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Abstract 

Assembly optimisation activities that involve Assembly Sequence Planning (ASP) and Assembly 

Line Balancing (ALB) have been extensively studied because of the importance of optimal 

assembly efficiency to manufacturing competitiveness. Numerous research works in ASP and 

ALB mainly focuses on developing algorithms to solve problems and to optimise ASP and ALB. 

However, there is a scarcity in works that focus on developing problems to test these 

algorithms. In optimisation algorithm development, testing algorithms by a broad range of test 

problems is crucial to identify their strengths and weaknesses. This paper proposes a generator 

of ASP and ALB test problems with tuneable complexity levels. Experiments confirm that the 

selected combination of input attributes does control the generated ASP and ALB problem 

complexity, and also that the generated problems can be used to identify the suitability of a 

given algorithm to problem types. 
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1 Introduction 

In manufacturing, assembly optimisation 

involves bringing and joining parts and/or 

subassemblies together to make the process 

as efficient as possible. Assembly Sequence 

Planning (ASP) and Assembly Line 

Balancing (ALB) are classified among major 

topics in assembly optimisation because 

both are directly related to assembly 

efficiency [1; 2]. Recently, researchers have 

discovered benefits of solving and 

optimising ASP and ALB problems together 

[3; 4], leading to increased research focus 

on testing new or improved algorithms that 

operate on these combined problems. In 

order to assess the performance of new or 

improved algorithms and to compare them 

with existing algorithms, a wide range of 

test problems are required. In ASP and ALB 

optimisation works that focus on algorithm 

development or improvement, researchers 

have used two approaches to test algorithm 

performance. One approach is to test the 

algorithms using specific case studies [5; 6]. 

Another acknowledged approach is to adopt 

the test problems that are frequently used 

in literature [7; 8]. These approaches lack 

generality because there has been no 

investigation into the fit of algorithms to 

problem types. Algorithms have not been 

tested with a wide range of problem types. 

The most frequently used test problem in 

ASP is an assembly of transmission-type 

part with eleven components presented by 

DeFazio and Whitney [9].  
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This problem has been presented in many 

papers such as [10-12] to evaluate 

algorithm performance. Other than this 

widely-used problem example, most ASP 

test problems found in literature have only 

been used within the same research group. 

There is thus no accepted standard ASP test 

problem for evaluating algorithm 

performance. On the other hand, in ALB 

optimisation, development of test problems 

was started in 1960s, resulting in many that 

have been developed and collected by 

different researchers. These problems vary 

in task size from eight to 297 tasks. The 

famous ALB problems such as the 8-tasks 

by Bowman, 45-tasks by Kilbridge and 

Wester, 70-tasks by Tonge, 111-tasks by 

Arcus and 297-tasks by Scholl are still being 

used until today to evaluate algorithm 

performance for line balancing problems 

[13]. 

Although these few benchmark ASP and 

ALB problems are available for comparing 

algorithm performance, there is no 

standard test problem set that covers a 

wide variety of problem difficulties, 

especially to test the combined ASP and ALB 

optimisation. Not only this is important for 

enhancing the researchers’ understanding 

of their algorithm, it will also help users in 

selecting which algorithm is more 

appropriate to their requirements. In order 

to facilitate such experimentation, a set of 

problems with controllable complexity level 

is needed. One way to address this is to 

devise a test problem generator with 

tuneable difficulty level that can 

systematically generate a set of test 

problems with a desired mix of complexity 

levels.  

This paper proposes a test problem 

generator with tuneable complexity level 

for combined ASP and ALB problems. 

Section 2 explains the requirements and 

specifications for the proposed test problem 

generator. Section 3 will explain the 

methodology of the test problem generator 

development, which is divided into graph 

and data generation methodology. Then, 

section 4 describes the experimental design 

to test the proposed test problem generator 

for ASP and ALB. Section 5 presents and 

discusses the experimental results in this 

work. Finally, section 6 presents the 

authors’ conclusions on the proposed test 

problem generator according to 

experimental results.  

2 Test Problem Generator for 

ASP and ALB 

In mathematical optimisation community, 

the importance of test problem generators 

(TPG) is widely appreciated.  Although 

algorithm development is important, any 

new algorithm should ideally be tested with 

a wide range of problem types before 

making any conclusion on their usefulness 

[14]. Most of ASP and ALB works focus on 

proposing and demonstrating algorithm 

performance on specific ASP and/or ALB 

problems. There is a lack of investigation 

into testing and validating the performance 

of algorithms on wider classes of problems. 

A TPG will be useful to provide a wide range 

of ASP and ALB problems with differing 

characteristics and difficulties. In many 

cases, the problem difficulty is only 

determined by the size of the problem. 

While this is correct in certain cases, this 

overlooks the influence of many other 

attributes on problem difficulty. 

Additionally, TPG will also be useful to 

identify which algorithm may be more 

suitable for a given type of problems. This 

knowledge is very important to help users 

to choose the right algorithm, and also for 

researchers to identify opportunities for 

further improvement in a particular 

algorithm.  
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To provide the mentioned benefits, the TPG 

must satisfy the following requirements: 

I. Representation. The problems are 

generated on the basis of assembly task and 

represented using precedence graph. This is 

the common way to represent task-based 

assembly problem in earlier works [2]. 

II. Output. The TPG is expected to produce 

precedence graphs that represent task-

based assembly problems. Besides that, the 

TPG also must be able to generate assembly 

data, which consists of assembly direction 

and tool for ASP and assembly time for ALB. 

These types of data are selected based on 

popularity from literature survey [2]. 

III. Tuneable difficulty level. One of the 

important features expected in a TPG is 

tuneable difficulty level. This feature will 

ensure that test problems are generated 

within known difficulty ranges as required. 

There are not many proposals in literature 

on methods for generating test problems in 

this domain. Furthermore, existing 

proposals are limited to generating test 

problems for ALB. Bhattacharjee and Sahu’s 

proposal is to generate a random 

precedence graph to represent an ALB 

problem [15]. In this approach, the 

assembly problem is generated randomly 

and then the problem difficulty is measured 

to determine its complexity level. Later, a 

systematic data generator for assembly line 

balancing was proposed by Otto [16]. 

Besides presenting a systematic method for 

generating precedence graphs, this work 

also demonstrates that common graph 

structures in real-world assembly problems 

i.e. chains, bottlenecks and modules can be 

generated on a precedence graph. This 

approach is also able to generate problems 

at the desired difficulty levels [16]. 

