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This report presents formulae ord data for the num-

erical evaluation of the double integral named in the title 

in the form
v 
 F(s ,s v} , where numerical values 

 

for the weighting coefficients c 	and the lattice points 

(s s 
v 
 ) are given. The method depends on a double Fourier 

series representation of F(x,y) in terms 0 = cos-1(1-2x) 

and 0 = cos
-1 
 (1-2y); the lattice points S 2 s

v 
 are in fact 

at equally spaced intervals in 0 and 0. 

The method is particularly applicable to integration 

hare F has half-order singularities (❑r zeros) along the 

borders of the region of integration; but it may also be 

adequate for the treat mnt of continuous functions F which 

are finite at these borders, (an accuracy of within less than 

1 per cent being then expected from the use of a 11 x 11 

lattice). Comments on applications of the formula to the 

evaluation of wave drag are given. 
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Appendix: Derivation of Integration Formula 

LIST OF SY.L.DOLS  

F 74. F(xsy) function of xsy in the double integral to be 
evaluated 

coefficient defined by equation (1) of Appendix 

I (0\ 	integral defined by equation (8) of Appendix 
Et 

the double integral to be evaluated 

S(x) 	cross-sectional area of body at fraction x of its 
length from nose 

b = 1 - 
4 
 (8 	8(...n))  

Pv 

m 

a 

weighting coefficients of integration formulae 
tabulated in section 2.1 for various usv and n. 

defined in section 3(m) 

weighting coefficients of integration formulae 
tabulated in section 2.2 



n 	 number specifying lattice spacing in integration 
formula 

- 2  
/ I 

S 	- 1 + • 
‘. 	2n 

x?y 	variables of integration 

8 = 1 if la = v = Oft" µ / v. The Kronecker delta 

4(x) 	non-dimensional uing section ordinate at fraction 
x of its chord from nose 

0 = cos-1  (1-2x) 

numbers characterising point of evaluation in 
integration or interpolation scheme. 

0 = cos-1  (1-2y) 

JL — 
tu 	2 	2n • 

1. Introduction 

A double intigral of the type named in the title 

appears for instance in expressions for the wave drag of 

slender bodies and of swept wings and presents some aifficulty 

in its evaluation, as the function F(x,y) is often only 

known either by its numerical values at discrete points, or 

else by a closed algebraic expression rendering formal evalua-

*ion tedious?  if indeed possible. For this reason numerical 

qundrature is often a convenience, but the well-known formulae 

for the evaluation of double integrals (such as Weddlels Rule) 

are inapplicable owing to the logarithmic singularity in the 

integrand. We present here a method for its approximate 

numerical evaluation which depends essentially on the rep-

resentation of the func+ion F(x0y) in terms of a finite 

double Fourier series, which can be shown to be equivalent 

to its expression as a polynomial in x and y divided by 

) '(1-x)(1-y). 
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This form of representation is evidently particularly 

suitable where F(x,y) has half-order singularities (or zeros) 

at the boundaries of the region of integration, which is same-

times so, but aamittedly would introduce unnecessary errors 

where such conditions are not met. For this reason, the 

quadrature formulae quoted are tested for a particular example 

of the latter category, where the function F is a constant 

over the range of integration. This probably represents the 

most severe test possible, implying as it does the represent-

ation of (sin e) over a half period 0 <0 .<:; by a finite 

cosine series. 

