expected variation in thiols content based on the 

Dynabeads® theoretical capacity of binding. Based on the manufacturer datasheet, the 

Dynabeads® binding ability of 100 μl was of 0.45 μmol, (Invitrogen 2013). In the L-

cysteine, (MW 121.16), 1 mg/ml solution it was present 8.25 μmol. It was added 500 μl 

of that solution which was equal to 4.125 μmol. If all of the added solution bound, the 

100 μl of Dynabeads® (0.45 μmol) would represent around 11% of the initial value. It 

was used that percentage to be the expected decrease in the thiols groups’ 

concentration before and after immobilisation. It was expected to obtain a value in the 

same order of magnitude but 11% lower and maybe that small difference was not 

possible to detect using the Elman’s reagent.  
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c) Discussion  

The detection by depletion was tested for L-cysteine, using the Ellman’s reagent as a 

thiol reactive chemical. No major differences between what was added for 

immobilisation and what was collected were found. These results were inconclusive 

because there were no studies made regarding the technique resolution to understand 

if it would be possible to detect variations of 11%. Also it was found the need to have a 

positive control that would confirm immobilisation under the same conditions. Because 

of these it was not possible to understand if there was or not immobilisation.  

It was necessary to find another way to verify immobilisation.  

The tested analytical technique was found to be unsuitable to confirm immobilisation of 

L-cysteine to Dynabeads®.  

Summary and Conclusion 

The obtained data was inconclusive because it was not understood if there was no 

change in thiol groups’ concentration and no immobilisation or if the technique did not 

allow the detection of a small change in the thiol content (around 11%). Also it was 

necessary to have a positive control that could be used as an indicative for 

immobilisation and technique resolution.  

It was necessary to test additional techniques that would overcome the targets 

derivatives small size and were a positive control would be used. 

4.6.3. Additional use of an analytical technique to confirm targets 
and spacers immobilisation to address targets small size  

Considering the need for detecting the variation of target derivative concentration 

before and after immobilisation (depletion), and maintaining the detection method free 

of the Dynabeads® presence, HPLC was tested. 

HPLC was chosen because it was a common separation method and was readily 

available. Also HPLC was the technique used by Kim et al (2010), (Kim, Hyun et al. 

2010) to confirm immobilisation of ibuprofen. Ibuprofen was used as a positive control 

to validate the technique and the EDC/NHS immobilisation chemistry.  
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Figure 4-13 Ibuprofen. 

The use of HPLC as a side-technique for Dynabeads® surface immobilisation, allowed 

testing a new target derivative, the phytanic acid (MW 312.53). It was tested with the 

condition if proved immobilised it could be used in aptamer generation.  

 

Figure 4-14 Phytanic acid. 

Moreover, it was also tested the use of N-BOC-cadaverine instead of cadaverine for 

immobilisation. This compound presented one of the primary amines protected with N-

tert-Butoxycarbonyl (BOC) and in that way it was thought to allow better detection of 

immobilisation. In that case the aim was to immobilise and confirm immobilisation of 

protected cadaverine and afterwards de-protect the second primary amine and react it 

with the derivative.  

Carboxyl Dynabeads® were used to immobilise N-BOC-cadaverine and phytanic acid, 

via cadaverine spacer. Amino Dynabeads® were used to immobilise ibuprofen (MW 

206.28). Ibuprofen was used as the positive control. 

Immobilisation to Dynabeads® of new target derivative, a modified spacer and a 
control target  

a) Materials and Methods 

i. Materials and chemicals 

Carboxyl M-270 Dynabeads® and amino M-270 Dynabeads®, from Invitrogen, 

phytanic acid (CAS 14721-66-5; P4060), ibuprofen (CAS 15687-27-1; I4883) 

(appropriated dissolved), cadaverine, and N-BOC-cadaverine (CAS 51644-96-3; 

15406), (appropriated dissolved), sodium hydroxide (NaOH), acetonitrile HPLC grade 

(CAS 75-05-8), methanol HPLC grade and water HPLC grade from Sigma, 85% 
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phosphoric acid, PBS pH 7.3; 25 mM 2-(N-morpholino) ethanesulfonic acid (MES), 

DMSO, from Sigma, 18 MΩ.cm water magnetic support, rotator, tubes DNAse free 

from Eppendorff.  

ii. Method for carboxyl Dynabeads® immobilisation of cadaverine 

and phytanic acid 

Cadaverine and phytanic acid were immobilised following the same protocol used for 

the immobilisation of cadaverine and 5β-cholanic acid, described in section 4.5.1. The 

difference was that methanol was the solvent used instead of DMSO. 

iii. Method for carboxyl Dynabeads® immobilisation of N-BOC-

cadaverine  

The N-BOC-cadaverine immobilisation protocol was the same used for the 

immobilisation of cadaverine in section 4.5.1., but instead of DMSO, it was used 25mM 

MES because this version of cadaverine was water soluble and MES was the buffer 

recommended by the manufacture for Dynabeads® immobilisation, (Invitrogen 2013). 

After immobilisation it was necessary to de-protect N-BOC-cadaverine. MES buffer was 

removed from the Dynabeads® and 100 µl of acetonitrile was added, and then 50 µl of 

85% solution of phosphoric acid was added drop wise. It was left three hours at RT 

with agitation. The solution was removed from the Dynabeads® and 50 µl of NaOH 

was added and cooled on ice, once cooled 50 µl of water was added. The mixture was 

agitated on ice for 5 min and this procedure was repeated three times. Afterwards the 

Dynabeads® were separated from the solution and re-suspended in 100 µl of MES. 

iv. Method for amino Dynabeads® immobilisation of ibuprofen 

The ibuprofen immobilisation was performed in the same way as 5β-cholanic acid, 

described in section 4.5.1., but in MES instead of DMSO. 

b) Experimental and Results 

i. Immobilisation of phytanic acid via cadaverine spacer, of N-

BOC-cadaverine and ibuprofen 

The immobilisations were made as explained and occurred as expected. The 

evaluation of the success of those immobilisations was made later on this section and 

chapter. 
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c) Discussion  

The immobilisation of phytanic acid and cadaverine were made in methanol to avoid 

changes of working buffers. The immobilisations of ibuprofen and N-BOC-cadaverine 

were performed in MES buffer as recommended by the Dynabeads® manufacturer. 

Similar behaviour was observed during immobilisation as seen for L-cysteine and 5β-

cholanic acid.  

After Dynabeads® immobilisation, HPLC was tested as a technique to quantify 

unbound spacers and target derivatives. The simple structures was a problem because 

there were not easily detectable under UV, and there was no knowledge about best 

running buffers, retention time or appropriated detection wavelength. Therefore the 

tested conditions were based on published work, when found, and in personal 

communications. Only initial tests were made for the targets that did not show retention 

times under the initial tested conditions to avoid extensive waste of time and resources. 

Test of High Performance Liquid Chromatography for detection and 
quantification of LMC targets and spacers to confirm Dynabeads® 
immobilisation by depletion 

a) Materials and Methods 

i. Materials and Chemicals 

HPLC vials from Chromacol, HPLC machine and software from Shimadzu, C18 150 x 

4.6 mm column from Phenomenex, UV detectors SPD-20A, HPLC grade acetone (CAS 

67-64-1; 270725), acetonitrile, methanol, and water, from Sigma 

Samples and standards were solubilised in the chosen running buffer and standards 

dilutions were made for a calibration curve. All the samples were transferred into 

appropriated HPLC vials. Before the run, the C18 column was cleaned with a run of 

HPLC grade acetone for 2 min. Afterwards the running buffer run for at least 20 min or 

until a stable baseline signal was seen. The samples were then disposed correctly on 

the injection tray, they were injected through the column and the retention time required 

for each sample was visualised by the presence of a peak in the baseline. The peak 

area was directly correlated to target concentration versus the known standard injected 

solutions retention time. The samples were quantified by extrapolation of the given 

peak area in the calibration curve. 
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ii. Method for detection of ibuprofen 

Ibuprofen was used as a positive control and its direct immobilisation into Dynabeads® 

was confirmed by depletion using HPLC. Following Kim et al (2010),(Kim, Hyun et al. 

2010). 

iii. Method for detection of phytanic acid and 5β-cholanic acid 

The first attempt for detection was a gradient test with Water:Acetronitrile (34:66), pH 

3.4, with 20µl injection volume, a run of 20 min and the UV detectors at 214 and 

280nm. The targets were at 0.1, 0.01 and 0.001 mg/ml and solubilised in methanol 

(phytanic acid), and DMSO (5β-cholanic acid). The same conditions were tested but 

with the running buffer at pH 6.5. 

A different running buffer, Water:Methanol (34:66) was tested under the same two pH 

values (3.4 and 6.5) and running conditions.  

A repetition of the Water:Methanol (34:66) pH 3.4 run was performed only to 5β-

cholanic acid to see if it would be possible to make a calibration curve. 

iv. Method for detection of L-cysteine and N-BOC-cadaverine 

L-cysteine and N-BOC-cadaverine experimental detection tests were the same 

conditions described in the previous point.  

b) Experimental and Results 

i. Detection and quantification by depletion of ibuprofen 

HPLC was used as a technique to verify if target derivatives depletion occurred caused 

by Dynabeads® immobilisation. Ibuprofen was used as a positive control because it 

was physiochemically similar to the LMC derivatives and it was used in published 

aptamer work, where Dynabeads® immobilisation was accessed with HPLC, (Kim, 

Hyun et al. 2010). 

Ibuprofen was detected at 7 min retention time with a running buffer of 

Water:Acetronitrile (34:66), pH 3.4. It was possible to run a calibration curve with 

known concentration solutions and assume its direct immobilisation onto the surface of 

amino Dynabeads® by extrapolating the ibuprofen concentration present in the wash-

liquid solution, Figure 4-15.  
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Figure 4-15 Ibuprofen detection by HPLC, calibration curve and extrapolation of 
Ibuprofen present in wash-liquid of activated Dynabeads® versus controls. 

Table 4-4 Ibuprofen values obtained in the wash-liquid after immobilisation and on 
controls. 

 
Wash1 

Peak area Ibuprofen (mg/ml) 
Dynabeads® activated with EDC and 

reacted with ibuprofen 430988.6 0.008226 

Dynabeads® with ibuprofen (control) 604647.4 0.011121 

Dynabeads® (control) 0 0.001043 

 
Wash2 

Peak area Ibuprofen (mg/ml) 
Dynabeads® activated with EDC and 

reacted with ibuprofen 266903.1 0.005492 

Dynabeads® with ibuprofen (control) 235104.9 0.004962 

Dynabeads® (control) 0 0.001043 

From verifying that the depleted concentrations in the wash-liquid solutions were lower 

than the obtained in the controls (unmodified Dynabeads® and unspecific binding of 

ibuprofen); it was assumed that the difference was caused by surface immobilisation. 

This assumption also validated the EDC/NHS coupling protocol used, because it 

showed differences between the immobilised surfaces activated with EDC/NHS and 

surfaces with unbound ibuprofen (unspecific binding). 



 

53 

ii. Detection of phytanic acid and 5β-cholanic acid 

Several initial running conditions (three running buffers and two pH values) were tested 

to detect phytanic acid and 5β-cholanic acid retention times. In both cases no detection 

was seen with the running conditions tested. For that reason the detection was 

abandoned. 

iii. Detection of L-cysteine 

The initial detection of L-cysteine was successful and was detected at 1.45 min 

retention time at pH 3.4 of the running buffer Water: Acetonitrile (34:66). The peak area 

values changed because were proportional to the analyte concentration. It was run a 

calibration curve with known concentration solutions, Figure 4-16. 

 

Figure 4-16 L-cysteine calibration curve based on the obtained peak area with HPLC 
analysis. 

When the L-cysteine wash-liquid solutions were analysed after surface immobilisation it 

was seen a shift in the initial retention time. This was seen initially as a contaminant but 

in some situations there was no evidence of L-cysteine at the expected retention time 

of 1.45 min, when it was known to have L-cysteine in solution. After reading the 

absorbance at 210 nm of one unique solution of L-cysteine, during a period of time, it 

was seen a decrease of concentration of L-cysteine. Later was concluded that L-

cysteine oxidised into cystine making the UV detection unreliable, Figure 4-17. 
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Figure 4-17 Detection of L-cysteine oxidation in PBS during 35 min. 

In the previous graph it was possible to verify experimentally almost the full oxidation of 

L-cysteine in less than 40 min. This showed that the detection of L-cysteine obtained in 

the wash-liquid solutions was not reliable because the unbound L-cysteine would 

oxidise between the collection and analysis of the samples turning the detection 

ineffective. 

iv. Detection of N-BOC-cadaverine 

The initial attempt to use HPLC to detect N-BOC-cadaverine did not show a clear peak, 

easy to confirm that it was the target. Because of lack of comparison to peak 

identification it was not possible to proceed with N-BOC-cadaverine detection in HPLC. 

c) Discussion  

There was no information about the required conditions to detect the target derivatives, 

such as mobile phase, detection wavelength, if isocratic or gradient running buffer and 

retention time. It was necessary to look at literature but no clear examples were found 

to the more simple targets, so a few conditions were tested based in in house 

discussion. The running buffers chemicals composition chosen was considered 

transparent at the low wavelengths tested; in order to try to capture as much as 

possible.  
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The phytanic acid proved to be very difficult to detect because it had not a functional 

group besides the –COOH which presented low detection under UV. Also the 5β-

cholanic acid did not present a peak under the tested conditions.  

The L-cysteine was detected easily in the first assay but afterwards it was not possible 

to detect it again because it was noticed the formation of disulphide bonds (cystine) as 

a peak shift was observed in the analysis of wash-liquid solutions from Dynabeads® 

immobilisation. L-cysteine was found to convert easily in solution to cystine. It was 

found later that the addition of EDTA to solution would prevent the oxidation, but it was 

not applied by then, (Thermo Scientific Pierce 2010).  

Because HPLC as a side technique was time consuming due to the lack of information 

about the LMC target derivatives detection conditions, it was chosen to test other 

techniques. 

It was detected and assumed surface immobilisation of ibuprofen using HPLC to 

quantify the obtain depletion between initial and final solutions. Ibuprofen worked as a 

validation control for the immobilisation EDC/NHS chemistry used because it was 

assumed that the difference in concentrations obtained was caused by efficient 

immobilisation chemistry.  

Summary and Conclusion 

The target derivatives with their simplistic chemical structure were not detected by the 

tested conditions with the exception of L-cysteine, which was found to easily oxidise 

and become cystine in solution. Because of this phenomenon it was inconclusive if L-

cysteine bound to the Dynabeads® or not. L-cysteine was the only LMC target 

derivative that was possible to quantify by the tested HPLC conditions. Unfortunately it 

was verified that oxidised in solution making the detection inadequate because of the 

time between sample collection and analysis. 

After testing HPLC as an additional technique, it was obvious that the nature of the 

LMC derivatives in conjugation with Dynabeads® were complex for detection using the 

standard or well-known analytical techniques. It was necessary a different approach. It 

was decided to test additional techniques focused on surface analysis.  
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4.6.4. Supplementary use of analytical techniques to confirm target 
immobilisation and address targets small size and beads 
physical characteristics 

The LMC derivatives of interest were L-cysteine and 5β-cholanic acid, immobilised on 

the surface of amino and carboxyl Dynabeads® via a spacer. Complementary to this it 

was used 5β-cholanic acid directly immobilised into the surface of amino Dynabeads®. 

Phytanic acid was discarded due to its simplicity, and another derivative was used to 

test immobilisation. The derivative was lysine but in the protected version to prevent 

unwanted chemistry. N-BOC-lysine was water-soluble and also an amino-acid that 

could be used instead of L-cysteine in aptamer generation. 

It was reviewed techniques used for physical surface analysis and the approached 

changed from detecting specifically functional groups by direct or indirect detection to 

compare immobilised surfaces from unmodified. 

Five new techniques were tested to confirm immobilisation: Infra-Red (IR) and Fourier 

Transform Infra-Red (FTIR), elemental analysis, another method to detect primary 

amino groups (ninhydrin reagent) and X-ray photoelectron spectroscopy (XPS).   

A new target derivative was added to the previous tested derivatives (L-cysteine, 5β-

cholanic acid and phytanic acid). The derivative was used to study surface 

immobilisation in one of the tested techniques and was the N-BOC-lysine, an amino 

acid with one end protected with a BOC structure. It was surface immobilised the new 

derivative and then de-protected. In both situations it was followed the same protocols 

as in previous points. 

Dynabeads® immobilisation with new target derivative - Amino Dynabeads® 
immobilisation of N-BOC-lysine  

a) Materials and Methods 

i. Materials and chemicals 

N-BOC-lysine was immobilised on amino Dynabeads® as explained in section 4.5.1 via 

EDC/NHS and to de-protect lysine, it was followed the same protocol to de-protect N-

BOC-cadaverine, explained in detail in section 4.5.3. 
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b) Experimental and Results 

The N-BOC-lysine immobilisation on the surface of amino Dynabeads® occurred as 

expected as well as the de-protection. Both actions were accessed later on this 

chapter. 

c) Discussion  

The immobilisation and de-protection was made as previously. The assessment of both 

steps was only confirmed once a suitable technique was found to confirm surface 

immobilisation. 

Ninhydrin was a colorimetric detection reagent that reacted with primary amines. It was 

used to test the immobilisation both on the surface of amine and carboxyl 

Dynabeads®, to which a primary amine would be present after immobilisation.  

Test of ninhydrin reagent for primary amine detection to confirm Dynabeads® 
immobilisation 

a) Materials and Methods 

i. Materials and Chemicals 

Ninhydrin reagent (CAS 485-47-2; N7285), ethanolamine (CAS 141-43-5; E9508), 0.05 

% glacial acetic acid, from Sigma, 95 % ethanol, 6 ml glass vials, 1 cm3

ii. Method for ninhydrin reaction with primary amines 

 polystyrene 

cuvettes from Fisher, Beckman Coulter DU series 700 spectrophotometer, boiling 

water bath, immobilised M-270 Dynabeads® with L-cysteine via EMCS and directly 

with 5β-cholanic acid. 

Standard solutions were made from a starting solution of 50 µM ethanolamine, in 0.05 

% glacial acetic acid. The standards were diluted with 18 MΩ.cm  water in a total 

volume of 2 ml in 6 ml glass vials. The blank was 18 MΩ.cm water. To the standards, 

blank, and samples, it was added 1 ml of ninhydrin reagent, mixed gently and 

immersed into a bubbling boiling water bath for exactly 10 min. After, the vials were 

removed from the bath and allowed to cool down to RT. To each solution, 5 ml of 95 % 

ethanol was added. From each solution, 1 ml was transferred into 1 cm3 polystyrene 

cuvettes and absorbance was read at 570 nm. In the case of absorbance values higher 

than one, dilutions were made in 95 % ethanol. A calibration curve was obtained and 

the samples at unknown concentrations of amine groups were extrapolated. 
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b) Experimental and Results 

i. Use of ethanolamine as standard for calibration curve 

The confirmation of immobilisation was made by comparison between immobilised 

Dynabeads and controls, so it was necessary initially to run a calibration curve for 

extrapolation of concentrations. Ethanolamine was used as standard for a calibration 

curve. Dilutions from 6.25 µM to 43.75 µM in 18 MΩ.cm water were made and reacted 

with ninhydrin.  

ii. Detection and quantification by depletion of immobilised L-

cysteine via EMCS spacer with ninhydrin 

Amino Dynabeads® and Amino Dynabeads® with unspecific adsorbed L-Cysteine 

were reacted with ninhydrin to be used as comparison of immobilisation. Because 

ninhydrin provided a colorimetric detection method it was possible to visually confirm 

the presence of primary amino groups, Figure 4-18. 

Amino Dynabeads® immobilised only with EMCS and amino Dynabeads® immobilised 

with EMCS and L-cysteine reacted with ninhydrin and the concentration values were 

extrapolated from the obtained absorbance, Figure 4-19. 

 

Figure 4-18 Colour change in the presence of primary amines. (Left to right: Blank 
solution, unmodified amino Dynabeads®, amino Dynabeads® with EMCS and amino 
Dynabeads® with EMCS and L-cysteine.) 

It was possible to visualise a colour change in comparison to the blank solution, which 

occurred according to the amino content. As expected the unmodified amino 

Dynabeads® presented the darkest colour. It was expected to have a similar result in 

the amino Dynabeads immobilised with EMCS and L-cysteine. This would happen 
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because of the increase of amino content present in L-cysteine. Such increase was not 
seen and the solution that followed in colour gradient was the amino Dynabeads® 

immobilised with EMCS spacer. This was perhaps caused by poor EMCS 

immobilisation. In the case of the addition of L-cysteine after EMCS immobilisation it 

was seen a decrease in colour. This could have been because of efficient 

immobilisation but no reaction with the amino group or by unspecific coated of the 

Dynabeads® surface, preventing the reaction with the surface amines.  

 

Figure 4-19 Calibration curve and extrapolated concentrations of primary amino groups 
present at different stages of L-cysteine immobilisation. 

Table 4-5 Extrapoleted values of amines present at each L-cysteine immobilisation stage. 

 Abs SD Amino groups 
(μM) 

Dynabeads® with EMCS and reacted 
with L-cysteine 0.184 0.030 0.370 

Dynabeads® with EMCS (control) 0.460 0.030 17.282 
Dynabeads® with unspecific L-

cysteine (control) 0.819 0.141 39.286 

Dynabeads® (control) 0.740 0.021 34.481 

The extrapolated concentration values from the calibration curve showed clearly the 

lower signal obtained in the L-cysteine immobilised Dynabeads®, Figure 4 15. 
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iii. Detection and quantification by depletion of immobilised 5β-

cholanic acid with ninhydrin 

Similar procedure was done with amino Dynabeads® either unmodified for comparison 

or direct immobilised with 5β-cholanic acid, Figure 4-20 and Table 4-6.  

 

Figure 4-20 Colour change in the presence of primary amines. (Left to right: Blank 
solution, unmodified amino Dynabeads®, amino Dynabeads® with 5β-cholanic acid) 

In this case it was seen a decrease in colour when compared unmodified Dynabeads® 

with modified ones. This was the desired result that confirmed surface immobilisation. 

Table 4-6 Extrapolation of amino groups present on Dynabeads® surface after 
immobilisation and in controls 

 Abs SD Amino 
groups (μM) 

Dynabeads® with 5β-cholanic acid 0.430 0.026 15.442 
Dynabeads® with unspecific 5β-

cholanic acid (control) 0.907 0.035 44.726 

Dynabeads® (control) 0.635 0.0097 27.998 

It was seen reduction in reactive amine groups on the immobilised Dynabeads® in 

comparison with unmodified Dynabeads®. That was assumed to be caused by the 

previous amines reaction with 5β-cholanic acid. It was considered that direct surface 

immobilisation occurred efficiently. 

c) Discussion 

Ninhydrin detection was based on the presence of reactive primary amino groups. The 

amino Dynabeads® reacted well with ninhydrin and it was possible to determine if they 

were or not immobilised. 

It should have been seen an increase of amino groups due to L-cysteine so the 

solution should had been darker than the immobilised EMCS, than in turn should had 
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been lighter than the unmodified Dynabeads®. This might show that there was no 

immobilisation of L-cysteine or that unspecific cover of the Dynabeads® preventing the 

primary amines reaction with ninhydrin.  

In the case of the direct immobilisation it was possible to assume immobilisation of 5β-

cholanic acid by decrease of available amino groups. Again it was possible to assume 

the validation of the EDC/NHS chemistry and protocol. 

There were several hypotheses for ninhydrin non-reactivity after the second step 

immobilisation, but it was not possible to confirm neither. For that reason it was seen 

as inappropriate to use ninhydrin reaction as side-technique for the Dynabeads® 

immobilisation when using a spacer and target, which was exactly what was decided to 

have for aptamer generation. 

It was necessary to pursue a technique able to confirm immobilisation when more than 

one molecule was surface immobilised. 

XPS allowed surface analysis by the detection of atomic elements, the percentage of 

each, and the neighbourhood interaction between elements. XPS was used to access 

how efficient LMC target derivatives were immobilised onto the surface of 

Dynabeads®.  

Test of X-ray Photoelectron Spectroscopy for detection of functional groups to 
confirm Dynabeads® immobilisation 

a) Materials and Methods 

i. Materials and Chemicals 

In house immobilised Dynabeads®, Swallon LTE scientific oven, and X-ray 

spectrophotometer (Kratos AXIS ULTRA (1486.6 eV) with fixed analyser transmission 

and with 12 kV anode potential). 

ii. Samples preparation 

In house immobilised Dynabeads® and controls were dried at 37 °C, until no visible 

liquid was observed, labelled and sent for analysis. From each sample three replicates 

were taken and measured. 

iii. XPS analysis 

The XPS analysis was done at the XPS laboratory of Nottingham University, and the 

costs were supported by EPSRC.  
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The procedure was reported as being the samples were put into a sample track and 

exposed to mono-chromated Al kα X-ray after being introduced overnight into the 

instrument ultra-high vacuum chamber. The emission current was of 10 mA. The scans 

were high resolution with 20 eV pass energy and a take-off angle of 90°. 

b) Experimental and Results 

i. L-cysteine immobilisation 

• L-cysteine immobilised via EMCS spacer 

Considering the chemical bonds of L-cysteine immobilisation on the surface of amino 

Dynabeads®, via the spacer EMCS (Figure 4-9), it was expected to see an increase or 

new appearance of the following bound elements: 

carbonyl (R(C=O)R´), carboxamide (R-(C=O)NR´), sulphydril (RC-SH) and carboxylic 

(R(C=O)OH).  

Also a shift in elements position due to new neighbourhood was expected and the 

atomic percentage of elements should have varied and the full width at half maximum 

between elements (FWHM) should also have changed.  

The easiest detectable element for immobilisation validation was sulphur as it was the 

only new introduced element. Also it was expected a decrease of primary amino 

groups after EMCS spacer immobilisation and an increase after L-cysteine 

immobilisation. 

After data comparison of amino Dynabeads®, amino Dynabeads® with immobilised 

EMCS and amino Dynabeads® with the target derivative and spacer immobilisation, it 

was clear that there was no evidence of immobilisation of L-cysteine. The 

immobilisation protocol was inefficient.  

ii. 5β-cholanic acid immobilisation 

5β-cholanic acid immobilisation was tested directly on the surface of amino 

Dynabeads® and via cadaverine spacer on carboxyl Dynabeads®. 

• 5β-cholanic acid immobilisation via spacer cadaverine 

When comparing the general elements positions after calculating the replicates 

average it was seen two elements peak shifts between the different stages of 

immobilisation. The N 1s and O 1s were different in the Dynabeads® immobilised with 

cadaverine and also with cadaverine and 5β-cholanic acid, Table 4-7, Figure A-1. 
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Table 4-7 Comparison of binding energy position average, standard deviation and 
coefficient of variation of C, N and O present in carboxylic Dynabeads® immobilised with 
5β-cholanic acid via spacer cadaverine, and controls. 

Element CB (DMSO) CB with immob. cadaverine 

 Position(eV) SD CV% Position(eV) SD CV% 

C1s 282.67 0.58 0.2 283 0 0 

N1s 397 0 0 399 0 0 

O1s 530 0 0 529.67 0.58 0.11 

Element CB with immob. cadaverine and 5β-
cholanic acid CB with 5β-cholanic acid 

 Position(eV) SD CV% Position(eV) SD CV% 

C1s 283.33 0.58 0.2 282.33 0.58 0.2 

N1s 398.67 1.15 0.29 397.33 0.58 0.15 

O1s 529.67 1.15 0.22 530 0 0 

It was after studying the sub-peaks produced by each element that it was clear the 

influence of immobilisation in each element neighbourhood.  

This was particularly visible in the full immobilised Dynabeads® , were the bond C=O 

appeared under the O 1s at the binding energy average of 531.06 eV with a standard 

deviation of 0.07 and a coefficient of variation of 0.01%. This binding energy presented 

an increase in concentration percentage inside the element binding energy range in 

comparison to the unmodified Dynabeads®, Figure A-2, Figure A-3 and Figure A-4. 

The same was seen under the N 1s, were a new bond appeared at the average of 

400.09 eV, with a standard deviation of 0.57 and a coefficient of variation of 0.14%, 

Figure A-5, Figure A-6 and Figure A-7.   

Another way of confirming immobilisation was by studying the full width at half 

maximum average of each element at the different immobilisation step, Table 4-8. 
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Table 4-8 Comparison of full width at half maximum average, standard deviation and 
coefficient of variation of C, N and O present in carboxylic Dynabeads®  immobilised 
with 5β-cholanic acid via spacer cadaverine, and controls. 

Element CB (DMSO) CB with immob. cadaverine 

 FWHM SD CV% FWHM SD CV% 

C1s 2.85 0.09 3.33 2.72 0.14 5.20 

N1s 2.56 0.19 7.37 3.05 0.12 3.80 

O1s 3.22 0.04 1.35 3.28 0.14 4.24 

Element CB with immob. cadaverine and 5β-
cholanic acid CB with 5β-cholanic acid 

 FWHM SD CV% FWHM SD CV% 

C1s 3.60 0.84 23.31 2.71 0.13 4.62 

N1s 3.41 0.30 8.70 3.35 0.14 4.06 

O1s 3.59 0.11 3.02 3.09 0.03 0.99 

There was clearly an increase of FWHM values for the three elements, in the full 

immobilised Dynabeads®. This was sign of the existence of more sub-peaks inside 

each element, which occurred due to immobilisation. 

A last point of study for the obtained data was the atomic percentage of each element 

at the different immobilisation steps for the three elements, Table 4-9. 
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Table 4-9 Comparison of atomic percentage average, standard deviation and coefficient 
of variation of C, N and O present in carboxylic Dynabeads®  immobilised with 5β-
cholanic acid via spacer cadaverine, and controls. 

Element CB (DMSO) CB with immob. cadaverine 

 average SD CV% average SD CV% 

C1s 66.28 1.62 2.45 67.35 0.095 0.14 
N1s 1.90 0.30 15.81 5.58 0.248 4.34 
O1s 25.32 0.83 3.26 21.95 0.34 1.54 

Element CB with immob. cadaverine and 5β-
cholanic acid CB with 5β-cholanic acid 

 average SD CV% average SD CV% 

C1s 67.77 1.56 2.30 67.32 0.73 1.09 
N1s 6.74 0.14 2.08 2.20 0.26 11.87 
O1s 22.96 1.44 6.26 25.43 0.44 1.74 

It was seen a shift in percentage towards the N 1s and the O 1s in the immobilised 

Dynabeads® as expected. 

• 5β-cholanic acid direct immobilisation 

The direct 5β-cholanic acid immobilisation on the surface of amino Dynabeads® was 

confirmed by sub-peaks biding energy values. When looking at the general binding 

value for each element, it was not seen a significant change between immobilised and 

control Dynabeads®, Table 4-10, Figure A-8. 

As in the 5β-cholanic acid immobilisation via a spacer, shifts in the internal positions 

after immobilisation were seen. At C 1s it was seen a new sub-peak binding energy 

with 287.91 eV average, with 0.07 of standard deviation and 0.02% of coefficient of 

variation, Figure A-9 and Figure A-10. The O 1s also presented a new binding position 

averaged at 530.93 eV, with standard deviation of 0.15 and 0.03% of coefficient of 

variation, Figure A-11 and Figure A-12. The N 1s presented a new internal peak 399.76 

eV with standard deviation of 0.12 and a coefficient of variation of 0.03%, Figure A-13 

and Figure A-14. 
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Table 4-10 Comparison of binding energy position average, standard deviation and 
coefficient of variation of C, N and O present in amino Dynabeads® immobilised with 5β-
cholanic acid, and controls. 

Element AB (DMSO) AB with immob. 5β-cholanic acid 

 Position(eV) SD CV% Position(eV) SD CV% 

C1s 283,33 0,58 0,20 284,00 0,00 0,00 
N1s 397,00 0,00 0,00 397,33 0,58 0,15 
O1s 530,33 0,58 0,11 530,67 0,58 0,11 

Element AB with 5β-cholanic acid 5β-cholanic acid 

 Position(eV) SD CV% Position(eV) SD CV% 

C1s 284,00 0,00 0,00 283,00 0,00 0,00 
N1s 

397,33 0,58 0,15 
Not  

present 
Not  

present 
Not  

present 
O1s 531,00 0,00 0,00 531,00 0,00 0,00 

Analysing the FWHM it was observed that there was not a significant difference 

between the immobilised Dynabeads® and the unmodified. This was expected 

because of the low molecular of the 5β-cholanic acid, which did not added significant 

length to the molecule, Table 4-11. 
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Table 4-11 Comparison of full width at half maximum average, standard deviation and 
coefficient of variation of C, N and O present in amino Dynabeads®  immobilised with 5β-
cholanic acid, and controls. 

