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ABSTRACT

Anaerobic treatment has historically been considered unsuitable for the treatment of domestic

wastewaters. The work presented in this thesis focuses on the incorporation of membranes

into the anaerobic bioreactor to uncouple solid retention time and hydraulic retention time.

This in turn prevents biomass washout and allows sufficient acclimatisation periods for

anaerobes. However, the exposure of membranes to anaerobic biomass comes with its own

inherent problems namely fouling. Fouling was found to take place in two stages; a rapid

phase characterised by solid and bacterial cell deposition and a slow phase characterised by

the travel of colloidal matter to the membrane surface. Gas sparging was also found to

attenuate fouling to a considerable extent despite the fact that biomass characteristics were

critical factors in the fouling of the system. In addition, side stream membranes showed

differing characteristics to submerged membranes.

A comparison of anaerobic membrane bioreactors to conventional anaerobic systems and

aerobic membrane bioreactors highlighted the advantage of this system over other comparable

technologies. The anaerobic membrane bioreactor is less energy intensive than the aerobic

membrane bioreactor, fouls differently to this system and achieves much better performance

than would be seen if conventional anaerobic systems were used in the treatment of domestic

or municipal wastewaters.
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NOTATION

Notation

A Filtrate area

ABR Anaerobic Baffled Reactor

AnMBR Anaerobic Membrane Bioreactor

BSA Bovine serum albumin

BOD Biological oxygen demand

COD Chemical oxygen demand

CODinf COD concentration into reactor

CST Capillary suction time

COV Covariance

CSTR Complete stirred tank reactor

c Compressibility

DI Deionised

DO Dissolved oxygen

dP/dt Membrane fouling rate

EGSB Expanded granular sludge bed

EPS Extracellular polymeric substances

EPSP Protein fraction of extracellular polymeric substances

EPSc Carbohydrate fraction of extracellular polymeric substances

EPSCOD COD concentration in extracellular polymeric substances

F/M Feed to mass ratio

G Gradient

GI Glucose + Iron

GIS Glucose + Iron + Sulphate

GS Glucose + Sulphate

HPLC High performance liquid chromatography

HPsec High performance size exclusion chromatography

HRT Hydraulic retention time

IC Inorganic carbon

J Permeate flux

MBR Membrane bioreactor

MLSS Mixed liquor suspended solids

MLVSS Mixed liquor volatile suspended solids
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MLFSS Mixed liquor fixed suspended solids

P Pressure

P Transmembrane pressure

P20 Transmembrane pressure normalised at 20 oC

PT Transmembrane pressure at test temperature

Re Reynolds number

Rm Filter medium resistance

Rt Total resistance

rpm Rotations per minute

SMA Specific methanogenic activity

SMP Soluble microbial products

SMPc Carbohydrate fraction of soluble microbial products

SMPp Protein fraction of soluble microbial products

SMPCOD COD concentration in soluble microbial products

SRT Solids retention time

t Time

T Temperature

TMP Transmembrane pressure

TOC Total organic carbon

TC Total carbon

TS Total solids

U Filtrate viscosity

UASB Upflow anaerobic sludge blanket

UV Ultra violet

V Volume

VFA Volatile fatty acids

Vol Volume

 Dynamic viscosity

20 Dynamic viscosity at 20 oC

T Dynamic viscosity at test temperature

 Specific cake resistance to filtration

 density
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1 INTRODUCTION

Anaerobic treatment can be defined as the use of biological processes to convert organic

materials into usable energy in the form of methane.

Figure 1.1: The anaerobic digestion process.

The retention of biomass is a critical feature when utilising anaerobic technology in

wastewater treatment. Successful retention of biomass in anaerobic digesters is

usually achieved by attachment on porous material (anaerobic filter technology) or

growth of easy settling microbial granules (UASB and EGSB technology) (Beaubien

et al., 1996). However, membrane separation techniques are becoming increasingly

popular due to the many advantages these integrated systems have over conventional

digesters.
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The introduction of membranes into anaerobic bioreactors allows for independent

control of hydraulic and solid retention times resulting in higher volumetric loading

rates and smaller footprints. Other advantages include good effluent quality and the

ability to retain specific anaerobe strains where required (Stephenson et al., 2000;

Vallero et al., 2003). Chemical Oxygen Demand (COD) removal efficiencies as high

as 99% have been achieved with the use of anaerobic membrane bioreactors. Typical

hydraulic retention times range from 12 to 170 hours depending on reactor volumes

and waste type. These systems have been successful in treating industrial source

wastewaters from landfill leachate (0.63-2.2kgCODm-3) to brewery wastewater (80-

90kgCODm-3).

Despite its many advantages, the use of anaerobic membrane bioreactors in

wastewater treatment is a slow developing technology mainly due to the significant

fouling problems observed with continuous operation. Fouling can be defined as the

deposition of inorganic deposits, organic deposits and bacterial cells (collectively

known as foulants) onto the surface of a membrane (Stephenson et al., 2000). This

process is detrimental to the performance and efficiency of an anaerobic membrane

bioreactor because it reduces the permeation flux of the system and increases

operating costs.

The performance of anaerobic membrane bioreactors is also strongly dependent on

other parameters such as biomass and wastewater characteristics as well as

environmental conditions.
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2 LITERATURE REVIEW

2.1 Anaerobic Systems

2.1.1 Historical Development of the Anaerobic Treatment Process

Anaerobic treatment has been used in the treatment of wastewater for over a century. The

simplest and most widely used process is the septic tank. A precursor to this process was

reported as early as 1857. According to Buswell (1958), a tank was designed to retain solids

by means of sedimentation. A little later, at or around 1860, the ‘Mouras’ Automatic

Scavenger’ was designed by a French Engineer, Louis H. Mouras. He built a closed chamber

with a water seal in which all faecal matter was rapidly transformed (Seghezzo et al., 1998).

In 1910, Winslow and Phelps (1911) used a system known as the biolytic tank. However,

anaerobic systems were not regarded as viable for the treatment of wastewater until the

development of the Contact Process in 1957 and the Upflow Anaerobic Sludge Blanket

reactor two decades later (Seghezzo et al., 1998).

2.1.2 Single Stage Anaerobic Reactors

(i) The Contact Process

This process employs external sludge separation and return. Methods that have been

tested or used for sludge separation include vacuum degasification with

sedimentation, the addition of organic polymers as well as inorganic flocculants,

centrifugation and aeration to stop digestion. The need to return the resulting settled

sludge back to the reactor via pumping is a major disadvantage of the contact process

due to the higher number of pumps that have to be installed and maintained. The

maximum applicable organic loading rate over total reactor volumes used in this

process is 10gCODL-1d-1. However, improved contact systems have been developed

with the use of granular or dense, well-settling, flocculent sludge, adapting the stirring

assembly and intensity to sludge characteristics as well as the use of in-built settlers.

This results in higher permissible loading rates and better sludge retention within the

reactor
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(ii) The Upflow Anaerobic Sludge Blanket (UASB) Reactor

The Upflow Anaerobic Sludge Blanket Reactor was developed in the late 1970s in the

Netherlands (Lettinga and Vinken, 1980).

An important feature of the UASB reactor is the phase separator which divides the top

part of the reactor into the digestion and settling zones (Figure 2.2). Influent

wastewater is usually distributed at the bottom of the reactor before it travels upwards

through the sludge blanket. The UASB concept relies on the presence of a dense

granular sludge bed at the bottom of the reactor. There is some difficulty associated

with the formation of granules in this type of anaerobic system. A good inoculum is

usually required and growth of these granules will depend on the type of waste to be

treated. However, the system does maintain a large active sludge mass, enabling good

treatment performance at high organic loading rates. Reactor volumes are reduced and

there is usually a resulting increase in the production of quality energy as methane

(Seghezzo et al., 1998).

Biogas

Effluent

Influent

Sludge bed

Figure 2.2: Schematic diagram of a UASB reactor. Modified from
Seghezzo et al., 1998 and 2002.
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Seghezzo and his co-workers (2002) report that mean specific methanogenic activity

(SMA) averaged between 0.1130 and 0.0229gCOD-gCH4
-1.VSS-1.d-1 while treating

settled sewage at a temperature of 21.6oC in a UASB reactor subject to hydraulic

retention times of 3 to 9 hours as well as a solid retention time of 450 days. Higher

COD removal efficiencies have been shown to be achievable. Kato et al. (1997)

achieved efficiencies exceeding 95% at organic loading rates up to 6.8gCODL-1d-1

with COD concentrations ranging from 422 to 722mgL-1 while treating an ethanol

substrate. UASB technology is not recommended for the treatment of wastewaters

that produce froth (such as diary effluents) and wastes with high suspended solids

(15% insoluble COD).

(iii) The Expanded Granular Sludge Blanket (EGSB) Reactor

Tracer studies conducted by de Man and his co-workers (1986) illustrated that internal

mixing was not optimal in a pilot scale UASB reactor treating sewage at temperatures

of 4 to 20oC. The studies suggested that higher treatment efficiencies may be

achievable if dead space in the reactor was eliminated or significantly reduced. A

better influent distribution system was therefore necessary in order to improve contact

between sludge and wastewater and promote efficient use of the entire reactor

volume. The Expanded Granular Sludge Bed (EGSB) reactor was developed to

provide a solution to the problem (Figure 2.3).
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Wastewater enters the reactor at the bottom via the influent distribution system and

flows through a sludge bed consisting of anaerobic bacteria (which grow in the form

of granules). The height of the reactor can vary between 7 and 14metres. A high

superficial liquid velocity (>4mh-1) causes the granular sludge bed to expand,

eliminating reactor dead space and promoting better sludge-wastewater contact

(Seghezzo et al., 1998). In 1997, Seghezzo conducted studies on the relationship

between upflow velocity and substrate consumption and found no relationship

between the two. It was observed that granule size and inner structure had a greater

effect on substrate consumption. The EGSB reactor behaves as a completely mixed

tank (Rinzema, 1988). Higher organic loading rates of up to 40kgCODm-3d-1 can be

tolerated in these reactors resulting in higher gas production.

Figure 2.3: Schematic diagram of an EGSB reactor. Modified from
Seghezzo et al. 1998.

Biogas

Influent

Sludge
bed.

Effluent

p
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Although EGSB reactors are suitable for treatment of soluble pollutants and dilute

wastewaters (where effluent recirculation is not applied), good removal of suspended

solids and colloidal matter is yet to be achieved. Kato et al. (1997) achieved COD

removal efficiencies above 80% at organic loading rates up to 12gCODL-1.d-1 while

treating wastes with COD concentrations as low as 100 to 200mgL-1. Biothane

systems developed the Biobed EGSB reactor to treat wastewaters from the chemical

industry. Total COD removal efficiencies of about 98% were achieved when the

reactor was subject to high loading rates of approximately 30kgCODm-3d-1

(Zoutberg and De Been, 1997).

(iv) The Anaerobic filter

The anaerobic filter is a commonly used system which utilises the anaerobic attached

growth process for carbonaceous organic matter removal as well as denitrification of

wastewaters. The system generally consists of a column packed with solid media on

which anaerobic bacteria grow (Figure 2.4). These anerobes are not washed away by

the upward flow of wastewaters through the column. The system can therefore be

used to treat difficult wastewaters under difficult conditions (such as municipal

wastewaters at ambient temperatures) due to the long mean cell residence times that

can be achieved with short hydraulic retention times. The system also has an

additional advantage in that less sludge is produced compared with other anaerobic

reactors.

Figure 2.4: Diagram of a Typical Anaerobic Filter Unit (Omil et al., 2003).
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2.1.3 Staged Reactor Systems

The staged reactor concept is based on the plug flow treatment system (Van Lier,

1995) and accomplished by the use of sequentially operated reactors or compartments

in a single reactor. Sludge present in different compartments of the reactor will

usually differ depending on the waste type and specific environmental conditions in

the said reactor compartment.

Staged reactors are completely self-regulating and provide higher treatment

efficiencies as well as achieve greater process stability. Each stage of the digestive

process takes place in a compartment where there is an optimal environment for

degradation of compounds or organic matter. Van Lier (1995) demonstrated the need

for staging by achieving a high treatment efficiency (effluent COD<0.3gL-1) with a

compartmentalized reactor fed with a sucrose-VFA mixture. The system was subject

to a loading rate of 120gCODL-1d-1.

(i) The Anaerobic Baffled Reactor (ABR)

Inlet

120mm

Gas outlets

Outlet

500mm

280mm

Figure 2.5: Schematic diagram of an anaerobic baffled reactor.

Modified from Dama et al., 2002

Sampling
ports
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The anaerobic baffled reactor is a recent example of a system that utilises the staged

reactor concept (Figure 2.5). Baffles are used to direct the flow of wastewater in an

upflow mode through a series of sludge blanket reactors (Metcalfe and Eddy, 2002).

The sludge in the reactor will therefore rise and fall while moving through the reactor

at a slow rate. Unlike the UASB reactor, granulated sludge is not essential for good

performance although it has been observed in the process (Boopathy and Tilche,

1992). Initial loading rates for this type of reactor should be low. Henze and

Harremoes (1983) recommend an initial loading rate of 1.2kgCODm-3 although

reactors subject to higher initial loading rates have been successful. The Anaerobic

baffled reactor (ABR) has been used successfully to treat wastewaters with high solids

concentration. Boopathy and Sievers (1991) report COD removal efficiencies of 70

and 80% while treating a high strength swine waste with 51.7gL-1 total solids. The

reactor was subject to a loading rate of 4kgCODm-3d-1 and a hydraulic retention time

of 15 days.

Full scale reactors have been installed in Tenjo, Columbia to treat domestic waste. A

COD removal efficiency of 70% was achieved with loading rates of 0.4-2kgCODm-3.

The cost of installing a baffled reactor in Columbia is approximately 20% less than an

equivalent UASB reactor and five times less than a conventional activated sludge

plant (Orozco, 1996). Table 2.1 shows the advantages of the ABR over other

anaerobic systems (Barber and Stuckey, 1999).

Table 2.1: Advantages of the anaerobic baffled reactor over other anaerobic

systems

Construction

1.Simple design

2.No moving parts

3.No mechanical moving parts

4.Inexpensive to construct

5. High void volume

6. Reduced clogging

7. Reduced sludge bed expansion
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8.Low capital and operating costs

Biomass

1. No requirement for biomass with unusual settling properties.

2. Low sludge operation

3.High solid retention times

4. Retention of biomass without fixed media or a solid-settling chamber.

5. No special gas or sludge separation required.

Operation

1. Low HRT

2. Intermittent operation possible

3.Extremely stable even with hydraulic shock loads

4.Protection from toxic materials in influent

5.Long operation times without sludge wasting

6. High stability despite organic shocks
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Table 2.2: Performance of anaerobic digesters

Anaerobic
Digester

Wastewater
Type

Volume
(L)

Loading
Rate
(kgCODm-

3d-1)

Influent
COD
Concentration
(mgL-1)

Mean feed
temperature
(oC)

Hydraulic
retention
time
(hours)

COD
removal
efficiencies

Reference

Anaerobic
Filter

Domestic
Sewage

160 2-10 467 13-15 6 35-55% Derycke
and
Verstraete,
1986

UASB Settled
sewage

500 2-15 152.6 21.6 2-9hours 70-80% Seghezzo
et al.,
2002.

Municipal
landfill
leachate

40 2-4 1500-3200 13-23 13-35 65-75% Kettunen
and
Rintala,
1998

EGSB Dilute
brewery
wastewater.

225.5 0.9-1.4 100-200 30 1.3 70-91% Kato et
al., 1997

Anaerobic
Baffled
Reactor

Degritted
Sewage

3200 - 350-1200 30-35 20 70-90% Dama et
al., 2002
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2.1.4 Other Anaerobic Processes

Other anaerobic processes that have been utilised in the treatment of wastewater

include the covered anaerobic lagoon process and complete mix process. A

comprehensive list of anaerobic treatment processes as well as complete descriptions

is given in Metcalfe and Eddy (2002).

2.1.5 Granulation in Anaerobic Bioreactors

Sludge granules are defined as well balanced micro-ecosystems that include all

bacterial species required for the degradation of organic substrates to which they are

exposed. These granules form biomass with specific properties suitable for upflow

anaerobic reactors. The quality of these sludge granules is dependent on factors such

as settleability, mechanical strength, composition and distribution of microbial

populations, porosity, pore size distribution and substrate/product permeability

(Alphenaar, 1994).

According to Speece (1997), the formation of dense granular sludge in high rate

anaerobic digesters is favoured under conditions of near neutral pH, a plug flow

hydraulic regime, a zone of high hydrogen partial pressure, a non-limiting supply of

NH4-N and limited amounts of amino acid (Alphenaar, 1994). Several theories and

models have been postulated to describe and explain the granulation process in

anaerobic bioreactors (Table 2.3). A complete description of these theories can be

found in Hulshoff Pol et al. (2002).
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Table 2.3: Theories and models of granulation

Theory/Model Predominant factors influencing granule formation Reference

Rod type granule/filamentous
Granule

sludge bed erosion and expansion, selection
pressure and sludge residence time.

De Zeeuw (1987)

Selection pressure theory selection pressure. Hulshoff Pol et al. (1983)

Growth of colonised
suspended solids

suspended solids. Pereboom (1994), Yoda et al. (1989)

Bridging microflocs by
methanothrix filaments

morphology and surface properties of
methanothrix sp.

Dubourguier et al. (1987)

The spaghetti theory upflow velocity, turbulence and hydraulic shear
force produced by biogas.

Wiegant (1987)

Cape town hypothesis hydrogen partial pressure. Sam-Soon et al (1987)

Multi-layered granules with
Methanothrix aggregates as
nucleation centres

hydrodynamic behaviour of the reactor, supply of
substrate and product removal.

Mcleod et al. (1990), Fang (2000) and
Vanderhaegen et al. (1992)

Nucleation formation and
nucleus growth

selection pressure, acetic acid concentration and
EPS production.

Chen and Lun (1993)

Four step model physico-chemical property of bacterial species and
EPS production.

Schmidt and Ahring (1996), Costerton
(1990)

Theory/Model Predominant factors influencing granule formation Reference

Surface tension model surface thermodynamics of bacterial cells. Thaveesri et al. (1995)

Crystallised nuclei formation surface charges and surface thermodynamics of
bacterial cells.

Zhu et al. (1997)
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It is widely believed that the initial stage of the granulation process is similar to

bacterial biofilm formation on solid surfaces. All the theories and models stated in

Table 2.3 with the exception of the Cape Town hypothesis are based on the

importance of the bacterial species-Methanosaeta concilii (Methanothrix soehngenii)

in the granulation process. The Cape Town hypothesis suggests a different bacterial

species-Methanobacterium strain AZ as the key microbe in the granulation process.

The granulation process usually begins with the attachment of bacterial cells to an

inert carrier which forms the nucleus of the granule. Thick biofilm is then formed on

clusters of these nuclei. The addition of inert support media to anaerobic bioreactors

has been widely studied. Hulshoff Pol (1989) and Yoda et al. (1989) both report

shortened granulation times and accelerated start-up when hydro-anthracite and

zeolite are respectively added to UASB reactors. According to Verrier et al. (1988)

and Munoz et al. (1993), the addition of support particles to anaerobic digesters also

results in increased methane production. Materials used as inert carriers should be

spherical, have a high specific surface area and good hydrophobicity as well as a

specific gravity similar to anaerobic sludge (Yu et al., 1999).

2.1.6 The Role of Extracellular Polymeric Substances (EPS) in Anaerobic
Systems.

Extracellular polymeric substances are high molecular weight compounds (such as

polysaccharides, proteins, lipids and DNA) produced by bacterial cells as a by-

product of bacterial metabolic processes. EPS will usually form a hydrated gel-like

substance in or around biofilm.

It is thought that EPS plays an important role in aggregate formation and cohesion.

Approximately 50% of total EPS content of a granule is present in a 40µm thick zone

on the surface, the remainder being dispersed around the rest of the aggregate (de

Beer et al., 1996). In flocs however, majority of the EPS content present occurred in

the centre with little or no EPS on the surface.

A higher EPS content will usually result in better quality sludge. Quarmby and Forster

(1995) showed the significance of EPS in determining the strength of granules while

investigating the structure of granules in UASB reactors.
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Granules generally have higher concentrations of EPS (1-1.6mg.gVSS-1) than flocs

which usually have EPS concentrations of approximately 0.3mg.gVSS-1. Flocs have a

high susceptibility to floatation probably due to the lack of EPS coating on the

surface. The hydrophilic nature of EPS prevents the attachment of gas bubbles.

Schmidt and Ahring (1994) report that granules exposed to methanogenic and

acetogenic substrates have lower amounts of polysaccharides and proteins in the EPS

matrix than those grown on more complex substrates. However, EPS lipid content

was lower with complex substrates. EPS content of sludge is also affected by

temperature conditions in the bioreactor. Sludge incubated under mesophilic

conditions has a higher EPS content than sludge incubated under thermophilic

conditions (Schmidt and Ahring, 1994).

2.1.7 Volatile Fatty Acids in Anaerobic Systems

Anaerobic conversion of organic matter occurs in stages (Figure 1.1). The hydrolysis

of higher molecular mass compounds into monosaccharides, amino acids and other

compounds is followed by acidogenesis where these relatively simpler compounds are

converted into short chain fatty acids, the most common of which is acetic acid. The

products of this stage of anaerobic digestion are collectively known as volatile fatty

acids (VFAs). These compounds are converted to methane and carbon dioxide by

methanogens during methanogenesis.

For anaerobic digestion to continue adequately, both acidogenesis and

methanogenesis have to be in dynamic equilibrium. High concentrations of VFA can

lead to anaerobic system failure as only a limited number of substrates are

thermodynamically favourable for conversion to methane via methanogenesis. VFAs

(especially propionic acid) are also generally toxic to acidogens in high

concentrations(Yang et al., 2004). The removal of these compounds via

methanogenesis is therefore essential.
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Acidogenesis and methanogenesis are carried out by symbiotic microorganisms which

are divided into two main groups (acidogens and methanogens). These groups of

bacteria differ in their physiology, biokinetics, and growth environment (Yang et al.,

2004). Yang et al. (2003) suggests that succesful optimisation of the anaerobic

treatment process is dependent on optimisation of the acidogenesis stage. Optimal

conditions for acidogenesis (during treatment of a swine wastewater) and production

of acetic and butyric acid were also suggested at 2.1 to 2.4 days HRT and a

temperature of 34.5±0.5oC (Yang et al., 2004).

2.1.8 Low Strength and Complex Wastewaters

Low strength wastewaters are wastes with a chemical oxygen demand of less than

2000mgL-1. These wastewaters usually contain easily biodegradable compounds such

as short- chain fatty acids, alcohols and carbohydrates.

The application of UASB technology to the treatment of low strength wastewaters

faces many limitations, some of which have already been overcome. The most

important of these problems is the low amount of recoverable energy produced by the

process in the form of methane. The anaerobic process is only favourable if

additional energy in the form of heat is not required. Some full-scale installations are

currently operating in tropical regions precisely for this reason. Ambient

temperatures are higher (usually varying between 30 and 35oC) and heating is almost

never necessary (Foresti, 2002). Other problems faced in the anaerobic treatment of

dilute wastes include poor substrate movement into biofilm and sludge washout. In

practice, these problems have been overcome with the use of efficient mixing, optimal

liquid upflow velocities (Vup) of 2.5-5.5 mh-1 and effluent recirculation.

Kato (1994) reports that a COD removal efficiency of 80-90% is achievable when

treating dilute wastewaters in UASB and EGSB reactors subject to organic loading

rates of 0.7-1.2gCODL-1d-1.

Complex wastewaters are defined as substrates containing large fractions of

suspended solids as well as a wide variety of compounds (Zeeman and Sanders,

2001).
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In treating this type of waste, the most widely applied reactors are UASB reactors and

CSTRs (Continuous Stirred Tank Reactors). The CSTR operates without biomass

retention and is usually utilised in the digestion of slurries. For domestic sewage and

similar wastewaters, the UASB reactor is most frequently applied. In general,

increased complexity of the waste will result in poorer treatment efficiencies and a

requirement for lower organic loading rates in UASB reactors (Kato, 1994).

Domestic sewage is a complex wastewater and more often than not, of low strength.

Although, this type of waste has a very predictable quality, there is not much insight

into the use of anaerobic technology in its treatment. A number of UASB reactors are

currently operational in tropical regions. Wiegant (2001) reports that hydraulic design

criteria, superficial biogas velocity and solid retention times govern the design of

these reactors. He further states typical values for design criteria as shown in Table

2.4.

Table 2.4: Design criteria for UASB reactors in tropical regions.

Design criteria Typical values

Height (m) 4-4.5

Feed Inlet Distance (m) 1.9-2.00

Upflow velocity (m.h-1) 0.6-0.75

Hydraulic retention time (h) 5-6

COD removal efficiencies of 65-80% have been obtained with UASB reactors treating

domestic wastes at temperatures above 20oC when subject to organic loading rates

lower than 3kgCODm-3d-1 (Rodriguez et al., 2001; Florenico et al., 2001; Passig et

al., 2000; Torres and Forresti, 2001; Chernicaro and Nascimento, 2001). The need for

good quality methanogenic sludge as an inoculum during start-up periods is

considered crucial to the efficient treatment of domestic waste. However, Passig et al.

