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ABSTRACT 

There is significant interest by the food industry in applying milder processing 

conditions. A major area of research within predictive modelling has been the 

search for models which accurately predict the effect of combining multiple 

processes or hurdles. For a mild process, which has temperature as the major 

microbial injury step, the effect of the other combined hurdles in inhibiting 

growth of the injured organisms must be understood. The latter means that the 

inoculum size dependency of the time to growth must also be fully understood. 

This essentially links injury steps with the potential for growth.  

Herein, we have been developing the use of optical density (O.D) for obtaining 

growth rates and lag times using multiple inocula rather than using the 

traditional methods which use one single inoculum. All analyses were 

performed in the Bioscreen analyser which measures O.D. The time to 

detection (TTD) was defined as the time needed for each inoculum to reach an 

O.D=0.2 and O.D was related to microbial numbers with simple calibration 

curves.  

Several primary models were used to predict growth curves from O.D data and 

it was shown that the classic logistic, the Baranyi and the 3-phase linear model 

(3-PLM) were the most capable primary models of those examined while the 

modified Gompertz and modified logistic could not reproduce TTD data. Using 

the Malthusian approximation of the logistic model the effect of mild 

temperature shifts was studied. The data obtained showed that for mild 

temperature shifts, growth rates quickly changed to the new environment 

without the induction of lags. The growth of Listeria monocytogenes, Salmonella 

Typhimurium and Escherichia coli was studied at 30⁰C and/or 37⁰C, in different 

NaCl concentrations, pH and their combinations. The classical 3-parameter 

logistic with lag model was rearranged to provide the theoretical foundation for 

the observed TTD and accurate growth rates and lag times could be estimated. 

As the conditions became more unfavourable, the lag time increased while the 

growth rate decreased. Also, the growth rate was found to be independent from 

the inoculum size; the inoculum size affected only the TTD. The Minimum 
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Inhibitory Concentration (MICNaCl and MICpH) was calculated using the Lambert 

and Pearson model (LPM) and also the Growth/No Growth (G/NG) interface 

was determined using combinations of NaCl and pH. These data were 

transformed in rate to detection (RTD) and fitted with a response surface model 

(RSM) which was subsequently compared with the Extended LPM (ELPM). The 

LPM and the ELPM could analyse results from individual and combined 

inhibitors, respectively. Following a mild thermal process a lag due to thermal 

injury was also induced, the magnitude of which was dependent on the 

organism and environmental conditions; the observed distribution of the lags 

appeared, in general, to follow the Log-normal distribution. After the lag period 

due to injury, growth recommenced at the rate dictated by the growth 

environment present. Traditional growth curves were constructed and compared 

with the data obtained from the Bioscreen under the same conditions. From the 

results obtained, it can be suggested that the increased lag times and growth 

rates obtained from the traditional plate counts compared with the values 

obtained from the Bioscreen microbiological analyser, might be an artifact of the 

plating method or may be due to the use of the modified Gompertz to study the 

growth. 

In conclusion, O.D can be used to accurately determine growth parameters, to 

give a better understanding and quantify the G/NG interface and to examine a 

wealth of phenomena such as fluctuating temperatures and mild thermal 

treatments. The comparison between the traditional growth curves against the 

data obtained from the Bioscreen showed that the TTD method is a rapid, more 

accurate and cheaper method than the traditional plate count method which in 

combination with the models developed herein can offer new possibilities both 

to the research and the food industry.  

 

Keywords:  

Predictive modelling, food safety, optical density (O.D), time to detection (TTD), 

growth curve, logistic model, temperature shifts, mild heat injury.  
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1 Background 

1.1 Microorganisms in food and foodborne disease 

1.1.1 Microorganisms and food 

Most of the foods we consume cannot be sterile but have a natural flora and 

can get a transient flora from their environment. In particular, the 

microorganisms present come from the natural flora of the raw material and a 

transient flora which derives from harvesting or slaughter, processing, storage 

and distribution (Adams and Moss, 2008). Important microbial groups in food 

consist of bacteria, moulds, yeasts and viruses. In some cases 

microorganisms in food can cause spoilage, food poisoning (foodborne 

illness) or can transform the food properties in a beneficial way (e.g. food 

fermentation). Jay et al. (2005) have mentioned some of the more significant 

dates and events in the history of food preservation, food spoilage and food 

poisoning in the USA.  

Food spoilage is an ecological phenomenon and can be defined as any 

symptom or group of symptoms that occur with changes in odour, the smell 

(aroma) and the general appearance of the food by microbial activity (Gill, 

1986). In other words, food spoilage is the deterioration in the physical, 

chemical and/or sensory properties of the food resulting in reduction of food 

quality. The spoilage of the food can be caused by enzymatic (e.g. oxidation) 

and/or microbial activity. On the other hand food poisoning is any illness 

caused by bacterial, chemical or biological contamination of food and is 

related to food safety. The most common cause of food poisoning is cross-

contamination which is defined as the transfer of pathogens between food, 

surfaces and equipment. Food quality refers to the sum of the organoleptic 

characteristics (properties) of a food which makes it acceptable to consumers 

while safe food is food that is free of any physical, chemical or biological 

hazards.  

In 1995, the Food and Agricultural Organisation/World Health Organisation 

(FAO/WHO) defined a foodborne hazard as any biological, chemical or 

physical factor / property of a food, which can have adverse effects on the 
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health of the consumer when consumed. The foodborne hazards can be 

classified as physical (such as wood, stones, metal, plastic), chemical (such 

as pesticides, insecticides) and biological (bacteria, yeasts, molds, parasites, 

viruses) hazards.  

1.1.2 Foodborne disease  

1.1.2.1 Why foodborne disease is important  

Foodborne disease is a frequent and serious threat to public health all around 

the world and it has been defined by the WHO as “any disease of an 

infectious or toxic nature caused by, or thought to be caused by, the 

consumption of food or water”. Foodborne diseases have also been described 

by FAO/WHO as “a large and growing public health problem”. Griffith (2010) 

stated that “most countries with systems for reporting foodborne diseases 

have documented significant increases”. As a result food safety became a 

greater political, scientific and societal concern (Knowels, 2007; Scholliers, 

2008). Most western European countries have suffered at least one major 

foodborne illness outbreak and the problem seems to be increasing globally 

(Knowels, 2007).  The most recent example was in June 2011, which was an 

outbreak of an E. coli strain (E.coli O104:H4) in Germany and France and it 

was linked to raw sprouted seeds which infected 4,178 people and killed 49. It 

has been estimated that a new foodborne pathogen is discovered every 16 

months (Tauxe, 2009).  Often, foodborne illnesses appear to be mild with 

acute gastrointestinal symptoms such as diarrhoea and vomiting. Sometimes 

foodborne diseases can be more serious and life-threatening, particularly for 

young children and elderly people, with sensitive immune system.  

Some reported notification zoonoses rates in confirmed human cases in 

Europe in 2008 are summarised in Figure 1-1. Zoonoses and zoonotic agents 

have been defined by EFSA (2012) as “any disease and/or infection which is 

naturally transmissible directly or indirectly between animals and humans (Dir. 

2003/99/EC)” and “any virus, bacteria, fungus, parasite or other biological 

entity which is likely to cause a zoonosis (Dir. 2003/99/EC)”, respectively. 
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Figure 1-1 Reported notification zoonoses rates in confirmed human cases in 

the European Union, 2008 (EFSA, 2010) 

In 2010, information on the occurrence of zoonoses, zoonotic agents and 

foodborne outbreaks were submitted by 27 Members States to the European 

Commission (EC) and the European Food Safety Authority (EFSA). Estimates 

from the EFSA (2012) reported a total of 5,262 foodborne outbreaks, causing 

43,473 human cases, 4,695 hospitalisations and 25 deaths. Salmonella, 

Campylobacter, bacterial toxins and viruses caused most of the reported 

outbreaks. The number of salmonellosis cases in humans decreased by 8.8% 

compared with 2009 and followed a decreasing trend for 6 consecutive years 

in the European Union (EU). In foodstuff, it was more often detected in fresh 

broiler and turkey meat. Human campylobacteriosis has followed an 

increasing 5-year trend in the EU since 2006, with 212,064 confirmed cases. 

Human listeriosis decreased slightly with 1,601 cases being reported. A high 

fatality rate of 17% was reported among the cases as in previous years. A 

total of 4,000 cases caused by verotoxigenic Escherichia coli were reported in 

2010 in the EU and showed an increased trend since 2008.     

The Foodborne Diseases Active Surveillance Network (FoodNet) of Centers 

for Disease Control (CDC's) Emerging Infections Program collects data from 

10 states in the USA on diseases caused by enteric pathogens commonly 

transmitted through food. In 2008, the estimated incidence of infections 

caused by Campylobacter, Cryptosporidium, Cyclospora, Listeria, Shiga toxin-
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producing E. coli (STEC) O157, Salmonella, Shigella, Vibrio, and Yersinia did 

not change significantly when compared with the preceding 3 years. For most 

infections, incidence was highest among children aged less than 4 years, 

whereas the percentage of people hospitalized and the case fatality rate were 

highest among people aged over 50 years. During 2008, 1,034 foodborne 

disease outbreaks were reported, which resulted in 23,152 cases of illness, 

1,276 hospitalizations and 22 deaths. In 2008, a total of 18,499 laboratory-

confirmed cases of infection in FoodNet surveillance areas were identified. 

Some reported notification zoonoses rates in confirmed human cases in the 

USA in 2008 are summarised in Figure 1-2. 

 

Figure 1-2 Foodborne infections per 100,000 population as reported in the USA 

(2008) 

The CDC estimated that each year 1 in 6 Americans or in other words 17 

percent of the Americans (approximately 48 million people) become ill, 

128,000 are hospitalized and 3,000 die from foodborne illnesses (CDC, 2011). 

Also, CDC findings from 2011 showed that reducing foodborne diseases by 

10% would prevent 5 million Americans from getting ill.  

Apart from human suffering, foodborne disease can be costly as well. The 

cost of foodborne disease in the developed world can be huge for society, the 

food industry and food retailers. For less developed countries the 

consequences of foodborne diseases are even more serious (Adams and 

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 

Salmonella 

Campylobacter 

Shigella 

Cryptosporidium 

STEC O157 

STEC non-O157 

Yersinia 

Listeria 

Vibrio 

Cyclospora 

Notification rate per 100,000 population 

M
ic

ro
o

rg
an

is
m

s 

7,444 

5,825 

3,029 

1,036 

513 

205 

164 

135 

131 

17 



5 

Moss, 2008).  Ranking the factors that contribute to outbreaks of foodborne 

diseases can indicate trends and also differences in the various foodborne 

pathogens reflecting their association with raw material and physiological 

properties. Statistics and data indicating the trends in foodborne 

gastrointestinal infections are very important to monitor foodborne disease but 

are limited to a few industrialized countries and also there are countries that 

have no system to collect and report these types of data. The spread of 

foodborne diseases remains largely unknown and this is not only a problem of 

the underdeveloped world. Increased awareness of the effects of food 

hazards on human health and the increasing importance and rapid growth of 

world trade have prompted regulatory officials and international organisations 

to consider new and improved strategies to reduce the health risks associated 

with pathogenic microorganisms in foods. With all these improvements a 

downward trend in foodborne diseases would be expected (Newell et al., 

2010). However, evidence for such a trend is limited. Foodborne pathogens 

are not static and even well known pathogens can evolve and create new 

public health challenges. There are also, several unknown foodborne 

pathogens that are constantly emerging (Newell et al., 2010). Food safety is a 

paramount factor in food quality and it has to do with the consumer's 

protection. The latter means that food safety is related to food production 

which will not cause harm to the consumer. It is a legal obligation of the 

manufacturer and the public authorities and an essential requirement of the 

consumer. Food safety is a dynamic situation influenced by multiple factors. 

The complexity of the global food market means that the control of foodborne 

disease is a joint responsibility and requires action at all levels from the 

individual to international groups, and at all parts of the supply chain from farm 

to fork.  

1.1.2.2 Trends in foodborne disease 

McMeekin and Ross (2002) stated that the changing trends which influence 

the increased incidence of foodborne diseases in the last 25 years can be 

categorized as social, demographic, behavioural and technological changes. 

In particular, the human population continues to grow and according to the 

current growth rate the global population will reach 9.1 billion by 2050 (United 
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Nations, 2005). This leads to an ageing population with higher proportions of 

individuals with a sensitive immune system. Also, the globalization of the food 

industry may affect the incidence of foodborne disease. The global market for 

example in fruits, vegetables and ethnic foods can have their origin in 

countries with inappropriate safety procedures (Newell et al., 2010). 

Moreover, the most recent consumer trend is the demand for more natural, 

less processed and preserved food. This has resulted in an increase in 

consumption of fresh fruits and vegetables and the number of outbreaks 

associated with these types of foods has also increased (Tauxe, 1997). In UK 

between December 2010 and July 2011, 250 cases of gastrointestinal 

illnesses were caused by an unusual starin of E. coli known as Phage Type 8 

(PT8) and the outbreak was associated with soil on vegetables (raw loose 

leeks and potatoes). This outbreak was not related to the outbreaks in 

Germany or France earlier this year which were caused by a different strain of 

E. coli called O104 but it was also linked to vegetables (raw sprouted seeds). 

Another trend which is very common is the increase in eating away from 

home. This places greater importance on the safe operation of catering 

establishments for the control of foodborne disease.  