Element AB (DMSO) AB with immob. 5β-cholanic acid 

 FWHM SD CV% FWHM SD CV% 

C1s 2.95 0.07 2.46 2.86 0.10 3.49 

N1s 2.30 0.23 9.87 2.45 0.24 9.61 

O1s 2.41 0.05 2.01 2.41 0.29 12.08 

Element AB with 5β-cholanic acid 5β-cholanic acid 

 FWHM SD CV% FWHM SD CV% 

C1s 2.93 0.41 14.04 2.04 0.13 6.48 

N1s 2.43 0.34 13.97 Not  
present 

Not  
present 

Not  
present 

O1s 2.54 0.14 5.60 3.07 0.18 5.81 

Also the comparison of atomic percentages of negative controls to the immobilised 

samples, confirmed the direct immobilisation of 5β-cholanic acid to the surface of 

amino Dynabeads®. There was an increase in the percentage of N 1s and O 1s which 

caused a decrease in the value for C 1s,Table 4-12.  

Table 4-12 Comparison of atomic percentage average, standard deviation and coefficient 
of variation of amino Dynabeads® direct immobilisation of 5β-cholanic acid and controls 

Element AB (DMSO) AB with immob. 5β-cholanic acid 

 At.% SD CV% At.% SD CV% 

C1s 71.81 1.46 2.03 67.43 0.29 0.44 

N1s 1.31 0.20 15.25 3.80 0.15 3.8 

O1s 25.95 1.19 4.60 28.30 0.39 1.37 

Element AB with 5β-cholanic acid 5β-cholanic acid 

 At.% SD CV% At.% SD CV% 

C1s 70.71 3.98 5.63 86.35 7.58 8.77 
N1s 1.25 0.76 60.35 Not  

present Not present Not 
present 

O1s 27.34 3.61 13.22 12.34 6.42 52.03 
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iii. Lysine immobilisation 

N-BOC-lysine was surface immobilised and de-protected afterwards. The correct 

immobilisation and de-protection would have the structure represented in Figure 4-21. 

 

Figure 4-21 Surface immobilised lysine to amino Dynabeads®. 

Lysine was directly immobilised on the surface of amino Dynabeads® using the 

protected version of the target, N-BOC-lysine. The immobilisation and de-protection 

were made and XPS was used to confirm both steps. The binding energy was 

compared between immobilisation and controls to confirm changes in the atomic 

bonds, Table 4-13 and Figure A-15. 

Table 4-13 Comparison of binding energy position average, standard deviation and 
coefficient of variation of C, N and O present in carboxyl Dynabeads®  immobilised with 
lysine, and controls. 

Element CB (PBS) CB with immob. lysine 

 Position(eV) SD CV% Position(eV) SD CV% 

C1s 283,67 0,58 0,20 283,67 0,58 0,20 
N1s 400,67 0,58 0,14 398,33 0,58 0,14 
O1s 530,67 0,58 0,11 530,67 0,58 0,11 

Element CB with immob. BOC-lysine CB with BOC-lysine  

 Position(eV) SD CV% Position(eV) SD CV% 

C1s 283,00 0,00 0,00 283,33 0,58 0,20 
N1s 394,00 6,08 1,54 398,00 0,00 0,00 
O1s 530,00 0,00 0,00 530,33 0,58 0,11 

No position changes were observed for C 1s or O 1 s, but it was verified a change in 

the N 1s at each stage, Figure A-17, Figure A-19 and Figure A-21. This could confirm 

the changes of surface immobilisation and de-protection. It was necessary to look at 

other parameters. 
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Looking at the FWHM values, they did not show the presence of a long molecule, this 

was the same as in the case of the direct immobilisation of 5β-cholanic acid. The low 

molecule weight did not add significant length to the initial molecule to allow a 

significant increase in the FWHM, Table 4-14. 

Table 4-14 Comparison of full width at half maximum average, standard deviation and 
coefficient of variation of C, N and O present in amino Dynabeads® immobilised with 5β- 
stearane, and controls. 

Element CB (PBS) CB with immob. lysine 

 FWHM SD CV% FWHM SD CV% 

C1s 2,80 0,27 9,75 3,34 0,52 15,65 
N1s 4,29 0,38 8,86 3,95 0,70 17,65 
O1s 3,01 0,36 12,05 3,63 0,62 17,02 

Element CB with immob. BOC-lysine CB with BOC-lysine  

 FWHM SD CV% FWHM SD CV% 

C1s 3,02 0,16 5,44 2,88 0,40 13,87 
N1s 2,50 0,17 6,74 2,46 0,40 16,39 
O1s 3,24 0,04 1,16 3,19 0,27 8,48 

The atomic percentage was an indicator of immobilisation, so the percentage of C 1s, 

N 1s and O 1s was compared between the stages of immobilisation, Table 4-15. 
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Table 4-15 Comparison of atomic percentage average, standard deviation and coefficient 
of variation of carboxyl Dynabeads® direct immobilisation of lysine and controls 

Element CB (PBS) CB with immob. lysine 

 At.% SD CV% At.% SD CV% 

C1s 71,06 0,58 0,81 68,88 0,47 0,68 
N1s 2,65 0,53 20,09 5,17 0,20 3,84 
O1s 24,74 0,15 0,59 24,38 0,04 0,14 

Element CB with immob. BOC-lysine CB with BOC-lysine  

 At.% SD CV% At.% SD CV% 

C1s 63,08 1,23 1,95 62,96 1,49 2,37 
N1s 4,86 0,13 2,77 1,38 0,18 13,02 
O1s 25,81 0,35 1,37 28,84 0,32 1,09 

It was seen an increase in N atomic percentage after surface immobilisation, showing 

the presence of two amino groups, from the Dynabeads® and from the target. The de-

protection appeared to have been also efficient because there was reduction in O 

atoms and C from the protection to the de-protected target. 

c) Discussion 

By analysing binding energy values it was possible to detect the presence of specific 

molecular bonds. The increase of specific atomic percentages and FWHM allowed 

understanding of the changes made by efficient immobilisation. 

It was found that L-cysteine did not appear to be immobilised because there were not 

found shifts in atomic neighbourhoods of C 1s, N 1s or O 1s, it was not found an 

increase of atomic percentage towards N 1s and C 1s as expected, and the presence 

of a new atomic element S 2s was not found as it should had in an efficient 

immobilisation.   

5β-cholanic acid was found immobilised either via the spacer cadaverine or directly into 

the surface of Dynabeads®. It was found that the immobilisation method used, proved 

to be efficient for both cases. The several binding energy shifts were confirmed in 

literature to be caused by –R(C=O)NR´- covalent bonds,(Chen, Nikles 2001, Eralp, 

Shavorskiy et al. 2011). 

The immobilisation of lysine via its protected version, BOC-lysine, was confirmed by 

the atomic percentage increase of amines and oxygen. Due to the atomic nature of 

compounds, there were no different elements and the fact that lysine and 

carbodiamines both have nitrogen and oxygen, increased the difficulty to confirm de-
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protection. The only factor to support the efficient de-protection was the decrease in 

carbon and oxygen that was as expected after de-protection. Lysine was surface 

immobilised and assumed to be de-protected because it would be necessary to 

compare the obtained data with lysine.  

In summary, IR and FTIR were inadequate to confirm LMC target derivatives 

immobilisation. Ninhydrin reaction with primary amines showed to be compatible only 

with direct immobilisation of amino Dynabeads®, and XPS proved to be appropriated to 

be used to confirm Dynabeads® immobilisation in general. 

Summary and conclusion 

XPS allowed confirmation of surface modifications. It proved to be adequate to be used 

with Dynabeads® and the low molecular size LMC target derivatives. Despite this, it 

was found that ideally the chemical nature of the target immobilised should be different 

from the Dynabeads® used. This would add new atomic species making the detection 

easier.  

The fact that it was concluded that L-cysteine immobilisation was inefficient lead to the 

understanding that previous techniques used to detect the presence of L-cysteine, in 

special the Ellman’s reagent technique, did not present positive results, probably not 

because it was not adequate for Dynabeads® immobilisation detection, but because 

there was no immobilisation. Because XPS was used in other immobilised sets it was 

possible to understand that the technique itself worked and that it was the 

immobilisation the problem. This did not happen in previous techniques because they 

were too specific for target detection and there were no positive controls available for 

technique validation.  

4.7. Initial testing of aptamer generation against small molecules 
relevant for the LMC, using the FluMag Systematic 
Evolution of Ligands by Exponential Amplication (SELEX) 
method 

The initial objective of testing if it would be possible to generate aptamers within the 

project time frame and with the available resources was affected by the obstacles 

found in section 4.5. For this reason it was necessary to modified the objective and 

contextualise it with the task of confirming the derivatives surface immobilisation. It was 

decided to focus on highlighting problems found in the chosen SELEX method prior to 
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attempt aptamer generation against the LMC immobilised target derivatives. This 

allowed the test of FluMag-SELEX while confirming Dynabeads® immobilisation. It was 

decided to study two major FluMag-SELEX steps: the amplification of eluted strands 

and the separation of the positive strand after amplification. The new objectives were 

to study the use of real time PCR, which was introduced as a novel technique and to 

compare the standard use of a denaturing gel and the less common use of streptavidin 

coated Dynabeads® for ssDNA separation.  

The LMC target derivatives chosen to test aptamer generation were L-cysteine and 5β-

cholanic acid and immobilisation was assumed successful until confirmation in order to 

allow the study of the FluMag-SELEX during the project time frame. This was contrary 

to the reason why immobilisation wanted to be confirmed, but in order to proceed with 

the feasible part of the aptamer generation work it was necessary to use assumed 

immobilised Dynabeads®. 

Due to the fact that the confirmation of immobilisation was more complex than 

expected and that the studied steps in the FluMag-SELEX showed sensitive points in 

the method, it was not possible to complete a cycle of aptamers generation in the 

allocated time frame and resources. 

Nevertheless the learned lessons allowed the input of suggestions and knowledge for 

future work. 

4.7.1. Establishment and optimisation of iterative steps in 
preparation for applying FluMag SELEX method to LMC 
targets 

As explained in section 4.4, the chosen method for aptamer generation was the 

FluMag-SELEX. This method used Dynabeads® as solid surface for target 

immobilisation and modification of the positive strand with fluorescein during the 

amplification step, (Stoltenburg, Reinemann,C., Strehlitz,B. 2005). 

The chosen target derivatives for aptamer generation were L-cysteine and 5β-cholanic 

acid. In order to improve the knowledge of the FluMag-SELEX it was assumed, until 

section 4.5 completion, that the target derivatives had been immobilised. 

The FluMag-SELEX was an established method but in order to implement it in house 

and to introduce the real time PCR (qPCR) instead of the traditional PCR and to 
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choose from two different techniques for ssDNA separation, it was necessary to test 

the amplification step and the ssDNA separation step individually. 

qPCR was not a technique used in aptamer generation, especially within the FluMag-

SELEX. qPCR was used in literature with RNA aptamers. There was an example 
where selected strands that bound the target (E-coli surface proteins) were amplified 

by reverse transcriptase qPCR, (L, Kim et al. 2009).  

qPCR was a technique that allowed following the amplification in real time. Moreover 

based on a calibration curve it was possible to quantify the eluted material obtained in 

each iteration, introduce wanted modifications to the strands via the primers, and 

discuss the DNA variability of the eluted strands based on their temperature melting 

point. qPCR has three major cycle steps: denaturation of existing dsDNA, annealing of 

primers, and amplification by taq polymerase using each strand as template. Usually 

those cycles are repeated at least 25 to 30 times and afterwards a melting curve 

analysis is performed. The amplification is divided in two parts, the exponential and the 

plateau. The amplification is detected by using SYBR green dye. In the presence of 

dsDNA the dye SYBR green intercalates it and its fluorescence is registered. Once the 

taq polymerase amplified each ssDNA into a dsDNA, the SYBR green binds to it and 

there is a raise of fluorescence, which is proportional to the presence of dsDNA, When 

analysing the data the obtained Ct (threshold cycle) values are considered as the level 

of fluorescence above the defined baseline, at which is considered a sign of DNA 

amplification, and used for quantification. (BioRad 2006).  

 

Figure 4-22 qPCR amplification graph showing the exponential and plateau phases and 
the Ct value, adapted from (BioRad 2006). 
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The separation of the positive strand was tested using either the standard method with 

a denaturing gel or a less common method where streptavidin coated Dynabeads® 

were used.  

The initial step tested was the amplification by qPCR implementation. 

qPCR allowed the amplification of the eluted strands obtained after selection of the 

ssDNA pool with the immobilised target. As qPCR was implemented it was necessary 

to test the chosen primers, to decide on the best running conditions and to obtain a 

calibration curve that would allow the posterior quantification of the eluted strands. 

Amplification of selected ssDNA by real time Polymerase Chain reaction (qPCR)  

a) Materials and Methods 

i. Materials and chemicals 

ssDNA random library from Invitrogen, primers from Sigma and Invitrogen, SyBr Green 

mix with taq polymerase from PrimerDesign (Precision Mastermix), DNAse and RNAse 

free water (CAS 7732-18-5; W4502) from Sigma, 96 qPCR transparent or white plates 

(MSP-9601) and transparent optical sealing tape (223-9444), CFX 96 thermal cycler 

from BioRad, Picodrop spectrophotometer and UV tips from Picodrop, UV light cabinet, 

70 % isopropanol (IPA), ice. 

ii. Method for qPCR 

The material and DNase free water were set under the UV light for at least 18 min after 

the chamber surface had been wiped with 70 % IPA. The primers, SyBr Green mix and 

sample were kept on ice until use. A mixture of SyBr Green mix, primers and either 

sample or water was prepared freshly at every run inside the working chamber. To 

avoid contamination the sample was the last to be added. The plate was sealed and 

introduced into the qPCR machine and the run started. While the materials were UV 

treated the software had been set according to the run conditions. The final adopted 

conditions were a cycle of two steps (95 ºC for 10 min, 95 ºC for 15 sec, 60 ºC for 1 

min), 50 µl of final volume, primers at 200 nM and in the first FluMag-SELEX iteration 

50 cycles and 40 in all others. 

iii. Method for qPCR libraries and primers 

Two ssDNA libraries were tested. Each had specific fixed ends to allow primer 

annealing and a random sequence between the flanked regions. The first library was 

adapted from Nutiu et al (2005), (Nutiu, Li 2005). This was chosen because the 
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structure-switch was considered an interesting method, as explained previously. The 

second library was adapted from the original description of FluMag-SELEX, Table 4-16. 

Table 4-16 Tested random ssDNA, adapted from published work. 

Adapted from Nutiu et al (2005), (Nutiu, Li 
2005) 

5´-CCTGCCACGCTCCGCAAGCTT-(40)-
TAAGCTTGGCACCCGCATCGT-3´ 

Adapted from Stoltenberg (2005), 
(Stoltenburg, Reinemann,C., Strehlitz,B. 
2005) 

5´-ATACCAGCTTATTCAATT-N(40)-
AGATAGTAAGTGCAATCT -3´ 

The primers tested were the published ones and their modified versions.  The modified 

versions were re-designed and analysed with free software from IDT technologies, (IDT 

2013).  

Table 4-17 Primer sets tested for random ssDNA libraries. 

Forward primer Reverse primer 
5´-GCGGAGCGTGGCAGG -3´ 
5´-FAM-ACGGAGTGTGGC -3´ 
5´-FAM-AAGCTTGCGGAGCGTGGCAG 
G-3´ 

5´-ACGATGCGGGTGCCAAGCTTAr-3´ 
5´-Poly A(20)-ACGATGCGTGTGTCAA -3´ 
5´-Biotin-ACGATGCGTGTGTGCAAA- 3´ 
5´-ACGATGCGGGTGCCAAGCTTA-3´ 

5´-FAM-ATACCAGCTTATTCAATT-3´ 
 

5´-PolyA(20)-HEGL-AGATTGCACTT 
ACTATCT -3´ 
5´-Biotin-AGATTGCACTTACTATCT-3´ 

iv. Method for qPCR runs 

Several running conditions were tested with the aim to obtain a working running assay. 

The qPCR chosen detection dye was SyBrGreen which was fluorescent at 524 nm, 

allowing the visualisation of dsDNA by intercalating it.  
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Table 4-18 Tested qPCR running conditions with random ssDNA libraries. 

Performed 
assays 

ssDNA library (adapted from Nutiu et al (2005), 
(Nutiu, Li 2005) 

ssDNA library (adapted 
from Stoltenburg et al 

(2005)) 
Primer set 1 Primer set 2 Primer set 3 Primers set I 

Initial run 
mimicking 
references 

        

Primers at 
different 

concentrations 
        

Different  
Annealing 

temperature 
       

Calibration curve        

Agarose 2% gel        
Analyse of 

melting 
temperature 

products 

     

Run at two or 
three steps      
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v. Methods for qPCR melting curve and products quality control 

The calibration curve was only performed after having a running assay. The stock 

library was diluted and triplicates of each concentration were made. The melting curves 

were also run and analysed to detect the presence of primers dimers and variability of 

the sample. The melting curve was performed after the run and consisted in an 

increase of temperature from 65°C to 95°C in a short period of time (0.05 min). 

b) Experimental and Results 

i. Run of qPCR primers and chosen libraries 

The libraries tested, Table 4-16, were random sequences with fixed sequences at their 

ends for primer annealing. The library chosen was adapted from Nutiu et al (2005) and 

the chosen primers set were the second pair. It was then tested the best annealing 

temperature. The temperature gradient was tested with the annealing temperature 

ranging from 59° to 69°C. The primers were at 200nM and the ssDNA library at 40 

ng/μl. The melting curve presented products with melting temperatures of 77.0°C or 

77.5°C, Figure 4-23 and Table 4-19. 

 

Figure 4-23 Temperature gradient, from 59°C to 69°C, for best primer annealing 
temperature. 

The amplification curve showed amplification in all the samples with the exception of 

the negative controls and Ct values according to the initial ssDNA concentration. The 

melting curve confirmed that the nature of samples was the same and no primer dimers 

or other false positives were amplified. 
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Table 4-19 Average of Threshold cycles obtained at each annealing temperature. 

Temperature Ct Average SD CV% 
69.0 n.a. 
68.5 n.a. 
67.4 38.78 0.84 2.17 
65.4 29.86 0.48 1.60 
63.0 26.27 0.09 0.35 
61.0 24.50 0.50 2.03 
59.7 23.59 0.20 0.87 
59.0 23.25 0.26 1.12 

The Ct obtained at the different temperatures allowed to choose the best annealing 

temperature versus the initial amplification starting point. It was chosen to use the 

standard 60 °C, even if it was not tested directly on that temperature range, it was seen 

that the obtained Ct at 59.7 °C was 23.59 which was accepted as desired. 

ii. qPCR running conditions and calibration curve 

The best running conditions were a hot start of 95ºC for 10 min, a denaturation step at 

95ºC for 15 sec, the annealing and extension steps were made at  60ºC for 1 min,  and 
the melting curve run from 55 to 95°C in 0.05 min. Afterwards a calibration curve was 

obtained. The calculation of reaction efficiency (E%) was made using the formula 

based on curve slop, Equation 4-2. 

𝐸 (%) = �10�
−1
𝑚 � − 1� × 100 

Equation 4-2 The calculation of qPCR amplification efficiency was depended on the 
obtained calibration curve slop. 
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Figure 4-24 Calibration curve of ssDNA library diluted 1:10 using FAM-Fw primer and 
Poly A tail- Rw primer. 

The obtained reaction efficiency was of 84.3%. That was not high as desired and 

required for the standard MIQE guidelines (above 90%), so a better calibration curve 

had to be obtained (Bustin, Benes et al. 2009). 

 

Figure 4-25 Melting curve obtained for calibration curve of ssDNA library diluted 1:10. 
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The obtained melting curve did not show any primer dimers as desired and confirmed 

the specificity of the amplified material. 

A new calibration curve was made with a lower interval between concentrations, Figure 

4-26. 

 

Figure 4-26 ssDNA library calibration curve diluted 1:5 using FAM-Fw primer and Poly A 
tail- Rw primer. 

When testing a calibration curve using smaller dilution factors it was possible to obtain 

a reaction efficiency of 92.3%. This was under the required standards for qPCR work 

that required at least three orders of magnitude but did not satisfied the 

recommendation of representing at least 5 log10 concentrations, (Bustin, Benes et al. 

2009).  Nevertheless it was expected to cover the eluted working concentrations of 

ssDNA (obtained after target and library pool mixture).  
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Figure 4-27 Melting curve obtained for the ssDNA calibration curve diluted 1:5. 

Once more the obtained melting curve showed products specificity, but at lower degree 

than before showing that a higher number of different sequences were amplified. This 

was expected because the ssDNA library was rich in variability. It was not seen any 

primer dimers which was positive and confirmed that only the library was amplified. 

c) Discussion 

After testing two different libraries and primers sets, running conditions and finding the 

best annealing temperature for the primers set, it was obtained the best qPCR running 

conditions. Based on that, a calibration curve was obtained with ssDNA stock dilutions 

of 1:5 with a reaction efficiency of 92.3%.  

The separation of the positive ssDNA after qPCR was made either using a denaturing 

gel were strands were separated by size, or the use of streptavidin coated 

Dynabeads® that captured the biotin modified strands. 

Separation of positive ssDNA after qPCR amplification into dsDNA 

a) Materials and Methods 

i. Materials and chemicals 

Streptavidin coated Dynabeads from Invitrogen, binding buffer (100mM NaCl, 20mM 

Tris-HCl, 2mM MgCl2, 5mM KCl, 1mM CaCl2, 100mM NaOH, 5M NaCl, magnetic 

support from Invitrogen, 6% TBE-urea pre-cast acrylamide gels from Invitrogen 
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(EC68655BOX), TBE-urea loading buffer, running gel tank from Invitrogen, TBE 

running buffer from Invitrogen (155581-028), SyBr Green Safer view (G108) from abm, 

ethanol, 3 M sodium acetate. 

ii. Method to use streptavidin coated magnetic beads (SA) for DNA 

strand separation  

The protocol was adapted from Wochner et al (2007), (Wochner, Cech et al. 2007). It 

was noticed that there was no information about the volume to add of dsDNA to SA 

Dynabeads®, which were washed three times with 500 µl of Binding buffer. To 180 µl 

of qPCR product was added 45 µl of 5 M NaCl and mixed for 30 min at RT. The 

Dynabeads® were magnetically separated from the solution which was discarded. 

Three washes of 3 min each with agitation with 1 ml of Binding buffer were made. After 

the last wash and discarding the liquid, 200 µl of 100 mM NaOH was added, the 

Dynabeads® were agitated at different times and the liquid separated from the 

Dynabeads® and collected. To this 760µl of Binding buffer was added, and 

precipitation with ethanol was done. After it was re-suspended in 10 µl DNAse free and 

loaded into a 2% agarose gel or quantified with picodrop for method validation. 

iii. Method of denaturing polyacrylamide gel (PAGE) for DNA 

strand separation  

It was added to 5 μl of sample (negative strand was modified with HEGL-poly A tail in 

qPCR), 5 μl of TBE-urea loading buffer. The samples were denatured and loaded into 

the gel. It was tested as denaturing agents i) NaOH at 50 mM, temperature was tested 

for 3min at ii)70°C, and iii) 90°C and at iv) 95°C for 10 min. The gel was run at 180V. 

Afterwards was immersed in a SYBR green safe view staining bath and revealed under 

UV. 

b) Experimental and Results 

i. Use of streptavidin coated magnetic beads (SA)  

The way to verify the separation efficiency was to use either an agarose gel or UV 

reading with picodrop. The picodrop was chosen because it was more sensitive and 

required less material than the gel, (Picodrop 2011). The addition of dsDNA to SA 

Dynabeads® was tested twice. The negative strand was modified with biotin via qPCR. 

It was necessary to test two times for NaOH actuation because it was not found 

information on the reference article, Table 4-20. 
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Table 4-20 Amount of dsDNA added to SA Dynabeads® and recovered ssDNA. 

 Added dsDNA (ng/μl) Recovered ssDNA (ng/μl) 
NaOH 

actuation 
time (min)  

Average SD CV%  Average SD CV% 

1.00 481.87 1.27 0.26 Samp. 1 n.a. n.a. n.a. 

1.00 452.57 1.17 0.26 
Samp. 1 2.57 0.42 16.22 
Samp. 2 n.a. n.a. n.a. 
Samp. 3 n.a. n.a. n.a. 

5.00 427.93 
 

 

1.92 0.45 Samp. 1 5.53 0.74 13.32 
Samp. 2 1.70 0.56 32.75 

 

The recovered ssDNA was very low compared with the added concentration. This 

could have been caused by poor immobilisation, denaturation or recovery. It was 

repeated the assay but similar results were obtained. The technique was not 

performing as desired. 

ii. Use of denaturing polyacrylamide gel conditions (PAGE) 

It was tested a PAGE gel to obtain the positive strand of dsDNA after an efficient 

denaturation. The PAGE gel was run at 180V and the samples were denatured either 

by the action of NaOH or by temperature. The dsDNA was obtained from qPCR and 

the positive control from stock library. The results were exposed in Figure 4-28. 

n.a.- not available 
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Figure 4-28 PAGE gel to test the best denaturing conditions of dsDNA, from left to right: 
ladder, dsDNA treated with 50 mM NaOH and positive control (white and red), dsDNA 
heated at 70 °C for 3 min and positive control (blue and green), dsDNA heated at 90 °C for 
3 min and positive control (violet and yellow), dsDNA heated at 95°C for 10 min and 
positive control (grey and orange), negative control (not seen). 

The PAGE gel showed first of all an overload of wells with excessive concentration of 

dsDNA and primers. Also it was seen sample degradation when treated with NaOH. 

The temperature treatments were gentler but only the higher temperature showed a 

sufficient separation between strands. Those conditions were adopted to denature the 

dsDNA before PAGE loading. 

c) Discussion 

The SA separation method was tested first by following the manufacturer protocol (not 

shown) and after being mentioned in several articles in aptamer generation, the 

protocol published by Wochner et al (2007) was tested. There were two major points 

that required more detail. The first was the concentration of dsDNA used, as the article 

only referred the volume added and the binding capacity of 100 pmol per 1.5 mg 

Dynabeads®, (Wochner, Menger et al. 2008, Wochner, Cech et al. 2007). The second 

point was the low detailed information about the use of the denaturing agent, sodium 

hydroxide, because no time of contact was mentioned. Also sodium acetate 3 M was 

used instead of sodium phosphate to neutralise and precipitate the ssDNA. 

The inefficiency of SA separation might have been due to low time of denaturing NaOH 

incubation, inefficient modification during qPCR, or a mixture of both. 
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The PAGE gel presented degradation and also a high content of primers, as well as 

wells overloaded. Despite this it was chosen to adapt as separation process the use of 

PAGE with heating at 95 °C for 10 min as denaturing step. This was because it was the 

option where the separation and run looked neater as well as it was the better establish 

method. It was also decided to reduce the running voltage to 130 V (better separation) 

and to load less concentration of sample.  

The modification of the positive strand with fluorescein during qPCR allowed a 

visualisation in the PAGE, but also the quantification by fluorescence reading. This was 

considered important because it would allow quantifying the amount of ssDNA pool 

before each selection after iteration 1. 

Detection and quantification of ssDNA to access quality during the iterative 
selection steps 

a) Materials and Methods 

i. Materials and chemicals 

Fluorescein salt, 18Ωcm water, eppendorf tubes, FAM modified forward primer, black 

microplate 

ii. Method to detect ssDNA modified with fluorescein 

A stock solution of fluorescein was made with water and from there several dilutions. 

Those were used to obtain a calibration curve. Three different concentrations of 

fluorescein modified primer were also diluted in water. 200 μl of each of the solutions 

was transferred to a black microplate and fluorescence was read at excitation 

wavelength of 485 nm and emission wavelength 535 nm. 

b) Experimental and Results 

i. Fluorescent detection of modified ssDNA smaller than 100bp 

It was run a calibration curve with known concentration solutions of fluorescein and 

three solutions of FAM modified primer were tested and their concentrations 

extrapolated from the calibration curve. The assay showed possible to detect small 

oligonucleotides as primers and at concentrations as low as 4.8 x 10-3 Figure 

4-29

 μg/ml, 

, Table 4-21. 
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Figure 4-29 Fluorescein calibration curve for positive strand quantification. 

Table 4-21 Extrapolation of unknown FAM primer concentrations obtained with qPCR. 

 Abs 
FAM primer 

concentration 
(μg/ml) 

Solution 1 0.097004 5.607 

Solution 2 0.332851 22.4 

Solution 3 0.805724 56.07 

 

c) Discussion 

The calibration curve made from fluorescein salt was compatible to the quantification of 

modified strands of low molecular weight. The concentration of modified forward 

primer, used in the qPCR amplification, was obtained based on the made calibration 

curve extrapolation. It would be possible to use this curve to quantify before a new 

iteration the amount of positive strands present in the pool. 

The FluMag-SELEX was an iterative method where each step needed to be tested and 

optimised. The amplification and separation steps were tested and optimised and the 

detection of modified fluorescein primers was assessed. 

Summary and Conclusion 

Here the amplification was modified into qPCR, which was introduced, as far as known, 

for the first time in the amplification step and proved to be a good alternative to 
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standard PCR, allowing eluted strands quantification and real-time quality control of 

amplified strands.  

Two separation methods of ssDNA after qPCR were tested and PAGE was chosen 

because it was the most well-known method, and due to time constrains it was not 

possible to expand the test on SA Dynabeads® separation. This was supported after 

the initial tests made did not present an efficient separation using SA Dynabeads®.  

Fluorescein shown that could be used as a quantifying agent because it was possible 

to verify the presence of fluorescein modified primers at different concentrations. 

4.7.2. Initial Aptamer development using the FluMag SELEX method 

Aptamer generation was attempted, due to the problems found in implementing the 

method it was not possible to generate aptamers within the LMC timeframe. It was 

possible to understand and study in detail each step of the FluMag-SELEX, to 

introduce novelty in the amplification step and to test a couple of iterations for both the 

LMC target derivatives. 

As the confirmation of target derivatives immobilisation took longer than expected, and 

in order to test the method, it was run two iterations of FluMag-SELEX against L-

cysteine. The target was assumed immobilised and the iterations implemented. Those 

two iterations showed a few fragile points of the method. After the implementation of 

XPS it was possible to confirm that L-cysteine was not surface immobilised so the 

aptamer generation was abandoned and new iterations against 5β-cholanic acid were 

made. Again problems with the method were found which lead to the impossibility of 

generating aptamers within the time frame. 

a) Materials and Methods 

FluMag SELEX iterative rounds 

i. Materials and chemicals 

Binding buffer, Extraction buffer (500 mM ammonium acetate, 0.1 % SDS, 0.1 mM 

EDTA), DNAse free water, qPCR material and chemicals, heating plate, rotor, 

magnetic support, pre-cast PAGE gels 6 % urea from Invitrogen, gel cast from 

Invitrogen, TBE running buffer from Invitrogen and TBE-urea loading buffer, in house 

immobilised Dynabeads®, ssDNA library from Invitrogen, low-binding Eppendorff 1.5 

ml tubes. 
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ii. Method of aptamer generation with FluMag-SELEX 

Iterative steps: The immobilised Dynabeads® were washed three times with 500 µl 

Binding buffer, mixed with the prepared ssDNA and incubated at RT for 30 min with 

gentle agitation. 3 nmol (~1x1015

Elution: The Dynabeads® in DNAse-free water were heated at 80ºC for 10 min, being 

agitated a couple of times during that time. After were placed on the magnetic support 

and the liquid collected into a low-binding eppendorf tube. 100 µl of DNAse free water 

was added to the Dynabeads® and the procedure was repeated. The total of elution 

steps were three. 

) of ssDNA was prepared by heat at 90 ºC for 10 min 

and cooled on ice, kept at 4 ºC for 15 min and at RT for 8 min (Stoltenburg, Reinemann 

et al. 2007) After the Dynabeads® were separated from the liquid that was discarded 

and washed five times with Binding buffer (500 µl), afterwards were re-suspended in 

DNAse-free water (100 µl). 

Amplification by qPCR: The final volume of each elution was 100 µl, which was divided 

in five parallel qPCR reactions to a final volume of 50 µl. The qPCR run for 50 cycles in 

the first iteration and 40 in the rest in order to prevent material loss. The conditions 

were detailed elsewhere in this document.  