Otto’s work is the one closest to our stated 

requirements because this work fulfils the 

requirements (I) and (III). In Otto’s work, 

ALB problems are generated based on 

assembly tasks and represented using 

precedence graphs. It also gives users the 

ability to create test problems difficulty at 

the desired level of difficulty. However, 

since this work was specifically developed 

for ALB problems, it fails requirement (II). 

Therefore, in this paper, the ALB-only 

systematic data generator proposed by Otto 

in 2011 will be expanded to incorporate 

both ASP and ALB test problems. 

3 Test Problem Generator 

Development 

The test problem generator was developed 

using the methodology presented in Figure 

1. The details of each step are explained in 

section 3.1 to 3.5.  

 

 

 

 

 

 

 

 

Figure 1: Test Problem Generator 
Development Flow 

The first step in developing the TPG is to 

identify the input and output elements. Next 

are the independent development of 

automated generators for assembly graph, 

ASP and ALB data. Finally, the outputs from 

graph and data generators are synchronised 

and combined to produce a complete test 

problem set. A worked example of the 

proposed test problem generator with 
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ASP data generation 

ALB data generation 
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outputs for each step is presented in Table 

1. 

 

Table 1: Example of test problem generation process 

Steps Output Examples 

3.1. Input and Output Elements  
i. Set the compulsory input data 

 
i. n=9; OSd= Medium; δOS = 0.05; s= 3; ndir=4; ntool= 
3;FRdir=Low; FRtool= Medium; ctmax= 55; TV= Low 

3.2. Assembly Graph Generation 
i. Distribute the nodes among all stages 

ii. Connect nodes in stage k>1 with 
random task in stage k-1. 

iii. Calculate Order Strength (OS) for 
initial graph 

iv. Increase OS value by randomly 
selecting a node from stage k<s and 
connecting it with a random node 
from a later stage. This procedure is 
repeated until the OSd level is 
achieved. 

 
i. nd= [4 3 2];                     ii. 
nd is number of nodes  
   in specific stage 
 
iii. OS =7/36 
            = 0.194 (low level) 
iv. 

3.3. ASP Data Generation 
i. Generate possible lower and upper 

limits for data frequency by fulfilling 
the constraint in Eq. 6 and 7. 

ii. Select one set of limits randomly 
iii. Generate remaining frequencies 
iv. Distribute nodes based on generated 

frequencies randomly 

 
i. Possible lower and upper limit: 

 Assembly direction = [(1,5)(1,6)] 

 Assembly tool = [(1,4)(2,4)(2,5)] 
ii. Selected limit (1,5) and (2,4) 
iii. Direction frequency = [2 1 1 5];  
      Tool frequency = [3 4 2] 
iv. Assembly direction =[-y,-x,+x,-x,-x,+y,-x,-y,-x] 
Assembly tool = [T1,T3,T3,T2,T3,T2,T2,T1,T3] 
 

3.4. ALB Data Generation 
i. Generate two random integer, 

tlim∊[1,ctmax] until required TV fulfilled  
ii. Generate remaining data within limit 

using uniform distribution 

 
i. tlim = [5, 41] 
 
ii. Assembly time = [2, 9, 41, 16, 37, 12, 27, 5, 19] 

3.5. Combine and synchronise the output 
 i.  Merge the ASP and ALB data in a data 

matrix 
  ii.  Transform the precedence graph into  
       precedence matrix format 

i. Data matrix              ii. Precedence matrix 
Task D T M 

1 -y T1 22 

2 -x T3 9 

3 +x T3 41 
4 -x T2 16 

5 -x T3 37 

6 +y T2 12 

7 -x T2 27 
8 -y T1 5 

9 -x T3 19 

D - Direction, T - Tool 
M - Time 

 

  1 2 3 4 5 6 7 8 9 

1 0 0 0 0 0 1 1 0 0 

2 0 0 0 0 1 0 0 0 0 

3 0 0 0 0 1 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 1 

6 0 0 0 0 0 0 0 1 0 

7 0 0 0 0 0 0 0 0 1 

8 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 

 

j

S
i 
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Figure 2: Problem Generator Input and Output Map 

3.1 Input and Output Elements of 

Assembly Test Problems 

The mapping of input and output variables 

is shown in Figure 2. The tuneable inputs 

are presented in bold and italic font.  

3.1.1 Tuneable Input Elements 

The tuneable input elements are variables 

that are used to control the problem 

difficulty generated by the TPG.  In this 

work, one new tuning variable is proposed 

and the rest are adopted from previous 

works. The TPG is conceptually divided into 

two parts: the generation of assembly 

graphs and the generation of assembly data. 

The next section will discuss the tuneable 

input variables for each part. Although the 

tuneable input variables for ALB has been 

discussed in earlier works, no clear link has 

been suggested in literature between input 

and specific difficulty levels for ASP [13].  

Tuneable Input for Assembly Graph 

Two tuneable inputs will be used to 

generate precedence at a specific 

complexity level. The first input variable to 

measure graph complexity is n, the number 

of nodes in a graph. In ASP and ALB 

contexts, graph nodes represent assembly 

tasks for a given problem. The number of 

possible assembly sequences will 

exponentially increase with the number of 

nodes. In surveyed literature, the size of 

ASP problems varies between five to 75 

nodes; in ALB, 86% of surveyed ALB papers 

used between seven to 150 nodes, while the 

remaining 14% used up to 300 nodes. 

Another graph input variable conceptually 

linked to graph difficulty is Order Strength. 

Order Strength (OS) measures the relative 

number of precedence relation in a graph. 

By increasing the relative number of 

precedence relations, the resulting graph is 

expected to be more complicated [13; 15]. 

OS is defined as a total number of ordering 

relation in transitive closure divided by the 

possible number of ordering relation for 

particular graph. The OS is calculated as 

follows. 

     Eq. 1 

R – Total number of ordering relations 
P – Possible number of ordering relations 

      Eq. 2 

n – Number of nodes 

The OS value varies between [0, 1]. OS = 0 

shows that there is no precedence relation 

in the graph and OS = 1 shows that there is 

Test 

Problem 

Generator 

Number of tasks 

Order strength 

Number of stages 

Maximum cycle time 

Time variability ratio 

Frequency ratio 

Number of directions 

Number of tools 

Precedence matrix 

Data matrix 
(Assembly direction, 
tool and time) 
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only one feasible sequence for particular 

problem. The OS attribute is used together 

with OS tolerance (δOS) since it is difficult 

(impossible in some cases) to meet the 

exact OS value. 