(2000) reports that the use of an inoculum may not be necessary at all though this may

prolong start-up periods for as long as six months.

2.1.9 Anaerobic Treatment under Psychrophilic Conditions.

Many are still sceptical about the use of anaerobic treatment in treating sewage at low

temperatures. The factors that affect anaerobic treatment of wastewater are

summarised in the Table 2.5.
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Table 2.5: Summary of factors affecting anaerobic wastewater treatment

Factor Effect

Flow and strength
variation

Poor effluent quality. However, buffer tanks can be used to
quench flow and strength changes

Temperature Slow growth of bacteria, low methanogenic activity, slow
hydrolysis, increased gas solubility and inhibition by high acetate
concentration

Sulphate Inhibition of methanogenesis process, lower methane production

Suspended solids Slow hydrolysis and mass transfer kinetics, reduction of specific
methanogenic activity and disintegration of granules.

(Kalogo and Verstraete, 2001)

Of the factors stated in Table 2.5, a high concentration of suspended solids (0.3-2gL-1)

is an important difficulty in the treatment of sewage. Under low temperatures,

suspended solids are hydrolysed very slowly, accumulating in the reactor and

decreasing reactor volume available for active biomass sludge. This gives rise to low

COD conversion efficiencies (Kalogo and Verstraete, 2000). There is a

corresponding decrease in the proportion of active biomass with a decrease in the ratio

of soluble COD to volatile suspended solids. De Baere and Verstraete (1982) suggest

that a value of 10 (soluble COD to volatile suspended solids ratio) is required to keep

anaerobic sludge active. Zeeman and Lettinga (1999) developed a model that can be

used to calculate HRT where SRT, sludge concentration and proportion of influent SS

removed and hydrolysed are known.

  SRTHR
X

SSC
HRT 







 
 1

where C= COD concentration in the influent (gCODL-1) and SRT in days.

Reactor volume can then be calculated if the daily influent flow (Q) is known.

QHRTV 

This model shows that increasing SS concentration of the influent will change the

needed HRT.
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Average sewage temperatures range from 4 to 20oC and will only exceed 12oC for

about six months annually in temperate regions (Derycke and Verstraete, 1986).

These temperatures fall substantially below the optima for methanogenesis (35 to

55oC). However, according to Kato (1994), anaerobic bacteria can adapt quite easily

to low temperatures and high rate UASB reactors have been utilised under

psychrophilic conditions.

Biological reaction rates are much slower under psychrophilic conditions. A lower

operational temperature will result in a decrease in microbial growth rates as well as

substrate utilisation rates (Van den Berg, 1977; Lin et al., 1987). According to

Rebac (1998), a decrease in temperature affects the physico-chemical properties of

wastewaters. The solubility of biogases such as methane and hydrogen sulphide

increases thereby creating a requirement for a reactor with a slightly lower pH

environment to ensure good treatment efficiencies. It is also possible that additional

energy may be required for mixing. Increased liquid viscosities will result in slower

settling of particles and decreased liquid-solid separation.

Laboratory UASB reactors have been used to treat raw domestic sewage and results

obtained by Lettinga and his co-workers (1983) showed adequate performance even at

low temperatures. COD reduction reached 65-85% at 20oC and 55-70% at 13-17oC.

De Man et al. (1988) also showed that domestic sewage can be successfully treated

under low temperature conditions (12-18oC) with HRTs of 7-12 hours. COD removal

efficiencies of 40-60% were found to be achievable. More recently, other reactor

configurations have shown higher removal efficiencies. Removal efficiencies of 80%

have been obtained with the use of a granular bed reactor treating sewage from a

separated sewer system (De Man et al., 1988). Agrawal and his co-workers (1997)

also achieved a COD removal efficiency of 70% using a combination of UASB

reactors, and an aerobic post treatment system known as the ‘hanging sponge cubes’

to treat raw domestic sewage at temperatures of 9-32oC. Higher upflow velocities

improve sludge-wastewater contact and result in higher removal efficiencies.
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2.1.10 Advantages and Disadvantages of Anaerobic Wastewater Treatment

Initially, the main problem with anaerobic treatment was the long hydraulic retention

time needed to achieve satisfactory performance. The hydraulic retention time in

anaerobic systems has been considerably shortened by construction of new reactors

with high biomass retention. Table 2.6 summarises the main advantages and

disadvantages of the anaerobic digestion process.

Table 2.6: Advantages and disadvantages of the anaerobic process.

Advantages Disadvantages

High Efficiency: Good efficiencies are
achievable even at high loading rates.
Simplicity: Reactors are simple to
construct and operate
Flexibility: Anaerobic treatment can be
applied on large or small scale
Low space requirements: smaller reactor
volumes are required
Low energy consumption: Energy
consumption is usually low compared to
aerobic methods. Energy is also produced
in the form of biogas.
Low nutrient and chemicals requirement:
Adequate pH can be maintained without
the addition of chemicals. Micronutrients
are also available in sewage, while toxic
compounds are absent.
Low sludge production due to slow
bacteria growth rates. The sludge is well
stabilised and has good dewatering
characteristics. It can be preserved for long
periods of time without a significant
reduction in activity, allowing its use as
inoculum for start-up of new reactors.

Low pathogen and nutrient removal:
Anaerobic reactors are only partially
successful in pathogen removal.
However, helminth eggs are effectively
trapped in the sludge bed. Post
treatment is usually required for
complete nutrient removal.
Long start up: Due to slower growth
rates of methanogenic organisms, start
up times may be longer when compared
to aerobic processes.
Possible bad odours: Hydrogen
sulphide is produced during anaerobic
processes.
Necessity of post treatment: Post
treatment is usually required to reach
discharge standards for organic matter,
nutrients and pathogens.

(After Seghezzo et al., 1998)
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2.2 The Anaerobic Membrane Bioreactor.

In conventional anaerobic digesters, biomass and hydraulic retention times are

coupled, limiting organic loading rates and operating biomass concentrations (Pillay

et al., 1994). Membrane technologies such as reverse osmosis, ultrafiltration and

microfiltration are increasingly used to achieve biomass retention and for a variety of

wastewater types (Fakhru’l-Razi, 1994).

Various systems have been developed and used in many wastewater treatment

applications. Dorr-Oliver developed the MARS (Membrane Anaerobic Reactor)

process which employs an ultrafiltration membrane in a flat sheet module combined

with anaerobic digesters. Li et al. (1985) carried out a review on the many

applications for which this process has been successful and found that the maximum

loading rate to which it has been subject was 15gCODL-1d-1 and a COD removal

efficiency of 95% was achieved.

Use of unsupported tubular ultrafiltration membranes (MEMTUR) at low inlet

temperatures led to the development of the anaerobic digestion ultrafiltration (ADUF)

process. The ADUF process involves the use of an anaerobic digester coupled with a

tubular ultrafiltration membrane module. Fakhru’l-Razi (1994) achieved a COD

removal efficiency of 96.3% with the use of the ADUF process in the treatment of a

high strength industrial wastewater. The system was subject to a maximum organic

loading rate of 19.7kgCODm-3d-1, a hydraulic retention time of 3.98 days and a solid

retention time of 58.8 days. This process has been applied at both pilot and full scale.

The CUMAR (Cross flow ultrafiltration membrane anaerobic reactor) system consists

of a cross-flow ultrafiltration membrane unit attached to a completely mixed

suspended growth anaerobic digester (Ince et al., 1994). A COD removal efficiency

of 97 to 99% was observed while treating a brewery waste. A maximum organic

loading rate of 28.5kgCODm-3d-1 was applied to the system.

The SAMBar (Submerged Anaerobic Membrane Bioreactor) system was developed

by Vallero et al. (2003) in order to achieve high rate sulphate reduction under

conditions of high salinity. A maximal sulphate reduction efficiency of 85% was

achieved when the system was subject to organic loading rates of 14gCODL-1d-1 and a

hydraulic retention time of 8 to 36 hours.
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Other anaerobic membrane bioreactor systems include the MCAB (Membrane

Coupled Anaerobic Reactor) system and CFMF (Cross flow microfiltration) process.

2.2.1 Membranes and Process Configuration

Anaerobic MBRs may incorporate external side-stream or submerged membranes.

Generally, most systems reported in literature to date have incorporated side stream

external membranes with completely stirred tank reactors (CSTR) (Table 2.7,Table

2.10). However, two phase reactors have been used in a small number of cases. With

such configurations, the membrane has been placed after the first phase reactor, the

second phase reactor or after both reactors. Yushina and Hasegawa (1994) achieved a

COD removal efficiency between 76 and 92% (using this configuration) while

treating food processing wastewaters with an influent COD concentration of 900 to

1400mgL-1 at a temperature of 30oC. A less popular configuration is the combination

of UASB reactors with external side-stream or submerged membranes. These

systems tend to achieve relatively higher COD removal efficiencies regardless of

substrate complexity (Liao et al., 2006). Kiriyama et al. (1994) achieved a COD

removal efficiency of 61% while treating municipal sewage with a COD

concentration of 70mg L-1 at a temperature of 18oC using a UASB system which

incorporated a membrane and was subject to a HRT of 0.3days. A higher treatment

efficiency of 92% was achieved by Kimura (1991) while treating hydrolysed night

soil using a similar system configuration.

Membrane materials of construction vary widely from ceramic to polymeric which in

turn has an effect on membrane performance. Ghyoot and Vestraete (1997) report

that although both ceramic and polymeric membranes produce permeates of the same

quality, the former is able to maintain a flux which is much higher than that

achievable with the latter type of membrane. Shimizu et al. (1989) also found that

negatively charged membranes were able to achieve a higher flux than non charged or

positively charged membranes. In addition, hydrophobicity and material of

construction also play a major role in membrane fouling. Fouling of inorganic

membranes is generally characterised by struvite in contrast to organic membranes

which tend to foul with both struvite and organic matter (Kang et al., 2002; Liao et

al., 2006)
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Membranes can generally be classified into three broad groups- microfiltration,

ultrafiltration and reverse osmosis (RO) membranes. This categorisation is based on

molecular weight cut off and pore size of the membranes. Microfiltration and

Ultrafiltration membranes are more commonly used with anaerobic membrane

bioreactors. Microfiltration membranes generally have pore sizes of >0.05 m and

will retain particulate matter. Ultrafiltration membranes on the other hand have pore

sizes of 0.002≤0.05 m (Liao et al., 2006) and are useful in retaining colloids and

macromolecules as well as particulate matter.
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Table 2.7: Examples of membrane performance while treating wastewaters`in Anaerobic MBRs(Modified from Liao et al., 2006).

Wastewater
Type Treated
in Anaerobic
MBR

Operating
Temperature

Membrane
Material

Configuration Pore
Size
(m)

Molecular
Weight Cut
off
(Daltons)

Filtration
Area
(m2)

Membrane
Flux
(Lm-2h-1)

Transmembrane
Pressure

Reference

Brewery 35 Polyethersulphone External side-
stream

0.2 - 0.44 7-50 140-340 kPa Strohwald and
Ross, 1992

Molasses 20 Polypropylene Submerged 10 - 0.051 10-80 - Hernandez et
al., 2002

Wool
scouring

40-47 Poly acrylonitrile External side-
stream

- 13000 3.1 17-25 2-2.2 kgcm-2 Hogetsu et al.,
1992

Wheat starch 40 - External side-
stream

- 18000 144 14-25 690 kPa Butcher, 1989

Sewage
sludge

22-50 Ceramic External side-
stream

0.1 - 0.05 200-250 200 kPa Ghyoot and
Verstraete,
1997

Sewage
sludge

30-35 Polyethersulphone External side-
stream

- 60000 0.3 19 375 kPa Ghyoot and
Verstraete,
1997

Acetate 35 Zirconia Oxide External side-
stream

0.005-
0.08

- - 40-70 50 kPa Elmaleh and
Abdelmoumni,
1997

Glucose and
peptone

35-38 Ceramic External side-
stream

0.2 - 0.4 12.5-125 0.4 kPa Shimizu et al.,
1992

Domestic
wastewater

12.5-28 Polyethylene Submerged 0.03 - 0.3 5-10 10-60 kPa Wen et al.,
1999

Sewage 26 Polyethylene External side-
stream

0.1 - 54 24 1.1 kgcm-2 Kataoka et al.,
1992

Sewage 10-28 Ceramic External side-
stream

- 13000 13.6 15-20 1-21 kgcm-2 Tanaka, 1987

Heat treated
liquor

35-38 Ceramic Submerged 0.1 - 1.06 3-8 200 mmHg Kayawake et
al., 1991
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2.2.2 Loading rates

Cadi et al. (1994) reports that an increase in organic loading rate will produce a

proportional increase in withdrawal protein concentration, an increase in substrate

utilisation rate and a decrease in COD removal. The system studied was a laboratory

scale anaerobic digester coupled with two tubular microfiltration modules, treating a

synthetic wastewater containing starch as its sole carbon source. During the study, the

system was subject to organic loading rates of 7 to 24gCODL-1d-1. At the maximum

OLR of 24gCODL-1d-1, COD removal yield was approximately 87% and permeate

protein concentration stabilised at 300mgL-1. A decrease in removal efficiency of

only 7% was observed when loading rate was increased from 7.7 to 24.2kgCODm-3d-

1, showing that COD removal is relatively stable over a range of loading rates. COD

removal yields of 95 and 97% were obtained with the MARS and ADUF processes

respectively when both systems were fed with whey and brewery wastes at loading

rates of 15gCODL-1d-1 (Li et al., 1985), (Strohwald and Ross, 1992). Cadi et al.

(1994) also reports that at low organic loading rates, specific removal rates increased

proportionally but stabilised at 0.6gCODr.gVSSd-1 at higher loading rates (14 to

24gCODL-1d-1).

2.2.3 Gas Production

Anaerobic treatment generates energy in the form of methane. Methane yield is

dependent on the wastewater source as well as the operating conditions of the process.

Biogas yields decline with increased loading rates. This is due to more favourable

conditions for acidogenic bacteria than methanogenic bacteria at higher organic

loading rates (Fakhru’l-Razi and Noor, 1999). Ince et al. (1998) observed a decrease

in methane yield from 80% to 65% while treating a brewery waste with a maximum

organic loading rate of 28kgCODm-3d-1. The same trend is seen with longer hydraulic

retention times (Cadi et al., 1994) and decreasing temperature which results in lower

methanogenesis rates (Hogetsu et al., 1992). A summary of the factors that affect

biogas production are given in Table 2.8.
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Table 2.8: Factors that affect biogas production

Factor Effect

Loading rate Biogas yields decline with increased loading rates.

This is due to more favourable conditions for

acidogenic bacteria than methanogenic bacteria at

higher organic loading rates.

Fakhru’l-Razi

and Noor,

1999

Hydraulic

retention time

Longer hydraulic retention times cause a fall in

biogas production.

Cadi et al.,

1994

Temperature Lower temperatures will also cause a decline in

biogas production as rate of methanogenesis falls.

Hogetsu et

al., 1992

2.2.4 Biomass

Ince et al. (1995) examined sludge from a brewery and found the dominant species of

micro-organisms to be Methanococcus followed by Methanosarcina, short rods,

medium rods, filaments and long rod species. Continual analysis of the microbial

population in the membrane bioreactor revealed a shift in the dominant group from

Methanococcus at start up to short rod species at the end of the study. Although the

proportion of methanogens in total bacteria increased from 6.8% to 9.5%, there was

no adverse affect on the performance of the system. COD removal efficiency

remained over 97% during steady state operation at a maximum organic loading rate

of 28.5kgCODm-3d-1.

Examination of the biomass characteristics in anaerobic membrane bioreactors by

colony forming curve analysis show that bacteria are generally slower growing when

treating sewage than for some industrial wastes (Kataoka et al., 1992). Klass (1984)

attributes this slow growth to the large amounts of cellulosic materials usually present

in sewage. Hernandez et al. (2002) also showed that the presence of immersed

membranes in anaerobic digesters results in improved granular sludge quality (sludge

showed greater homogeneity in structure and activity).
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2.2.5 Flux and Fouling

Flux is defined as the quantity of material passing through a unit area of membrane

per unit time. It is determined by the driving force as well as the total resistance

offered by the membrane and the interfacial region adjacent to it. Flux decline in

membrane bioreactors is usually due to fouling, a term which describes the process by

which substances present in the wastewater are deposited or adsorbed into or unto the

membrane surface causing pore restriction or complete pore blocking.

(i) Flux and Fouling in the Anaerobic Membrane Bioreactor

Beaubien et al. (1996) demonstrated two clear modes of operation in anaerobic

membrane bioreactors, low pressure and high pressure. Under low transmembrane

pressures (less than 80kPa), permeate fluxes are strongly dependent on applied

pressure and suspended solids concentration. Permeability decreased rapidly between

0 and 2.5kgm-3 and moderately for concentrations higher than 2.5kgm-3. This is in

contrast to the high pressure mode (> 100kPa) where flux is independent of pressure

but strongly influenced by shear stress. Also, crossflow velocity did not affect

permeation rates at low transmembrane pressures but was significant at high

pressures. Beaubien et al. (1996) also defined an optimal pressure at which optimal

membrane performance is observed. This pressure allows maximal permeation while

keeping fouling of the membrane minimal. For an anaerobic membrane bioreactor

operating at a suspended solids concentration of 10kgm-3 and a crossflow velocity of

2.63ms-1, the optimal pressure was found to be 80kPa while the maximal permeate

flux was 19m.s-1.

Choo and Lee (1996) found that permeation flux dropped by more than 90% within

20days of continuous operation of an anaerobic membrane bioreactor treating an

alcohol distillery waste. This drop in flux was attributed to the external fouling of the

membrane. This external fouling was found to be closely related to the strong

adhesion of cells to the membrane surface, the compacting of the cake layer and the

precipitation of struvite (MgNH4PO4.6H2O) at the membrane surface. Choo and Lee

(1998) also carried out further studies into the hydrodynamic behaviour of anaerobic

biosolids in anaerobic membrane bioreactors.
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It was observed that flux decline could be divided into three phases: the exponential

flux decay within an initial period of time, usually less than three days; the sluggish

gradual flux decline (3-9 days); the pseudo steady state (> 9days). During the

exponential decline phase, polarisation and deposition of biosolids on the membrane

surface was found to be the major cause of flux decline. Size distribution of biosolids

shifted from about 6m to about 3m after 12 days of operation. Specific cake

resistance also increased from 3.9 to 6.4 x 1015 mkg-1, illustrating greater compactness

of the cake layer due to size reduction. These changes in biosolid size and

distribution were found to be mainly responsible for flux loss.

Detailed fouling analysis conducted by Choo and his co-workers (1999) attributed

most of the fouling (while treating a distillery waste) to fine colloids. Although fine

colloids accounted for 80% of the total resistance to filtration, they constituted only

5% of the total solids. Choo et al. (1999) also investigated the effect of membrane

material and pore size on internal fouling. It was found that at higher pore sizes,

macro organics foul internal pores while lower pore sizes have too high a natural

resistance to filtration. Studies by Kang et al. (2002) also showed that there is a

marked difference in fouling characteristics when organic and inorganic membranes

are combined with anaerobic bio-reactors. The key factor in flux decline with organic

membranes (such as polymeric membranes) was found to be due to the rough and

fibrous nature of these membranes. Internal struvite precipitation was however

significant in fouling with inorganic (ceramic) membranes.

Strohwald and Ross (1992) investigated the effects of cross-flow velocity and

pressure on membrane performance. No changes in flux were observed when trans-

membrane pressure was increased from 140 to 340kPa while treating waste with a

mixed liquor concentration of 30gCODL-1. Several factors contribute to the lowering

of membrane permeability with increasing suspended solids concentration.

Adsorption, pore plugging and concentration polarisation (the tendency of solute to

accumulate at membrane-solution interface within a concentration boundary layer or

stagnant liquid film) all affect membrane performance at trans-membrane pressure

lower than that leading to gel formation.
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Fouling in membrane bioreactors can be suppressed by in-treatment to remove

foulants, flux reduction and turbulence promotion to reduce the thickness of

hydrodynamic boundary layers (Stephenson et al., 2000). Fouling in polymeric and

ceramic microfiltration membranes (where inorganic precipitates is the most

significant foulant) can be controlled by backfeeding acidic wastewater through the

membrane module as well as coupling the membrane with a dialysis/zeolite unit,

thereby reducing struvite formation (Choo et al., 1999). Choo and his co-workers

also showed that control of deposition of organics and fine colloids can be achieved

by addition of powdered activated carbon into the bioreactor. Nitrogen gas sparging

as well as high pressured biogas recirculation has been successful in reducing fouling

in submerged systems containing polymeric (Fawehinmi et al., 2004) and ceramic

membranes (Kayawake et al., 1991).

A summary of typical operating conditions for anaerobic membrane bioreactors is

given in Table 2.9: below.

Table 2.9: (Metcalfe and Eddy, 2002)

Value

Parameter Unit Range Typical

COD loading kgCODm-3d-1 2-24 8

Solid retention time (SRT) days 12-160 50

Mixed Liquor Suspended Solids gL-1 8-50 20-25

Solids Yield gVSSg-1COD-1 0.04-0.12 0.08

Final Flux Lm-2h-1 5-26 18

Specific Flux Lm-2h-1bar-1 2.5-21 14
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Table 2.10: Examples of anaerobic membrane bioreactor performance

Wastewater
Type

Reactor
Type

Vol.
(L)

HRT
(days)

Temperature
(oC)

Loading rate.
(kgCODm-

3d-1)

Influent COD
concentration
(mgL-1)

COD
removal
efficiency
(%)

Biogas yield
(m3CH4kgCOD-1)

Reference

Synthetic CSTR 120 4 35 19.7 84010 96 0.27 Fakhru’l-
Razi, 1994.

Municipal
landfill
leachate

- 40 0.5-
1.5

- 1.4-4 630-2200 50-75 0.32 Kettunen
and Rintala,
1998.

Palm oil mill CSTR 50 3 35 21.7 68000 92 0.28 Fakhru’l-
Razi and
Noor, 1999

Brewery
wastewater

- 120 2.5-
4.2

- 28.5 80000-90000 99 0.28-0.35 Ince et al.,
2000.

Distillery
wastewater

CSTR 4 13 54 3.03.5 40000 90 0.0014 Kang et al.,
2002

Slaughter
house
wastewater

CSTR 7 1.2 30 4.3 5200 90 - Fuchs et al.,
2003

Heat treated
liquor

CSTR 200 0.6 37 15.4 10300 81 - Kim and
Somiya,
2001

Domestic
Sewage

Hybrid 18 0.25 20 0.4-10 100-2600 >92 - Wen et al.,
1999

Municipal
Sewage

UASB 77000 0.3 12 0.65 300 58 - Kinyama et
al., 1992
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Wastewater
Type

Reactor
Type

Vol.
(L)

HRT
(days)

Temperature
(oC)

Loading rate.
(kgCODm-

3d-1)

Influent COD
concentration
(mgL-1)

COD
removal
efficiency
(%)

Biogas yield
(m3CH4kgCOD-1)

Reference

Dilute
Synthetic
Wastewaters

- 3 0.125 - - 460 >90 - Hu and
Stuckey,
2006.
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(ii) Flux and Fouling in the Aerobic Membrane Bioreactor

Like the anaerobic MBR, fouling in aerobic MBRs takes place by adsorption and

deposition resulting in internal and external clogging of membrane pores. Fouling

tends to be specific to the membrane material and can be related to key components in

the feed such as proteins, colloidal and particulate matter (Stephenson et al., 2000).

There is a school of thought that attributes membrane fouling in aerobic MBRs to

extracellular polymeric substances for the most part. Stec and Field (1995), Chang

and Lee (1998) and Nagaoka et al. (1999) have all linked filtration and hydraulic

resistance to EPS levels in activated sludge. Other researchers have focused on

fouling by proteins and colloidal matter. Kelly et al. (1993) proposes that deposited

protein aggregates serve as nucleation sites for non-aggregated dissolved proteins on

the membrane surface. Pouet and Grasmicj (1995) also found that fouling of a

ceramic microfiltration membrane was mainly due to a colloidal fraction with particle

size greater than 1m. Boubahila et al. (2001) and Defrance et al. (2000) both agree

that the colloidal fraction of activated sludge contributes significantly to fouling.

Studies by Lesjean et al. (2005) indicate that there is a linear relationship between

membrane fouling rates and soluble polysaccarides in activated sludge. However, the

same study provides no clear correlation between proteins, mixed liquor suspended

solids and membrane fouling rates. Rosenberger and Kraume (2002) and Fan et al.

(2006) also showed no correlation between MLSS and fouling when membranes are

exposed to aerobic sludge. These observations contradict other published literature on

the subject. Magara and Itoh (1991), Manem and Sanderson (1996), Maedaeni et al.

(1999) and Le Clech et al. (2003) all agree that membranes foul quicker at higher

sludge concentrations.

While activated sludge fractions contribute significantly to membrane fouling, other

properties have been found to be just as important. For example, high surface

porosities are detrimental to membrane performance (Stephenson et al., 2000).