Precipitation of dsDNA: To each qPCR product solution was added two times its 

volume in ethanol, 40 µl of sodium acetate and 5 µl of linear acrylamide. Kept at -20ºC 

for 1hour and centrifuged at the highest G force (either 21.100 or 15.200 rpm, 

depending of the centrifuge). The liquid was discarded, let air dry for a couple of 

minutes and the pellet was re-suspend in 5 µl of DNAse-free water. Or instead of 

precipitation the qPCR products were clean with mini-elute kit (28004) from Qiagen. 

ssDNA separation by PAGE gel: To each tube from the previous step 5 µl of TBE-urea 

loading buffer was added. The samples were heated at 95 ºC, in the two initial rounds 

for 10 min and later for 15 min, as it showed necessary to maintain the denaturation, 

and were kept immediately on ice. Each sample was loaded on the gel as well as a 

DNA ladder. The gel was run at 130 V. After the gel was stained with SYBR green bath 

for 30 min, and rinsed with DI water. The gel was visualised under short wave UV light 

(λ 280 nm) and also under blue light filter in order to visualise specifically the 

fluorescein modified positive strands. The pictures of the gel were saved and the gel 

wrapped with transparent film and set under the horizontal UV lamp. The bands with 

the fluorescein were marked and excised from the gel. To each gel extracted band it 
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was add 100 µl of Elution buffer, the gel was crushed and left overnight at RT with 

agitation (140 rpm). 

Recovery of the selected ssDNA: The liquid was removed from the crushed gel and 

precipitation of the ssDNA was done as described previously. Each ssDNA eluted band 

was re-suspended in 10 µl of DNAse-free water. One sample was kept at -20 ºC and 

the others used for the next iterative round.   

b) Experimental and Results 

i. Initial L-cysteine aptamer generation 

Previous to confirmation of Dynabeads® immobilisation, it was assumed the 

immobilisation of L-cysteine to test the FluMag-SELEX. The amplification of the 

selected and eluted strands with qPCR was made for iteration 1. From the obtained Ct 

values it was extrapolated the amount of ssDNA present in each elution solution. Only 

Ct values from 30 to 36 were considered for calculations (Ct values below 30 were not 

seen), and the calibration curve with efficiency of 92.3 % was used, see Figure 4-26 

and Table 4-22. 

Table 4-22 Extrapolation of eluted ssDNA of aptamer generation against L-cysteine, 
iteration 1. 

 Ct average (y) SD CV% y = -3.5211x +40.24 Eluted ssDNA (pg/μl) 
Elution 1 34.89 0.41 1.16 1.52 3.31E+01 
Elution 2 34.88 0.72 2.06 1.52 3.33E+01 
Elution 3 35.14 1.18 3.36 1.45 2.81E+01 

The qPCR melting curve showed primer-dimers production in the latest cycles; also the 

positive control presented a Ct average of 23.5 which was equivalent to ~57.0 ng/μl. 

The considered eluted ssDNA melting temperatures ranged from 77.0 °C to 78.0 °C.  

Afterwards the samples were precipitated and run in a PAGE gel.  The presence of 

primer-dimers and some contamination of the negative control were visible. Also the 

loading of the positive control did not occurred as expected and it was lost in the run. 

Despite this the ssDNA separation occurred and instead of two bands it was seen 

three. This indicated a poor denaturation, also the gel wells were overload, Figure 4-30. 
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Figure 4-30 PAGE gel for separation of ssDNA after FluMag-SELEX round 1 for L-
cysteine, from left to right: ladder, positive control, elution 1, elution 2, elution 3, negative 
control. A) PAGE gel under UV short wavelength and B) Gel under blue filter for FAM 
visualisation. 

It was possible to visualise the presence of the positive strand via the fluorescein visual 

detection. That showed that the positive strand was present in three bands, one that 

should have been the double strand, the other with the majority of the band being the 

modified Rw primer and the third the band of interest with only positive strands. That 

strand was recovered and the rest of the material lost. The eluted material was taken 

into the second iteration. 

The second iteration was performed with the obtained material from the previous 

round. Selection, elution, precipitation and amplification was made, the amplified 

material was calculated as before, Table 4-23. 
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Table 4-23 Extrapolation of eluted ssDNA of aptamer generation against L-cysteine, 
iteration 2. 

 Ct average (y) SD CV% y = -3.5211x +40.24 Eluted ssDNA (pg/μl) 
Elution 1 17.21 3.54 20.55 6.54 3.48E+06 
Elution 2 22.05 8.59 38.96 5.17 1.47E+05 
Elution 3 11.96 2.00 16.73 8.03 1.08E+08 

It was seen a decrease in ssDNA according to the elution number and varied from 

3.48E+06 to 1.08E+08

The qPCR melting curve did not show primer-dimers and the positive control presented 

a Ct average of 25.6 which was equivalent to ~15.0 ng/μl. The considered eluted 

ssDNA melting temperatures ranged from 78.0 °C to 78.5 °C.  

 pg/μl. 

The PAGE gel presented contamination of the negative control but also showed a 

better separation between strands, being possible to observe also three bands, 

confirmed by gel visualisation under a blue light filter (not shown), Figure 4-31. 

 

Figure 4-31 PAGE gel for separation of ssDNA after FluMag-SELEX round 2 for L-
cysteine, from left to right: ladder, positive control, elution 1, elution 2, elution 3, negative 
control. PAGE gel seen under UV short wavelength. 

The positive control confirmed that the initial band (band with higher content) was the 

double strand DNA again the denaturation was not as efficient as necessary. The three 

eluted and amplified samples presented two more bands, which were the negative 

band and the positive band. The situation in this case was that the negative control 
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presented library contamination and because of that it was not possible to continue the 

iterations. This was because if library contamination was present in the negative 

control, it meant that either it was from the qPCR samples evaporation and 

condensation due to poor plate sealing, or one of the chemicals was contaminated with 

library and it was added initial library to the refined material. In any case the generation 

was stopped. 

ii. Initial 5β-cholanic acid aptamer generation 

After confirmation of 5β-cholanic acid surface immobilisation, the aptamer selection 

was attempted. The initial concentration of ssDNA added to the Dynabeads® had an 

average of 393.77 ng/μl, a standard deviation of 2.75, and a coefficient of variation of 

0.70 %. 

The obtained material after selection, elution and amplification was described in Table 

4-24. 

Table 4-24 Extrapolation of eluted ssDNA of aptamer generation against 5β-cholanic acid, 
iteration 1. 

 Ct average (y) SD CV% y = -3.5211x +40.24 Eluted ssDNA (pg/μl) 
Elution 1 22.96 1.43 6.21 4.91 8.07E+04 

Elution 2 20.07 10.9
9 54.74 5.73 5.36E+05 

Elution 3 30.09 1.25 4.16 2.88 7.65E+02 

The eluted material was quantified from 8.07E+04 to 7.65E+02

The qPCR melting curve presented a small presence of primer-dimers. The positive 

control had a Ct average of 21.8 which was equivalent to ~15.0 ng/μl. The considered 

eluted ssDNA melting temperatures ranged from 78.0 °C to 78.5 °C. The dsDNA 

precipitation added a very high salt content which lead to the samples lost. Two new 

initial rounds were tested and similar problems were found. That time the PAGE 

extraction step added a high content of salts that were not completely removed which 

lead also to loss of sample from iteration to iteration. It was decided to use every time 

precipitation that had to be done to clean the DNA from salt content, a di-salting 

membrane, a mini-elute kit (28004).   

 pg/μl. It was seen a 

decrease in eluted material according to the elution number. 

After all the samples lost because of salt precipitation, new iteration was tested, Table 

4-25.  
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Table 4-25 Extrapolation of eluted ssDNA of aptamer generation against 5β-cholanic acid, 
iteration 1. 

 Ct average (y) SD CV% y = -3.5211x +40.24 Eluted ssDNA (pg/μl) 
Elution 1 30.68 0.84 2.73 2.72 5.19E+02 
Elution 2 26.59 0.99 3.74 3.88 7.55E+03 
Elution 3 30.12 2.22 7.36 2.88 7.51E+02 

The obtained values of ssDNA were lower than before, with the highest concentration 

of 7.55E+03

The PAGE gel presented several bands both on the eluted samples and on the 

negative control. It did not show a clear band or a better separation between strands of 

interest. The positive control was not very clear. One of the three eluted samples 

presented a similar band to the positive control, 

 pg/μl. The qPCR melting curve presented two samples with primer-dimers 

but no melting peak between 70 °C and 80 °C. The considered eluted ssDNA melting 

temperatures ranged from 75.5 °C to 78.5 °C. The positive control presented a Ct 

average of 20.1 which was equivalent to ~535.0 ng/μl.  

Figure 4-32. 

 

Figure 4-32 PAGE gel for separation of ssDNA after FluMag-SELEX round 1 for 5β-
cholanic acid, from left to right: ladder, positive control, elution 1, elution 2, elution 3, 
negative control and ladder. A) PAGE gel under UV short wavelength and B) Gel under 
blue filter for FAM visualisation. 
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Another three more iterations were made from the obtained material from PAGE but it 

was clear that because of this PAGE gel low quality separation the following iterations 

did not work and only artefacts were amplified. 

In a last attempt to generate aptamers using the FluMag-SELEX, ibuprofen was used 

as a positive control, and the target 5β-cholanic acid Table 4-26. 

Table 4-26 Extrapolation of eluted ssDNA of aptamer generation against 5β-cholanic acid 
and Ibuprofen as positive control, iteration 1. 

5β-
cholanic 

acid 
Ct average (y) SD CV% y = -3.5211x +40.24 Eluted ssDNA (pg/μl) 

Elution 1 24.90 0.30 1.22 4.36 2.28E+04 
Elution 2 25.10 0.12 0.47 4.30 1.99E+04 
Elution 3 25.08 0.53 2.12 4.30 2.02E+04 

Ibuprofen Ct average (y) SD CV% y = -3.5211x +40.24 Eluted ssDNA (pg/μl) 
Elution 1 25.83 0.09 0.36 4.09 1.24E+04 
Elution 2 25.78 0.15 0.59 4.11 1.28E+04 
Elution 3 26.73 2.28 8.53 3.84 6.86E+03 

The highest concentration eluted for the 5β-cholanic acid was 2.28E+04 pg/μl, which 

was higher than in the previous attempt. The highest concentration for ibuprofen was 

6.86E+03

The PAGE gel did not show a band at the expected length so it was discarded and the 

iteration abandoned. 

 pg/μl. It was not understood if this showed an initial better affinity to ibuprofen 

than to 5β-cholanic acid because there were no more iterations with the two. The 

obtained qPCR melting curve presented primer-dimers in all samples with the 

exception of the positive control. The positive control presented a Ct average of 22.7 

which was equivalent to ~96.4 ng/μl.  

c) Discussion 

The initial application of FluMag-SELEX was made assuming that L-cysteine was 

efficiently surface immobilised. After two iterations there was qPCR contamination and 

aptamer generation was abandoned after confirmation that the target was not 

immobilised. It was pursued the aptamer generation against 5β-cholanic acid because 

it was confirmed surface immobilisation and was the other chosen LMC target 

derivative to test aptamer generation against. The implementation of the method was 

very changeling and was impossible to perform a full generation cycle. This occurred 

because of problems as salts accumulation, sample degradation, contamination and 



 

95 

ssDNA loss after PAGE. That lead to the understanding of the critical stages of 

FluMag-SELEX that prevented the full cycle of aptamer generation. 

The FluMag-SELEX was tested initially against L-cysteine. It was assumed target 

immobilisation because of time constrains. It was possible to perform two iterations 

before qPCR contamination. The method was abandon and once target immobilisation 

was confirmed the generation was tested against 5β-cholanic acid. Several iterations 

were attempted but in each were found problems, either increase of salt concentration, 

sample loss in PAGE elution or qPCR contamination. Due to these setbacks it was 

concluded that an aptamer generation cycle against the chosen targets was not 

possible to perform under the LMC project timeline.  

Summary and Conclusion 

4.8. Discussion to identify if it was possible to generate 
Aptamers against the LMC small targets and to identify 
adequate technique (s) to confirm beads immobilisation of 
the LMC targets 

The LMC targets derivatives and spacers were, with the exception of L-cysteine, 

hydrophobic. The use of Dynabeads® magnetic properties allowed to change buffer 

solutions from hydrophobic to aqueous and vice-versa. The best conditions for 5β-

cholanic acid immobilisation were using a solution of DMSO and for the L-cysteine 

immobilisation a mixture of DMSO and PBS. The chosen chemistry (EDC/NHS) to form 

a carbodiimide between 5β-cholanic acid carboxylic acid and an amine proved to work 

and promote surface immobilisation. The same was not found for the L-cysteine 

immobilisation via a maleimide and an ester. Unfortunately there was no time to search 

for a reason, but because it was pH dependent it might have not been efficiently stable 

or the oxidation of L-cysteine prevented the coupling. 

The confirmation of immobilisation was a critical step because of the simple nature of 

the derivatives. Also to avoid the risk of generating aptamers against Dynabeads® and 

because only one example was found in literature where immobilisation was confirmed 

before aptamer generation using the FluMag-SELEX, (Kim, Hyun et al. 2010).  
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It was found that immobilisation confirmation was complex and that traditional 

analytical chemistry techniques were not suitable to confirm immobilisation either 

because of the target derivative or the surface characteristics. 

Also the decision of not using chemical derivatisation, as that would go against the 

wanted desire of finding a routine technique which would be ideally simple and fast to 

perform, made even more difficult the detection of simple molecules as the LMC 

derivatives. This was particularly important for the use of HPLC as it was found that 

derivatisation was a common way of quantifying fatty acids and simple molecules, 

(Corradini, Philips 2011), also it was found that liquid and gas chromatography were 

used with mass spectroscopy (LC/MS and GC/MS), instead of HPLC, for detection of 

carboxylic acids, (Johnson 2005, Fallon, Booth et al. 1987). 

To add to this, the fact that Dynabeads® had a core of iron for their magnetic 

properties and that were present in solution despite the fact of being the solid phase, 

made direct detection impossible using spectrophotometry due to light scattering.  This 
was a problem especially in the case where the colorimetric or florescent product was 

attached to the bead as with TNBS, Fluorescamine and OPA. 

Also easy contamination with detergents primary amines, in the case of fluorescent 

detection with OPA and fluorescamine was another obstacle that made them not 

suitable for side-detection techniques.  

Hinterwirth et al (2010) presented a review on techniques used for primary amines 

detection onto surfaces. It mentioned three of the tested chemicals, TNBS, OPA, and 

Ninhydrin. The authors presented similar results for TNBS which was also considered 

not as sensitive as required. For the OPA test, the detection after the reaction was 

different, and instead of reading the fluorescence in solution, the authors observed the 

immobilised glass beads under a fluorescent microscope. This could be possibly one of 

the reasons why the detection did not occur in this case. The same authors mentioned 

that ninhydrin was not appropriated for quantification assays. They claimed that the 

reagent was soluble and in that way could react with primary amines present in 

solution, (Hinterwirth, Strobl et al. 2010). But in this case the Dynabeads® were 

washed previously, and as seen with HPLC in the case of ibuprofen, they seemed to 

be sufficiently efficient to reduce the primary amines presence. Nevertheless there 

could have been some effect that could only have been studied in detail if L-cysteine 

had been immobilised or a positive control had been present for data comparison. 
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Another considered point was that the proportions of the Dynabead itself compared 

with the thin layer of immobilised biomolecules onto its surface could have obstructed 

detection techniques as IR and FTIR. Despite this hypothesis it was not expected 

because it was found previous work were surface modification was accessed with 

FTIR, (Panek, Pietrow et al. 2012). A similar result was seen in the Dynabeads® 

elemental analysis. 

Later was also noticed that due to resources constrains it was analysed by IR, FIRT 

and elemental analysis only L-cysteine immobilisation. It was found with XPS analysis 

that the immobilisation was not efficient in that case, which lead to the discussion that, 

in special these techniques, could work but due to the lack of a positive control it was 

not possible to understand if the inadequacy was of the technique or the sample. 

The XPS analysis was a direct detection by surface atomic analysis and in that way it 

was more reliable and easy to use than the previous colorimetric methods; however 

there were also some problems with XPS. The sample analysis was sensitive to 

oxidation, so it was important to minimise the time from immobilisation to analysis 

(Fairley 2009). Also as the samples needed to be dry and grinded it was difficult to 

understand the impact of the material from which Dynabeads® were made of in the 

analysis. Again it was trusted that the washes performed after immobilisation were 

sufficient to remove the majority of unbound compounds. XPS allowed quantification of 

each element compound in the sample but it was difficult to take elations about the 

concentration immobilised due to the fact that unmodified Dynabeads®  versus 

modified presented the same compounds but at different percentages. XPS proved to 

be the most adequate side-technique from all the tested ones to verify Dynabeads® 

immobilisation for the FluMag-SELEX.  

Despite the fact that Dynabeads® interfered in some of the detection methods tested, 

their use allowed the change between matrix buffers required by the target derivatives 

and spacers that were either hydrophobic or hydrophilic. Also by being in solution, 

while working as a surface, was considered best for interaction between immobilised 

target and ssDNA library, (Baumann 2010).  

The application of the FluMag-SELEX proved to required optimisation and 

familiarisation with each iterative step prior to aptamer generation. In that way it was 

possible to understand the critical steps and the need of quantification or at least 

confirmation of the presence of the selected ssDNA at the several steps. Also it was 
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found that the separation of the positive strand after amplification was critical and lead 

to loss and possible degradation of ssDNA. Another issue was the need to clean 

efficiently the ssDNA between rounds to avoid the build-up of salts that interfered with 

the conformation and amplification, (BioRad 2006, Baumann 2010). 

It was found that qPCR was a good way of verifying the amount of ssDNA selected at 

each round and also to confirm the presence of contaminants or integrity of the sample. 

The best reaction efficiency obtained was 92.3 %, it was considered for quality control 

and quantification of selected ssDNA of each iteration. 

The FluMag-SELEX, once adapted to the targets, with optimised iterative steps, and 

probably with a well-known library seemed to be a reliable method. Because of time 

and resources limitations it was not possible to verify if aptamers against the LMC 

derivatives would be generated using this method. 

4.9. Summary and Conclusions 

The chosen method to test aptamer generation was the FluMag-SELEX because of the 

use of Dynabeads® allowed target-ssDNA interaction in solution and magnetic 

partition. 

This method required the target surface immobilisation into Dynabeads®. Because of 

the simple chemical structure of the chosen LMC targets to test aptamer generation, L-

alanine and coprostane, it was necessary to use their derivatives L-cysteine and 5β-

cholanic acid. In order to prevent or minimise steric hindrance it was added a spacer 

between the Dynabead surface and the target derivative. 5β-cholanic acid was reacted 

with carboxyl Dynabeads® via the spacer cadaverine. The reaction chemistry was 

EDC/NHS based. The L-cysteine was reacted to amino Dynabeads® via the spacer 

EMCS using pH changes. 

It was found that there was a need to confirm Dynabeads® immobilisation via a reliable 

side-technique. Several analytical techniques were tested in order to confirm 

immobilisation, but in the majority of the cases the nature of the LMC target derivatives 

and the composition of Dynabeads® proved incompatible with the detection methods. It 

was found that for a direct immobilisation and in the presence of primary amines, 

ninhydrin was appropriated for a simple diagnose. It was found that the appropriated 

technique to determine the surface immobilisation of Dynabeads® to the LMC targets 

derivatives was XPS. This technique allowed confirming the presence of new atomic 
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compounds, to quantify them and to understand their neighbourhood arrangement. The 

several analytical techniques tested were resumed in Figure 4-33.  

Analytical techniques 
tested to detect 

Dynabeads immobilisation
 

Direct detection
 

Indirect detection
 

Other detection 
methods

 

OPA
 

Fluorescamine
 

TNBS
 

Elman’s reagent
 

Ninhydrin
 

IR & FTIR
 

Elemental analysis
 

HPLC
 

XPS
 

Primary Amino 
groups

 

Thiol groups
 

 

Figure 4-33 Diagram with all the analytical techniques tested to determinate Dynabeads® 
immobilisation of L-cysteine or 5β-cholanic acid. 

Two major steps of the iterative aptamer generation method were studied and one of 

them modified. The amplification step was performed with qPCR instead of the 

traditional PCR to allow real time monitoring, quantification of eluted material in each 

round and an idea of the sample variability. It was achieved a calibration curve with an 

efficiency of 92.3 %. qPCR was assumed a better technique then the standard PCR 

because it gave the possibility to quantify the amount of eluted material in each round 

and to access its quality without the use of agarose gels, preventing material loss.  

The second step tested was the positive ssDNA separation procedure in which the 

standard method, denaturing gel, was tested versus a less used method, the 

streptavidin coated Dynabeads®. It was found that both the techniques had negative 

points and that the denaturing gel was the less time consuming to optimise because it 

was better known.  

The FluMag-SELEX showed to have specific problems in its iterative steps. The risk of 

salts accumulation and loss of material due to de-salt washes and purification at the 

end of each round was a problem. Another point was the need of ssDNA correct folding 

before interacting with the target. This was influenced by ion content in the binding 

solution and their strength, and also how the ssDNA reacted to the denaturing 
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conditions applied in the previous round. This was impossible to monitor and it was 

considered that it was part of the selection process. In summary Figure 4-34 represents 

the tested steps in the FluMag-SELEX. 

 

Figure 4-34 FluMag-SELEX diagram with tested steps. 

In conclusion it was found that the route forward to follow regarding aptamer generation 

against LMC target derivatives applying the FluMag-SELEX would require the use of 

XPS to confirm target immobilisation. The molecular size, simplicity and hydrophobicity 

made LMC target derivatives difficult to solubilise, very un-reactive and undetectable 

using simple analytical standard methods. qPCR was an useful tool and should be 

used for quality control and quantification of eluted strands in each iteration. The 

separation of the positive ssDNA after amplification was a critical step and a source of 

material loss. Ideally the best method would be one that would allow a clear separation 

with the less strands damage and loss possible. Also the use of fluorescein and its 

quantification might be used in the future for ssDNA characterisation as it was not 

possible to go further than the detection of primer concentrations. 
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Considering the time frame and resources available to test the aptamer generation 

against LMC target derivatives, it was not achieved a complete cycle of FluMag-SELEX 

and for this reason it was not possible to test the aptamer generation as initially aimed, 

but all the steps of the iteration were optimised and problems within the method pointed 

out for future work.   
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Chapter 5. Can existing aptamers against small 
molecules be integrated into LMC type assays?  

5.1. Chapter Introduction 

The LMC assay, as explained in detail in section 2.4.1, was an inhibition ELISA assay 

type. The target derivatives were surface immobilised and the detection was made via 

optical detection of labelled bio-receptors.  

For simplification during the development of the LMC, an inhibition ELISA assay was 

used with antibodies as bio-receptors and a colorimetric enzymatic detection system. 

This work aimed to test aptamers as bio-receptors for the LMC as alternatives to 

antibodies4

Aptamers were tested in systems with surface immobilisation as required for the LMC, 

and in both labelled or label free detection systems. The label free system was used 

only because it allowed real time monitoring which gave a step-by-step understanding 

of the assay and an understanding of the association/ dissociation constants between 

the target and the aptamer.  

. Aptamers were tested in simple models that could evolve to the final assay 

type if results and resources would allow.  

Ideally these tests would have been made with aptamers against LMC targets, but as 

seen in the previous chapter (Chapter 4) LMC aptamers generation was not achieved. 

In order to overcome that problem, literature search for already existing aptamers 

against small molecules that could be studied under the LMC assay conditions was 

conducted. It was anticipated that any demonstration would be applicable to the future 

availability of LMC target specific aptamers. 

The work developed in this chapter consisted of testing three different published small 

molecule targets and their aptamers into the LMC assay and similar assay formats. 

Based on this, it was impossible to have a full working LMC type assay against small 

molecules that could mimic LMC targets using aptamers due to the existence of 

several parameters that were found to need further research.  In order to understand 

better the LMC assay format compatibility with aptamers, a protein target and its 

                                            
4 When using aptamers instead of antibodies the assay was called enzyme linked aptamer 
assay (ELAA). 
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aptamers were tested in LMC similar assay formats. Based on the work developed 

conclusions and recommendations about aptamer implementation in the LMC assay 

were made.  

5.2. Literature review of existing aptamers against small 
molecules and their use in LMC relevant assays   

5.2.1. Review of aptamers against small molecules  

Aptamers against small molecules were reviewed in detail in section 2.5.2 (Chapter 2).  

There were aptamers against a wide range of small molecules, which were mainly 

hydrophilic, and presented biochemical properties as aromatic rings or specific 

functional groups or elements. For this work it was chosen to work with DNA aptamers 

because they were less sensitive to enzymatic degradation than RNA aptamers.  

Several reviews were made about aptamers against small molecules, but those 

included RNA and DNA aptamers and all types of low molecular weight targets. When 

restricting the search to DNA aptamers that recognised and bound molecules with 

similar physiochemical properties to the LMC targets, only ten examples were found. 

Those targets were ibuprofen, (Kim, Hyun et al. 2010), estradiol, (Kim, Jung et al. 

2007), ochratoxin A, (Prieto-Simon, Campas et al. 2008), cholic acid, (Kato, Takemura 

et al. 2000), ethanolamine,(Mann, Reinemann et al. 2005), acetamiprid, (He, Liu et al. 

2011), anthracyclines (daunomycin and doxorubicin),(Wochner, Menger et al. 2008), 

several amino-acids, as L-tryptophan,(Yang, Bing et al. 2011), diclofenac (Joeng, Niazi 

et al. 2009), and bisphenol A, (Jo, Ahn et al. 2011).  

5.2.2. Impact of pH, ions content, chemical modification and 
surface immobilisation on aptamer conformation and small 
target binding  

The interaction between aptamers and small molecules at the molecular level was not 

well known and only a few studied examples were found. The aptamers and targets 

interactions were studied with X-ray crystallography or nuclear magnetic resonance 

(NMR). 

Hermann and Patel (2000) reviewed the studied aptamer interaction with their targets. 

The authors demonstrated that aptamers usually adopted a specific binding folding 
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only in the presence of their target, and that in the cases of higher affinity, the target 

was involved in the aptamer structure by complementing it. It was also stated that the 

type of interactions observed between aptamers and targets that could occur besides 

structure complementarity were hydrogen bonds, electrostatic interactions, and π-

stacking, (Hermann, Patel 2000).  

Based on this, polarity or molecule charge changes could affect the target and aptamer 

interactions. This could be caused by pH or ionic content of buffers. Palecek et al 

(2012) reviewed the electrochemistry of DNA and the impact in its structure when 

surface immobilised in electrochemical electrodes and in polypropylene tubes, and 

reported that the DNA suffered conformation changes as well as a small denaturation 

that lead to surface adsorption. It was also mentioned that DNA stability when surface 

immobilised was depended on the surface electrostatic nature, the ionic nature of the 

buffer solution and the distance between DNA and the surface. The same authors 

explained that so far it was not possible to obtain detailed information on how the 

aptamer´s conformation was affected by surface immobilisation (Paleček, Bartošík 

2012).  

Another form of interference in the aptamer-target complex was referred by Meir et al 

(2007) who mentioned that when adding a fluorophore into the aptamer-target 

complex, the binding signal would decrease because it would change the aptamer 

conformation, (Meir, Marks et al. 2007). 

DNA is known to adopt three forms: A. B and Z, according to bases electrical charges, 

(Calladine, Drew et al. 2004). Examples of DNA sequences G-rich (at least four 

guanine bases) were also found in nature, which adopted a square planar structure 

stabilised by a monovalent ion; these were nominated G-quadruplexes. There were 

several examples were aptamers instead of being depended on the target to adopt a 

binding folding structure, they presented a G-quadruplex structure that was stable on 

its own. These G-quadruplexes were special examples that required a metal ion to 

interact with the oxygen present in position six of each guanine, and the formation of 

hydrogen bonds between the bases, (Baumann 2010). Besides the example of G-

quadruplexes that required metal ions for structure stabilisation, standard DNA also 

required the presence of metal ions but in a more versatile way. 

Sigel et al (2012) described the interaction between nucleic acids and metal ions in 

general. They classified and characterised the monovalent and divalent ions such as 
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Mg2+ and Na+ or K+ that played a role in nucleic acids folding and structure stabilisation. 

Mg2+ bound especially to negative oxygens that did not make hydrogen bonds present 

either in the DNA backbone or in the different bases that allowed better stabilisation 

and smaller distances between negative elements, leading to a better folding and less 

solvation. Monovalent ions as Na+ or K+

Therefore several parameters seemed to play an important role in the interaction 

between aptamers and targets, being important to monitor and control them whenever 

possible (e.g. testing different pH and ionic buffer concentrations), in order to maximise 

the aptamer implementation into an LMC assay format.  

 bound preferentially to the nitrogens present in 

the bases, and was speculated that also balanced the negatively DNA molecule as a 

whole, (Sigel, Sigel et al. 2012).  

5.2.3. Consideration of thrombin aptamers (and why were used) 

The aim of this work was initially to implement already published aptamers against 

small targets into the LMC assay format. Because it was not straightforward as 

expected, it was decided to test aptamers against a protein. The chosen target was 

thrombin because thrombin aptamers were intensively studied and used in several 

assay formats and also in biosensors, (Bock, Griffin et al. 1992, Wang, Yang et al. 

2011, Ni, Castanares et al. 2011, Aviñó, Fàbrega et al. 2012, Qi, Shangguan et al. 

2013). Those included similar LMC assay formats and studies of the molecular 

interaction between aptamer and target, (PDB 2005, Russo Krauss, Merlino et al. 

2012). Thrombin aptamers were also known to adopt the G-quadruplex which 

presented a more stable structure in solution, (Macaya, Schultze et al. 1993).  

5.2.4. LMC relevant analytical assays 

As reviewed in section 2.4.1 (Chapter 2), the LMC assay had several requirements. 

Because it was an inhibition assay, a target derivative was surface immobilised and the 

bioreceptor was labelled for optical detection. In order to develop a final assay, a 

standard inhibition ELISA as a working assay within the LMC group was used. 

Aptamers were tested under the LMC assay conditions, but also tested under other 

circumstances, such as aptamer surface immobilisation instead of target derivative and 

in a label free system. This was done because the implementation of the standard LMC 

assay did not show a straightforward response and alternatives were tested.  
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Different surfaces were also tested in order to reduce unspecific signal. The label 

system for optical detection of the colorimetric enzymatic product, when kept, was 

tested either connected to the aptamer or the target. 

In all assays the aptamer or the target was modified either for surface immobilisation or 

for labelling. In some situations both interventionists were modified.  

5.3. Chapter Aims and Objectives 

The work presented in this chapter aimed to answer the question whether aptamers 

could be used in an LMC assay format and more specifically, whether aptamers 

against small molecules could be used in an LMC assay format. 

The objectives of this study were: 

• To identify existing / published aptamers that were against small molecules 

similar to the LMC targets and identify the ones used in analytical methods 

that mimicked LMC analytical assay formats. 

• To test, in a structured approach, chosen aptamers in relevant LMC assay 

formats. 

5.4. Chapter experimental rationale 

The application of aptamers against small targets into the LMC assay format was 

tested. Other assays formats were also tested in an attempt to understand the impact 

on the detection of the target surface immobilisation. 

Because it was not possible to have aptamers generated against LMC targets it was 

found in literature examples that could be used. The first experimental part of this 

chapter described the test of ibuprofen target and its aptamers using SPR in several 

assay formats. Either target surface immobilised and addition of free aptamer, or 

aptamer surface immobilised and addition of free target. It was seen that SPR was not 

appropriated for the targets of interest because of their low molecular weight, and it 

was then tested the LMC assay format and variants in microplates using enzymatic 

colorimetric reactions for optical detection. The targets OTA and estradiol were used in 

those assays and only OTA presented positive results in the LMC assay format. 

Although it was possible to verify aptamer binding to surface immobilised OTA, the 

assay shown to be very unstable and difficult to reproduce. Based on that, 
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Dynabeads® were used to see if the interaction between targets and aptamers would 

improve in comparison to the microplates, which did not occurred. It was then taken a 

new assay approach which gave positive results. It was seen that the assay improved if 

the aptamers and target interacted first in solution and were then surface immobilised, 

instead of one of the molecules being initially surface immobilised. Because it was not 

possible to achieve a stable working assay similar to the LMC format, it was tested a 

different target. In the last part of this chapter it was tested a protein as target instead 

of a low molecular target to verify if the LMC assay format was more compatible with 

large targets than smaller and to understand its impact on the interaction between low 

molecular weight targets and aptamers. It was possible to run a direct binding curve but 

when a competitive assay was tested, it was seen a higher affinity to the target in 

solution which gave a lower binding signal to the immobilised target.  