During the last century, international travel has also increased. Travellers may 

become infected by foodborne pathogens that are uncommon in their nation 

and there is a possibility of transmitting the pathogen further when they return 

home. International travel is also a vehicle for an increasing demand for 

international foods in local markets, and this in turn fuels the international 

trade in foods. Immigration is another factor for the epidemiology of foodborne 

disease, as some reports of foodborne illnesses involve transmission through 

foods consumed primarily by immigrant groups. Changes in technology within 

the food industry (e.g. minimal technologies for food preservation) can also 

affect the incidence of foodborne disease (McMeekin and Ross, 2002). Tauxe 

(1997) demonstrated the effect of such changes in the emergence of 

foodborne pathogens since the 1970s.  
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1.1.3 Sources of microorganisms in foods  

Considering food spoilage and food poisoning it is necessary to examine the 

possible sources of microorganisms in foods which may contaminate food and 

cause spoilage or food poisoning. Knowledge of the sources of 

microorganisms in foods is important to develop methods to control the 

invasion of some microorganisms in food, develop methods to control their 

growth and survival in food and determine the microbiological quality and 

safety of foods and food ingredients (Ray and Bhunia, 2008). Microorganisms 

occur naturally in the environment, on plants and animals, in the atmosphere, 

in and on soil and in water. Foods might be contaminated by internal and 

external sources. Internal sources include plants and animals while external 

sources are the air, soil, water, waste, feeds, humans and other sources.  

The inner tissue of most foods derived from plants is sterile but fruits and 

vegetables carry on their surface several microorganisms according with the 

type of soil, the quality of the air and the type of water fertilizers used. Yeasts, 

moulds, lactic acid bacteria and bacteria from genera Pseudomonas, Bacillus, 

Clostridium and Enterobacter can be present and pathogens especially 

enteric types (Salmonella, Escherichia coli, Shigella and Campylobacter) can 

be also present if the soil is contaminated from untreated waste (Ray and 

Bhunia, 2008). A rapid increase in the microbial numbers can be observed 

with damage to the surface, delay between harvesting and washing and 

improper storage and transport conditions.  

Animals carry many types of microorganisms in their digestive tract but also 

on skin, hair, and feathers. It is also possible that many of them are carriers of 

pathogens such as Salmonella, E. coli, Listeria monocytogenes without 

showing any symptoms. Also, foods from animal origin (milk, meat eggs) can 

be contaminated by spoilage and pathogenic microorganisms during 

production and processing. Meat can be cross-contaminated by slaughtering, 

fish can be contaminated with intestinal contents during processing or milk 

can be contaminated with faecal materials on the udder surface (Ray and 

Bhunia, 2008).  
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In the atmosphere many types of microorganisms are present even although it 

constitutes a hostile environment for them because of the radiant energy of 

the sun and the chemical activity of oxygen. Moulds, yeasts, spores of 

Bacillus and Clostridium as well as some Gram positive bacteria such as 

Micrococcus can be present in the air. If a specific environment (such as 

farms) contains a source of pathogens then, it is possible for these pathogens 

to be transmitted by the air (Adams and Moss, 2008).  

Soil in contrast with air is an environment in which microorganisms can 

multiply and as a result contains many different types of microorganisms in 

high numbers. Yeasts, moulds and many types of bacteria (Pseudomonas, 

Enterobacter, Bacillus, Clostridium) and also enteric pathogenic bacteria and 

viruses from soil contaminated with faecal materials can contaminate foods 

grown from soil (Ray and Bhunia, 2008). 

Water is essential for life and has a wide range of uses such as food 

production, drinking by humans and animals, irrigation of crops, food 

processing and storage and also washing and sanitation of food and 

equipment. Surface water may contain different type of microorganisms such 

as Flavobacterium spp. and Pseudomonas spp. as well as infectious 

microorganisms including bacteria (e.g. Salmonella, E. coli and Vibrio 

cholerae), viruses and protozoa which may be introduced to water sources 

(WHO, 1993). Different treatments can be applied (e.g. filtration and 

disinfection) for inactivation of the microorganisms (particularly pathogens) 

which can be contained in the water. Contaminations of water make any such 

water dangerous for human health unless treated. If inappropriately treated it 

can contain spoilage microorganisms such as Pseudomonas or pathogenic 

microorganisms such as Legionella and Aeromonas (ICMSF, 2005). Potable 

water is chlorine treated and so it does not contain coliforms or pathogenic 

microorganisms. 

Another source of food contamination is from humans. Foods come in contact 

with different people from production until consumption. Poor personal 

hygiene is the major cause of microbial contamination of food from humans. In 

particular, humans can contaminate foods with spoilage as well as with 
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pathogenic microorganisms such as Staphylococcus aureus, Salmonella, E. 

coli and hepatidis A.  

Contamination of food can also occur from the equipment used in harvesting, 

slaughtering, processing, transporting and storing food usually by cross-

contamination with Salmonella, Listeria, Escherichia, Pseudomonas, 

Clostridium, Bacillus, Lactobacillus, yeasts and moulds which are the most 

common contaminants of food from equipment. In addition, there are several 

other sources of microorganisms which can contaminate such as packaging 

materials, containers, pets and rodents (Ray and Bhunia, 2008). 

1.1.4 Microorganisms in foods 

1.1.4.1  Meat and meat products 

The carcasses of animals contain several types of microorganisms with an 

average of 1.55 to 155 cells/ cm2 (or 10 to 1000 cells/ inch2) (Ray and Bhunia, 

2008). Enteric pathogens such as Salmonella, E. coli, Yersinia enterolitica, 

Campylobacter jejuni and St. aureus can be found. After boning the meat is 

chilled and any contaminating microorganisms present might come from the 

carcasses or the equipment, humans, air and water during processing. Chilled 

meat contains mesophiles such as Lactobacillus, Bacillus, Clostridium, 

Staphylococcus and other Enterobacteriaceae including enteric pathogens. 

Normally, the meat is stored at low temperatures (-1 to 5⁰C), so the major 

problem is caused by psychotrophs like Brochothrix thermosphacta, 

Pseudomonas spp., Aeromonas spp. and pathogens like L. monocytogenes 

and Y. enterolitica. The packaging (aerobic or anaerobic conditions) also 

affects the microbial population (ICMSF, 2005).  

1.1.4.2 Milk 

Milk is rich in proteins and carbohydrates and contains many types of bacteria 

as predominant microorganisms. The predominant microorganisms present 

are Micrococcus, Streptococcus and Corynobacterium but if the animal suffers 

from mastitis Streptococcus agalactiae, St. aureus, coliforms and 

Pseudomonas can be present. Contaminants from other animals, feeds, soil, 

water or the equipment used are lactic acid bacteria,, coliforms, Bacillus, 
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Enterococcus, clostridium spores, Gram negative bacteria but also pathogens 

such as Salmonella, L. monocytogenes, Y. enterolitica and C. jejuni. During 

refrigerated storage psychrotrophs such as Pseudomonas and also 

psychrotrophic pathogens like L. monocytogenes and Y. enterolitica can grow 

(ICMSF, 2005).  

1.1.4.3 Eggs 

The shells of eggs carry many microorganisms such as Pseudomonas, E. coli, 

Enterobacter, Enterococcus, Citrobacter and Bacillus, mainly coming from 

faecal materials, nesting materials, feeds, air and equipment used during 

processing. Salmonella, might be also present from faecal contamination. 

Eggs have been the most common source linked to S. Enteritidis infections. S. 

Enteritidis can be inside of perfectly normal-appearing eggs. Motile Gram 

negative bacteria can enter the inside of the egg through pores of the 

eggshells (ICMSF, 2005).  

1.1.4.4 Fish and shellfish 

The pollution level of the water and the temperature of the water are the main 

factors which affect the microbial population of fish and shellfish. Freshwater 

fish can have Pseudomonas, Enterococcus, Micrococcus, Bacillus and 

coliforms while fish and shellfish harvested from marine environments can 

have halophilic vibrios, Pseudomonas, Alteromonas, Enterococcus, 

Micrococcus, Bacillus, coliforms and pathogens like Vibrio parahaemolyticus, 

Vibrio vulnificus and Clostridium botulinum type E. If the water is polluted 

microorganisms can grow quickly because the high water activity (aw) and the 

high pH of the fish tissue. The microorganisms which are present in such 

cases are Salmonella, Shigella, C. perfringens, Vibrio cholerae and hepatitis A 

(ICMSF, 2005).    

1.1.4.5 Fruits and vegetables 

Fruits and vegetables are high in carbohydrates and are usually consumed 

raw or minimally processed. Microorganisms in vegetables and fruits can 

come from sources described above such as soil, water, air, animals, insects 

and equipment during processing. Vegetables and fruits have several 

microorganisms including lactic acid bacteria, Enterobacter, Pseudomonas, 
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Proteus, Micrococcus, moulds, pathogenic protozoa, parasites and also some 

enteric pathogens such as L. monocytogenes, Salmonella, Shigella, E. coli, C. 

botulinum, C. perfringens and Campylobacter from animal wastes and 

polluted water (ICMSF, 2005).   

1.1.5 Factors affecting the growth and survival of microorganisms 

The factors that influence the growth of microorganisms which can cause 

spoilage or food poisoning can be classified in four categories: Intrinsic factors 

(which encompass the physicochemical properties of the food such as nutrient 

content, pH, aw, redox potential and antimicrobials), extrinsic (which 

encompass storage conditions such as relative humidity, temperature and 

gaseous atmosphere), implicit factors (which encompass the response of 

microorganisms to their environment and the interaction between 

microorganisms present in food) and processing factors (Adams and Moss, 

2008). Although, the total number of factors (hurdles) which affect the growth 

and survival of microorganisms in foods is high, the most widely used and 

studied hurdles include temperature storage, pH, aw and heat treatment 

(Leistner and Gould, 2002). The resistance of bacteria to various 

environmental hurdles (conditions of storage and / or treatment) is highest 

when all these factors are at best (optimum) levels. Attention was drawn to L. 

monocytogenes, S. Typhimurium and E. coli which were the foodborne 

pathogens used in the studies represented in that manuscript and so some of 

their major growth characteristics are discussed below.  

1.1.5.1 Intrinsic factors 

Nutrients 

Microbial growth is achieved through the synthesis of cellular components and 

energy. Microorganisms can use food as a source of the necessary nutrients 

for growth which include proteins, carbohydrates, lipids, minerals and 

vitamins. Water is not considered a nutrient but is essential for all the 

biochemical reactions of cells. Microorganisms can utilize the major 

components of the foodstuff differently so the nutrient component can affect 

the growth and survival of microorganisms (Jay et al., 2005).  
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pH  

pH shows the hydrogen anion concentration in a system and is equal to the 

negative logarithm of the hydrogen ion or proton concentration. pH ranges 

from 0 to 14 with pH=7 corresponding to neutrality. pH values lower than 7 

indicate an acidic environment while pH values above 7 are alkaline (Adams 

and Moss, 2008). pH is inversely related to acidity. In particular, a system with 

high pH has low acidity and vice versa (Ray and Bhunia, 2008). Also, acids 

are classified as strong or weak acids. Strong acids (e.g. HCl) dissociate 

completely while weak acids have a dissociated and an undissociated form. 

The partial dissociation of the weak acids affects the growth of the 

microorganisms. Also, even though strong acids have a more significant effect 

on pH, they are less inhibitory than the weak acids at the same pH. This is 

because the inhibition from weak acids is related to the concentration of 

undissociated form of the acid (higher dissociation constant pKa results in 

more undissociated molecules). The influence of pH on the growth and 

survival of microorganisms has been used in food preservation of spoilage 

and pathogenic microorganisms in food.  

Listeria grow best in the pH range 6–8, but will grow at a pH between 4.1 and 

9.6 (Pearson and Marth, 1990, Tienungoon et al., 2000). The minimum pH 

that allows growth and survival has been the subject of a large number of 

studies. In general, the minimum growth pH of a bacterium is a function of 

temperature of incubation, general nutrient composition of growth substrate, 

aw, and the presence and quantity of NaCl and other salts or inhibitors 

(Buchanan and Klawitter, 1991; Colburn et al., 1990). Studies have shown 

that the organism can survive at pH values below 4.1, especially when 

exposed to acidic stress before inoculation (acid adaptation) and can present 

high acid tolerance.  

Salmonella can grow in a wide range of pH values. The pH for optimum 

growth is around neutrality.  A minimum growth pH value of 4.05 has been 

recorded (Chung and Goepfert, 1970). For best growth, Salmonella requires a 

pH between 6.6 and 8.2. Aeration was found to favour growth at the lower pH 

values. The growth rates are reduced at pH values that deviate from the 
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optimum. At very extreme pH values it is possible for the microorganism to be 

killed. 

E. coli can grow in a wide range of pH. The pH for optimum growth is around 

neutrality.  The approximate minimum pH values that permit growth for 

enterohaemorrhagic E. coli is 3.9. For best growth, E. coli requires a pH 

between 6 and 7. Studies have shown that is a quite acid tolerant 

microorganism. The growth rate of E. coli slows as pH decline below optimal 

levels (Presser et al., 1998).  

