
Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226 (11) 1900-1913

Development of Tuneable Test Problem Generator for

Assembly Sequence Planning and Assembly Line

Balancing

Mohd Fadzil Faisae Ab. Rashid1,2, Windo Hutabarat1 and Ashutosh Tiwari1

Abstract

Assembly optimisation activities that involve Assembly Sequence Planning (ASP) and Assembly

Line Balancing (ALB) have been extensively studied because of the importance of optimal

assembly efficiency to manufacturing competitiveness. Numerous research works in ASP and

ALB mainly focuses on developing algorithms to solve problems and to optimise ASP and ALB.

However, there is a scarcity in works that focus on developing problems to test these

algorithms. In optimisation algorithm development, testing algorithms by a broad range of test

problems is crucial to identify their strengths and weaknesses. This paper proposes a generator

of ASP and ALB test problems with tuneable complexity levels. Experiments confirm that the

selected combination of input attributes does control the generated ASP and ALB problem

complexity, and also that the generated problems can be used to identify the suitability of a

given algorithm to problem types.

Keywords

Assembly sequence planning, assembly line balancing, test problem generator

1 Introduction

In manufacturing, assembly optimisation

involves bringing and joining parts and/or

subassemblies together to make the process

as efficient as possible. Assembly Sequence

Planning (ASP) and Assembly Line

Balancing (ALB) are classified among major

topics in assembly optimisation because

both are directly related to assembly

efficiency [1; 2]. Recently, researchers have

discovered benefits of solving and

optimising ASP and ALB problems together

[3; 4], leading to increased research focus

on testing new or improved algorithms that

operate on these combined problems. In

order to assess the performance of new or

improved algorithms and to compare them

with existing algorithms, a wide range of

test problems are required. In ASP and ALB

optimisation works that focus on algorithm

development or improvement, researchers

have used two approaches to test algorithm

performance. One approach is to test the

algorithms using specific case studies [5; 6].

Another acknowledged approach is to adopt

the test problems that are frequently used

in literature [7; 8]. These approaches lack

generality because there has been no

investigation into the fit of algorithms to

problem types. Algorithms have not been

tested with a wide range of problem types.

The most frequently used test problem in

ASP is an assembly of transmission-type

part with eleven components presented by

DeFazio and Whitney [9].

1 Manufacturing and Materials Department, Cranfield
University, Bedford, UK
2 Faculty of Mechanical Engineering, Universiti
Malaysia Pahang, Pahang, Malaysia

Corresponding author:
Professor Ashutosh Tiwari, Manufacturing and
Materials Department, Cranfield University,
Bedford, MK43 0AL, United Kingdom.
Email: a.tiwari@cranfield.ac.uk

Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226 (11) 1900-1913

This problem has been presented in many

papers such as [10-12] to evaluate

algorithm performance. Other than this

widely-used problem example, most ASP

test problems found in literature have only

been used within the same research group.

There is thus no accepted standard ASP test

problem for evaluating algorithm

performance. On the other hand, in ALB

optimisation, development of test problems

was started in 1960s, resulting in many that

have been developed and collected by

different researchers. These problems vary

in task size from eight to 297 tasks. The

famous ALB problems such as the 8-tasks

by Bowman, 45-tasks by Kilbridge and

Wester, 70-tasks by Tonge, 111-tasks by

Arcus and 297-tasks by Scholl are still being

used until today to evaluate algorithm

performance for line balancing problems

[13].

Although these few benchmark ASP and

ALB problems are available for comparing

algorithm performance, there is no

standard test problem set that covers a

wide variety of problem difficulties,

especially to test the combined ASP and ALB

optimisation. Not only this is important for

enhancing the researchers’ understanding

of their algorithm, it will also help users in

selecting which algorithm is more

appropriate to their requirements. In order

to facilitate such experimentation, a set of

problems with controllable complexity level

is needed. One way to address this is to

devise a test problem generator with

tuneable difficulty level that can

systematically generate a set of test

problems with a desired mix of complexity

levels.

This paper proposes a test problem

generator with tuneable complexity level

for combined ASP and ALB problems.

Section 2 explains the requirements and

specifications for the proposed test problem

generator. Section 3 will explain the

methodology of the test problem generator

development, which is divided into graph

and data generation methodology. Then,

section 4 describes the experimental design

to test the proposed test problem generator

for ASP and ALB. Section 5 presents and

discusses the experimental results in this

work. Finally, section 6 presents the

authors’ conclusions on the proposed test

problem generator according to

experimental results.

2 Test Problem Generator for

ASP and ALB

In mathematical optimisation community,

the importance of test problem generators

(TPG) is widely appreciated. Although

algorithm development is important, any

new algorithm should ideally be tested with

a wide range of problem types before

making any conclusion on their usefulness

[14]. Most of ASP and ALB works focus on

proposing and demonstrating algorithm

performance on specific ASP and/or ALB

problems. There is a lack of investigation

into testing and validating the performance

of algorithms on wider classes of problems.

A TPG will be useful to provide a wide range

of ASP and ALB problems with differing

characteristics and difficulties. In many

cases, the problem difficulty is only

determined by the size of the problem.

While this is correct in certain cases, this

overlooks the influence of many other

attributes on problem difficulty.

Additionally, TPG will also be useful to

identify which algorithm may be more

suitable for a given type of problems. This

knowledge is very important to help users

to choose the right algorithm, and also for

researchers to identify opportunities for

further improvement in a particular

algorithm.

Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226 (11) 1900-1913

To provide the mentioned benefits, the TPG

must satisfy the following requirements:

I. Representation. The problems are

generated on the basis of assembly task and

represented using precedence graph. This is

the common way to represent task-based

assembly problem in earlier works [2].

II. Output. The TPG is expected to produce

precedence graphs that represent task-

based assembly problems. Besides that, the

TPG also must be able to generate assembly

data, which consists of assembly direction

and tool for ASP and assembly time for ALB.

These types of data are selected based on

popularity from literature survey [2].

III. Tuneable difficulty level. One of the

important features expected in a TPG is

tuneable difficulty level. This feature will

ensure that test problems are generated

within known difficulty ranges as required.

There are not many proposals in literature

on methods for generating test problems in

this domain. Furthermore, existing

proposals are limited to generating test

problems for ALB. Bhattacharjee and Sahu’s

proposal is to generate a random

precedence graph to represent an ALB

problem [15]. In this approach, the

assembly problem is generated randomly

and then the problem difficulty is measured

to determine its complexity level. Later, a

systematic data generator for assembly line

balancing was proposed by Otto [16].

Besides presenting a systematic method for

generating precedence graphs, this work

also demonstrates that common graph

structures in real-world assembly problems

i.e. chains, bottlenecks and modules can be

generated on a precedence graph. This

approach is also able to generate problems

at the desired difficulty levels [16].

Otto’s work is the one closest to our stated

requirements because this work fulfils the

requirements (I) and (III). In Otto’s work,

ALB problems are generated based on

assembly tasks and represented using

precedence graphs. It also gives users the

ability to create test problems difficulty at

the desired level of difficulty. However,

since this work was specifically developed

for ALB problems, it fails requirement (II).

Therefore, in this paper, the ALB-only

systematic data generator proposed by Otto

in 2011 will be expanded to incorporate

both ASP and ALB test problems.