This chapter improved the understanding of the impact of surface immobilisation of 

small targets in the aptamers interaction, and the differences obtained in assay formats 

based on the targets nature.   

5.5. Choice of existing aptamers against small molecule targets 
and analytical implementations relevant to LMC assay 
formats 

Considering the reviewed DNA aptamers against low molecular targets similar to the 

LMC mentioned in section 5.2.1 (Chapter 5), three targets were chosen to be tested in 

this work. The low molecular targets were ibuprofen, Figure 4-13, β-estradiol and 

ochratoxin A (OTA), Figure 5-1 and Figure 5-2. 

 

Figure 5-1 β-Estradiol. 
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Figure 5-2 Ochratoxin A. 

In the previous chapter (Chapter 4, section 4.6.2), an aptamer generation was 

attempted and Ibuprofen was used as the positive control. Because it was ready 

available, it had similar physiochemical properties to the LMC targets and had 

published aptamers against it, it was decided to be tested in an assay.  

When searching in literature for published examples of DNA aptamers against small 

molecules (with similar physiochemical properties to LMC targets) and being used in an 

LMC assay type, only two examples were found: the OTA and the β-estradiol.  

OTA aptamers had many examples of assay application in literature and versatility was 

shown. It was referred to be used in a competitive ELAA where both the target and the 

aptamer were surface immobilised and tested in wine samples with a detection limit of 

1 ng/ml, (Barthelmebs, Jonca et al. 2011). In another example a competitive ELAA was 

also performed but this time on the surface of Dynabeads®, and the assay was used in 

wheat samples with a detection limit of 0.07 ng/ml, (Bonel, Vidal et al. 2011).  Besides 

that the OTA aptamers were applied in several biosensors, (Castillo, Lamberti et al. 

2012, Duan, Wu et al. 2012, Galarreta, Tabatabaei et al. 2013, Tong, Zhang et al. 

2011, Wu, Chu et al. 2012). Aptamers or antibodies have also been used in existing 

biosensors to detect OTA (Hianik 2012). 

There was one published work that reported an indirect competitive assay with a β-

estradiol aptamer. β-estradiol-BSA was surface immobilised and the competition assay 

was made with β-estradiol and fluorescently labelled aptamer in solution. The 

fluorescent intensity of bound labelled aptamer to β-estradiol-BSA, was detected at a 

detection limit of 2.1 nM, using an evanescent wave all-fiber biosensor (Yildirim, Long 

et al. 2012). In the second example found, the aptamer was covalently attached to 

glass beads and the β-estradiol was captured in solution. The authors quantified the 

bound β-estradiol after aptamer denaturation with HPLC. The authors obtained a 

binding constant of 35.19 μM, (Huy, Jin et al. 2011). A third example referred to the β-
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estradiol aptamer to be bound directly to the target that was electrochemically detected 

at 0.1 nM, (Kim, Jung et al. 2007). 

In this chapter the chosen aptamers and targets were tested in standard microplate 

assays, in Dynabeads® assays, and a label free system as surface plasmon 

resonance (SPR) was used in order to monitor the interaction between the aptamer 

and the target in real-time. The microplate was tested because it was the surface used 

in the working LMC assay. The Dynabeads® were tested when appropriated based on 

published work and to verify if they were better surfaces than the microplates for assay 

development. The SPR was used because it allowed real time observation of the assay 

via the mass index change. It also allowed studying the aptamer and target binding 

constant through the experimental association and dissociation constants.  

5.6. Common Assay Methodology 

5.6.1. General assay format considerations 

The implementation of the LMC assay format with small molecule targets and aptamers 

was tested in four different related assay format varieties. The use of a protein target 

and aptamers were also tested into one of the four assay formats.  

Three of the tested formats were labelled assays while one of them was label free. 

In the LMC assay format the surface immobilisation was made via a target derivative. 

The assay was performed with an aptamer in solution that was modified with biotin. 
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Biotinylated aptamer Protein modified target  Streptavidin-modified HRP  

Figure 5-3 LMC assay format consisted in three steps; i) the target derivative was surface 
immobilised via protein adsorption, ii) the biotinylated aptamer was added in solution, 
and iii) a streptavidin-modified enzyme was added. The successful assay would generate 
an enzymatic blue product that was quantified with optical detection.  

The second format was the inversed assay of the LMC assay, where the biotinylated 

aptamer was surface immobilised and the biotinylated target was added.  

 

 

Biotinylated aptamer Biotinylated target Streptavidin-modified HRP  

Figure 5-4 The second assay format tested consisted in three steps: i) the biotinylated 
aptamer was surface immobilised via streptavidin, ii) the biotinylated target was added in 
solution, and iii) a streptavidin-modified enzyme was added. The successful assay would 
generate an enzymatic blue product that was quantified with optical detection.  

The third format was tested with aptamer and target derivative incubated in solution 

and then surface adsorbed.  

All the previous assays required a label for quantification of the formed complexes, 

while in the fourth example there was no label. The binding quantification was made in 
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real time. The assays tested were similar to the LMC assay and its inversed assay but 

without the final addition of the enzymatic label.  

It was this assay format that was the initial test performed to study aptamers against 

small molecules.  

5.6.2. Surface Plasmon Resonance - based assays 

One of the objectives of this work was to test already published aptamers against small 

molecules under the LMC assay format. 

A way to verify in real time the interaction between an aptamer and its target was by 

using SPR. SPR was an instrument with optical detection that indicated any changes 

made into a chip surface. This made possible to verify the surface immobilisation and 

the molecular binding between the immobilised molecule and the molecule in solution, 

(Sadana, Sadana 2011).   

The LMC assay required the target derivative immobilisation and the competition in 

solution of the labelled bioreceptor with the unmodified target. The use of SPR allowed 

studying the possibilities of either chip immobilisation of the target derivative or the 

biotinylated aptamer. SPR was the first method to be used as a detection system 
because it allowed real time observation and it was ready available. In the aptamer 

generation work (chapter 4), ibuprofen was used as a positive control, consequently it 

was chosen as the first target to be tested under the LMC assay format. In the 

published work three aptamers showed best affinity to ibuprofen, so they were all 

tested here (Kim, Hyun et al. 2010). 

The SPR optical detection, or the change in the surface refractive index, was made in 

resonance units (RU). The variation obtained in the RU was caused by the 

concentration of the molecule surface immobilisation, which was also affected by its 

molecular weight. SPR was sensitive to mass changes occurred on the chip surface, 

the bigger the molecule the higher the change in the refractive index. Variations in the 

concentration or size of molecules attached to the chip surface changed the refractive 

index and that was visualised on a sensorgram in real time, Figure 5-5, (GE Healthcare 

2010). 
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Figure 5-5 SPR detection system based on the change of the surface refractive index 
which was measured as resonance units visualised on a sensorgram, adapted from (GE 
Healthcare 2010). 

a) Materials and Methods 

i. Materials and Chemicals 

Surface plasmon resonance (SPR) Biacore 3000, sensor chip CM-dextran with 

immobilised streptavidin, (SA chip with four surface channels, BR-1000-32), ibuprofen, 

5β-cholanic acid, aptamers (see experimental section), streptavidin Horse radish 

peroxidase (SA-HRP, 43-4323) from Zymed, HBS-EP buffer (0.01 M HEPES pH 7.4, 

0.15 M NaCl, 0.005% v/v Surfactant P20, BR-1001-88), from GE healthcare life 

sciences, DMSO, HPLC grade methanol, NaOH from Sigma and in house synthesised 

target modified versions, 0.22 μm pore diameter size syringe filter (SF-J301322) from 

Jaytee, 18 MΩ.cm water, Binding buffer (see section 4.6.1). 

ii. Methods for samples, reagents, SPR preparation and run 

conditions  

The running buffer, aptamers and target (dissolved in appropriated aqueous buffer and 

minimal percentage of an organic buffer) were filtered and degassed. 100 μl of HPLC 

grade methanol was added and then 900 μl of running buffer, for total solubilisation. 

The unmodified aptamers and biotinylated aptamers were pre-heated before injection 
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at 90 °C for 1 min and kept on ice for 10 min as made by Polonschii et al (2010), 

(Polonschii, David et al. 2010). 

The SA chip was put inside SPR and the running buffer was set to run at a desired 

flow, and let to do so until a stable baseline was visualised in the sensorgram.  

iii. Method for immobilisation on the streptavidin modified chip 

surface of biotinylated modified molecules - Phase 1 

According to the assay type it was surface immobilised the biotinylated aptamers or the 

biotinylated ibuprofen. In both cases, once a stable baseline was achieved with the 

running buffer, the biotinylated molecule was automatically injected at a certain flow 

rate and period of time. After the injection, it was waited until the running buffer 

baseline stabilised again. The difference in resonance units in the running buffer 

baseline before and after injection indicated immobilisation onto the surface of the SA 

chip. For unspecific binding control purposes, in some cases, it was used in parallel 

biochemically similar molecules and unmodified surface channels. 

iv. Method for immobilisation of molecule in solution - Phase 2 

According to the assay type the molecule in solution was the ibuprofen or the aptamer, 

both unmodified. After the biotinylated molecule surface immobilisation (in previous 

point), and stabilisation of the running buffer baseline, the molecule in solution was 

injected with a certain flow rate and for a certain period of time (10 µl for 1-5 min). 

Again the difference in resonance units obtained after a new baseline stabilisation 

indicated the interaction between the surface immobilised molecule and the one in 

solution. Also, in some cases, it was used in parallel to the assay surface channel, 

biochemically similar molecules in solution to study unspecific interactions. 

v. Method for SPR affinity and kinetics studies 

Once both assay phases were made it was possible to study the aptamer affinity to 

ibuprofen. During the phase 2 injection a tool called “Kinject”, quantified the association 

and dissociation time occurred between the immobilised molecule and one in solution. 

Based on the association/dissociation times occurred between the aptamer and 

ibuprofen and the obtained RU, it was possible to calculate the complex equilibrium 

kinetics. That was made using the 1:1 Langmuir fitting binding model, Equation 5-1. 

This model assumed that the immobilised molecule was homogenously bound on the 

chip surface and that the interaction between the immobilised molecule and the 

molecule in solution was one to one. (Nguyen, Tanious et al. 2007). This was the 
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simplest model that simulated the molecular interaction between each aptamer and 

ibuprofen molecule. 

A + L  
𝐾𝑎
↔
𝐾𝑑

 AL ,  KA = 𝐾𝑎R 

Equation 5-1 Langmuir simple model version, where the free molecule binds to the 
surface immobilised molecule in the proportion of one to one, (Nguyen, Tanious et al. 
2007). 

/ 𝐾𝑑 

5.6.3. Microplate - based assays 

The LMC assay type was based on a inhibition ELISA and the developed working 

assay was a microplate assay.  

a) Materials and Methods 

i. Materials and Chemicals 

Nunc 96-well microplate (442404), streptavidin (SA) coated Nunc 96 microplate (DIS-

995-010A), adhesive seals for microplates (DIS-984-505J), aptamer and biotinylated 

aptamers from Invitrogen or Sigma, OTA (CAS 303-47-9; 32937) from Fluka; human 

biotinylated thrombin (69672-3) from Merk; OTA-HRP (P9949) from 

TrendPharmaTech, Centaur molecular products ; OTA-BSA (O3007), β-estradiol-BSA 

(β-estradiol 6-(O-carboxymethyl)oxime:BSA, E5630), human thrombin (CAS 9002-04-

4; T7009), TMB tablets (3,3´, 5,5´- tetramethylbenzidene dihydrochloride; T3405), 

phosphate citrate with sodium perborate capsules (P4922), casein (CAS 9000-71-9; 

C3400), BSA (CAS 9048-46-8; A4503), 0.05 M carbonate buffer pH 9.6 (C3041), 10 

mM HEPES pH 8.0, Tween 20 (CAS 9005-64-5; P1379) from Sigma; PBS pH 7.4, 1M 

sulphuric acid (J/8420/17) from Fisher; casein hammersten grade (101289) from MO-

Biomedicals; β-estradiol selection buffer solution pH 8.0 (Kim, Jung et al. 2007, 

Yildirim, Long et al. 2012); Binding buffer 1 (Barthelmebs, Jonca et al. 2011); 18 

MΩ.cm water; spectrophotometer Thermo Scientific Varioskan Flash Plate Reader; 

milk powder; temperature incubator. 

ii. Method to test β-estradiol aptamers into the LMC context 

100 μl per well of β-estradiol-BSA in PBS, was incubated overnight at 4 °C in a 96 

microplate. The liquid was discarded and 200 μl of BSA (1 mg/ml in PBS) was added 

and incubated at RT for 1 hour. Afterwards 100 μl of biotinylated aptamer, in its 
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selection buffer, (Kim, Jung et al. 2007) was added and incubated at RT. A solution of 

100 μl of SA-HRP (in selection buffer), was added for 30 min at RT and 50 μl of TMB 

was added until colour developed. 50μl of sulphuric acid was added and the plate read 

at 450 nm. Between each step the plate was washed three times with PBS (300 μl). All 

the incubations were incubated with agitation. 

iii. Methods to test ochratoxin A aptamers into the LMC context 

The protocols were adapted from Barthelmebs, J. et al (2011), (Barthelmebs, Jonca et 

al. 2011). The OTA aptamers were tested under three assay formats; i) where OTA 
was surface immobilised, ii) the aptamer was surface immobilised and iii) where the 

complex was made in solution and then surface adsorbed. 

• Surface immobilisation of OTA 

The microplate was overnight coated with 100 μl of OTA-BSA in 0.05 M carbonate 

buffer, at 4 °C. The microplate was blocked with a blocking solution for 1 hour at RT. 

100 μl of OTA biotinylated aptamer was added in Binding buffer 1 and incubated for 1 

hour at RT. A 1 μg/ml solution of SA-HRP was added and 50 μl of TMB was added 

until colour developed. 50 μl of sulphuric acid was added and the plate read at 450 nm.  

Between each step the plate was washed three times with PBS (300 μl). All the 

incubations were light protected and incubated with agitation. 

• Surface immobilisation of OTA aptamer 

A SA microplate was coated with biotinylated OTA aptamer (100 μl for 30 min). The 

microplate was blocked with 200 μl of 0.5 % casein solution in Binding buffer 1 for 45 

min. 100 μl of OTA-HRP was added for 30 min. 100 μl of TMB was added and allowed 

to react and 50 μl of 1M sulphuric acid was added and the microplate absorbance read 

at 450 nm. All the steps were made at RT, light protected and with agitation. Between 

each step, three washes were made with 300 μl of Binding buffer 1. 

• Surface immobilisation of OTA-aptamer complex formed in 

solution 

Several concentrations of OTA-BSA were incubated in solution with the biotinylated 

aptamer and then it was transferred to a microplate (100 μl per well). The microplate 

was incubated for 20 min at 37 °C and then blocked with 2 % milk powder for another 

30 min at RT. It was added the SA-HRP, the TMB and reacted as before. The obtained 

signal was read at 450 nm. 
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iv. Method to test thrombin aptamers into the LMC context 

The protocol was adapted from Baldrich et al (2005), (Baldrich, Acero et al. 2005). The 

SA coated microplate was washed three times with 300 μl of 50 mM PBS, and then it 

was coated with 100 μl of biotinylated aptamer in PBS for 30 min at 37 °C. The SA 

microplate was blocked with 200 μl of biotin in PBS for 30 min at RT. 100 μl of 

biotinylated thrombin in 10 mM HEPES pH 8.0, was added and incubated for 1 hour at 

4 °C. 1 μg/ml solution of SA-HRP was added (100 μl) and incubated for 10 min, and 

100 μl of TMB was added until colour developed. 50 μl of sulphuric acid was added 

and the plate read at 450 nm.  Between each step the plate was washed three times 

with PBS Tween 20 (300 μl). 

In order to study an alternative to the standard microplate as a solid surface and 

because Dynabeads® allowed better interaction in solution between the immobilised 

molecule and the free molecule, they were also tested as solid surfaces. 

5.6.4. Dynabeads® - based assays 

Dynabeads® because of their size (μm) and better mass transfer between the 

molecule in solution to the one immobilised, were expected to allow better interaction 

between aptamers and targets. Also the magnetic partition was a vantage to separate 

the formed complexes from the unbound molecules. Dynabeads® were tested as 

alternative to the microplates.   

a) Materials and Methods 

i. Materials and Chemicals 

Streptavidin Dynabeads® M-270, OTA, biotinylated aptamers from Sigma or Invitrogen, 

Nunc 96-well black microplate (437111) from Fisher, spectrophotometer, rotator, 

magnetic support, SA Dynabeads® buffer C, D and D´ (Centi, Messina et al. 2008), 

buffer OTA aptamer (Cruz-Aguado, Penner 2008).  

ii. Method to test ochratoxin A aptamers into the LMC context 

The protocol was based in Bonel et al. (2011) work, (Bonel, Vidal et al. 2011), 500 μl of 

biotinylated aptamer was added to 50 μl of SA Dynabeads® after being washed three 

times with buffer C (500 μl). The Dynabeads® and aptamer were incubated at 37 °C for 

30 min with agitation. 200 μl of OTA or OTA-BSA, in buffer OTA aptamer, was added to 

the Dynabeads® and incubated at RT for 15 min. Three washing steps were made 

between each step with 500 μl of buffer. Afterwards the Dynabeads® were re-
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suspended in 100 μl of OTA aptamer buffer and heated at 90 °C for 5 min and the 

fluorescence of the collected liquid was read in a spectrophotometer. The last step was 

repeated two more times. 

iii. Method to test trombin aptamers into the LMC context 

Protocol adapted from Centi et al (2008), (Centi, Messina et al. 2008). 50 μl of SA 

Dynabeads® were removed from the stock solution and washed three times with 500 

μl of buffer C. it was added 150 μl of 1 μM biotinylated thrombin aptamer in buffer C, 

incubated for 15 min. A new wash set was made and 500 μl of 500 μM biotin solution 
was added for 30 min. After washing the Dynabeads® as before, 200 μl of biotinylated 

thrombin was added to 25 μl of Dynabeads® and incubated for 30 min. The 

Dynabeads were washed twice with buffer D and SA-HRP in buffer D´ was added.100 

μl of TMB was added for 5min and then 50 μl of sulphuric acid was added and the 

liquid collected into a microplate and read at 450 nm. All the steps were made at RT 

with agitation. 

5.7. Experimental testing of chosen aptamers in LMC relevant 
assays 

One of the objectives of this work was to test existing aptamers against small 

molecules into relevant LMC assay formats. This involved in some cases, the surface 

immobilisation of a target derivative and the detection of binding via the enzymatic 

labelled aptamer. The enzyme would oxidise a substrate into a colorimetric product. Or 

in another cases it was surface immobilised the aptamer and added the target. In the 

situations where the detection method required a label, the target was modified in order 

to have the enzymatic label. In the cases where the detection system was label free it 

was tested the unmodified target. In another cases the fluorescent properties of the 

target also allowed the direct detection. After testing the existent aptamers against 

small molecule into the LMC assays and similar formats, it was tested the thrombin 

aptamer and target. This was tested with the same enzymatic detection method but 

only with aptamer surface immobilisation. 
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5.7.1. Initial testing of aptamers in LMC relevant assays: aptamers 
against ibuprofen 

As mentioned before, ibuprofen was used in the previous chapter as positive control in 

aptamer generation, and because it was physiochemically similar to the LMC targets 

and had already existing aptamers against it, it was used as the first target to study the 

aptamers implementation into LMC relevant assays. 

The initial choice of instrumentation was the SPR. Despite the fact that SPR was a 

label free system, while LMC assay required labels, it was used because it allowed a 

real time analysis of aptamer-target interaction, which was fundamental to a working 

assay and has been mentioned in literature in aptamer related studies, (Gopinath 

2010). 

It was not found examples of binding assays similar to the LMC assay format using the 

ibuprofen and its aptamers. It was here attempted the development of a binding assay 

using SPR in which it would be required the surface immobilising of one of the 

molecules and the addition in solution of the other. 

Ibuprofen aptamers tested into the LMC context – SPR assay 

a) Experimental and Results 

i. Selection of the ibuprofen aptamers to be used  

The tested aptamers were described by Kim et al (2010), and are reproduced in Table 

5-1, (Kim, Hyun et al. 2010). In summary three aptamers against ibuprofen were used 

and one control sequence consisting of the complementary sequence to ibuprofen 

aptamer sequence 1. For surface immobilisation, the aptamers where synthesised with 

biotin-C6-spacer added onto the 5’ end of their sequences, Table 5-1. 
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Table 5-1 Ibuprofen tested sequences and control random sequence, adapted from (Kim, 
Hyun et al. 2010). 

Ibuprofen aptamer 
sequence 1 

5´- ATACCAGCTTATTCAATTACAGTAGTGAGGGGTC 
CGTCGTGGGGTAGTTGGGTCGTGGAGATAGTAAGTG 
CAATCT-3´ 
 

Ibuprofen aptamer 
sequence 2 

5´- ATACCAGCTTATTCAATTGCGAACGACTTCATAAA 
ATGCTATAAGGTTGCCCTCTGTCAGATAGTAAGTGC 
AATCT-3´ 
 

Ibuprofen aptamer 
sequence 3 

5’- ATACCAGCTTATTCAATTGGATCGGCGACGTGGG 
TGTCGTGATTCGGGGTGAGATAGTAAGTGCAATCT-3’ 
 

sequence for control 
(complementary 
to sequence 1) 

5´- TATGGTCGAATAAGTTAATGTCATCACTCCCCAGG 
CAGCACCCCATCAACCCAGCACCTC TATCATTCACG 
TTAGA-3´ 
 

ii. Assay format 1 - Immobilisation on the streptavidin modified 

chip surface with 5´- end biotinylated modified aptamers  

The first step in demonstrating an SPR-based assay format using biotinylated 

ibuprofen aptamers was to confirm their immobilisation to a streptavidin-coated SPR 

chip surface. After obtaining a stable baseline with a flow rate of 35 μl/min, each of the 

biotinylated aptamers and control were injected into one of the SA chip channels. Each 

injection was of 100 μl, made during 120 sec and each aptamer and control solution 
was at 1 μM.  After all the injections and baseline stabilisation it was verified a change 

in the obtained RU. The ibuprofen 5´- end biotinylated aptamers and control were 

efficiently SA chip immobilised as seen by the obtained resonance units and 

sensorgrams, Table 5-2 and Figure 5-6.  

Table 5-2 Obtained resonance units (RU) indicative of chip surface immobilisation of 
ibuprofen 5´- end biotinylated aptamers and control. 

 Obtained RU  
Ibuprofen 5´- end biotinylated aptamer sequence 1 1652.5 
Ibuprofen 5´- end biotinylated aptamer sequence 2 1168.5 
Ibuprofen 5´- end biotinylated aptamer sequence 3 1507.8 
5´- end biotinylated sequence for control 1423.4 
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A  B  

C  D  

Figure 5-6 Sensorgrams (RU response vs. time) of SA-chip immobilisation of the 
ibuprofen biotinylated aptamers, A) sequence one, B) sequence two, C) sequence three 
and D) 5´-end biotinylated sequence for control. 

It was obtained surface immobilisation of all the aptamers at a level that was suitable 

for subsequent study of ibuprofen free target binding. 

iii. Assay format 1 - Binding from solution of ibuprofen to aptamers 

immobilised on SPR chips 

Several concentrations of ibuprofen, (0.5, 1, 5, 10, and 20 μM), were injected 

sequentially and in parallel into each of the SA chip channels with immobilised 

biotinylated aptamers and the control sequence. The injections were 50 μl of ibuprofen 

solution with dissociation constant for 300 sec, at a flow rate of 35 μl/min. It was not 

verified in neither of the channels a change in RU after the injections and baseline 

stabilisation. The assay was repeated several times, and in all, no immobilisation signal 

was obtained. 

It was necessary to take a different approach to that assay to study ibuprofen and 

aptamers binding affinities. 
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iv. Assay format 2 - Immobilisation on the streptavidin modified 

chip surface with biotinylated modified Ibuprofen  

A new assay format was tested to study the interaction between ibuprofen and its 

aptamers. The ibuprofen was in house modified with the spacer maleimide-

polyethylene glycol-biotin, (Peg2-biotin) in order to bind to the SA chip.  The control 

used was 5β-cholanic acid which was also in house modified with the same biotinylated 

spacer, (biotin-Peg2

After achieving a stable baseline with running buffer at 35 μl/ min, it was tested the 

surface immobilisation on a SA chip of biotinylated ibuprofen and control by injecting 

each to a SA chip channel at a concentration of 4.85 μM. Each injection was of 100 μl 

and made during 120 sec.  One of the unmodified channels was used also as a control. 

After the injections and baseline stabilisation it was verified a change in the RU values 

in both of the modified channels. Biotin-Peg

-5β-cholanic acid).  

2-ibuprofen and biotin-Peg2

Table 5-3

-5β-cholanic 

acid were efficiently surface immobilised but with low RU values, this was expected 

because of their low molecular weight, . 

Table 5-3 Obtained resonance units (RU) indicative of chip surface immobilisation of 
biotinylated ibuprofen and control. 

 Obtained RU 
biotin-Peg2 124.7  -ibuprofen 
biotin-Peg2 37.1 -5β-cholanic acid 

The efficient surface immobilisation allowed to proceed and test the addition of 

ibuprofen aptamers.  

v. Assay format 2 - Binding of aptamers in solution to ibuprofen 

immobilised on SPR chips 

The ibuprofen aptamers were injected into each channel at different concentrations 

(172, 17.2, and 1.72 μM). Each injection was sequential and made from the lowest 

concentration to the higher. The injections were made individually and passed by the 

three channels of interest. The conditions were 50 μl of aptamer solution with 

dissociation constant for 300 sec, at a flow rate of 35 μl/min.  No specific binding was 

seen with any of the aptamers. In the case of aptamer one, unspecific signal was 

detected (~ 80 RU). When repeating the previous conditions in a new chip, the same 
unspecific signal was seen and no binding signal was detected. It was not found a 

reason for unspecific binding signal. Because it was not detected any interaction, it was 

taken a third approach, which considered the ibuprofen low molecular weight.  
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vi. Assay format 3 - Binding from solution of ibuprofen-protein 

conjugates to aptamers immobilised on SPR chips 

It was considered the ibuprofen low molecular weight (206.28 g/mol) and decided to 

test the assay using biotin-PEG-ibuprofen bound to SA-HRP instead of free ibuprofen. 

This aimed to add molecular weight to ibuprofen and increase the RU response. The 

assay was similar with the biotinylated aptamers and control surface immobilised, but 

instead of adding ibuprofen, it was tested the protein conjugated ibuprofen in solution.  

In the assay the running conditions and surface immobilisation occurred as explained 

previously. The biotinylated aptamers one and three, and the control bound to the SA 

chip as seen before with similar RU signals, and one channel was left unmodified. The 

biotinylated ibuprofen was mixed with a solution of SA-HRP and 100 μl of that solution 

was injected into the SA chip at a flow rate of 10 μl/min for 120 sec. The injections went 

thought the four SA chip channels in parallel and it was not obtained any change in the 

RU values once the baseline stabilised in three channels. Unspecific binding (~ 100 

RU) was obtained in the unmodified channel. This occurred probably because there 

was an excess in solution of biotin-Peg2

b) Discussion 

-ibuprofen that was not bound to SA-HRP and 

bound to the SA surface.  

Two assay types were tested, one where the ibuprofen aptamers were surface 

immobilised and the other where ibuprofen was surface immobilised. In both cases the 

biotinylated species were efficiently surface immobilised as desired. 

When ibuprofen was added as analyte in the first assay type, no binding signal was 

detected. It was considered that it could be that ibuprofen low molecular weight was 

preventing the detection. It was found in literature that SPR was not sensitive to small 

molecules and it was reported that molecules less than 400 g/mol were not detected, 

(Kim, Jung et al. 2007). In order to overcome this, the assay was tested with a protein 

modified version of ibuprofen. Again no binding signal was obtained. This might have 

been caused by conformation changes because both of the species were chemically 

modified; or the fact that the aptamer was attached to a surface might had interfered 

with the folding, or in the case the binding pocket was located near the chip surface 

steric hindrance might had happened. 

At this stage it was decided to test the assay type two and add unmodified aptamer in 

solution to already surface immobilised ibuprofen. In this case the analyte molecular 
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weight was not a concern. Also the biotin modification made to ibuprofen was via its 

carboxylic group. This was considered to not interfere in the recognition because the 

ibuprofen aptamers were generated via FluMag-SELEX and ibuprofen was 

Dynabeads® immobilised via the same chemistry, (Kim, Jung et al. 2007).  Once more 

no interaction was verified, leading again to the idea that the free aptamers 

conformation was affected somehow or that the binding area of the target was not 

exposed as necessary. To support this idea, that surface immobilisation seemed to 

have interfered with the aptamer-target complex; it was observed that the published 

affinity studies were all made in solution.  Another reason might have been that the 

changes in the chip surface were so small that were not seen in the sensorgram, 

(Wang, Huang et al. 2011). 

Interaction between ibuprofen and its aptamers were studied using SPR. Two types of 

a direct binding assay were tested. In the first the aptamers were SA chip immobilised 

and the ibuprofen was added in solution. Because no binding signal was seen it was 

decided to use a protein modified ibuprofen to increase the molecular weight. Again no 

interaction was detected. In order to overcome the problem the assay was transformed 

and the ibuprofen was surface immobilised and the aptamers added in solution. No 

binding signal was obtained besides the efficient surface immobilisation of the 

biotinylated molecule. 

Summary and Conclusion 

In response to the obtained results it was searched existing examples where aptamers 

and targets had been used in similar assay formats to the LMC and those were tested. 

5.7.2. Further testing of aptamers in LMC relevant assays: 
aptamers against β-estradiol and Ochratoxin A 

After testing ibuprofen aptamers under the LMC assay type and seeing no binding 

interaction between aptamer and target, it was pursued another aptamer examples 

against small molecules. In that case it was decided to test examples with published 

applications similar to what was required to the LMC assay. It was found two molecules 

with aptamer and surface immobilised assays. They were ochratoxin A (OTA) and β-

estradiol. These were the only two examples found in literature, using low molecular 

weight molecules, with assays with the required surface immobilisation of one of the 

molecules. That showed that probably the implementation of an LMC type assay using 

aptamers against small molecules was more demanding than initially expected. 
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It was then tested the two examples under the LMC assay conditions. 

As seen before, it was found three published examples where β-estradiol aptamer was 

used in assays. In the first case the detection was made with an evanescent wave all-

fiber biosensor, in the second by HPLC, and the third by an electrochemical biosensor. 

The first measured the bound fluorescent labelled aptamer to surface immobilised β-

estradiol in a competitive assay, the second quantified the β-estradiol released after 

aptamer denaturation in direct binding, and the third the current changes also when 

direct binding occurred (Huy, Jin et al. 2011, Yildirim, Long et al. 2012, Kim, Jung et al. 

2007). 

β-estradiol aptamers tested into the LMC context 

a) Experimental and Results 

i. Microplate assay to detect surface immobilised β-estradiol 

In this work the detection was tested in a microplate assay, where β-estradiol was 

surface immobilised via conjugated BSA. The biotinylated aptamer was then added 

and expected to bind to the immobilised β-estradiol. The detection was made via the 

colorimetric HRP enzymatic product. Several concentrations of biotinylated aptamer 

and β-estradiol were tested, and also the time of interaction between them, Table 5-4. 

Table 5-4 β-estradiol-BSA, and biotinylated aptamer tested concentrations and 
interactions time. 

β-estradiol-BSA 1, 10, 50 (μg/ml) 

Biotinylated aptamer 5´- GCTTCCAGCTTATTG 
AATTACACGCAGAGGGTAGCGGCTCTGCGCATTCAA
TTGCTGCGCGCTGAAGCGCGGAAGC-3´ (Kim, Jung et 
al. 2007) 10, 20, 25, 50, 100, 150 (nM) 

aptamer-target interaction time5 15, 30, 60 (min)  

There was no evidence of binding in the tested assay conditions. The concentrations of 

aptamer and target, as well as the buffers and blocking solution used were similar to 

those published, (Yildirim, Long et al. 2012). No further tests were made because the 

starting point was to reproduce as close as possible the published conditions and there 

was no initial data for optimisation into an in house working assay. 

                                            
5  The time considered referred only to the incubation time between aptamer and target. The 
formed complex would be required to be stable during the full assay. 
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b) Discussion 

The attempt to reproduce in a microplate assay the published work did not happen as 

expected. It was speculated that the addition of the enzymatic label interfered with the 

aptamer- β-estradiol complex stability. For this reason it was concluded that to run an 

LMC type assay both the aptamer and target required chemical modifications which did 

not appear to be compatible with the β-estradiol and its aptamer. For that reason 

another example of aptamer against small targets was pursued. 