Water activity  

Water activity (aw) can be defined as the available water for microbial growth. 

In a foodstuff water exists in two forms: free and bound. Bound water is used 

to hydrate hydrophilic molecules and to dissolve solutes and it is not available 

for biological functions so it does not contribute to the water activity (Ray and 

Bhunia, 2008). Water activity is given approximately by the ratio of the number 

of mols of water to the total number of mols of the aqueous solution and is 

dependent on the number of molecules or ions. That means compounds 

which dissociate in more ions (e.g. sodium chloride dissociates in two ions) 

are more effective than compounds which dissociate in fewer ions (e.g. 

sucrose dissociates in one ion). Free water is necessary for microbial growth 

as it can transport nutrients, remove wastes, assist in enzymatic reactions, 

synthesise cellular materials and help other biochemical reactions. Any 

reduction in the aw affects the microbial growth or survival of the 

microorganisms. The influence of aw on the growth and survival of 

microorganisms has been used in food preservation of spoilage and 

pathogenic microorganisms in food.  

L. monocytogenes has a minimum aw for growth of about 0.90 at 30oC, when 

glycerol is used and about 0.92 and 0.93 when using NaCl and sucrose, 

respectively (Farber et al., 1992). Survival, however, has been observed in 

salami with 0.79 to 0.86 aw, when it was stored at 4oC (Johnson et al., 1988).  

The aw threshold for the growth of Salmonella is 0.94, although it can survive 

in foods with lower values of aw. Regarding available moisture, growth 

inhibition has been reported for aw values below 0.94 in media with neutral 
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pH, with higher aw values being required as the pH is decreased towards 

growth minima. The water activity of a food product is reduced by the addition 

of solutes such as sodium chloride and sugars.  

The minimum aw values that permit growth for enterohaemorrhagic E. coli is 

0.95 (ICMSF, 1996). However, several levels of aw that prevent growth have 

been reported (Ryu et al., 1999; Riordan et al., 1998). 

1.1.5.2 Extrinsic factors 

Relative humidity  

Relative humidity and water activity are related but relative humidity refers to 

the water activity of the gas phase. There is an interaction between the food 

and the air humidity so that when foods with low water activity are stored in a 

place with high relative humidity water will transfer from the gas phase to the 

food. This will result in an increase of water activity and might result in an 

increase of an existing microbial population which was viable but unable to 

grow (Adams and Moss, 2008).   

Temperature 

Microbial growth is carried out through enzymatic reactions. Temperature also 

affects the enzymatic reaction rates, so it has a key role in microbial growth of 

food (Jay et al., 2005). Microorganisms can be classified regarding their 

optimum temperature for growth in thermophiles (microorganisms which can 

grow at high temperatures), mesophiles (microorganisms which grow in 

ambient temperatures) and psychrophiles (microorganisms which can grow at 

low temperatures). Mesophilic and psychrophilic microorganisms are of 

greater importance in food microbiology than thermophilic microorganisms 

although thermophilic spores of Bacillus and Clostridium can be the source of 

food contamination (Adams and Moss, 2008).   

The optimum temperature for growth of L. monocytogenes is 30⁰C to 37⁰C, 

when the pH of the food, is neutral or slightly alkaline. However, the lower limit 

is about 0⁰C, where growth is quite slow, with a generation time of 62 to 131 

hours. Growth at low temperatures is also influenced by other factors such as 
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salt (NaCl) concentration, pH and the presence of lactic acid bacteria 

(Raccach et al., 1989; Berry et al., 1990).  

The temperature range for growth of Salmonella spp. is from 5.3⁰C to 45⁰C 

with an optimal temperature of 37ºC (ICMSF, 1996). At temperatures below 

15⁰C the growth rate is reduced, while for most strains growth is inhibited at 

temperatures below 7⁰C. Particular attention should be given to foods which 

are kept for long periods in chilling, within the limits of growth, where growth 

rates are low. Freezing conditions are detrimental for the survival and growth 

of the organism, but do not guarantee the destruction of the pathogen. Cells 

have been detected in foods which are stored in low temperatures for years. It 

seems that some foods provide protection against freezing, especially when 

the initial population of the pathogen before freezing is high (ICMSF, 1996).  

The temperature growth range for E. coli is from 7⁰C to 45⁰C with an optimal 

temperature of approximately 37⁰C. The lowest temperature that allows the 

growth of enterotoxigenic E. coli is 7⁰C IFT (2001). The environmental limits to 

growth for E. coli are well characterized (Presser et al., 1998; Salter et al., 

2000; ICMSF, 1996).  

Gaseous atmosphere  

Oxygen (O2) and carbon dioxide (CO2) have an inhibitory effect on the growth 

or survival of microorganisms. Oxygen is the most important gas in contact 

with food and its influence on redox potential (Eh) which is the medium 

tendency to accept or donate electrons (oxidation or reduction) affect the 

microbial populations. Carbon dioxide has also an inhibitory effect on the 

microorganisms and is used by the food industry in modified atmosphere 

packaging. In general, mould and Gram negative bacteria are more sensitive 

in carbon dioxide than Gram positive (mostly lactobacilli) bacteria and yeasts 

which tend to be more tolerant. Also, greater growth inhibition by carbon 

dioxide is observed under aerobic conditions and decreased temperature 

(Adams and Moss, 2008).  
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1.1.5.3 Implicit factors 

The responses of the microorganisms in the environment present as well as 

the interactions between them constitute a third set of factors which affect 

their growth and survival in food. In particular, the physiological state of the 

microorganisms can affect their responses to several stresses with the 

exponential phase cells being more sensitive than the stationary cells. Also, 

microorganisms can develop adaptation mechanisms to several stresses 

which results in a decrease of the damaging effect of the adverse conditions 

(Adams and Moss, 2008). In the literature there are several studies which 

show microbial adaptation (Hill et al., 1995; Belessi et al., 2011). Moreover, if 

several microorganisms are present in a foodstuff the interactions might have 

an effect in their responses to the applied stresses. Moreover, 

microorganisms can help other microorganisms to grow or produce a stress 

response by producing molecules or by removing inhibitory components from 

the environment. Conversely, these microorganisms might also be 

antagonistic to each other by producing inhibitory compounds or by 

consuming essential nutrients such as iron (Adams and Moss, 2008).  

1.1.5.4 Processing factors 

During food processing, processing factors such as slicing, washing, packing 

(modified atmospheres or aseptic packaging), use of chemicals, drying, 

irradiation, high hydrostatic pressure, pulsed electric fields and pasteurization 

can affect the growth and survival of microorganisms by causing changes in 

the intrinsic or extrinsic factors or by directly eliminating a portion of the 

microflora of the food (Adams and Moss, 2008).     

1.2 Prevention of foodborne disease 

Traditionally, food safety control was based on the inspection of the end 

product. Under these circumstances, in the case of a positive result (i.e. 

presence of pathogens) the whole production could be discarded. Further, it 

was often not possible to identify where the hazard came from because there 

was often no traceability system. In 1996, the EC stated that “the biological 

and chemical agents which cause food poisoning are many and varied, but 

they almost all have one feature in common: they accompany the animal from 
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stable to table. For this reason, any attempt to maintain a high level of 

protection of consumer without taking into account of what is happening 

throughout the whole production chain is doomed to failure” (FVE, 2010). 

Increased awareness of the effects of food hazards on human health and the 

increasing importance and rapid growth of world trade have prompted 

regulatory officials and international organisations to consider new and 

improved strategies to reduce the health risks associated with pathogenic 

microorganisms in foods. As a result, and with the increasing incidence of 

foodborne disease during 1990s food legislation was developed based on the 

concepts of the Codex Alimentarius Commission (CAC). Also, it has been 

noted that there was no absolute food safety but that food safety is related to 

a level of risk that society considers as reasonable (Forsythe, 2000).  

1.2.1 International control of microbiological hazards in foods  

One of the present trends in foodborne disease is the globalization of food 

trade. This can cause the dissemination of infectious agents from the original 

point of production to places miles away. As a result foodborne disease 

became of significant importance as a global health issue. Food safety 

measures are not fixed around the world and this leads to trade 

disagreements between counties. Food safety systems should be established 

by all (developed and developing) countries together in order to ensure global 

food safety. The Codex Alimentarius (CA) is a collection of standards, 

recommendations and guidelines and covers all foods (raw, processed or 

semi processed). In 1962, the Joint FAO/WHO Committee was established 

with the CAC as an executive organ. The application of the CA principles will 

control hazards in foods (Forsythe, 2002).  

1.2.2 Food safety (management) tools 

The complexity of the global food market means that the control of foodborne 

disease is a joint responsibility and requires action at all levels from the 

individual to international groups, and at all parts of the supply chain from farm 

to fork. The tools used and approaches taken to ensure control require 

different emphasis, depending on a number of factors such as where food 

materials have come from, how they have been processed and handled and 
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how they are stored. The risk of foodborne illness can be reduced by using 

existing technologies, such as thermal processes, and by adopting some 

simple precautions such as avoiding cross contamination by separating raw 

and cooked foods and employing good hygiene practices. The increase in 

knowledge about foodborne pathogens can provide a focus for effective 

control measures to help reduce food poisoning.  

The microbiological safety of food is guaranteed by the education and training 

of food handlers and consumers during the whole process from production to 

consumption, the microbiological testing of food, the implementation of 

Hazard Analysis Critical Control Point (HACCP) systems, the control at source 

which includes the prevention of contamination of the raw materials (CAC, 

1997) and the product design and process control which encompass the 

technologies used to prevent foodborne diseases (Forsythe, 2002).     

Food safety measures have to be taken over the entire food chain from farm 

to fork. Forsythe (2002) has discussed the food safety tools required to 

accomplish this aim. In particular, the food safety tools such as the Good 

Manufacturing Practice (GMP), Good Hygiene Practice (GHP), HACCP, 

Microbiological Risk Assessment (MRA), Quality Management (QM) and Total 

Quality Management (TQM) when integrated appropriately provide a high 

level of safety assurance.   

1.2.2.1 Good Manufacturing Practice and Good Hygiene Practice  

GMP is related with the appropriate environment in which a product is 

produced and it covers all the basic principles and procedures followed to 

accomplish the production of food of acceptable quality (Forsythe, 2000). 

GHP encompasses the hygiene practices which all establishments should 

follow and covers all the field of hygienic design of manufacturing premises, 

machinery, cleaning, disinfecting and processing procedures (Forsythe, 

2000). GMP and GHP have been built up by governments, the CAC on food 

hygiene (FAO/WHO), the food industry and competent authorities.   



19 

1.2.2.2 Hazard Analysis Critical Control Point  

In the past, the central challenge of foodborne disease was the suppression of 

contamination of food but nowadays it is based on the development of 

proactive, preventative systems of quality control through the adoption of 

HACCP principles. HACCP is a protocol which defines and controls specific 

hazards that adversely affect the safety of products and it can be applied from 

production to the final consumption of the product. GMP and GHP are related 

with the HACCP systems as these requirements constitute the prerequisites 

of a HACCP system. The outline of a HACCP system encompasses the 

prevention of microorganisms from contaminating food by applying hygienic 

measures and the prevention of microorganisms from growing in food or 

eliminating them using food preservation processes (Forsythe, 2002).  

1.2.2.3 Microbiological Risk Assessment  

MRA is a step by step analysis of hazards which can be associated with a 

product and can give an estimation of the probability of occurrence of adverse 

effects on the consumer’s health (Notermans and Mead, 1996). The MRA 

should not be confused with the HACCP systems as it is a regulatory activity 

which is related more with the consumer than with the final product (as the 

HACCP systems) and can supply valuable information for the development of 

HACCP systems (Forsythe, 2002). MRA is an approach for understanding 

and reducing risks where risk has been defined by the CA as “a function of the 

probability of an adverse health effect and the severity of that effect, 

consequential to a hazard(s) in food” and consists of risk assessment, risk 

management and risk communication (FAO/WHO, 1997).  

1.2.2.4 Responsibilities of the industry, competent authorities and 

consumers  

The primary role of food industries is to supply the market with safe food by 

applying the appropriate control measures (e.g. GMP, GHP, TQM and 

HACCP). The responsibilities for the role of the competent authorities in 

relation to food safety are specified in Regulations 852/2004, 853/2004 and 

178/2002 of the European Parliament and of the Council (EU basic food law). 

More specifically, the competent authorities are responsible for the approval of 
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the implementation of HACCP systems and GHP in all food handling and 

processing facilities, issuing GHP in collaboration with relevant production 

sectors and approving food processing facilities.   

It is clear that in the farm to fork concept, consumers also have certain 

responsibilities.  These responsibilities are related with the way the 

consumers handle and preserve the products from the time they purchase 

them until their consumption. However, communication between the industry 

and the competent authorities and consumers is very important. They have to 

inform consumers of all the hazards and risks associated with food handling 

from the time of purchase until the actual consumption. The information has to 

be simple and understood by everyone to avoid any confusion and panic by 

the consumers which would result in unreliability to the food industry and the 

competent authorities.  