Ghosh and Cui (1999) also showed that the submerged system is capable of higher

mass transfer rates and higher permeabilities than the side-stream system.
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Fluxes in aerobic MBRs range from 5 to 300 Lm-2h-1. Side-stream systems can be

subjected to higher operating fluxes than submerged systems although greater shear is

required at the membrane surface to control fouling. In general, ceramic membranes

are less susceptible to fouling and can therefore be operated at higher fluxes for

extended periods of time (Trouve et al., 1994; Stephenson et al., 2000)

2.3 Discussion

The use of anaerobic technology in the treatment of wastewater is a complex and

sensitive process. The process is dependent on operating conditions such as

temperature, pH, hydraulic retention time, sludge retention time and loading rates as

well as wastewater and biomass characteristics. Optimal conditions for good

substrate degradation include operating at mesophilic temperatures (35 to50oC), near

neutral pH, good biomass retention and longer sludge retention times. Anaerobic

digestion is inefficient when used in the treatment of complex and low strength

wastewaters (under psychrophilic conditions) due to slow suspended solids

hydrolysis, changes in pH and wastewater characteristics such as viscosity and

solubility. Inefficient substrate degradation results in lower methane production and

therefore lower re-usable energy. The anaerobic process can only compete with

conventional aerobic wastewater treatment methods if the process is not energy

intensive and therefore does not create additional operating costs. In addition, few

anaerobic bacteria have been found to be psychrophilic (grow and metabolise at

temperatures up to 20oC) (Romesser et al., 1979; Conrad et al., 1989; Kotsyurbenko

et al., 1995). So far, it is not clear whether anaerobic digestion of low strength and

complex wastes may be improved either by developing bacterial populations tolerant

to lower temperatures or by forcing mesophilic bacterial populations to adapt to

colder conditions.

The integration of membranes and anaerobic reactors may provide a solution to some

of the critical problems experienced when utilising anaerobic technology in the

treatment of low strength and complex wastewaters at low temperatures. The

anaerobic membrane bio-reactor is a credible alternative to UASB and EGSB

technology as it completely uncouples hydraulic and sludge retention times

(preventing sludge and biomass washout).
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However, interaction between membrane material and sludge results in fouling which

can reduce permeation flux and therefore, efficiency of the system.

Much research has been conducted into the mechanics of coupling membranes with

biological reactors resulting in two major membrane configurations (side-stream and

submerged). Recent research into the subject of anaerobic membrane bio-reactors has

also focused on optimal operating conditions when these systems are used in the

treatment of industrial and synthetic wastewaters. However, there is still a gap in the

information available on fouling within these systems and their use in the treatment of

domestic and municipal wastes (examples of low strength and complex wastewaters).

The anaerobic membrane bioreactor is an economically attractive alternative to the

aerobic membrane bioreactor due to the potential for electricity consumption by

membranes, capital and operating costs to be offset by methane production.
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3 AIMS AND OBJECTIVES

The primary aim of this study was to develop and optimise the anaerobic membrane

bioreactor for the treatment of municipal wastewaters at ambient or below ambient

temperatures. In order to achieve this objective, the study concentrated on;

 Establishing the characteristics and properties of anaerobic biomass and
granular sludge.

 Attempting to immobilise and acclimatise anaerobic biomass (within the
anaerobic digester) to low-temperature conditions with the use of submerged
and side-stream membranes.

 Assessing the effect of biomass characteristics and properties on membranes
and membrane filtration.

 Establishing the effect of biomass and wastewater characteristics on process
performance and fouling within the membrane bio-reactor.

 Investigating fouling amelioration and the effect of gas sparging on fouling.

 Determining the effect of process conditions such as pH and temperature as
well as membrane configuration on process efficiency.
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4 MATERIALS AND METHODS

This PhD project was divided into four stages- Dead end filtration trials and

characterisation of anaerobic sludge, bench-scale tests, critical flux tests and pilot

scale tests.

4.1 Dead End Filtration Trials and Characterisation of Sludge

Filtration trials were carried out using an unstirred dead end filtration cell (KST 47

Model supplied by M-Tech Diagnostics Ltd, UK) (Fig1). The cell was run with two

virgin cellulose acetate membranes with a pore size of 0.45m and 0.2m

respectively. Membranes with the smaller pore size were used in the filtration of SMP

and the larger pored membranes in the filtration of sludges. The cell was connected to

a receiver (to impose pressure) and a beaker placed on top of an electronic weighing

balance collected the filtrate mass. A computer was connected to the electronic

balance to record filtrate mass values at one second intervals. Filtrate volume was

calculated using Equation 4-1.

V

m
 Equation 4-1

Where

 = density in kgm-3;

m = mass in kg;

V = Volume in m3.
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Figure 4.6: Diagram of Dead End Filtration Cell

Three anaerobic and aerobic sludges were analysed over a one month period for

viscosity, particle/granule size, cake resistance, total solids as well as EPS and SMP

concentration and filtration characteristics. The three anaerobic sludges analysed

during these experiments came from different sources. Two of the sludges were

obtained from effluent treatment plants treating wastewaters from different paper

mills while the third was obtained from a UASB reactor treating a sugar refinery

wastewater. All of the anaerobic sludges used during this set of experiments were

granular. The aerobic sludges were obtained from membrane bio-reactors and an

activated sludge plant set up at Cranfield university sewage works. All sludges

utilised in this set of experiments were acclimatized at temperatures of 10 to 15oC

after removal from reactors without active degradation of substrate.

Fouling mechanisms were determined using filtration models (Appendix B ) after

dead end filtration. The fouling contribution of soluble microbial products was also

determined by the evaluation of rejection factors Equation 5-6.
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4.2 Bench Scale Tests

4.2.1 Anaerobic Membrane Bioreactors (AnMBRs)

Four 0.5L anaerobic membrane bioreactors (A, B, C and D) were run simultaneously

in order to study and compare membrane fouling characteristics. Each anaerobic

membrane bioreactor (AnMBR) contained a tubular polysulphonic non-virgin

membrane (supplied by Triqua BV, the Netherlands) with a pore size of 0.2m and an

effective filtration area of 0.001m2. All four AnMBRs were incubated in a

thermostatic water bath to maintain a constant operating temperature.

Before venting the biogas produced in each AnMBR to the atmosphere, hydrogen

sulphide gas and carbon dioxide were stripped off with the use of a 1M zinc acetate

solution and 1M sodium hydroxide solution respectively (Figure 4.7). Trans-

membrane pressure (TMP) on each membrane was measured with the use of four

pressure transducers (mounted on each effluent line) and continuously recorded on a

computer.

Figure 4.7: Schematic Diagram of Bench-Scale Experimental Set-Up
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Figure 4.8: Picture showing Four Bench Scale Anaerobic Membrane Bioreactors
in Water Bath.

(i) Inoculum, Medium and Wastewater Composition

All four AnMBRs were inoculated with 4g of crushed granular anaerobic sludge

(Eerbeek, the Netherlands) containing sulphate reducers and methanogens. Several

compounds were utilised in making up substrates for each of the AnMBRs in order to

simulate real wastewaters. Glucose was used to simulate carbohydrates, sulphate to

simulate sulphate rich wastewaters and iron to simulate wastewaters with high metal

concentrations. A basal medium and trace element solution prepared according to

Vallero et al. (2005) was added to the AnMBRs (at a rate of 2.22mLgCOD-1) Each of

the AnMBRs contained 2.14gCODL-1 at start-up with those AnMBRs containing

sulphate having a COD to sulphate ratio of 1.The COD to iron ratio in those AnMBRs

containing iron was 10.
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Table 4.11: Wastewater composition of each AnMBR.

(ii) Experimental design

Three sets of investigations were carried out with the same experimental set-up. The

first experiment was carried out at a temperature of 30oC, the second at 20oC and the

third at 30oC with gas sparging through the bottom of each AnMBR. Before

inoculation at the start of each experiment, sludge utilised was acclimatized at the

required temperature. During each of the investigations, the AnMBRs was batch fed

every two days (the interval for batch feeding was chosen after measurement of the

total amount of time taken for complete glucose depletion) with the same substrate

present at start-up.

(iii) AnMBR Sample Analysis

Samples were taken daily from the AnMBRs for COD, Volatile Fatty Acids (VFA),

EPS, SMP and Total Solids (MLSS) Analysis. VFA concentrations were determined

using a gas chromatograph (Hewlett Packard HP 5890A, Palo Alto, USA) and TMP

as well as calculated specific cake resistance values used as an indication of the

fouling extent on the membrane surface. Statistical analytical techniques were used to

correlate all independent sets of data obtained during the experiments.

4.2.2 Crossflow Membrane Filtration Rig

Short term fouling tests were carried out at different crossflow velocities with six

anaerobic and aerobic sludges. A 1L tank was attached to a side-stream crossflow

microfiltration unit (

Figure 4.9), pressure transducers and a computer (to automatically record TMP values

at one second intervals). TMP behaviour was observed over a period of three hours

while the flux to which the membrane was subject was increased by fixed amounts

(step height) at regular intervals (step durations).

AnMBR Synthetic Waste

G Glucose

GS Glucose and Sulphate

GI Glucose and Iron

GIS Glucose, Iron and Sulphate



CHAPTER 4 MATERIALS & METHODS

- 45 -

Critical Flux was determined using the flux step method as described by Le Clech et

al. (2002) and Vallero et al. (2003).

This method describes the critical flux as the highest flux for which there is no change

in TMP or TMP increase rate remains stable. TMP increase rate can be defined by

Equation 4-2.

if

if

tt

TMPTMP

dt
dP




 Equation 4-2

Where:

TMPf = final TMP at end of flux step;

TMPi = initial TMP at the beginning of flux step;

dP/dt = fouling rate or TMP increase rate over s flux step duration;

tf= time at end of flux step;

ti= time at beginning of flux step.

Figure 4.9: Schematic Diagram of Cross-flow Microfiltration Rig
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A flux step height of 4.5Lm-2h-1 and step duration of 15 minutes was applied to the

system. The module unit of the rig contained a non-virgin flat sheet membrane

(Kubota,UK) with a pore size of 0.1m and total filtration area of 0.26m2. Prior to

each critical flux test, the module unit was dismantled and cleaned by flushing with

distilled water and new flat sheet membranes of the same pore size and area were

utilised. Fouling rates and critical flux were determined using Equation 4-2. All

experiments were carried out at a crossflow velocity of 0.7ms-1 except during

experiments to test the effect of crossflow velocity on critical flux.

Table 4.12: List of Sludges and Bench Scale Tests

Source Type of
Sludge

Nature of
Sludge

Bench scale Test System used
for test

Smurfit
Townsend
Hook, Tate
and Lyle, UK

Anaerobic Granular Effect of physical
characteristics of
sludge on specific cake
resistance and
membrane fouling

Dead end
filtration cell.

Cranfield
University
WwTW

Aerobic Flocculent Effects of physical
characteristics of
sludge on specific cake
resistance and
membrane fouling

Dead end
filtration cell.

Smurfit
Townsend
Hook, Tate
and Lyle, UK

Anaerobic Granular Effect of mixed liquor
characteristics on
critical flux.

Crossflow
microfiltration
rig

Cranfield
University
WwTW, UK

Aerobic Flocculent Effect of mixed liquor
characteristics on
critical flux.

Crossflow
microfiltration
rig

Eerbeek, the
Netherlands

Anaerobic
(used as
inoculum)

Granular Influence of operating
conditions and
microbial substances
on performance in an
active system

Bench Scale
AnMBR.
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4.3 Pilot Scale Tests

4.3.1 Cranfield University Sewage Treatment Works and Pilot Plant Hall

The sewage influent flow to the Cranfield university sewage works varies widely

between 300m3d-1 and 700m3d-1. The sewage undergoes primary sedimentation and

gravity de-sludging in a pyramid-square tank (8.6m x 8.6m x 7.8m) fitted with v-

notch weirs and scum boards. Primary settled sewage collected at mid-height from

this sedimentation tank provides the influent (200 to 700mgCOD.L-1) to the pilot

plant hall.

4.3.2 Pilot Scale Anaerobic Membrane Bioreactor

Pilot scale tests were conducted using a 40L anaerobic membrane bioreactor installed

in the pilot plant hall (Figure 4.10, Figure 4.11). This hybrid AnMBR was designed

to incorporate side-stream and submerged membranes (allowing both independent and

simultaneous use of each type of membrane configuration) as well as a double wall

containing temperature regulated re-circulated water (in order to maintain constant

operating temperatures). Nitrogen gas was sparged intermittently through a diffuser

mounted at the bottom of the AnMBR to reduce membrane fouling, promote efficient

mixing and eliminate dead zones. Gas was also sparged through the bottom of the

side-stream external membrane module to aid circulation of the mixed liquor (gas lift

mode).

Biogas produced by the AnMBR was vented to the atmosphere after stripping

hydrogen sulphide and carbon dioxide gasses with the use of 1M zinc acetate and 1M

sodium hydroxide solutions respectively. Trans-membrane pressure (TMP) on both

the side-stream and submerged membranes was measured with the use of pressure

transducers (RS Components, Corby) mounted on each effluent/permeate line and

continuously recorded on a computer via the Pico data logging system.

The system was run for 4 months with complete solids retention as well as a constant

hydraulic retention time (HRT) of 6±0.4 hours (except where specific fouling

experiments were being carried out).
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The system was initially run at an operating temperature of 35±1oC without a

membrane module to allow acclimatization of anaerobic granular biomass used as

inoculum. After an initial period of 14days, submerged and side-stream membranes

were installed to allow withdrawal of permeate without loss of solids. The system

was then allowed to acclimatize further until stabilisation round about day 60.

Operating temperature was then dropped to 22±0.5oC and 12±0.5oC on day 70 and

day 98 respectively. Fouling experiments were carried out at each of these operating

temperatures with each membrane type whether in side-stream or submerged

configuration.

All fouling experiments were conducted in the shortest amount of time possible to

avoid changes in biomass characteristics unless where required. The system was also

subject to gas sparging in the form of nitrogen to determine the response of biomass

and the resulting effect on membrane fouling in the system.
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Figure 4.10: Pictures of pilot scale anaerobic membrane bio-reactor.
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Figure 4.11: Schematic Diagram showing Pilot-Scale Hybrid Anaerobic Membrane Bio-reactor
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(i) Membranes, Modules and Configuration

Two membrane configurations were utilised during the course of the experiments

(submerged and side-stream). The submerged module consisted of 8 hollow fibre

membrane cartridges (supplied by Mitsubishi Rayon) with a total filtration area of

0.9m2. Each membrane cartridge had an outer diameter of 0.5mm and a pore size of

0.1m.

Two membrane modules were operated in side-stream configuration. A summary of

side-stream membrane and module characteristics is given in Table 4.13.

Table 4.13: Table showing characteristics of two side-stream membranes and
modules

Membrane
Type

Supplier Material Module
Length
(mm)

Bore
Size
(mm)

Pore
Size
(m)

No of
Channels

Total
Filtration
Area
(m2)

X-Flow Zenon Polysulphonic 1000 8 0.03 7 0.175

Tubular Milleniumpore Polyethylene 1000 8 0.1 12 0.502

All membranes utilised were non-virgin membranes. Effluent was continually

withdrawn from all membranes except during critical flux and short-term fouling

tests. Submerged membranes were back flushed with permeate when trans-membrane

pressure (TMP) exceeded 0.75bar. All membranes were removed for chemical

cleaning when TMP reached a value of 1.5bar, at which point lumen clogging

occurred. Chemical cleaning was carried out ex-situ by back flushing membranes with

a 1gL-1 solution of Sodium hypochlorite (NaOCl) for 1hour. The membrane was then

back flushed for another hour with a solution of citric acid (3gL-1) to remove all traces

of Sodium hypochlorite.

(ii) Sample Collection and Analysis

Samples were collected weekly from the AnMBR during all sets of experiments. All

analytical tests were carried out within 5 hours of sample collection.
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Samples were analysed for chemical oxygen demand (COD), sulphate, ammonia and

nitrate concentration using spectroquant photometric test kits as well as a NOVA 60

Merck spectrophotometer supplied by Merck (VWR International Ltd, Poole, UK).

Other analytical tests carried out are described below.

4.4 Analytical Methods

Samples were collected weekly from all systems during all sets of experiments. All

analytical tests were carried out within 5 hours of sample collection. Samples were

analysed for chemical oxygen demand (COD), sulphate, ammonia and nitrate

concentration using spectroquant photometric test kits as well as a NOVA 60 Merck

spectrophotometer supplied by Merck (VWR International Ltd, Poole, UK). Other

analytical tests carried out are described in the following sections.

4.4.1 TS, MLSS and MLVSS

Total solids (TS) concentration, mixed liquor suspended solids concentration (MLSS),

mixed liquor volatile suspended solids (MLVSS) and mixed liquor fixed solids

concentration (MLFSS) were determined using standard methods as described in

ALPHA (1998).

TS concentration was determined using standard method 2540B. This method was

used for analysis of smaller bench scale AnMBRs (500-1000mL). A well mixed

sample was pipetted into a dry pre-weighed evaporating dish before being dried

overnight in an oven at a temperature of 105oC. The evaporated sample is then cooled

and re-weighed. TS concentration was then calculated using Equation 4-4.

)(

1000)(

mLvolumeSample

xBA
TS


 Equation 4-3

Where:

A = weight of evaporating dish + dried residue, g;

B = weight of dish, g.
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MLSS concentration was determined using standard method 2540D. A 20mL sample

of mixed liquor was passed through dried, pre-weighed Whatman GC/F glass filters of

70mm diameter (Fisher Scientific, Loughborough) under vacuum (Speedivac 2 rotary

pump, D. Benway Ltd, UK). Filtered samples were then dried overnight at a

temperature of 105oC in an oven (Gallenkamp Hotbox OVB 350, Walton on Thames).

Samples were weighed after cooling in a desiccator and MLSS concentration (gL-1)

calculated using Equation 4-5.

)(

1000)(

mLvolumeSample

xDC
MLSS


 Equation 4-4

Where:

C = weight of filter paper + dried residue, g;

D = weight of filter paper, g.

MLVSS and MLFSS concentrations give a rough approximation of the amount of

organic matter present in the solid fraction of wastewater and were determined using

standard method 2540E. The residue from methods 2540B or 2540D were ignited to

constant weight (approximately 4 hours) at 550oC before being cooled in a dessicator

and weighed. MLVSS and MLFSS concentrations were then calculated using

Equation 4-6 and 4-7 respectively.

 
 mLvolumeSample

xFE
MLVSS

1000
 Equation 4-5

 
 mLvolumeSample

xFG
MLFSS

1000
 Equation 4-6

Where:

E= weight of residue + filter paper before ignition, g;

F = weight of residue + filter paper after ignition, g;

G = weight of filter paper, g.
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4.4.2 Capillary Suction Time

Capillary Suction Time (CST) is a measure of sludge dewaterability. It was

determined using the Triton CST filterability tester (model 2000) supplied by Triton

Electronics Ltd, Essex, UK. The test was carried out at room temperature using an 18

mm sludge reservoir containing a 6.4mL sample of sludge. Water was extracted from

the sludge by capillary suction. The time taken for the liquid front to move past a first

electronic contact (R1) to a second contact (R2) is measured automatically and gives

the capillary suction time in seconds (ALPHA, 1998) (Figure 4.12).

Figure 4.12: Representation of the Triton 2000 Capillary Suction Time (CST)
Test Apparatus.

4.4.3 Sludge Viscosity

Viscosity is a measure of a fluid’s resistance to flow. Sludge viscosity was measured

with the use of the DV-E viscometer supplied by Brookfield Viscometers Limited,

Harlow. The DV-E viscometer includes a rotating spindle which was immersed in the

sludge or mixed liquor sample. The viscous drag of the fluid against the spindle is

measured with a rotary transducer. Sludge viscosity was determined for shear rates of

0.4 s-1 to 22 s-1.

4.4.4 Particle Size Distribution

Sludge and mixed liquor particle size was determined using the Mastersizer 2000

supplied by Malvern Instruments Ltd, Worcestershire, UK.

CST filter paper

Sludge reservoir
R2

R1
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The Mastersizer 2000 uses laser diffraction to determine the light scattering pattern of

sludge particles dispersed in deionised water (DI). Particle size can then be calculated

using Mei theory (Mei et al., 2003) which predicts the way light is absorbed and

scattered by spherical particles.

All sludge and mixed liquor samples were analysed using the same standard operating

procedure. The optical properties of the sludge material were set at default (refractive

index 1.52, absorption 0.1, stirrer speed of 1800rpm) appropriate for the majority of

naturally occurring samples. Samples were added to a DI water reservoir until laser

obscuration (fraction of light “lost” by scattering and adsorption from the analyser

beam) was between 10% and 20%. Final results were expressed in terms of volume

and equivalent spheres. The percentage volume of particles was plotted against

particle size (µm) and 10, 50 and 90 percentiles were reported along with the specific

surface area of the sludge particle (m2.g-1).

4.4.5 Specific Cake Resistance to Filtration

Analyses of cake resistance to filtration were performed using the methodology

developed by Coakley and Jones (1956). Sludge samples were placed in a filter cell

and filtered across a 0.2 µm membrane under pressures of 0.5 to 1.5bar. Fluid and

particle separation can be described by Equation 4-8.

AP

UR
V

PA

UC

V

t m
22


Equation 4-7

Where:

t = filtration time, s;

V = filtrate volume, m3;

C = Solids content, mixed liquor suspended solids (MLSS) or total solids (TS)

concentrations, kg.m-3;

 = specific cake resistance to filtration, m.kg-1;

A = filtrate area, m2;
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P = pressure, Pa;

U = Filtrate viscosity, Pa.s;

Rm = filter medium resistance, m-1.

If Equation 4-8 represents a straight line on an x-y graph, then plots of experimental

results with t/V on the Y-axis and V on the X-axis allow the calculation of specific

cake resistance from Equations 4-9.

UC

GPA22
 Equation 4-8

Where:

G = Gradient of the t/V against V line.

4.4.6 SMP and EPS Extraction and Determination

(i) SMP and EPS Extraction

EPS was extracted using a modified heating extraction method (Table 4.14) based on

Zhang et al. (1999).

Table 4.14: SMP and EPS Extraction

Procedure

1 50 ml of well mixed sludge samples were placed in 250 ml plastic Nalgene
bottles.

2 The samples were centrifuged (5000 rpm – 5 min) (Rotanta 96R, Hettich-
Zentrifugen, Tuttlingen, Germany), and supernatant collected and filtered
through 0.45 m filters (GF 52, Schleicher & Schuell, London, UK) to
recover SMP. This fraction was then analysed for carbohydrates, proteins and
COD.

3 Capsule bound material was then recovered by hand shaking remaining solids
with 50 ml of DI water.

4 The mixture was then placed in the oven at 105C for 60 minutes.
5 After cooling at room temperature for 30 minutes, the mixture was centrifuged

at 7,500 rpm for 5 minutes, and the supernatant filtered through 0.45 m
filters to recover EPS. EPS was then analysed for carbohydrates, proteins and
COD.
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(ii) Carbohydrate Measurement

Carbohydrate concentrations in both EPS and SMP were determined using methods

introduced and described by Dubois et al. (1956) and Le Clech et al. (2002)

respectively. 0.4mL of 5% (w/w) phenol (Sigma, UK) and 2 mL of sulphuric acid

were added to 0.4mL supernatant samples in a test tube. Samples were left at room

temperature (18-20C) for 10 minutes. The contents of each tube was then transferred

to cuvettes and analysed on a Jenway UV/VIS spectrophotometer (Model 6505 S)

against a blank at a wavelength of 480 nm. Carbohydrate concentrations were

determined from a calibration curve (see Figure A.1 in Appendix A ) obtained with

glucose standards (Sigma, UK).

(iii) Protein Measurement

EPS and SMP Protein concentration was determined using the diagnostic kit no. 690

(Sigma, UK). A sample volume of 0.2mL was mixed with 2.2mL of Biuret reagent

and allowed to acclimatise at room temperature (18-20C) for 10 minutes in test-

tubes. 0.1mL of Folin and Ciocalteu’s phenol reagent was then added to the sample.

The sample was then left at room temperature for 30 minutes. The content of each

test-tube was transferred to cuvettes and analysed on a Jenway UV/VIS

spectrophotometer (Model 6505 S) against a blank at a wavelength of 595 nm. Protein

concentrations were determined from a calibration curve (see Figure A.2 in Appendix

A ) developed with bovine serum albumin (BSA) protein standards (Sigma, UK).

4.4.7 Total Organic Carbon (TOC), Total Inorganic Carbon (IC) and Total
Carbon (TC)

TOC, IC and TC measurements were carried out using a Shimadzu TOC-V analyzer

supplied by Shimadzu UK Ltd, Milton Keynes, UK. The equipment uses the

combustion/non-dispersive infrared gas analysis method to determine the total

inorganic carbon and total carbon content of samples. All samples were syringe

filtered through 0.45µm filters and run against 0-100 mg.L-1 calibration curves

prepared from potassium hydrogen phthalate (for total carbon measurements) and

sodium carbonate and sodium hydrogen carbonate (for inorganic carbon

measurements). TOC concentration was calculated as the difference between TC and

IC concentrations.
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4.4.8 High Performance Size Exclusion Chromatography (HPSEC)

All samples were syringe-filtered through 0.45m filters prior to HPSEC analysis. 