OTA was a low molecular weight mycotoxin (403.8 g/mol) present in several foods and 

beverages such as cereal based products, dried fruits, coffee, cocoa products, 

liquorish, grape juice and fermented beverages, (el Khoury, Atoui 2010). OTA 

concentration present in those products was regulated so that the average consumer 

did not intake more than 120 ng/Kg per week, (European Union 2010).   

Ochratoxin A aptamers tested into the LMC context 

Cruz-Aguado et al (2008) generated several aptamers able to bind OTA and used the 

OTA fluorescence to detect it in solution, (Cruz-Aguado, Penner 2008). Barthelmebs et 

al (2011) also generated aptamers against OTA, (Barthelmebs, Jonca et al. 2011). 

Several biosensors have been developed to quantify and to remove OTA from the 

contaminated products, (Barthelmebs, Hayat et al. 2011, Yang, Wang et al. 2011, 

Bonel, Vidal et al. 2011, Girolamo, Le et al. 2012, De Girolamo, McKeague et al. 2011). 

And a patented biosensor was also developed for commercial use, (Penner, Cruz-

Aguado 2011). 

a) Experimental and Results  

i. Selection of specific aptamers to be used  

In this work a group of published aptamers was tested. Those were biotinylated at their 

5´-end and some were also tested biotinylated at the 3´-end instead, Table 5-5. 
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Table 5-5 OTA aptamers, from published work, tested biotinylated either at the 5´-end or 
at the 3´-end, and a random sequence used for control. 

OTA aptamer H12 
(Barthelmebs, Jonca et al. 2011) 
Two versions: Biotin modified at 5´- end 
and at 3´- end 

5’- GGGAGGACGAAGCGGAACCGG 
GTGTGGGTGCCTTGATCCAGGGAGTCTCAGAAG
ACACGCCCGACA-3’ 
 

OTA aptamer H8 
(Barthelmebs, Jonca et al. 2011) 
Two versions: Biotin modified at 5´- end 
and at 3´- end 

5’-GGGAGGACGAAGCGGAACTGG 
GTGTGGGGTGATCAAGGGAGTAGACTACAGAAG
ACACGCCCGACA-3’ 

OTA aptamer H16 
(Barthelmebs, Jonca et al. 2011) 
Two versions: Biotin modified at 5´- end 
and at 3´- end 

5’-GGGAGGACGAAGCGGAACCGG 
GTGGGCGGGCTTGATCCAGGGAGTGGACAGAA
GACACGCCCGACA-3’ 

OTA aptamer Sequence 1.12 
(Cruz-Aguado, Penner 2008) 

5’-Biotin-TGGTGGCTGTAGGTCAGCATCT 
GATCGGGTGTGGGTGGCGTAAAGGGA 
GCATCGGACAACG -3’ 

OTA aptamer Sequence 1.12.2 
(Cruz-Aguado, Penner 2008) 

5’-Biotin-GATCGGGTGTGGGTGGCGTAA 
AGGGAGCATCGGACA -3’ 

Random sequence for control6

5´- CACGCGAACACTATGTAACTATCTAG 

 
CGGAAACCAGTTTGATGCGATGGAAGAGCAGGG
TAGAGG -3´ 

OTA binding assay was tested using several assay formats and surfaces. It was also 

tested different OTA modifications and ends of biotinylation in the aptamers. 

ii. Microplate surface immobilised target (OTA-BSA) and soluble 

5´- end biotinylated aptamers 

The first assays were tested with H8, H12, and H16 OTA aptamers biotin modified at 

the 5´- end and OTA-BSA surface immobilised. The assay was tested under several 

conditions, such as OTA-BSA (maximum 50 μg/ml), biotinylated aptamer (maximum 1 

μM), and SA-HRP at different concentrations (0.1; 0.5; 1 μg/ml). It was obtained 

binding signal but in all times, very high unspecific signal (not shown), therefore, in 

order to reduce the background, it was tested the presence of unspecific protein (1 

mg/ml BSA), oligonucleotide (2 μM), or 0.01% Tween 20 in the SA-HRP buffer; several 

blocking agents (0.5% casein, 1 % BSA, 2 % milk powder, 0.5 % Hammerstein casein, 

either in PBS or Binding buffer 1); and different incubation times (maximum 1 hour) and 

temperatures (4 °C , RT and 37 °C).  The unspecific signal was still high and the assay 

binding signal not very reproducible. It was tested the effect of 0.01% tween 20 in the 

Binding buffer 1 during target-aptamer interaction. Again no major improvements were 

seen so it was decided to keep using tween 20. 

                                            
6  The random sequence was generated with f (x) = rand () and keeping the percentage of each 
base present on sequence H12. 
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iii. Microplate surface immobilised target (OTA-BSA) and soluble 

3´- end biotinylated aptamers 

It was decided to use the same assay format but with biotinylated aptamers at the 3´-

end. This was because after re-analysis of the published work from Barthelmebs et al 

(2011), (Barthelmebs, Hayat et al. 2011), it was not clear at which end the aptamers 

have been modified so it was tested again the same aptamers but biotinylated at the 

3´- end. At this stage it was tested aptamer temperature pre-treatment (90 °C of 1 min 

and ice for 10 min, as done in SPR ibuprofen work, (Polonschii, David et al. 2010). No 

major changes were seen in the assay behaviour, Figure 5-7.  

A B 

  

Figure 5-7 Assay with immobilised OTA-BSA (50 μg/ml) and three different 3´end-
biotinylated aptamers at different concentrations. 

The results obtained showed once more binding and the background was slightly 

lower, but once it was attempted to reproduce the results the background values 

increased once more. The assay was not consistent and the background signal was 

not reduced. Because of that the assay was tested under the opposite conditions, with 

immobilised aptamer and HRP modified OTA. 

iv. Microplate surface immobilised aptamer (biotinylated aptamer) 

and soluble target (OTA-HRP) 

The assay was tested with 5´-end and 3´-end biotinylated aptamers, surface 

immobilised and OTA-HRP directly bound, Table 5-5. Although this assay format was 

referred in literature as the one that gave better results it was not possible to reproduce 

this work. Because it was not seen binding signal; it was tested SA Dynabeads® as 
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solid surface, to see if those could be an alternative surface for the assay and to 

understand if the interaction in solution would give positive results. 

v. SA Dynabeads® immobilised aptamer (3´-end biotinylated 

aptamer) and soluble target (OTA) 

Using the SA Dynabeads® as surface, the 3´-end biotinylated aptamers were 

immobilised and OTA in solution was added. Because OTA was fluorescent, after 

washing the excess of OTA the Dynabeads® were heated to promote aptamer 

denaturation. The released OTA was collected, detected, and the quantity extrapolated 

via a calibration curve (not shown). The obtained difference between the quantity of 

OTA present in the last wash-liquid and the one obtained after aptamer denaturation 

was less than half unit, which was considered insufficient to prove binding and not 

unspecific interaction. Based on the obtained results it was decided to take a novel 

approach to test the aptamers interaction with OTA. 

vi. Soluble target (OTA-BSA) and soluble aptamer (3´-end 

biotinylated aptamer) 

The 3´-end biotinylated aptamers were mixed in solution with OTA-BSA at different 

concentrations, and the formed complex was surface immobilised via BSA adsorption 

into a microplate. The signal was obtained after oxidation of bound SA-HRP to the 

biotinylated aptamer. 

From all the OTA aptamers, the aptamer that showed better results was the H12 

biotinylated at the 3´-end. It was then used to perform the assay with OTA-BSA both in 

solution. It was possible to see that the lowest concentrations of OTA-BSA gave better 

results than the higher ones. This was perhaps higher concentrations did not allow 

better interaction between aptamer and target and the lowest did. That phenomenon 

occurred in both of the two assays performed (A and B). The controls for detection of 

unspecific binding indicated that there was binding interaction between the aptamer 

and OTA (A´and B´). In the first assay it was seen a higher unspecific signal from the 

biotinylated aptamer itself, which did not occur on the second assay replicate. In both 

cases the unspecific signal was lower than the binding signal, Figure 5-8. 
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A

 

A´

 

B

 

B´

 

Figure 5-8 Assays (A and B) of OTA-BSA at different concentrations and 3´-bio-H12 
aptamer both in solution, that after complex formation were surface adsorbed. A´and 
B´presented the assay controls for unspecific signal.  

Afterwards it was attempted to obtain a binding curve with different concentrations of 

OTA-BSA, starting at 2.50 μg/ml, because it was the OTA-BSA concentration that gave 

the highest signal. The assay format was kept but the obtained signal was low and it 

was not possible to mimic the previous results. There was evidence of binding 

proportionality according to OTA-BSA concentration, but always very low binding 

signal. Higher concentrations of OTA-BSA were tested but no improvements were 

seen, Figure 5-9. 
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Figure 5-9 Direct binding curve of OTA-BSA and 3´- biotinylated H12 aptamer, obtained 
after complex formation in solution and surface adsorption.  

b) Discussion 

Several published OTA aptamers were tested under three assay types. The objective 

was to obtain direct binding between the aptamer and OTA. In the first assay type, the 

OTA-BSA was surface adsorbed and a biotinylated aptamer was added in solution. To 

the biotinylated aptamer it was added SA-HRP to give origin to an optical detected 

signal that would indicate complex formation. There was evidence of binding but a high 

background was always present and it was not possible to obtain a calibration curve. 

Also Bonel et al (2011) reported that their assay when surface immobilising OTA-BSA 

was not robust and presented low reproducibility, (Bonel, Vidal et al. 2011). Another 

interesting point was the fact that immobilised aptamers via their 5´-end performed 

worse than when biotinylated by their 3´-end. This showed that biotinylation had an 

impact either on the aptamer folding or in the binding site.  

The second assay format required biotinylated aptamer surface immobilisation. It was 

tested microplates with OTA-HRP in solution and SA Dynabeads® with OTA in 

solution. No signal was obtained with OTA-HRP and the fluorescent signal from OTA 

obtained after aptamer denaturation was not sufficient to confirm binding. This was not 

expected but no reason was found for these results. It was argued that the OTA 
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modification might have not been efficient but no detailed investigation was made 

under this subject. 

A third assay format was tested; this was a different approach where OTA-BSA was 

incubated in solution with the 3´-bio-H12 aptamer and then the complex was surface 

adsorbed. 3´-bio-H12 was the aptamer that showed best results under this approach. 

Initially the lowest concentrations of OTA-BSA gave the best binding signal, but after 

running a binding curve it was not possible to obtain the same value range and lower 

binding signal was seen consistently. Because of this it was concluded that the assay 

was working but it was not very robust.  

The β-estradiol assay did not present any binding signal. It was concluded that 

probably the addition of the label interfered with the complex. Because of this it was 

seen as an unsuitable assay for further studies. The second example found in literature 

where similar assays to LMC had been developed, was the OTA aptamers. The assay 

presented very high unspecific signal when OTA-BSA was surface immobilised, so it 

was tested surface immobilisation of the aptamers and direct binding to OTA-HRP. In 

that case no binding signal was obtained. It was also tested the direct detection of OTA 

after interaction with the immobilised biotinylated aptamer onto the surface of 

Dynabeads®. The obtained OTA was not conclusive if it was caused by unspecific or 

specific binding. 

Summary and Conclusion 

In order to confirm the initial interaction between the aptamer and the OTA-BSA, a 

novel approach was tested. The aptamer and OTA-BSA were incubated in solution and 

then surface adsorbed. In that case it was possible to run several assays, including a 

direct binding curve. It was seen a decrease in signal that was not possible to recover. 

This might have been caused by aptamer or OTA-BSA degradation. 

Because the obtained data was not robust as required, it was decided to test an 

aptamer against a protein and learn more about aptamer interaction with their targets 

and the impact of surface immobilisation in their interaction.   
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5.7.3. Additional testing of aptamers in LMC relevant assays: 
aptamers against a protein target - thrombin  

The thrombin aptamer was used because it was a well-known aptamer and it was 

applied in several assays formats and biosensors. The test of the thrombin aptamer in 

this work had the aim to obtain a more robust working assay than the tested with small 

molecules. In special because it was seen that aptamers against small molecules were 

used in solution and that in the few published examples where aptamers or targets 

were surface immobilised, their reproducibility was not as good as expected. Also the 

test of aptamers against small molecules and against a protein allowed a better 

understanding on how aptamers could interact with their targets and the impact that 

surface immobilisation could cause. 

Human thrombin had two published aptamers, one 15 oligomers long and another 29. 

The 15 oligomers long was modified with a poly T tail 20 oligomers long. This was used 

because it was previously published with the modification, and it allowed the 

understanding of the impact of having a poly tail in aptamers interaction with their 

target. The two aptamers were known to bind two different epitopes in thrombin, (Centi, 

Messina et al. 2008).  

Thrombin Aptamers tested into the LMC context as alternative to small 
molecules 

a) Experimental and Results 

i. Thrombin aptamers to be used  

In the assays it was used negative controls, so it was randomly generated two 

sequences. This was done similarly to OTA random sequences in the previous point, 

Table 5-6.  
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Table 5-6 Thrombin aptamers and random sequences used in the assays. 

Thrombin Bio-Aptamer poly A 15-oligomer 

5’-Biotin-TTTTTTTTTTTTTTTTT 

TTTGGTTGGTGTGGTTGG -3’ 

Random sequence poly A 15-oligomer 

5’-Biotin-TTTTTTTTTTTTTTTTTTTT 

ATGCGGGGCGGAGTT-3’ 

Thrombin Bio-Aptamer 29-oligomer 

5’-Biotin-AGTCCGTGGTAGGGCAG 

GTTGGGGTGACT -3’ 

Random sequence 29-oligomer 

5’-Biotin-ATGCATTGTCGTACGACG 

CTCGACCAGGA -3’ 

Thrombin was biotinylated to allow streptavidin surface immobilisation or to bind to 

HRP also modified with streptavidin. The assay principle was the same as in the 

previous points, either the aptamer was surface immobilised or the target, and the 

biding was direct. 

In the assay optimisation, the aptamers were tested at several concentrations, and the 

biotinylated thrombin was diluted several factors using the stock solution as initial 

parameter (50 U per μl). It was tested two surfaces, SA Dynabeads® and SA 

microplate, and two different methods. 

ii. SA Dynabeads® versus microplate for immobilisation surface 

As published by Centi et al (2008), (Centi, Messina et al. 2008) the 15 oligomer 

biotinylated aptamer was SA Dynabeads® immobilised but in this case the detection 

was made using the enzymatic oxidation of TMB. The colorimetric product was 

transferred from the solution with Dynabeads® to a clean microplate for optical reading. 

It was obtained high unspecific background. When tested the same conditions in a SA 

microplate, the background was lower and the assay clearer. Because of this the assay 

was moved to a microplate, Figure 5-10. 
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Figure 5-10 Comparison assay between A) Dynabeads® and B) SA microplate for 
immobilisation surface.  

When repeating the assay in the microplates, the binding signal decreased and the 

assay did not show stable binding signal among the different thrombin dilutions. In 

order to avoid this, this protocol was compared to a new one. 

iii. Comparison between two different protocols for the biotinylated 

thrombin microplate assay 

The two protocols tested were based on published work, (Baldrich, Acero et al. 2005, 

Centi, Messina et al. 2008). The protocols were different, as the concentration of 

biotinylated aptamer changed from 1 μM to 50 nM, different buffers (see previous 

point), and different incubation time and temperatures. The biotinylated thrombin 

dilutions were the same as the detection, Figure 5-11. 
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Figure 5-11 Comparison between two assay protocols, A and A´) based on Centi et al 
(2008), and B and B´) based on Baldrich et al (2005). A´and B´represented the assay 
unspecific binding, (Baldrich, Acero et al. 2005, Centi, Messina et al. 2008). 

The results obtained with the protocol based on Baldrich et al (2005) presented lower 

unspecific signal and a higher binding signal. For that reason was immediately 

adopted. It was then tested the performance of the two thrombin aptamers. 

iv. 15 oligomer versus 29 oligomer aptamer to bind biotinylated 

thrombin 

All the previous assays were performed using the poly T 15 oligomer aptamer against 

thrombin. It was decided to test also the 29 oligomer with the corresponded controls. 

When running an assay with both the aptamers, no binding signal was obtained for the 

29 oligomer. This was repeated and again no binding signal was found. Because of this 

the 29 oligomer was not used in the following thrombin assays. 
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v. Impact of pH and working buffers in the assay performance 

It was decided to test the impact of the working buffers on the assays. In order to do so 

two different tests were made. In the first the biotinylated aptamer was in different 

buffers and the biotinylated thrombin in HEPES as before, in the second test the 

biotinylated thrombin was in different buffers and the biotinylated aptamer in PBS as 

before. The buffers were HEPES, HEPES with KCl and an ion rich buffer, Table 5-7.  

Table 5-7 Buffers tested in the assay to study the impact on aptamer and target binding. 

Poly T 15 oligomer thrombin aptamer 

PBS pH 7.4 or 10 mM HEPES with 50 mM KCl, 

pH 8.0, adapted from Baldrich et al (2005), 

(Baldrich, Acero et al. 2005) 

Buffer C (5 mM Tris-HCl, 0.5 mM EDTA, 1 M 

NaCl) pH 7.5, adapted from Centi et al (2008), 

(Centi, Messina et al. 2008, Baldrich, Acero et al. 

2005) 

Biotinylated thrombin 

10 mM HEPES pH 8.0 or 10 mM HEPES with 50 

mM KCl, pH 8.0, adapted from Baldrich et al 

(2005), (Baldrich, Acero et al. 2005) 

Buffer D (50 mM Tris-HCl, 140 mM NaCl, 1 mM 

MgCl2, 0.1% BSA) pH 7.4, adapted from Centi et 

al (2008),(Centi, Messina et al. 2008) 

In the first example, where the only change was the buffer in which the aptamer was in, 

it was seen similar binding results between the different buffers, but the background 

was lower with the PBS buffer. In the second test, it was seen a slightly lower binding 

signal with buffer D, a higher background with HEPES and an improved signal with 

HEPES with 50 mM KCl. Despite the better binding signal, the background was also 

high, similar to the HEPES. Because it was not possible to develop these tests to a full 

understanding of the impact of KCl ions in the aptamer conformation and because the 

buffer D was rich in ions and did not show such binding improvement, it was decided to 
maintain the original buffers, the PBS for the biotinylated aptamer and HEPES for the 

biotinylated thrombin. 
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vi. Aptamer pre-heating and its influence in binding ability 

Once more it was tested if the temperature influenced the aptamer performance or not. 

The aptamer was pre-heated as before; 94 °C for 10 min and then put on ice before 

being added to the assay. The results obtained did not show any major differences 

from the assays obtained with a lower binding signal. There were sometimes assays 

with lower binding signals than others. This might have been due to aptamer poor 

conformation or any internal change, room temperature or enzymatic degradation, 

which interfered with the aptamer correct folding. Or even the distribution of analyte 

was not presenting the binding site as well as in other assays. If any change was seen 

due to temperature pre-treatment, it was the obtained higher standard deviation than in 

the previous assays. As seen previously the pre-heating treatment did not increased 

binding signal or decreased background, for this reason it was not considered to be 

used as a routine step for this assay, Figure 5-12. 

 

Figure 5-12 Assay with pre-heated aptamer at 94 °C for 10 min and then ice cooled. 

vii. Direct binding assay and competitive binding assay 

It was decided to perform a direct binding assay under the same conditions published 

by Baldrich et al (2005), (Baldrich, Acero et al. 2005). A direct binding curve was 

obtained with biotinylated thrombin dilutions from 1:1000 to 1:20000 and the 

biotinylated poly T 15 oligomer aptamer at 50 nM. The assay controls showed 
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unspecific binding of bio-thrombin at the lower dilutions, in special at 1:2000. This 

unspecific signal might be due to the binding of bio-thrombin to SA-HRP. This could 

have happened because of inefficient washing steps or poor blocking. When analysing 

the signal obtained in the controls for the biotinylated aptamer, the random sequence 

and the uncoated surface, the values were similar to what was seen in Figure 5-11, 

(data not shown). The control, to see unspecific aptamer binding, showed again higher 

values in the lowest dilution of biotinylated-thrombin. Despite the unspecific signal at 

the lowest dilutions of analyte it was obtained a binding curve with an r2 Figure 

5-13

 of 0.94, 

. It was also seen that lower dilutions of biotinylated thrombin gave lower binding 

signals; this probably indicated a saturation of analyte that prevented aptamer 

interaction. 

 

Figure 5-13 Direct binding curve with controls of biotinylated thrombin and biotinylated 
poly T 15 oligomer aptamer. 

Afterwards a binding competitive assay was attempted with different dilutions of 

thrombin competing with biotinylated thrombin at 1: 1000. This value was chosen 

because it gave higher binding signal in the direct binding curve. 

The obtained competitive binding assay signal was very low showing the preference to 

bind free thrombin instead of its biotinylated version. In the highest dilutions of free 

thrombin the highest competition signal obtained was of 0.22. This was so low that the 

competition assay was considered very difficult to obtain under this detection method. 



 

139 

a) Discussion 

As a well-known assay the thrombin assay showed how sensitive aptamers were to 

assay working conditions. It was expected to be a straightforward and robust assay, 

simple to perform. The assay fundamentally worked since the first run, but it was 

difficult to reproduce the assay consistently. It was reported by Baldrich et al (2005) 
that thrombin was very unstable in solution; this could also have been one of the 

reasons for the signal variability, (Baldrich, Acero et al. 2005). 

Two biotinylated aptamers were tested against biotin modified thrombin. The 29 

oligomer aptamer did not show any binding signal. It was assumed that the thrombin 

binding site was used for biotin modification. It was considered that binding of the 15 

oligomer aptamer was result of using a poly T tail to add length between the 

immobilising surface and the binding place. It was expected that the aptamer folded 

more freely, without any steric hindrance, and in that way bound the target efficiently. 

Musumeci et al (2012), described the three binding sites of thrombin and referred the 

interactions of the two aptamers with the target. The 29 oligomer interacted with 

thrombin hydrophobically to its heparin region while the 15 oligomer bound, via the G-

quadruplex structure and electrostatic interactions, to the fibrinogen region. The same 

study mentioned that thrombin aptamers were very sensitive to enzymatic degradation 

and that should be chemically modified to prevent their denaturation, (Musumeci, 

Montesarchio 2012). It was attempted to understand if the biotinylation affected the 

heparin binding site but no detailed covalent chemistry information was found about the 

subject. 

It was found in literature that K+ ions gave higher stability to quadruplexes structures 

than Na+ ions. Perhaps this was the reason why it was only seen an improvement in 

the binding signal in the buffer with K+ in comparison with the other buffers,(Sigel, Sigel 

et al. 2012). It was also found in literature the interaction between the thrombin and the 

15 oligomer aptamer was helped with K+ and Na+ ions, (PDB 2005, Russo Krauss, 

Merlino et al. 2012). Despite this it was reported that the aptamer in an assay 

performed at 4 °C (it was the adopted situation), was not depended on K+ ions to 

achieve a G-quadruplex conformation, (Baldrich, Restrepo et al. 2004). Nevertheless 

more investigation would be necessary to understand why the presence of divalent 

ions did not show any major improvements in the binding interaction while K+ ions did 

and if that effect was real or a false positive result. 
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Centi et al (2008) reported no binding in an assay with thrombin surface immobilised 

and the addition of aptamer. This was not tested here because of those reported 

results, but it was interesting to verify that the interaction of a protein as thrombin 

suffered when surface immobilised, and that the obtained results in this case showed 

binding only with the aptamer that presented a poly A tail that added length from the 

surface.  

The thrombin assay was tested in order to use a well-known example to study 

aptamers in the LMC assay type. It was found in literature that the thrombin aptamer 

did not bind to surface immobilised thrombin and the assay was developed with 

immobilised aptamer and addition of biotinylated thrombin. The obtained biding signal 

occurred with the aptamer modified with a poly T tail. It was possible to run a direct 

binding curve but when testing a inhibition ELISA the highest signal obtained was very 

low, showing that the affinity to the free thrombin was higher and it was necessary to 

obtain a more robust direct binding assay. This was not possible to pursue within the 

allocated time frame.  

Summary and Conclusion 

5.8. Discussion to identify the aptamer (s) that was adequate to 
run LMC microarray plate assays  

Finding examples of aptamers against small molecules was challenging because the 

majority of the targets were not as simple as the LMC targets and it was chosen to 

work with DNA, and some of the targets of interest had RNA aptamers. When 

searching for examples within the DNA aptamers against small molecules, where the 

aptamers had been used in detection assays it was found only two examples with 

surface immobilisation. It was found that kinetics studies and biosensors with aptamers 

against small molecules were made, in their majority, in solution. 

The LMC assay was a competitive assay with immobilised target derivatives and 

labelled aptamers. This meant that an aptamer would have to bind to a target in 

solution as well as to its immobilised derivative. It was important to considerer that the 

LMC targets had low molecular weight and for that reason their chemical modification 

could interfere in their binding sites availability. As seen before, aptamers bound 

preferentially to regions rich in ions or complex structures as aromatic rings. The 

requirement of the LMC assay to surface immobilisation of target derivatives, in the 
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majority of times was made via the target “richer interaction” site. This was expected to 

have a negative impact on the aptamer-target interaction. Other point of change was 

that the aptamer was labelled or modified somehow at one of its extremities. Those 

modifications were proteins which introduced new chemical interactions within the 

aptamer and that might have interfered with the aptamer initial folding structure. 

Also when adding the SA-HRP to the biotinylated analyte that formed the aptamer-

target complex, the complex could be destroyed due to the new covalently attached 

label. Although Batchelor-McAuley et al (2009), reviewed the applications of DNA into 
electrochemistry detection methods, and mentioned that HRP and biotin were the most 

common labels used for detection, (Batchelor-McAuley, Wildgoose et al. 2009). The 

ideal would have been to use directly modified analyte with HRP. This was tested with 

OTA without positive results. It would be interesting to understand the impact of this 

modification and binding interaction of the enzymatic label in the formed complex. The 

published example where it was run a inhibition ELISA with β-estradiol aptamer, the 

aptamer was directly labelled. Maybe the post-complex labelling in this case interfered 

with the target-aptamer interaction. In the case of the ibuprofen aptamer, tested in the 

label-free detection system, SPR, the detection system was not sensitive enough for 

such low molecular weight target and the modification of it to increase mass and 

subsequently the index of refraction might have modified too much the target and 

prevented binding.  

Mitchell et al (2005) suggested the use of a water soluble linker to surface immobilise 

progesterone into a dextran CM5 chip, (Mitchell, Wu et al. 2005). The same authors 

also suggested the use of gold nanoparticles to enhance the binding signal after 

complex formation. This was done in an immune assay so no reference to aptamers 

modification was made. A similar method was also used by Wang et al (2008), but in 

that case using aptamers, (Wang, Zhou 2008). Gopinath (2010) reviewed the SPR 

applications with aptamer and small molecules. The author reported only two examples 

between low molecular molecules and DNA aptamers without any modification to 

enhance the binding signal in SPR (Gopinath 2010).  

When observing the results obtained and comparing it with the published work, it was 

clear the challenge in obtaining a LMC type working assay. In the examples tested the 

target surface immobilisation and addition of aptamer in solution only occurred for OTA 

and presented high unspecific signal maybe due to incompatibility with the chosen 

detection system. It would be interesting to test a different label system and verify if the 
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unspecific signal would decrease. The obtained data was similar to what was reported 

in literature. Bonel et al (2010) mentioned that the assay type with surface immobilised 

OTA was unstable and difficult to reproduce, (Bonel, Vidal et al. 2011). This was not 

expected because the OTA aptamers were generated using OTA surface immobilised, 

and for that reason it was initially assumed that if the surface immobilisation was made 

at the same position there would be aptamer interaction.   

It was also found that the thrombin surface immobilised did not bind to the aptamer in 

solution, (Centi, Messina et al. 2008), because of this it was not even tested in this 

work the thrombin surface immobilisation. 

When surface immobilising the biotinylated aptamer and adding in solution the target, 

in the tested examples it was obtained results for the thrombin aptamer. It was not 

possible to obtain a binding signal with OTA, maybe because of a poor chemical 

modification with the enzyme HRP. This was not expected as examples were found in 

literature where OTA-HRP or OTA bound to immobilised aptamer, (Wu, Hu et al. 2011, 

Prieto-Simon, Campas et al. 2008, Barthelmebs, Jonca et al. 2011), the modification 

made was confirmed to be in the same position as the one published, (Worsaae 1978). 

It was found several examples were OTA bound to aptamer immobilised into gold 

nanoparticles or magnetic particles, (Yang, Wang et al. 2011, Ma, Yin et al. 2013). It 

was expected also to obtain a clearer difference between the wash-liquid and the 

eluted OTA solution when the assay was tested in SA Dynabeads®. That did not 

happen perhaps because the aptamer denaturation was not very efficient.  

The immobilisation of the aptamer-OTA-BSA after interaction in solution was a novel 

approach and it was possible to run a binding curve. Despite this the obtained binding 

signal was low and it was not run a competitive assay.  

It was relevant to observe that  the initial aptamer kinetics studies were made in 

solution for the tested aptamers against small molecules and that it may show that the 

aptamer and target expected interaction could be affected by any kind of surface 

immobilisation or chemical modification, (Cruz-Aguado, Penner 2008, Kim, Hyun et al. 

2010, Barthelmebs, Hayat et al. 2011, Kim, Jung et al. 2007).  

The presence of ions was known to be important for aptamer conformation and 

stabilisation. This was referred by Cruz-Aguado (2008) for the OTA aptamer and the 

used buffers were rich in divalent ions as Mg2+ or Ca2+, (Cruz-Aguado, Penner 2008). 

The thrombin aptamer as a well-known G-quadruplex structure showed increased 
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binding response when in presence of KCl but no further investigation was made and 

the HEPES buffer was used without any ionic additives. This was chosen because it 

was obtained better results with this buffer than with an ions-rich buffer and it was not 

understood why it happen. Because of that it was kept the initial working buffer 

conditions, this decision was supported by Baldrich (2011), who reviewed that in the 

majority of times the assay buffer was similar to the selection one, (Baldrich 2011). 

5.9. Summary and Conclusions 

It was found in literature ten examples of DNA aptamers against small molecules that 

presented similar physiochemical characteristics with the LMC targets. Within those 

examples it was only found two of them where the aptamers had been integrated into 

LMC assay or similar formats. It was considered that if an inhibition LMC assay would 

be developed with one of the published aptamers against its small target, it could be 

assumed that aptamers generated against LMC targets would behave similarly. It was 

also, based on the few examples found in literature, considered that it would be 

probably difficult to develop a LMC working assay.  

In addition to the two examples found in literature, it was add an extra small molecule 

had been used as positive control in the previous chapter and had published aptamers 

against.  In summary, three examples of aptamers against small targets were tested 

and two of them had published work where the aptamers had been used in assays with 

surface immobilisation. Because in this work it was not achieved a developed assay 

where it was possible to run an inhibition assay with the aptamers against small 

molecules, it was also studied the thrombin aptamer. The Figure 5-14 summarises the 

assays tested with the four targets and their aptamers.  
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Published Aptamers  
tested into LMC type assay 

and variants 
 

Ibuprofen
 Aptamers 

Estradiol
 Aptamer

Ochratoxin A
 Aptamers 

Thrombin
 Aptamers 

ELAAs
 

SPR
 

Target 
immobilisation and 

soluble aptamer
 

Target 
immobilisation and 

soluble aptamer
 

Soluble target and 
immobilised 

aptamer
 

Soluble target and 
aptamer  

(complex surface 
adorption)

 

Soluble target (with and without 
protein covalently attached) and 

immobilised aptamer
 

Soluble target and 
immobilised 

aptamer
 

Target 
immobilisation and 

soluble aptamer
 

 

Figure 5-14 Diagram with the aptamers and assay formats tested in this chapter. 

It was discovered on aptamer work against small molecules several points that 

required further work to fully understand their impact on the aptamers integration onto 

the LMC assay. The first point was about the aptamers against small molecules 

sensitivity to targets surface immobilisation showing unstable binding results. It was 

also referenced in literature that the thrombin aptamer did not bind to surface 

immobilised thrombin. Another concern was regarding the addition of the enzymatic 

label, which could interfere in the complex interaction. The low interaction could 

probably be overcome using a different detection method (test the released ions 

instead of the enzymatic HRP colorimetric product, for example), or label directly the 

aptamers not introducing an extra structure to the fragile aptamer-target complex. The 

final consideration was regarding the addition of a spacer between the surface and the 

target that could expose better the target into solution, reducing possible surface 

effects of steric hindrance.  