Tuneable Input for Assembly Data 

Previously, a number of time-related 

measures for ALB data have been proposed, 

such as ratio between maximum and 

minimum completion time between 

assembly lines [17], standard deviation 

[15], and time variability ratio. Time 

variability ratio (TV) has consistently been 

used in previous works and is selected for 

use in this work. TV indicates the range of 

task time of all tasks dispersed between the 

assembly lines. TV is calculated as follows: 

    Eq. 3 

    Eq. 4 

tmax  – maximum task time 
tmin  – minimum task time 
ctmax  – maximum cycle time 

A smaller TV value indicates that existing 

task times are distributed in a smaller 

range, which leads to an increased level of 

problem complexity. The tmax constraint in 

Eq. 4 is introduced to avoid generation of 

uniformly small task time, which leads to 

inconsistency of difficulty levels. The ctmax 

constraint is explained in section 3.1.2. 

Meanwhile, in ASP problem domain, no 

variable for measuring data complexity has 

been established. In this work, the ASP data 

considered are assembly directions and 

assembly tools. This type of data can be 

measured by considering how many times 

(i.e. frequency) a similar direction or tool 

appears in the problem.  A common 

optimisation objective is to minimise 

direction or tool changes in a sequence of 

tasks. Thus, the frequency ratio (FR) is 

proposed to be used as an input variable 

that measures ASP data complexity. 

      Eq. 5 

fmin – Minimum data frequency 

fmax – Maximum data frequency 

Data with a higher FR is harder to arrange 

to achieve minimum number of changes 

because the choice and variability of data 

are high. This type of data will usually 

produce higher number of changes 

compared with smaller FR data. The details 

of graph and assembly data attributes level 

are shown in Table 2. In this table, the 

attribute level for ‘number of nodes’ is 

proposed based on a survey on problem 

sizes as mentioned in section 3.1.1, while 

the proposed classification of FR and TV 

levels are based on a few initial tests. The 

proposed classification of OS levels is 

adopted from literature review [16].  

Table 2: Assembly graph and assembly data 
attribute levels 

Attributes Low Medium High 

Number of 
nodes, n 

n ≤ 20 20 <n ≤ 70  n> 70 

Order 
strength, OS 

OS ≤ 0.2 0.2 <OS ≤ 0.6 OS> 0.6 

Time 
variability 
ratio, TV 

TV> 6.5 2.5 <TV ≤ 6.5 TV ≤ 2.5 

Frequency 
ratio, FR 

FR ≤ 0.2 0.2 <FR ≤ 0.6 FR> 0.6 

The tuneable input variables are classified 

into Low, Medium and High levels because 

of nonlinearity of the problem. Although the 

general trend of problem difficulty over 

tuneable variables can be predicted, when 

tuning for a targeted difficulty level, too 

small variable changes may lead to 

inconsistent difficulty levels. The 

classification of level difficulties as in Table 

2 can be used as a guideline for users in 
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selecting appropriate difficulty levels for 

their use. To reduce the possibility of 

inconsistent difficulty levels, it is suggested 

to use the midpoint of the Medium level to 

generate Medium difficulty problem.  

3.1.2 Other Input Elements 

Apart from the tuneable elements, there are 

other ‘compulsory’ inputs that are required 

for generating a complete problem. 

Although some of these variables have 

implications to the problem difficulty level, 

they are not used here as means to control 

the problem difficulty because of a lack of 

agreement in literature. These inputs are: 

number of stages (s), maximum cycle time 

(ctmax), number of assembly direction (ndir) 

and number of assembly tool (ntool). Number 

of stages (s) refers to number of column 

that contains nodes in a specific precedence 

graph. In Figure 3, the example graph 

consists of three stages (hence s=3) that are 

shown separated by dotted lines. This 

variable determines the basic shape of 

graph, where smaller number of stages will 

produce graphs with more parallel nodes. 

The maximum cycle time (ctmax) is the upper 

limit of allowable cycle time. This variable is 

calculated from the required production 

rate of the assembly line. The number of 

directions and number of tools are also 

required to generate ASP data.  

Another important element of the TPG is 

the pseudo-random number generator that 

underlies most of the data generation 

algorithm. In this work, the pseudo-random 

generator used is Mersenne Twister with 

the range between [0, 232 -1] for 32-bit 

integer [18]. Appropriate use of seed values 

ensures that all results are reproducible.  

3.1.3 Output Elements 

There are two sets of outputs generated by 

the proposed TPG. The first output is the 

assembly precedence graph (e.g. Figure 3), 

represented by a precedence matrix, which 

is an n×n matrix filled with 1 or 0 value s 

(Table 3). The leftmost column shows 

assembly tasks and the top row shows the 

follower tasks. The value 1 shows that the 

task j must be performed after task i.  

The second output is a data matrix that 

consists of assembly directions, assembly 

tools and assembly time associated with 

every task. This data is generated according 

to the required difficulty level as 

determined in tuneable input variables.  

 

 

 

 

Figure 3: Example of precedence graph 

Table 3: Example of precedence matrix 

i  
j 

1 2 3 4 
1 0 1 1 0 
2 0 0 0 1 
3 0 0 0 1 
4 0 0 0 0 

3.2 Assembly Graph Generation 

In this work, the systematic graph 

generation method is adopted from Otto’s 

work [16]. The five steps below are as 

proposed in that work. 

Step 1: Provide all the compulsory inputs. 

The compulsory inputs are number of nodes 

(n), desired Order Strength (OSd), Order 

Strength tolerance (δOS) and number of 

stages (s).  

Step 2: Generate and distribute the nodes in 

all stages using uniform distribution.  

Step 3: Connect every node in stage k>1 

with exactly one random node in stage k-1. 

This step is important to keep the nodes in 

their original stages.  

2 

1 

3 

4 
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Step 4: Calculate the OS using Eq. 1. If the OS 

is within OSd ± δOS, then terminate the 

process. Otherwise, continue with Step 5. 

Step 5: Select a node i in stage k < s and 

insert an arc to a random node j in stage 

m>k until the desired OS is achieved. A 

direct arc from node i to node j is allowed 

only if: 

1. Task i have no restriction such as 

isolated node or special structure. 

2. The OS values have not exceeded the 

desired upper limit.  

3.3 ASP Data Generation 

In this work, the ASP data that are 

considered are ‘assembly direction’ and 

‘assembly tool change’. The following steps 

are applied to generate these data. Besides 

number of tasks, n, the required input in 

ASP data generation is ASP ‘data frequency 

ratio’, FR.  