HPSEC analysis was carried out using High Pressure Liquid Chromatography

(HPLC) equipment supplied by Shimadzu VP series, Milton Keynes, UK. The

equipment included a 30cm long BIOSEP-SEC S3000 column with an inner diameter

of 7.8mm. The mobile phase utilised for all measurements was a 0.01 M sodium

acetate solution injected at a flow rate of 1 mL.min-1. All measurements were carried

out at a wavelength of 254nm. Standard elution times for proteins with known

molecular weights were determined using protein standards (Sigma, UK) (Table

4.15).

Table 4.15: Elution Times for Proteins of Specific Molecular Weights

Molecular Weight kDa Elution time (min)

12.4 8.72

29 8.55

66 7.12

150 6.81

200 6.38

443 5.83

669 5.69

4.4.9 Bio-Gas Analysis

Bio-gas analysis was carried out using the Sensidyne gas detection system provided

by Cole Parmer, UK. The system incorporated a gas pump and graduated detection

tubes. The gas pump was used to draw a set sample of biogas through sulphur

dioxide, hydrogen sulphide, ammonia, and general hydrocarbon detection tubes. The

tubes showed discolouration on contact with specific gasses. The concentration of

these gasses was then read directly from the tubes.

4.4.10 Temperature Correction for TMP

In order to make fouling rates determined under varying operating conditions

comparable, TMP was corrected for temperature.

The relationship between viscosity of a fluid and its temperature can be described by

Equation 4-10 (Gunder, 2001).
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 864.0.043.0.793.1 Te  Equation 4-9

Where:

 = dynamic viscosity of fluid, mPa.s;

T = temperature of fluid, oC.

Combining Equation 4-10 and classical resistance theory produces Equation 4-11

(which can be used to calculate corrected TMP values):

 864.0.043.0

2020
20

.793.1
..

TT

T

T
e

TMPTMPTMP








Equation 4-10

Where:

J = permeate flux, L.m-2.h-1;

TMP20 = TMP at ambient temperature of 20oC, mbar;

PT = measured TMP at temperature T, mbar;

20 = permeate dynamic viscosity at ambient temperature of 20 oC, mPa.s;

T= permeate dynamic viscosity at temperature T, mPa.s.

4.5 Statistical Analysis

Statistical tests were carried out on all sets of data to determine correlations between

variables using the statistica software package (StatSoft Inc., 2000). Functions

utilised during data analysis included correlation tests for development of correlaton

matrices as well as linear and non-linear regression.

The correlation test assigns a coefficient between 1 and -1 to depict relationships

between individual arrays or sets of data (a coefficient of 0 infers a lack of

relationship between data sets) and incorporates the covariance of data sets.

Covariance is the average of the products of deviations for each data point pair. All

correlation coefficients were determined using Equation 4-12.



CHAPTER 4 MATERIALS & METHODS

- 60 -

YX
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

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,  Equation 4-11

Where:

  yi

n

i
xi yx

n
YXCOV   

1

1
),( Equation 4-12

And

COV (X,Y) = covariance of data sets X and Y;

 = standard deviation of each data set;

= correlation coefficient.

Linear regression analysis was carried out by using the "least squares" method to fit a

line through experimental data. This type of regression analysis can be described by

Equation 4-14 where there are multiple ranges of x values.

y = G1x1 + G2x2+G3x3+……….+b Equation 4-13

Equation 4-13 is reduced to Equation 4-14 where there is a single range of x values.

y = Gx + b Equation 4-14

Where:

y = range of dependent values;

x = range of independent values;

G = slope of straight line;

b = intercept of straight line.

Non-linear regression techniques determine the equation that best describes the

relationship between sets of independent and dependent data that are not best

described by Equation 4-13 and Equation 4-14.
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It also utilises the least squares method but is used to fit a curves through data. The

relationship between any pair of data sets may be described by exponential,

logarithmic or polynomial lines or derivations of all three.



RESULTS
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5 RESULTS: DEAD END FILTRATION TRIALS AND
CHARACTERISTICS OF ANAEROBIC SLUDGES

5.1 Scope

Physical characteristics of sludge have been shown to affect digester optimisation and

performance as well as bio-fouling in membrane bio-reactors. Bio-fouling can be

defined as the deposition of bacterial cells and microbial products unto the surface of

a membrane (Stephenson et al., 2000). These microbial products include soluble

microbial products (SMP), a general term used to describe soluble compounds

produced by bacterial cells as a result of metabolism and other cellular processes

(Stephenson et al., 2000).

There is still a lot unknown about the mechanisms behind anaerobic membrane bio-

fouling. This chapter attempts to provide some insight into how the physical

characteristics of sludge affect its behaviour in the membrane bio-reactor as well as

bio-fouling mechanisms when membranes are exposed to anaerobic sludge. Results

were also compared with aerobic sludge to establish any differences between the two

types of sludge.

5.2 Results

5.2.1 Characteristics and Fluid Hydrodynamics of Anaerobic Sludge

(i) Viscosity

All three anaerobic sludges were granular and exhibited non-Newtonian properties as

shown by the non-linear response of viscosity to shear rate (Figure 5.13). A fluid may

be said to have non-Newtonian properties when a finite stress is required for

deformation to occur (Tilton, 1997). These time dependent fluids are also known as

yield stress materials.
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Figure 5.13: Viscosities of Three Anaerobic Sludges at Different Shear Rates

All three anaerobic sludges had viscosities that measured between 9 at high shear

rates of 80s-1 and 110mPa.s at low shear rates of 8s-1. These values are significantly

higher than values reported in literature on the aerobic and anaerobic sludges. Pevere

et al., (2006) in trying to estimate the limit viscosity of anaerobic granular sludges

found that apparent viscosity measured between 3 and 5.5mPa.s at shear rates in the

range of 200s-1 to 1000s-1. Le Clech (2002) also found that an aerobic sludge with a

MLSS concentration of 8gL-1 had a dynamic viscosity of 4.6 to 16.7mPa.s at shear

rates of 7 to 122s-1. Germaine (2004) also measured dynamic viscosity of aerobic

sludges at a shear rate of 12.24s-1 and found that values varied between 3 and 40mPa.s

depending on phase of growth of microbes present in the sludge.

Further investigation confirms that all three anaerobic sludges in this study are shear-

thinning and exhibit pseudoplastic behaviour (Figure 5.14). Pseudoplastic fluids

without yield stresses produce rheograms where the slope decreases with increasing

shear rate (Figure 5.1). Deformation of these fluids typically obeys a power law

model (Equation 5-1, Figure 5.14) over a range of shear rates.

1 nK Equation 5-1

Where:
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= viscosity in mPa.s,

K = consistency index in g.cm-1.s(2-n),

n = dimensionless power law exponent.

y = -0.95x + 3.0679

y = -0.97x + 2.79

y = -0.77x + 2.46
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Figure 5.14: Rheological Chart Depicting Pseudoplasticity of Anaerobic Sludge

Power law exponents for all three anaerobic sludges analysed varied between 0 and

0.23 while consistency indices did not exceed 1200g.cm-1.s2-n (Table 5.16).

The promotion of turbulence to inhibit the thickness of hydrodynamic boundary layers

is important in reducing fouling in membrane bio-reactors (Stephenson et al., 2000).

The critical Reynolds number at which hydrodynamic boundary layers become

turbulent is 500,000 and can be described by Equation 5-2 (Tilton, 1997)

KLV nn
L /Re 2  Equation 5-2

Where:

ReL= Reynolds number,

 = density of sludge (kg.m-3),

K = consistency index (kg.m-1.s-2+1),
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V = velocity in m.s-1.

For each of the sludges tested, the minimum particle velocity required to create a

turbulent boundary layer across a surface of 1m in length can be calculated by re-

arranging Equation 5-2 to obtain Equation 5-3

V
L

K
n

n

L 2
Re


Equation 5-3

The kinetic Energy of each sludge granule or particle while in turbulence can then be

calculated thus;

10002

2

X

mv
E  Equation 5-4

Where:

E= kinetic energy of each particle/granule in KJ,

m = mass of each particle in kg.

Table 5.16 shows the results obtained for each of the sludges tested. More energy will

be required to create turbulence in the case of sludge 3 than with the other two sludges

if all other conditions in the immediate membrane environment remain the same.

Particles present in sludge 3 will require a minimum velocity of 343.8ms-1 and

minimum energy input of 59.1KJ to create a turbulent boundary layer in comparison

to sludges 1 and 2 which would require minimum velocities of 242.8 and 135.7ms-1 as

well as minimum energy inputs of 29.5 and 9.2KJ respectively.

Table 5.16: Table showing Power Law Exponents, Consistency Indices and
Particle Kinetic Energy for all Three Anaerobic Sludges

Sludge Source n K(g.cm-

1.s-2+1)

V(m.s-1) E (KJ)

1 Paper mill 0.03 1169 242.8 29.5

2 Paper mill 0.05 288 135.7 9.2
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Sludge Source n K(g.cm-

1.s-2+1)

V(m.s-1) E (KJ)

3 Sugar plant 0.23 617 343.8 59.1

It therefore follows that where sludges exhibit non-Newtonian properties as was the

case with the sludges analysed, it is not the viscosity itself that determines sludge and

fouling behaviour in a membrane bio-reactor but how this parameter changes with

shear rate and other conditions. Consistency indices and power law exponents are

also important in determining the fouling nature of sludges and mixed liquors. All

three anaerobic sludges in this study for example, had a dynamic viscosity of

approximately 8mPa.s at a shear rate of 75s-1 but showed different evolutionary

characteristics at lower shear rates. The said sludges would also be expected to exhibit

differing hydrodynamic characteristics when in contact with membranes as shown in

Table 5.16.

(ii) Particle Size, EPS and SMP

SMP protein present in anaerobic sludge 1 measured over 900mgL-1 but dropped to

approximately 340mgL-1 within one week (Figure 5.15). Latter SMP levels remained

relatively stable over the one month period (never exceeding 370mgL-1). EPS protein

concentrations on the other hand, continually increased from 8.2mg.gTS-1 to a

maximal value of 28.1mg.gTS-1. Both SMP and EPS contained large amounts of

protein and relatively small amounts of carbohydrates. Protein fractions of both EPS

and SMP measured approximately 8 to 10 times carbohydrate fractions over the one

month period. These trends were generally true for all other anaerobic sludges tested

(Figure 5.16 and Figure 5.17). At the start of the tests, both sludges 2 and 3 had SMP

protein concentrations of 944.6 and 930.4mg.L-1 respectively, dropping to

approximately 300 and 340mgL-1 within one week. EPS protein levels also measured

between 8 and 28mgTS-1 for sludge 2 and between 4 and 27mgTS-1 for sludge 3.
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Figure 5.15: Evolutions of EPS and SMP Concentration in Anaerobic Sludge 1
over a One Month Period.
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Figure 5.16: Evolutions of EPS and SMP Concentration in Anaerobic Sludge 2
over a One Month Period.
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Figure 5.17: Evolutions of EPS and SMP Concentration in Anaerobic Sludge 3
over a One Month Period.

The increase observed in EPS levels is probably associated with the

proliferation/growth of granules present in the sludge (Figure 5.18). This is supported

by results showing that increased levels of EPS protein resulted in larger anaerobic

sludge granules (Figure 5.19). Mean granule size for all three sludges varied between

129.01m and 946.69m throughout the period (Table 5.17). Maximum granule

diameter did not exceed 1500m.
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Figure 5.18: Evolution of Granule/Particle Size with Time (Using Anaerobic
Sludge 3 as an example).
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Figure 5.19: Granule Size as a Function of EPS Protein from Anaerobic Sludge
(Using Anaerobic Sludge 1 as an example).

(iii) Specific Cake Resistance and Compressibility

Specific cake resistance is a power law function of the imposed pressure drop;

cP)(  Equation 5-5
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Where:

c = cake compressibility,

 constant dependent primarily on size and shape of sludge granules.

All three anaerobic sludges formed a compressible cake with a specific cake

resistance of 1 X 1013 m.kg-1 to 1 X 1016 m.kg-1 during filtration. Several factors

were found to affect cake compressibility including granule size and sludge source

(Table 5.17). Sludge 1 and 2 showed similar compressibility of 0.45 and 0.44

respectively while compressibility for sludge 3 was much higher at 0.63 (Figure 5.20,

Table 5.17). The factor for this particular sludge (15.52) was also very different 

from sludge 1 and 2 with the latter sludges having values between 13.5 and 14 (Figure

5.20, Table 5.17).

y = 0.44x + 13.57

y = 0.45x + 13.99

y = 0.63x + 15.52
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Figure 5.20: Compressibility Chart for Three Anaerobic Sludges with Different
Characteristics.
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Table 5.17: Table showing Relationship between Sludge Characteristics and
Compressibility.

Sludge Source c  Viscosity
(mPa.s)

d0.5 EPSC EPSP

1 Paper
mill

0.44 13.57 135.91 129.01 0.53 22.55

2 Paper
mill

0.45 13.99 59.64 330.76 4.98 26.37

3 Sugar
plant

0.63 15.52 72.98 946.691 0.65 27.47
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(iv) Interactions between Normalised Characteristics of Anaerobic Sludge

Table 5.18: Correlations Matrix showing Relationships between normalised Anaerobic Sludge Characteristics.

 d0.5 CSTn Viscosity SMPp SMPc EPSp EPSc TS

  1.0000

d0.5 0.2344 1.0000

CSTn 0.7870 0.8866 1.0000

Viscosity 0.6112 -0.2258 0.2379 1.0000

SMPp -0.2131 -0.9104 -0.8012 0.3122 1.0000

SMPc 0.1037 0.9752 0.7775 -0.4251 -0.9385 1.0000

EPSp 0.2806 0.8746 0.9983 0.2466 -0.8122 0.7685 1.0000

EPSc 0.0947 -0.0756 0.0598 0.0578 -0.3241 -0.0133 0.1176 1.0000

TS -0.8761 -0.8058 -0.9760 -0.3137 0.7988 -0.6998 -0.9867 -0.2624 1.0000

 in m.kg-1; TS in g.L-1; SMP in mg.L-1; EPS in mg.gTS-1; CSTn in s.gTS-1; Viscosity in mPa.s at 12.24 s-1 shear rate; d0.5 in m.

All significant correlations are marked in bold.
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Table 5.18 is a correlations matrix depicting relationships between anaerobic sludge

characteristics. In the correlations matrix, values between -1 and +1 have been

assigned for pairs of characteristics. The stronger the positive or negative correlation

between the pair, the closer the assigned numerical value will be to +1 or -1

respectively. Characteristics that show correlations between -0.1 to 0.1 are assumed

to have no significant correlation.

The strongest positive correlations were observed between EPSp and CSTn (0.9983),

SMPc and d0.5 (0.9752), CSTn and d0.5 (0.8866), EPSp and d0.5 (0.8746), TS and SMPp

(0.7988), CSTn and  (0.7870), SMPc and CSTn (0.7775), EPSp and SMPc (0.7685)

and viscosity and  (0.6112). The high positive correlation between specific cake

resistance and CST indicates that more dewaterable cakes have a lower specific cake

resistance. EPSp, mean particle size and SMPc also affect dewaterability as can be

seen from the high positive correlations of these properties to capillary suction time.

An increase in these characteristics will produce an increase in time taken to dewater

anaerobic sludge and vice versa. EPSp and SMPc also showed a high significant

correlation to mean particle size inferring that a change in one of these characteristics

will contribute to a corresponding change in the other. A higher specific cake

resistance will also produce a more viscous sludge as denoted by the assigned value of

0.6112.

EPSp also showed less significant correlations with viscosity and specific cake

resistance with values of 0.2466 and 0.2806 respectively. Viscosity is also affected

by SMPp with an assigned correlation value of 0.3122. Correlations of 0.2344 and

0.2379 were also assigned to d0.5 and specific cake resistance as well as viscosity and

CSTn respectively.

The highest negative correlations (-0.6 to-1) were assigned to TS and , TS and d0.5,

TS and CSTn, TS and SMPc, TS and EPSp, SMPp and d0.5, SMPp and CSTn, SMPp

and SMPc and SMPp and EPSp. A change (increase or decrease) in TS concentration

produces an opposite change in specific cake resistance, mean particle size and sludge

dewaterability. The same trend is expected when the influence of SMPp on mean

particle size and sludge dewaterability is looked at.
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The high correlations noted for SMP and EPS fractions show that the two substances

are linked with levels of one substance affecting the other. Less significant

correlations of -0.2 to -0.4 were assigned to SMPp and, d0.5 and viscosity as well as

TS and viscosity.

5.2.2 Characteristics and Fluid Hydrodynamics of Aerobic Sludge

(i) Particle Size, EPS and SMP

Maximum EPS and SMP protein concentrations for all aerobic sludges tested were

approximately 100mg.gMLSS-1 and 60mgL-1 respectively (Figure 5.21, Figure 5.22

and Figure 5.23). On the other hand, carbohydrate fractions of both EPS and SMP

measured higher than with anaerobic sludge. EPS carbohydrate concentration fell

between 80 and 120mg.gMLSS-1 while SMP carbohydrates remained relatively stable

at 13 to 14mgL-1.

0

40

80

120

160

2 7 14 21

Time (days)

C
o

n
ce

n
tr

a
ti

o
n

EPS protein (mg.gMLSS-1) EPS carbohydrates (mg.gMLSS-1)

SMP protein (mgL-1) SMP carbohydrates (mgL-1)

Figure 5.21: Evolution of EPS and SMP concentrations in Aerobic Sludge over a
One Month Period.



CHAPTER 5 RESULTS: DEAD END FILTRATION TRIALS AND
CHARACTERISTICS OF ANAEROBIC SLUDGES

- 76 -

0

40

80

120

160

2 7 14 21

Time (days)

C
o

n
ce

n
tr

a
ti

on
EPS proteins(mg.gMLSS-1) EPS carbohydrates(mg.gMLSS-1)

SMP proteins (mgL-1) SMP carbohydrates (mgL-1)

Figure 5.22: Evolution of EPS and SMP concentrations in Aerobic Sludge 2 over
a One Month Period.

0

40

80

120

160

2 7 14 21

Time (days)

C
o

n
ce

n
tr

a
ti

on

EPS proteins(mg.gMLSS-1) EPS carbohydrates(mg.gMLSS-1)

SMP proteins (mgL-1) SMP carbohydrates (mgL-1)

Figure 5.23: Evolution of EPS and SMP concentrations in Aerobic Sludge 3 over
a One Month Period.
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The maximum particle diameter for all three aerobic sludges did not exceed 160m

throughout the entire period. Mean particle diameter varied between 35 and 40m for

all sludges (Figure 5.24). During the one month period, there was little or no change

in minimum and the mean particle size. However, maximum particle diameter did

decrease for all aerobic sludges tested. Sludge one showed a fall in maximum particle

diameter from 135.04m to 84.42m (Figure 5.24)
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Figure 5.24: Aerobic Sludge Particle Size over a One Month Period (Using
Aerobic Sludge 1 as an example).

(ii) Specific Cake Resistance and Compressibility

Specific cake resistance values of the three aerobic sludges analysed never exceeded 1

X 1014 m.kg-1. All three aerobic sludges generally formed cakes with lower specific

cake resistances than anaerobic sludges.

The three aerobic sludges also formed compressible cakes. Cake compressibility

values obtained in all cases fell between 0.7 and 0.8 (Figure 5.25). All cakes formed

by aerobic sludges in this set of experiments were much more compressible than

cakes formed by anaerobic sludges (0.4<n<0.65).
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Figure 5.25: Compressibility Chart for Three Aerobic Sludges.
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(iii) Interactions between Normalised Characteristics of Aerobic Sludge

Table 5.19: Correlations Matrix showing Relationship between Various Aerobic Sludge Characteristics.

 d0.5 CSTn SMPp SMPc EPSp EPSc MLSS

  1.0000

d0.5 0.3263 1.0000

CSTn -0.3208 -0.2284 1.0000

SMPp -0.0953 0.0037 -0.0230 1.0000

SMPc 0.5263 -0.0906 0.2615 0.0607 1.0000

EPSp 0.0394 -0.0062 -0.7016 0.0143 -0.2576 1.0000

EPSc 0.0614 -0.1635 -0.2749 0.0765 0.4931 0.6634 1.0000

MLSS -0.8587 0.3151 -0.5089 0.0612 -0.3630 0.5680 0.2409 1.0000

 in m.kg-1; MLSS in g.L-1; SMP in mg.L-1; EPS in mg.gMLSS-1; CSTn in s.gMLSS-1; Viscosity in map’s at 12.24 s-1 shear rate; d0.5 in
m.

All significant correlations are marked in bold.
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The highest positive correlations between aerobic sludge characteristics (0.4 to 1)

were assigned to relationships between fractions of EPS and SMP as well as EPSp

and MLSS (Table 5.19). An increase or decrease in MLSS concentration produced a

corresponding change in EPSp. This trend infers that a link does exist between EPS

production and biomass.

Less significant correlations of 0.1 to 0.4 were also noted for d0.5 and , d0.5 and

MLSS, CSTn and SMPc as well as MLSS and EPSc. High negative correlations were

assigned to MLSS and specific cake resistance () as well as MLSS and CSTn with

values of -0.8587 and -0.5089 respectively. Specific cake resistance of sludge is

highly dependent on its solids concentration with higher MLSS concentration

producing cakes with lower specific cake resistances. The lesser value assigned to

MLSS and capillary suction time shows correlation between the two characteristics,

indicating that an increase in MLSS concentration will cause a reduction in sludge

dewaterability. EPSp also showed a high correlation to capillary suction time and

therefore sludge dewaterability with an assigned value of -0.7016.

Negative correlations were also assigned to EPSc and d0.5 (-0.1635), SMPc and EPSp (-

0.2576), MLSS and SMPc (-0.3630), EPSc and CSTn (-0.2749) as well as EPSc and

CSTn (-0.2749). In correlating all of the individual sludge characteristics, SMPp was

excluded because of the minute concentrations present

5.2.3 Comparison of Filtration Characteristics and Fouling Mechanisms for
Aerobic and Anaerobic Sludges

(i) SMP and Membrane Fouling

Rejection factors (Equation 5-6) show the proportion of SMP deposited on the

membrane surface during filtration in simple terms. Rejection factors were therefore

utilised as a suitable indicator of the membrane fouling propensity of SMP.

i

fi

C

CC
R


* Equation 5-6

Where:
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R* = Rejection factor,

Ci = Initial concentration before filtration,

Cf = Final concentration of filtrate.

Figure 5.26 shows the pressure-rejection profiles for different fractions of SMP from

anaerobic sludge. Rejection factors for the total carbon content of the SMP sample

varied from 0.4 to 0.7 indicating that 40 to 70% of total carbon content was retained

by the membrane. Rejection was highest at 0.7 to 1 bar and lowest at 0.4 to 0.6 bar as

well as 1.0 to 1.2 bar. Therefore fouling of the membrane is highest between

pressures of 0.7 and 1 bar.
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Figure 5.26: Pressure-Rejection Profile for SMP from Anaerobic MBR.

Further investigations into the components of SMP that have the highest fouling

propensity show total organic carbon (proteins and carbohydrates) as the principal

membrane foulant. Rejection factors for total organic carbon varied from 0.6 to 0.94

indicating that of the total organic carbon fraction, 60 to 94% is retained by the

membrane. There was no detectable difference in filtrate concentrations of inorganic

carbon so rejection factors were approximately 0 at all pressures showing that the

membrane retained little or no inorganic carbon and therefore this fraction of SMP

makes little contribution to the fouling of the membrane.
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A comparison between the pressure-rejection profiles of SMP from anaerobic and

aerobic MBRs (Figure 5.27) highlights differences between fouling mechanisms in

the two systems. Membrane fouling continually increased when SMP from the

aerobic mbr was filtered under higher pressures. However, membrane fouling with

anaerobic SMP was lowest when pressures were less than 0.7 bar or above 1 bar.

Rejection factors were generally higher with anaerobic SMP except at high pressures

above 1 bar (atmospheric pressure). This observation indicates that anaerobic SMP

has a higher membrane fouling propensity than aerobic SMP below atmospheric

pressure. However, this trend may be reversed when membranes are subject to higher

pressures.

0

0.3

0.6

0.9

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Pressure (bar)

R
*

SMP fom Anaerobic MBR

SMP from Aerobic MBR

Figure 5.27: Pressure-Rejection Profile for TOC fraction of SMP from
Anaerobic and Aerobic MBRs

(ii) Filtration Characteristics of Anaerobic and Aerobic Sludges

Sludges from anaerobic and aerobic membrane bioreactors were analysed to

determine which of the linear models presented in appendix A best described fouling

within the said systems. Figure 5.28 shows models as applied to experimental

filtration of all six sludges.
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Figure 5.28: Filtration Models as Applied to Experimental Filtration of Six
Anaerobic and Aerobic sludges.