Based on the previous points, it was concluded that it was very difficult to integrate 

aptamers against small molecules in the LMC assay format within the LMC allocated 

resources and timeframe.  
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Chapter 6. Initial considerations of Planetary Protection 
and Contamination Control for the LMC 

6.1. Chapter Introduction  

The LMC instrument as part of a payload within a planetary exploration mission to Mars 

had to obey to a certain number of requirements and parameters. Two of those 

requirements were the prevention of Mars contamination with Earth´s microbial or 

organic contaminants, and the prevention of detecting contaminants on the Martian 

sample, (false positive results). In order to prevent both of the situations; it was 

developed the Planetary Protection and Contamination Control (PP&CC) regulations.  

In this chapter it was described an opportunity that arose to demonstrate instrument 

designs and handling protocols associated with PP&CC via a stratospheric balloon 

flight to search for life in the extreme environment of the Earth’s Stratosphere (the 

CASS•E experiment) and from which design and handling protocol lessons relevant to 

the LMC were drawn.  

Also in the context of aptamers as alternative bioreceptors for the LMC, it was 

considered in this chapter the compatibility of aptamers with sterilisation techniques 

that were required if the LMC instrument wanted to meet the PP&CC requirements. 

6.2. Literature Review on Planetary Protection and 
Contamination Control 

6.2.1. Importance of microbial control in space missions 

PP&CC concept was developed with the objectives of control the presence of biological 

burden (bioburden) transported to other planets in space missions, and by doing so, 

protect the explored planets from Earth-life-like contamination. Also to protect our 

planet, in the case of return missions, from extra-terrestrial matter, and to prevent 

detection of false positives. All of this was made by controlling and reducing the 

microbial presence on the mission spacecraft and in special on the hardware that 

collected and analysed the Martian samples. 

In order to regulate the space missions and to generalise good practices among the 

several global space agencies, the Committee of Space Research, (COSPAR) was 
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created. This committee has the responsibility to regulate and oversee the PP&CC 

implementation on each mission. 

The implementation of PP&CC was standardised by the European Cooperation for 

Space Standardization (ECSS) and NASA´s office of Planetary Protection. The 

Committee of Space Research (COSPAR) regulated the Space research, policies and 

the practices implementation. The PP&CC objectives were to prevent extra-planetary 

contamination with Earth´s microorganisms or organic molecules by controlling the 

presence of bioburden on the spacecraft hardware. The major ways of meeting PP&CC 

requirements were to reduce the levels of viable microorganism contaminating the 

spacecraft or specific instrument, and to control and prevent microorganisms’ re-

contamination. The major concern was the microorganisms, (such as extremophiles or 

encapsulated forms of bacteria or fungus) that could survive the implementation of 

sterilisation processes associated with meeting PP&CC regulations. Those resistant 

microorganisms that maintained their viability, could recover from a dormant state once 

the environmental conditions became favourable. The PP&CC was applied with the 

objective to decrease the microbial presence, at least, until the maximum value 

accepted by the COSPAR regulations. This was considered as the sterility assurance 

level (SAL), which was the estimated probable value of microorganisms present after 

PP&CC implementation, (Barengoltz 2010). The bioburden could be found on the 

aircraft surface, mated or encapsulated. The location could influence the effectiveness 

of reduction but also the release into a new environment. The bioburden reduction was 

achieved by following standard processes that could either decreased the presence of 

microorganisms or prevent re-contamination. Those were dependent on the 

microorganisms’ location, the efficiency of the process and the initial biodiversity 

present. As seen in section 2.6 (Chapter 2), the space missions were classified into five 

categories and sub-categories. The mission was categorised according to its aim and 

destination. The LMC instrument being part of the ExoMars mission which had a 

category of IV-b (as seen in section 2.6) required a limit of 2 x10

COSPAR and PP&CC regulations- Principles of PP&CC 

5 bacteria spores / m2 

on the spacecraft exterior and less than 300 bacteria spores / m2

 

 on the LMC interior, 

(Pillinger 2009). 
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6.2.2. PP&CC implementation  

PP&CC implementation required a group of techniques that reduced the bioburden and 

controlled the biological recontamination. That required the assembling into specific 

controlled environments (cleanrooms), team work (constant control of personnel 

contamination), microorganism’s physical removal and monitoring, sterilisation 

procedures, the use of materials compatible with the previous procedures, and 

spacecraft or instrument design that allowed PP&CC implementation and helped 

preventing hardware re-contamination after cleaning and sterilisation procedures had 

been implemented. The PP&CC implementation also required the validation 

procedures to access cleanliness and sterility levels. 

Cleanrooms were air cleanliness controlled areas used for assembling spacecraft and 

were classified according to the number of particles present per cubic meter. The 

PP&CC implementation required at least an ISO 8 cleanroom category (ISO 14644-

1:1999), which had a maximum of 100

Cleanrooms classes and personnel working preparation 

3

The space organization of the cleanroom should be in such a way that the personnel 

movement was made from the last clean area to the cleanest. This could include 

different areas within the cleanroom with different levels of cleanliness. The cleanroom 

air should be filtered with a high efficiency particulate air filter (HEPA) and the floor and 

walls mopped and wiped before use. The HEPA filters also had different levels of 

filtration and were classified (EN1822:2009) according to their efficiency and particle 

size at which the filtration was lower. The personnel had to wear special garments that 

minimized their contamination of the surrounding area. Personnel were the major 

source of contamination inside a well prepared cleanroom. Considering this, the use of 

garments, gloves, masks and shoes-covers minimised as possible the shed of skin 

cells, hair and microbial or particle transport. Personnel had also to receive 

appropriated training about how to move and work inside the cleanroom in order to 

minimize the particle shed, had to be submitted to health checks and had to have 

 particles per cubic meter of air. Cleanrooms 

bioburden was controlled applying the standard ECSS-Q-ST-70-58C. That standard 

regulated the cleanroom design, controls of cleanliness, how to operate inside a 

cleanroom, the garments requirements and the necessary training to operate inside a 

cleanroom. The cleanliness and contamination control were regulated following the 

standard ECSS-Q-ST-70-01C, (ECSS 2012, Debus 2006).  
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hygiene habits (e.g. minimum facial hair, no cosmetics of any source) that assured the 

minimum contamination possible. Moreover microbial control had to be performed 

regularly and if above the desired levels action for its reduction should be taken, (Boni, 

Clark 2008, Cheng, Liu et al. 1998, Braun 1998). 

The microbial examination taken inside a cleanroom was regulated in the ECSS-Q-ST-

70-55C. That included airborne, surface and personnel microbial control. That control 

was made using microbiological techniques to collect samples. That was obtained by 

active air filtration, surface swabbing or wiping, and contact plates. The aim of 

collecting the samples was to identify and control the presence of microorganisms. The 

sample collection should have been taken always from the same place for microbial 

tracking and comparison. The filter or swab material could be analysed directly by its 

DNA content or prior to it by cell culturing. Only a very low percentage of existing 

microorganism in nature were cultivable (less than 1%) and because there was no 

initial information about the collected microorganisms, several cultivating conditions 

had to be tested, which made it a very long and complex task. There were two 

approaches taken to identify the microorganisms, either by initially culturing them, or by 

direct detection of genomic DNA content of the bacterial 16S rRNA gene, in both cases 

they were classified taxonomically after DNA analysis, (Vaishampayan, Osman et al. 

2010). The schematic present in 

Microbial control and reduction techniques  

Figure 6-1 presented the standard procedure taken to 

collect and cultivate the obtained swabbed material, 
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Figure 6-1 Recommended standard swab assay procedure for microbiological sample 
collection by swabbing a specific area and transferring the collected material into culture 
media for microorganism analysis, adapted from page 22, ECSS-Q-ST-70-55C, (ECSS 
2012). 

The decontamination methods were essentially cleaning methods. Those intended to 

remove physically and to destroy most of the present microorganisms. There were 

several options but ideally the chosen cleaning liquids would be efficient either in 

bacteria and in fungi, do not be inflammable, toxic, corrosive or expensive. The usual 

cleaning liquid chosen was sterile isopropanol alcohol (IPA) in a 70 % aqueous 

solution, this concentration was the most effective to destroy microorganisms, by being 

a disinfectant and interfering with cells protein structures present in the cellular walls 

and enzymatic activity. IPA was a cheap consumable easy to use and have access to, 

with a low level of toxicity when compared with other chemicals. IPA was used in 

solution applied directly onto surfaces, used to immerse components or to impregnate 

cleaning wipes, (Whyte 2001). 

Besides destroying and physically removing the maximum possible content of 

microorganisms, PP&CC required the implementation of sterilisation. 

After implementing the cleaning procedures, and in order to eliminate the viable 

microorganisms and achieve the required COSPAR acceptable level of bioburden, 

sterilisation was necessary. The implementation of PP&CC in space missions had 

been developed along the years which gave the possibility to learn by heritage and to 

understand which conditions were better to reduce the bioburden, the next table 

Sterilisation - Dry Heat microbial reduction (DHMR) 
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explained the types of sterilisation methods and in which missions were applied, Table 

6-1. 

Table 6-1 Sterilisation types used in past space missions, adapted from page 19 ECSS-Q-
ST-70-53C, (ECSS 2012). 

Type Methods Sterilisation type Heritage 
Surface Bulk Studied Studied and Used 

Chemical 

Formaldehyde gas x - Space 
components - 

Ethylen oxide x - - Ranger 1961/62 
Sporicide solution 

(TBD7 x ) - Mars 96 Mariner Mars 
1971 

Hydrogen peroxide x - - Mars 96, Beagle 
2, DS 2 

Thermal Dry heat x x - 

Viking, Mars 96, 
Pathfinder, 

Beagle 2, MER, 
Phoenix, MSL 

Steam Steam ( space 
hardware excluded) x - - 

Only compatible 
components, 

garments 

Radiative Gama / Beta 
radiations x x - Mars 96, Beagle 

2 

The method of sterilisation by DHMR allowed the reduction in the level of viable 

microorganisms both in surface and bulked. DHMR was not always compatible with 

certain hardware components as heat sensitive electronics or with biological 

components as bioassay reagents.  

DHMR used in space missions was regulated in the document ECSS-Q-ST-70-53C, 

(ECSS 2012). DHMR consisted in heating, under controlled humidity (lower than 1.2 

g/m3

Table 6-2

) and pressure, for a constant temperature and a certain period of time the desired 

piece of material, .  

Table 6-2 Time and temperature required to reduce the presence of microorganism 
encapsulated or in free surfaces, adapted from ECSS-Q-ST-70-53C, (ECSS 2012). 

 Temperature ( °C) 
110 115 120 125 

Free and mated surfaces 32 hr 18 hr 11 hr 6 hr 
Encapsulated surface 156 hr 90 hr 52 hr 30 hr 

As explained in Table 6-2, according to the applied time and temperature the 

microorganisms were reduced. The encapsulated ones required more time or higher 

temperatures to achieve the same levels of reduction than the free ones. The 

                                            
7  Usually those solutions had a mixture of hydrogen peroxide and acetic acid, or sodium 
hypochlorite, (ECSS 2012).  
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described table was a summary of a logarithmic proportion between the time of 

implementation, initial number of microbial population and the microbial reduction 

obtained, using as standard the spore of Bacillus atrophaeus (Figure A-22, Appendix 

A), (ECSS 2012).  

In the LMC, the chosen bioreceptors (antibodies) were not compatible with DHMR 

implementation, and for that reason the assay assembling would be made aseptically, 

after instrument cleaning and sterilisation and antibodies sterile filtration (Cullen, Mark 

2007, Sims, Cullen et al. 2012). If the LMC bioreceptors were compatible with DHMR it 

would be possible to assemble the assay into the instrument and then implement 

sterilisation, reducing costs and time. Therefore it would be relevant to known if 

aptamers, as alternative candidates to LMC bioreceptors, would survive DHMR 

implementation.  

The implementation of PP&CC required the compatibility of the used materials with the 

cleaning process (smooth surfaces and resistant to used cleaning chemicals), with 

microbial sample collection (to validate cleanliness, sterilisation procedures, and final 

assay / collection), and with sterilisation (e.g. DHMR). The compatibility of materials 

with DHMR had been documented (ECSS-Q-ST-70-53C), and listed which materials 

were compatible and which were not. Besides choosing PP&CC compatible materials it 

was also necessary to develop a design for the spacecraft that was compatible with 

PP&CC implementation. The aircraft design had to contemplate the need to have easy 

access to the experiment to implement the cleaning and validation techniques and to 

be compatible with DHMR, (e.g. changes in pressure and temperature), (ECSS 2012).  

Design impact in PP&CC implementation 

An answer to the problems of having different hardware tolerance, allowing easy 

access to PP&CC implementation, and reducing the difficulty of meeting PP&CC 

bioburden levels requirements, was the experiment division in specific areas. The 

hardware that would be in contact with biological sensitive areas in the extraterrestrial 

planet was located in an ultra-clean-zone (UCZ). The UCZ was a sealed / separated 

area from the rest of the aircraft. In that case only the UCZ suffered the most rigorous 

implementation of PP&CC, making the implementation less expensive and faster in 

comparison with meeting the same requirements in the full instrument, (Sims, Cullen et 

al. 2012).  
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The design of the instrument also contemplated the re-contamination of the experiment 

after implementation of PP&CC. In order to prevent re-contamination until before flight, 

the experiment was sealed after assembling in the cleanroom, was bagged every time 

and stored appropriately, and had a remove-before-flight cover. Another specific design 

implementation to prevent re-contamination after launch and until sample collection 

was the biobarriers. Those were implemented on the experiment and prevented the 

passage of microorganisms from the surrounding environment to the experiment, and 

could only be breached when appropriated, (Salinas, Zimmerman et al. 2007).  

Knowing the level of microbial presence was critical to implement adequately the 

PP&CC protocols. Validation included the detection and quantification of 

microorganisms present on the hardware surface and based on that it was possible to 

predict the required level of PP&CC implementation for an efficient bioburden 

reduction. Validation allowed understanding if the implemented cleaning procedures 

were working, and also to predict the necessary level of sterilisation implementation. 

For example when implementing DHMR in standard space missions, it was necessary 

to estimate the amount of bioburden present to implement the required time and 

temperature to achieve the highest reduction possible (

Validation of cleanliness and sterility 

Figure A-22). Validation was 

also extremely important to give confidence on the data obtained from the experiment 

after sample collection and analysis. Validation methods were described on ECSS 

standards as microbial growth (as explained in Figure 6-1), and DNA analysis. Other 

techniques that could give an indication of bioburden presence could also be used, as 

for example the ATP detection, (Davidson, Griffith et al. 1999, Shubert, Kazarians et al. 

2003).   

6.2.3. PP&CC case study examples 

The implementation of PP&CC requirements is an on-going process and past space 

missions gave input and allowed improvements to present and future missions. 

Examples of relevant lander missions to PP&CC implementation were the Mars 3, the 

Viking and the Phoenix because added or improved its design in order to better 

implement PP&CC requirements. In the ExoMars mission was planned the 

implementation of a novelty in design to aid in the PP&CC protocols execution. 
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USSR Mars 3 (1971) lander was the first successful lander to reach Mars surface and it 

was referred the implementation of sterilisation with methyl bromide and the validation 

made by microbial viability assays for bioburden control (DeVincenzi, Race et al. 1998). 

After Mars 3, the NASA Mars Viking landers 1 and 2, (1975), were the following 

mission with successful landing on Mars. The Viking was classified as category IV-a, 

with 5 x 105

Another important example developed to improve the effectiveness of PP&CC was in 

the NASA Phoenix lander (2008, category IV-c) where it was implemented a biobarrier 

around the robotic arm that drilled and collected Martian soil samples. The biobarrier 

protected the arm avoiding microbial contamination during the launch and until it 

collected the samples, (NASA 2012). 

 as maximum value acceptable for the presence of total bacterial spores. 

One of Viking aims was to detect evidence of life on Mars. The implementation of 

PP&CC on the Viking mission established standard cleaning and assessing cleanliness 

procedures and implementation of sterilisation, (Puleo, Fields et al. 1977, Daspit, Stern 

et al. 1975).  

The ESA ExoMars rover (under development) was designed with a specific 

compartment, named UCZ, which was a comprising surfaces zone which would be in 

contact with collected samples and into which ultra-high sensitivity instruments (organic 

biomarker detectors) for collection and analysis would be placed or interfaced and for 

which there was a stringent requirement on cleanliness. Therefore the resulted design 

of an UCZ allowed a more efficient implementation of PP&CC because it was a 

separate sub-system that could be cleaned to a higher level than the other rover sub-

systems that did not contact the collected sample; and also at the same time was 

isolated to prevent re-contamination. Having a UCZ removed the problem of having to 

implement the whole rover to the same level of cleaning and protection from 

recontamination and therefore reduced the overall cost and complexity of the mission, 

(Sims, Cullen et al. 2012). 

6.2.4. PP&CC in the context of the LMC 

The LMC as an instrument initially designed to be part of the ExoMars mission, had to 

be compatible with the PP&CC requirements of a category IV-b mission, (Pillinger 

2009).  
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Initial PP&CC plans were developed for the LMC. It included a plan for contamination 

control, for instrument bioburden control and reduction, prevention of recontamination 

and procedures to take during the mission different stages (assembling, integration, 

verification and launch). It was described the cleanrooms procedures and personnel 

requirements, how to obtain microbial samples from specific areas of the LMC, the 

intended statistical treatment of obtained data and the consequent estimation level of 

bioburden. It was planned to start PP&CC implementation after the critical design 

review (CDR) but currently the LMC was removed from the ExoMars, so PP&CC 

implementation will be made for future missions. 

Status of PP&CC within the context of the LMC 

The LMC PP&CC plan described the sterilisation of LMC subsystems by the most 

appropriate approach (e.g. sterile filtration), and then aseptically assembly the sterilised 

subsystems into the final LMC instrument. This was driven by the fact that the LMC 

bioreceptors (antibodies) would not survive DHMR. The LMC bioreceptors would suffer 

sterile filtration prior to aseptic assembly. Nevertheless it would be desirable to be able 

to clean the LMC subsystem, then assemble it and sterilise the final instrument by 

DHMR, (Cullen, Mark 2007). If aptamers could survive DHMR, this would allow the 

LMC (if implementing aptamers) to be sterilised post assembly by DHMR thereby 

reducing the complexity and costs of building the LMC 

PP&CC considerations for molecular receptor assays 

6.2.5. CASS•E - a stratospheric life detection experiment as a proxy 
for implementing PP&CC approaches relevant to the LMC 

The opportunity of implementing the principles of PP&CC appeared with the chance to 

develop a small scale experiment with the aim of collecting stratospheric 

microorganisms and particles. 

The ESA, the German Aerospace Center (DLR), the Swedish National Space Board 

(SNSB) and the Swedish Space Corporation (SSC), developed and promoted 

educational programmes among the new generations. One of those programs was the 

rocket and ballon experiments for university students (REXUS/BEXUS), where rockets 

and stratospheric balloons were launch giving opportunity to students to develop 

Cranfield Astrobiological Stratospheric Sampling Experiment - CASS•E 
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experiments to fly in them. The program involved, during one full year, a sequence 

similar to the one found in the space industry where the aircrafts needed to go through 

several established evaluation periods before they actually flight, (REXUS/BEXUS 

2012). 

The aims of CASS•E were to attempt collection of microorganism and particles present 

in the Stratosphere and to demonstrate the implementation of PP&CC procedures 

during the experiment development. The implementation of PP&CC procedures was 

done to prevent false positive results and to demonstrate the implementation of the 

protocols under a small experiment that could be scaled up for missions like the LMC 

and to take conclusions that could be applied in the future. CASS•E design included 

two important features, an UCZ in which the samples were collected and biobarriers 

that were only open before sample collection. Besides the novelty of using an UCZ for 

the sample collection area, it was also tested the use of fluorescent beads to track 

microbial contamination pathways in order to validate the collected samples. CASS•E 

travelled to the stratosphere twice in a stratospheric balloon gondola in the BEXUS 

flight 10 first and then on BEXUS flight 11. That occurred because in the first flight the 

opening of one of the biobarriers did not happen and the other was destroyed during 

landing. During the first flight it was not possible to verify air flow through the pumps. 

Flying on BEXUS 11 was a special second opportunity given because it was 

impossible to conclude about the PP&CC implementation on the first flight. On the 

second flight it was possible to verify air flow through the pumps and CASS•E was 

recovered in good conditions with both of the biobarriers breached and the UCZ 

sealed. It was possible to open inside a cleanroom the UCZ and remove the sample 

collection filters and analyse them, (Juanes-Vallejo, Grama et al. 2011). 

6.3. Chapter Aims and Objectives 

In this chapter it was used CASS•E as an opportunity to demonstrate PP&CC 

methodologies, and aptamers to study their compatibility to PP&CC sterilisation.  

Specifically the aims of this work were: 

• To consider design characteristics for PP&CC implementation.  

• To implement an new method to track microbial contamination.  

• To extrapolate, if possible, the learned lessons into the LMC.  
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• To study preliminary the aptamers resilience to DHMR conditions and 

discuss the implementation of DHMR if aptamers were chosen bioreceptors 

within the LMC.  

These aims resulted in the following objectives: 

• To implement UCZ and biobarriers as design modifications for PP&CC 

requirements. 

• To design and implement an AIV plan to decide on how to build CASS•E 

enabling the PP&CC requirements. 

• To implement standard cleaning PP&CC protocols for microbial reduction.  

• To assess cleanliness using an emerging procedure (ATP bioluminescence 

assay). 

• To implement sterilisation with DHMR. 

• To use fluorescent beads to track microbial contamination pathways. 

• To demonstrate resultant experiment in flight conditions. 

• To test aptamers resilience to DHMR at different conditions. 

• To conclude about the implementation of PP&CC, the design changes, the 

use of fluorescent beads, and extrapolate lessons learned into the LMC 

along with the considerations made about the aptamers resilience to DHMR. 

6.4. Chapter experimental rationale 

In space life search missions, it is necessary to implement several procedures to 

reduce the biological and organic content transported to other planets. Those 

procedures while reducing the presence of microorganisms and organic content can 

also damage the bioreceptors used for targets detection. In the work described in this 

chapter it was possible to use a small scale experiment to demonstrate the 

implementation of standard planetary protection procedures, as cleaning and 

sterilising, and at the same time demonstrate the novel design implementation of a 

UCZ, and also a new use of fluorescent beads as a validation technique to track 

contamination. Those changes reduced the mission costs by improving the 

implementation of the planetary protection techniques because they were confined to 

one specific area, and the confidence in the obtained data. In the same way as it was 

implemented a sterilisation procedure in the small scale experiment, aptamers were 

also preliminary tested if were compatible with the sterilisation procedure and in that 

way reduce the costs to space missions. Usually bioreceptors are treated differently 
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than the instrument and only assembled at a later stage. If aptamers could survive 

sterilisation procedures could be implemented earlier and reduce time and costs. The 

aptamers were freeze-dried and kept at 110°C for 32hr. A second test, in harder 

conditions, was also made with aptamers at 120°C for 52hr. After suffering the 

sterilisation procedure the aptamers integrity was accessed by UV and agarose gels. It 

was seen that aptamers could be easily used as bioreceptors in space missions 

because could be integrated in the instrument prior to sterilisation and that the 

implementation of a UCZ in the space instrument design as well as the use of 

validation methods improve the confidence in obtained data and decreased the overall 

mission costs. 

6.5. Use of PP&CC approaches within CASS•E as a case study 
for the LMC 

CASS•E was a small scale space project, that had to obey to procedures and 

requirements of a standard space mission. By having the aim of collecting stratospheric 

microorganisms or particles, it was necessary to implement the same principles of a 

life-search space mission. This was because it was important to confirm that the 

collected samples were not contamination. PP&CC protocols were implemented as 

well as design specificities such as an UCZ and biobarriers, and on top of that a novel 

validation technique to verify microbial contamination pathways. 

CASS•E was a student-led team project within the ESA BEXUS programme. Each 

team member was allocated a number of specific roles. The roles of the author was to 

implement standard PP&CC cleaning protocols, assess cleanliness levels including 

CASS•E UCZ and components, and be responsible for the overall PP&CC 

implementation and compliance within the CASS•E programme. This role included 

contribution to the design of UCZ and biobarriers and the design and implementation of 

the fluorescent beads protocol to track microbial contamination. It was noted that the 

latter tasks were led by other team members. The author’s contribution to the latter two 

activities is estimated to be 25% in each case. 

Author’s role within the CASS•E project  
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6.5.1. Demonstration of an Ultra Clean Zone concept within trace-
life detection / collection instruments 

The implementation of a UCZ solved the problem of incompatibility of certain hardware 

to the implementation of PP&CC, and allowed the separation of sample collection into 

a specific area that could be rigorously clean and sterilised. Also implementing rigorous 

PP&CC in only an area on the spacecraft reduced time and cost. It was implemented 

on CASS•E an UCZ with the aim of demonstrating the concept. The UCZ was an 

isolated sealed rectangular area in which was located the sample collection filters. 

CASS•E´s UCZ was made of aluminium alloy (compatible with cleaning, sterilisation 

and validation methods) and was sealed on its top face with Tyvek and a transparent 

polypropylene sheet (Tyvek was porous and allowed UCZ internal pressure 

equalisation during sterilisation and flight). UCZ was an independent piece that was 

mounted on the experiment main support frame before flight. The UCZ was connected 

to pumps on one side and inlet tubes for sample collection on the opposite side. Inside 

the UCZ was located, as explained, the sample collection filters, but also barrier filters, 

valves, temperature sensor, foil heaters and an electric panel connector, Figure 6-2. 

 

Figure 6-2 CASS•E sample collection schematics showing biobarriers, UCZ and pumps, 
(Juanes-Vallejo, Grama et al. 2011). 

As seen in the figure, inside the UCZ there were three filters sets, two for collection (for 

redundancy) and one for control. Each set had a collection filter and a barrier filter. In 

front of each collection filter it was located a valve, the valves and the barriers filters 

protected the collection filters from contamination after the biobarriers opening and 
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from the pumps. The UCZ was connected with two projecting inlet tubes each covered 

with a bio-barrier, Figure 6-3.  

 

Figure 6-3 UCZ after being assembled inside a cleanroom and before being sealed with a 
top Tyvek and polypropylene sheet. 

The UCZ materials and design emerged from the requirements defined for an 

experiment with the aim to collect stratospheric microorganisms that mimicked a life-

search mission as much as possible regarding PP&CC implementation. The UCZ had 

to be compatible with the cleaning, sterilisation and validation methods. In Table 6-3 it 

was discriminated the requirements that lead to the UCZ design. 

Table 6-3 Design requirements for UCZ and components, adapted from Juanes-Vallejo et 
al 2011 (Juanes-Vallejo, Grama et al. 2011). 

DR16 The filter shall withstand the vibrations created by the pumps. 

DR17 
The UCZ should meet the requirements of a COSPAR category IVa mission i.e. 
bio-burden at launch should be no greater than 300 spores per m2 pre-
sterilisation (this can be assessed by swabbing and culturing)  

DR18 All components inside the UCZ shall be compatible with 70% isopropyl-alcohol 
(IPA) for immersion and/or wiping for cleaning. 

DR19 All components outside the UCZ should be compatible with IPA wiping for 
cleaning 

DR20 

All components contained within the UCZ shall be compatible with Dry Heat 
Microbial Reduction (DHMR), i.e., 110°C for a minimum of 32 hours -as per the 
requirements for a 104 reduction in bio-burden by DHMR on free and mated 
surfaces  
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a) Discussion 

The design requirements for the UCZ gave origin to a rectangular shape confined area, 

made of aluminium alloy which was compatible with cleaning, sterilisation and the 

validation implemented methods. The smooth surface, the simple structure and easy 

access to the UCZ interior before top sealing made UCZ a practical and functional area 

for PP&CC implementation.   

It was demonstrated with CASS•E a new design concept that reduced overall cleaning 

sterilisation and validation time and costs. The UCZ improved the PP&CC procedures 

implementation and at the same time reduced the possibility of re-contamination after 

assembling because it confined the sample collection area to a specific zone. 

Summary and Conclusion 

6.5.2. Demonstration of Bio-barriers to prevent experiment re-
contamination within trace-life detection / collection 
instruments 

As explained before it was implemented on CASS•E design a UCZ that was protected 

after cleaning from re-contamination with biobarriers. The biobarriers were divided in 

two major parts, the one that covered the top of the UCZ and the one that protected the 

collection tubes until sample collection. The biobarriers developed were made in order 

to respond to design requirements such as the prevention of UCZ re-contamination 

with particles greater than 0.3 microns after implementation of PP&CC cleaning and 

sterilisation methods. The requirements were explained in detail in Table 6-4, and 

included besides the prevention of re-contamination, the resistance to water and 

impact landing. 
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Table 6-4 Design requirements for biobarriers, adapted from Juanes-Vallejo et al 2011, 
(Juanes-Vallejo, Grama et al. 2011). 

DR21 The UCZ shall be protected using a bio-barrier to ensure it remains clean after 
sterilisation and during assembly, testing and integration. 

DR22 
The re-sealed bio-barrier shall retain 99.7 % of all particles or organisms greater 
than 0.3 µm in size - NASA planetary protection standards for sealing (this can 
be assessed by spraying the sealed bio-barrier with fluorescent beads).  

DR23 The experiment (specifically the re-sealed bio-barrier) shall withstand landing 
shocks of up to 35 g. 

DR24 The experiment (specifically the re-sealed bio-barrier) shall withstand landing in 
water. 

DR25 The experiment (specifically the re-sealed bio-barrier) shall survive temperatures 
of -15 °C for up to 48 hours (conditions of gondola whilst awaiting recovery) 

The biobarriers had to cover the inlet collection tubes and were made of Tyvek 

because it allowed gaseous exchange, which was essential for the atmospheric 

pressure changes during the flight and during the sterilisation procedure. The 

biobarriers located around the inlet collection tubes had to have an opening 

mechanism, which could only open in the stratosphere. That was basically a burning 

wire that was in contact with the Tyvek and that once heated burned the Tyvek, Figure 

6-4. The biobarriers design was changed between flight 10 and 11 in order to improve 

the burning wire contact to Tyvek, Figure 6-5. In the improved design the burn wire was 

located closely to Tyvek, Figure 6-6. 

 

Figure 6-4 Initial biobarrier model designed for CASS•E.   

As mentioned before CASS•E had two balloon flights because in the first one it was not 

possible to confirm air flow for sample collection during flight and one of the biobarriers 
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did not open and the other was destroyed during landing not allowing to understand if it 

had opened or not. 

 

Figure 6-5 Unopened biobarrier on BEXUS flight 10 because of poor contact between 
Tyvek and the burn wire. 

For the second flight the biobarriers opening system was improved and opened during 

flight. That was confirmed by the increase in registered air flow during flight. The 

pumps collected stratospheric air for 2 hours before the UCZ was sealed by the valves 

(data not shown). 

 

Figure 6-6 Re-designed biobarrier prototype breached by burn wire  

a) Discussion 

The choice of Tyvek as material for biobarriers showed to be suitable to the design 

requirements regarding PP&CC methods compatibility. The implementation of 

biobarries had the disadvantage of requiring an opening mechanism that would need to 

open only at the sample collection phase. In the described case the mechanism failed 

to open in a first flight but after design improvements worked as expected. 
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Biobarriers were implemented into the design to prevent re-contamination of the UCZ 

after cleaning and sterilisation implementation. Biobarriers had also the aim to open 

only at the collection site exposing the sample collection tubes, and to resist hard 

landing conditions. The biobarriers were divided in two major areas, one covering the 

top side of the UCZ and the other the inlet tubes. In the first flight (BEXUS 10), the 

opening of the biobarriers failed and it was not possible to validate the experiment. It 

was given a second opportunity and the biobarriers design was improved in order to 

prevent the same failure. On the second flight (BEXUS 11) the biobarriers opened and 

allowed sample collection as desired. 

Summary and Conclusion 

6.5.3. Assembling, Integration and verification plan (AIV) and its 
implementation on CASS•E 

An assembling, integration and verification (AIV) plan was made in order to implement 

PP&CC during all the phases of CASS•E development. The components were divided 

in compatible and non-compatible with PP&CC, and were treated accordingly. The 

PP&CC compatible components suffered cycles of cleaning and cleanliness 

assessment during assembling, were sealed and sent to sterilisation by DHMR 

procedure, Figure 6-7. 
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Figure 6-7 AIV plan for PP& CC implementation on CASS•E, adapted from Juanes-Vallejo 
et al 2011, (Juanes-Vallejo, Grama et al. 2011). 