1.2.3 Hurdle technology 

1.2.3.1 Dimensions of hurdle technology 

Hurdle technology is a concept which was developed several years ago and is 

used in food production in industrialized and in developing countries for the 

mild but effective preservation of foods. Initially, hurdle technology was used 

exclusively to improve the microbial stability and safety of foods. McKenna 

(1994) stated that food quality is a broader field and subsequently hurdle 

technology should be used by researchers as well as the food industry for as 

many quality improvements as possible. Leistner and Gould (2002) stated that 

the hurdles used in a food product cannot only affect the microbial stability 

and safety of the food but also the sensory, nutritional, technological and 

economical properties of a foodstuff, in a negative or positive way. In 

particular, regarding the hurdles in a foodstuff, if a hurdle’s intensity is too low 

it should be reinforced while if it impairs the total quality it should be lowered 

in order to be maintained in an optimum range which will ensure at the same 

time the safety as well as the quality (Leistner, 1994; 1995a). Other 

dimensions of the hurdle technology have been suggested such as medical 

aspects, barriers in food, hurdle technology and enzymes and hurdle 

technology for sustainable food processing (Leisner and Gould, 2002).  
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Moreover, the aim of hurdle technology is the deliberate and intelligent 

combination of different hurdles in order to improve the microbial stability and 

the total quality of foods (Leistner, 2000; Leistner and Gorris, 1995). Each 

food has a certain set of hurdles which can ensure its stability and the type of 

the hurdles depends on the type of the food, the desired stability and safety 

and the available facilities (Leistner and Gould, 2002).   Previously, hurdle 

technology was used empirically without much quantitative knowledge of the 

governing principles. In the last 30 years, a wide use of hurdle technology has 

been observed because the properties of major preservative factors for foods 

(e.g., temperature, pH, aw), and their interactions, became better known 

(Beales, 2004; Adams and Moss, 2008; Brul and Coote, 1999). 

1.2.3.2 Mechanisms of microorganisms 

In food preservation the hurdles used have to be effective by inhibiting the 

growth of microorganisms or inactivating them. Microorganisms are in contact 

with the external environment; changes of the environmental factors cause 

them to modify their metabolism and to develop mechanisms in order to 

overcome these environmental changes. In particular, most of those 

mechanisms are related with homeostasis. In food preservation homeostasis 

of microorganisms is a very important phenomenon and is the cornerstone for 

the concept of multi-target preservation (Leistner, 1995a; 1995b). According to 

Leistner homeostasis ‘’is the tendency to uniformity and stability in the internal 

status of organisms’’ (Leistner, 1995a). Homeostasis, metabolic exhaustion 

and stress reactions of microorganisms are all related with hurdle technology. 

According to Leistner and Gould (2002), homeostatic mechanisms can be 

classified as active (level of nutrients, pH, aw, preservatives), passive or 

refractory (high temperature, hydrostatic pressure, ultrasonication) and 

population homeostasis (competition from other microorganisms). If 

homeostasis is disturbed by preservative factors (hurdles), then the 

microorganisms may not multiply, that is, they cannot proceed from lag phase 

to exponential phase or they die, before repairing homeostasis mechanisms. 

In food preservation, the disturbance of homeostasis may be temporary or 

permanent.  Gould (1988; 1995) was the first to refer to the homeostasis of 

microorganisms and their relation with the preservation of foods. Metabolic 
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exhaustion of microorganisms is another important phenomenon. Survival 

mechanisms are the opposite of growth mechanisms. Optimum environmental 

conditions favour the growth mechanisms of a microorganism. On the other 

hand, microorganisms in stable hurdle-technology foods use the repair 

mechanisms for their homeostasis to overcome the hostile environment, that 

is, use their energy for this purpose and die if they become metabolically 

exhausted. This leads to an auto-sterilization of such foods (Leistner, 1995b). 

Also, the stress reactions of the microorganisms under inimical conditions 

(such as heat, pH, aw) could increase their resistance or their virulence. For 

example, Cataldo et al. (2007) studied the acid adaptation and survival of L. 

monocytogenes in Italian style soft cheeses. Also, Beales (2004) with his 

review of the adaptation of microorganisms to cold temperatures, weak acid 

preservatives, low pH and osmotic stress and Brul and Coote (1999) with their 

review on the preservative agents in food, gave a better understanding of 

such mechanisms. Factors such as these could cause problems in the 

application of hurdle technology. 

1.2.3.3 Multi-target preservation  

Under stress conditions, bacteria may become more resistant due to the 

production of stress shock proteins. Several stresses including heat, ethanol 

and pH, induce the synthesis of these types of proteins. Also, there is the 

possibility that a microorganism becomes more tolerant to other stresses after 

the exposure to a single stress (cross – protection). The various responses of 

microorganisms may create problems to the application of hurdle technology 

(Leistner, 2000). Exposure of microorganisms to different stresses at the 

same time may also lead to the synthesis of more protective stress shock 

proteins which has as result the metabolic exhaustion of the microorganism.  

Subsequently, multi-targeted preservation of foods could be the solution in 

order to avoid the impact of the synthesis of stress shock proteins. Leistner 

(1995a, 1995b) introduced the concept of multi-target preservation of foods. 

The concept of multi-target preservation is the intelligent combination of mild 

hurdles which will have synergistic effect (Leistner, 2000).  It has been 

suspected that the applications of different hurdles in a food, not only have an 
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additive effect on microbial stability but it might give a synergy too (Leistner, 

1978). If different hurdles hit, at the same time, different targets (e.g. DNA, 

pH, cell membrane, aw) in the microbial cell and disturb the homeostasis of 

the microorganism they can achieve a synergistic effect, so the repair of 

homeostasis will become more difficult (Leistner, 1994). Therefore the 

hypothesis that it is better to use different preservative factors of low intensity 

than one of larger intensity is valid, due to the fact that different preservative 

hurdles could act synergistically (Leistner, 1994). 

 In the literature there are many studies which have used combined hurdles to 

inhibit the growth of several microorganisms. In particular, Francois et al. 

(2006) studied the effect of temperature, pH and aw on the individual lag 

phase of L. monocytogenes. Also, Shadbolt et al. (2001) studied the 

differentiation of the effects of lethal pH and aw in E. coli populations and their 

implication on food safety. Gabriel and Nakano (2010) used different 

combinations of pH, aw and temperature to compare the responses of E. coli 

O157:H7, L. monocytogenes ½ c and S. enteriditis.    

1.2.3.4 Major hurdles in foods, injury and recovery of bacteria 

There are several factors that are used by the food industry in order to 

preserve food, such as temperature, salt (NaCl), water activity (aw), and weak 

acid preservatives.  These factors are applied to foods in order to injure or 

inactivate microorganisms. Different microorganisms have different responses 

to these stresses and therefore their potential presence in a variety of foods 

may increase the risk of foodborne illnesses. Leistner and Gould (2002) 

explained that the microbial stability and safety of foods are actually based on 

combinations of several factors or hurdles that may individually or additively 

affect microorganisms. These preservative hurdles can be classified as 

physical, physicochemical, microbiologically derived and miscellaneous 

hurdles. However, while the total number of hurdles is very high, the most 

widely used and studied hurdles include temperature storage, pH, aw and heat 

treatment. There are many studies in the literature, which examine the 

responses of the microorganisms to several physiological parameters. 

Vermeulen et al. (2007) studied the influence of pH, aw and acetic acid 
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concentration on L. monocytogenes at 7⁰C. Similarly, McClure et al. (1993) 

studied the growth responses of L. monocytogenes in combinations of 

temperature, hydrogen-ion and NaCl using the Bioscreen analyser.  

As mentioned above, bacteria are often subjected to several stresses such as 

extreme pH, temperatures, aw, and nutrient limitation. This means that 

bacteria spend more time in a stressed state than in a non-stressed state. 

However, instead of this impediment, stressed bacteria remain very important 

to study due to their ability to retain the ability to contaminate and infect. The 

injury which results from these stresses may affect the physical properties of 

the cells or their metabolic reactions (Stephens, 2005). A major physical effect 

is the damage to the outer membrane of the bacterial cell, resulting in an 

increase in permeability. External compounds can enter into the cytoplasm 

and intracellular components may be lost. Furthermore, the increased 

membrane permeability may lead to the disruption of membrane-based 

proteins which consequently affects other essential functions such as 

respiration. Bacterial stress can also lead to ribosome and RNA degradation. 

Apart from the direct damage of the ribosomes and RNA which is caused from 

stress, indirect damage can occur through activation of ribonucleases. The 

concentration of Mg2+ is responsible for ribosome and RNA stability. Any 

change in the concentration of Mg2+ leads to injury. DNA can be damaged by 

using ultraviolet and/or ionising radiation and heat, cold and desiccation 

stresses (Stephens, 2005). 

Mild treatments such as heat, have been shown to be effective in inactivating 

vegetative cells of bacteria. However, usually they are not able to inactivate 

completely foodborne pathogens in foods, which results the surviving 

population being sub-lethally injured (Jasson et al., 2007). These 

microorganisms are not able to grow on selective media if not preceded by 

repairing such injury with a suitable resuscitation treatment (Mossel and 

Corry, 1977). Two major factors of determining optimum resuscitation or pre-

enrichment treatments are the severity of injury and the repair times of the 

microorganisms (Mackey and Derrick, 1984). 
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There are two main considerations on the processing conditions, such as 

heating which have to be in balance. In particular, the effect of the process on 

the growth / survival of the microorganisms has to be determined but at the 

same time it has to be taken into account that this process may change the 

final quality of the product (texture, taste etc) (McClure, 2000). Food quality 

and food safety play an essential role in the food industry (Zwietering et al., 

1993; Zwietering et al., 1992; Wijtzes et al., 1998; McMeekin et al., 2006).  

The food industry uses various processes to control microbial growth. Heat 

represents a common form of preservation (Gould, 1989). It can cause 

damage to the cell similar to several other forms of injury and control in the 

laboratory is relatively easy (Stethens et al., 1997). Rosso et al. (1995) have 

mentioned: “Temperature and pH are the major environmental factors that 

affect growth which are studied most because of their importance in 

fundamental research (taxonomy, microbial metabolism) and their practical 

importance (control of bioprocesses in biotechnology and safe handling of 

goods, especially in the agriculture and food industries)”. In many food 

processing systems, heating is used for the reduction of the number of 

bacteria. That way, safety is enhanced and the shelf life of the products is 

increased (Esther and Zwietering, 2006). The most important factor for this 

step is the required time-temperature that is the time which is needed at a 

particular temperature to achieve the desired result. The D/z concept is a 

broadly applicable concept which assumes a log-linear inactivation during the 

heating time. There are two parameters, D and z, which play an important role 

in the thermal inactivation. D is the time needed to reduce viable numbers by 

tenfold or one log unit at a specific temperature, and z- is the temperature 

change needed to cause a tenfold change in D (Mackey et al., 2006).  Several 

strains, products and laboratory media have been studied resulting in 

numerous D- and z- values for various environmental conditions (ICMSF, 

1996; Doyle et al., 2001, van Asselt and Zwietering, 2006). Furthermore, 

Doyle et al. (2001), reported several factors which influence the heat 

resistance of a pathogen: strain variations, presence of salt or acid, growth 

phase of the cells, the media which is used etc. McClure (2000) mentioned 

that heating is one of the most important control measures for E. coli. There 
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are many studies that refer to heat inactivation, for example Chhabra et al. 

(2002) developed a model which evaluated the effect of growth conditions in 

relation with the thermal inactivation of L. monocytogenes. 

Bacterial cell components can be damaged by sub-lethal thermal injury. This 

may lead to increased lag phase duration (LPD) and increased difficulty in 

isolating and enumerating foodborne pathogens (McKellar et al., 1997). A 

factor that strongly influences the microbial recovery to thermal treatments is 

the plating media which are used. If a selective medium is used in order to 

grow stressed bacteria colonies, then injured cells may not recover and this 

may lead to an underestimation of the real number of colonies (viable but not 

countable cells) (Miller et al., 2006). For this reason in many studies non-

selective media are used to circumvent this problem. McKellar et al. (1997), in 

order to model the influence of temperature on the recovery of L. 

monocytogenes from heat injury, used Tryptic Soy Yeast Extract Agar 

(TSAYE) and Tryptic Soy Yeast Extract Agar supplemented with 5% w/v 

sodium chloride to determine the total cell count and non-injured cell count, 

respectively. In other studies on the repair times of S. Typhimurium, Tryptone 

Soya Agar (TSA) and Tryptone Soya Agar supplemented with 0.1 % sodium 

pyruvate was used for the same reason (Mackey and Derrick, 1984; 1982). 

The reactions and the behaviour of microorganisms in different media must be 

known (Miller et al., 2009).  Moreover, Stephens et al. (1997), measured the 

recovery times of single heat injured Salmonella cells using an automated 

growth analyser. 

1.2.3.5 Gamma hypothesis and hurdle concept 

The Gamma hypothesis/concept states that the growth of microorganisms is 

independently affected by combined environmental factors (hurdles) such as 

temperature, pH, aw or in other words, that there are no interactions between 

antimicrobial environmental factors (Zwietering et al., 1992; 1993). 