Figure 5.29 and Figure 5.30 show individual data obtained for anaerobic (sludge 1)

and aerobic sludge (sludge 2) respectively. Data obtained for each type of sludge

(anaerobic/aerobic) was representative for all sludges of that type tested during these

experiments. The cake filtration model was found to best describe experimental

filtration data obtained with anaerobic sludge (Figure 5.29) while the pore blocking

model was more applicable to data obtained with aerobic sludge (Figure 5.30). These

models were found to be consistent at all pressures tested.
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Figure 5.29: Pore Blocking and Cake Filtration Models as Applied to
Experimental Filtration of Anaerobic Sludge.

y = 3.41E+04x + 3.90E+05

0.0

10.0

20.0

0.0E+00 1.0E-05 2.0E-05 3.0E-05

M
il

li
on

s

V (m3)

t/
V

(s
.m

-3
)

0 200 400 600

time (s)

Figure 5.30: Pore Blocking and Cake Filtration Models as Applied to
Experimental Filtration of Aerobic Sludge.
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5.3 Discussion

Results from this chapter show the wide variation in sludge characteristics depending

on source and operating conditions to which it has been subject. The three anaerobic

sludges analysed during these experiments not only showed marked differences in

physical properties when compared with one another but differed from aerobic

sludges as well.

Results from rheological experiments appear to point to the non-Newtonian nature of

anaerobic sludges. These sludges are essentially shear-thinning or pseudoplastic fluids

which exhibit Newtonian behaviour at very high or very low shear rates (Figure 5.13).

Pevere et al. (2006) looked into the evolution of viscosity of anaerobic granular

sludge and identified their non-Newtonian nature while attempting to link apparent

viscosity with other physical characteristics such as total suspended solids, surface

charge and sludge origin. Results presented here are comparable to aerobic sludges

which have been described by several authors as non-Newtonian. Forster (2002)

investigated rheological properties of activated sludges from three different sewage

treatment works and determined that the said sewage sludges exhibited yield stresses,

a characteristic peculiar to non- Newtonian fluids. His work is further confirmed by

work carried out by others including Defrance et al. (2000) and Guibaud et al. (2004).

Xing et al. (2001) however defined sludge from an aerobic MBR as a Newtonian

fluid.

Despite general agreement on non-Newtonian behaviour of sludges, differences do

exist between flow characteristics of anaerobic and aerobic sludges. Consistency

indices previously reported in literature (105 to 275.8g.cm-1.s-2+1) by Moeller and

Torres (1997) were generally much lower than the values determined for anaerobic

granular sludge (288 to 1200 g.cm-1.s-2+1) in these experiments. Power law exponents

for the three anaerobic sludges analysed also measured between 0.03 and 0.23 in

contrast to values between 0.4 and 0.5 for all of the aerobic sludges analysed by

Moeller and Torres (1997).



CHAPTER 5 RESULTS: DEAD END FILTRATION TRIALS AND
CHARACTERISTICS OF ANAEROBIC SLUDGES

- 86 -

Larger amounts of EPS were found to be present in aerobic sludge per specific mass

of biomass in comparison to anaerobic sludge. The proportion of protein compared

with carbohydrates present in both EPS and SMP was also much higher for the

anaerobic sludges analysed. Table 5.20 makes comparisons between results from this

study and other published works on EPS characterisation.
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Table 5.20: Summary of Studies on EPS Content of Various Sludges.

Wastewater Type Source/Treatment Type Units
EPSp EPSc Reference

Paper mill
Anaerobic UASB reactor

10-50 1-5

This study
Sugar refinery mg.gTS-1 7-30 0.5-3

Municipal sewage Aerobic MBR
mg.gMLSS-1 35-90 40-90

Municipal sewage Conventional aerobic activated sludge plant 40-90 60-80

Leachate
Aerobic MBR mg.gMLSS-1 30-76 17-45

Alvarez (2005)
Municipal sewage 75-125 1-25

Chemical

Conventional aerobic activated sludge plant mg.gVSS-1

45-61 13-21

Sponza (2002)

Leather 44-50 25-29

Dye 37-47 23-29

Winery 67-73 15-17

Pulp paper 38-42 30-36

Petrochemical 38-48 18-26

Cannery
Anaerobic UASB reactor mg.gTS-1 140-142 41-46 Batstone and

Keller (2001)Brewery 140-142 34-37



CHAPTER 5 RESULTS: DEAD END FILTRATION TRIALS AND
CHARACTERISTICS OF ANAEROBIC SLUDGE

- 88 -

Average EPS content of aerobic sludges analysed during this study were very

different from other published works on the subject. It is difficult to determine the

exact reason for these differences due to wide availability of different methods for

quantifying EPS concentration. However, a contributory factor may be the low

acclimatisation temperatures to which all the sludges in this study were subject as well

as the storage of the same sludges without active degradation of substrate.

This study also appears to show that anaerobic sludges have higher concentrations of

SMP in comparison to aerobic sludges. Concentrations for aerobic sludges varied

from 10 to 132mgL-1 and 14 to 17mgL-1 respectively for protein and carbohydrate

fractions depending on sludge origin. On the other hand, anaerobic SMP

concentrations measured 150 to 900mgL-1 for protein and 20 to 100mgL-1 for

carbohydrates. The wide variability in concentration values may once again be due to

differing sludge sources. Results of this study contradict findings of Kuo et al. (1996)

and Germirli et al. (1993). Kuo et al. (1996) found that normalised production of

SMP is lower in anaerobic systems than in aerobic systems. Germirli et al. (1993)

also found that single stage anaerobic systems produced lower residual COD levels in

comparison to aerobic systems. High SMP concentrations were noted for each of the

anaerobic sludges in this study compared to Chudoba (1985b) who showed that 1g of

biomass subject to anaerobic conditions will produce 15.7mgL-1 of residual COD

while aerobic biomass produces 15 to 25mgL-1. The high concentrations measured in

this study may be attributed to the storage of sludges without active degradation of

substrate at low temperatures. It is hypothesised that increased amounts of SMP were

excreted for metabolic purposes due to the absence of substrates and nutrients as well

as to relieve the stress of being subject to temperatures below ambient. This is in

agreement with Kuo (1993) who gave a definitive list of the reasons for SMP

production including environmental stress (such as extreme temperatures) and

bacterial starvation. Extending this reasoning to the higher amounts of SMP

measured for anaerobic sludges in comparison to aerobic sludges in this study, it can

be postulated that the aerobic sludges contained less SMP due to the increased

adaptability of aerobic biomass to environmental stress such as temperature and pH

change.
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Specific cake resistance of anaerobic sludges determined by filtration varied from 1 X

1013 m.kg-1 to 1 X 1016 m.kg-1 in comparison to aerobic sludges which never exceeded

1 X 1014 m.kg-1. Specific cake resistance is largely dependent on particle size and can

give an indication of the contribution of biomass to membrane fouling under dead end

conditions. Specific cake resistance was much higher for anaerobic sludges because

these granular sludges contained larger particles (800 to 1000m) in comparison to

flocculent aerobic sludges (48 to 51m). Values indicate a greater resistance to

filtration with anaerobic biomass in contrast to statements made by Yin et al. (2004)

who suggested that the order of magnitude of specific resistance of filtration with

respect to different kinds of sludges is aerobic sludge>raw sludge>anaerobic sludge.

Compressibility denotes the rigidity of a cake and how quickly a cake layer can be

deformed at high pressures. Values will vary from 0 for very rigid and

incompressible cakes to 1 for highly compressible cakes. Cakes formed by anaerobic

sludges were less compressible with values of 0.55±0.15 in comparison to aerobic

sludges (0.75±0.05). Stephenson et al. (2000) suggests the cake layer initially formed

during membrane filtration might be useful in trapping organics that would have

blocked membrane pores if allowed to reach the membrane surface. Cakes formed by

anaerobic sludges are less likely to become deformed at higher pressures than aerobic

sludges so the benefits of having a cake layer are not lost under extreme operating

conditions such as high pressure. Aerobic sludges on the other hand will become

more compact at higher pressures causing greater flux decline.

In general, individual anaerobic sludge characteristics showed a greater correlation to

one another in comparison to aerobic sludge. Some of the highest correlations existed

between SMP, EPS and particle size showing that these fractions are important in

maintaining the structure of anaerobic granules. EPSp in anaerobic sludge showed a

high positive correlation (>0.8) to particle/granule size in contrast to EPSc which

showed no significant correlation. The reverse was seen for aerobic sludge with EPSp

showing no significant correlation and EPSc showing a negative correlation to particle

size inferring that increased levels of this substance may contribute to sludge

flocculence. High correlations were also noted for EPS and CST indicating that

sludge dewaterability is affected by EPS concentrations.
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Correlations were negative for aerobic sludge and positive in the case of anaerobic

sludge. It therefore follows that the presence of high amounts of EPS increases sludge

dewaterability where the said sludge is aerobic but has the reverse effect in anaerobic

sludge. This is in agreement with work carried out by Kieding and Nielsen (1997)

who thought that higher levels of EPS resulted in improved sludge stability and solid-

liquid separation. Chen et al. (2002) on the other hand found that the presence of high

levels of EPS in activated sludge was detrimental to sludge dewaterability as it caused

an increase in the amounts of bound water contained in the activated sludge which in

turn led to poor settleability. However, it is important to note that these correlations

are only a simplistic view of the relationships between individual sludge properties.

Analysis of SMP and its impact on filtration showed that total organic carbon (TOC)

fractions and little or no inorganics (IC) are retained on the surface of the membrane.

A lesser proportion of aerobic SMP was retained compared to anaerobic SMP until

pressures exceeded 1 bar. The lower fouling propensity of anaerobic SMP at higher

pressures is unanticipated as there should be a quicker build up of foulants on the

membrane surface with increased pressure under dead end conditions (the subjection

of fluids to higher pressures should normally result in higher fluxes if there is minimal

fouling of the membrane). The decrease in fouling propensity at pressures higher than

1 bar indicates that a proportion of SMP which would normally be retained by the

membrane is forced through the membrane. As rejection of a particular foulant is

directly related to the size of the particles it contains, it may be hypothesised that

excessive pressures result in the break up of organic fractions in SMP resulting in

smaller molecules which are then able to pass through the cake layer and membrane.

Further analysis of fouling by anaerobic and aerobic sludges shows that both types of

sludges are filtered via different mechanisms. Cake filtration best described anaerobic

sludge filtration due to the larger size of the particles present in this sludge while the

pore blocking model was found to best describe filtration of aerobic sludge. These

models however, only describe the initial stages of sludge filtration via membranes.

For aerobic sludge, organic colloidal matter travel to the membrane surface before the

formation of the cake layer and block pores thereby reducing flux through the

membrane.
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The low specific cake resistance and high compressibility of aerobic sludge cake

formed later in the process results in further flux decline. The reverse process is

observed with filtration of anaerobic sludges. A cake layer is formed initially and the

high specific cake resistance and low compressibility of this cake allows the trapping

of organic colloidal matter (despite the higher concentrations of these substances

present in anaerobic sludge) before these substances get to the membrane surface.

The link between sludge characteristics and membrane filtration is complex. Both

anaerobic and aerobic sludges showed complex but different interrelationships

between individual sludge characteristics. It is therefore difficult to determine the

exact impact of each of these characteristics on membrane bio-fouling. However, it is

clear that SMP, EPS, particle size, solids concentration and sludge dewaterability

have some effect on membrane fouling as they dictate the amount of individual sludge

components that are retained on the membrane surface whether in terms of biomass

cells or colloidal matter. It is clear from this chapter that the greater proportion of

fouling when a membrane is exposed to anaerobic sludge can be attributed to bacterial

cells rather than colloidal matter. The reverse can be said for aerobic sludge.

Comparisons of anaerobic and aerobic sludge characteristics showed up potential

fouling problems such as the higher rejection factors obtained with anaerobic SMP

filtration as well as higher cake resistances. However, anaerobic sludge did form a

less compressible cake (with lesser amounts of pore blocking) than aerobic sludge, an

advantage when considering permeates fluxes in relation to membrane fouling.
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Table 5.21: Summary of Findings: Anaerobic vs. Aerobic Sludge

Property Anaerobic Aerobic Comment

Viscosity
3-120mPa.s @
shear rates of 5 to
100s-1

3-40mPa.s @ shear
rates of 8 to 122s-1

Both anaerobic and
aerobic sludges are
essentially non-
Newtonian fluids.

EPS

EPSp: 3-30
mg.gTS-1.
EPSC: 0 to 3.5mg.
mg.gTS-1.

EPSp: 40-100
mg.gMLSS-1.
EPSC: 40-90mg.
mg.gMLSS-1.

EPS concentrations
per unit mass of
sludge higher in
aerobic sludge than
anaerobic sludge.

SMP

SMPp: 200-1000
mg.L-1.
SMPC: 29-120
mg.L-1.

SMPp: 40-90 mg.L-

1.
SMPC: 10-15 mg.L-

1.

SMP
concentrations
higher in anaerobic
sludge than aerobic
sludge.

Particle size

Max: 1300-
1510m
Mean: 700-950m
Min: 350-550m

Max: 80-160m
Mean: 35-40m
Min: 10-20m

Larger particles
present in
anaerobic sludge in
comparison to
aerobic sludge.

Specific cake
resistance

Min:1 X 1013 m.kg-

1

Max: 1 X 1016

m.kg-1

Min:1 X 1011 m.kg-

1

Max :1 X 1014

m.kg-1.

Anaerobic sludges
generally have
higher specific
cake resistances
than aerobic
sludges.

Compressibility
Min: 0.4
Max: 0.65

Min: 0.7
Max: 0.8

Aerobic sludges
more compressible
than anaerobic
sludges

Fouling behaviour

SMP rejection
highest below
atmospheric
pressure.
Filtration of sludge
is best described by
cake filtration

SMP rejection
highest above
atmospheric
pressure
Filtration of sludge
is best described by
pore blocking
model

SMP is a foulant in
both types of
sludges.
There appears to be
an increased
likelihood of
irreversible fouling
with aerobic
sludges. Aerobic
sludges block pores
intrinsically while
anaerobic sludges
form a cake on the
surface of the
membrane.
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6 RESULTS: BENCH SCALE TESTS

6.1 Scope

Conclusions from chapter 2 (literature review) of this thesis show that the anaerobic

membrane bioreactor still lags behind its aerobic counterpart because of the

complexity of the anaerobic digestion process as well as problems with adaptability

and flexibility. In addition, past research has shown significant fouling problems

when membranes are exposed to anaerobic biomass.

Fouling in anaerobic membrane bioreactors is still poorly understood. It has been

established that struvite (MgNH4PO4.6H2O), bacterial cells and colloidal matter are

major membrane foulants (Choo and Lee, 1996) but there is still limited information

on the role of extracellullar polymeric substances (EPS) and soluble microbial

products (SMP) in bio-fouling of membranes when coupled with anaerobic digesters.

EPS are high molecular weight compounds released as a result of cell lysis, growth

and decay while SMP is a general term used to describe soluble compounds produced

by bacterial cells as a result of metabolism and other cellular processes (Stephenson et

al., 2000).

Results obtained in chapter 5 were based on inactive systems where the digesters were

not actively breaking down or treating substrates. This chapter will seek to provide

some insight into the influence of wastewater composition, presence/absence of gas

and temperature on the production of EPS and SMP in AnMBRs as well as how these

operating conditions and substances impact on fouling in an operational anaerobic

membrane bioreactor.

The chapter will also attempt to link anaerobic sludge and mixed liquor characteristics

directly with membrane fouling rates in the short term as well as give further insight

into the differences that exist when membranes are fouled by anaerobic and aerobic

sludges. Critical flux, specific cake resistance and TMP increase rate were chosen as

fouling indicators. Critical flux determines the range of permeate fluxes to which a

membrane can be subject before irreversible fouling begins to take place. An increase

in fouling propensity is indicated by a drop in critical flux.



CHAPTER 6 RESULTS: BENCH SCALE TESTS

- 94 -

Critical flux in a membrane bio-reactor is dependent on hydraulic conditions, nature

of membranes utilised as well as the nature of foulants to which the membrane is

subject.

6.2 Results

6.2.1 Bench Scale Anaerobic Membrane Bioreactors

(i) Critical Flux Tests

Critical flux of the bench scale AnMBRs was determined using the flux step method

as described in chapter 4. A value of approximately 26L.m-2.h-1 was obtained for all

four AnMBRs (Figure 6.31). All AnMBRs were therefore operated at fluxes below

this value irrespective of configuration, operating conditions and substrate

composition.
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Figure 6.31: Critical flux determination by the flux step method at Total Solids
(TS) concentration of 4gL-1

(ii) Performance of AnMBRs

Volatile fatty acid concentration (VFAs) in the permeate varied from 0 to 3100mg.L-1

with the lowest amounts observed during the first 2 to 4 days of experiments (Figure

6.32). The highest amounts of volatile fatty acids were observed when the AnMBRs

were subject to an operating temperature of 20oC. VFA concentration under this

operating condition increased from 0 to just over 3000mgL-1 within 14days (for all

four AnMBRs) compared to a maximum concentration of 1600 mgL-1 observed at

30oC without gas sparging. Similar VFA concentrations were observed in all four

AnMBRs irrespective of substrate composition. Gas sparging resulted in increased

VFA production with maximum concentrations during latter periods increasing by a

approximately 60%.
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Figure 6.32: VFA concentrations in each of the four AnMBRs when subject to
different operating conditions.
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A glucose depletion rate of approximately 0.21gCOD.gTS-1.h-1 (at steady state) was

observed in all four anaerobic membrane bioreactors irrespective of composition. A

sulphate reduction rate of 0.018 to 0.03gSO4
2-.gTS-1.h-1 was achieved in those

AnMBRs containing sulphate with the lower reduction rates observed in AnMBR GIS

(containing iron and sulphate). However, complete breakdown of substrate into

methane was slow and incomplete due to limited pH control. An overall COD

removal efficiency of approximately 80% was observed in all four AnMBRs

(irrespective of influent composition) when operated at 30oC. This figure dropped to

50% at 20oC. The drop in performance and efficiency observed was probably due to

the increased concentrations of volatile fatty acids (VFAs) in all four AnMBRs at the

lower temperature. The presence of high amounts of volatile fatty acids during the

experiments resulted in a large drop in pH (below the optima for methanogenesis, 6.5-

7.5) and without adequate pH control, this acid-pH shock led to poor conversion of

the said intermediate products to methane.

(iii) Effect of Substrate Composition, Temperature and Gas Sparging on
EPS and SMP

Progressively higher amounts of SMP were observed in AnMBRs GS, GI and GIS

containing sulphate and iron at 30oC (Figure 6.33). At the higher temperature of 30

oC AnMBR GIS showed the highest amounts of SMP with levels of approximately

200mgL-1, twice the amount present in AnMBR G. The subjection of all four

AnMBRs to a lower operating temperature of 20oC resulted in increased SMP levels

in all except AnMBR GIS where SMP concentration dropped from 199 to 139 mgL-1.

Results obtained from this set of experiments are in line with a previous study carried

out by Hao and Lao (1988) who found that SMP concentration varies from 4% to 9%

of influent substrate concentration depending on bacterial species and dilution rate.

SMP content of each of the four AnMBRs in this study varied from 6.5 to 9.4% of

COD present at start up of AnMBRs depending on type of substrate utilised.
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Figure 6.33: SMP content of each AnMBR

The introduction of nitrogen gas into the AnMBRs resulted in increased EPS

production in all the AnMBRs except AnMBR GIS where EPS levels dropped from

27 to 14mg.gTS-1 (Figure 6.34). The highest increase in EPS content was observed in

AnMBR G where there was a three and a half fold increase from 35mg.gTS-1 to

125mg.gTS-1. It also appears that EPS production increased with temperature where

sulphate was present and decreased where sulphate was absent. A drop in EPS

content was observed in AnMBR G (35 to 28 mg.gTS-1) and GI (41 to 26 mg.gTS-1)

when there was a decrease in temperature from 30 to 20oC. The opposite effect was

observed with AnMBR GS (EPS content increased from 30 to 54mg.gTS-1) and GIS

(EPS content increased from 25 to 75mg.gTS-1) with the same drop in operating

temperature. The increased EPS content noted in AnMBRs GS and GIS may be due

to the stimulation of the sulphate reducers’ metabolism in the systems GS and GIS as

a result of the presence of sulphates in the feed.

The observed drop in EPS content at 20oC in AnMBR G and GI is not surprising as it

is well known that the optimal temperature range for methanogenesis is between 30-

35oC (Kettunen and Rintala, 1998). Shin et al. (2001) extracted EPS amounts of 129

to 171mg.gMLSS-1 while aerobically treating a glucose waste. This is significantly

higher than EPS content observed in the four anaerobic membrane bioreactors where

maximum amounts did not exceed 123.05 mg.gTS-1.
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From the observed results, it can be inferred that EPS levels are affected by the type

of biomass (anaerobic or aerobic) present in a system as well as the wastewater

type/composition to which it is exposed. EPS production is enhanced by gas sparging

even when the said gas is inert probably due to increased biomass-substrate contact.

A drop in operating temperature may or may not result in higher EPS levels

depending on the type of waste being treated as well as the type of biomass present.
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Figure 6.34: EPS content of each AnMBR

(iv) Effect of Substrate Composition, Temperature and Gas Sparging on
Fouling Rate

Two major stages of fouling (rapid and slow) were observed during the course of

these experiments (Figure 6.35). This agrees with work carried out on permeation

flux by Choo and Lee (1998) which established exponential and sluggish stages of

flux decline while treating an alcohol-distillery wastewater in an anaerobic membrane

bioreactor (subject to an approximate organic loading rate of 1.5kgCODm-3 per day).
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Figure 6.35: Example of TMP chart showing the two fouling stages observed in
each of the four AnMBRs.

The rapid fouling stage was characterised by bacterial cell and biosolid deposition.

These cells form a cake on the membrane surface. The specific resistance of this cake

() to filtration increases with the number of cells that are deposited on the membrane

surface. Therefore, the constant () is useful in determining the fouling rate during

this stage. Fouling rates during this stage appear to be highest in the absence of

sulphate (Figure 6.36). AnMBR GS and GIS showed the lowest fouling rates during

the rapid fouling stage. Gas sparging caused an increase in fouling rates in all four

AnMBRs with the highest increase observed in AnMBR G (specific cake resistance

varied from 4.64 x 1015 to 2.41x1016 mkg-1). A drop in operating temperature from

30oC to 20oC also resulted in lower fouling rates except where iron was present

(AnMBRs GI and GIS).
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Figure 6.36: Specific cake resistance as a measure of fouling in each AnMBR
during the rapid fouling stage.

Figure 6.37 shows fouling rates during the slow fouling stage. Fouling rates during

the slow fouling stage appear to be highly dependent on factors such as substrate

composition and temperature. When all four AnMBRs were operated at the same

temperature (without gas sparging), lower fouling rates were observed in AnMBR GS

(11.5mbard-1) and GIS (8mbard-1) containing sulphate than in AnMBR G (33mbard-1)

and GI (76mbard-1) which did not contain sulphate. However, a drop in operating

temperature (from 30oC to 20oC) of all four AnMBRs resulted in an increase in

fouling rate with the highest fouling rate increase seen in those that contained sulphate

(30 to 54 mbard-1 for AnMBR GS and 27 to 77.5mbard-1 for AnMBR GIS).

The introduction of gas into all four AnMBRs caused a decrease in fouling during the

slow fouling stage probably due to the sloughing of foulants off the membrane surface

The presence of gas also strips some of the H2S present in the AnMBRs as well as

inhibits the build up of sulphide precipitates (a possible foulant) in the reactor mixed

liquor.
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Figure 6.37: Fouling rates during the slow fouling stage in each of the four
AnMBRs.

The highest fouling rate (79mbard-1) was observed in AnMBR GI (which contains

iron and no sulphate) when it was subject to a temperature of 20oC without gas

sparging. The high fouling rate observed in AnMBR GI may be due to the deposition

of iron compounds such as carbonates and phosphates into the membrane pores

causing pore blockage and intrinsic membrane fouling. The presence of sulphate and

iron in AnMBR GIS may have resulted in the production of iron sulphides which are

corrosive to the membrane and therefore degrade the membrane surface. The high

fouling rate observed in AnMBR GIS may therefore be due to the precipitation of iron

sulphides onto the surface of the membrane. However, this was not confirmed

experimentally during experiments although black deposits that could not be

attributed to biomass were seen on the surface of the membrane in this particular

AnMBR.

(v) The Effect of EPS and SMP on Fouling Rates.

Total extracellullar polymeric substances (EPS) was found to affect fouling rates

during the rapid fouling stage (Figure 6.38). The use of regression techniques

established a linear relationship between EPS content and specific cake resistance

irrespective of temperature and the presence/absence of gas.
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However, at the lower operating temperature of 20oC, the same increases in EPS

levels produced much higher increases in fouling rates than at 30oC (Table 6.22).

Fouling rates were therefore more sensitive to variations in EPS levels when systems

were subject to psychrophilic conditions.
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Figure 6.38: Specific cake resistance as a function of EPS content of the
AnMBRs.

Table 6.22: Description of Linear Relationship between EPS and Cake
Resistance under different operating conditions.

Operating Temperature Gas Sparging Slope

30 - 0.01

30 Yes 0.01

20 - 0.025

No relationship was found to exist between EPS content in each of the four AnMBRs

and fouling rates during the slow fouling stage.
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The parabolic relationship (established with regression techniques) between soluble

microbial products and fouling rate (Figure 6.39) confirms SMP as a significant

foulant during the slow fouling stage. Fouling rates during the slow fouling stage

were therefore influenced by the SMP content in each of the AnMBRs. Below SMP

concentrations of 125mgL-1, fouling rates follow a linear relationship with SMP

concentration irrespective of operating temperature. SMP production then reaches a

point where further increases in SMP levels do not produce proportional increases in

fouling rates.
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Figure 6.39: Fouling rate as a function of SMP concentration in each AnMBR.
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6.2.2 Bench Scale Crossflow Membrane Filtration Rig

(i) Critical Flux and TS Concentration

All anaerobic sludges analysed showed a decrease in critical flux with increase in total

solids concentration up to a critical TS concentration. At this point, further increases

in TS concentration produced no change in critical flux (Figure 6.40). All the sludges

tested had a critical TS concentration of approximately 10gL-1(Figure 6.41).