3 Test Problem Generator

Development

The test problem generator was developed

using the methodology presented in Figure

1. The details of each step are explained in

section 3.1 to 3.5.

Figure 1: Test Problem Generator
Development Flow

The first step in developing the TPG is to

identify the input and output elements. Next

are the independent development of

automated generators for assembly graph,

ASP and ALB data. Finally, the outputs from

graph and data generators are synchronised

and combined to produce a complete test

problem set. A worked example of the

proposed test problem generator with

Input and output elements
of assembly test problems

Assembly graph generation

ASP data generation

ALB data generation

Combine and synchronise

the graph and data output

Section 3.1

Section 3.2

Section 3.3

Section 3.4

Section 3.5

Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226 (11) 1900-1913

outputs for each step is presented in Table

1.

Table 1: Example of test problem generation process

Steps Output Examples

3.1. Input and Output Elements
i. Set the compulsory input data

i. n=9; OSd= Medium; δOS = 0.05; s= 3; ndir=4; ntool=
3;FRdir=Low; FRtool= Medium; ctmax= 55; TV= Low

3.2. Assembly Graph Generation
i. Distribute the nodes among all stages

ii. Connect nodes in stage k>1 with
random task in stage k-1.

iii. Calculate Order Strength (OS) for
initial graph

iv. Increase OS value by randomly
selecting a node from stage k<s and
connecting it with a random node
from a later stage. This procedure is
repeated until the OSd level is
achieved.

i. nd= [4 3 2]; ii.
nd is number of nodes
 in specific stage

iii. OS =7/36
 = 0.194 (low level)
iv.

3.3. ASP Data Generation
i. Generate possible lower and upper

limits for data frequency by fulfilling
the constraint in Eq. 6 and 7.

ii. Select one set of limits randomly
iii. Generate remaining frequencies
iv. Distribute nodes based on generated

frequencies randomly

i. Possible lower and upper limit:

 Assembly direction = [(1,5)(1,6)]

 Assembly tool = [(1,4)(2,4)(2,5)]
ii. Selected limit (1,5) and (2,4)
iii. Direction frequency = [2 1 1 5];
 Tool frequency = [3 4 2]
iv. Assembly direction =[-y,-x,+x,-x,-x,+y,-x,-y,-x]
Assembly tool = [T1,T3,T3,T2,T3,T2,T2,T1,T3]

3.4. ALB Data Generation
i. Generate two random integer,

tlim∊[1,ctmax] until required TV fulfilled
ii. Generate remaining data within limit

using uniform distribution

i. tlim = [5, 41]

ii. Assembly time = [2, 9, 41, 16, 37, 12, 27, 5, 19]

3.5. Combine and synchronise the output
 i. Merge the ASP and ALB data in a data

matrix
 ii. Transform the precedence graph into
 precedence matrix format

i. Data matrix ii. Precedence matrix
Task D T M

1 -y T1 22

2 -x T3 9

3 +x T3 41
4 -x T2 16

5 -x T3 37

6 +y T2 12

7 -x T2 27
8 -y T1 5

9 -x T3 19

D - Direction, T - Tool
M - Time

 1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 1 1 0 0

2 0 0 0 0 1 0 0 0 0

3 0 0 0 0 1 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 1

6 0 0 0 0 0 0 0 1 0

7 0 0 0 0 0 0 0 0 1

8 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

j

S
i

Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226 (11) 1900-1913

Figure 2: Problem Generator Input and Output Map

3.1 Input and Output Elements of

Assembly Test Problems

The mapping of input and output variables

is shown in Figure 2. The tuneable inputs

are presented in bold and italic font.

3.1.1 Tuneable Input Elements

The tuneable input elements are variables

that are used to control the problem

difficulty generated by the TPG. In this

work, one new tuning variable is proposed

and the rest are adopted from previous

works. The TPG is conceptually divided into

two parts: the generation of assembly

graphs and the generation of assembly data.

The next section will discuss the tuneable

input variables for each part. Although the

tuneable input variables for ALB has been

discussed in earlier works, no clear link has

been suggested in literature between input

and specific difficulty levels for ASP [13].

Tuneable Input for Assembly Graph

Two tuneable inputs will be used to

generate precedence at a specific

complexity level. The first input variable to

measure graph complexity is n, the number

of nodes in a graph. In ASP and ALB

contexts, graph nodes represent assembly

tasks for a given problem. The number of

possible assembly sequences will

exponentially increase with the number of

nodes. In surveyed literature, the size of

ASP problems varies between five to 75

nodes; in ALB, 86% of surveyed ALB papers

used between seven to 150 nodes, while the

remaining 14% used up to 300 nodes.

Another graph input variable conceptually

linked to graph difficulty is Order Strength.

Order Strength (OS) measures the relative

number of precedence relation in a graph.

By increasing the relative number of

precedence relations, the resulting graph is

expected to be more complicated [13; 15].

OS is defined as a total number of ordering

relation in transitive closure divided by the

possible number of ordering relation for

particular graph. The OS is calculated as

follows.

 Eq. 1

R – Total number of ordering relations
P – Possible number of ordering relations

 Eq. 2

n – Number of nodes

The OS value varies between [0, 1]. OS = 0

shows that there is no precedence relation

in the graph and OS = 1 shows that there is

Test

Problem

Generator

Number of tasks

Order strength

Number of stages

Maximum cycle time

Time variability ratio

Frequency ratio

Number of directions

Number of tools

Precedence matrix

Data matrix
(Assembly direction,
tool and time)

Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226 (11) 1900-1913

only one feasible sequence for particular

problem. The OS attribute is used together

with OS tolerance (δOS) since it is difficult

(impossible in some cases) to meet the

exact OS value.

Tuneable Input for Assembly Data

Previously, a number of time-related

measures for ALB data have been proposed,

such as ratio between maximum and

minimum completion time between

assembly lines [17], standard deviation

[15], and time variability ratio. Time

variability ratio (TV) has consistently been

used in previous works and is selected for

use in this work. TV indicates the range of

task time of all tasks dispersed between the

assembly lines. TV is calculated as follows:

 Eq. 3

 Eq. 4

tmax – maximum task time
tmin – minimum task time
ctmax – maximum cycle time

A smaller TV value indicates that existing

task times are distributed in a smaller

range, which leads to an increased level of

problem complexity. The tmax constraint in

Eq. 4 is introduced to avoid generation of

uniformly small task time, which leads to

inconsistency of difficulty levels. The ctmax

constraint is explained in section 3.1.2.

Meanwhile, in ASP problem domain, no

variable for measuring data complexity has

been established. In this work, the ASP data

considered are assembly directions and

assembly tools. This type of data can be

measured by considering how many times

(i.e. frequency) a similar direction or tool

appears in the problem. A common

optimisation objective is to minimise

direction or tool changes in a sequence of

tasks. Thus, the frequency ratio (FR) is

proposed to be used as an input variable

that measures ASP data complexity.

 Eq. 5

fmin – Minimum data frequency

fmax – Maximum data frequency

Data with a higher FR is harder to arrange

to achieve minimum number of changes

because the choice and variability of data

are high. This type of data will usually

produce higher number of changes

compared with smaller FR data. The details

of graph and assembly data attributes level

are shown in Table 2. In this table, the

attribute level for ‘number of nodes’ is

proposed based on a survey on problem

sizes as mentioned in section 3.1.1, while

the proposed classification of FR and TV

levels are based on a few initial tests. The

proposed classification of OS levels is

adopted from literature review [16].