Furthermore, Zwietering et al. (1993) developed a model which combined 

qualitative and quantitative information for the prediction of microbial spoilage 

in foods. It is known, that the different environmental factors (temperature, pH, 

aw) influence the growth rate. A growth factor (=μ/μopt) was introduced to 
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evaluate these effects. As was also stated, that “it is assumed that the growth 

factor can be calculated by multiplying all (x) values, with (x) defined for 

each of the variables separately, independent of the value of the other 

variables” (Zwietering et al., 1993). Also, Wijtzes et al. (1998), described a 

method for the prediction of food safety and quality using the same 

dimensionless growth rate . A very important term which has to be mentioned 

is synergy. In the pharmaceutical area, all attempts to absolutely define 

synergy have not succeded (Greco et al., 1995). Dufour et al. (2003) stated 

that there was no commonly accepted methodology for the detection or 

quantification of synergistic interactions. However, editors of known journals 

have defined synergy e.g. Odds (2003), without any fundamental scientific 

basis for doing so. The fact that there is no agreement on what constitutes 

synergy has created many problems (Chou, 2008).  

In general, from the literature it can be concluded that there are two different 

views with respect to the effect of combined antimicrobial environmental 

factors (hurdles). The first suggests that interactions exist and the second 

suggests that interactions do not exist. Lambert and Bidlas (2007a) stated that 

the Gamma hypothesis has been extended in order to include apparent 

synergistic or interactive effects between hurdles, such as temperature, pH 

and aw (Augustin and Carlier, 2000b), temperature, pH and weak acids (Le 

Marc et al., 2002), and mixed weak acids (Coroller et al., 2005), but that this 

was a violation of the hypothesis itself.   

The Gamma hypothesis is the corner stone for several studies which use time 

to detection (TTD) for the analysis of multi-factor environmental stresses 

(hurdles) affecting microorganisms such as pH, weak acids and temperature. 

Lambert and Bidlas (2007b), investigated the growth of Aeromonas hydrophila 

by challenging it with pH, sodium nitrite (NaNO2) and salt concentrations at 

30ºC, based on the Gamma hypothesis. Moreover, Lambert and Bidlas 

(2007a, 2007c) made a predictive modelling study in which they examined the 

effect of multi-factor environmental stresses of Enterobacter sakazakii and 

Aeromonas hydrophila using a model based on the Gamma hypothesis.  
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McMeekin et al. (1997, 2000) and McMeekin and Ross (2002) characterized 

predictive microbiology as the quantification of hurdle technology. The 

concept of hurdle technology, states that combined antimicrobial factors act 

synergistically (Leistner and Gorris, 1995; Leistner, 2000). Moreover, it has 

been stated that although hurdles such as temperature, pH and aw act 

independently, “it would be expected, however, that interactions must occur 

between certain hurdles” (Brocklehurst, 2004). On the other hand, the Gamma 

hypothesis suggests that different antimicrobial environmental hurdles are 

combined independently (Zwietering et al. 1992). Lambert and Bidlas (2007b) 

stated that this hypothesis may be considered, the foundation of predictive 

microbiology as it strengthens “the investigation of a supposed synergy over 

the assumption that it exists”. 

The interactions or the lack of them between environmental factors affect the 

Growth/ No Growth (G/NG) boundaries or stability maps. Stability maps are a 

new trend which predict the probability of growth when the studied population 

is faced with more than one hurdle (McMeekin and Ross, 2002). Stability 

maps were described as “the contours of relative growth” by Lambert and 

Bidlas (2007b).  Ratkowksy and Ross (1995) was the first to report a method 

to define the G/NG boundary of Shigella flexneri using different temperature, 

pH, aw and nitrite concentrations. Stability maps are very important because 

they enable product developers and all those who make challenge studies, to 

find very quickly regions of high and low growth. McMeekin et al. (2000) 

stated that developing the G/NG interface has many practical and scientific 

implications. As it can be understood, stability maps are based on the Gamma 

hypothesis. If Gamma hypothesis exists it would mean that a lot of time may 

be saved by examining inhibitory effects individually, as conventional methods 

are very time consuming. Given this information, predictive microbiology can 

become a rapid tool which can benefit the food industry (Lambert and Bidlas, 

2007b; Membré and Lambert, 2008). 
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1.3 Quantitative hurdle technology 

1.3.1 Predictive microbiology 

Food microbiology covers a very broad field of science including the study of 

organisms, related to hygiene and food quality. McMeekin and Ross (2002) 

recognised the mid 1970s as a reference point in food microbiology because 

of the rapid social, demographic and technological changes which took place 

and had an impact on the food industry and consumers. Classical 

microbiological methods include enumeration techniques and identification of 

specific microorganisms which sometimes are not enough to overcome 

various problems and difficulties related to the complexity of a food 

environment, the physiology and behaviour of a microbial population. The 

collection of adequate data regarding the behaviour of microorganisms, in the 

food environment requires a large amount of work and increases costs. 

Despite the description of the behaviour of these microorganisms in food, the 

information obtained on the effect of various physiological processes that take 

place in a food and kinetics of a microbial population, is often not sufficient to 

reach specific conclusions about the likelihood of growth and/or survival of 

microorganisms.  

With predictive microbiology all the knowledge of microbial responses in 

different environmental conditions is summarized as equations or 

mathematical models (McMeekin et al. 1997). Consequently, predictive 

microbiology has become a valuable research tool. An alternative term for 

predictive microbiology is “the quantitative microbial ecology” (Ross and 

McMeekin, 1995, McMeekin et al. 1997, Lambert and Bidlas, 2007c). 

McMeekin et al. (2002) stated that “the concept of predictive microbiology is 

the detailed knowledge of microbial responses to environmental conditions 

that enables the objective evaluation of the effect of processing, distribution 

and storage operations on the microbiological safety and quality of foods”. 

McMeekin and Ross (2002) and McMeekin et al. (2002) suggested that the 

origin of predictive models for foods was the model developed by Esty and 

Meyer (1922) to describe the thermal inactivation of C. botulinum type A. The 

re-genesis of predictive microbiology can be traced to the 1970s by 

Genigiorgis group in the USA and Roberts group in the UK, which used 
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probability models to solve food poisoning problems. In the 1980s several 

kinetic models for foodborne pathogens and spoilage organisms were 

developed and in the 1990s because of the emergence of foodborne 

pathogens with low infective doses there was a turn in the probabilistic 

modelling which gives more quantitative information and has practical and 

scientific implications (McMeekin et al., 2000).  

The rapid development of microbial models and their ability to predict the 

growth of microorganisms have made predictive microbiology, a valuable 

research tool. However, it should be noted that currently, it cannot fully 

replace the conventional microbiological tests and the experience of trained 

microbiologists. Also, as it has been suggested by several authors that the 

results from the models should be used as an indication or as a tool to support 

decisions and not as absolute numbers or predictions (Wijtzes et al., 1998; 

Zwietering et al., 1996). The microbial safety or shelf life of the products, the 

critical points in a process, and in general the optimization of the production 

can be predicted from the models, as it has been stated by Zwietering et al. 

(1991).  

Food hygiene is directly related with the terms of quality and safety. Food 

quality refers to the sum of the organoleptic characteristics (properties) of a 

food which make it acceptable for consumers. On the other hand, safe food is 

food that is free of any physical, chemical or biological hazards. Models which 

have been developed to ensure food safety are more straightforward while 

spoilage models are more complicated (Dalgaard et al., 2002). Safety models 

describe the kinetics of particular pathogens under different environmental 

conditions. On the contrary, the deterioration of food quality may occur due to 

the metabolic action of a great variety of spoilage bacteria and thus, further 

studies on the determination of specific spoilage microorganisms (SSO) are 

required (Dalgaard, 1995).  

Moreover, the value of predictive microbiology is increasing and it can be 

used in order to underpin the quantitative microbial risk assessment (QMRA) 

and the HACCP systems-plans (Buchanan and Appel, 2010; Membré and 
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Lambert, 2008; McMeekin et al., 2006; McMeekin et al., 2002; McMeekin and 

Ross, 2002; Zwietering et al., 1996). 

It has been argued by many authors, that predictive microbiology is important 

to the development of QMRA and HACCP systems-plans (Buchanan and 

Appel, 2010; McMeekin et al., 2006; McMeekin et al., 2002; McMeekin and 

Ross, 2002; Zwietering et al., 1996). Mathematical models of predictive 

microbiology provide valuable information on the behaviour of pathogens in 

foods and can largely replace the long lasting, traditional enumerating 

methods. The HACCP is a proactive, preventative system of quality control 

and is based on a systematic approach to the desired level of food hygiene, 

which relies on the identification and evaluation of risk factors. When applied, 

however, there is often a lack of objectivity, which is attributed to the fact that 

although the HACCP system is expressed quantitatively, it is based on the 

qualitative assessment of risk factors, due to a lack of available quantitative 

information.  

In particular, predictive microbiology assists HACCP systems by identifying 

hazards and critical control points and by evaluating limits and is related to the 

product. The critical limits are strongly associated with probability models. 

Also, predictive microbiology is providing assessment information, so it is 

related with QMRA. QMRA requires the use of growth and inactivation models 

and is related to the consumer. McMeekin et al. (2002) stated that: “a dynamic 

interaction exists between HACCP and QMRA”. The common aim of HACCP 

systems and risk assessment is to produce safe food, by applying 

assessment strategies and understanding the potential origin of risk factors 

and their extent. Risk assessment requires the accurate determination of the 

potential exposure of the final consumer in a food pathogen, but this 

information is often not available. These risk factors are strongly associated 

with the fundamental principle of the use of models in the context of the 

Gamma concept and the multiple hurdle theory for the development of new 

product formulations. The effect of mathematically manipulating the levels of 

hurdles via predictive models in order to develop less processed products 

(e.g. products of less acidity or salt content) without compromising their safety 

and quality can be quickly obtained, allowing developers greater flexibility than 
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was hitherto possible.  

1.3.2 Predictive Models 

1.3.2.1 What are microbial models? 

A microbial model in its simplest form is a simple mathematical description of 

a process. McMeekin et al. (2008), stated that “the model is often a simplified 

description of relationships between observations of the system (responses) 

and the factors that are believed to cause the observed responses”. 

Mathematical equations were used in food microbiology for the first time in the 

early twentieth century in order to describe the kinetics of pathogen 

destruction during the heat treatment of foods. However, McMeekin et al. 

(2000) mentioned that the dynamic invasion of predictive microbiology in the 

area of food lies in the early 1970s, using mathematical models for the 

identification of the potential toxin production by C. botulinum. The use of 

computers and statistical software programs highlighted the application of 

mathematical models as a very useful tool in studying the behaviour of 

microorganisms and predictive microbiology in a separate field of food 

microbiology.  

In the current literature there is a wide range of strategies to develop 

predictive models in food microbiology. There are different types of problems 

(toxin production, life expectancy/ spoilage, development of pathogenic 

bacteria, microbial death kinetics), different types of models (kinetic models, 

probability models), various methods for data collection (classic method for 

measuring the microbial load, optical density, conductivity), and several ways 

to evaluate the models. The various stages of developing a mathematical 

model as presented by McMeekin et al. (1993) are the following:  

1) Experimental design  

2) Data collection and analysis  

3) Mathematical description  

4) Evaluation  

As it has been stated in the literature, mathematical models should take into 

account the physiological state of cells through the h0 or “the work to be done” 
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concept (Le Marc et al., 2010; Baranyi and Roberts, 1994; Robinson et al., 

1998). Robinson et al. (1998) stated that it is more difficult to model the lag 

time than the growth rate because it is dependent not only on the growth 

conditions but the physiological state of the cells as well. The effect of sudden 

shifts in the environment of the bacteria is based on the “the work to be done” 

approach which is the effort the cells need to undertake to modify to the new 

environment and the rate at which this effort is accomplished (Belessi et al., 

2011; Mellefont et al., 2003).    

In predictive microbiology,  a mathematical model is defined as the 

mathematical expression that describes the growth, survival, destruction or 

biochemical process that characterize an organism, associated with food. 

There are different ways of classifying microbial models. However, an 

absolute type of categorization has not yet been decided. A commonly 

accepted terminology and classification of patterns into groups that will refer 

to specific functions would make predictive microbiology more user friendly 

(Baranyi and Roberts, 1992). Classification of predictive models is based on 

the population behaviour that they describe and encompasses growth models, 

limits of growth (interface) models and inactivation models and are important 

elements in food process (McMeekin and Ross, 2002; Marks, 2008). Peleg 

(2006) stated that quantitative models can be classified as either empirical, 

fundamental, probabilistic, phenomenological, or population dynamic models. 

Moreover, models can generally be classified as kinetic models or probability 

models i.e. whether the equation describes the characteristics of the kinetics 

of growth of the microorganism or studying the possibility of growth under 

different environmental conditions. Kinetic models determine the time required 

for a change in the density of the microbial population in relation to 

environmental factors, such as temperature, pH or aw (McDonald and Sun, 

1999). Kinetic models are also used to predict the kinetics of a microbial 

population, even under dynamic conditions, where the factors that affect the 

kinetics of growth of a microorganism vary with time (Zwietering et al., 1994). 