The integration formulae are quoted in the form 

,---11 	
"

n-1 	nr. i 
1 1 	7 - ---1 	'' - - ----/ 

F(x,y) Zn 1-1---J dx dzr .--1-! 	-> 	-.' . c 	F ( s ,s ) t 	x-yi 	e. , ___ , 	.,. — N 	[Iv 	p. - V 
i 	; 	 p.=-n+1 1)=-n1-1 	" 

t) o ;.; o 

Ir 	sin where 	S = 	, 	
s-"" 2n 

.L.2 

Using an 11 x 11 -poirt lattice (i.e. n = 6), and putting F 

equal to a constant, the error is less than one per cent of the 

exact value. The numerical value is less than the true one 

the precise error with this and other lattice spacings is 

tabulated below. 

n lattice points 
error as 

percentage of exact 
value 

1 	x 1 32.71 

2 3 x 3 6.45 

3 5 x 5 2.91 

4- 7 x 7 1.66 
5 9 x 9 1.07 

6 11 	x il 0.75 

For the reasons stated above, it is to be expected that 

accuracy in relation to functions F which have half-order 

/singularities 
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singularities or zeros on the borders of the region of 

integration would be considerably better. 

Full details of the method of calculation and the 

values of the weighting coefficients c v  are given in the 

next section. The mathematical derivation of the formulae 

is treated in the Appendix. The third section concerns the 

evaluation of such integrals where the limits are not between 

zero and unity, and the next section concerns some simplific-

ations resulting from symmetries in the function F(x,y). 

Finally some comments are made concerning the application of 

the formulae to the evaluation of wave drag, by way of example. 

2. Formulae for NUmerical Integration 

The analysis of Appendix I leads us to distinguish 

between two conditions n the behaviour of F(x,y), which is 

assumed. bounded everywhere inside the region of integration. 

The distinctions arise from the presence or absence of singu-

larities in F(x,y) on the boundaries of the region of 

integration. 

2.1. The function F(x,y) bounded over the complete region 
of integration 

Equations (10) and (12) of Appendix I show that 

;.‘1 	!'.1 	 11..1 	rk-1 

1 	L-1-1  dx dy=1-75 	Zr'7'  ---- ... c 	F(s 1  s ) x-y? 	 11 	v i 	 11=-n+1 9=-n-1-1 t. o -i o 

1 where 	s = 7 (1 + sin r=-* 	The coefficients c 
11 	z , 	2n; 	 LAI) 

(together with numerical values of s 
1-0
s 
v
) are given below 

for n = 2(1) 6. It will be observed that 

c 	= c 

and 	
= c(-0(-v) 
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so that out of each array of (2n-1)
2 
 coefficients]  arranged 

in a scruarel  only n
2 

are different, and these appear in each 

of the four triangular parts of the array formed by and 

including the diagonal elements. 

It will also be seen that the lattice points s $ s 
v 

are at equally spaced in terms of 0 and 0 where 

0 = cos
-1
(1-2x), 	0 = cos-1  (1-2y), 	(0 	6,0 	; 

so that it is convenient to suppose that F(x,y) E f(0,0), say, 

in which event 

F(S 	
9 

= f / 4 LLt 	v7c) 
2 2n 7 4- 2n 

The lattice points corresponding to the values 1.i = + n, or 

v = + n lie on the boundaries of the region of integration, 

and the values of F (and so of f) at these points are not 

used in the integration schemes. Given F in terms of 

numerical data at discrete points which de not coincide with 

the lattice points, its values required in the integration 

scheme would have to be found by interpolation; whether or 

not this can more easily be accomplished using 0 and 0 as 

independent variables, or interpolatingwith respect to x and 

y, depends of course upon the nature of the derivation of the 

function F. 
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Coefficients 	c 

0.0670 0.25 	f 

-1 

0.9530 ri 0.0008 0.0144 

0075 0.0144 0.0297 

0.5 0 0.0247 0.0922 

0.25 -1 0.0555 0.1599 

0.0670 -2 0.0625 0.0555 

Coefficients 	
01-Lv 	

for 	n=4 

, 	'''-■.,, 
--,,, 

s
v 

, 
■, 

s 
4 

0.0331 	• 0.1464 	0.3087 0e5 	10.6913 

1 
0 	1 	1 

'0,0536 	0.9619 

I 

2 	3 N, 	11  
v'N.- ̀,.,... 