Table 2: Assembly graph and assembly data
attribute levels

Attributes Low Medium High

Number of
nodes, n

n ≤ 20 20 <n ≤ 70 n> 70

Order
strength, OS

OS ≤ 0.2 0.2 <OS ≤ 0.6 OS> 0.6

Time
variability
ratio, TV

TV> 6.5 2.5 <TV ≤ 6.5 TV ≤ 2.5

Frequency
ratio, FR

FR ≤ 0.2 0.2 <FR ≤ 0.6 FR> 0.6

The tuneable input variables are classified

into Low, Medium and High levels because

of nonlinearity of the problem. Although the

general trend of problem difficulty over

tuneable variables can be predicted, when

tuning for a targeted difficulty level, too

small variable changes may lead to

inconsistent difficulty levels. The

classification of level difficulties as in Table

2 can be used as a guideline for users in

Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226 (11) 1900-1913

selecting appropriate difficulty levels for

their use. To reduce the possibility of

inconsistent difficulty levels, it is suggested

to use the midpoint of the Medium level to

generate Medium difficulty problem.

3.1.2 Other Input Elements

Apart from the tuneable elements, there are

other ‘compulsory’ inputs that are required

for generating a complete problem.

Although some of these variables have

implications to the problem difficulty level,

they are not used here as means to control

the problem difficulty because of a lack of

agreement in literature. These inputs are:

number of stages (s), maximum cycle time

(ctmax), number of assembly direction (ndir)

and number of assembly tool (ntool). Number

of stages (s) refers to number of column

that contains nodes in a specific precedence

graph. In Figure 3, the example graph

consists of three stages (hence s=3) that are

shown separated by dotted lines. This

variable determines the basic shape of

graph, where smaller number of stages will

produce graphs with more parallel nodes.

The maximum cycle time (ctmax) is the upper

limit of allowable cycle time. This variable is

calculated from the required production

rate of the assembly line. The number of

directions and number of tools are also

required to generate ASP data.

Another important element of the TPG is

the pseudo-random number generator that

underlies most of the data generation

algorithm. In this work, the pseudo-random

generator used is Mersenne Twister with

the range between [0, 232 -1] for 32-bit

integer [18]. Appropriate use of seed values

ensures that all results are reproducible.

3.1.3 Output Elements

There are two sets of outputs generated by

the proposed TPG. The first output is the

assembly precedence graph (e.g. Figure 3),

represented by a precedence matrix, which

is an n×n matrix filled with 1 or 0 value s

(Table 3). The leftmost column shows

assembly tasks and the top row shows the

follower tasks. The value 1 shows that the

task j must be performed after task i.

The second output is a data matrix that

consists of assembly directions, assembly

tools and assembly time associated with

every task. This data is generated according

to the required difficulty level as

determined in tuneable input variables.

Figure 3: Example of precedence graph

Table 3: Example of precedence matrix

i
j

1 2 3 4
1 0 1 1 0
2 0 0 0 1
3 0 0 0 1
4 0 0 0 0

3.2 Assembly Graph Generation

In this work, the systematic graph

generation method is adopted from Otto’s

work [16]. The five steps below are as

proposed in that work.

Step 1: Provide all the compulsory inputs.

The compulsory inputs are number of nodes

(n), desired Order Strength (OSd), Order

Strength tolerance (δOS) and number of

stages (s).

Step 2: Generate and distribute the nodes in

all stages using uniform distribution.

Step 3: Connect every node in stage k>1

with exactly one random node in stage k-1.

This step is important to keep the nodes in

their original stages.

2

1

3

4

Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226 (11) 1900-1913

Step 4: Calculate the OS using Eq. 1. If the OS

is within OSd ± δOS, then terminate the

process. Otherwise, continue with Step 5.

Step 5: Select a node i in stage k < s and

insert an arc to a random node j in stage

m>k until the desired OS is achieved. A

direct arc from node i to node j is allowed

only if:

1. Task i have no restriction such as

isolated node or special structure.

2. The OS values have not exceeded the

desired upper limit.

3.3 ASP Data Generation

In this work, the ASP data that are

considered are ‘assembly direction’ and

‘assembly tool change’. The following steps

are applied to generate these data. Besides

number of tasks, n, the required input in

ASP data generation is ASP ‘data frequency

ratio’, FR.

Step 1: Calculate all possible lower (Llimit)

and upper (Ulimit) limits of data frequencies

according to FR. The Llimit and Ulimit

represent the minimum and maximum

number of times that a particular direction

or tool appear in the generated problem.

These limits must fulfil the following

constraints:

 Eq. 6

 Eq. 7

Eq. 6 and 7 ensure that the summation of

generated data within upper and lower

limits matches the number of tasks, n. In

these equations, ntype represent the number

of direction (ndir) or number of tool (ntool)

type. In this work, six major direction axes

(+x,-x,+y,-y,+z,-z) are considered, thus ntype

for ndir is equal to six. Meanwhile the ntype for

ntool depends on the number of tool types in

a particular assembly line.

Step 2: Randomly select a pair of lower and

upper limits from the set of possible limits

determined in Step 1. Generate remaining

data frequencies using uniform distribution.

The summation of data frequencies must be

equal to n.

Step 3: Generate the ASP data based on

frequencies (Step 2) in random order.

3.4 ALB Data Generation

The ALB data to be generated is the ‘task

time’ for all nodes. The required inputs are

‘maximum cycle time’ (ctmax) and ‘time

variability ratio’ (TV). This data is generated

in two steps:

Step 1: Calculate all possible limit of task

time based on TV. The upper limit must not

exceed ctmax. Randomly select an upper and

lower limit from all possible limit pairs.

Step 2: Generate the remaining task times

between upper and lower limit using

uniform distribution.

3.5 Combine and Synchronise the

Graph and Data Output

Synchronisation of ASP-specific and ALB-

specific outputs is straightforward because

both ASP and ALB representations are both

developed using the same assembly task

basis [19]. Data generated in sections 3.3

and 3.4 are directly linked with assembly

tasks and no further adjustment is needed.

In this synchronisation step, the output data

consisting of ASP data from Step 3.3 and

ALB data from Step 3.4 are combined to

establish a data matrix. In the data matrix,

the assembly direction data is located on

the first column, assembly tool data in the

second column and assembly data for ALB

in the third column.

The final process in this step is to transform

the precedence graph into precedence

matrix as explained in section 3.1.3. This is

Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226 (11) 1900-1913

an important process to synchronise the

format of assembly graph into readable

computer language.

4 Experimental Design

This section describes the setup of the

experimental design to assess problems

generated using the proposed test problem

generator (TPG). The experiment is divided

into two phases. In Phase 1, the experiment

will focus on the ability of TPG to generate

problems at desired complexity level by

manipulating the tuneable input attributes.

Then, in Phase 2, the generated problems

from TPG will be used to evaluate the

performance of a set of selected algorithms.

The purpose of the second phase

experiment is to identify if the generated

problems from TPG can be used to

characterise the best and worst

performance of each algorithm.

4.1 Phase 1: Testing of Tuneable

Input

The experiment in this phase is conducted

by dividing all the tuneable input variables

into five levels as presented in Table 4.