However, despite analysing the anaerobic sludges at similar TS concentrations of 5 to

20gL-1, critical flux values became increasingly divergent as TS concentration

approached the critical value of 10gL-1 (Figure 6.41). Critical flux measured 31.5 and

27Lm-2h-1 for TS concentrations of 5 and 7gL-1 respectively for all anaerobic sludges

(1, 2 and 3) tested. These values dropped to 22.5, 18 and 13.5 Lm-2h-1 for sludges 1, 2

and 3 respectively at TS concentrations of 10gL-1. Fouling rates below critical fluxes

measured 0mbar.min-1 in almost all cases consistently fell below the limit of

detection, becoming increasingly unstable during post critical flux operation (Figure

6.40).
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Figure 6.40: Example of Chart showing Effect of TS concentration on Short-
Term Fouling Rates and Critical Flux for Anaerobic Sludge.
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Figure 6.41: Critical Flux as a Function of Total Solids (TS) Concentration for
Three Anaerobic Sludges

The relationship between critical flux and EPS was difficult to determine as it

required changing EPS concentrations of the sludges analysed. In chapter 5, it was

established that EPS concentration varied with time even without active degradation

of substrates. In order to determine the effect a change in EPS would have on critical

flux, EPS concentration of sludge was measured weekly and critical flux experiments

carried out when a significant difference in concentration was observed.
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No relationship was found to exist between EPS carbohydrates and critical flux

(Figure

6.42,
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Figure 6.42). However, changes in EPS proteins present in sludge produced

significant changes in critical flux (Figure 6.42). In general, higher amounts of EPS

proteins produced drops in critical fluxes of anaerobic sludges analysed. At EPS

protein levels below 27mg.gTS-1, critical flux remained above 44Lm-2h-1. However,

the presence of higher EPS protein levels of 27 to 60mg.gTS-1 in sludges resulted in

lower critical flux values (36 to 41.5Lm-2h-1).
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Figure 6.42: Critical Flux as a Function of EPS Concentration for Anaerobic
Sludge

For all aerobic sludges tested, critical flux dropped with increasing MLSS

concentration. Aerobic sludges were tested at MLSS concentrations of 5.5 to 15gL-1

(Figure 6.43). At the lower end of the spectrum (5.5 to 7gL-1), critical flux was

approximately 18Lm-2h-1. At 9gL-1, critical flux fell to 13.5Lm-2h-1. The lowest

critical flux value of 4.5Lm-2h-1 is observed at 15gL-1, the highest MLSS

concentration at which the three aerobic sludges were tested. No relationship was

found to exist between EPS concentration and critical flux for all the aerobic sludges

tested (Figure 6.44).
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Figure 6.43: Effect of MLSS Concentration on Short-Term Fouling Rates and
Critical Flux for Aerobic Sludge
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Figure 6.44: Critical Flux as a Function of EPS Concentration for Aerobic
Sludge
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(ii) Critical Flux and Crossflow Velocity

Subjecting anaerobic sludges to increasing crossflow velocities resulted in reduced

critical fluxes (Figure 6.45 and Figure 6.46). Visual inspection of the Perspex

membrane module showed that increased crossflow velocity pushed more particulate

solids (all anaerobic sludges utilised in these experiments were granular) unto the

membrane surface where settling unto the membrane surface then took place. Post

critical operation also resulted in increased instability in resulting fouling rates (Figure

6.45). Critical flux values were significantly different for the three anaerobic sludges

despite being subject to similar crossflow velocities. Critical flux values measured

between 36 and 13.5Lm-2h-1 for sludge1, 22.5 and 9Lm-2h-1 for sludge2 and 18 and

4.5Lm-2h-1 for sludge 3. All sludges were subject to crossflow velocities of 0.65 to

1.4ms-1.
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Figure 6.45: Example of Chart showing Effect of Crossflow Velocity on Short-
Term Fouling Rates and Critical Flux for Anaerobic Sludge
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Figure 6.46: Critical Flux as a Function of Crossflow Velocity for Three
Anaerobic Sludges

As established during analysis of anaerobic sludges, crossflow velocity has a direct

effect on the critical flux of sludge. An opposite effect to that observed with

anaerobic sludges was observed with aerobic sludges. Increasing the crossflow

velocity caused an increase in critical flux values of all three aerobic sludges tested

(Figure 6.47 and Figure 6.48). All aerobic sludges were tested at crossflow velocities

of 0.66 to 1.4ms-1 with the maximum critical flux value (18Lm-2h-1) obtained for

sludge 1 at a crossflow velocity of 1.3ms-1. The lowest critical flux value of 4.5Lm-

2h-1 was observed with sludge 3 when it was subject to a crossflow velocity of

0.66 ms-1.



CHAPTER 6 RESULTS: BENCH SCALE TESTS

- 112 -

4.5 9 13.5 18 22.5 27

0.65

0.88

1.330

0.1

0.2

0.3

0.4

F
ou

li
n

g
R

at
e

(m
b

a
r.

m
in

-1
)

Flux (Lm-2h-1)

Crossflow velocity

(ms
-1

)

Figure 6.47: Effect of Crossflow Velocity on Short-Term Fouling Rates and
Critical Flux for Aerobic Sludge
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Figure 6.48: Critical Flux as a Function of Crossflow Velocity for Three Aerobic
Sludges
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(iii) Critical Flux and Mean Granule Size

Sludges 1, 2 and 3 were made up of granular biomass with very different mean sizes.

The effect these differences in granule size have on critical flux was investigated

while keeping other operating parameters such as TS concentration and crossflow

velocity constant. Tests were carried out at a TS concentration of 4gL-1 and a

crossflow velocity of 0.66ms-1.

Results obtained showed that critical flux decreases with increasing mean granule size

(Figure 6.49). At a mean granule size of 148.5m, critical flux measured 54Lm-2h-1

for sludge2. This value fell to 36Lm-2h-1 when sludge3 with a higher mean granule

size of 911m was subject to the same test. Sludge 1 had a mean granule size of

628m. Critical flux for this sludge was 45Lm-2h-1.
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Figure 6.49: Effect of Mean Granule Size on Short-Term Fouling Rates and
Critical Flux for Anaerobic Sludge
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6.3 Discussion

Although both anaerobic and aerobic sludges showed some similarity with respect to

the relationship of sludge properties and characteristics to membrane fouling, several

differences were noted when direct comparisons were made between data obtained for

both types of sludges. In general, higher critical fluxes were obtained with anaerobic

sludges (4.5 to 45Lm-2h-1) in comparison to the aerobic sludges ((4.5 to 20Lm-2h-1)

inferring that membranes can be subject to much higher fluxes (before irreversible

fouling occurs) in the presence of granular anaerobic biomass. Gradual minimal

fouling of the membrane was noted with aerobic sludges even at sub-critical fluxes.

This was in direct contrast to anaerobic sludges which showed no TMP increase and

therefore no membrane fouling prior to reaching critical flux. However, post critical

operation was inherently more stable with aerobic sludges despite progressive

exponential increase in membrane fouling seen with these sludges. The subjection of

membranes to fluxes higher than the measured critical flux for specific anaerobic

sludges resulted in instantaneous high or low fluxes with no predictable trend.

Marked differences were noted when solids concentrations of both types of sludges

were compared with resulting critical fluxes and short term fouling rates. A critical

TS concentration was observed with anaerobic sludges beyond which further

increasing the solids concentration produced no discernable increase in critical flux.

Aerobic sludge on the other hand showed a negative linear relationship to critical flux

with progressively higher solids concentrations producing progressively lower critical

fluxes. Results from this study are in agreement with several studies including that of

Maedaeni et al. (1999) and more recently, Le Clech et al. (2003). However, there are

several bodies of work in publication which find no identifiable link between MLSS

and critical flux. Rosenberger and Kraume (2002) showed no correlation between

MLSS and filterability in their work on aerobic sludge. Work carried out by Fan et al.

(2006) on aerobic sludge also showed no relationship between MLSS and critical flux.

Authors of the latter work suggested that other sludge characteristics such as EPS and

colloidal matter may be more important in determining critical flux for any specific

sludge.
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Results from this study contrast with these findings as a relationship is only seen in

the case of EPS protein from anaerobic sludge where the compounds tend to result in

lower critical fluxes. No relationship was established between EPS concentration and

critical flux for any of the aerobic sludges. This is in agreement with work carried out

by Rosenberger et al. (2002). This is in agreement with results from chapter 5 of this

thesis where EPS had little or no effect on specific cake resistance of anaerobic or

aerobic sludges when passed through membranes under dead end conditions.

Opposing trends were observed for each type of sludge when the six sludges were

subject to increasing crossflow velocities. Critical flux fell when all three anaerobic

sludges were subjected to increasing velocities between 0.6 and 1.6ms-1. Aerobic

sludges on the other hand showed an increase in critical flux with increased crossflow

velocity. This increase was probably due to the sloughing of bacterial cells and other

foulants off the membrane surface by hydrodynamic shear. The results obtained with

anaerobic sludge are unexpected as Eckstein et al. (1977) found that hydrodynamic

induced shear is proportional to the square of particle size. Consequently, it is

expected that sludges with larger particle sizes (as is the case with the granular

anaerobic sludges in this study) would be more easily removed from the membrane

surface. However, it appears that crossflow velocities to which the membranes were

subject were not high enough to remove anaerobic granules because anaerobic

granules have a high settling velocity. During the experiments, progressive

accumulation of anaerobic granules on the membrane surface was observed at higher

crossflow velocities. It is hypothesised that crossflow velocity will need to be higher

than the settling velocity of the particles or granules present in sludge to prevent

biomass accumulation on the membrane surface. Linking mean particle/granule size

of anaerobic sludge with critical flux once again provides evidence for this theory.

Sludges containing larger sized particles had the lowest critical flux indicating that

anaerobic sludges with larger particles have a higher fouling propensity when coupled

with side-stream membranes. The larger the sizes of active granules/particles in the

sludge, the greater the settling velocity of the said particles and therefore, the higher

the crossflow velocity will need to be to prevent accumulation on the membrane

surface and reduce fouling.



CHAPTER 6 RESULTS: BENCH SCALE TESTS

- 116 -

In general, anaerobic granular sludges appear to show a non-beneficial relationship

with side-stream operation despite the fact that membrane modules in this

configuration can be run at higher fluxes. It should be noted that critical flux is

dependent on membrane material so results obtained in these experiments provide

limited information. However, it was necessary to conduct all experiments using

membranes with the same characteristics in order to ensure that results for each type

of sludge were comparable.

Results obtained from the bench scale anaerobic membrane bioreactors appear to be

significantly different from previous fouling work reported in literature. Although

most publications do show the existence of two fouling phases, the slow fouling phase

appears to occur under sub-critical conditions while the rapid fouling phase occurs

while operating at fluxes higher than critical flux. Slow fouling followed by rapid

fouling during post critical operation has been justified in previous studies by the

existence of heterogeneous distribution of local fluxes. These local fluxes are

apparently caused by gradual pore closure and surface deposition of organics leading

to a loss in local permeability (Ognier et al., 2001; Cho and Fane, 2002). It has

already been shown that membrane fouling behaviour can differ considerably in

anaerobic and aerobic systems. Le Clech et al. (2003), Rosenberger et al. (2005), Cho

and Fane (2002) and Fan et al. (2006) are just some of the authors who have carried

out extensive fouling work on membrane bioreactors. Some of these previous studies

established the existence of two phase fouling in reverse to two phase fouling

established in this study. Both rapid and slow fouling occurred while operating at

sub-critical flux during this study. Fouling during post critical operation of the

AnMBRs was unstable and unpredictable with no identifiable trend or progressive

increase.

SMP content of the AnMBRs was generally higher at lower temperatures and in the

presence of iron. The concentrations of iron put into the batch systems were high

enough to be considered toxic to biomass and therefore cause stress to bacterial cells.

Environmental stress factors such as increased heavy metal concentrations, low

temperatures and general adverse operating conditions is usually accompanied by

increased accumulation of SMP due to cell lysis, simulation of efflux and release of

extracellular material (Aquino and Stuckey, 2004; Kuo and Parkin,1996).
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The analysis of the relationship between EPS and substrate/wastewater type as well as

temperature is more complex. EPS content of the AnMBRs is generally higher where

sulphate is present in high concentrations. EPS production also increased under

psychrophilic conditions in the presence of sulphate but fell in its absence. The

results appear to show a difference in the type of biomass or bacterial consortia

present in each group of AnMBRs. It is well known that where there is an excess of

sulphate as well as a carbon source, sulphate reducers will out compete methanogens

resulting in a gradual decline in the numbers of the latter bacterial group (Overmeire

et al., 1994; Lens and Kuenen, 2001; Hulshoff Pol et al., 2001). Sludges containing

sulphate reducing biomass have also been shown to have larger sized

granules/particles than methogenic sludges. Granules present in these sludges have

higher settling velocities as well as more densely packed structures (Weijma et al.,

2002). Since the production of EPS has been linked to the formation of anaerobic

granules and bacterial growth (Chen and Lun, 1993; Schmidt and Ahring, 1996), it

would therefore be expected that sludges fed on substrates containing large amounts

of sulphate would indeed have higher levels of EPS. It appears that sulphate reducers

also respond to environmental stress such as reduction in operating temperature by

producing more EPS.

Although higher EPS levels were noted in those AnMBRs containing sulphates, initial

rapid fouling rates were lower in these AnMBRs due to the high settling velocity of

the granules present in the mixed liquor. It can therefore be assumed that EPS is not

a major factor in fouling during the rapid phase when particles or granules present in

the mixed liquor have high enough settling velocities to prevent accumulation on the

membrane surface in submerged configuration. EPS plays a role in fouling by

increasing the ability of granular biomass to stick and attach to the membrane surface.
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Results from this study establish a direct link between EPS, SMP and fouling with

each substance affecting a different fouling phase. EPS appears to be directly linked

with the rapid fouling phase under conditions where particles have low settling

properties while SMP appears to be directly linked to the slow fouling phase.

Evidence of this is also provided by the low membrane fouling rates seen in those

AnMBRs containing sulphate where reduced concentrations of SMP were present.

Several authors have linked EPS and SMP to fouling (Rosenberger et al., 2006; Fan et

al., 2006) although little is known about the exact mechanisms behind the production

of these substances. It appears that the presence of heavy metals at high

concentrations in wastewaters as well as low operating temperatures (below the

optima for methanogenesis) is detrimental to membrane performance as these

conditions produce higher concentrations of microbial products and higher fouling

rates. Inducing turbulence and hydrodynamic shear on the other hand improves

membrane performance by reducing accumulation on the membrane surface. This

can be achieved relatively easily by introducing gas at moderate flow velocity into

MBR systems.

From results presented in this chapter, it is clear that optimisation of AnMBRs should

not be confined to physical dimensions of the system and parameters such as

hydraulic retention time (HRT) and solid retention time (SRT) alone

.
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7 RESULTS: PILOT SCALE TESTS

7.1 Scope

It has been established that the performance of membrane bioreactors is influenced by

membrane fouling, operating conditions and the biology of the process (Stephenson et

al., 2000). This chapter presents results obtained from the operation of a pilot scale

anaerobic membrane bioreactor which was designed utilising hypothesis, results and

lessons learnt from previous experiments (chapters 5 and 6).

7.2 Results

Three (start-up, acclimatising and stable) phases were identified during constant

operation of the pilot scale AnMBR (Figure 7.50). During the start-up period, the

system was very unstable and soluble COD levels in the mixed liquor increased from

300mgL-1 to 2000mgL-1within 14 days. Elevated COD levels during start-up is

characteristic of systems with low feed to mass (F/M) ratios as is the case in anaerobic

systems treating low strength wastewaters (<2000mgL-1). Kuo (1993) attributed this

increase to the release of soluble organic matter by biomass.

The system entered into its acclimatising phase between day 15 and day 21 at which

point COD removal began. Measured biomass characteristics also began to stabilise

although the system was most sensitive to changes in configuration and operating

conditions during this period. It is estimated that the system remained in this phase

for approximately 40 days at which point the AnMBR entered into the stable phase.

From this point onwards, changes to operating and process parameters produced

minimum responses by the system. Biomass characteristics followed specific trends

and process performance reached a stable and predictable peak.

7.2.1 Process Performance

(i) COD Removal

Soluble COD concentration of the mixed liquor measured between 300mgL-1 (day 0)

and 2000mgL-1(day 14) while the AnMBR was in start-up mode.
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As the system entered into the acclimatisation phase, COD removal began and

continually increased up to 80±2% (Figure 7.50). COD removal during the stable

phase varied between 82 and 97% depending on configuration and operating

conditions. Maximum COD removal efficiency (96%) was achieved after 63 days of

operation at a temperature of 35±1oC. Permeate COD concentration during this

period never exceeded 90mgL-1 despite changes to operating temperature, membrane

configuration and feed quality.
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Figure 7.50: Mixed Liquor COD concentration and COD Removal over 120 Day
Operation of Pilot Scale Anaerobic Membrane Bioreactor.

(ii) Biogas Production

The conversion of substrate into methane is important in the assessment of the

performance an anaerobic system as it determines the energy requirements of the

process.

Operation of the AnMBR over the 120days resulted in the production of biogas

consisting of 75±5% methane dependent on operating conditions (Figure 7.51).
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However, in the first 7 to 14 days of operation (start-up phase), sulphate reduction

out-competed methanogenesis resulting in the release of small amounts of hydrogen

sulphide and sulphur dioxide (Figure 7.51). Total amount of hydrogen sulphide and

sulphur dioxide produced measured 0.1±0.03Lgas.Lreactor
-1.d-1. The small amounts of

sulphur gasses produced can be attributed to the presence of diminutive sulphate

levels in the feed to the system. During this period, there was little production of

methane and the biogas produced consisted almost entirely of hydrogen sulphide.

From day 15, the rate of methanogenesis increased as sulphate reduction ceased.

After system stabilisation, biogas consisted of 70 to 80% methane and 19 to 30%

carbon dioxide (Figure 7.51). Methane production was at its lowest when the system

was subject to a working temperature of 12±0.5oC. Specific methanogenic activity of

biomass present in the system varied from 0.20gCOD-CH4.gMLVSS-1 (at 12±1oC) to

0.24gCOD-CH4.gMLVSS-1 (at 35±2oC). Total biogas production reached a maximum

of 0.46 Lgas.Lreactor
-1.d-1.
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Figure 7.51: Biogas Composition during Operation of Pilot Scale Anaerobic
Membrane Bio-Reactor.
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(iii) Impact of Process Parameters and Operating Conditions

Operating conditions and changes in process parameters affected biogas production

and composition as well as COD removal (Figure 7.50, Figure 7.51). The system was

operated at three different temperatures of 12±0.5oC, 22±0.5oC and 35±1oC which

resulted in variations in COD removal. During the stabilised phase, operation of the

AnMBR at an optimal temperature of 35±1oC with a submerged membrane resulted in

maximal COD removal of approximately 97% (Figure 7.50). Dropping operating

temperature to 22±0.5oC caused an initial drop in COD removal to 82%. The system

did recover so that COD removal at this temperature reached a maximum of

approximately 95% within 21days. A further drop in temperature to 12±0.5oC caused

a drop in COD removal to 88 to 91%. Initial decrease in COD removal efficiency was

less severe at the latter stages of the process when the system was subject to

psychrophilic conditions and operating temperature was dropped from 22±0.5oC to

12±0.5oC.

Reducing operating temperature also affected biogas production with lower

temperatures resulting in lesser amounts of methane being produced (Figure 7.51).

Methane composition of biogas dropped from approximately 80% at 35±1oC to about

70% at the lower temperature of 12±0.5oC. The proportion of carbon dioxide in the

biogas remained the same at 20±5% with higher amounts of hydrogen produced

during the latter periods of operation when the system was subject to psychrophilic

conditions.

The changes observed in performance of the AnMBR may be attributed to the

increase in VFA production when there is a reduction in temperature. The

accumulation of VFAs is usually accompanied by a drop in pH which in turn results

in adverse effects on methanogenesis. Despite the installation of pH control in the

system, small pH variations of ±0.25 were still observed with changes in operating

temperature of 10 to 13oC (Figure 7.52, Figure 7.53). While the AnMBR was subject

to a working temperature of 35±1oC, pH measured between 7.2 and 7.4. This is

higher than the pH values of 6.9 to 7.1 and 6.8 to 6.9 observed when the system was

subject to operating temperatures of 22±0.5oC and 12±0.5oC respectively (Figure

7.53).
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COD removal and biogas production did not respond to changes in membrane

configuration and characteristics. There was also no response by the system to

changes in nitrogen gas sparging rates in terms of process performance or efficiency.
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Figure 7.52: Evolution of pH and Temperature of Pilot Scale Anaerobic
Membrane Bioreactor.
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7.2.2 Biomass Characteristics

(i) MLSS, MLVSS and Biomass Yield

MLSS concentration remained above 5gL-1 throughout AnMBR operation except

during the first 14days when the system was in start-up mode (Figure 7.54). MLSS

concentration during this period measured 0.4 to 2.3gL-1. The ratio of MLVSS to

MLSS concentration varied from 0.52 to 0.69 after the first 14 days of operation. As

soon as the system entered the stable phase, the proportion of biomass that was

ascribed to MLVSS did not drop below 60% despite changes to operating

temperature. MLSS concentration did show some slight variation with operating

temperature during the stable phase with values dropping from 6.8 to 6.5gL-1 when

operating temperature was reduced from 35±1oC to 22±0.5oC. A further drop in

MLSS concentration to 5.9gL-1 was also noted on day 98 after 7 days operation at

12±0.5oC. In addition, the proportion of MLVSS to MLSS dropped from 0.69 to 0.64

on this day. The system did recover during the final 14 days of operation despite

continual operation under psychrophilic conditions. MLSS concentration during this

period remained at 6.5±1gL-1 with the proportion of MLVSS remaining at 0.63±0.01.
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Figure 7.54: Biomass Concentration of AnMBR over Total Operational Period.

Biomass growth yield measured approximately 0.03 gMLVSS.gCOD-1d-1 after 28

days of continual operation. As the system entered into the stable phase, biomass

growth yield fell to approximately 0.003gMLVSS.gCOD-1d-1(Figure 7.6). Change in

temperature produced no further change in growth yield so that final values remained

at 0.003±1gMLVSS.gCOD-1d-1. The F/M ratio in the AnMBR gradually fell from

1.9±0.04 d-1 on day 14 to 0.17±0.01 d-1 on day 56. After day 56, F/M ratio remained

between 0.03±0.004 d-1 to 0.14±0.01 d-1 despite changes to operational temperature

and configuration.
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Figure 7.55: Biomass Growth Yield and F/M Ratio over AnMBR Operational
Period.

(ii) Particle Size

Particle size distribution in the AnMBR changed significantly as the AnMBR entered

into different operational phases (Figure 7.56). As the stability of the system

increased, particle size became more evenly distributed. During the first 14 days of

operation when the system was in start-up mode, approximately 55% of particles had

diameters of approximately 230 to 2100m. By day 105 in the stable phase, the

system had near equal percentage volumes of larger particle sizes above 300m.

Analysis also showed that percentage volumes of smaller particles (<200m)

progressively increased as the system became more stable so that by day 105 during

the stable phase 80% of particles present in the mixed liquor fell between 1 and

200m (Figure 7.56, Figure 7.57).
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Further investigation into particle size showed that mean particle size during the start-

up period measured between 550 and 630m (Figure 7.58). Minimum, mean and

maximum particle/granule size present in the mixed liquor did drop as the system

entered into the acclimatising phase. Granule size did increase after this initial drop

although a return to original sizing of granules at inoculation never occurred despite

stabilisation of the process.

Subjecting the system to psychrophilic conditions resulted in reduced particle sizing

with the largest drop seen as the system shifted from mesophilic to psychrophilic

conditions. A smaller drop in particle size was observed when the same 10oC change

in temperature was applied to the system while it remained psychrophilic. Maximum

particle size fell from approximately 1417m to 1088m when operating temperature

was dropped from 35±1oC to 22±0.5oC. A further drop in maximum particle size to

approximately 800m was also observed on day 98 when the system was subject to a

lower operating temperature of 12±0.5oC. Minimum and mean particle/granule size

present in the mixed liquor also dropped progressively with lower temperatures.

Minimum particle size dropped from 51m to 9m over120 days of continuous

operation. Mean particle size also followed the same trend with a drop from 627m

to 30m. Despite changes in particle size distribution, biomass remained distinctly

granular over the entire operational period of 120 days.
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Figure 7.58: Evolution of Granule/Particle Size during Start-up, Acclimatising
and Stable Phases.

(iii) CST and Viscosity

CST of the sludge from the AnMBR initially measured above 120s.gMLSS-1.

However, within 28 days of continuous operation, values fell between 53 and

105s.gMLSS-1 indicating that the sludge was more dewaterable (Figure 7.59).