Step 1: Calculate all possible lower (Llimit) 

and upper (Ulimit) limits of data frequencies 

according to FR. The Llimit and Ulimit 

represent the minimum and maximum 

number of times that a particular direction 

or tool appear in the generated problem. 

These limits must fulfil the following 

constraints: 

 Eq. 6 

  Eq. 7 

Eq. 6 and 7 ensure that the summation of 

generated data within upper and lower 

limits matches the number of tasks, n. In 

these equations, ntype represent the number 

of direction (ndir) or number of tool (ntool) 

type. In this work, six major direction axes 

(+x,-x,+y,-y,+z,-z) are considered, thus ntype 

for ndir is equal to six. Meanwhile the ntype for 

ntool depends on the number of tool types in 

a particular assembly line.  

Step 2: Randomly select a pair of lower and 

upper limits from the set of possible limits 

determined in Step 1. Generate remaining 

data frequencies using uniform distribution. 

The summation of data frequencies must be 

equal to n.  

Step 3: Generate the ASP data based on 

frequencies (Step 2) in random order.  

3.4 ALB Data Generation 

The ALB data to be generated is the ‘task 

time’ for all nodes. The required inputs are 

‘maximum cycle time’ (ctmax) and ‘time 

variability ratio’ (TV). This data is generated 

in two steps: 

Step 1: Calculate all possible limit of task 

time based on TV. The upper limit must not 

exceed ctmax. Randomly select an upper and 

lower limit from all possible limit pairs.  

Step 2: Generate the remaining task times 

between upper and lower limit using 

uniform distribution. 

3.5 Combine and Synchronise the 

Graph and Data Output 

Synchronisation of ASP-specific and ALB-

specific outputs is straightforward because 

both ASP and ALB representations are both 

developed using the same assembly task 

basis [19]. Data generated in sections 3.3 

and 3.4 are directly linked with assembly 

tasks and no further adjustment is needed. 

In this synchronisation step, the output data 

consisting of ASP data from Step 3.3 and 

ALB data from Step 3.4 are combined to 

establish a data matrix. In the data matrix, 

the assembly direction data is located on 

the first column, assembly tool data in the 

second column and assembly data for ALB 

in the third column.  

The final process in this step is to transform 

the precedence graph into precedence 

matrix as explained in section 3.1.3. This is 
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an important process to synchronise the 

format of assembly graph into readable 

computer language.  

4 Experimental Design 

This section describes the setup of the 

experimental design to assess problems 

generated using the proposed test problem 

generator (TPG). The experiment is divided 

into two phases. In Phase 1, the experiment 

will focus on the ability of TPG to generate 

problems at desired complexity level by 

manipulating the tuneable input attributes. 

Then, in Phase 2, the generated problems 

from TPG will be used to evaluate the 

performance of a set of selected algorithms. 

The purpose of the second phase 

experiment is to identify if the generated 

problems from TPG can be used to 

characterise the best and worst 

performance of each algorithm.  

4.1 Phase 1: Testing of Tuneable 

Input 

The experiment in this phase is conducted 

by dividing all the tuneable input variables 

into five levels as presented in Table 4. 

Table 4: Tuneable input level setting 

Level n OS TV FR 

1 15 0.2 2 0.2 

2 20 0.3 3 0.3 

3 40 0.4 4 0.4 

4 60 0.5 6 0.6 

5 80 0.6 8 0.8 

A reference variable setting (datum) is 

selected as a baseline, while the rest of the 

problem variable settings are generated by 

changing only one variable value at a time. 

In this case, level 3 is selected as the 

reference variable setting because it is in 

the middle between minimum and 

maximum value. The complete 

experimental table for Phase 1 is shown in 

Table 5. 

From Table 5, 17 test problems are 

generated by changing one variable at a 

time. Problem 1 represents the reference 

variable setting, problem 2 – 5 examine the 

effect of n, problem 6 – 9 for effect of OS, 

problem 10 – 13 for effect of TV and 

problem 14 – 17 for effect of FR.  

Table 5: Experimental table for Phase 1 

Problem n OS TV FR 

1 40 0.4 4 0.4 

2 15 0.4 4 0.4 

3 20 0.4 4 0.4 

4 60 0.4 4 0.4 

5 80 0.4 4 0.4 

6 40 0.2 4 0.4 

7 40 0.3 4 0.4 

8 40 0.5 4 0.4 

9 40 0.6 4 0.4 

10 40 0.4 2 0.4 

11 40 0.4 3 0.4 

12 40 0.4 6 0.4 

13 40 0.4 8 0.4 

14 40 0.4 4 0.2 

15 40 0.4 4 0.3 

16 40 0.4 4 0.6 

17 40 0.4 4 0.8 

In order to solve precedence graphs, the 

topological sort algorithm is used to 

generate feasible assembly sequences. This 

approach will ensure that the generated 

sequences are always feasible by sorting the 

nodes into ‘available’ and ‘unavailable’ 

tasks, during the sequence generation 

process [20].  

To test the generated problems, three 

different algorithms were selected for each 

problem type. For ASP problem, a multi-

objective genetic algorithm (MOGA) that 

used in [21] is chosen. This algorithm is 

selected because, in common with this 

work, it used task-based representation in 
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representing ASP problems. Additionally, 

genetic algorithm is one of the most 

frequently used algorithms for solving and 

optimising ASP problems [2]. In this 

algorithm, the fitness function for ASP is as 

follows. 

    Eq. 8 

dc  –  number of direction changes 
tc  –  number of tool changes 
dcmax –  maximum possible number of 

direction changes 
tcmax  –  maximum possible number of tool 

changes 
dcmax, tcmax  – number of nodes – 1 

To test the ALB problem, an ant colony 

optimisation (ACO) algorithm that has been 

used for simple assembly line balancing 

problem (SALBP) in [22] is used. This 

algorithm is selected based on citation 

popularity. In addition, ant colony algorithm 

is also one of frequently used algorithm to 

solve and optimise ALB problem [2]. In this 

algorithm, the fitness function is designed 

as follows.  

  Eq. 9 

ct  – cycle time 
nws  – number of workstations 
wload  –  workload variance 
ctmax –  maximum possible cycle time 
nwsmax – maximum possible number of 

workstations 
wloadmax   –  maximum possible workload 

variance 

Finally, for integrated ASP and ALB 

problem, a Hybrid Genetic Algorithm (HGA) 

that used in [3] is selected. This algorithm is 

also selected based on the popularity of this 

work for integrated ASP and ALB. The 

fitness function for this problem is designed 

as follows. 