To create a kinetic model, the growth rate can be calculated and can 

subsequently be used to predict the growth of the microorganism based on 

the mathematical equation that described the rate. Another approach is to fit a 
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sigmoidal function to the growth data and the use this model to describe the 

effects of various environmental factors, using the parameters of the function. 

The selection of experimental data regarding the changes in the density of the 

microbial population in relation to specific environmental factors, such as 

temperature, pH or the value of aw is important for the development of kinetic 

models. Kinetic models allow the prediction of the kinetic parameters of the 

growth curve (lag phase, generation time and growth rate) of a microbial 

population (Zwietering et al., 1991; Van Impe et al., 1995). 

The probability models can determine the probability of a specific response 

which can take place under given conditions. These models are based on the 

relationship and interaction between a microbial population and environmental 

conditions in which it grows. Probability models do not provide information on 

the growth characteristics (growth rate) of a microbial population. However, 

probability changes with time, so probability models are a combination of 

probability and kinetics and this can make them confusing (McDonald and 

Sun, 1999).  

Studies by Ratkowsky and Ross (1995) were based on a kinetic model for 

developing a probability model, which defines the limits of microbial growth. 

This model was developed using logistic regression and could predict the 

probability and the growth limits of the microbial population in different 

environmental conditions, which are inhibitory to microbial growth. The 

combination of probability and kinetics allows the integrated approach of the 

two types of mathematical models in hurdle technology (Ratkowsky and Ross, 

1995).  

Models can also be also classified as mechanistic or empirical. The former, 

describe those with a theoretical basis and the latter describe those without 

theoretical basis. Empirical models, such as the modified Gompertz equation, 

describe the experimental data as a mathematical relationship. Empirical 

models are mathematical equations, which are, often, easily implemented and 

express a process for a specific range of variables. The parameters obtained, 

in general, do not have biological meaning, however, relevant biological 

parameters can be defined from them such as generation times and lags. For 
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all these reasons, many researchers believe that these models do not provide 

knowledge on the mechanisms that characterise a biological process. In 

contrast, the development of mechanistic models requires the understanding 

of biological mechanisms and processes which are the basis of the cellular 

metabolism. Mechanistic models allow predictions from a simple hypothesis 

and are considered by most researchers superior to empirical mathematical 

models, but tend to be more complex (Van Impe et al., 1992; Zwietering et al., 

1993). 

1.3.2.2 Primary models 

Whiting and Buchanan (1993) classified predictive models as primary, 

secondary and tertiary. The concept of the primary models is fundamental in 

predictive food microbiology. Primary models describe the change of 

population density with time in a specified environment and are depicted as 

microbial growth or death curves. This change is calculated, either directly by 

counting the microbial population and quantification of produced toxins or 

other metabolic products of the microorganism or indirectly by calculating 

indirect indicators of microbial growth, such as optical density and electrical 

conductivity measurements. The records of the change of microbial population 

in relation with time and the production of a growth curve are the experimental 

data on which the development of a primary model is based. The primary 

model enables prediction of growth of a particular microorganism and the 

kinetic parameters such as the generation time, the duration of the lag phase, 

the growth rate and maximum population density can be obtained (Whiting 

and Buchanan, 1993; 1994).  

Primary models encompass growth models and inactivation models (Marks, 

2008). In recent years, many bacterial growth curve models have been 

developed such as the three-phase linear (3-PLM), modified Gompertz, 

modified logistic, the lag-logistic, McKellar and Baranyi models. Also, survival 

models (classical linear models and nonlinear models) have been developed. 

McMeekin et al. (1993) reviews many growth models, some of the most 

important primary growth models are being discussed below. 
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There are several sigmoidal functions (such as the 3-PLM, modified Gompertz 

and Baranyi model) that are used to describe bacterial growth. Baranyi et al. 

(1993a) mentioned that “the typical representation of a bacterial batch culture 

is to plot the logarithm of the cell concentration against time and in most cases 

the result is a sigmoid curve”. It is known that the bacteria grow exponentially. 

It is useful to plot the logarithm of the number of the bacterial population 

against time. The three phases of a typical bacterial growth curve are the lag 

phase, the exponential phase and the stationary phase (Figure 1-3). These 

three phases can be described by three parameters: the maximum specific 

growth rate (μmax) which can be defined as the tangent in the inflection point, 

the lag time (λ) which is defined as the x- axis intercept of this tangent and the 

asymptote (A= log(cfu/ml)) which is the maximum value reached. Finally, 

growth curves may show a decline following the stationary phase which is 

called the death phase (Zwietering et al., 1990).  

 

 

Figure 1-3 Typical representation of the four phases of the general microbial 

growth (Tortora et al., 2010) 

The three-phase linear model  

The 3-PLM is a simple primary model which divides the bacterial growth 

curves into three phases: the lag and stationary phases where the specific 

growth rate is zero (μ=0) and the exponential phase where the logarithm of 
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the bacterial population increases linearly with time (μ=constant).The death 

phase is not considered in the model. Figure 1-4 shows the graphic 

representation of the model.  

 

Figure 1-4 Graphic representation of the three-phase linear model (Buchanan 

et al., 1997)   

The 3-PLM is given by: 

                         

                                              

                                    

(1-1) 

The model has four parameters: N0 which is the logarithm of the initial 

bacterial population density, Nmax which is the logarithm of the final bacterial 

population density, tλ which represents the duration of the lag phase and tmax 

which is the time when the exponential phase ends.   

Baranyi and Roberts (1995) mentioned that an equation can be considered as 

a model and not as an empirical fitting of data only if there is a physiological 

basis underling the relationship. In the study of Buchanan et al. (1997), the lag 

phase was considered to have two distinct periods. The first period is a period 

of adaptation and the second period is the metabolic period which is the time 

needed from the cell to generate energy and start its metabolism. Finally, the 
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model took into account the biological variability and the subdivision of the lag 

period and led to the need to reconcile the growth characteristics of bacterial 

populations.     

The Gompertz and modified Gompertz model  

The modified Gompertz curve consists of four phases which may be 

compared with the four phases of the microbial growth. Furthermore, there is 

an initial phase where no change occurs (lag phase), followed by a period of 

accelerating change, a period of decelerating change and finally a stationary 

period (Gibson et al., 1987).  

The modified Gompertz curve is given by: 

                           (1-2) 

The modified Gompertz curve has four parameters: L(t) is the log count of the 

number of bacteria at time t (in days), A is the asymptotic log count as t 

decreases indefinitely, C is the asymptotic amount of growth that occurs as t 

increases indefinitely, and b is the relative growth rate at m, where m is the 

time at which the absolute growth rate is a maximum (Gibson et al., 1987). 

The original Gompertz model (Gompertz, 1825) has been used to study the 

growth of tumours and has a mechanistic basis. The modified Gompertz 

model uses the logarithm of the microbial numbers and is considered to be 

empirical model (McMeekin et al., 1993) since the derivation of the Gompertz 

cannot be equated with the use of log numbers of microbes. From this 

equation the growth rate (mu), the lag time (λ) and the generation time (GT) 

are given by: 

   
  

 
  (1-3) 

    
 

 
  (1-4) 

   
       

  
  (1-5) 

The modified Gompertz model contains mathematical parameters (A, C, b and 

m) and it was re-parameterised with parameters which have biological 
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meaning as described by Zwietering et al. (1990). The re-parameterised 

modified Gompertz model is given by:   

                
  

 
           

(1-6) 

Where L(t) is the log count of bacteria at time t, A is the asymptotic log count 

as t decreases indefinitely, λ is the lag time and μ is the maximum specific 

growth rate. The re-parameterisation allows the direct calculation of the 

confidence intervals for each of the biologically important, but defined 

parameters.  

The Logistic and modified logistic model 

The modified logistic curve is very similar to the modified Gompertz model and 

was described by Gibson et al. (1987). Also, it has been noted by the authors 

that the only difference with the modified Gompertz model is that the modified 

logistic model is symmetric about m (the time when the absolute growth rate is 

maximum) while the modified Gompertz is not.  

The modified logistic curve is given by: 

                           
(1-7) 

Where L(t) is the log count of the number of bacteria at time t (in days), A is 

the asymptotic log count as t decreases indefinitely, C is the asymptotic 

amount of growth that occurs as t increases indefinitely, and b is the relative 

growth rate at m, where m is the time at which the absolute growth rate is a 

maximum (Gibson et al., 1987). The original logistic model (Jason, 1983) uses 

microbial numbers and is considered to be a mechanistic model while the 

modified logistic model uses the logarithm of the microbial numbers and is 

considered to be empirical model (McMeekin et al., 1993). From this equation 

the growth rate (mu), the lag time (λ) and the generation time (GT) are given 

by: 

   
  

 
  (1-8) 

    
 

 
  (1-9) 
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  (1-10) 

The modified logistic model contains mathematical parameters (A, C, b and 

m) and it was re-parameterised with parameters which have biological 

meaning as described by Zwietering et al. (1990). The re-parameterised 

modified logistic model is given by: 

     
 

       
  

 
         

 (1-11) 

Where L(t) is the log count of bacteria at time t, A is the asymptotic log count 

as t decreases indefinitely, λ is the lag time and μ is the maximum specific 

growth rate. 

The Baranyi model  

The Baranyi model is a mechanistic model which describes the lag as the 

process of adjustment to the new environment. The model distinguishes the 

pre-inoculation environment (E1) from the actual (post-inoculation) 

environment (E2). By these terms, this model describes the lag as the process 

of adjustment to the new environment. Moreover, the terms “adjustment 

function” and “potential growth” are introduced and as it is stated that: “two 

features of our concept are that the definition of lag is independent of the 

shape of the growth curve and the effect of the previous environment is 

separated from that of the present environment” (Baranyi et al., 1993a).  

The Baranyi model is given by : 

               
 

 
      

            

           
  

(1-12) 

Where yt=ln xt, is the natural logarithm of the cell concentration, yo=ln x(to), is 

the natural logarithm of the cell concentration at t=to, ymax= ln xmax, is the 

natural logarithm of the maximum cell concentration and μmax is the specific 

growth rate. The parameter m characterizes the curvature before the 

stationary phase.  

The function At represents a gradual delay in time and is given by: 
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(1-13) 

Where h0 is a transformed physiological state parameter, q0 is a measure of 

the initial physiological state of the cells and ν is the rate of decrease of the 

limiting substrate, generally assumed to be equal to μmax. For the curvature 

parameters Baranyi et al. (1995) suggest ν=μmax and m=1. When m=1 the 

function reduces to the logistic model.   

The function A (t) in combination with the conditions after inoculation, allow 

the prediction of duration of the lag phase. If the specific growth rate follows 

the environmental changes immediately as they occur, this model can 

describe the kinetics of microbial growth where factors such as the pH, aw and 

the temperature change with time. The modelling systems, which are in a 

dynamic environment are one of the advantages of this model. The Baranyi 

model has been used, evaluated and compared in different applications. In 

many cases compared with other primary models, such as the Gompertz 

equation, it gave satisfactory results (McDonald and Sun, 1999). 

1.3.2.3 Secondary models 

Secondary models describe the effect of that various environmental factors 

such as temperature, pH and aw have on the kinetic parameters that 

characterise the growth of a microorganism. Essentially, they indicate the 

change of the parameters of primary models with respect to changes in the 

environmental factors such as temperature, storage atmosphere and the 

intrinsic factors  such as pH, aw and organic acids. Although, secondary 

models encompass models to explain changes in growth rate and lag time 

with changes in environmental conditions, secondary models are also 

available for inactivation and also for models dealing with Growth/No growth 

boundaries (G/NG), i.e. probability models (McDonald and Sun, 1999; 

Tienungoon et al., 2000; McMeekin et al., 1993; Whiting, 1995).  
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Particular types of models have been described as the square root type 

models, the Arrhenius models, the Gamma models, polynomial models and 

the cardinal parameter models. Ratkowsky et al. (1982) in order to overcome 

the problem of the Arrhenius equation which cannot describe the effect of 

suboptimal temperature on the growth rates of microorganisms introduced the 

square root type or Ratkowsky type model which uses the theoretical 

minimum temperature for growth (Tmin). In 1983 Ratkowsky et al. expanded 

this model to include the entire biokinetic range of temperatures. Since then 

numerous square root models have been developed using different 

environmental factors such as different values of aw (McMeekin et al., 1987), 

pH (Adams et al. 1991), temperature, pH and aw (Wijtzes et al., 1995; 2001) 

and temperature, aw, pH and lactic acid (Ross et al., 2003).  

Zwietering et al. (1992) introduced the Gamma concept which relies on the 

idea that the environmental factors which affect the growth rate act 

independently and that the effect of the growth rate of any factor can be 

expressed as a fraction of the maximum growth rate (McKellar and Lu, 2003). 

The Gamma factor () is defined as the fraction of the growth rate at actual 

environmental conditions to the growth rate at optimal environmental 

conditions and the combined effect of several factors is then determined by 

the multiplication of their Gamma factors. Augustin and Carlier (2000) 

collected and put together in one model literature data and observations of 15 

environmental factors in foods that affect the growth rate of L. 

monocytogenes.  