Table 4: Tuneable input level setting

Level n OS TV FR

1 15 0.2 2 0.2

2 20 0.3 3 0.3

3 40 0.4 4 0.4

4 60 0.5 6 0.6

5 80 0.6 8 0.8

A reference variable setting (datum) is

selected as a baseline, while the rest of the

problem variable settings are generated by

changing only one variable value at a time.

In this case, level 3 is selected as the

reference variable setting because it is in

the middle between minimum and

maximum value. The complete

experimental table for Phase 1 is shown in

Table 5.

From Table 5, 17 test problems are

generated by changing one variable at a

time. Problem 1 represents the reference

variable setting, problem 2 – 5 examine the

effect of n, problem 6 – 9 for effect of OS,

problem 10 – 13 for effect of TV and

problem 14 – 17 for effect of FR.

Table 5: Experimental table for Phase 1

Problem n OS TV FR

1 40 0.4 4 0.4

2 15 0.4 4 0.4

3 20 0.4 4 0.4

4 60 0.4 4 0.4

5 80 0.4 4 0.4

6 40 0.2 4 0.4

7 40 0.3 4 0.4

8 40 0.5 4 0.4

9 40 0.6 4 0.4

10 40 0.4 2 0.4

11 40 0.4 3 0.4

12 40 0.4 6 0.4

13 40 0.4 8 0.4

14 40 0.4 4 0.2

15 40 0.4 4 0.3

16 40 0.4 4 0.6

17 40 0.4 4 0.8

In order to solve precedence graphs, the

topological sort algorithm is used to

generate feasible assembly sequences. This

approach will ensure that the generated

sequences are always feasible by sorting the

nodes into ‘available’ and ‘unavailable’

tasks, during the sequence generation

process [20].

To test the generated problems, three

different algorithms were selected for each

problem type. For ASP problem, a multi-

objective genetic algorithm (MOGA) that

used in [21] is chosen. This algorithm is

selected because, in common with this

work, it used task-based representation in

Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226 (11) 1900-1913

representing ASP problems. Additionally,

genetic algorithm is one of the most

frequently used algorithms for solving and

optimising ASP problems [2]. In this

algorithm, the fitness function for ASP is as

follows.

 Eq. 8

dc – number of direction changes
tc – number of tool changes
dcmax – maximum possible number of

direction changes
tcmax – maximum possible number of tool

changes
dcmax, tcmax – number of nodes – 1

To test the ALB problem, an ant colony

optimisation (ACO) algorithm that has been

used for simple assembly line balancing

problem (SALBP) in [22] is used. This

algorithm is selected based on citation

popularity. In addition, ant colony algorithm

is also one of frequently used algorithm to

solve and optimise ALB problem [2]. In this

algorithm, the fitness function is designed

as follows.

 Eq. 9

ct – cycle time
nws – number of workstations
wload – workload variance
ctmax – maximum possible cycle time
nwsmax – maximum possible number of

workstations
wloadmax – maximum possible workload

variance

Finally, for integrated ASP and ALB

problem, a Hybrid Genetic Algorithm (HGA)

that used in [3] is selected. This algorithm is

also selected based on the popularity of this

work for integrated ASP and ALB. The

fitness function for this problem is designed

as follows.

 Eq. 10

4.2 Phase 2: Algorithm Testing Using

Generated Problems

In the Phase 2, the algorithms’ performance

to generate Pareto optimal solution for

combined ASP and ALB problem are tested.

The purpose of this test to determine

whether the problems generated by the TPG

have sufficient variety that enables users to

perceive differences in algorithm

performance. To perform this test, the

MOGA and ACO algorithm previously used

to optimise ASP and ALB independently will

be used to optimise combined ASP and ALB

problem alongside Hybrid GA. The objective

function set for this experiment is as

follows.

f1 = minimise number of direction change

f2 = minimise number of tool change

f3 = minimise cycle time

f4 = minimise number of workstation

f5 = minimise workload deviation

In order to evaluate the performance of

each algorithm when dealing with different

complexity problems, the following

performance indicators adopted from [23]

and [24] are used.

i. Number of nondominated solution in

Pareto optimal, ῆ: Show the number of

nondominated solution generated by each

algorithm in Pareto solution. Higher ῆ

indicates better algorithm performance.

ii. Error Ratio, ER: ER is given by dividing

the number of solutions which are not

members of the Pareto optimal set with the

total number of solutions generated by

algorithm q. Smaller ER indicates better

algorithm performance.

Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226 (11) 1900-1913

iii. Generational Distance, GD: GD finds an

average distance of solution with the

nearest Pareto optimal solution. Smaller GD

indicates better algorithm performance.

 Eq. 11

sq – number of solutions generated by

algorithm q

 Eq. 12

Where fm(i) is the m-th objective function

value of solution i and fm*(k) is the m-th

objective function value of kth member of

Pareto optimal set.

iv. Spacing: This indicator measures the
relative distance between each solution.

 Eq. 13

 is distance between solution i and the
nearest solution, while is average of all .
Smaller Spacing indicate better uniformity
of space between solutions.

v. Maximum Spread, Maxspread: Measures the
extent of solution distribution found by the
algorithm. Larger maximum spread is
better.

 Eq. 14

5 Results and Discussion

5.1 Phase 1 Results

The output from Phase 1 experiments are

presented in Figure 4 to Figure 7, showing

the average of best fitness value from ten

runs.

Figure 4: Average of best fitness for a range
of n (number of tasks)

Number of tasks (n) Figure 4 shows the

effect of n on the ASP, ALB and combined

ASPALB problem difficulties. In all cases,

the problems with larger number of task

tend to be found to have better fitness

although they have similar tuneable input

setting for OS, FR and TV. This output

pattern is related with increment of

problem difficulties when the number of

tasks is increased. The output trend is also

consistent with previous works such as in

50 100 150 200
1.3

1.4

1.5

1.6

Generation

F
it
n
e
s
s
 (

f1
)

Effect of n Change on ASP Difficulty

50 100 150 200
1.4

1.6

1.8

2

Generation

F
it
n
e
s
s
 (

f2
)

Effect of n Change on ALB Difficulty

50 100 150 200

2.6

2.8

3

3.2

Generation

F
it
n
e
s
s
 (

f3
)

Effect of n Change on ASPALB Difficulty

n=15

n=20

n=40

n=60

n=80

Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226 (11) 1900-1913

Scholl (2003), Bhattacharjee (1990) and

Otto (2011) [13; 15-16].

Order Strength (OS) Figure 5 show the

effect of OS change for ASP problems with

15, 20, 40, 60 and 80 tasks. In these graphs,

the ASP problems with high OS values tend

to produce better fitness values compared

with low and medium OS values. A similar

output pattern is also found in ALB and

combined ASPALB problems as shown in

Figure 5. This result indicates that problems

with higher OS values will have lesser

difficulty levels compared with low OS

values. This finding corroborates a few

previous works [25-27], while contradicting

a few works that associate higher OS values

with greater complexity [13; 16].

This mismatch is due to the dissimilar

approaches used in solving the precedence

graph. In the works that directly used

generated permutation as assembly

sequence, precedence graphs with higher

OS values are harder to solve. Direct

permutation has high probability of

generating infeasible sequences; since the

numbers of precedence constraints in high

OS graphs are higher than low OS graph

while the search space for both conditions

remains the same.