          

                Eq. 10 

4.2 Phase 2: Algorithm Testing Using 

Generated Problems  

In the Phase 2, the algorithms’ performance 

to generate Pareto optimal solution for 

combined ASP and ALB problem are tested. 

The purpose of this test to determine 

whether the problems generated by the TPG 

have sufficient variety that enables users to 

perceive differences in algorithm 

performance. To perform this test, the 

MOGA and ACO algorithm previously used 

to optimise ASP and ALB independently will 

be used to optimise combined ASP and ALB 

problem alongside Hybrid GA. The objective 

function set for this experiment is as 

follows. 

f1 = minimise number of direction change 

f2 = minimise number of tool change 

f3 = minimise cycle time 

f4 = minimise number of workstation 

f5 = minimise workload deviation 

In order to evaluate the performance of 

each algorithm when dealing with different 

complexity problems, the following 

performance indicators adopted from [23] 

and [24] are used.  

i. Number of nondominated solution in 

Pareto optimal, ῆ: Show the number of 

nondominated solution generated by each 

algorithm in Pareto solution. Higher ῆ 

indicates better algorithm performance. 

ii. Error Ratio, ER: ER is given by dividing 

the number of solutions which are not 

members of the Pareto optimal set with the 

total number of solutions generated by 

algorithm q. Smaller ER indicates better 

algorithm performance.   
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iii. Generational Distance, GD: GD finds an 

average distance of solution with the 

nearest Pareto optimal solution. Smaller GD 

indicates better algorithm performance.  

   Eq. 11 

sq – number of solutions generated by 

algorithm q 

 

    Eq. 12 

Where fm(i) is the m-th objective function 

value of solution i and fm*(k) is the m-th 

objective function value of kth member of 

Pareto optimal set.  

iv. Spacing: This indicator measures the 
relative distance between each solution. 

  

    Eq. 13 

 is distance between solution i and the 
nearest solution, while   is average of all . 
Smaller Spacing indicate better uniformity 
of space between solutions.  

v. Maximum Spread, Maxspread: Measures the 
extent of solution distribution found by the 
algorithm. Larger maximum spread is 
better.  

 

    Eq. 14 

5 Results and Discussion 

5.1 Phase 1 Results 

The output from Phase 1 experiments are 

presented in Figure 4 to Figure 7, showing 

the average of best fitness value from ten 

runs. 

 

Figure 4: Average of best fitness for a range 
of n (number of tasks) 

Number of tasks (n) Figure 4 shows the 

effect of n on the ASP, ALB and combined 

ASPALB problem difficulties. In all cases, 

the problems with larger number of task 

tend to be found to have better fitness 

although they have similar tuneable input 

setting for OS, FR and TV. This output 

pattern is related with increment of 

problem difficulties when the number of 

tasks is increased. The output trend is also 

consistent with previous works such as in 
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Scholl (2003), Bhattacharjee (1990) and 

Otto (2011) [13; 15-16]. 

Order Strength (OS) Figure 5 show the 

effect of OS change for ASP problems with 

15, 20, 40, 60 and 80 tasks. In these graphs, 

the ASP problems with high OS values tend 

to produce better fitness values compared 

with low and medium OS values. A similar 

output pattern is also found in ALB and 

combined ASPALB problems as shown in 

Figure 5. This result indicates that problems 

with higher OS values will have lesser 

difficulty levels compared with low OS 

values. This finding corroborates a few 

previous works [25-27], while contradicting 

a few works that associate higher OS values 

with greater complexity [13; 16]. 

This mismatch is due to the dissimilar 

approaches used in solving the precedence 

graph. In the works that directly used 

generated permutation as assembly 

sequence, precedence graphs with higher 

OS values are harder to solve. Direct 

permutation has high probability of 

generating infeasible sequences; since the 

numbers of precedence constraints in high 

OS graphs are higher than low OS graph 

while the search space for both conditions 

remains the same. 

On the other hand, in the works that 

ensures the feasibility of sequence such as 

using topological sort, the precedence graph 

with higher OS is easier to solve, because of 

differences in search space size. The OS 

value directly influences the number of 

possible feasible sequence in a precedence 

graph. In this case, the number of feasible 

sequences in high OS is smaller than in low 

OS because the precedence constraints limit 

the flexibility of re-sequencing. Since the 

search space for the precedence graph with 

high OS is smaller than low OS, it is easier to 

generate solution with better fitness in high 

OS graphs than with low OS graphs. 

 

Figure 5: Average of best fitness for 
different OS value 

Nevertheless, there is inconsistency in 

outputs for ASP with OS 0.5 and 0.6, ALB 

with OS 0.4 and 0.5 and combined ASPALB 

with OS 0.5 and 0.6. For these cases, the 

problem with smaller OS emerges with 

better fitness compared with larger OS. A 

likely explanation is that the chosen OS gaps 

for these problems are too small, since it 

does not happen in larger OS gaps such as 

between OS 0.6 and 0.4 or smaller. Small OS 

gap means that there is only small search 
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space difference between the two problems 

that has influenced the inconsistency of 

results for both conditions. Therefore, to 

ensure a clear separation between one 

difficulty levels with another, OS gaps which 

are too small should be avoided. More 

investigation is needed to fully investigate 

the effect of OS. 

Frequency Ratio (FR) The output from ASP 

problem in Figure 6 shows that the 

proposed complexity attributes FR can be 

used to control the ASP data complexity.  

 

Figure 6: Average of best fitness for 
different Frequency Ratio 

 

ASP data with high FR will have wider range 

of choices that directly increase the size of 

search space. In contrast, ASP data with low 

FR have smaller search space due to a more 

limited data variety. As a consequence, the 

algorithms found it more difficult to achieve 

minimum direction and tool change for ASP 

data with higher FR.  

Time Variability ratio (TV) ALB results in 

Figure 7 confirm that the Time Variability 

ratio (TV) adopted from previous works is 

effective to control the assembly time data 

complexity [13; 16].  

 

Figure 7: Average of best fitness for 
different Time Variability Ratio 
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The assembly times with higher TV are 

easier to arrange because the combination 

of small and large task times tend to fit the 

cycle time better than uniformly large task 

times (low TV). Finally the combined 

ASPALB outputs in this figure clearly show 

that the TV input variable is able to control 

the assembly data difficulties as expected.  