-5 	i 1 	-2 -1 

0.9619 

0.8536 

0.6913 

0.5 

0r
3067 

.1464 

!0.0381 

3 

2 

1 

0 

-1 

-2 

-3 

0.00016 

0.00266 

0.00507 

0.01227 

0.01632 

0.02452 

0.02396 

10.00266 

0.00566 

0.01674 

0.02643 

0.04888 

0.07026 

0.02452 

0.00507 

0.01674 

0.02933 

0.06320 

0.11128 

0,04388 

0.01682 

0.01227 10.01682 

0.02643 10.04888 

0.06320 10.14128 

0.12734 ;0.06320 

0.063200.02933 

0.02643 10.01674 

0.01227 0.00507 

0.024521 0.02396,  

0.07028! 0.02452 

0.048861 0.01662 

0.02643 1  0.01227 

0.01674! 0.00507 

0.00566! 0.00266 

0.00266! 0.00016 

for n=3 

S
y 

0.3536 

0.5 

0.1464 

Coefficients c 
v 

for n=2 

s4 	0.14-64 1 	0.5 

1-LI i 	1 

	

-1 	0 
	

j 	1 v 

1 	i0.0137 1 0.1375 1 0.2193 

o 	0.137.5 10.3073 i 0.1375 

-1 	;0.2193 	0.1375 ! 0.0137  

0.6536 

0.5 0.75 

1 

0.0247 0.0555 

0.0922 0.1599 

0.2035 0,0922 

0.0922 0.0297 

0.0247 , 0.0144 

0.9330 

2 

0.0625 

0.0555 

0.0247 

1 0.0144 

0.0008 
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2.2 The function F(x,v) with half-order sinFularities  
at the boundaries of the re ion of integration, but  
bounded over the interior of the region  

Equation (11) of Appendix I shows that, under the 

stated conditions of the heading, 

T 14  ,...;4 ., 

i F(x,y) In 1
1 

 -- 	dx dy=an ^"..:: 	--' c 	F(s ,s) 

c.,o Jo 	 p=-n v=-n 

where s and the values of c 	for -n < p, v<im are 

as given in the previous section. But if p or v = ± n, we 

must interpret 

c F(ssv 
	v 
) M d linlim Lxy(1-x)(1-y) F(x0y)1 

1-L 

and the coefficients d 	are tabulated below for n = 6. 
Again it is found that a symmetry exists for the coefficients 

dPv such that 

d v  = d vp 

and 	 = d
(-11)(-v) 

so that it is necessary only to quote  any for -nc v n• * 
evidently 

d 	= 
/11A 

d(-n)v = 
and di(-n) = ah(_0  

Table of values of 	div 	for 	n=6 

v 	-6 -5 -4. -3 -2 -1 0 

a
nv 
	1 0,12796 0.15048 0.08962 0.06804. 0.04562 0.03300 0.02210 

1 

d:I., 	0.02026 
1 

2 3 4 5 	6 
-0.00261-0.00077 0.00828 0.00700 0.00082 

s 



3. I o cl if ic at ion where inteiwation 	are altered. 

A simple substitution will show that, if b> a, 

0 ob 	 ;0 pi 
1 	1 	G(x,y)/n 1.i...171 dx dy = -7r-.:7.\2 1 	1 F(x,y) 	17.71 ax dy -)  

) 	 1 	I 	I 

Li a i...i a 	 L o 	o 

in(b-a)  F(x,y) dx aY 
(b-a)2   

0 o 

where 	F(x,y) = G (b-a)x+a, (b-a)y+al 

The first integral on the right-hand-side may be evaluated by 

the method of the previous section. An analysis similar to 

that used in the Appendix I shows that the second double 

integral 

[11 
2 	+n 	+n 

F(x0y)dx dy = 	---- 	b 	lim lim i/V(1-x)(1-Y) F(x3Y) I 
/1.2 	-.4f: .) 	 16 	p=-n v=-n 

where bpv  = 4 if p and v + n; bpv  = 2 if either p or v = + n; 

and b = 1 if both p and v = + n. (The limits in this double 

sum only require interpretation if p or v = + n). Use of this 

formula can be convenient particularly if F has half-order 

singularities or zeros at the edges of the region of integration, 

as it involves data which is required to evaluate the double 

Integral containing the logarithmic singularity. Other, and 

more accurate, methods may of course be used to evaluate the 

second double integral if it is non-singular. 
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4. Simplification resultinr; from particular symmetries in F(x,y)  