The recognised PP&CC method to validate cleanliness procedures was to swab or 

wipe the area of interest and then cultivate the obtained microorganisms. This process 

was slow because organisms needed a minimum of 24 to 48 hours to grow and several 

testing growth conditions. In this case, because of time, budget and personnel 

constrains, it was used another way of verifying the presence of microorganisms by 

detecting the presence of adenosine triphosphate (ATP). ATP was a molecule only 

synthesised by viable microorganisms and used as an indicator of their presence in 

food industry. ATP was determined by measuring the bioluminescence obtained from a 

biochemical reaction catalysed by the enzyme firefly luciferase8

                                            
8 Luciferase catalysed the reaction between ATP and luciferin and was expressed by 𝐷 −
𝑙𝑢𝑐𝑖𝑓𝑒𝑟𝑖𝑛 + 𝑂2 + 𝐴𝑇𝑃 → 𝑜𝑥𝑦𝑙𝑢𝑐𝑖𝑓𝑒𝑟𝑖𝑛 + 𝐶𝑂2 +  𝐴𝑴𝑷 + 𝑑𝑖𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 + 𝑙𝑖𝑔ℎ𝑡 

. The lower the value of 

ATP detected the better, as it represented the lowest presence of microorganisms on 

the material surface. However this method had limitations, as many small components 

were difficult to swab and ATP detection was not ideal for the detection of spores, since 

spores were dormant and therefore may not had detectable levels of ATP present. 

Based on the fact that it gave faster results, was cheap and easy to use, it was chosen 

adapted from (Biocontrol 2005). 
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to assess cleanliness during CASS•E´s AIV. There were a number of commercially kits 

available for ATP detection, which was commonly used in food and healthcare 

industries as a measure of cleanliness, (Fulford, Walker et al. 2004, Hunter, Lim 2010). 

Part of the AIV plan included operations procedures to follow before and after launch, 

(Table A-3, Appendix A), with the aim to track and prevent contamination.  

a) Materials and Methods 

i. Materials and Chemicals 

Liquid sterile 70% IPA, 5 L (CG100-5S), sterile 70% IPA impregnated wipes (71108), 

sterile 18 MΩ.cm water, 5 L (71919S) from Guardline, ATP luminometer lightening 

MVP (75005) and ATP swabs (64003-100), from Biocontrol, ultrasonic bath, cleanroom 

garments, sterile gloves, face-masks, disposable bouffant hat, cleanroom overshoes, 

cleanroom mat, nitrile gloves, glass beakers, aluminium foil, mops, mopping buckets, 

vacuum cleaner with HEPA filter, laminar flow cabinet  

ii. Method for assembling in an ISO8 cleanroom 

The cleanroom had to be prepared by wiping the walls and vacuuming and mopping 

the floor. Those were made following specific criteria described by Whyte, W. (2001). 

The same author described the procedures to take to enter and to exit the cleanroom, 

(Whyte 2001). The cleanroom was organised into areas according to its cleanliness. It 

was introduced in the cleanest area (far from the entrance) a laminar flow cabinet to be 

the assembling area. All the movements inside the cleanroom were made at a slow 

pace to reduce the particles spread.  

iii. PP&CC cleaning methods of UCZ, tools, components and 

cleanroom 

The cleaning procedure was made before entering the cleanroom, and again inside. 

The tools that could be immersed in solutions were treated differently than the ones 

that could not, as for example the UCZ, due to its size, it was only wiped. The 

tools/components were cleaned outside the cleanroom by being immersed for 5 min in 

sterile 70 % IPA, and then rinsed with sterile 18 MΩ.cm water. Allowed to dry and 

assess cleanliness. If the levels of cleanliness were the desired, the tools were 

wrapped into aluminium foil or bagged. If the tools size allowed during the liquid 

immersions, the tools suffered an ultrasonic bath. The process was repeated until the 

levels of cleanliness were within the desired level. In all the steps it was avoided to 

touch the tools/components. Before entering the cleanroom all the bags with tools were 

wiped with 70 % IPA impregnated wipes, and once inside the cleanrooms, the 
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tools/components were cleaned again in the same way as before and re-bagged until 

use. 

iv. Method for ATP detection to measure cleanliness 

ATP detection was made before and after the cleaning, to determine cleaning 

effectiveness. The ATP swab was taken according to manufacture recommendations, 

(Biocontrol 2005), and the cleanliness level assessed according to the obtained relative 

fluorescence units (RFU). Below 100 RFU (flight BEXUS 10) and below 400 RFU (flight 

BEXUS 11), it was accepted as clean, if not a new cleaning cycle was required. 

b) Experimental and Results 

i. Assembling in an ISO8 cleanroom 

The cleanroom was clean and assembled and divided into areas of cleanliness. The 

personnel had to move in one direction and prevent from returning to a “clean” area 

after being in a “dirty” area, Figure 6-8. The cleanest areas were more often monitored 

and cleaned. 

 

Figure 6-8 Cleanroom organisation diagram of working areas and their degree of 
cleanliness, from red (less clean) to green (cleaner). 

ii. PP&CC cleaning method of UCZ, tools, components and 

cleanroom 

The cleaning procedures implementation was assessed by ATP detection. The 

implementation occurred as expected. It was necessary to implement the procedures 

for each flight. 
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iii. Confirmation of cleanliness by ATP detection 

The ATP measurements were done to every tool, area or surface that needed to be 

monitored and the results were displayed in RFU. In that case the obtained data was 

interpreted as a qualitative indicator of cleanliness. It was initially assumed as 

acceptable RFU values above 100, but during the preparation of the second flight it 

was accepted values above 400. This was because of the available period of time. It 

would have been possible to use ATP as a quantitative detection method if it had been 

defined the existence of standards as “clean”, or with known cleanliness values. This 

was not made because it was not found such standard with known amount of 

contamination that could be used and denominated as clean. Instead the aim was to 

decrease the obtained ATP values down to values near the instrument background 

(around 100 RFU). This consisted in reading luminescence of an unused (clean) swap 

and the obtained value used as baseline for that day reading batch, to which every 

measurement was normalised accordingly. 

• Use of ATP to access materials and tools cleanliness 

during AIV 

ATP showed the cleaning efficiency presenting lower reading values after each 

cleaning cycle. It was noticed that in the implementation of wiping, sometimes it 

occurred an increase of contamination. This was caused by incorrect wipe folding or 

wiping technique implementation, leading to spread of microorganisms instead of 

physical eradication. 

It was import to confirm that the implementation of cleaning procedures was reducing 

the microorganism and consequently the ATP content decreased. That was verified in 

three examples of required cleaning materials. The implementation of cleaning 

procedures on two valves and one fix flange showed a decrease of ATP values after 

each cleaning cycle. It was also seen that in three or four steps it was achieved the 

required level of cleanliness (below 100 RFU), Figure 6-9. 
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Figure 6-9 Example of ATP decreasing values after implementation of a new cleaning 
cycle in two valves and one fix flange.  

Similar action was taken to the UCZ. Several points in the UCZ were tested and used 

for cleanliness comparison. In some exposed places it was necessary to clean up to 

eight times to confirm ATP values below, or just above 100 RFU. The following data 

referred to the UCZ 1 prepared for the BEXUS flight 10, Figure 6-10.  

 

Figure 6-10 UCZ several cleanliness points accessed by ATP detection. 

The same UCZ was used for the BEXUS 11 and was denominated UCZ 2. The UCZ 1 

was re-cleaned, re-assembled and prepared for the UCZ 2 for the BEXUS 11 within a 
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shorter period of time (assembling in 37 hours). Because of that the minimum ATP 

value required was 400 RFU instead of 100 RFU. The obtained ATP values before 

UCZ 2 sealing were, normalised to the obtained value of a clean ATP swab and the 

obtained values were considered within the detection limit of the luminometer (data not 

shown).  

• ATP values obtained in experiments located near CASS•E 

prior lunch of BEXUS flight 10 and flight 11 

To understand the level of microbial presence on the surrounding experiments to 

CASS•E ATP values of untreated areas were measure before and after flight. This was 

used to verify the difference in microbial content at the launch pad between CASS•E 

external surface, that had suffered only the minimal re-contamination prevention such 

as being bagged for transport, and the other experiments and gondola that did not 

have any type of cleaning implementation or microbial content concerns. Those were 

made on CASS•E´s exterior, on the canvas of the gondola and on the nearest 

experiments. These were made to control possible contamination sources, Table 6-5 

and Table 6-6. 

Table 6-5 ATP values taken on critical areas before flight BEXUS 10, adapted from 
Juanes-Vallejo et al (2011), (Juanes-Vallejo, Grama et al. 2011). 

ATP value (RLU) inside house 

Biobarrier left cover flange 851.32 

Biobarrier right cover 

flange 936.32 

Biobarrier left Tyvek 239.32 

Biobarrier right Tyvek 625.32 

At this stage the values of ATP on the outside of the UCZ 1 and on the Tyvek surface 

of the biobarriers ranged from 239 to 625 RFU and from 851 to 936 RFU for the cover 

flanges. The canvas of the gondola and the neighbour experiments presented values 

from 14,344 to 33,353 RFU, Table 6-6. 
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Table 6-6 ATP values taken on the launch pad of critical and possible contaminants, 
before BEXUS 10 flight, adapted from Juanes-Vallejo et al (2011), (Juanes-Vallejo, Grama 
et al. 2011). 

ATP value (RLU) at launch pad 

Canvas roll above 

Biobarrier 14344.32 

Canvas CASS•E  side 33353.32 

Canvas right side 27058.32 

Canvas Scrat 3016.321 

On the second flight a similar detection was made before and after flight and the results 

obtained showed again the high levels of ATP present in the neighbouring experiments 

in comparison with CASS•E, Table 6-7. 

Table 6-7 ATP values taken on the launch pad of critical and possible contaminants, 
before BEXUS 11 flight, adapted from Juanes-Vallejo et al (2011), (Juanes-Vallejo, Grama 
et al. 2011). 

ATP value at (RLU) Launch pad 

Canvas roll above Biobarrier 1167 

Canvas CASS•E  side 885 

Canvas right side 4054 

Scope 3989 

Canvas back side 1548 

Canvas left side 4977 

Perdaix front 1078 

Perdaix CASS•E side 1111 

In this flight the lowest value obtained at the launch pad was 885 RFU and the highest 

4977 RFU. This was less than the observed in the previous flight which was positive for 

the experiment aim. After the flight BEXUS 11, the ATP values were taken from the 

same places than before flight, Table 6-8.  
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Table 6-8 ATP measurements after BEXUS 11, adapted from Juanes-Vallejo et al (2011), 
(Juanes-Vallejo, Grama et al. 2011). 

ATP value (RLU) at Launch pad 

Canvas roll above Biobarrier 18319 

Canvas CASS•E  side 12823 

Canvas under CASS•E   2284 

Scope 34253 

Perdaix front 1068 

Perdaix CASS•E  side 3881 

Biobarrier left cover flange 781 

Biobarrier right cover flange 115 

Biobarrier left inlet tubing 264 

Biobarrier right inlet tubing 562 

When comparing the values obtained before and after flight, most of them were lower 

before the launch than after landing, with the highest range found in the experiment 

Scope with an increase of ATP value of 30,264.00 RFU. The second increase of ATP 

value was in the canvas above the biobarriers with 17152.00 RFU raise. The only 

difference was in Perdaix that presented a value of 10 RFU units between 

measurements. This value was too low to be considered compared with the magnitude 

of values obtained at that stage. 

• Comparison of ATP values in the air collection pathway 

before and after flight BEXUS 11 

The UCZ 2 was collected and opened inside the cleanroom ISO 8, and the ATP values 

obtained before and after DHMR and flight compared. The sample line one was not 

taken because the plastic tube was cut before being possible to perform the ATP 

detection. Comparing the ATP values obtained in the air pathway after assembling and 

after flight in the lines 2 and in the control flight was possible to see an increase in the 

ATP values in the both of the line exposed (line 2) Figure 6-11 and in the control line, 

(not shown). 
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Figure 6-11 ATP values obtained inside the air pathway 2 before and after flight BEXUS 
11. 

The ATP values increased in all sample lines with the higher value obtained in number 

8 with an ATP raise of 2346 %. The ATP values showed that a source of microbial 

contamination was present in the filters air path. In the ATP values obtained before 

flight the normalisation made them negative values again this was considered that the 

obtained values were within the ATP luminometer detection limit, and therefore 

acceptable. 

iv. Dry Heat Microbial Reduction  

The components part of the UCZ such as the valves, the filters and filter cases, and the 

air pathway tubes suffered heating for 156 hours at 110 °C in a normal oven and then 

their functions were tested. All the tested components survived the functionality tests 

and were approved to be used inside the UCZ. 

The UCZ1 suffered DHMR for 156 hours at 110 °C while due to time constrains the 

UCZ 2 suffered DHMR only for 32 hours at 110 °C. 

c) Discussion 

The implementation of an AIV plan was critical to reduce and monitor the presence of 

bioburden on the UCZ during assembling. The plan included the implementation of 

cleaning, assessment of cleanliness, preparation of staff, facilities and tools required at 
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each stage of assembling, in order to keep controlled the level of bioburden. The 

standard cleaning methods and chosen assessment of cleanliness by ATP detection 

shown to be efficient an ideal for this instrument because it was fast and easy to use, 

allowing constant monitoring during critical stages of assembling. 

The AIV plan implementation on CASS•E served to prevent and reduce microbial 

presence at every stage of development until sample collection and analysis. That was 

done in order to keep microbial burden at low levels so that possible collected 

microorganisms from the Stratosphere could be detected and studied. The 

implementation of the AIV plan showed its complexity and need of an early 

implementation. It proved that the PP&CC requirements implementation was only 

possible by the application of an AIV plan in which cleaning and assessment of 

cleanliness were essential and constant. And also that preparation of working facilities, 

staff and tools were equally important and required. ATP was used as a monitoring 

agent which showed to be a good alternative to culturing giving immediate results 

which were essential for this project that had to be developed on a short period of time 

when compared with standard space missions. 

Summary and Conclusion 

6.5.4. Tracking contamination pathways with fluorescent beads 

Validation procedures were important to confirm that the experiment was occurring as 

expected and to understand if the obtained data presented or not contamination. In the 

CASS•E case it was used ATP for validation of the cleaning methods and a novel 

approach to validate possible collection of stratospheric microorganisms. It was used 

polystyrene fluorescent beads with 0.2 μM and 1 μM of diameter to validate the 

experiment and to track possible microbial contamination pathways. The fluorescent 

beads were sprayed before flight on CASS•E´s external surface and surrounding 

experiments located on the flight gondola. In the case the beads were found inside the 

collection filters it would indicate migration of ground contamination from the CASS•E 

outside and surrounding experiments to the collection filters located inside the UCZ, 

during sample collection. The UCZ 1 was built for BEXUS flight 10 but because of its 

failure it was dismantled, re-cleaned re-assembled and re-sterilised, to give origin to 

UCZ 2 and fly on BEXUS 11. Different sizes of fluorescent beads were used in the 

flights so that could be differentiated if found inside the collection filters. In Table 6-9 it 
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was descripted the identification, position and function of the different filters analysed 

from the UCZ 2 that flew on BEXUS 11. 

Table 6-9 CASS•E identification of analysed filters from BEXUS flight 11, adapted from 
Juanes-Vallejo et al (2011), (Juanes-Vallejo, Grama et al. 2011). 

Filter Name Position Function 

Test Line 1 CASS-E line 1 collection filter Stratospheric sample 

Test line 2 CASS-E line 2 collection filter Stratospheric sample 

Flight control CASS-E line 3 collection filter 
Filter flown but not exposed 
to stratospheric sample 

Shipping control1 In shipping case inside Tyvek pouch 
Filter shipped, but not flown 
(negative control) 

a) Materials and Methods 

i. Materials and Chemicals 

Polystyrene green and red fluorescent beads at 0.2 and 1 μM diameter (R200, R0100, 

G200, G0100) from Thermo Scientific, methanol from Sigma, Axioskop 2 plus epi-

fluorescent microscope from Zeiss, XL30 environmental scanning electron microscope 

from FEI/Philips, energy dispersive X-Ray microanalysis instrument (Swift ED) from 

Oxford Instruments, one air brush, one can of butane/propane propellant, 0.2 μm filters.  

ii. Method of fluorescent beads preparation for spray application 

100 µl of fluorescent beads were dissolved in 25 ml of ethanol. The solution was 

sprayed over CASS•E´s external surface and surrounding experiments located on the 

flight gondola.  

Table 6-10 Colours and sizes of fluorescent beads used to track contamination pathways 
on the BEXUS 10 and 11 flights, adapted from Juanes-Vallejo et al (2011), (Juanes-
Vallejo, Grama et al. 2011). 

Flight 

Bead type and colour 

Exterior of CASS•E and 
biobarriers Exterior of gondola 

BEXUS 10 Green 1 µm Red 1 µm 

BEXUS 11 Green 0.2 µm Red 0.2 µm 
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iii. Method of filters visualization under the epi-fluorescent 

microscope 

The samples were observed on the epi-flourescent microscope using specific filter sets 

and at 40 x resolution. The filter set to visualise green beads had an excitation band 

pass between 450 and 490 nm and an emission band pass between 515 and 565 nm. 

The filter set to observe red beads had an excitation band pass from 530 to 585 nm 

and an emission long pass of 615 nm. The green beads presented at 468 nm their 

excitation wavelength and emitted at 508 nm, while the red beads excitation 

wavelength was at 542 nm and emission at 612 nm.  

iv. Method of environmental scanning electron microscope (E-

SEM) filters analysis 

The analysed filter was placed on a vacuum chamber, and an electron beam hit the 

filter provoking an electronic response on the sample. The sample in response 

released electrons and X-rays that were collected on a detector. Those electrons gave 

information about the composition of the sample and also an image. The image was 

created based on the released electrons that hit on a phosphor located on the detector 

giving origin to a light flash. The flash was recorder and transformed into an image. The 

E-SEM was operated by Dr Xian Wei Liu, School of Applied Sciences, Cranfield 

University, UK. 

a) Experimental and results 

i. Detection of fluorescent beads presence on the surface of the 

collection filters from BEXUS flight 11 with epi-fluorescent 

microscope 

The UCZ 2 was opened inside the cleanroom by piercing the top cover biobarrier. The 

UCZ filters were removed one at a time and marked on the side of collection air path 

and divided into six parts. Each part was transferred into a sterile petri dish and stored 

at RT in a dark location until further analysis. 

A fragment of each filter was observed under the epi-fluorescent microscope and two 

filter sets were used to allow the detection of green and red fluorescent beads. Images 

of beads found in the shipping control line 1 filter and in the collection line 1 filter were 

observed in Figure 6-12.  
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Figure 6-12 Fluorescent beads found on flight 11 filters. Red beads were detected after 
excitation in both filter sets while the green beads emission wavelength was not 
captured on the red filter set, adapted from Juanes-Vallejo et al (2011), (Juanes-Vallejo, 
Grama et al. 2011). 

The total number of fluorescent beads found on the filter samples was discriminated on 

Table 6-11. It was found inside the sample collection filters fluorescent beads of both 

colours. The maximum number of beads was seen on the line 1 collection filter with 

four green beads. It was seen that the shipping control from line 2 presented the 

second higher number of beads with three, also green. 
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Table 6-11 Number of fluorescent beads visualised on CASS•E filters, adapted from 
Juanes-Vallejo et al (2011), (Juanes-Vallejo, Grama et al. 2011). 

 Number of green beads Number of red beads 

Shipping control 1 1 1 

Shipping control 2 3 0 

Line 1 collection filter 4 0 

Line 2 collection filter 1 1 

Line 3 collection filter 
(flight control) 1 1 

ii. Environmental scanning electron microscope (E-SEM) for filter 

analysis from BEXUS flight 11 

Each filter segment was initially observed generically at a lower resolution and then in 

10 positions and at three orders of resolution (500 x, 1500 x and 5000 x), Figure 6-13. 

For comparison purposes two filters contaminated with 0.2 and 1 µm fluorescent beads 

were also examined with E-SEM. 

 

Figure 6-13 Observed areas on the filter segments (dotted line denotes point where filter 
holder was in contact with filter surface), adapted from Juanes-Vallejo et al (2011), 
(Juanes-Vallejo, Grama et al. 2011). 

It was easily visualised the presence of beads in all filter fragments. The presence of 

beads also on the shipping controls indicated that cross-contamination occurred. The 

probable reason might have been during the recovery of the filters inside the 

cleanroom and their preparation for analysis, Figure 6-14.  
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Figure 6-14 E-SEM images of filters at 500 x and 1500 x magnification in position 5 of 
each filter, adapted from Juanes-Vallejo et al (2011), (Juanes-Vallejo, Grama et al. 2011). 

It was seen other particles besides the beads present on the collection filters. Their 

composition was given by the E-SEM X-ray analysis, and it was seen the high 

presence of aluminium in one of them (particle B), which indicated the presence of 

some debris from the UCZ, the presence of some debris was previously observed 

when opening the UCZ inside the cleanroom. In another particle (D) it was found 

similar composition to the filter, which was assumed to indicate particle shed from the 

filter itself, Table 6-12.  
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Table 6-12 X-ray microanalysis of particles detected (B-E) on flight collection filters, 
adapted from Juannes-Vallejo et al (2011), (Juanes-Vallejo, Grama et al. 2011). 

 Weight % of each element 

 Filter 
background 

Collection 
filter line 3 

(flight control) 
Collection filter line 1 

 A B C D E 

Carbon 42.55 27.71 44.08 40.42 31.16 

Oxygen 56.17 45.03 50.02 55.53 52.41 

Magnesium - -   6.99 

Aluminium 1.28 22.86 0.57 0.42 0.25 

Silicon  0.26 0.59 3.69 9.19 

Sulphur   0.45   

Cromium   1.19   

Zinc  4.14    

Particles C and E were different from the filter control and presented a more complex 

composition. It was difficult to know what they were, but could be skin cells or pollen 

cells, because those were the most probable sources of particles. It was not possible to 

know if the origin of those particles was stratospheric or from ground origin because 

beads were found on the filters, which showed the existence of any source of 

contamination.  

The particles described on the previous table, were visualised on Figure 6-15. 
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Figure 6-15 Detected particles on flight filters analysed by E-SEM X-ray microanalysis, 
adapted from Juanes-Vallejo et al (2011),(Juanes-Vallejo, Grama et al. 2011).   

b) Discussion 

It was found the presence of fluorescent beads on the collection filters, obtained from 

BEXUS flight 11. It was suggested to be ground microbial contamination because it 

was also found fluorescent beads on the shipping controls and on the flight control. It 

was also noticed that the found beads appeared to be the 1 μM size which were used 

on the first flight. That was explained as a possible cross-contamination of beads 

during the assembling of UCZ 2 with residual beads from the flight BEXUS 10. In the E-

SEM analysis it was easily seen the presence of the fluorescent beads, and it was also 

considered that the beads contamination could have occurred during the filter removals 

inside the cleanroom.  



 

182 

Besides the beads it was found other particles on the collection filters. Two of those 

particles appeared to be from the instrument, while two other particles were different 

and one presented magnesium while the other presented sulphur and chromium in 

their composition. Because no similar particles were found on the control filters, it was 

considered that those particles could have been from the stratosphere.  However 

because fluorescent beads were found on the collection filters, that indicated that 

contamination had occur either from CASS•E´s exterior or the surrounding 

experiments. Nevertheless it was expected a higher number of fluorescent beads 

present on the collection filters than the one observed, which lead to the positive 

outcome that the applied procedures reduced at some level the collection of ground 

contamination. 

In summary the novel use of fluorescent beads as proxy for contamination pathway 

tracking worked well as a validation technique because it indicated that some source of 

contamination occurred, questioning the origin of the found particles. It was concluded 

that the use of fluorescent beads improved the knowledge obtained about the collected 

samples, which could help on validating future experiments, in which ground 

contamination could be a problem. 

Summary and Conclusion 
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6.6. Initial demonstration of Aptamers’ resilience to DHMR 
conditions 

The standard PP&CC implementation in the LMC required the bioreceptors survival to 

DHMR. In this work aptamers were tested as alternatives to antibodies. In this chapter 

aptamers´ resilience to DHMR was tested. There was no knowledge of similar work 

developed and of the effects that could have on aptamers with the exception of the 

standard denaturation and degradation caused by elevated temperatures, if not 

correctly protected. Several working buffers were taken in consideration because the 

LMC required a specific working buffer (red cocktail) that had not been used during the 

aptamer assay development, (Chapter 5). This test was the opportunity to study if the 

working buffer could have or not preservation properties and protection against the 

severe tested conditions. Also all the samples were freeze-dried before DHMR 

treatment. This was the required pre-treatment of the LMC bioreceptors before final 

integration into the instrument. It was studied the integrity of five biotinylated aptamers 

and one of the SELEX libraries used for comparison (Chapter 4 and 5). Because it was 

not developed a working LMC assay with the tested biotinylated aptamers and their 

targets, the aptamers´ integrity was verified with standard agarose gels and UV 

quantification.  

The aim of this work was to verify the integrity of the tested aptamers and library, and 

discuss the best conditions obtained to preserve aptamers if integrated in the LMC or 

similar instruments that required extreme treatments as DHMR. The samples were 

freeze-dried at different concentrations and in different working buffers and two DHMR 

standard conditions were tested.  

6.6.1. Aptamers tested for 32hr at 110°C and for 52hr at 120°C 

As explained in section 6.2.2, in Table 6-2, the microbial reduction of surface and 

mated microorganisms was made by DHMR for 32 hours at 110 °C. This was the first 

condition tested for the aptamers and library. The sterilisation method DHMR had 

different efficiency based on the time and temperature applied,. After the previous test 

it was decided to test the same aptamers and library solutions in stronger conditions. 

Applying DHMR for 52 hours at 120 °C would sterilise the LMC instrument of 

encapsulated microorganisms. The impact of the tested conditions was accessed using 

UV detection and agarose gels in order to verify aptamers and library integrity. As 
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mentioned before the oligonucleotides were freeze-dried before suffering the treatment 

and criopreservatives were added as protective agents. 

a) Materials and methods 

i. Materials and Chemicals 

Oven from Carbolite, freeze-dry machine, Picodrop spectophotometer and UV tips from 

Picodrop, PCR tubes and electrophoresis apparatus from BioRad, agarose powder 

(CAS 9012-36-6; A9539), Tris acetate-EDTA buffer (TAE, T6025), PBS, HEPES, Allura 

red (458848), sucrose (S7903) from Sigma, thiomersal (71230) from Fluka SyBr Green 

Safer view from abm, liquid nitrogen, tweezers, plastic support, aluminium foil, mercury 

thermometer up to 300 °C  

ii. Method for oven temperature test 

The oven was switched on with the convection fan on and the temperature set to 110 

°C. The first measurement was taken using a mercury thermometer after two hours 

working. The oven door was opened and the thermometer put inside, the door closed 

and 5 min afterwards the thermometer removed and the temperature registered. This 

was repeated three more times after being started.  

iii. Choice of aptamers, library and buffers to test DHMR 

The aptamers and library were previously used, they were the OTA aptamer H12 

(Table 5-5, Chapter 5), the H12 aptamer truncated version (5’-biotin-

CGGGTGTGGGTGCCTTGATCCAGGGAGTCT-3’ Table 

5-4

), the β-estradiol aptamer (

, Chapter 5), the ibuprofen aptamer sequence 2 (Table 5-1, Chapter 5), the 

thrombin 15 oligomer aptamer (Table 5-6, Chapter 5), and the SELEX library 2 (Table 

4-16, Chapter 4). 

• Buffers tested 

The aptamers and library were tested in three different buffers, PBS with 10% (w/v) 

sucrose pH 7.4, (buffer I), PBS buffer with 5 mM MgCl2

• Aptamers concentrations tested 

, 0.5 % (v/v) Tween 20 and 10% 

(w/v) sucrose pH 7.4 (buffer II), and red cocktail pH 7.4 used in the LMC (0.5 mg/ml 

BSA, 10% (w/v) sucrose, 50 μg/ml Allura red, 0.01 % (w/v) Thiomensal, 400 mM 

HEPES), (buffer III).  

The aptamers and library were tested at three different concentrations, 0.05; 1 and 10 

μM. 
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• Aptamers length tested 

The chosen aptamers and library had different lengths, with the smallest being the 

thrombin 15 oligomer aptamer with a total of 25 nucleotides, and the largest the library 

with 76 oligonucleotides. 

iv. Method for preparation of samples and controls  

The samples and controls (kept at RT) were prepared according to their concentrations 

and buffer, each with a final volume of 100 μl.  Each solution was immersed in liquid 

nitrogen until frozen. Once the samples were frozen, they were freeze-dried until no 

liquid was visible. On the second test the samples were freeze-dried overnight to 

ensure the minimum humidity possible in the samples. 

v. Methods to measure aptamers integrity with picodrop and 

agarose gels  

• Picodrop measurement 

The samples ssDNA concentration was UV measured before and after DHMR 

treatment. The samples were measured between the 230 and the 335 nm to evaluate 

their protein contamination content and to allow the study of the ratio 260/280. After the 

DHMR treatment the samples were re-suspended in the previous buffer in a volume of 

100 μl. 

• Agarose gel and samples preparation 

A 2% agarose gel (200 ml with 10 μl of SyBr Green Safer view) was made and each 

sample was analysed before and after DHMR in order to verify the oligonucleotides 

integrity. A total volume of 10 μl of sample was loaded into each well. The sample 

material was 7, 5 or 3 μl according to their concentration with 3 μl of dye. The gel was 

run at 100 V for 1 hour in TAE buffer. In the agarose gels the samples integrity was 

accessed based on the band quality (clear, smeared or inexistent). 

b) Experimental and results 

i. Oven temperature test 

The obtained temperature in the first experiment (32 hr at 110°C) after measurements 

at different times increased 5 °C more than the desired temperature after 27.5 hours of 

working, Table 6-13. 
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Table 6-13 Oven temperature obtained at different times. 

Time after starting the oven (hr) Temperature (°C) 
1.0 110 
5.5 110 
22.5 113 
27.5 115 

The temperature seemed to be stable during the initial hours and increased in the last 

ones. Or the fact that the oven door had to be open lead to an increase of temperature 

during a short period of time, but longer than the tested 5 min to balance the heat lost. 

On the second experiment (52hr at 120°C) several temperature values were taken at 

different times after initiating the oven. It was seen that although the oven was set to 

120 °C, the obtained values achieved the 130 °C. It was not understood, once again, if 

it was a short increase of temperature because the oven door was open or if it was a 

consistent temperature value, Table 6-14. 

Table 6-14 Obtained oven temperatures set at 120 °C over a period of time. 

Time after starting the oven (hr) Temperature (°C) 
1 130 

1.5 130 
1.75 129 

 

ii. Measuring aptamers integrity with picodrop and agarose gels  

• Picodrop measurement 

The obtained picodrop measurements in the first test were not consistent and for that 

reason were not used as viable data to verify aptamers and library response to DHMR 

implementation. On the second experiment the obtained picodrop UV concentration 

values showed such level of degradation suffered by the aptamers and library that all 

the samples presented a change of colour and the obtained UV data was inconsistent 

for interpretation. It was possible to observe that the obtained UV concentration values 

for the initial solutions and for the RT controls were similar as desired (data not shown). 

This confirmed that the freeze-dry method in general maintained unaltered the 

aptamers and library.  



 

187 

A  B  

Figure 6-16 Aptamer and library samples, A) freeze-dried and before DHMR 
implementation and, B) after suffering DHMR. 

It was observed that all the samples that suffered DHMR (B) changed colour which 

showed the excess exposure to high temperature values (120 °C for 52 hours), Figure 

6-16. 

• Agarose gel  

Other way of verifying the oligonucleotides integrity was using electrophoresis. The 

different tested aptamers and library were run before and after DHMR. The total tested 

samples were 54 and represented five aptamers and a SELEX library at three different 

concentrations (0.05, 1 and 10 μM), in three different buffers (buffer I, II and III). The 

first gel showed the obtained run from sample 1 to 27 before DHMR implementation, 

Figure 6-17. 
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Figure 6-17 Agarose gel with i)Thrombin aptamer (samples 1 to 3 were at 0.05 μM; 
samples 4 to 6 were at 1 μM; and samples 3 to 9 were at 10 μM), ii) H12 aptamer (samples 
10 to 12 were at 0.05 μM; samples 13 to 15 were at 1 μM; and samples 16 to 18 were at 10 
μM), iii) H12 truncated aptamer (samples 19 to 21 were at 0.05 μM; samples 22 to 24 were 
at 1 μM; and samples 25 to 27 were at 10 μM). The three buffers were tested in each 
concentration solution of each aptamer. Samples 1, 4, 7, 10, 13, 16, 19, 22 and 25 were in 
buffer I, samples 2, 5, 8, 11, 14, 17, 20, 23 and 26 were in buffer II; samples 3, 6, 9, 12, 15, 
18, 21, 24 and 27 were in buffer III. 