The results of tuneable input test show that 

ASP and ALB problem complexity can be 

controlled via the input attributes of the test 

problem generator. Although the early 

assumption that the precedence graph with 

higher OS will have greater complexity is 

unfounded, this attribute’s usefulness is 

maintained by redefining its value: to 

generate precedence graphs with low 

complexity, higher OS level must be used, 

while for graphs with high complexity, the 

OS must be set to the lower level. It is found 

that the selection of tuneable input level is 

also important to ensure that the desired 

problem difficulty is achieved. Selection of 

proper gaps between one level to another is 

very important to avoid inconsistent 

problem difficulty.  

In order to test the significance of the 

results, statistical tests are performed. In 

this case, ANOVA test is carried out to test if 

there are any significant differences 

between the results of one level with results 

from another level. The null hypothesis 

stated that there would be no difference 

among five tuneable input levels means. The 

summary of ANOVA test is presented in 

Table 6. 

In this case, the critical f-value (f*) that is 

acquired with 0.05 level of significance from 

f-distribution table is 2.22 [28]. Table 6 

consistently shows larger f-values 

compared with f*. Since all the f-values are 

larger than f*, the null hypothesis for all 

tuneable input are rejected. In other words, 

it shows that at 0.05 confidence levels, there 

are statistically significant differences 

between levels for n, OS, FR and TV.  

Table 6: Summary of ANOVA test 

 n 
Change 

OS 
Change 

FR 
Change 

TV 
Change 

SSB 16.4897 0.9418 7.3437 2.5119 

SSW 3.2268 3.7542 2.181 2.1205 

SST 19.7165 4.6961 9.5247 4.6324 

MSB 4.1224 0.2354 1.8359 0.6280 

MSW 0.0032 0.0037 0.0021 0.0021 

f 1288.25 63.62 874.23 299.05 

SSB  – Sum of square between groups 

SSW – Sum of square within groups 

SS – Sum of square total 

MSB – Mean squares between groups 

MSW – Mean squares within groups 

However, this test does not tell us the exact 

groups or levels that have statistically 

significant difference in means. Therefore, 

an a posteriori test known as Tukey’s 

Honestly Significant Different test (Tukey’s 

HSD test) is performed.  

Tukey’s HSD test compares the mean of 

rejected null hypothesis with the means of 

other groups to identify if there is any 

significant difference between the mean of 

one level with another. The value of the 

absolute difference between two means will 

be compared to a critical HSD as proposed 

in the Tukey’s table [28]. The summary of 

Tukey’s HSD test at 0.05 confidence interval 

is presented in Table 7.  

From Table 7, the absolute mean difference 

between two levels for n and TV 

consistently indicates larger values than the 

critical HSD value. It shows that there are 

significant difference in all levels for n and 

TV. It means that the problem difficulties for 

these variables can be statistically 

distinguished between each level. 
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Table 7: Summary of Tukey’s HSD test 

Variable 
(critical HSD) 

Comparison 
Level 

Absolute 
Mean 

Difference 

n 
(0.015536) 

15 20 0.1331 

15 40 0.1497 

15 60 0.2929 

15 80 0.3658 

20 40 0.0166 

20 60 0.1598 

20 80 0.2327 

40 60 0.1432 

40 80 0.2161 

60 80 0.0729 

OS 
(0.016759) 

0.2 0.3 0.008 

0.2 0.4 0.0292 

0.2 0.5 0.068 

0.2 0.6 0.0755 

0.3 0.4 0.0212 

0.3 0.5 0.06 

0.3 0.6 0.0675 

0.4 0.5 0.0388 

0.4 0.6 0.0169 

0.5 0.6 0.0075 

FR 
(0.012773) 

0.2 0.3 0.192 

0.2 0.4 0.1954 

0.2 0.5 0.2301 

0.2 0.6 0.2256 

0.3 0.4 0.0034 

0.3 0.5 0.0381 

0.3 0.6 0.0336 

0.4 0.5 0.0347 

0.4 0.6 0.0302 

0.5 0.6 0.0045 

TV 
(0.009053) 

2 3 0.0205 

2 4 0.0708 

2 6 0.0894 

2 8 0.1453 

3 4 0.0503 

3 6 0.0389 

3 8 0.1248 

4 6 0.0114 

4 8 0.0745 

6 8 0.0859 

Meanwhile, in OS and FR variables, the 

absolute mean difference also shows larger 

values than critical HSD except for the cases 

between OS values of 0.2 and 0.3, OS values 

0.5 and 0.6, FR values 0.3 and 0.4, and FR 

values 0.5 and 0.6. This result is related 

with selection of appropriate gaps between 

levels, since it only occurs between adjacent 

levels. Consistent with earlier discussion on 

the effect of OS change on the problem 

difficulties (Figure 5), too small gaps 

between consecutive levels should be 

avoided.  

5.2 Phase 2 Results 

In this phase, 25 problems with different 

difficulty settings are used to demonstrate 

the usefulness of the TPG for testing the 

performance of algorithms. The setup is for 

multi objective optimisation of ASP, ALB, 

and ASPALB problems. The assembly 

problem for this experiment is set up as in 

Table 8 and Table 9.  

Table 8: Problem setting for experiments in 
Phase 2 

Problem 
Graph 

Difficulties 
Data   

Variables 

1 Low Low 

2 Low Low-Med 

3 Low Medium 

4 Low Med-High 

5 Low High 

6 Low-Med Low 

7 Low-Med Low-Med 

8 Low-Med Medium 

9 Low-Med Med-High 

10 Low-Med High 

11 Medium Low 

12 Medium Low-Med 

13 Medium Medium 

14 Medium Med-High 

15 Medium High 

16 Med-High Low 

17 Med-High Low-Med 

18 Med-High Medium 

19 Med-High Med-High 

20 Med-High High 

21 High Low 

22 High Low-Med 

23 High Medium 

24 High Med-High 

25 High High 
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Table 9: Attribute settings for different 
graph and data difficulty levels 

Level 

Graph 

Difficulty 

Data 

Difficulty 

n OS FR TV 

Low 15 0.6 0.2 8 

Low-Med 20 0.5 0.3 6 

Med 40 0.4 0.4 4 

Med-High 60 0.3 0.5 3 

High 80 0.2 0.6 2 

The tuneable input for these test problems 

are grouped into Graph Difficulty (n and OS 

variables) and Data Difficulty (FR and TV 

variables). The data of test problems that 

are used in this work can be downloaded 

from the following website: 

http://public.cranfield.ac.uk/s135489/ASP_

ALB_Test_Problems_Data.zip.  