Viscosity followed an opposite trend to that of CST with initial values during the first

twenty eight days of operation falling between 30 and 32mPa.s and latter values

measuring between 27.5 and 50mPa.s at a shear rate of 12.2s-1.

Changes to operating temperature from 35oC to 20oC caused a small increase in CST

indicating that sludges become less easy to dewater at lower temperatures. The same

drop in temperature causes the mixed liquor in the system to become more viscous.

The same trend is observed in both properties when operating temperature is dropped

even further to 12oC. Lesser variation was observed with both CST and viscosity as

the system increased in stability and entered into progressive operational phases (start-

up, acclimatising and stable). Changes to membrane configuration produced no

noticeable change in the two properties.
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Figure 7.59: Evolution of CST and Viscosity of Sludge from Pilot Scale AnMBR.

(iv) EPS and SMP

EPS concentration generally decreased over the entire operational period of the

AnMBR (Figure 7.60). EPSCOD measured approximately 245mg.gMLSS-1 at start-up

but dropped off to 40mg.gMLSS-1 by day 77 when the system was subject to

psychrophilic conditions. As the system was subject to even lower temperatures,

EPSCOD began to increase progressively until levels peaked at 140mg.gMLSS-1 on day

112. Final concentrations were almost equivalent to concentrations determined during

the acclimatising stage.

Levels of EPSp varied between 16 and 107mg.gMLSS-1 with maximal levels present

at system start-up. During latter periods, when the system was subject to an operating

temperature of 12±0.5oC, EPSp remained between 16 and 50mg.gMLSS-1. Final

levels of EPSp present in the mixed liquor were roughly 6 times less than levels

present at start-up of the system. EPSc followed the same trend with levels decreasing

progressively as the system became more psychrophilic. Initial levels of EPSc

(16.5±0.5mg.gMLSS-1) present in the AnMBR at a temperature of 35±1oC were

approximately 9 times the levels present at 12±0.5oC (1.5±0.5mg.gMLSS-1).
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Figure 7.60: EPS Levels present in AnMBR over Total Operational Period.

Levels of SMP in the mixed liquor generally dropped off with time (Figure 7.61).

Initial levels of SMPCOD measured 778mgL-1 while SMPp and SMPc measured

approximately 320 and 80mgL-1 respectively at start-up. By the end of the

operational period (at which point the AnMBR had been subject to psychrophilic

conditions for a total of 60 days), SMPCOD had fallen to 180mgL-1. SMPp and SMPc

had also fallen to 59mgL-1 and 8mgL-1 respectively. The decline in SMP

concentration of the mixed liquor was generally progressive throughout the

operational period although small increases in concentration were noted immediately

after dropping operating temperature. Membrane configuration had no effect on SMP

levels.
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Figure 7.61: SMP Levels present in AnMBR over Total Operational Period.

Further analysis of protein and carbohydrate levels present in EPS and SMP show that

ratios of both EPSp/EPSc and SMPp/SMPc decrease progressively with time (Figure

7.62). EPSp is approximately 21 times EPSc at start-up of the AnMBR at 35±1oC. By

day 70 when the system shifts from mesophilic to psychrophilic conditions, EPSp is

just 4.5 to 8.5 times EPSc. SMPp at start-up measures roughly 24 times SMPc during

the same period but drops progressively over time so that between day 56 and day

120, SMPp/SMPc remains between 3.5 and 8.5.
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Figure 7.62: Proportions of Protein and Carbohydrate in EPS and SMP over
Total Operational Period.

(v) Interactions between Normalised Biomass Characteristics

The response of any biological system to a change in operating conditions is also

dependent on complex interactions between biomass characteristics and how changes

to individual biomass properties may affect others. Table 7.23 is a matrix that gives

an indication of the interactions between each characteristic by assigning numerical

values between -1 and +1. The stronger the positive or negative correlation between

the individual biomass characteristics, the closer the assigned numerical value to +1

or -1 respectively. Characteristics that show correlations between -0.1 to 0.1 are

assumed to have no significant correlation.

The strongest positive correlation was observed between MLSS and MLVSS with a

value of 0.9695. SMPp and CST, EPSp and CST, SMPp/SMPc and CST, EPSp and

SMPp, EPSCOD and SMPCOD as well as EPSc and SMPc all showed high positive

correlations with values that fell between 0.7 and 0.8. It can therefore be inferred

from these results that EPS and SMP are inextricable linked.
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It should be expected that if EPSp, EPSc and EPSCOD increase, a corresponding

increase should be observed in SMPp, SMPc and SMPCOD. EPS and SMP are also

important in determining the dewaterability of sludge from an AnMBR. The higher

the proportion of protein present in these substances, the longer it takes to dewater the

sludge. The sludge therefore becomes more difficult to dewater as EPSp and SMPp

increase in concentration.

Correlation values between 0.5 and 0.7 were assigned to d0.5 and EPSp, EPSp/EPSc,

SMPp and SMPp/SMPc. EPS levels therefore have some effect on granule/particle

size. The positive correlation values assigned to SMPp could be explained by the fact

that EPS levels tend to increase with SMP levels. SMPCOD and MLSS as well as

EPSCOD and MLSS all showed correlations between 0.1 and 0.45 suggesting the

existence of weak relationships between these properties.

The strongest negative correlations (-0.6 to -0.8) were assigned to CST and MLSS,

SMPp and MLSS, MLVSS and CST, SMPp and MLVSS, SMPp/SMPc and MLVSS as

well as EPSp and MLVSS. MLVSS depicts the proportion of MLSS that can be

attributed to active bacteria/biomass. The higher the amount of MLVSS, the lower

the levels of SMPp and EPSp present in the mixed liquor or locked in the biomass.

Higher MLVSS concentration also results in a decrease in the amount of time required

to dewater a sludge (sludge dewaterability is increased). The same trend is seen with

MLSS and CST as well as MLSS and SMPp (The higher the MLSS concentration of

the sludge or mixed liquor, the lower the amounts of SMPp present).

SMPp/SMPc and EPSp both showed negative correlations of -0.5±0.05 to MLSS

concentration. All other biomass characteristics showed no correlation or less

significant negative correlations between -0.1 and -0.4.
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Table 7.23: Correlation Matrix showing Interactions between Normalised Biomass Characteristics in the Pilot Scale AnMBR

MLSS MLVSS CSTn Viscosity d(0.5) SMPp SMPc SMPCOD SMPp/SMPc EPSp EPSc EPSCOD EPSp/EPSc

MLSS 1.0000

MLVSS 0.9695 1.0000

CSTn -0.7403 -0.7805 1.0000

Viscosity 0.0228 0.0944 -0.0860 1.0000

d(0.5) -0.2208 -0.3301 0.5664 -0.1402 1.0000

SMPp -0.6530 -0.7217 0.7174 -0.3136 0.6706 1.0000

SMPc -0.0741 -0.0097 -0.2079 0.1777 -0.1397 0.2293 1.0000

SMPCOD 0.1835 -0.0337 0.2234 -0.2681 0.4190 0.1818 -0.3613 1.0000

SMPp/SMPc -0.5284 -0.6564 0.7427 -0.4180 0.6447 0.7291 -0.4666 0.5082 1.0000

EPSp -0.5037 -0.6595 0.7396 -0.1929 0.5796 0.7629 -0.0606 0.6063 0.7735 1.0000

EPSc -0.3532 -0.3376 0.0113 0.1729 -0.0727 0.3396 0.7724 -0.2068 -0.1679 0.2896 1.0000

EPSCOD 0.1931 -0.0014 -0.1228 -0.0729 0.1402 0.0628 -0.1028 0.7519 0.3038 0.4294 0.1554 1.0000

EPSp/EPSc 0.0518 -0.0778 0.3466 -0.1545 0.5346 0.2260 -0.6046 0.5529 0.5789 0.4228 -0.5772 0.1456 1.0000

MLSS, MLVSS in g.L-1; SMP in mg.L-1; EPS in mg.gMLSS-1; CSTn in s.gMLSS-1; Viscosity in mPa.s at 12.24 s-1 shear rate; d0.5 in m.. Note

that all significant correlations are marked in bold.
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7.2.3 Membrane Fouling

Fouling amelioration is critical in maintaining adequate process efficiency in a

membrane bioreactor. The optimal flux to which any membrane can be subject is

highly dependent on its fouling characteristics.

During the 120day operational period of the anaerobic membrane bioreactor, fouling

was determined by analysing transmembrane pressure and its response to process

parameters, membrane configuration and biomass characteristics. TMP is a good

indicator of fouling after initial biomass and cake deposition as it tends to increase

with deposition of foulants onto the membrane surface. All experiments were

conducted with the AnMBR operating in submerged mode at sub–critical conditions

(<40Lm-2h-1) except where membrane configuration comparison tests were being

carried out.

Figure 7.63: TMP Evolution over a 4 Hour Period during Operation of the Pilot
Scale AnMBR.
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Long term membrane fouling rate was highly dependent on operational and process

parameters and followed specific trends over the entire operational period. The

highest membrane fouling rates were observed during start up as well as acclimatising

operational phases (Figure 7.64). During the first two weeks of membrane installation

in the AnMBR, fouling rates averaged approximately 28mbard-1 which made it

necessary to clean the membranes twice weekly. However, fouling rates had dropped

to 6mbard-1 by the start of the stable phase. As soon as the system was subject to an

operating temperature of 22±0.5oC, fouling rates began to increase again reaching a

maximum of approximately 90mbard-1. A further increase in average fouling rate to

10mbard-1 was noted on subjection of the system to an even lower temperature of

12±0.5oC.
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Figure 7.64: Average Membrane Fouling Rates during AnMBR Operation.

(i) Membrane Type, Configuration, Pore Size and Fouling Rate

Fouling rate showed a different relationship to flux for each of the membranes utilised

in experiments. Operational profiles were developed based on membrane type. In

side-stream configuration, fouling rate appeared to have an exponential relationship

with flux despite differences in make, pore size and total filtration area (Figure 7.65).
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For the Milleniumpore polyethylene membrane with a filtration area of 0.502m2 and

pore size of 0.1m, fouling rate at a minimal flux of 9Lm-2h-1 was only 1.06mbard-1 as

opposed to 100mbard-1 seen with the submerged system. However, fouling rate

increased substantially to 2.71mbard-1 at a flux of 20Lm-2h-1. Despite having a

smaller filtration area of 0.175m2 and pore size of 0.03m, the Zenon

polyethersulphonic membrane exhibited the lowest initial fouling rates than the other

two membrane modules. However, the same exponential relationship observed with

the Milleniumpore polyethylene membrane was exhibited with the application of

higher fluxes. Fluxes above 20Lm-2h-1 produced higher fouling rates than observed

with the submerged membrane module. Fouling of the Mitsubishi Rayon submerged

membrane module (with the largest filtration area of 0.9m2 and pore size of 0.1m)

showed a linear relationship to flux with increasing flux producing proportional

increases in fouling rate. During operation of the system in submerged mode during

fouling experiments, fouling rates did not measure above 4.5mbard-1 despite being

subject to similar fluxes of 9 to 24Lm-2h-1 for similar amounts of time (4 hours for

each flux step).
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Figure 7.65: Operational Profiles for Submerged and Side-stream Membrane
Configurations.
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(ii) Impact of Biomass Characteristics on Membrane Fouling

Table 7.24: Correlation Matrix showing Relationships between Average Fouling
Rate (at a Flux of 14Lm-2h-1) and Normalised Biomass Characteristics.

Fouling Rate

Zenon Side-Stream
Polyethersulphonic

Milleniumpore Side-
Stream Polyethylene

Mitsubishi
Rayon
Submerged

Fouling Rate 1 1 1

Viscosity -0.3187 -0.3612 -0.3905

MLSS -0.8150 -0.7945 -0.7869

MLVSS/MLSS -0.7296 -0.7440 -0.7336

d(0.5) 0.5575 0.5975 0.5975

CSTn 0.5218 0.5347 0.5273

SMPp +SMPc 0.9675 0.9731 0.9729

EPSp+EPSc 0.3014 0.3190 0.3198

MLSS, MLVSS in g.L-1; SMP in mg.L-1; EPS in mg.gMLSS-1; CSTn in s.gMLSS-1;
Viscosity in mPa.s at 12.24 s-1 shear rate; d0.5 in m.

Table 7.24 summarises correlations between biomass characteristics and fouling rates

at a flux of 14Lm-2h-1. All biomass characteristics analysed had some effect on

membrane fouling rates. Characteristics such as EPS concentration, viscosity, CST

and mean particle size were assigned correlation values between 0.3 and 0.6 for their

impact on membrane fouling rate. EPS concentration and viscosity showed the lowest

correlation to membrane fouling rates (0.3 to 0.4). It can be inferred from these

results that EPS has little effect on long term fouling rates as stated previously in

chapter 6 of this thesis. The slight correlation between membrane fouling rate and

EPS as well as viscosity may be indirect and a result of the correlation of these

characteristics with other biomass characteristics such as SMP and MLSS (which both

show very high correlations with membrane fouling).

The highest correlations were noted for fouling rate and SMP, MLSS and

MLVSS/MLSS with assigned values over 0.7. SMP concentration showed the

highest correlation (>0.9) with membrane fouling rates for all membrane types and

configurations utilised. Further investigation into the effect of SMP concentration on

average membrane fouling rates shows up a parabolic relationship between the two

parameters (Figure 7.66) for all membrane types and configurations tested. This is

also in agreement with results previously presented in chapter 6 of this thesis.
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Figure 7.66: SMP Concentration and its Relationship to Membrane Fouling Rate
at a Flux of 14Lm-2h-1 for MLSS concentrations of 2 to 6.5gL-1.

Comparison of SMP concentrations in the AnMBR mixed liquor and permeate (after

passing through the membrane) further shows the retention of significant amounts of

SMP by membranes. Throughout the entire operational period, the effluent produced

by the system had SMP concentrations lower than that present in the mixed liquor

(Figure 7.67, Figure 7.68). On day 14 (at the end of the start up period), mixed liquor

SMPp concentration measured approximately 350mgL-1 while SMPc measured

27mgL-1. Permeate concentrations of both SMP fractions measured about 185mgL-1

and 22mgL-1 respectively. By the end of the operational period, SMPp measured

approximately 80mgL-1 and 42mgL-1 in the mixed liquor and permeate respectively.

Reduced permeate concentrations of SMPc (2 to 15mgL-1) were also noted compared

with 5 to 20mgL-1 present in the mixed liquor.

Approximately 47 to 51% of SMP protein was retained by the membrane despite

changes to membrane configuration and type as well as operating temperature.

Approximately 20% of SMP carbohydrate was also retained by both the side-stream

polyethersulphonic and the submerged hollow fibre membrane despite changes to

operating conditions.
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The side-stream polyethylene membrane retained approximately equal amounts of

SMP carbohydrates and protein (47 to 48%). Table 7.25 is a summary of SMP

rejection factors specific to each membrane type utilised in operation of the AnMBR

when it was subject to long term operation. SMP rejection did not change with

operating conditions.
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Figure 7.67: Concentration of SMPp in Mixed Liquor and Permeate over
AnMBR Operational Period.
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Figure 7.68: Concentration of SMPc in Mixed Liquor and Permeate over
AnMBR Operational Period.

Table 7.25: Summary of Rejection Factors for Each Membrane Type and SMP
Fraction.

Membrane Type Configuration Pore size Rejection factors

SMPp SMPc

Mitsubishi Rayon
Hollow Fibre

Submerged 0.1 0.51±0.01 0.20±0.01

Zenon X-flow
Polyethersulphonic

Side-stream 0.03 0.49±0.01 0.20±0.01

Milleniumpore
Tubular Polyethylene

Side-stream 0.1 0.47±0.01 0.47±0.01

As the proportion of SMP retained by the membrane did not vary, it follows that the

higher the amounts of SMP present in the mixed liquor, the higher the amount of

foulant to be deposited on the membrane surface (Figure 7.69).
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Figure 7.69: Direct Comparison of Average Membrane Fouling Rates with
Mixed Liquor SMP Concentrations.

(iii) Membrane Fouling Rates and Gas Sparging

The lowest membrane fouling rates observed during operation of the AnMBR

occurred on introduction of nitrogen gas into the AnMBR. Specific experiments into

the effect of gas sparging on membrane fouling produced results which showed a

reverse linear relationship between the two parameters (Figure 7.70). Gas sparging

appeared to reduce membrane fouling for all configurations tested. At a sparging rate

of 0.45±0.02Lgas.Lreactor.d
-1, fouling rates measured approximately 3.5, 4.2 and

4.5mbar.d-1 for the Mitsubishi Rayon submerged, Milleniumpore side-stream

polyethylene and Zenon side-stream polyethersulphonic membranes respectively.

The sharpest decrease in fouling rate was observed with the Zenon side-stream

polyethersulphonic membrane. Fouling rate decreased four fold when gas sparging

was increased to 1.13±0.02Lgas.Lreactor.d
-1. The same trend was seen with the other

two membranes with the Milleniumpore side-stream polyethylene and Mitsubishi

Rayon submerged membranes dropping three fold with the same increase in gas

sparging rate.
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Figure 7.70: Gas Sparging and its Effect on Membrane Fouling Rates.

7.3 Discussion

Anaerobic systems have historically proven to be inadequate for the treatment of

municipal and domestic wastewaters due to their low organic content (Mergaert et al.,

1992). However, the AnMBR used in this study was able to achieve COD removals

of up to 97%. The performance of this system is comparable to aerobic systems

(including MBRs) which have achieved treatment efficiencies (while treating

domestic and municipal wastewaters) exceeding 90% with some reported cases as

high as 98% at MLSS concentrations of 2.5 to 50gL-1(Germaine, 2004; Alvarez, 2005;

Stephenson et al., 2000). The use of conventional anaerobic systems for the treatment

of domestic wastewater has however produced less impressive results with reported

COD removals averaging between 40 and 70%. Comparisons between results

obtained in this study and other work which focused on the use of conventional

anaerobic treatment systems are given in Table 7.26.
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Table 7.26: Comparison of Anaerobic Systems Treating Municipal and Domestic Wastewaters.

Reactor/Treatment Type HRT
(hours)

CODinf

(mgL-1)
Operating Temperature
(oC)

COD removal
(%)

Reference

Anaerobic Membrane Bioreactor 5.6-6.4 200-700 12-35 82-97 This study

Anaerobic Baffled Reactor 1.3-6 500 35 40-80 Lagenhoff et al.,
2000

Anaerobic Baffled Reactor 20 350-1200 30-35 70-90 Dama et al., 2002

UASB 24 688 12-16 55-75 Lettinga et al., 1983

UASB 2-9 152.6 22 70-80 Seghezzo et al.,
2002

EGSB 1-3.5 391 13-19 16-34 Van der Last and
Lettinga, 1992.

Modified Anaerobic Baffled Reactor 4-10 920-2430 18-20 50-83 Yu and Anderson,
1996

Fluidized Bed Reactor 6.4 267 17-25 67 Switzenbaum et al.,
1984

Anaerobic Filter 24 288 20-35 73 Kobayashi et al.,
1983.
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Table 7.26 shows the relatively high treatment efficiencies achieved with the AnMBR

even though the system was subject to low operating temperatures and a short HRT.

The incorporation of the membrane into the anaerobic bioreactor therefore extended

its application window by allowing sufficient time for the acclimatisation and growth

of specialised (such as Methanothrix microbes) and psychrotolerant anaerobic

biomass which are more effective in treating dilute wastewaters at low temperatures

(Mergaert et al., 1992; McHugh et al., 2005). Other anaerobic MBR systems have

been successfully used in the treatment of domestic and municipal wastewaters

although most of these systems have been at bench scale level. Chu et al. (2005)

achieved 76 to 96% COD removal while treating a synthetic wastewater prepared to

simulate domestic sewage using a bench scale EGSB reactor coupled with a hollow

fibre membrane module. Wen et al. (1999) achieved similar COD removal rates

while treating raw domestic sewage in an AnMBR with a total volume of 17.7L. Both

systems were subject to operating temperatures of 11 to 15oC and HRTs of 3.5 to 6

hours.

The AnMBR has one major advantage over aerobic MBRs in that it produces

methane which can be converted to re-usable energy. As a result, it is less energy

intensive. Biogas production from the AnMBR in this study was comparable to

published literature on the subject with methane forming about 70 to 80% of total

biogas produced (Seghezzo et al., 2002; Lagenhoff et al., 2000).

Specific methanogenic activity of biomass in this study varied from 0.20gCOD-

CH4.gMLVSS-1 to 0.24gCOD-CH4.gMLVSS-1. Seghezzo et al. (2002) also treated a

settled sewage at temperatures of 18 to 20oC with a pilot scale UASB reactor and

found mean specific methanogenic activity to be approximately 0.09 to 0.13gCOD-

CH4.gMLVSS-1 (significantly lower than values reported in this study). The same

authors also found SMA to be inversely proportional to MLVSS concentration. The

latter observation is not consistent with results in this study as changes to operating

temperature were found to affect both MLVSS and SMA profiles of the AnMBR.

MLVSS concentration dropped with falling temperature and so did specific

methanogenic activity. It is worth noting that the response of SMA to a drop in

MLVSS depends on the reason for the change in the first instance.
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If reactor HRT is increased for instance, sludge concentrations increase and so does

the uptake of inert solids as suspended solids removal increases. MLVSS will

decrease in this situation causing reactor volume increase, larger sludge mass and

decreased specific methanogenic activity (Zakkour et al., 2001).

Changes to operating temperature of the AnMBR system resulted in slightly lower

steady state pH values. According to Borja and Banks (1995), this is typical of

anaerobic wastewater treatment systems. Shock temperature changes are usually

characterised by an immediate pH drop in the reactor, which then stabilises at a value

slightly below the previous steady state pH value. The authors attributed this

phenomenon to the increase in VFA concentration of the mixed liquor which

stabilises at new levels during operation at reduced temperatures. The increase in

VFA concentration also affects COD removal rates negatively although this will not

automatically lead to system failure if pH is adequately controlled (and remains

within optimum operational window of 6.5 to 7.5). Therefore, critical to the

successful treatment of dilute wastewaters at psychrophilic temperatures with

anaerobic systems is pH control. pH must be kept neutral or near neutral to avoid

system failure.

The identification of start-up, acclimatising and stable phases in this study is

supported by previous studies on aerobic MBRs. Boubahila et al. (2001) defines the

stable or steady state phase as the period when the COD concentration of influent was

constant and the biomass concentration was stable. Smith et al. (2002) imposed an

acclimatisation period equal to twice the SRT prior to verifying steady state operation

by the measurement of MLVSS and effluent COD concentration over successive

days. As anaerobic systems usually have long SRTs (typically between 28 to 600

days depending on process conditions), this author defines the stable or steady state

phase in AnMBRs as that point when biomass concentration is either constant or

growth and decay continues at a specific rate while COD reduction remains relatively

constant if there are no substantial operational and process changes. Where

operational and configuration changes are made to the process, then the response of

the system is the minimum or near minimum that it can possibly be for the said

process change. This definition is supported by results from this study.
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Biomass characteristics and COD removal showed comparatively minimal responses

to changes in operating temperature and membrane configuration.

Biomass characteristics showed the same complex interrelationship previously shown

in chapter 5 of this thesis. However, concentrations of microbial substances were

generally lower than previously noted when sludges were not actively treating

substrates. Latter MLSS concentrations achieved in the AnMBR were lower than

optimal MLSS concentrations reported for aerobic MBR systems but significantly

higher than values reported for conventional anaerobic as well as anaerobic MBR

systems due to the increased use of granular biomass in the former systems.

Aerobic MBRs usually operate at MLSS concentrations of 5 to 20gL-1 (Germaine,

2004; Judd et al., 2004; Brookes et al, 2003; Brindle and Stephenson, 1996). Vallero

et al. (2005) achieved a maximal MLSS and MLVSS concentration of 1.75±0.1gL-1

and 0.85±0.02gL-1 respectively while using the SAMBAR system to treat a synthetic

wastewater with high salinity. The proportion of MLSS ascribed to MLVSS was also

significantly lower than results in this study at 0.4±0.09. This value is also somewhat

lower than values determined for conventional anaerobic systems used in treating

domestic sewage. Singh and Viraraghavan (1998) for instance found that MLVSS

formed approximately 50% of total suspended solids while treating a municipal

wastewater at an ambient temperature of 20oC in a UASB reactor. MLSS

concentration in the said system remained between 0.28 to 0.3gL-1. The differences

between the AnMBR used in this study and other anaerobic systems in terms of solids

concentration can be ascribed to greater mixing present in this system. Although the

system was inoculated with granular biomass, it was also subject to gas sparging

which improved mixing and recirculation and therefore resulted in higher amounts of

suspended solids in the mixed liquor. However, this does not explain the increased

organic matter content present in the system. MLVSS is an adequate indicator of

active biomass or bacteria present in a biological reactor (Metcalf and Eddy, 2003). It

therefore follows that a larger amount of active biomass remains in the AnMBR in

comparison to conventional anaerobic systems when both types of systems are subject

to similar process conditions while treating domestic and municipal wastewaters.
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The presence of higher MLVSS concentrations in the AnMBR is further evidence that

the incorporation of membranes into biological systems promotes biomass

acclimatisation and reduces biomass washout.