(i) If F(x y) = F(y,x) we see from the previous sections 

that as 	= c 

	

+n 	+n 	 +n 
C 	F(s Is ) = 	 F(s ,s ) v  

[1=-n 	 p=-n v=-n 

where 	c = (2-8 )0 
1 n' 	 1.11)  

and where 

8 = 1 if 	= v, = 0 if p. / v is the Kronecker delta. 

Thus instead of a square lattice of points at which the function 

F(s os
v 
 ) has to be evaluated, only the terms in a triangular 
 

lattice formed by and including the diagonal elements on µ = v 

need be used. Thus for n = 3, and a function F bounded 

over the entire region of integration, we find that instead of 

the array of 5 x 5 terms given in 62.1, the triangular array 

for the coefficients c $ 

V 
-2 -1 0 1 	2 

2 0.0625 

1 0.1599 0.1110 

0 0.2035 0.1844 0.0494 

-1 0.1599 0.1844 0.0594 0.0288 

-2 	0.0625 0.1110 	0.0494 0.0288 	0.0016 

of 15 terms suffices. Similar tabulations may easily be 

constructed for other values of n. 

(ii) If F(x,y) = F(1-x,y), then as s = 1 - s 
(-0 

+n +n 
'''''' :5. 
e.:::_ N 
v=-n 

c 	F(s , s ) 
I-1v 	lal 	v 

= 
n =c-z-.-, 
- 

....2.1, 
p•=o 

n --- v  
----, 	oc 	F(sH.

,s
v
) 

.e..., 	2 	1-1, v 
vin 

-'---.Y  
1, 

i1=-n 

where 2clAv = 	+(1-81.10) c(_01, • 
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Here the square lattice is replaced by a rectangular lattice 

formed by and including the elements along p = 0. Thus again, 

for n = 5, and a function F bounded over the entire range 

of integration, the rectangular array for is e pv 

v 0 
+1 +2 

2 0.0247 0.0699 0.0633 

1 	0.0922 0.1896 0.0699 

0 	0.2035 0.1844 0.0494 

-1 	0.0922 0.1896 0.0699 

-2 	0.0247 0.0699 0.0633 

which is again of 15 instead of 25 terms. 

(iii) If F(x,y) = F(x„1-y) then similarly 

+n +n 	 n 	n 
...---" ''37  S-C-':/  c 	F(s - ) - "`=-----7 '-‹.7 7c 	F(s o ` v ) 5,,, 	- 

V 	1.1 	V 	 1-1 	V  0  
i=-n v=-n 	 p=-n v=o 

where c 	= c 	(1-8 )c 	\ 
3 P.v 	 ov m-v) 

and again the square lattice is replaced by a rectangular one 

divided now along the elements v=o. 

(iv) If F(x,y) = F(1-x,y) = F(x,1-y), which is a combination 

of the conditions (ii) and (iii) above, then 

+n 	 11- 

V  
F(s 

P. 
 ,s

v 
 ) = 	 F(ssv) 

-e<  
-n 	 i4=0 V170 i=-n v= 

where 4c c 	= 11 	po (1-8 )0-8 
ov_ 
	v 	̀ ) 1 c 	(2-goo  - 5

ov 
 ) c, \ 

i  

The lattice used is now the square formed by and including the 

elements on p = 0 and v = 0. Taking the same example as 

before the nine coefficients c 
4 
pv for n = 3, and with a 

function F bounded everywhere, are: 



,-, 

1: 	-, 
0 1 2 

2 0.0494 0.1398 0.1266 

1 0.1844 0,3792  0.1398 

0 0.2035 0.1844 0.0494 

Other tabulations for different n can quickly be assembled. 