The cardinal parameter models (CPMs) are another important group of 

empirical secondary models which has been used from several authors in the 

literature (Augustin and Carlier, 2000a; 2000b; Le Marc et al., 2002; Pouillot et 

al., 2003). The CPMs use parameters that have a biological or graphical 

interpretation and the concept which they rely on is that the inhibitory effect of 

different environmental factors is multiplicative (McKellar and Lu, 2003). In 

addition, the CPMs encompass a discrete term for each environmental factor, 

with each term expressed as the growth rate relative to that when that factor is 

optimal (McKellar and Lu, 2001).  
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The Arrhenius models are based on reaction kinetics but include terms to 

account for the observed deviations and are divided into those which are 

mechanistic modifications based on the hypothesis that there is a single, 

catalysed, rate limiting reaction in any microorganism (McMeekin et al., 1993; 

Ross and McMeekin, 1994; Ratkowsky et al., 1991) and those which are 

empirical modifications (Davey, 1994; Daughtry et al., 1997). Polynomial 

models have been applied in predictive microbiology as secondary models 

(McClure et al., 1993, Pin et al., 2000) and despite the fact that they are easy 

to fit to data, they lack biological interpretation.  

Probability models were first explored in the 1970s (Genigiorgis, 1981) and in 

the 1990s the need to manage the risk to consumers from certain pathogens 

led to the re-development of the Growth/No Growth models (McKellar and Lu, 

2003). The problem of listeriosis triggered the development of such models 

(Parente et al., 1998; Tienungoon et al., 2000) and the logistic regression 

technique was used to develop those models. The importance of such models 

for the production of safe and shelf stable food and as a mean of empowering 

the hurdle concept has been discussed by many authors (Masasa and 

Baranyi, 2000; McMeekin et al., 2000; Ratkowsky and Ross, 1995). In the 

literature there are several studies regarding the G/NG conditions for several 

pathogenic bacteria such as L. monocytogenes (Ross et al., 2000; 

Tienungoon et al., 2000; Koutsoumanis and Sofos, 2005), E. coli (Skandamis 

et al., 2007; McKellar and Lu, 2001; Salter et al., 2000) and Salmonella 

(Koutsoumanis et al., 2004). McKellar and Lu (2003) have summarised some 

examples of secondary models.  

The study of Chorin et al. (1997) can be used as an example for primary and 

secondary modelling. In particular, Chorin et al. (1997) modelled the growth of 

Bacillus cereus as a function of temperature, pH and aw from turbidimetric 

data. A “calibration model” expressing colony forming units (cfu) in optical 

density (O.D) was constructed as a function of aw and the data obtained from 

their studies were fitted with the modified Gompertz equation in order to 

calculate the growth parameters (primary modelling). A growth rate model and 

a lag time model (polynomials which cannot be extrapolated outside the 
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experimental range) were then constructed, taking into account the effect of 

temperature, pH and aw (equation (1-14) and (1-15), respectively).      

                                      
  (1-14) 

                                     (1-15) 

Where μ is the growth rate in log (cfu) per hour and λ is the lag time in hours.  

1.3.2.4 Tertiary models 

Tertiary models incorporate primary and secondary models in software, that 

is, they are application tools such as software packages and expert systems 

which have the intension of allowing non-specialists in predictive modelling to 

access data and model predictions. Some major modelling programs are the 

Pathogen Modelling Programme (USA) which consists of 37 models of 

growth, survival and inactivation, which  is frequently updated and has been 

available free of charge during the last 15 years, the Growth Predictor (UK) 

which is based on data previously used in the Food Micromodel software and 

includes 18 models for growth of pathogenic bacteria and has been available 

free of charge since 2003 and the ComBase (UK, USA) with information on 

growth and inactivation of microorganisms (about 48000 growth/inactivation 

curves) since 2003. In 1999, an extensive decision support system called 

Sym'Previus started in France which was funded by French ministries, food 

industries and technical institutes in order to meet food industry needs 

regarding food safety and quality management.  The Sym'Previus includes a 

database with growth and inactivation responses of microorganisms in foods 

and predictive models for growth and inactivation of pathogenic bacteria and 

some spoilage microorganisms and is available online. Also, the Microbial 

Responses Viewer (MRV) by Koseki (2009), which is a ComBase derived 

database consisting of G/NG data from 19 microorganisms where their growth 

rate was modelled as a function of temperature, pH and aw using a Poisson 

log-linear model. The Unified Growth Prediction Model (UGPM) by Psomas et 

al. (2011), which applies the Baranyi and Roberts model (1994) combined 

with a secondary temperature model in order to predict (simulate) the growth 

of the microorganisms under dynamic and static temperature conditions. In 
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addition, Dalgaard et al. (2002) developed the Seafood Spoilage Predictor 

(SSP) software which encompasses kinetic models for growth of specific 

spoilage microorganisms and empirical relative rates of spoilage models. The 

ultimate tests for predictive microbiology software are comparisons of model 

predictions with observations of microorganism behaviour in food. To make 

these comparisons with large data sets, the data recording format must be 

standardised. Standardisation refers not to the computational platform (such 

as the type of spreadsheet used) but rather the methodology for classifying 

and formatting microbiological data. Without this conformity, any attempt to 

compile data from various sources would result in a data dump rather than a 

structured database. Furthermore, a uniform system of physical, chemical and 

biological units and associated terminology must be used to facilitate 

comparisons among data sets. The aforementioned have made predictive 

microbiology a powerful tool for food industry and research (Whiting and 

Buchanan, 1993; 1994). The classification type by Whiting and Buchanan, 

(1993), into primary, secondary and tertiary is more convenient as the 

characterization and grouping is allowed for the majority of model types 

(McDonald and Sun, 1999). 

1.3.2.5 Utilisation of microbial models 

Marks (2008) discussed some key limitations in the application of microbial 

models in foods. In particular, it was stated that most of the models used are 

broth based models which are then applied to real foods and so data from 

tests conducted in real food may be of limited value. Also, it was stated that 

the available growth/inactivation data will never be able to cover the whole 

domain of food safety system. Another key limitation for the use of microbial 

models is the lack of standard practical methodologies (different treatment 

protocols, variability of measuring bacterial populations) as well as statistical 

methodologies for analysing the experimental data (logarithmic 

transformations before the fitting of models or nonlinear regression 

techniques).  

Moreover, the terms “variability” and “uncertainty” are very important in 

predictive microbiology. The term “variability” describes the scatter of a 
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dataset and is commonly measured by three criteria: range, variance and 

standard deviation. Range is the difference between the largest and the 

smallest value in the dataset. Variance is the mean of the squares of all the 

deviation scores for a dataset and represents the amount of deviation of the 

whole dataset from the mean. The standard deviation is the square root of the 

variance and shows the deviation from the mean. On the other hand, all the 

microbial models involve a degree of uncertainty. The original experimental 

error (variance), uncertainty in the primary model form and regression and 

uncertainty in the secondary model and fitting procedures, are included in the 

term uncertainty (Marks, 2008).   

Last but not least, the integration from a microbial model into a process model 

is essential in order to link the microbiological and physical components of 

process models (Marks, 2008). Validation is an essential part for the 

applicability of predictive models. This term refers to the comparison of the 

predictions of the model with the observed responses under conditions 

encountered in the food chain. In particular, validation aims to build 

confidence in the model. This is of great importance especially if the model is 

intended for use by the food industry (Manios et al., 2009).    

1.3.3 Optical density versus traditional plate counts and predictive 

microbiology  

The determination of growth rates and lag times has been the subject of many 

studies within the literature and there are many models which have been 

developed to determine growth rates and lag times. Additionally, another area 

within predictive microbiology which has seen a large amount of interest has 

been the comparison between the traditional plate counts method against 

rapid methods such turbidimetry which measures growth as a function of 

optical density (O.D).  

1.3.3.1 Development of rapid methods 

Monitoring is one of the most important control points in the prevention of 

diseases by foodborne pathogens. To control foodborne pathogens in food 

products effective detection and inspection methods are necessary. As it has 

been mentioned: “Conventional microbiological methods have been a 
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standard practice for the detection and the identification of pathogens in food 

for nearly one century and continue to be a reliable standard for ensuring food 

safety” (Yang and Bashir, 2008). However, the conventional methods build 

almost exclusively upon the use of specific agar media to isolate and 

enumerate viable bacterial cells in samples. This method usually includes 

microbiological culturing and isolation of the pathogen, followed by 

confirmation with biochemical and/or serological tests, taking up to 5 to 7 days 

to get a confirmed result for a particular pathogenic organism (Swaminathan 

and Feng, 1994; Vasavada, 1997). Even if the conventional methods are 

reliable, they are time consuming and labour intensive and are therefore not 

suitable for modern food quality assurance to make a timely response to 

possible risks (Yang and Bashir, 2008). In order to obtain sufficient data using 

the traditional methods it may take several days of work. The development of 

rapid, sensitive and specific methods to detect foodborne pathogenic bacteria 

is a major factor for effective practices which ensure food safety and security. 

As a result, over the past 25 years numerous novel methods which offer new 

possibilities, they are cheaper, automated, accurate and most important they 

are rapid have been developed to reduce the assay time. However, rapid 

methods have high detection limits and they may exhibit false positive results.  

Rasch (2004) reported some examples of these methods, like turbidity, flow 

cytometry, microscopic methods etc. In particular, the turbidity method 

measures the O.D of a cell suspension and has been used by many scientists 

in the area of predictive microbiology for many years (e.g. Monod, 1941). 

Dalgraard and Koutsoumanis (2001) stated that turbidimetric instruments such 

as the Bioscreen microbiological analyser might be another way instead of the 

viable counts in order to study the bacterial growth since O.D measurements 

give a real time measure of the bacterial population and these machines allow 

a high throughput. It was also mentioned that despite the high threshold 

detection of turbidimetric devices which is the most important limitation of this 

method, the measurements have practical significance when dealing with 

bacteria in high cell densities.  Predictive modelling requires the collection of 

adequate data. The advantage of these rapid methods is that high numbers of 
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experiments can be set up in a short period of time conversely with the time-

consuming nature of plate counts.  

In particular, in food microbiology the Bioscreen microbiological analyser has 

been used for a number of different applications such as the construction of 

kinetic models (McClure et al., 1993), the study of the effect of different 

conditions on growth (McClure et al., 1994; Korkeala et al., 1992; Francois et 

al., 2005; 2006), the determination of the bacterial growth rates (Dalgaard et 

al., 1994; Dalgaard and Koutsoumanis, 2001), the determination of individual 

cell lag times (Guiller et al., 2006; Guillier and Augustin, 2006; Koutsoumanis, 

2008; Dupont and Augustin, 2009; Manios et al., 2013), the development of 

isolating single cells protocols (Francois et al., 2003; Standaert et al., 2005) 

the measurement of the recovery times of injured cells (Stephens et al., 1997) 

as well as the determination of the G/NG boundaries of several foodborne 

pathogens (Ross et al., 2000; Skandamis et al., 2007; Koutsoumanis et al., 

2004; Tienungoon et al., 2000). Furthermore, Lambert and Pearson (2000) 

have developed a simple technique and a method for susceptibility testing. 

They obtained turbidometric data and produced O.D/time curves.  From these 

data the minimum inhibitory concentration (MIC) of an inhibitor could be 

found. The technique was based on the comparison of the area under the O.D 

against time curve of the areas of the test with the control. They observed that 

“as the amount of preservative in the well increases, the effect on the growth 

also increases”.  However, the interpretation of the results is the most 

important and at the same the most difficult part when using O.D methods.  

There are some authors who do not use any type of calibration between O.D 

and viable counts and directly fit primary models such as the modified 

Gompertz or the logistic model to O.D data (Begot et al., 1996; Cheroutre-

Vialette et al., 1998; Cheroutre-Vialette and Lebert, 2000a; 2000b; Dalgaard 

and Koutsoumanis, 2001; Cheroutre-Vialette and Lebert, 2002). Also, in the 

literature there are several methods that can be applied in order to define the 

relationship between the measured O.D and the viable cell counts. There are 

authors who have used linear models between O.D and viable counts based 

on the Lambert and Beer Law (Lack et al., 1999), quadratic models (McClure 

et al., 1993) as well as cubic models (Stephens et al. 1997). Augustin et al. 
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(1999) used polynomials of order 3 and order 1 to calibrate O.D against viable 

counts. Best fits were obtained from the polynomials of order 3 but using the 

average values of the parameter estimates at the different temperatures 

examined, the best fit was obtained from polynomials of order 1. Dalgaard et 

al. (1994) used two equivalent methods for calibration; one in which cells from 

the stationary-phase were diluted to the appropriate O.D, and the other in 

which samples for O.D and viable count measurements were taken during 

growth. A calibration factor was then used for turbidimetric estimates, different 

for each primary model (logistic or modified Gompertz model) and 

independent of the maximum specific growth rate and the inoculation level. A 

last method of calibration used in the literature in the logarithmic 

transformations for both O.D values and the viable counts in order to 

normalise the variance (Francois et al., 2003; 2005) or the natural logarithmic 

transformations (Chorin et al., 1997).  

1.4 Hypothesis and objectives of the project 

The hypothesis, on which the work stands, is that the use of micro-titre plates 

with multiple inocula allow the investigation of a wealth of phenomena - such 

as the accurate determination of growth parameters, the investigation of mild 

temperature shifts as well as the evaluation of a mild thermal injury.   