MLVSS and MLSS concentration were also found to have a significant impact on

dewaterability and viscosity suggesting that these two parameters affect flux decline

in AnMBRs. Increased MLSS and MLVSS levels in the AnMBR resulted in a mixed

liquor that was more dewaterable. The increase in MLSS in the AnMBR is

accompanied by a slight decrease in granular material and smaller particle sizes. The

correlation between the three properties (CST, MLSS and MLVSS) can be attributed

to this factor.

MLSS and MLVSS concentrations remained relatively constant during latter periods

of AnMBR operation suggesting that biomass in the AnMBR favoured maintenance

conditions rather than cell division and growth. Where a biological reactor is subject

to starvation conditions and low F/M ratios (as was the case in this study),

biosynthesis is inhibited although bacterial cells are still able to take part in active

substrate degradation for the satisfaction of maintenance energy requirements (Lobos

et al., 2004). The low growth yield during latter operation of the AnMBR provides

further evidence of this theory. Biomass growth yield was relatively high during the

first 35 days of AnMBR operation at 0.03 when F/M ratio measured between 0.8 and

1.9d-1. As F/M ratios fell further and then remained at 0.1±0.05d-1, biomass growth

yield followed the same trend and dropped by a factor of 10. MLVSS concentration

did increase at start-up of the AnMBR up to a maximum of approximately 4gL-1 on

day 56. This point corresponds to the saturation point of the biomass beyond which

no further storage of cellular and lipid polymers can occur. Chudoba et al. (1992)

states that storage of these lipid polymers is responsible for initial increase in solids

concentrations in biological reactors subject to starvation conditions. Initial biomass

yield (0.03 gMLVSS.gCOD-1) were in agreement with theoretical values as stated in

work carried out by Rebac (1998) on the psychrophilic anaerobic treatment of low

strength wastewaters. Liu et al. (2005) on the other hand established a growth yield

of approximately 0.11 to 0.29gMLVSS.gCOD-1 while examining aerobic microbial

behaviour in an MBR with complete sludge retention.
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The biomass yield and F/M profiles obtained from the latter study were similar to

observed trends in this study. F/M ratios were initially high and then fell as sludge

growth increased. This accounts for the low biomass yields during the latter stages of

AnMBR operation. Biomass yield is also known as sludge yield and may be used as

an indicator of the amounts of surplus sludge produced by a biological treatment plant

or reactor. Low biomass yields reduce the frequency of sludge wasting and therefore

result in the production of less surplus sludge. A reduction in the volumes of surplus

sludge produced is beneficial as it represents a cost saving in terms of its treatment

and disposal.

Particle sizes were generally smaller than would be expected in an anaerobic system

with granular biomass but larger than would be found in aerobic systems. Mean size

in the AnMBR varied between 150m during latter stages of operation and 500m

during initial periods. These values are comparable to work done by Vallero et al.,

2005 who obtained a mixed liquor with an average particle size of 370.2 and 463.2m

while treating a high salinity wastewater using the novel anaerobic SAMBAR system.

Aerobic systems on the other hand will rarely contain biomass with mean particle size

exceeding 100m as biomass present in these systems is usually flocculent (Snidaro et

al., 1997; Germaine, 2004). In fact, aerobic MBRs have been known to operate with

particles of less than 50m in size (Yi and Harper, 2005; Wisniewski et al., 2000;

Henriques et al., 2005). This is detrimental to withdrawal of effluent by membranes

because these smaller particles give a high specific surface area which in turn

increases filtration resistance. Karr and Keinath (1978) showed that the presence of

particle sizes from 1 to 100mm is detrimental to dewaterability. This observation is

corroborated by Nellenschulte and Kayser (1997) who found that an increase in fine

suspended solids (or smaller particles) will reduce sludge and mixed liquor

dewaterability as well as surface charge. Conventional anaerobic systems however

have much larger granules present with most particles measuring between 800 and

1500m as measured in chapter 5. Jin and Lant (2004) showed that larger particles

contained more bound water and are therefore more difficult to dewater although their

work was based on flocculent sludge. Results from all of these bodies of work

suggest that there is an optimum particle size which ensures good dewaterability.
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The particle sizes achieved in this study were not large enough or small enough to be

detrimental to dewaterability as the range achieved was midway between those seen

in conventional anaerobic systems and aerobic systems. Changes to particle size and

therefore surface charge can potentially influence membrane fouling and performance

in membrane bioreactors. Permeate flux decline strongly depends on the charge

conditions of the membrane surface and the charge of the particles, molecules or ions

in the feed solution since electrostatic repulsion (created by similar charges on

membrane surface and feed solution) inhibits the formation of a flux reducing fouling

layer on the membrane surface (Moritz et al., 2001). Also, particles should be large

enough to prevent intrinsic pore blocking but not large enough to cause too much of

an increase in the resistance of the cake layer.

Viscosity and dewaterability of the mixed liquor affect membrane permeability as

more viscous fluids and increased dewaterability will reduce permeate fluxes and are

detrimental to membrane performance. The mixed liquor from the AnMBR in this

study became less dewaterable and more viscous as mean particle size fell

progressively with time. Subjecting the system to psychrophilic conditions appeared

to increase CST and viscosity of the mixed liquor in the AnMBR.

A possible link between EPS, SMP and membrane fouling was established from

results in previous chapters. However, the systems studied were only minimally

representative of real life situations due to their small size and the use of synthetic

substrates or no substrate at all in the said systems. On continuous operation of the

large scale AnMBR, differences were noted in the amounts of EPS and SMP present

in the mixed liquor compared with previous results from chapters 5 and 6 of this

thesis. Concentrations were much lower than previously determined and

concentrations of both types of microbial products (EPS and SMP) generally fell with

time. 9 to 20 mgL-1 of SMP was produced per unit mass of biomass, slightly lower

than reported for aerobic systems (15 to 25mgL-1 per g of biomass) but comparable to

anaerobic systems which will usually produce an average of 15.7mgL-1 per g of

biomass (Chudoba, 1985b). These results are in agreement with those of Kuo et al.

(1996) and Germirli et al. (1993) who also agree that anaerobic systems produce

lesser amounts of SMP than aerobic systems.
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Average concentrations of EPS varied from 20 to 110mg per g of biomass, once again

less than average aerobic concentrations of 50 to 125 mg per g of biomass (Sponza,

2002).

Both EPS and SMP showed small increases in concentration when operating

temperature was dropped to make the system more psychrophilic. Analysis of results

from previous chapters suggests that microbes produce SMP in response to

environmental stress. It would therefore be expected that levels of this substance will

increase when operating temperature is dropped below the optima of methanogenesis.

The same trend was not observed in previous experiments on EPS. No direct

relationship was found to exist between EPS and surrounding temperature. However,

there is a strong correlation as seen in Table 7.23 (correlation matrix) between EPS

and SMP. Both SMPp and SMPc show strong correlations greater than 0.7 to EPSp

and EPSc respectively. Protein and carbohydrate fractions in both EPS and SMP are

inextricably linked. Therefore, if environmental stress was to cause increased levels

of SMP while the system is actively degrading substrate, then it follows that increased

levels of EPS will be seen in the system. Many authors refer to SMP as soluble EPS

as there is much difficulty in providing absolute definitions for each of these

microbial substances. It may be said that some crossover exists between the two

substances with some SMP contributing to EPS and vice versa. This statement is

supported by Laspidou and Rittman (2002) who developed a unified theory stating

that SMP (equivalent to soluble EPS where hydrolysis of particulate organics is

unimportant) polymerises into EPS and EPS can be hydrolysed to SMP.

Further analysis of results show that as the AnMBR system entered into the stable

phase, the ratio of Protein to carbohydrate present in both EPS and SMP generally

decreased. However, slight increases were noted in the concentration of the protein

fractions of these substances when the system was subject to lower operating

temperature indicating that the protein fraction will increase in response to

temperature as conditions become more psychrophilic. In contradiction to results

from chapter 6, gas sparging appeared to have no effect on EPS and SMP

concentrations despite the system being subject to increased gas sparging rates during

fouling tests.
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These results while unexpected can be attributed to the relatively short amounts of

time in which the system was subject to increased gas sparging rates. In addition, the

system was subject to a base gas sparging rate throughout the entire period of

operation except for the first two weeks of start-up. As a result, increase in shear

stress which is responsible for the break up of biomass and increased EPS

concentration (Zhou et al., 2005), was minimal.

Results appear to highlight the strong dependency of membrane fouling on biomass

characteristics. The highest correlation (>0.9) was assigned to the relationship

between the organic fraction of SMP and membrane fouling indicating that the

strongest membrane foulant is colloidal matter. SMP is a suitable indicator of

colloidal matter as the latter has previously been linked to this microbial substance

(Park et al., 2005; Rosenberger et al., 2006)). Membrane fouling rates in the AnMBR

system were directly dependent on SMP levels present in the system. The parabolic

relationship observed between SMP and membrane fouling in bench scale tests was

repeated during operation of the pilot scale system whether in side-stream or

submerged configuration. Results obtained in chapter 5 of this thesis also established

total organic carbon (of which protein and carbohydrates are predominant

components) as the fouling fraction of SMP. Rosenberger et al. (2006) attributes the

retention of SMP by membranes to the formation of a secondary membrane with a

relatively smaller pore size by bacteria and EPS. This is in agreement with all of the

fouling results obtained during previous experiments. This author suggests that this

secondary membrane is formed during the initial rapid fouling phase where there is

deposition of biomass on the membrane surface. In contrast to previously published

literature (Lee et al., 2003; Police et al., 2004; Rosenberger et al., 2005), EPS barely

affected fouling during AnMBR operation although the substance appeared to impact

on fouling rates indirectly by its direct relationship with more important foulants such

as SMP and MLSS.
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Membranes used were also specific in the way SMP and colloidal matter fouled the

membrane. Higher levels of carbohydrate were retained by the tubular side-stream

membrane than the other two types of membranes utilised suggesting that the

interaction of membranes with colloidal matter is dependent on membrane

characteristics as well as amounts of colloidal matter present in the system. As

previously stated, rejection factors for each of the organic fractions of SMP with

respect to membrane type did not change so that higher fouling occurs in the presence

of higher amounts of SMP.

For each of the membranes tested, fouling rates decreased with progressive increases

in gas sparging rates providing further evidence that gas sparging is an effective

fouling inhibitor in an anaerobic membrane bio-reactor. It has long been established

that effective aeration reduces fouling in aerobic membrane bio-reactors. Ji and Zhou

(2005) attribute this phenomenon to the resulting increased volatile suspended solids

concentration produced on subjecting systems to increased aeration rates. However,

in the case of the AnMBR studied during this project, there was no resulting effect on

MLVSS or MLSS concentration. It is therefore hypothesised that decreased fouling

rates observed are due to the sloughing of foulants of the membrane surface. As

previously stated in chapter 6, crossflow velocity (in the case of side-stream

membrane configuration) must be greater than particle settling velocity to increase

foulant sloughing and prevent deposition and accumulation on the membrane surface.

Extending this thinking to all membrane configurations and including gas flow

velocity in the AnMBR, it can be said that the greater the gas flow velocity near the

membrane surface, the less likely for foulants such as colloidal and bacterial matter to

remain or stick to the membrane surface. Hence, the reduction in fouling rates

observed in the system. Increased gas sparging rates also injects energy into the

system transferring kinetic energy to particles in all microbial fractions, thereby

reducing the energy barrier that would need to be exceeded to remove foulants and

clean the membrane. It should be noted that although the anaerobic MBR appeared to

be in the stable phase prior to the end of the experiments, it was run for a relatively

short amount of time. It is possible that the observations noted may change the longer

the system is run for.
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For example, particle size distribution within the system may decrease even further

due to the absence of hydraulic selection pressure within the system (Hulshoff Pol et

al., 1983; Lettinga et al., 1980; Lettinga, 1995; Alphenaar et al., 1995), organic matter

and microbial substance concentrations may vary and fouling properties of anaerobic

mixed liquors may then invariably be affected.
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8 GENERAL DISCUSSION

8.1 The Anaerobic Membrane Bioreactor vs. Conventional Anaerobic
Treatment Technologies

Conventional anaerobic treatments such as the UASB and EGSB reactors have been

widely used in the treatment of wastewaters. In general, these established anaerobic

technologies have mainly been utilised in tropical climates for the treatment of

municipal and domestic wastewaters. In temperate climates, where temperatures are

below the optima for methanogenesis for most of the year, anaerobic treatment has

been limited to high strength wastewaters such as industrial effluents and leachates.

Results from this thesis highlight the sensitivity of the anaerobic process to

temperature and pH variation. Chapter 7 showed that a drop in temperature below the

optima for methanogenesis (30 to 35oC) will result in a drop in pH. However, where

there is adequate pH control, this drop is less severe with pH remaining within an

acceptable range for methanogenesis to continue to occur. Without pH control, pH

continues to fall so that the system eventually fails. Anaerobic systems are still

unable to compete with their aerobic counterparts in terms of performance and

flexibility at psychrophilic temperatures. COD removal in conventional anaerobic

systems treating municipal or domestic wastewaters at low temperatures have

typically averaged between 40 and 90% (Lagenhoff et al., 2000; Dama et al., 2002;

Seghezzo et al., 2002; Van der Last and Lettinga, 1992; Yu and Anderson, 1996) with

most systems to date confined to lab and pilot scale. In contrast, conventional

aerobic systems will typically achieve >95% removal in the treatment of dilute

wastewaters with the added bonus that operating conditions are not constrained to

such a narrow range.

The anaerobic membrane bioreactor utilised in this study was able to overcome many

of the limitations typically experienced with conventional anaerobic systems. The

incorporation of a membrane into the anaerobic bioreactor allowed sufficient time for

biomass acclimatisation and so reduced biomass washout.
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Evidence of this is shown by the consistent performance data obtained with the pilot

scale system (80% to 97% COD removal) as well as the increased proportion of

suspended solids attributed to volatile matter. Specific methanogenic activity was

also higher in the case of the anaerobic MBR in this study when compared with

conventional anaerobic systems. The pilot scale system was able to achieve SMAs of

0.20gCOD-CH4.gMLVSS-1 to 0.24gCOD-CH4.gMLVSS-1 in contrast to SMAs of

0.09 to 0.13gCOD-CH4.gMLVSS-1 achieved by Seghezzo et al. (2002) while treating

settled domestic sewage.

The main advantage that other anaerobic systems have had to date over the anaerobic

membrane bioreactor is in the area of membrane fouling due to the absence of

membranes in these systems. In all three results chapters, it was established that

fouling of a membrane exposed to anaerobic biomass and mixed liquors can be

attributed to colloidal matter as well as bacterial cells and other solid matter. While it

is not yet possible to eradicate membrane fouling altogether, it is possible to attenuate

fouling with the use of gas sparging (as shown in chapters 6 and 7). Gas sparging was

able to reduce fouling in all systems utilised during this study irrespective of operating

conditions. In addition, operating conditions such as pressure, temperature and pH

were found to affect biomass and mixed liquor characteristics which in turn had an

effect on membrane fouling. Results from all three chapters indicate that limiting

SMP concentrations in the mixed liquor may improve fouling considerably.

8.2 Anaerobic Membrane Bioreactor vs. Aerobic Membrane Bioreactors

This study established significant differences between the anaerobic and aerobic MBR

systems. While both incorporate membranes, the method in which these membranes

became fouled is very different.

During this study, anaerobic biomass remained distinctly granular in all experiments

in comparison to aerobic systems were biomass is flocculent (Germaine, 2004;

Alvarez, 2005). Chapter 5 established that the increased compressibility and smaller

particle size of aerobic mixed liquors in comparison to anaerobic mixed liquors was

detrimental to maintenance of flux during continuous operation.
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Aerobic systems generally had lesser amounts of SMP than the anaerobic system

when both systems were not actively degrading substrates. However, this trend was

reversed with continuous operation. SMP concentrations in the pilot scale anaerobic

MBR were generally lower than SMP concentrations of aerobic systems in published

literature. 9 to 20 mgL-1 of SMP was produced per unit mass of biomass. Chudoba

(1985b) reports that aerobic systems will usually produce 15 to 25mgL-1 per g of

biomass. In addition, biomass concentrations were lower in comparison to aerobic

systems despite the consistent performance of the latter system. This is a significant

advantage in the treatment of municipal and domestic wastewaters as the amounts of

sludge for disposal is reduced. Results from chapter 5 highlighted the importance of

the initial cake formed by anaerobic mixed liquors in attenuating fouling in these

systems. Results from chapters 6 and 7 also established the existence of a rapid and

slow fouling phase with the rapid fouling phase characterised by the formation of a

cake layer and the slow fouling phase characterised by the travel of colloidal matter

towards the membrane surface. All results appear to indicate that colloidal matter

causes intrinsic pore blockage and therefore irreversible fouling (Cho and Fane,

2002). Chapter 6 appears to indicate that cake and solid deposition characterises sub-

critical operation in anaerobic systems. This explains the high TMP values that were

seen with the anaerobic system in comparison to aerobic systems. However, this type

of fouling is reversible in contrast to aerobic systems where it has been established

that solid deposition on the membrane surface usually characterises post-critical

operation (Ognier et al., 2004). The initial cake formed during the rapid fouling phase

in anaerobic MBR systems is advantageous in trapping smaller organics in the mixed

liquor which may cause intrinsic pore blockage. This advantage is lost with the

aerobic system.

Several authors have investigated fouling attenuation with the use of gas sparging

although much of the research has focused on the use of air in aerobic MBR systems

(Germaine, 2004). Generally, fouling was reduced significantly in all systems studied

during these experiments by the introduction of gas into the systems. In addition to

reducing membrane fouling, gas sparging also increased turbulence and mixing

efficiency within the membrane bioreactors whether at pilot scale or bench scale.
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The main advantage the aerobic MBR has historically had over the anaerobic system

is the versatility and flexibility of the process in that it can be used to treat a variety of

wastewaters under a wide range of operating conditions. The anaerobic MBR system

in this study however suffered a lesser degree of irreversible fouling in comparison to

published work on aerobic MBRs. In addition, a relatively high performance was

obtained while using the process to treat settled domestic sewage, a dilute wastewater.

Performance of the system was indeed comparable to aerobic systems despite changes

to operating conditions. Although a drop in temperature initially reduced COD

removal by approximately 10%, the system recovered and stabilised so that even at

temperatures as low as 12oC, final treatment efficiencies were >90%.

Fouling of the membranes when in submerged configuration appears to be lower than

in side-stream configuration as seen in chapters 6 and 7. The same trend is seen with

aerobic systems (Judd, 2004). Ghosh and Cui (1999) attribute this difference (in the

presence of gas sparging) to improved mass transfer and higher permeabilities as a

result of shear at the membrane surface.
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Table 8.27: Anaerobic MBRs vs. Aerobic MBRs and Conventional Anaerobic Systems.

Reactor/Treatment Type HRT
(hours)

CODinf (mgL-

1)
Operating Temperature
(oC)

COD removal
(%)

Reference

Anaerobic Membrane Bioreactor 5.6-6.4 200-700 12-35 82-97 This study

2.2-6.48 350-490 30-35 83-90 Kataoka et al., 1992

7.2 400 25-28 73 Kiriyama et al., 1992

Conventional Anaerobic Systems
Anaerobic Baffled Reactor

20 350-1200 30-35 70-90 Dama et al., 2002

UASB 2-9 152.6 22 70-80 Seghezzo et al., 2002

EGSB 1-3.5 391 13-19 16-34 Van der Last and
Lettinga, 1992.

Aerobic MBR 11.5-17 105-532 - 89-97.2 Germaine, 2004

8 100-420 - 54-83 Alvarez, 2005
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8.3 The Anaerobic Membrane Bioreactor: A Credible Alternative for the

Treatment of Municipal and Domestic Wastewaters at Low

Temperatures?

Results from chapters 6 and 7 indicate the possibility of using anaerobic MBR

technology for the treatment of domestic or other dilute wastewaters under

psychrophilic conditions. The anaerobic membrane bioreactor allows a wider window

of application for anaerobic treatment. For example, problems which have

historically limited the use of anaerobic technology such as failure of the system at

low temperatures and slow responses where there has been toxic shock, can be

overcome by the incorporation of a membrane into the anaerobic bioreactor.

While fouling has consistently been a problem with all membrane bioreactors, this

phenomenon is successfully inhibited by gas sparging, and adequate mixing in the

system.

The anaerobic MBR has one major advantage over the aerobic MBR in that it

produces methane which can be converted into recoverable energy. There is potential

for electricity consumption by membranes to be offset by this reusable energy. As a

result, the process is less energy intensive and may reduce the relatively high costs

which have historically been associated with the installation and operation of MBR

systems. However, the reduction in typical capital and operating costs should be

weighed against the cost of technology required for the conversion of produced biogas

into energy.
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9 CONCLUSIONS

 Anaerobic biomass is significantly different from aerobic biomass. Aerobic

sludge and mixed liquors are usually flocculent in contrast to the granules

which are normally found in anaerobic wastewater treatment systems.

Particle sizes are generally higher in anaerobic mbr systems. As a result,

anaerobic mixed liquors are more dewaterable than mixed liquors in aerobic

mbrs under continuous operation. In addition EPS and SMP levels differed

between the two types of MBR systems. SMP levels were relatively lower in

anaerobic mbrs in comparison to aerobic mbrs under continuous operation.

Temperature, pH, wastewater/substrate type were also found to affect mixed

liquor properties and microbial substance concentrations. A drop in

temperature, pH or a change to substrate type appears to cause the release of

microbial substances as a response to environmental stress.

 A high COD removal of >90% was achieved even at temperatures as low as

12oC despite the use of anaerobic biomass initially acclimatised to

temperatures of 30 to 35oC as inoculum. Results were consistent irrespective

of membrane configuration suggesting that the system was successful in

forcing the acclimatisation of anaerobes to psychrophilic temperatures.

 Membrane fouling is affected by biomass characteristics. The assessment of

fouling in anaerobic and aerobic systems indicates that membranes in the two

types of systems foul differently. Both systems are fouled by a combination

of microbial substances and bacterial cells. It appears that membranes

exposed to anaerobic mixed liquors are fouled initially by bacterial cells

before fouling with colloidal matter. In contrast, membranes in aerobic

systems appear to be fouled firstly by colloidal matter before being fouled

with bacterial cells. Colloidal matter is a major foulant in both the anaerobic

and aerobic mbr system. Fouling within the anaerobic membrane bioreactor

showed a parabolic relationship to colloidal matter present in the mixed

liquor. EPS appeared to have little or no effect on membranes in anaerobic

systems except as far as its correlation with SMP levels within the system.
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 Fouling rates were found to decrease at all times when gas was introduced

into the anaerobic system whether in side-stream or submerged

configuration. The same effect is seen in aerobic mbr systems. Indications

are that a reduction in fouling is brought about by higher shear rates and

sloughing of foulants from the membrane surface. In addition, inducing

turbulence increases kinetic energy of particles thereby reducing the energy

barrier required to remove cells from the membrane surface.

 Operating conditions influence process efficiency and performance in

AnMBRs with drops in temperature and pH resulting in reduced COD

removal and methanogenic activity. However, the anaerobic MBR is able to

operate at lower temperatures provided that there is adequate pH control, all

other operating conditions (such as MLSS and MLVSS concentrations) are

favourable and the system is given enough time to stabilise.
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10 FUTURE WORK

 The system was run for a relatively short period. It is possible that imposing

longer acclimatisation periods such as twice the SRT may change the system

characteristics and properties. The system should be run with a longer

acclimatisation phase to determine whether this is the case.

 Fouling was found to take place in two consecutive phases-rapid and slow.

The exact reasons for the existence of these two phases were not investigated

during this study. Experiments should be carried out in order to determine

the reasons for the existence of these two phases as further knowledge of

these phases may be helpful in trying to identify novel methods for fouling

amelioration.

 The difference in fouling mechanisms between the aerobic and anaerobic

membrane bioreactor were established with initial fouling in the former

taking place via the pore blocking model and the latter via the cake filtration

model. However, results were based on short term experiments. It will be

useful to know if these models and mechanisms hold true in the long term.

 It has been established that colloidal matter and microbial substances are

major foulants in the anaerobic membrane bioreactor. In addition, it was

established that SMP is released in reaction to environmental stress.

However, there is still much unknown about the exact mechanisms behind

the formation of these compounds. Methods by which concentrations of

these substances may be kept at minimum levels (in spite of system stress)

should be identified.

 The pilot scale AnMBR used in this study consistently achieved high

treatment efficiencies. However, the system may be scaled up in order to

determine if these results are replicable at full scale in the long term.
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Appendix A CALLIBRATION CURVES FOR EPS ANALYSIS

Figure A.1: Carbohydrate Calibration Curve

Figure A.2: Protein Calibration Curve
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Appendix B CLASSIC FILTRATION LAWS

Two classic filtration laws were originally developed by Hermia (1982) to describe dead end

filtration (Table 1). These models can be further applied to continuous filtration at constant

pressure.

Table B.1: Classic filtration laws

Law Equation Description

Cake
Filtration

baVVt /
Deposition of particles larger than membrane pore size onto the
membrane surface resulting in cake formation.

Pore
Blocking bat

V

t


Reduction of membrane pore size by deposition of particles
smaller than membrane pore size onto pore walls with particle
overlay.