(v) If the conditions (i) and (iv) are both satisfied, 

further reduction is possible. For then 

F(s 0s ) = 	 rc 	F(s s ) 

p.=-n v=-n 	 u=o v=o 

vihere 	500  = (2-owl
) 
400, 

Thus in the previous example only 6 coefficients c
v 
 are now 
 

needed 

v 0 1 2 

2 0.1266 

1 0.3792 0.2796 

0 0.2035 0.3688 0.0988 

Taking n = 6, and the function F bounded over 

the range of integration the square array of 11 x 11 coeffic-

ients c
4v 
 can be reduced to a triangular array of 21 coeffic-

ients 501_4v subject to the stated conditions; these are 

tabulated below, 



0 1 2 3 4 5 

5 0.01156 

24- 0.05354 0.02838 

3 0.074-64. 0.07124. 0.02640 

2 0.11560 0.12336 0.05828 0.02076 

1 0.16084 0.18676 	0.09856 	0.06196 0.02452 

0.06359 0.14316 0.07332 ' 0.05303 	0.02696 	0.01376 

(vi) If F(x,y) = - F(1-xly), then 

where 

c
11 

F(s 
1-1 1
s 	 F(s 

E-t
) 

V 	V
) 	 ec 

4 V 	1s  V 
11=-n v=-n 	 =1 v=-n 

6cpv = cpv c( -11) v 

Here the square lattice is re-olaced by a rectangular lattice 

formed by, but not including the elements along p = 0. Thus 

for n = 3 and a function F bounded ov r the entire region 

of integration the non-vanishing coefficients 0 ecp.v are 8 in 

number, and can be calculated ast 

2 1 0 -1 

2 
= 

1 

0.0617 

0.04.11 

0.0411 

0.1302 

0 

0 

-0.04.11 

. -0.1302 

1 	2 

T-0.0617 

-0.0411 

(vii) Similarly if F(x,y) = - F(xs 1-y), then 

n n 
"-:..;1 -<1  , c F(s 0 ) = 

,----- 1, 41) 	1-1 	V 11=-n [1=-n 	 1.L=-n v=1 

n , _,A,, 
'''-, 	c 	F( 	,s 	) .... 	• 

..-- _ 
	7µv 	1-1 	1) Cm...-.-.4 

'."---..: 
..•-- 	. -____ s 

where =  
7 p.v 	

cg-v) 
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(viii) If conditions (vi) and (vii) both apply then z'.s 

= 0(-0(-v) 
n 	 n n ..cr., 	--- 	 '''7 • --7' 
--"" 	

7
> 	C F(S pS ) = --"N --- 00 	F(S ,s ), where 

..-__N. 	vv 	v v 	‹. .d.-71'; u° ;Iv 	P v 
v=-n v=-n 	 p=i v=1 

8 c vv = 2 I6 c v) 	For the example quoted before the 5 x 5 

square lattice of coefficients is now reduced simply to a 

2 x 2 lattice. 

(ix) If conditions (i) and (viii) both apply, thens 

- ....:7 <-7-7 
'"--,, 

,_

C 	F(S 1SV 	 Pv ) = 	 C 	F(S 0
v 
 ) 