On the other hand, in the works that

ensures the feasibility of sequence such as

using topological sort, the precedence graph

with higher OS is easier to solve, because of

differences in search space size. The OS

value directly influences the number of

possible feasible sequence in a precedence

graph. In this case, the number of feasible

sequences in high OS is smaller than in low

OS because the precedence constraints limit

the flexibility of re-sequencing. Since the

search space for the precedence graph with

high OS is smaller than low OS, it is easier to

generate solution with better fitness in high

OS graphs than with low OS graphs.

Figure 5: Average of best fitness for
different OS value

Nevertheless, there is inconsistency in

outputs for ASP with OS 0.5 and 0.6, ALB

with OS 0.4 and 0.5 and combined ASPALB

with OS 0.5 and 0.6. For these cases, the

problem with smaller OS emerges with

better fitness compared with larger OS. A

likely explanation is that the chosen OS gaps

for these problems are too small, since it

does not happen in larger OS gaps such as

between OS 0.6 and 0.4 or smaller. Small OS

gap means that there is only small search

50 100 150 200
1.35

1.4

1.45

1.5

1.55

Generation

F
it
n
e
s
s
 (

f1
)

Effect of OS Change on ASP Difficulty

50 100 150 200
1.6

1.7

1.8

Generation

F
it
n
e
s
s
 (

f2
)

 Effect of OS Change on ALB Difficulty

50 100 150 200
2.6

2.8

3

Generation

F
it
n
e
s
s
 (

f3
)

Effect of OS Change on ASPALB Difficulty

OS=0.2

OS=0.3

OS=0.4

OS=0.5

OS=0.6

Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226 (11) 1900-1913

space difference between the two problems

that has influenced the inconsistency of

results for both conditions. Therefore, to

ensure a clear separation between one

difficulty levels with another, OS gaps which

are too small should be avoided. More

investigation is needed to fully investigate

the effect of OS.

Frequency Ratio (FR) The output from ASP

problem in Figure 6 shows that the

proposed complexity attributes FR can be

used to control the ASP data complexity.

Figure 6: Average of best fitness for
different Frequency Ratio

ASP data with high FR will have wider range

of choices that directly increase the size of

search space. In contrast, ASP data with low

FR have smaller search space due to a more

limited data variety. As a consequence, the

algorithms found it more difficult to achieve

minimum direction and tool change for ASP

data with higher FR.

Time Variability ratio (TV) ALB results in

Figure 7 confirm that the Time Variability

ratio (TV) adopted from previous works is

effective to control the assembly time data

complexity [13; 16].

Figure 7: Average of best fitness for
different Time Variability Ratio

50 100 150 200

1.3

1.4

1.5

1.6

Generation

F
it
n
e
s
s
 (

f1
)

Effect of FR Change on ASP Difficulty

50 100 150 200

2.6

2.8

3

Generation

F
it
n
e
s
s
 (

f3
)

Effect of FR Change on ASPALB Difficulty

FR=0.2

FR=0.3

FR=0.4

FR=0.5

FR=0.6

50 100 150 200
1.5

1.6

1.7

1.8

1.9

Generation

F
it
n
e
s
s
 (

f2
)

Effect of TV Change on ALB Difficulty

50 100 150 200
2.6

2.7

2.8

2.9

3

3.1

Generation

F
it
n
e
s
s
 (

f3
)

Effect of TV Change on ASPALB Difficulty

TV=2

TV=3

TV=4

TV=6

TV=8

Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226 (11) 1900-1913

The assembly times with higher TV are

easier to arrange because the combination

of small and large task times tend to fit the

cycle time better than uniformly large task

times (low TV). Finally the combined

ASPALB outputs in this figure clearly show

that the TV input variable is able to control

the assembly data difficulties as expected.

The results of tuneable input test show that

ASP and ALB problem complexity can be

controlled via the input attributes of the test

problem generator. Although the early

assumption that the precedence graph with

higher OS will have greater complexity is

unfounded, this attribute’s usefulness is

maintained by redefining its value: to

generate precedence graphs with low

complexity, higher OS level must be used,

while for graphs with high complexity, the

OS must be set to the lower level. It is found

that the selection of tuneable input level is

also important to ensure that the desired

problem difficulty is achieved. Selection of

proper gaps between one level to another is

very important to avoid inconsistent

problem difficulty.

In order to test the significance of the

results, statistical tests are performed. In

this case, ANOVA test is carried out to test if

there are any significant differences

between the results of one level with results

from another level. The null hypothesis

stated that there would be no difference

among five tuneable input levels means. The

summary of ANOVA test is presented in

Table 6.

In this case, the critical f-value (f*) that is

acquired with 0.05 level of significance from

f-distribution table is 2.22 [28]. Table 6

consistently shows larger f-values

compared with f*. Since all the f-values are

larger than f*, the null hypothesis for all

tuneable input are rejected. In other words,

it shows that at 0.05 confidence levels, there

are statistically significant differences

between levels for n, OS, FR and TV.

Table 6: Summary of ANOVA test

 n
Change

OS
Change

FR
Change

TV
Change

SSB 16.4897 0.9418 7.3437 2.5119

SSW 3.2268 3.7542 2.181 2.1205

SST 19.7165 4.6961 9.5247 4.6324

MSB 4.1224 0.2354 1.8359 0.6280

MSW 0.0032 0.0037 0.0021 0.0021

f 1288.25 63.62 874.23 299.05

SSB – Sum of square between groups

SSW – Sum of square within groups

SS – Sum of square total

MSB – Mean squares between groups

MSW – Mean squares within groups

However, this test does not tell us the exact

groups or levels that have statistically

significant difference in means. Therefore,

an a posteriori test known as Tukey’s

Honestly Significant Different test (Tukey’s

HSD test) is performed.

Tukey’s HSD test compares the mean of

rejected null hypothesis with the means of

other groups to identify if there is any

significant difference between the mean of

one level with another. The value of the

absolute difference between two means will

be compared to a critical HSD as proposed

in the Tukey’s table [28]. The summary of

Tukey’s HSD test at 0.05 confidence interval

is presented in Table 7.

From Table 7, the absolute mean difference

between two levels for n and TV

consistently indicates larger values than the

critical HSD value. It shows that there are

significant difference in all levels for n and

TV. It means that the problem difficulties for

these variables can be statistically

distinguished between each level.

Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226 (11) 1900-1913

Table 7: Summary of Tukey’s HSD test

Variable
(critical HSD)

Comparison
Level

Absolute
Mean

Difference

n
(0.015536)

15 20 0.1331

15 40 0.1497

15 60 0.2929

15 80 0.3658

20 40 0.0166

20 60 0.1598

20 80 0.2327

40 60 0.1432

40 80 0.2161

60 80 0.0729

OS
(0.016759)

0.2 0.3 0.008

0.2 0.4 0.0292

0.2 0.5 0.068

0.2 0.6 0.0755

0.3 0.4 0.0212

0.3 0.5 0.06

0.3 0.6 0.0675

0.4 0.5 0.0388

0.4 0.6 0.0169

0.5 0.6 0.0075

FR
(0.012773)

0.2 0.3 0.192

0.2 0.4 0.1954

0.2 0.5 0.2301

0.2 0.6 0.2256

0.3 0.4 0.0034

0.3 0.5 0.0381

0.3 0.6 0.0336

0.4 0.5 0.0347

0.4 0.6 0.0302

0.5 0.6 0.0045

TV
(0.009053)

2 3 0.0205

2 4 0.0708

2 6 0.0894

2 8 0.1453

3 4 0.0503

3 6 0.0389

3 8 0.1248

4 6 0.0114

4 8 0.0745

6 8 0.0859

Meanwhile, in OS and FR variables, the

absolute mean difference also shows larger

values than critical HSD except for the cases

between OS values of 0.2 and 0.3, OS values

0.5 and 0.6, FR values 0.3 and 0.4, and FR

values 0.5 and 0.6. This result is related

with selection of appropriate gaps between

levels, since it only occurs between adjacent

levels. Consistent with earlier discussion on

the effect of OS change on the problem

difficulties (Figure 5), too small gaps

between consecutive levels should be

avoided.

5.2 Phase 2 Results

In this phase, 25 problems with different

difficulty settings are used to demonstrate

the usefulness of the TPG for testing the

performance of algorithms. The setup is for

multi objective optimisation of ASP, ALB,

and ASPALB problems. The assembly

problem for this experiment is set up as in

Table 8 and Table 9.

Table 8: Problem setting for experiments in
Phase 2

Problem
Graph

Difficulties
Data

Variables

1 Low Low

2 Low Low-Med

3 Low Medium

4 Low Med-High

5 Low High

6 Low-Med Low

7 Low-Med Low-Med

8 Low-Med Medium

9 Low-Med Med-High

10 Low-Med High

11 Medium Low

12 Medium Low-Med

13 Medium Medium

14 Medium Med-High

15 Medium High

16 Med-High Low

17 Med-High Low-Med

18 Med-High Medium

19 Med-High Med-High

20 Med-High High

21 High Low

22 High Low-Med

23 High Medium

24 High Med-High

25 High High

Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226 (11) 1900-1913

Table 9: Attribute settings for different
graph and data difficulty levels

Level

Graph

Difficulty

Data

Difficulty

n OS FR TV

Low 15 0.6 0.2 8

Low-Med 20 0.5 0.3 6

Med 40 0.4 0.4 4

Med-High 60 0.3 0.5 3

High 80 0.2 0.6 2

The tuneable input for these test problems

are grouped into Graph Difficulty (n and OS

variables) and Data Difficulty (FR and TV

variables). The data of test problems that

are used in this work can be downloaded

from the following website:

http://public.cranfield.ac.uk/s135489/ASP_

ALB_Test_Problems_Data.zip.

The results from Phase 2 experiments are

summarised in Table 10. Numbers in

brackets are weighting values that are

assigned to each algorithm based on its

performance for the respective indicator.

For every indicator in a given problem, the

best result is assigned weight value 3, while

the second and third positions are assigned

weight values 2 and 1 respectively. Then,

the algorithm ranking is made through

comparison of the weighted sums.

Table 10: Summary of the result of experiments on selected multi-objective algorithms

*Numbers in brackets are weighting values from the best (weight=3) to worst (weight=1) performance.

Problem Algorithm ῆ ER GD Spacing Maxspread
Sum of
weight

Rank

1

MOGA 15(2) 0.5946(2) 1.0340(1) 1.2913(2) 34.2251(2) 9 2

ACO 12(1) 0.6250(1) 0.9694(2) 1.1781(3) 34.1030(1) 8 3

HGA 24(3) 0.2727(3) 0.3565(3) 2.2112(1) 36.9763(3) 13 1

2

MOGA 22(2) 0.4359(2) 0.7180(2) 1.0435(2) 34.2097(3) 11 2

ACO 11(1) 0.6452(1) 1.1590(1) 1.4938(1) 33.3108(2) 6 3

HGA 35(3) 0.1667(3) 0.2681(3) 0.8956(3) 31.2778(1) 13 1

3

MOGA 12(2) 0.7447(1) 1.1370(2) 1.0293(3) 40.2682(2) 10 2

ACO 10(1) 0.6429(2) 1.1764(1) 1.8612(1) 38.1782(1) 6 3

HGA 40(3) 0.1489(3) 0.2517(3) 1.4235(2) 41.1657(3) 14 1

4

MOGA 29(2) 0.3556(1) 0.4950(2) 1.3678(2) 36.5902(1) 8 3

ACO 26(1) 0.2973(3) 0.4366(3) 1.7489(1) 38.3385(2) 10 2

HGA 35(3) 0.3519(2) 0.5074(1) 1.1018(3) 38.5984(3) 12 1

5

MOGA 11(2) 0.5926(2) 0.9460(2) 1.2987(3) 33.5636(2) 11 2

ACO 10(1) 0.6429(1) 1.0924(1) 1.3385(2) 34.3586(3) 8 3

HGA 22(3) 0.2667(3) 0.3276(3) 1.6657(1) 34.3586(3) 13 1

6

MOGA 13(1) 0.7869(1) 1.7381(1) 1.6819(1) 39.5870(1) 5 3

ACO 25(3) 0.5098(2) 1.3454(2) 1.6183(2) 39.6918(2) 10 2

HGA 40(2) 0.4030(3) 0.6576(3) 1.4541(3) 40.0436(3) 15 1

7

MOGA 16(2) 0.6098(1) 1.1300(1) 1.6974(1) 37.2650(1) 6 3

ACO 16(2) 0.5789(2) 1.0099(2) 1.5133(2) 39.3564(3) 11 2

HGA 41(3) 0.3051(3) 0.5166(3) 1.1344(3) 39.0404(2) 14 1

8

MOGA 17(2) 0.7018(1) 1.1665(1) 1.3567(2) 39.0331(3) 9 2

ACO 16(1) 0.5429(2) 1.0410(2) 1.8336(1) 37.3966(1) 7 3

HGA 40(3) 0.3443(3) 0.5396(3) 0.9635(3) 37.7713(2) 14 1

9

MOGA 17(2) 0.6909(1) 1.1311(1) 1.1018(3) 39.7311(2) 9 2

ACO 14(1) 0.5882(2) 1.0600(2) 1.6150(2) 38.1256(1) 8 3

HGA 36(3) 0.4930(3) 0.8795(3) 1.7604(1) 44.9119(3) 13 1

10

MOGA 16(1) 0.6667(1) 1.2655(1) 1.5753(1) 36.4029(1) 5 3

ACO 25(2) 0.5763(2) 1.1164(2) 1.3033(2) 37.8426(3) 11 2

HGA 30(3) 0.5238(3) 0.7406(3) 1.0246(3) 37.6970(2) 14 1

http://public.cranfield.ac.uk/s135489/ASP_ALB_Test_Problems_Data.zip
http://public.cranfield.ac.uk/s135489/ASP_ALB_Test_Problems_Data.zip

Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226 (11) 1900-1913

Problem Algorithm ῆ ER GD Spacing Maxspread
Sum of
weight

Rank

11

MOGA 17(1) 0.8496(1) 1.9129(1) 1.3149(3) 45.1158(1) 7 3

ACO 60(2) 0.5000(2) 0.9915(2) 1.3560(2) 46.4900(3) 11 2

HGA 86(3) 0.3723(3) 0.7732(3) 1.4197(1) 45.4979(2) 12 1

12

MOGA 24(1) 0.7073(1) 1.7056(1) 1.8150(1) 48.4041(3) 7 3

ACO 56(3) 0.3253(3) 0.6771(3) 1.4082(3) 46.8911(1) 13 1

HGA 44(2) 0.6271(2) 1.3069(2) 1.4886(2) 47.8308(2) 10 2

13

MOGA 20(1) 0.7701(1) 1.6837(1) 1.6846(2) 48.4191(2) 7 3

ACO 42(2) 0.3731(2) 0.7612(3) 1.8370(1) 47.0473(1) 10 2

HGA 74(3) 0.4351(3) 0.8760(2) 1.3466(3) 49.9341(3) 13 1

14

MOGA 56(2) 0.3778(3) 0.8536(2) 1.7669(1) 53.7493(1) 9 2

ACO 65(3) 0.4348(2) 0.8321(3) 1.3163(2) 54.6819(3) 13 1

HGA 49(1) 0.6797(1) 1.4087(1) 1.1580(3) 53.8050(2) 8 3

15

MOGA 15(1) 0.7857(1) 2.0094(1) 1.5541(3) 50.1276(3) 9 2

ACO 31(2) 0.5441(2) 1.1165(2) 2.2496(1) 49.3039(1) 8 3

HGA 49(3) 0.3194(3) 0.7035(3) 1.6625(2) 49.6062(2) 13 1

16

MOGA 38(1) 0.6696(1) 1.6155(1) 1.5986(2) 55.3575(3) 8 3

ACO 86(3) 0.3723(3) 0.7880(3) 1.7949(1) 55.2207(2) 12 1

HGA 69(2) 0.6124(2) 1.4092(2) 1.2798(3) 54.1806(1) 10 2

17

MOGA 30(1) 0.7391(1) 1.9710(1) 1.4983(3) 55.7943(3) 9 2

ACO 62(2) 0.5000(3) 1.2519(2) 1.6083(1) 55.1087(1) 9 2

HGA 73(3) 0.5494(2) 1.2063(3) 1.5393(2) 55.7024(2) 12 1

18

MOGA 22(1) 0.8182(1) 1.9982(1) 1.6087(2) 57.2777(1) 6 3

ACO 88(3) 0.2000(3) 0.5709(3) 2.0579(1) 59.0822(3) 13 1

HGA 74(2) 0.5747(2) 1.4657(2) 1.4820(3) 57.3599(2) 11 2

19

MOGA 42(1) 0.5922(1) 1.6303(1) 1.6454(3) 57.3484(2) 8 3

ACO 49(2) 0.5664(2) 1.4639(2) 1.6960(2) 57.1157(1) 9 2

HGA 74(3) 0.4559(3) 1.0453(3) 1.8645(1) 58.5914(3) 13 1

20

MOGA 33(1) 0.6972(1) 1.5315(1) 1.6453(2) 61.8964(2) 7 3

ACO 66(2) 0.4000(3) 0.9788(2) 1.9603(1) 61.3480(1) 9 2

HGA 84(3) 0.4650(2) 0.8983(3) 1.4834(3) 63.2256(3) 14 1

21

MOGA 17(1) 0.8411(1) 2.2525(1) 1.4918(2) 56.7749(1) 6 3

ACO 117(3) 0.1761(3) 0.3228(3) 1.5736(1) 58.4656(3) 13 1

HGA 57(2) 0.6780(2) 1.7245(2) 1.4484(3) 58.2365(2) 11 2

22

MOGA 44(1) 0.6944(1) 1.6900(1) 1.8500(2) 62.3752(2) 7 3

ACO 90(3) 0.2857(3) 0.8241(3) 1.9158(1) 65.5746(3) 13 1

HGA 70(2) 0.6410(2) 1.5881(2) 1.3136(3) 62.1336(1) 10 2

23

MOGA 21(1) 0.8397(1) 2.4638(1) 1.8718(2) 63.7124(2) 7 3

ACO 46(2) 0.4458(3) 1.1937(3) 1.9034(1) 64.4027(3) 12 1

HGA 74(3) 0.5912(2) 1.9811(2) 1.6302(3) 63.6888(1) 11 2

24

MOGA 39(1) 0.6286(2) 1.6486(1) 1.8588(2) 64.5943(1) 7 3

ACO 71(3) 0.3238(3) 0.8033(3) 3.2717(1) 67.5944(3) 13 1

HGA 61(2) 0.6494(1) 1.6160(2) 1.5992(3) 65.5225(2) 10 2

25

MOGA 57(1) 0.7077(2) 2.1692(2) 1.7039(2) 72.1097(1) 8 3

ACO 105(3) 0.2606(3) 0.5954(3) 2.3302(1) 73.1415(3) 13 1

HGA 74(2) 0.7218(1) 2.3913(1) 1.6459(3) 72.5640(2) 9 2

Based on the result in Table 10, the HGA

consistently show the best performance in

all problems having low and low-medium

graph difficulties (problem 1-10).

Meanwhile, the MOGA show better

performance compare with ACO algorithm

for problem 1-3, but then then showed

inconsistent performance for problem 4 to

10. In problem 4 to 10, ACO algorithm starts

Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226 (11) 1900-1913

to overcome the MOGA performance in

some cases.

Meanwhile, for the problem with medium

and medium-high graph difficulties

(problem 11 – 20), the HGA and ACO

algorithms alternately lead the algorithms

in the first rank. However, when the graph

difficulty is increased to high difficulty

(problem 21 – 25), ACO has consistently

shows better performance and then

followed by HGA and MOGA. The relative

performance of each algorithm is presented

graphically in Figure 8.

Figure 8: Algorithm’s ranking for the range
of test problems

6 Conclusions

In this work, a test problem generator

(TPG) with tuneable complexity for ASP and

ALB problems has been proposed. A set of

experiments has been conducted to assess

the TPG. Experimental results confirm that

problem complexities can be controlled by

tuneable input variables.

The results from Phase 1 experiments that

test the effects of tuneable inputs confirm

the ability of TPG to generate problem with

varying complexity levels. The problem

difficulties will increase when using larger

number of tasks (n), smaller Order Strength

(OS) value, larger Frequency Ratio (FR) or

smaller Time Variability ratio (TV). As

presented in the results, the n and OS

influence the assembly graph difficulties,

while FR and TV influence the assembly

data difficulties. The result of statistical test

confirmed that there are significant

differences of the problem difficulties when

changing the value of n and TV variables. On

the other hand, the significant difference of

problem difficulties also can be achieved by

selecting appropriate value for OS and FR as

suggested in Table 2.

Results of algorithm performance

experiment in Phase 2 show that the Hybrid

Genetic Algorithm (HGA) consistently

performed well in optimising problem with

low and medium difficulties. Meanwhile, the

Ant Colony Optimisation (ACO) showed

good performance in problems with high

level of difficulty. Based on the performance

of both algorithms, the HGA is

recommended for integrated ASP and ALB

problem with low and medium difficulties,

while the ACO is for ASP and ALB problem

at high difficulty. These findings confirm

that the problems generated by the TPG

offer sufficient range of problem variety to

be used in algorithm testing. The generated

problems were found to be useful to

identify the strengths and weaknesses of

the tested algorithms.