The results from Phase 2 experiments are 

summarised in Table 10. Numbers in 

brackets are weighting values that are 

assigned to each algorithm based on its 

performance for the respective indicator. 

For every indicator in a given problem, the 

best result is assigned weight value 3, while 

the second and third positions are assigned 

weight values 2 and 1 respectively. Then, 

the algorithm ranking is made through 

comparison of the weighted sums.  

 

Table 10: Summary of the result of experiments on selected multi-objective algorithms  

*Numbers in brackets are weighting values from the best (weight=3) to worst (weight=1) performance. 

Problem Algorithm ῆ ER GD Spacing Maxspread 
Sum of 
weight 

Rank 

1 

MOGA 15(2) 0.5946(2) 1.0340(1) 1.2913(2) 34.2251(2) 9 2 

ACO 12(1) 0.6250(1) 0.9694(2) 1.1781(3) 34.1030(1) 8 3 

HGA 24(3) 0.2727(3) 0.3565(3) 2.2112(1) 36.9763(3) 13 1 

2 

MOGA 22(2) 0.4359(2) 0.7180(2) 1.0435(2) 34.2097(3) 11 2 

ACO 11(1) 0.6452(1) 1.1590(1) 1.4938(1) 33.3108(2) 6 3 

HGA 35(3) 0.1667(3) 0.2681(3) 0.8956(3) 31.2778(1) 13 1 

3 

MOGA 12(2) 0.7447(1) 1.1370(2) 1.0293(3) 40.2682(2) 10 2 

ACO 10(1) 0.6429(2) 1.1764(1) 1.8612(1) 38.1782(1) 6 3 

HGA 40(3) 0.1489(3) 0.2517(3) 1.4235(2) 41.1657(3) 14 1 

4 

MOGA 29(2) 0.3556(1) 0.4950(2) 1.3678(2) 36.5902(1) 8 3 

ACO 26(1) 0.2973(3) 0.4366(3) 1.7489(1) 38.3385(2) 10 2 

HGA 35(3) 0.3519(2) 0.5074(1) 1.1018(3) 38.5984(3) 12 1 

5 
 

MOGA 11(2) 0.5926(2) 0.9460(2) 1.2987(3) 33.5636(2) 11 2 

ACO 10(1) 0.6429(1) 1.0924(1) 1.3385(2) 34.3586(3) 8 3 

HGA 22(3) 0.2667(3) 0.3276(3) 1.6657(1) 34.3586(3) 13 1 

6 

MOGA 13(1) 0.7869(1) 1.7381(1) 1.6819(1) 39.5870(1) 5 3 

ACO 25(3) 0.5098(2) 1.3454(2) 1.6183(2) 39.6918(2) 10 2 

HGA 40(2) 0.4030(3) 0.6576(3) 1.4541(3) 40.0436(3) 15 1 

7 

MOGA 16(2) 0.6098(1) 1.1300(1) 1.6974(1) 37.2650(1) 6 3 

ACO 16(2) 0.5789(2) 1.0099(2) 1.5133(2) 39.3564(3) 11 2 

HGA 41(3) 0.3051(3) 0.5166(3) 1.1344(3) 39.0404(2) 14 1 

8 

MOGA 17(2) 0.7018(1) 1.1665(1) 1.3567(2) 39.0331(3) 9 2 

ACO 16(1) 0.5429(2) 1.0410(2) 1.8336(1) 37.3966(1) 7 3 

HGA 40(3) 0.3443(3) 0.5396(3) 0.9635(3) 37.7713(2) 14 1 

9 

MOGA 17(2) 0.6909(1) 1.1311(1) 1.1018(3) 39.7311(2) 9 2 

ACO 14(1) 0.5882(2) 1.0600(2) 1.6150(2) 38.1256(1) 8 3 

HGA 36(3) 0.4930(3) 0.8795(3) 1.7604(1) 44.9119(3) 13 1 

10 

MOGA 16(1) 0.6667(1) 1.2655(1) 1.5753(1) 36.4029(1) 5 3 

ACO 25(2) 0.5763(2) 1.1164(2) 1.3033(2) 37.8426(3) 11 2 

HGA 30(3) 0.5238(3) 0.7406(3) 1.0246(3) 37.6970(2) 14 1 

http://public.cranfield.ac.uk/s135489/ASP_ALB_Test_Problems_Data.zip
http://public.cranfield.ac.uk/s135489/ASP_ALB_Test_Problems_Data.zip
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Problem Algorithm ῆ ER GD Spacing Maxspread 
Sum of 
weight 