<1_ !IV  	il  
11=-n v=--n 	 v=1 v=1 

where 	cpv  = 2(2-5pv) 6cpv  

In the example for n=3 and a function F bounded everyJhere, 

the number of coefficients 9cµ1)  is now only 3 givenyby 

Taking n = 6, and the function F bounded over the 

range of integration the square array of 11 x 11 coefficients 

clsv can be reduced to a triangular array of 15 coefficients 

9
c!Iv subject to the stated conditions, these are tabulated 

below. 
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v 1 2 3 4 
I 

5  

5 0.01038 

4. 0.03686 0.02848 

3 0.06436 0.05732 0.02080 

2 0.08256 0.07696 0.038/4 0.01972 

1 0.04072 0.06468 0.06728 0.02532 0.00388 

5. Lalications in Aerodynamics 

As mentioned in the introduction to the paper integrals 

of the type referred to in this note appear in formulae for the 

wave drag at supersonic speeds. Two particular applications 

can be quoted: with 

F(x,y) = V(x) V(Y) 

the integral appears in the expression for the wave drag of a 

swept wing of infinite span with subsonic leading edges, and 

with a section whose thickness is t and whose ordinates are 

z =:it(x) at a fraction x of the chord from the nose.
1 The 

present integration formulae are particularly suited to evalua-

tion of such integrals where the section leading-edge and 

trailing edge are either rounded or cusped, because the function 

z' (x) has then half-order singularities at x = 0 or 1. Where 

such conditions are satisfied it is found that the formulae 

given above yield exact values in comparison with all simple 

examples worked exactly (by formal integration) merely because 

the form of the interpolating formula (used in deriving the 

present method) describes the section shape exactly. Where 

such conditions are not net only a few examples have been 

calculated by exact methods: one is for the biconvex wing 

section, which corresponds to 

V(x) = 4(1-2x), and F(x,y) = 16(1-2x)(1-2y). 
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In this example 17(x,y) is finite (and non-zero) at the 

borders of the region of integration: use of the integration 

formula with n = 6 then provides a result too small by a 

little less than 1 per cent. Application to sections with 

round noses and angular trailing-edges (so that V has the 

half-order singularity at one end of the range of integration 

only) has been found to provide answers correct within less 

than 0.1 per cent; the same order of accuracy is also attain-

able for the treatment of sections with one cusped edge. The 

method is certainly not applicable to the evaluation of 

integrals where F (although bounded) has discontinuities: 

thus, in the application under discussion, if 

V(x) = 2 sgn(1-2x)„ 

corresponding to the double edge section, the integration 

formula provides too small an answer by some 10 per cent. 

The second application which comes to mind is in the 

evaluation of the expression for the wave drag of certain 

classes of slender bodaes
2 

 where in our notation an integral 

with 
F(x,y) = Sr' (x) SII (y) 

appears, S(x) denoting the body cross-section area at a 

fraction x of the length from the nose. The integration 

formula quoted here are particularly applicable if S' (x) can 

be represented by a finite sine series in 0, where 

0 = cos-1(1-2x), because then the function F(x,y) has half-

order singularities or zeros along the borders of the region 

of integration (as is assumed in the method for numerical 

integration). Many shapes of body, which have been derived 

to provide minimum drag under stated conditions, fall within 

this category, and likewise those obtained closely approximating 

to them. On the other hand may body shapes - such as 

ellipsoids, or those with parabolic meridian sections - have a 

cross-sectional area distribution S(x) which is represented 



by a polynomial in x, and which is equivalent to the expression 

of S' (x) by a cosine series. Applied to such shapes the 

inte2Tation formula are accurate only within about 1 per cent, 

even with n = 6: this is in direct analogy to the results 

quoted above for wing sections with angular edges. Likewise., 

too, the formula are inapplicable where S" (x) is discontinuous 

(i.e. where the body has discontinuities in curvature). 

It is understood that work on sioilar lines to that 

under present discussion has been undertaken at the Royal 

Aircraft Establishment, Farnborough, in relation to this 

application to the wave drag of slender bodies. 	The 

accuracy quoted from their preliminary examples does net seem 

as close as that obtained from the use of the above formulae* 

this is probably due to the fact that the double differentiation 

of S(x) to obtain S11 (x) is implicitly accomplished in 

their technique, as a Fourier series representation of S(x) 

is used to fit its values at stipulated points, and not of 

S" (x). Numerical differentiation by rciurier series inter- 

polation is known to be a relatively inaccurate device. This 

source of error does not appear in the exam7aes auoted here, 

as no attention has been paid to the problem of derivation of 

S" (x) given only numerical data for S(x))  which of course 

often arises in practice. 