Although further experiments are needed to

confirm these strengths and weaknesses,

TPG has provided an important path by

supplying a variety of ASP and ALB

problems for systematic testing. Therefore,

it can be concluded that the proposed test

problem generator is able to generate

combined ASP and ALB problems in a wide

range of difficulties.

References

[1] Lu, C., Wong, Y. S. and Fuh, J. Y. H.
(2006), "An enhanced assembly planning

1 3 5 7 9 11 13 15 17 19 21 23 25

1

2

3

Test Problem Number

R
a
n
k
in

g

MOGA ACO HGA

Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226 (11) 1900-1913

approach using a multi-objective genetic
algorithm", Proceedings of the Institution
of Mechanical Engineers, Part B: Journal
of Engineering Manufacture, vol. 220, no.
2, pp. 255-272.

[2] Rashid, M. F. F., Hutabarat, W. and
Tiwari, A. (2011), "A review on assembly
sequence planning and assembly line
balancing optimisation using soft
computing approaches", International
Journal of Advanced Manufacturing
Technology, , pp. 1-15.

[3] Chen, R., Lu, K. and Yu, S. (2002), "A
hybrid genetic algorithm approach on
multi-objective of assembly planning
problem", Engineering Applications of
Artificial Intelligence, vol. 15, no. 5, pp.
447-457.

[4] Tseng, H. and Tang, C. (2006), "A
sequential consideration for assembly
sequence planning and assembly line
balancing using the connector concept",
International Journal of Production
Research, vol. 44, no. 1, pp. 97-116.

[5] Marian, R. M., Luong, L. H. S. and
Abhary, K. (2006), "A genetic algorithm
for the optimisation of assembly
sequences", Computers and Industrial
Engineering, vol. 50, no. 4, pp. 503-527.

[6] Chica, M., Cordón, O., Damas, S. and
Bautista, J. (2010), "Multiobjective
constructive heuristics for the 1/3
variant of the time and space assembly
line balancing problem: ACO and random
greedy search", Information Sciences, vol.
180, no. 18, pp. 3465-3487.

[7] Smith, S. S. -. (2004), "Using multiple
genetic operators to reduce premature
convergence in genetic assembly
planning", Computers in Industry, vol. 54,
no. 1, pp. 35-49.

[8] Kilincci, O. and Bayhan, G. M. (2006),
"A Petri net approach for simple
assembly line balancing problems",
International Journal of Advanced

Manufacturing Technology, vol. 30, no.
11-12, pp. 1165-1173.

[9] De Fazio, T. L. and Whitney, D. E.
(1987), “Simplified generation of all
mechanical assembly sequences", IEEE
Journal of Robotics and Automation, vol.
RA-3, no. 6, pp. 640-658.

[10] Chen, S. and Liu, Y. (2001), "An
adaptive genetic assembly-sequence
planner", International Journal of
Computer Integrated Manufacturing, vol.
14, no. 5, pp. 489-500.

[11] Smith, S. S. and Liu, Y. (2001), "The
application of multi-level genetic
algorithms in assembly planning",
Journal of Industrial Technology, vol. 17,
no. 4.

[12] Wang, J. F., Liu, J. H. and Zhong, Y. F.
(2005), "A novel ant colony algorithm for
assembly sequence planning",
International Journal of Advanced
Manufacturing Technology, vol. 25, no.
11-12, pp. 1137-1143.

[13] Scholl, A. (1993), "Data of Assembly
Line Balancing Problem", Schriften zur
Quantitativen Betriebswirtschaftslehre
16/1993, TU Darmstadt, vol. 16/1993.

[14] Rardin, R. L. and Uzsoy, R. (2001),
"Experimental evaluation of heuristic
optimization algorithms: A tutorial",
Journal of Heuristics, vol. 7, no. 3, pp.
261-304.

[15] Bhattacharjee, T. K. and Sahu, S.
(1990), "Complexity of single model
assembly line balancing problems",
Engineering Costs and Production
Economics, vol. 18, no. 3, pp. 203-214.

[16] Otto, A., Otto, C. and Scholl, A. (2011),
"SALBPGen – A systematic data
generator for (simple) assembly line
balancing", Jena Research Papers in
Business and Economics, [Online], vol. 5,
available at: pubdb.wiwi.uni-
jena.de/pdf/wp-jbe201105.pdf.

Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226 (11) 1900-1913

[17] Kilbridge, M. and Wester, L. (1961),
"The Balance Delay Problem",
Management Science, vol. 8, no. 1, pp. 69-
84.

[18] Panneton, F., L'Ecuyer, P. and
Matsumoto, M. (2006), "Improved long-
period generators based on linear
recurrences modulo 2", ACM
Transactions on Mathematical Software,
vol. 32, no. 1, pp. 1-16.

[19] Rashid, M. F. F., Tiwari, A. and
Hutabarat, W. (2011), "An Integrated
Representation Scheme for Assembly
Sequence Planning and Assembly Line
Balancing", Proceedings of the 9th
International Conference of
Manufacturing Research, ICMR 2011, 6-8
September 2011, Glasgow, UK, .

[20] Moon, C., Kim, J., Choi, G. and Seo, Y.
(2002), "An efficient genetic algorithm
for the traveling salesman problem with
precedence constraints", European
Journal of Operational Research, vol. 140,
no. 3, pp. 606-617.

[21] Choi, Y., Lee, D. M. and Cho, Y. B.
(2009), "An approach to multi-criteria
assembly sequence planning using
genetic algorithms", International
Journal of Advanced Manufacturing
Technology, vol. 42, no. 1-2, pp. 180-188.

[22] Bautista, J. and Pereira, J. (2007),
"Ant algorithms for a time and space
constrained assembly line balancing
problem", European Journal of
Operational Research, vol. 177, no. 3, pp.
2016-2032.

[23] Deb K. (2001), Multi-Objective
Optimization using Evolutionary

Algorithm, John Wiley & Sons Inc.,
England.

[24] Yoosefelahi, A., Aminnayeri, M.,
Mosadegh, H. and Ardakani, H. D. "Type
II robotic assembly line balancing
problem: An evolution strategies
algorithm for a multi-objective model",
Journal of Manufacturing Systems,Article
in Press.

[25] Mastor, A. (1970), "An Experimental
Investigation and Comparative
Evaluation of Production Line Balancing
Techniques", Management Science, vol.
16, no. 11, pp. 728-746.

[26] Johnson, R. (1981), "Assembly line
balancing algorithms: computation
comparisons", International Journal of
Production Research, vol. 19, no. 3, pp.
277-287.

[27] Urban, T. L. and Chiang, W. (2006),
"An optimal piecewise-linear program
for the U-line balancing problem with
stochastic task times", European Journal
of Operational Research, vol. 168, no. 3,
pp. 771-782.

[28] Coolidge, F. (2000), Statistics: A
Gentle Introduction, SAGE Publication
Ltd, London

[29] Bahalke U., Dolatkhahi K., Dehghani,
Jahani, V Yazdanparast, and H
Hajihosseini (2011), "Formulation and
heuristic algorithm for flow time
minimization in a simple assembly
line", Proceedings of the Institution of
Mechanical Engineers, Part B: Journal of
Engineering Manufacture, Article in
Press, DOI 0954405411422468.