Rank 

11 

MOGA 17(1) 0.8496(1) 1.9129(1) 1.3149(3) 45.1158(1) 7 3 

ACO 60(2) 0.5000(2) 0.9915(2) 1.3560(2) 46.4900(3) 11 2 

HGA 86(3) 0.3723(3) 0.7732(3) 1.4197(1) 45.4979(2) 12 1 

12 

MOGA 24(1) 0.7073(1) 1.7056(1) 1.8150(1) 48.4041(3) 7 3 

ACO 56(3) 0.3253(3) 0.6771(3) 1.4082(3) 46.8911(1) 13 1 

HGA 44(2) 0.6271(2) 1.3069(2) 1.4886(2) 47.8308(2) 10 2 

13 

MOGA 20(1) 0.7701(1) 1.6837(1) 1.6846(2) 48.4191(2) 7 3 

ACO 42(2) 0.3731(2) 0.7612(3) 1.8370(1) 47.0473(1) 10 2 

HGA 74(3) 0.4351(3) 0.8760(2) 1.3466(3) 49.9341(3) 13 1 

14 

MOGA 56(2) 0.3778(3) 0.8536(2) 1.7669(1) 53.7493(1) 9 2 

ACO 65(3) 0.4348(2) 0.8321(3) 1.3163(2) 54.6819(3) 13 1 

HGA 49(1) 0.6797(1) 1.4087(1) 1.1580(3) 53.8050(2) 8 3 

15 

MOGA 15(1) 0.7857(1) 2.0094(1) 1.5541(3) 50.1276(3) 9 2 

ACO 31(2) 0.5441(2) 1.1165(2) 2.2496(1) 49.3039(1) 8 3 

HGA 49(3) 0.3194(3) 0.7035(3) 1.6625(2) 49.6062(2) 13 1 

16 

MOGA 38(1) 0.6696(1) 1.6155(1) 1.5986(2) 55.3575(3) 8 3 

ACO 86(3) 0.3723(3) 0.7880(3) 1.7949(1) 55.2207(2) 12 1 

HGA 69(2) 0.6124(2) 1.4092(2) 1.2798(3) 54.1806(1) 10 2 

17 

MOGA 30(1) 0.7391(1) 1.9710(1) 1.4983(3) 55.7943(3) 9 2 

ACO 62(2) 0.5000(3) 1.2519(2) 1.6083(1) 55.1087(1) 9 2 

HGA 73(3) 0.5494(2) 1.2063(3) 1.5393(2) 55.7024(2) 12 1 

18 

MOGA 22(1) 0.8182(1) 1.9982(1) 1.6087(2) 57.2777(1) 6 3 

ACO 88(3) 0.2000(3) 0.5709(3) 2.0579(1) 59.0822(3) 13 1 

HGA 74(2) 0.5747(2) 1.4657(2) 1.4820(3) 57.3599(2) 11 2 

19 

MOGA 42(1) 0.5922(1) 1.6303(1) 1.6454(3) 57.3484(2) 8 3 

ACO 49(2) 0.5664(2) 1.4639(2) 1.6960(2) 57.1157(1) 9 2 

HGA 74(3) 0.4559(3) 1.0453(3) 1.8645(1) 58.5914(3) 13 1 

20 

MOGA 33(1) 0.6972(1) 1.5315(1) 1.6453(2) 61.8964(2) 7 3 

ACO 66(2) 0.4000(3) 0.9788(2) 1.9603(1) 61.3480(1) 9 2 

HGA 84(3) 0.4650(2) 0.8983(3) 1.4834(3) 63.2256(3) 14 1 

21 

MOGA 17(1) 0.8411(1) 2.2525(1) 1.4918(2) 56.7749(1) 6 3 

ACO 117(3) 0.1761(3) 0.3228(3) 1.5736(1) 58.4656(3) 13 1 

HGA 57(2) 0.6780(2) 1.7245(2) 1.4484(3) 58.2365(2) 11 2 

22 

MOGA 44(1) 0.6944(1) 1.6900(1) 1.8500(2) 62.3752(2) 7 3 

ACO 90(3) 0.2857(3) 0.8241(3) 1.9158(1) 65.5746(3) 13 1 

HGA 70(2) 0.6410(2) 1.5881(2) 1.3136(3) 62.1336(1) 10 2 

23 

MOGA 21(1) 0.8397(1) 2.4638(1) 1.8718(2) 63.7124(2) 7 3 

ACO 46(2) 0.4458(3) 1.1937(3) 1.9034(1) 64.4027(3) 12 1 

HGA 74(3) 0.5912(2) 1.9811(2) 1.6302(3) 63.6888(1) 11 2 

24 

MOGA 39(1) 0.6286(2) 1.6486(1) 1.8588(2) 64.5943(1) 7 3 

ACO 71(3) 0.3238(3) 0.8033(3) 3.2717(1) 67.5944(3) 13 1 

HGA 61(2) 0.6494(1) 1.6160(2) 1.5992(3) 65.5225(2) 10 2 

25 

MOGA 57(1) 0.7077(2) 2.1692(2) 1.7039(2) 72.1097(1) 8 3 

ACO 105(3) 0.2606(3) 0.5954(3) 2.3302(1) 73.1415(3) 13 1 

HGA 74(2) 0.7218(1) 2.3913(1) 1.6459(3) 72.5640(2) 9 2 

 

Based on the result in Table 10, the HGA 

consistently show the best performance in 

all problems having low and low-medium 

graph difficulties (problem 1-10). 

Meanwhile, the MOGA show better 

performance compare with ACO algorithm 

for problem 1-3, but then then showed 

inconsistent performance for problem 4 to 

10. In problem 4 to 10, ACO algorithm starts 
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to overcome the MOGA performance in 

some cases.  

Meanwhile, for the problem with medium 

and medium-high graph difficulties 

(problem 11 – 20), the HGA and ACO 

algorithms alternately lead the algorithms 

in the first rank. However, when the graph 

difficulty is increased to high difficulty 

(problem 21 – 25), ACO has consistently 

shows better performance and then 

followed by HGA and MOGA. The relative 

performance of each algorithm is presented 

graphically in Figure 8. 

 

Figure 8: Algorithm’s ranking for the range 
of test problems 

6 Conclusions 

In this work, a test problem generator 

(TPG) with tuneable complexity for ASP and 

ALB problems has been proposed. A set of 

experiments has been conducted to assess 

the TPG. Experimental results confirm that 

problem complexities can be controlled by 

tuneable input variables.  

The results from Phase 1 experiments that 

test the effects of tuneable inputs confirm 

the ability of TPG to generate problem with 

varying complexity levels. The problem 

difficulties will increase when using larger 

number of tasks (n), smaller Order Strength 

(OS) value, larger Frequency Ratio (FR) or 

smaller Time Variability ratio (TV). As 

presented in the results, the n and OS 

influence the assembly graph difficulties, 

while FR and TV influence the assembly 

data difficulties. The result of statistical test 

confirmed that there are significant 

differences of the problem difficulties when 

changing the value of n and TV variables. On 

the other hand, the significant difference of 

problem difficulties also can be achieved by 

selecting appropriate value for OS and FR as 

suggested in Table 2.  

Results of algorithm performance 

experiment in Phase 2 show that the Hybrid 

Genetic Algorithm (HGA) consistently 

performed well in optimising problem with 

low and medium difficulties. Meanwhile, the 

Ant Colony Optimisation (ACO) showed 

good performance in problems with high 

level of difficulty. Based on the performance 

of both algorithms, the HGA is 

recommended for integrated ASP and ALB 

problem with low and medium difficulties, 

while the ACO is for ASP and ALB problem 

at high difficulty. These findings confirm 

that the problems generated by the TPG 

offer sufficient range of problem variety to 

be used in algorithm testing. The generated 

problems were found to be useful to 

identify the strengths and weaknesses of 

the tested algorithms.  

Although further experiments are needed to 

confirm these strengths and weaknesses, 

TPG has provided an important path by 

supplying a variety of ASP and ALB 

problems for systematic testing. Therefore, 

it can be concluded that the proposed test 

problem generator is able to generate 

combined ASP and ALB problems in a wide 

range of difficulties. 
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