To sum up, in aeronautical applications where F(xly) 

is separable as f' (x) f' (y), say, the integration formulae 

have been found quite satisfactory where f' (x) is known and 

has half-order singularities (or zeros) at x = 0 and/or 1. 

There fl(x) is finite but non-zero at these end points, an 

accuracy of about 1 per cent (if the formulae relevant to 

n = 6 are used) is all that can be anticipated. 



-20- 

In the failing cases, which certainly include those 

where f'(x) is discontinuous at interior points of 0 rf_-. x <1, 

the work of Iegendre3  may be of particular use. In this he 

reduces the double integral of the type under consideration to 

one with a bounded integrand, together with a line integral 

(and other terms if f(x) is discontinuous); this new double 

integral may be treated by -cireddle's Rule, or another similar 

formula. The flexibility of this Rule, in allowing arbitrarily 

close spacing of lattice points at which the integrand is 

evaluated, together with the fact that it is f(x), and not 

f'(x), which appears in the finite integrand derived by 

Legendre,*  commend this method. Weddle's Rule is strictly 

speaking not in this connection applicable if f'(x) has 

half-order singularities or zeros at the end points of the range 

of integration, but as has been pointed out, the method herein 

described is then quite adequate and probably rather simpler to 

apply. 
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AL- ii-ThADIX 

Derivation of Integration Formula 

We suppose that the function F(x,y) is expressible 

in the form: 

F(x,y) = = n_r ' F 	sin 2a0 sin 2n0  uv 
p=-n v=-n 	(cos F -cos 0) (cos 7. 9-cos 0) 

where n, p, and v are integral, Fconstant and 
Pv 

0 	
-1 	 -1 	l• = cos 	(1-2x), 	= cos (1-2y), 	ty1_1  = 7 	p 

	 (2) 

Using the identity: 

	

sin 2n0 	2(-1 )n+µ .z.an, --- 	 --. b
k-n 	P. 

cos k 4-' cos k0 _ 
cos  V-' - cos 0 	sin 0 P 	 k=o 	 (3) 

where b = 1 for p + n, and b = * for p Y + 

it will be seen that [;in 0 sin 0 F(x,y] is represented as a 

finite Fourier double cosine series over the half-periods 

(0,7z) in 0 and 0. By taking n as unbounded the well-

known methods of Fourier analysis may be used to show that a 

large class of functions F(x,y) can be expressed in the 

chosen form. However in what follows we take n as bounded, 

and in general any arbitrary function F(x,y) can only be 

expressed approximately by the expression (1). 

Now it can be shown that, if p is any integer 

lim 	(  sin 2n0  _ 2(-1)11+11 	I n cosec L! , if p = p 	+ n; 
k cos - cos ei  p 

P 
- 0, 	 if P / P. 

( 4 ) 

Also, if p = + n 
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ti  sin 2n0 	\ 	4 n 

	

) 	 , as 0 

	

COS ' u-  cos 01 	sin 0 
(5) 

It follows, from (4) and (5) in (1), that 

F = (-Iry Urn 	lim I 
pv 	 b b sin 0 sin 0 F(x,y)-1 4n

2 

	

v 	 , 

	 (6) 

where, as before, b = 1 if p ± n, and b = if p = + n. 

The limits are of course easily written down unless p or v 

equals + n. It will be seen that the advantage of the 

representation (1) lies in the ease with which the coefficients 

Fpv  of the series are expressible in terms of the values of the 

function it represents. If the value of F(x,y) is known only 

	

at the lattice points (s ss 
v
)„ where pl v 	-n, -n+1, 	n-1,n, 

and 

:. , c1 	
-1 

sp. 	7 1 + sin ., 	, i.e. (4. = cos-1 	
il
)p ..(7) rp  

then the right-hand side of (1) may be regarded as an interpolor 

tion folnula for F, giving its value at all intermediate points. 