The second gel presented the following analysed aptamers and library before DHMR 

implementation, from sample 28 to 54, Figure 6-18. 
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Figure 6-18 Agarose gel with i) estradiol aptamer (samples 28 to 30 were at 0.05 μM; 
samples 31 to 33 were at 1 μM; and samples 34 to 36 were at 10 μM), ii) ibuprofen 
aptamer (samples 37 to 39 were at 0.05 μM; samples 40 to 42 were at 1 μM; and samples 
43 to 45 were at 10 μM), iii) SELEX library (samples 46 to 48 were at 0.05 μM; samples 49 
to 51 were at 1 μM; and samples 52 to 54 were at 10 μM). The three buffers were tested in 
each concentration solution of each aptamer. Samples 28, 31, 34, 37, 40, 43, 46, 49 and 52 
were in buffer I, samples 29, 32, 35, 38, 41, 44, 47, 50 and 53 were in buffer II; samples 30, 
33, 36, 39, 42, 45, 48, 51 and 54 were in buffer III. 

The solutions at 0.05 μM were not visualised on the gels, this was because their 

injected concentrations were not enough for visualisation. This happened even after 

adding a higher volume of sample to the wells in comparison with the higher 

concentration solutions. It was possible to visualise the aptamers and library at 10 μM, 

with the exception of thrombin aptamer (samples 7 to 9). At 1 μM it was also possible 

to visualise all the samples with the exception of the thrombin aptamer and the H12 

aptamer (samples 4 to 6 and 13 to 15). It was obtained sharper bands for the library 

and ibuprofen aptamer than for the estradiol and truncated H12 aptamers. The more 

faded bands were the ones obtained with the H12 aptamer. 

All the samples were freeze-dried and submitted to DHMR for 32 hours at 110 °C. 

Once treated the samples were re-suspended and run into an agarose gel. Samples 

from 1 to 27 were run in one gel and only the sample 27 was visualised, which was the 

H12 truncated aptamer at 10 μM in buffer III (LMC buffer), Figure 6-19. 
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Figure 6-19 DHMR treated samples run in an agarose gel; i) Thrombin aptamer (samples 
1 to 3 were at 0.05 μM; samples 4 to 6 were at 1 μM; and samples 3 to 9 were at 10 μM), ii) 
H12 aptamer (samples 10 to 12 were at 0.05 μM; samples 13 to 15 at 1 μM; and samples 
16 to 18 were at 10 μM), iii) H12 truncated aptamer (samples 19 to 21 were at 0.05 μM; 
samples 22 to 24 were at 1 μM; and samples 25 to 27 were at 10 μM). The three buffers 
were tested at each concentration of each aptamer. 

The samples 28 to 54 were run on a second gel (estradiol and ibuprofen aptamers and 

library). It was possible to visualise on that gel the estradiol aptamer at 10 μM in buffer 

III (sample 36), and the SELEX library at 10 μM in buffer I and III (samples 52 and 54), 

Figure 6-20. 
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Figure 6-20 Agarose gel with DHMR treated aptamers and SELEX library; i) estradiol 
aptamer (samples 28 to 30 were at 0.05 μM; samples 31 to 33 were at 1 μM; and samples 
34 to 36 were at 10 μM), ii) ibuprofen aptamer (samples 37 to 39 were at 0.05 μM; samples 
40 to 42 were at 1 μM; and samples 43 to 45 were at 10 μM), iii) SELEX library (samples 46 
to 48 were at 0.05 μM; samples 49 to 51 were at 1 μM; and samples 52 to 54 were at 10 
μM), the three buffers were tested at each concentration of each aptamer and library. 

It was observed that during the gel loading sample lost appeared to occurred based on 

the fact that it was a long gel and time between the initial loads and the last ones 

seemed to induce diffusion. It was run a new gel only with the samples of ibuprofen 

aptamer and the SELEX library, and was seen bands for ibuprofen aptamer at 1 μM in 

buffer III (sample 42) and at 10 μM in buffers I and III (samples 43 and 45) that have 

not been seen in the previous gel where no bands were obtained for this aptamer. The 

SELEX library presented the same bands at 10 μM but also an extra one 

representative of 1 μM in buffer III (sample 51), Figure 6-21. 
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Figure 6-21 Agarose gel with DHMR treated ibuprofen aptamer and SELEX library at 
different concentrations and buffers, ibuprofen aptamer (samples 37 to 39 were at 0.05 
μM; samples 40 to 42 were at 1 μM; and samples 43 to 45 were at 10 μM), SELEX library 
(samples 46 to 48 were at 0.05 μM; samples 49 to 51 were at 1 μM; and samples 52 to 54 
were at 10 μM), the three buffers were tested at each concentration of each aptamer and 
library. 

For control purposes it was also run agarose gels with the RT sample controls. To 

avoid sample lost by gel diffusion it was loaded three gels instead of two. In the first gel 

it was run the thrombin and H12 aptamers at their concentrations and buffers. It was 

visualised only the H12 aptamer at its higher concentrations, Figure 6-22. 
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Figure 6-22 Agarose gels with RT controls, i) Thrombin aptamer (samples 1 to 3 were at 
0.05 μM; samples 4 to 6 were at 1 μM; and samples 3 to 9 were at 10 μM), ii) H12 aptamer 
(samples 10 to 12 were at 0.05 μM; samples 13 to 15; and samples 16 to 18 were at 10 
μM). The three buffers were tested in each concentration solution of each aptamer. 
Samples 1, 4, 7, 10, 13, and 16 were in buffer I, samples 2, 5, 8, 11, 14 and 17 were in 
buffer II; samples 3, 6, 9, 12, 15 and 18 were in buffer III. 

On the second gel it was seen the H12 truncated and estradiol aptamers. It was only 

visualised the higher concentrations of H12 truncated aptamer and the 1 and 10 μM 

solutions of the estradiol. It was verified a degradation in the estradiol samples, Figure 

6-23. 
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Figure 6-23 Agarose gels with RT controls, i) H12 truncated aptamer (samples 19 to 21 
were at 0.05 μM; samples 22 to 24 were at 1 μM; and samples 25 to 27 were at 10 μM), ii) 
estradiol aptamer (samples 28 to 30 were at 0.05 μM; samples 31 to 33 were at 1 μM; and 
samples 34 to 36 were at 10 μM). The three buffers were tested in each concentration 
solution of each aptamer. Samples 19, 22, 25, 28, 31 and 34 were in buffer I, samples 20, 
23, 26, 29, 32 and 35 were in buffer II; samples 21, 24, 27, 30, 33 and 36 were in buffer III. 

In the last gel it was run the ibuprofen aptamer and the SELEX library. It was observed 

only the higher concentrations of the ibuprofen aptamer and the 1 μM and 10 μM of the 

SELEX library, Figure 6-24. 
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Figure 6-24 Agarose gels of RT controls, i) ibuprofen aptamer (samples 37 to 39 were at 
0.05 μM; samples 40 to 42 were at 1 μM; and samples 43 to 45 were at 10 μM), ii) SELEX 
library (samples 46 to 48 were at 0.05 μM; samples 49 to 51 were at 1 μM; and samples 52 
to 54 were at 10 μM). The three buffers were tested in each concentration solution of 
each aptamer. Samples 37, 40, 43, 46, 49 and 52 were in buffer I, samples 38, 41, 44, 47, 
50 and 53 were in buffer II; samples 39, 42, 45, 48, 51 and 54 were in buffer II 

On the second experiment the initial agarose gels were considered, (Figure 6-17 and 

Figure 6-18) for comparison with the DHMR treated samples. After the DHMR 

treatment it was not seen any band on the agarose gels. The control samples kept at 

RT showed similar bands to the ones seen in the previous point, in Figure 6-22, Figure 

6-23 and in Figure 6-24, (data not shown). 

c) Discussion 

The picodrop UV readings of the solutions before and after DHMR as well as their RT 

controls were not consisted, which made impossible to take conclusions from the 

obtained data.  

It was seen in the initial agarose gels that the lower solutions tested at 0.05 μM did not 

have ssDNA enough concentrated for gel visualisation. Because of that it was not 

expected to study the DHMR impact on those solutions via the agarose gels. It was 

possible to see that in three out of five aptamers showed to survive DHMR at 10 μM 

and in buffer III. This showed that the buffer III, which was the chosen LMC assay 

buffer and was rich in protective agents that were not present in the other tested 

buffers, increased aptamer resilience. The higher concentration of aptamer improved 

the resistance to degradation or at least the rate of affected versus not affected strands 
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was lower, allowing the band visualisation. It was also seen that the SELEX library 

resisted better to the treatment, this was expected based on the library length. Based 

on this it was not expected that the thrombin aptamer and the H12 truncated aptamer 

resisted DHMR. It was not possible to conclude about the thrombin aptamer as no 

detection was obtained with the electrophoresis, but the H12 truncated aptamer 

survided DHMR. At a higher concentration and in buffer III, the small aptamer 

presented DHMR resilience. It was also seen that initially more degraded aptamers 

performed poorer than the ones that showed initial better stability. This was verified 

with the H12 aptamer that presented lower initial bands resolution than the other 

aptamers, and did not show any band after DHMR. Another observation supporting the 

importance of initial aptamer integrity for DHMR survival was the estradiol aptamer that 

presented a certain level of degradation at the initial gel and an increased degradation 

was seen in the RT control with visible smeared bands. Despite this it was seen 

estradiol aptamer resilience to DHMR at the higher concentration and in buffer III. 

The second implemented DHMR conditions were too violent for the tested aptamers 

and library solution because the obtained UV values and agarose gels presented in all 

samples the same negative values. It was also seen a colour change in the samples 

that suffered DHMR to a dark brown.  

It was decided to test the effects on aptamers of the most common PP&CC sterilisation 

method; this was made to discuss the aptamers compatibility with required PP&CC 

application in the LMC instrument.  

Summary and Conclusion 

Five biotinylated aptamers and a SELEX library were submitted to DHMR conditions by 

being heated at 110 °C for 32 hours. It was tested three different oligonucleotides 

concentrations and three different buffers. The aptamers and library were freeze-dried 

prior to DHMR implementation as a protective procedure. The impact of the treatment 

was studied by comparing UV quantification values and by running agarose gels to 

verify oligonucleotides integrity before and after the treatment. It was concluded that 

the tested aptamers seemed to have kept their integrity at the highest concentration 

and that the standard LMC buffer, in comparison with the other studied buffers, 

seemed to have kept better the samples integrity. It was also verified that shorter 

strands seemed to be as resistant as the longer strands. It appeared that the initial 

aptamer conditions were determinant for resilience, more than aptamers length. It was 
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also possible to understand that the higher concentration the better to preserve or 

minimise degradation.  

The tested DHMR conditions of 120°C for 52hr caused the loss of integrity of the tested 

aptamers and library, for that reason it was concluded that those extreme parameters 

were incompatible with the aptamers and library tested. 

6.7. Discussion of PP&CC in the context of the LMC  

The PP&CC implementation was a complex process that required the synergy of 

materials compatibility with clean and sterilisation methods, and design specificities to 

facilitate cleaning, sterilisation and prevent re-contamination. It was possible to use a 

small scale experiment as proxy for the LMC. It was implemented on CASS•E the 

standard cleaning procedures and sterilisation. The cleanliness level was assessed 

with a fast and easy to use method; the fluorescent ATP detection showed how 

efficient the previous cleaning step was and if more was required to achieve the 

chosen cleanliness baseline. ATP detection showed that could be used in PP&CC as a 

fast and portable detection method.  

The implementation of a UCZ was demonstrated to improve PP&CC implementation.. 

Using an UCZ made AIV simpler, cheaper and reduced the risk of using components 

that could react negatively to PP&CC implementation leading to failure. The UCZ 

implementation was certainly a major factor of success because the collection area 

was defined and located in only one area, allowing better protection and PP&CC 

implementation and prevention of re-contamination. Another design implementation 

was the biobarriers that protected the collection inlet tubes until prior sample collection 

at the stratosphere. Adding the biobarriers also added the problem of opening them at 

a certain time. In the BEXUS 10 flight one of the biobarriers did not open and the other 

was destroyed during landing, and because of that it was not possible to analyse the 

collection filters. On the second flight (BEXUS 11) the biobarriers opened and were 

intact after landing. Tracking of contamination showed to be useful because it helped 

validating the collected samples. When opening and analysing the collection filters it 

was found the presence of fluorescent beads. That showed that probable 

contamination from the gondola and experiment external surface occurred, or from 

cross-contamination between UCZ flights assembling. In order to avoid future similar 

problems it was recommended that the sample collection needed to be made at a 

longer distance from the gondola, and that should be avoid at all costs to re-use an 
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UCZ. The implementation of an UCZ and introduction of microbial pathways proxies 

improved the experiment PP&CC implementation and helped in validating the obtained 

samples and for that reason should be implemented on the LMC. Also the use of 

biobarriers protected the experiment from recontamination and showed how critical the 

opening system could be for the overall mission success.  

Regarding the study of aptamers as alternative bio-receptors to LMC, it was tested two 

DHMR temperature and time conditions in freeze-dried samples. It was confirmed that 

aptamers, at higher concentrations (10 μM) and in the standard LMC buffer, kept their 

integrity at 110 °C and for 32 hours. It was also observed that initial aptamer integraty 

was more important for resilience than aptamers´ structural length. The results showed 

that aptamers have the ability of being freeze-dried and suffer implementation of 

DHMR (at least at 110 °C and for 32 hours), as required for the LMC instrument. The 

obtained data only gave indications of aptamers and library integrity and no 

functionalization studies were made. The initial results were promising and further 

studies would be required to fully understand if aptamers were or not suited for LMC 

implementation regarding PP&CC compatibility. 

6.8. Summary and Conclusions 

The implementation of PP&CC was a transversal procedure that affected the choice 

from the aircraft material to its design; and obliged to a group of procedures during AIV 

that enclosed cleaning, assessment of cleanliness and sterilisation. The LMC as part of 

a category IV-b mission required a limit of bioburden present on the instrument. In 

order to do so PP&CC had to be implemented. So far an initial PP&CC plan was made 

describing the standard cleaning, assessing cleanliness and personnel training 

required to PP&CC AIV implementation in the LMC. 

There was the opportunity to develop and fly a small scale experiment to the 

stratosphere to collect stratospheric microorganisms and particles. It was implemented 

the standard PP&CC cleaning and sterilisation methods and assessed cleanliness with 

a method used traditionally in food industry. CASS•E was a proxy instrument for LMC 

and allowed to learn lessons regarding PP&CC implementation. Those were that 

PP&&CC implementation required the use of clean and sterilisation-friendly building 

materials, that changes in the design such as using a UCZ and biobarriers were 

essential to reduce time and costs of PP&CC implementation. The biobarriers were 

also very important to reduce the risk of ground contamination before sampling 
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collection, protecting the collection area until sample contact. Another interesting 

procedure taken with CASS•E was the use of fluorescent beads to mimic and track 

microbial contamination. That showed to work very well, being found inside the UCZ in 

the collection filters, when were just sprayed on the experiment outside. That showed 

that even already collecting the sample a few centimetres out of the gondola frame was 

not sufficient to prevent aspiration of particles from it, and that cross-contamination 

could occur easily and persistently. The experience with CASS•E reinforced the use of 

biobarriers (even with found contamination), demonstrated the functionality of having a 

UCZ, and suggested the implementation of tracking contamination systems that could 

help to validate the collected samples. 

The PP&CC implementation on the LMC would require the compatibility with 

sterilisation procedures of the integrated bioreceptors. Aptamers were studied as 

alternative bioreceptors to be implemented on the LMC. It was tested their resilience to 

DHMR implementation. Two temperatures and period of times were tested, one being 

known to eliminated surface and mated microorganisms and the other encapsulated 

microorganisms. Five different aptamers and a SELEX library were tested at different 

concentrations and in different buffers. The aptamers and the library showed integrity 

at the highest tested concentration and at the standard LMC assay buffer, but only at 

the mildest conditions tested. It was concluded that aptamers integrity was compatible 

with DHMR and that future tests would include aptamers functionality tests. 
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Chapter 7. Final Discussion, Conclusions and Further 
work 

7.1. Final summary and discussion 

The overall aims of this thesis was to understand if aptamers could be implemented in 

an LMC instrument and development programme, and to consider at an early stage the 

impact of design and protocols for PP&CC implementation, as well as to understand if 

aptamers could contribute to improvement in the LMC PP&CC implementation. 

In order to address those aims the work was structured in three major areas that were 

reported in the thesis as three major experimental chapters.  

In the first experimental chapter of the three (thesis Chapter four) the possibility of 

generating aptamers using the FluMag-SELEX method against two LMC targets within 

the LMC development timeline was tested. The method required target derivatives 

immobilisation onto the surface of Dynabeads® and iteration steps development prior 

to aptamer generation. It was decided to confirm surface immobilisation to prevent 

generation of unspecific aptamers because of the physiochemical nature of the targets 

and because it was not seen in literature as a common procedure. Due to the LMC 

targets and Dynabeads® characteristics, it was challenging to find an appropriate 

analytical technique to verify surface immobilisation. Also the refinement of each 

iterative step was a time consuming process. Based on those two major setbacks it 

was not possible to fully test the aptamer generation method to generate aptamers 

against the LMC targets within the project duration time. But it was possible to 

preliminary test the method and verify the presence of issues necessary to overcome in 

order to produce aptamers in the future. A novel change on the standard amplification 

step, with the use of real-time amplification and monitorisation, making possible to 

quantify and in one step verify the quality of the amplified material obtained in each 

iteration was also introduced. The work on this chapter also showed the impact of the 

LMC targets biochemistry in standard analytical detection methods and the principal 

issues found in aptamer generation.  

On the second experimental piece of work (thesis Chapter five) the implementation of 

already existing DNA aptamers against small molecules, similar to the LMC targets, 

into the LMC assay type was tested. This test was made in order to understand the 
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integration viability of aptamers against small molecules on the LMC assay. It was 

verified in literature that it was not common to use DNA aptamers against small 

molecules in the LMC assay format, and only two examples were found. Nevertheless 

a total of three examples of DNA aptamers against small molecules using the LMC 

assay format were tested and it was verified that it was not possible to achieve a full 

working assay within the given project timeline. One of the examples exhibited high 

background and assay variability and the other two aptamers tested did not present a 

binding signal. The lack of straightforward results led to the test of the thrombin 

aptamers and target. It was also observed that the target surface immobilisation 

seemed to have a general impact on the way aptamers bound to it because it was 

reported in literature that the thrombin aptamer only bound to free target. Several 

questions arose from the work about the aptamers compatibility to the current LMC 

assay format requirements and about their impact on aptamer and target interaction. 

The implementation of aptamers against small targets in an assay with the current LMC 

requirements was not consistent and it was not possible to develop a full working 

inhibition assay for the LMC. It was possible to obtain a better comprehension on 

aptamers performance and to give input on how future work could be done if aptamers 

were the chosen bioreceptors for LMC instruments´ type.  

In the last piece of experimental work (thesis Chapter six) a small scale experiment to 

introduce a specific design to improve PP&CC implementation as well as to 

demonstrate the execution of standard cleaning protocols and sterilisation and 

validation techniques was used. The experience gained with the small experiment gave 

origin to early recommendations to the LMC PP&CC implementation plan. The 

resilience of aptamers to DHMR, a common sterilisation procedure used in space 

missions was also given a preliminary test. Two conditions were tested and it was 

verified that aptamers appeared to survive to one of the implemented conditions. It was 

seen that aptamers presented resilience to DHMR when dissolved in the LMC buffer, 

which was rich in protective agents, and also when present at higher concentrations. 

Based on that preliminary data it was possible to conclude that aptamers could be 

possible candidates to the LMC bioreceptors and that their use would reduce the LMC 

integration costs and time because it would allow full integration and posterior 

sterilisation, which is not currently the plan with the chosen bioreceptors that do not 

survive such extreme treatments. 
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With this work it was possible to understand the viability of integrating aptamers as 

alternative bioreceptors in the LMC for the 2018 ExoMars mission. Based on the work 

developed and described in this thesis it was possible to verify that more time or 

resources would be necessary to confirm the possibility of generating aptamers against 

the LMC targets; that the aptamer integration into the LMC assay would need testing of 

conditions that could prevent or diminish the surface immobilisation and chemical 

modification impact on the aptamer and target interaction; and that aptamers seemed 

to survive extreme conditions required for sterilisation by DHMR. Also using CASS•E it 

was possible to verify and demonstrate the implementation of a UCZ and biobarriers as 

design changes that aided on the PP&CC implementation, and to introduce a novel 

validation technique with microbial pathway tracking using fluorescent beads.  

7.2. Final conclusions 

Based on the previous discussion about this work it was concluded the following: 

• The generation of aptamers against small molecules using the FluMag-

SELEX method was shown to be a complex method and a complete 

aptamer generation was not achieved within the allocated timeline and 

resources, based on this it was not possible to understand if aptamers could 

be successfully developed against LMC targets or not.  

• The integration of the chosen published aptamers against small targets into 

an inhibition LMC assay format was not achieved but assay variability was 

verified in one of the cases, which raised questions about the impact of the 

LMC assay molecular modifications into the aptamer and target interaction  

• Using CASS•E as a small scale life-search experiment it was possible to 

demonstrate the benefits of inserting in the design a UCZ and biobarriers for 

the PP&CC implementation, and to use a novel validation technique to track 

microbial contamination. It was extrapolated that those applications could 

allow an LMC instrument to meet the PP&CC requirements in the 

development process  

• Preliminary tests showed aptamers resilience under specific conditions to 

implementation of sterilisation by DHMR, which could be helpful in the route 

to produce an LMC instrument that would meet PP&CC requirements 

• It was seen that aptamers might have the potential to be integrated into a 

LMC instrument type but were not viable for the 2018 ExoMars mission 
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development programme due to time and resources constraints, and also 

because of the new questions that arose from this work. 

7.3. Future work 

For future work within the next six months it would be interesting to test aptamers in the 

three presented areas of work.  

Regarding the aptamer generation, it would be relevant to run a new cycle of iterations, 

attempting aptamer generation against 5β-cholanic acid, avoiding or at least minimising 

sample loss between iterations. In parallel the aptamer generation against lysine could 

also be tested. Lysine which was successfully surface immobilised could represent the 

amino acids core target and the fact that was hydrophilic instead of hydrophobic could 

improve ssDNA chemical interaction and promote aptamer generation.  

In the aptamers integration into the LMC assay format it would be necessary to 

understand the impact on aptamer and target interaction of surface immobilisation and 

other chemical modifications. The implementation of longer spacers as a poly T tail on 

the aptamer as well as the use of a spacer, or a longer spacer than the PEG2

For the PP&CC implementation it would be beneficial to perform aptamer integrity 

studies, running binding assays before and after DHMR implementation. 

 on the 

targets would be studied. Also, if possible, different atomic positions of the targets to 

perform the chemical modifications and see its impact on aptamer recognition would be 

compared.  

In a medium, long-term, it would be necessary to study affinities levels of selected 

strands against 5β-cholanic acid or lysine. That could be done with SPR instead of 

equilibrium binding in solution, in order to select an aptamer that would bind to a 

surface immobilised target, different from the initial matrix Dynabeads®. 

In the aptamer integration into the LMC assay, once binding was achieved different 

ionic buffer composition should be tested in more detail to obtain the optimal running 

assay conditions, and only then perform inhibition assays. This could be critical 

because of the implementation of the LMC running buffer that could need adjustments 

to aptamers requirements. 

Once the aptamers integrity was confirmed after DHMR it would be interesting to 

perform radiation tests that could mimic the exposure of aptamers during the mission 
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flight. It would be done by also studying structure and integrity before and after 

implementing radiation. 

If a new approach would be taken from the previous aptamer work line, it would be the 

generation of aptamers against 5β-cholanic acid and lysine applying the structure-

switch method and perform the selection in solution, Figure 7-1. 

 

Figure 7-1 Strucure-switch aptamer generation method, adapted from Nitiu, et al (2005), 
(Nutiu, Li 2005). 

Also the detection assays would be fully in solution and the integration of molecular 

beacons in the aptamer sequence would signal when the target binding occurred. That 

would eliminate any effect of surface immobilisation, (Nutiu, Li 2005). Also affinities and 

equilibrium studies would be done in solution, simplifying the protocols and virtually 

eliminating the problems found in this work.  
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APPENDICES 

Appendix A  

A.1 Biomarkers list considered for life detection on Mars 
Table A-1 Biomarkers list considered for life detection on Mars, adapted from Cullen and 
Sims (2007), (Cullen, Mark 2007). 

LMC Targets 

Extant Extinct Contaminants 

Phosphoenolpyruvate Phosphate 

Acetyl phosphate Phosphate 

Cyclic AMP Phosphate 

Generic pyrimidine base Nucleobase 

Generic purine base Nucleobase 

DNA Nucleobase 

Nicotinamide Vitamin 

Flavin Vitamin 

Fe-S centers Redox center 

Quinones 

Generic carotenoid 

Phycocyanin Pigment 

Thioesters Ester 

Generic extant porphyrin Porphyrin 

Chaperones Protein 

ATP Synthase 

Phytane 

Fatty acids (1 or 2) 

Generic isoprenoid 

Pristane 

Phytane 

carotane 

carotenoids 

Tetramethyl benzenes 

Tetramethyl cyclohexanes 

Squalane 

Generic ABC terpane 

Hydrocarbon 

Generic hopane 

Hydrocarbon 

Gammacerane 

Hydrocarbon 

Diasterane 

Porphyrin 

Meteoric: 

Napthalene 

Coronene 

Generic fungal 

Teichoic Acid 

phosphate 

polymer 

LPS 

Staphylococcus 

Bacterium 

Streptococcus 

Bacterium 

Bacillus Bacterium 

Micrococcus Bacterium 

Pseudomonas 

Bacterium 

Dipicolinic acid 

Carboxylic acid 

Hydrazine 
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Teichoic acid Amino acid 

Phosphate wall 

polymer 

LPS Macromolecule 

Ectoine 

Trehalose 

Squalene 

Diploptene Hopanoid Melanoidins 

Sediment/cell extracts: 

Acid mine drainage 

Methanogens Cyanobacteria 

Extract/abiotic mix 

Pyrene 

Dimethylbenzene 

Isovaline 

Isobutyric acid 

Generic aromatic 

Carboxylic acid 

Carboxylic acid 

 

 

 

A.2 Elemental analysis of L-cysteine Dynabeads® immobilised 
Table A-2 Elemental analysis results from immobilised Dynabeads® with L-cysteine via 
EMCS spacer. 

 
Sample 1 

(Dynabeads®) 

Sample 2 

(Dynabeads® with 
immobilised L-cysteine via 

EMCS spacer) 

Sample 3 

(Dynabeads® with 
immobilised EMCS spacer) 

Element C H N S C H N S C H N S 

Average 
(%) 44.28 5.00 3.80 <0.10 44.24 5.09 3.78 <0.10 44.15 5.14 3.74 <0.10 

SD ±0.02 ±0.00 ±0.04  ±0.04 ±0.07 ±0.01  ±0.08 ±0.00 ±0.06  
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A.3 XPS peaks and subpeaks for immobilised species 
• 5β-cholanic acid immobilisation via spacer cadaverine on carboxylic 

Dynabeads®. 

 

Figure A-1 XPS sprectra of 5β-cholanic acid immobilised via cadaverine on carboxylic 
Dynabeads® surface (replicate 1). 

 

Figure A-2 Carboxylic Dynabeads® Oxygen subpeaks - O1s (replicate 1). 
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Figure A-3 Carboxylic Dynabeads® with immobilised cadaverine, Oxygen subpeaks - O1s 
(replicate 1). 

 

Figure A-4 Carboxylic Dynabeads® with immobilised 5β-cholanic acid via cadaverine, 
Oxygen subpeaks - O1s (replicate 1). 

 

       

 

  
  
  
  
  

 

Pos.

 

531.21

 

532.66

 

533.63

 

535.05

 

536.28

 

FWHM

 

1.444

 

1.444

 

1.444

 

1.444

 

1.444

 

L.Sh.

 

GL(30)

 

GL(30)

 

GL(30)

 

GL(30)

 

GL(30)

 

Area

 

3503.04

 

4345.30

 

1331.37

 

315.84

 

336.17

 

%Area

 

35.67

 

44.19

 

13.53

 

3.20

 

3.41

O
 1s

 

g gy ( )

 

          

 

  
  
  
  
  

 

Pos.

 

544.17

 

530.99

 

532.58

 

534.28

 

535.96

 

FWHM

 

1.500

 

1.500

 

1.500

 

1.500

 

1.500

 

L.Sh.

 

GL(30)

 

GL(30)

 

GL(30)

 

GL(30)

 

GL(30)

 

Area

 

0.00

 

2949.29

 

3687.90

 

2055.66

 

1578.11

 

%Area

 

0.00

 

28.77

 

35.92

 

19.99

 

15.32

O
 1s

 

g gy ( )



 

227 

 

Figure A-5 Carboxylic Dynabeads® Nitrogen subpeaks - N1s (replicate 1). 

 

Figure A-6 Carboxylic Dynabeads® with immobilised cadaverine, Nitrogen subpeaks - 
N1s (replicate 1). 
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Figure A-7 Carboxylic Dynabeads® with immobilised cadaverine and 5β-cholanic acid, 
Nitrogen subpeaks - N1s (replicate 1). 

• 5β-cholanic acid direct immobilisation on amino Dynabeads®. 

 

Figure A-8 Amino Dynabeads® with immobilised 5β-cholanic acid full XPS spectra. 
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Figure A-9 Amino Dynabeads in DMSO buffer, Carbon subpeaks – C1s (replicate 1). 

 

Figure A-10 Amino Dynabeads® with immobilised 5β-cholanic acid, Carbon subpeaks - 
C1s (replicate 1). 
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Figure A-11 Amino Dynabeads® in DMSO buffer, Oxygen subpeaks - O1s (replicate 1). 

 

Figure A-12 Amino Dynabeads® with immobilised 5β-cholanic acid, Oxygen subpeaks - 
O1s (replicate 1). 
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Figure A-13 Amino Dynabeads® in DMSO buffer, Nitrogen subpeaks - N1s (replicate 1). 

 

Figure A-14 Amino Dynabeads® with immobilised 5β-cholanic acid, Nitrogen subpeaks - 
N1s (replicate 1). 
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• Lysine immobilisation on amino Dynabeads®. 

 

Figure A-15 XPS spectra of carboxylic Dynabeads® immobilised with lysine (replicate 1). 

 

Figure A-16 Carboxylic Dynabeads® in PBS buffer, Carbon subpeaks - C1s (replicate 

1). 
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Figure A-17 Carboxylic Dynabeads® with immobilise lysine, Carbon subpeaks - C1s 

(replicate 1). 

 

Figure A-18 Carboxylic Dynabeads in PBS buffer, Oxygen subpeaks - O1s (replicate 

1). 
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Figure A-19 Carboxylic Dynabeads® with immobilise lysine, Oxygen subpeaks - 

O1s (replicate 1). 

 

Figure A-20 Carboxylic Dynabeads® in PBS buffer, Nitrogen subpeaks - N1s 

(replicate 1). 
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Figure A-21 Carboxylic Dynabeads® with immobilise lysine, Nitrogen subpeaks - 

N1s (replicate 1). 

A.4 Microbial reduction based on time and temperature 

 

Figure A-22 Graph illustrating the effect of time and heat in the microorganism reduction, 
adapted from ECSS –q-st-70-53c, (ECSS 2012). 
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A.5 Operation list for PP&CC implementation on CASS•E 
Table A-3 Operation to perform to implement PP&CC before and after flight, adapted from 
SED v5.0, (Juanes-Vallejo, Grama et al. 2011). 

O2 The experiment shall only be handled by operators wearing nitrile gloves during 
integration and launch. 

O3 The part of CASS•E exposed to the exterior of the Gondola shall be protected 
with a remove before flight cover. 

O4 The remove before flight cover shall be removed before flight. 

O5 The UCZ shall open once the balloon has reached the Stratosphere (at 20km 
above sea level) and not before. 

O6 The UCZ shall be re-sealed prior to the descent phase of the balloon. 
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Appendix B  

B.1  Article in Journal: 
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B.2  Conference Paper: 
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