Let us now put 

(0) = ; 	sin 0 sin 2n0  In 
cos - cos 0 

o 	p 

   

 

2 do (8) 

 

cos 0 - cos 

   

Then substituting from (3) and integrating by ports 

2n 
I (g) = 2(-1)11441 	b

k-n 
 co- k ip cos k0 In 	

2 	dO 

o k=o 	 loos 0-cos QS 

= 2(-1)n+11  2 	In
2  

(10 - 
I
o 	!cos 0-cos 0! 

ell 	 • sin kesin 0 	de -zfc-bk_ncos 	! cos e cos 
k=1 	 0 	 J 1 

% 



n n 
''

• 	

..7„' 	-.-,:(-1)n.41  F 2 

	

	 ilv 
p.=-n v=-n 

2n 
log 2 + b 	COS i'4• cos k.0 

, k k-n 
k=1 

= 
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--'s 

2n 	 i 
i.e.  1 (0) = 2g-1)"1  lori.  2 + '''.... - b 	cos k (sf- cos 45! 

I-1 	 r, 
r...._.....a -'-- 	k k-n 	[-L 

I._ 	k=1 
(9 ) 

But the double integral of which we require the value is 

(11 	rl 

I = 	F ()coy) in 1
x 1Y 
	dy 

x-
/ 
 y 

o (I o 

which on substitution from (1) and (2) becomes 

v`ic  
I = 	 F 

-r 	i , 	Pv 
o o p.=-n v=-n 

and from (8) 

sin 2n0 sin 2:10 sin 0 sin 0 	2 

	

log - 	d.0 d0.  
- cos U) (cos V. v-cos 0) 	cos0-rose 

1 =11--- 
, 

.
F  I- = - -, , 

4 .t:-.% „.:,. 0  
p.=-n v=-n 

sin 2n0 sin 0 

cos it/
v
-cos 0 

(0) (10 

Using the result (9) it follows that 

(io) 

sin 2nd sin 0 do 
COSV,

v 	
COS 0 

n 	n  

- 

- 

2 
p=-n 

2n 
\T"' -1-:b 	cos k 2k k-n 	l)  
k=1  

F 	ilog 2.sin 2n0 + 

- 

(sin 2n+k/ + sin 2n-k0), 

(-1)11+P  

sin 0 	40  
cos iv  -cos 0 

2 n 	n 	 2n 7C 	1.7:7-7 	'----; 	 ... , 1 	2 i.e. I = 	 --"--.... (-1)i-i+v  F 	I log 2 + 	-;.= t- b 	cos kii cos. ki,t) 1  2 	"--1 	 ,f_:,_, k k-n --7-  ..., 	„..:-..:::.,-.. 	 . Ilv J 	 r 1.1 	1  v 
.;.-..--_-;n v=-n 	 i 	k=1 	 ....4 

x 



-24.- 

Using (0, this equation can be written as 

2 n 	n 
I - 7' 	'-̀7 	•::::" - 	lim 	lira I b b.. sin 0 sin 0 F(xiy - 2 

8n ..,, 	e:. 	v 
p.=-n v=-n 	o ---,'Y'i 0--''t-1, —11 v  

2n 1 9  
where 	a

lAv 
 = log 2 + 2S t bi-c_n  cos k ci.' i  cos 4,  v. 

k=1 

In particular if F(x,y) is bounded at the edges of the region of 

integration, from (7),  

= 

	

n-I 	n-1 c,.----, 

	

-__ 	-., 	c 	F(s -- • 	v 	P. •-...-____ ..:; 
p.=-n+1 v=-n+1

Il 
 

2 
where c = —a sin /.• sin 

	

2 	v 	V 8n   

	 (12) 