In particular, it was hypothesised that O.D data obtained from the Bioscreen 

microbiological analyser, under different environmental conditions, could be 

modelled by using existed primary models and thus accurate growth rates and 

lag times could be obtained from turbidimetric measurements (TTD method). 

Also, for a mild process which has temperature as the major microbial injury 

step, the effect of the other combined hurdles in preventing growth of the 

injured organisms must be understood. The latter means that the inoculum 

size dependency of the time to growth must also be fully understood. This 

essentially links injury steps with the potential for growth. Also, it was 

hypothesised that the TTD method and the traditional plate count method 

should be considered as two methods describing the same phenomenon of 

microbial growth, done in a different fashion and not as complementary 
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methods. To investigate this idea it was also proposed to compare the growth 

parameters of those two methods.  

Specific research objectives associated with the hypothesis of the project are: 

1. Obtainment of the growth kinetics of Listeria monocytogenes, 

Salmonella Typhimurium and Escherichia coli using the Bioscreen 

microbiological analyser; 

2. Evaluation of the G/NG boundary for a given set of environmental 

factors common to processed foods;  

3. Evaluation of the minimum inhibitory concentrations (MIC) of the 

microorganisms using different hurdles; 

4. Evaluation of mild temperature shifts; 

5. Evaluation of a mild heat injury; 

6. Comparison between the TTD method against the traditional plate 

counts;  

7. Communication of findings to clients (presentations, reports, 

manuscripts for evaluation).  
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2 Materials and methods 

2.1 Microbes and identification 

The microorganisms used in this study were: Listeria monocytogenes 252 

(terrine isolate), Listeria monocytogenes 271 (ham isolate), Listeria 

monocytogenes 177 (ice-cream isolate), Listeria monocytogenes 39 (ScottA-

ATCC 49594), (all donated by Nestlé Research, Lausanne), Escherichia coli 

ATCC 11229 and Salmonella enterica subsp. enterica- Salmonella 

Typhimurium ATCC 53648. 

2.1.1 Culture maintenance and preparation 

Cultures of the microorganisms were kept in tubes on glass balls at -80⁰C and 

new slopes on tryptone soya agar (TSA) were prepared every month. From a 

previously prepared and stored slope on TSA of the pure culture of the 

microorganisms, a portion was removed with a sterile loop, transferred into a 

conical flask containing 80 ml tryptone soya broth (TSB) and incubated with 

shaking (shaking incubator KS 4000 control, 150 rpm) at 30°C or 37°C 

overnight. The resulting culture was split into four portions and centrifuged 

(CENTAUR 2, MSE) at 500 g for 10 min. Two of the resulting pellets were re-

suspended in TSB (3 ml) and pooled. The re-suspended culture (1 ml) was 

transferred into TSB (9 ml) in a universal tube and mixed thoroughly; 1 ml of 

this suspension was diluted in TSB to obtain a standard optical density (O.D) 

of approximately 0.5 with a 1 cm path length at 600 nm (M350 Double Beam 

U.V. Visible Spectrometer). From the standardised culture a series of decimal 

dilutions were prepared in TSB (labelled 0 to −9).  

2.1.2 API identification 

L. monocytogenes strains are industrial isolates characterised by Nestlé (by 

ribo print). E. coli and S. Typhimurium were identified using the Analytical 

Profile Index (API tests). In particular, API 20E is a standardised identification 

system for Enterobacteriaceae and other Gram negative bacteria which 

consists of 21 biochemical tests. A bacterial suspension was prepared in 5ml 

of sterile distilled water from a pure culture and the strip was inoculated with 

the bacterial suspension. For the tests CIT (citrate utilisation), VP (acetoin 



52 

production) and GEL (gelatinase) the tube and the cupule was filled while for 

the tests ADH (arginine dihydrolase), LDC (lysine decarboxylase), ODC 

(ornithine decarboxylase), H2S (hydrogen sulphide production) and URE 

(urease) anaerobiosis was created by overlaying with mineral oil.  After 24h of 

incubation at 37⁰C three tests required the addition of reagents. TDA test 

required the addition of one drop of TDA reagent, IND test required the 

addition of one drop of JAMES reagent and VP test required the addition of 

one drop of VP 1 and one drop of VP 2 reagent.  The metabolism produces 

changes in the colour of the tests which can be characterised as positive or 

negative using the reading table. According to the reactions (number of 

positive and negative tests) the identification obtained with the numerical 

profile using the database (V 4.1) with the apiwebTM identification software 

(Appendix B).  

2.2 Growth curves (Traditional method) 

In the literature, the most common way of obtaining growth rates and lag 

times is the construction of growth curves using the traditional plate counts. 

Conversely, we have been developing the use of O.D for obtaining growth 

parameters using time to detection (TTD) data. In order, to assess the rapid 

method used in this study, traditional growth curves were constructed and 

compared with the results obtained from the Bioscreen.  

In particular, traditional growth curves were made by using 0.5, 3, 6 and/or 9% 

sodium chloride (NaCl) at 30⁰C for L. monocytogenes 252, L. monocytogenes 

39, S. Typhimurium and E. coli using the traditional plate counts. The strains 

were grown overnight in flasks containing 80 ml TSB shaking at 30⁰C. The 

cells were harvested, centrifuged to a pellet at 3000 rpm for 10 min. The 

resulting cell pellets were resuspended in TSB (3ml). A standard inoculum 

was produced by diluting the culture to an O.D=0.5 at 600 nm. This 

standardised culture was then further diluted to produce the starting inoculum 

of approximately 1 x 105 cfu/ml. Then 1 ml of this inoculum was transferred in 

flasks which had 99 ml TSB with 0.5, 3, 6 or 9% NaCl, each time. These 

flasks were then incubated at 30⁰C and samples were taken at different time 

intervals and spread onto TSA plates. The plates were then incubated at 
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30⁰C, for 24-48 hours. Simultaneously, a Bioscreen experiment was set up 

under the same conditions, according to the procedure described in 

paragraph 2.3.5.1.  

2.3 Bioscreen analysis 

2.3.1 Bioscreen microbiological analyser 

The Bioscreen C Reader System (Figure 2-1) is a fully automated instrument 

which consists of: The Bioscreen C reader which includes an incubator and a 

measurement unit, a computer, honeycomb plates and the EZE experiment 

software.  

 

Figure 2-1 The Bioscreen C reader system 

The incubation temperature can be set from 1⁰C to 60⁰C in steps of 0.1⁰C. 

Bioscreen C monitors the growth of microorganisms by measuring the 

turbidity of liquid growth medium in the well. The measurement is done 

kinetically using the principle of vertical photometry. In this technique a light 

beam passes up through the bottom of the plate well, through the sample 

suspension to the detector. All functions are controlled by computer software 

according to the parameters entered by the user - (see Appendix A).  
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2.3.2 Micro-array plates (Honeycomb plates)  

Each honeycomb plate consists of 100 wells (Figure 2-2) and the instrument 

can handle two plates at time, so the maximum capacity is 200 samples per 

run. Each well of the plate is an individual test vessel, so 200 microbiological 

growth experiments can be performed in a single run. The plate was designed 

to both give the most even temperature possible across the whole plate, as 

well as to eliminate evaporation and condensation, common problems with the 

conventional 96-well plates. 

 

Figure 2-2 The Bioscreen microarray (honeycomb) plate with its lid 

2.3.3 General overview of plate filling 

Studies on growth rates and lags were carried out using tenfold – half fold 

dilution or half fold-half fold or tenfold dilution only (to extinction). Studies on 

the effects of multiple NaCl/pH or on the determination of the MICNaCl and 

MICpH used a single inoculum with the inhibitors diluted in particular ways. 

2.3.4 Detailed experimental designs (preparation of micro-array 

plates)  

Each well in the Bioscreen micro-array plates was filled as follow: all wells 

except column 10 received 200µl of growth broth (TSB). The wells of column 

10 were given 400µl of the appropriate serial dilutions, with the highest 

inoculum (the zero dilution) in well 100. Using a multi-pipette, 200µl were 

removed from each well of column 10 and transferred into the wells of column 
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9, mixed by repeated syringing, and then 200µl were removed (using new 

tips) from the wells of column 9 and transferred to column 8 etc. This was 

repeated across the plate discarding 200µl after the final mixing in column 1. 

The O.D of the wells was read at 600nm every ten minutes at 30⁰C and/or 

37⁰C. Theoretically for an initial inoculum of 1×109 cfu/ml, this method will give 

a range from 9 log10 to −2.7 log10 cfu/ml. The O.D of a sample in the 

Bioscreen is dependent on the volume used: a standard O.D of 0.5 measured 

in the spectrophotometer has an O.D of 0.29 at 600 nm for a volume of 200 μl 

in the Bioscreen. Plates were typically incubated for 1 to 6 days, with the O.D 

of the wells being read at 600 nm every 10 min. In some experiments, instead 

of using ten different initial inocula in the last column of the honeycomb plate, 

five inocula were used (labelled 0 to -4) twice resulting in two replicates at the 

same plate.  

From the -5, -6 and -7 decimal dilutions, 0.1 ml of each was transferred and 

spread onto previously prepared TSA plates in triplicate and incubated at 

30°C or 37°C for 2 days. Plates with 25-300 colonies per plate were counted 

(Jongerburger et al., 2010) and the approximate log number of the initial (zero 

dilution) culture was calculated.  

2.3.5 Inoculum size studies using different hurdles 

2.3.5.1 Effect of Sodium chloride   

The growth of the microorganisms was studied at 30⁰C and/or 37⁰C in 0.5, 3, 6 

and/or 9% NaCl. The preparation of the cultures and the fill of the Bioscreen 

micro-array plates were made as described in paragraphs 2.1.1 and 2.3.4, 

respectively. The plate was then incubated at the desired temperature (30⁰C 

and/or 37⁰C) for 1-6 days, with the analyser recording the O.D of each well at 

600 nm every ten minutes. Experiments were carried out in duplicate.  

2.3.5.2 Effect of pH 

The growth of S. Typhimurium and E. coli was studied at 30⁰C in different pH 

(6.57, 5.68, 5.10 and 4.58). The pH was adjusted using a pH_meter (HANNA 

instruments HI 8519N) with hydrochloric acid (HCl, 1M) prior to autoclaving 

and was checked following sterilisation. The inocula were prepared each time 
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in the appropriate pH and the Bioscreen plates filled as described in 

paragraphs 2.1.1 and 2.3.4. The plates were then incubated at the desired 

temperature (30⁰C) for 1-5 days, with the analyser recording the O.D of each 

well at 600 nm every ten minutes. Experiments were carried out in duplicate. 

L. monocytogenes 252 was tested in a range of 30 different pH in TSB (pH 

7.05 to 3.46 adjusted with filter sterilised HCl (0.01M) in approximately 0.35 

pH unit intervals each with 3 replicates per plate and done in duplicate on 

separate machines against a single inoculum size (approximately 105 cfu/ml) 

at 30⁰C.  

2.3.5.3 Effect of combined NaCl and pH 

The growth of S. Typhimurium and E. coli was studied at 30⁰C in different 

NaCl-pH concentrations. The combinations used derived from the studies 

2.3.5.1 and 2.3.5.2. The inocula prepared each time in the appropriate NaCl-

pH concentration and the Bioscreen plates filled as described in paragraphs 

2.1.1 and 2.3.4, respectively. The plates were then incubated at the desired 

temperature (30⁰C) for 2-6 days, with the analyser recording the O.D of each 

well at 600 nm every ten minutes. Experiments were carried out in duplicate.  

2.3.6 Calculation of minimum inhibitory concentration using NaCl 

and pH 

2.3.6.1 Minimum inhibitory concentration in NaCl (MICNaCl) 

L. monocytogenes strains were examined in a range of 0.5-16.625% NaCl 

(typical target percentage of NaCl concentrations: 0.5, 1.25, 2, 3.125, 4.25, 5, 

6.125, 7.25, 8, 9.125, 9.875, 10.625, 11.375, 12.125, 12.875, 13.625, 14.375, 

15.125, 15.875 and 16.625% NaCl). E. coli and S. Typhimurium were 

examined in a range of 0.5-9.875% NaCl (typical target percentage of NaCl 

concentrations: 0.5, 1.25, 2, 2.75, 3.5, 4.25, 5, 5.375, 5.75, 6.125, 6.5, 6.875, 

7.25, 7.625, 8, 8.375, 8.75, 9.125, 9.5, and 9.875% NaCl). Two honeycomb 

plates were used for each experiment. Each column of the honeycomb plate 

filled with 150μl of the appropriate NaCl concentration resulting in ten 

replicates for each NaCl concentration. Then 50μl of a particular inoculum 

(inoculum from dilution labelled -2, approximately 107 cfu/ml for L. 
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monocytogenes strains and inoculum from dilution labelled -5, approximately 

104 cfu/ml for E. coli and S. Typhimurium) was added in every well resulting in 

a final volume of 200μl. The plates were then incubated in the Bioscreen at 

30⁰C and/or 37⁰C for 7 days, with the analyser recording the O.D of each well 

at 600 nm every ten minutes. 

2.3.6.2 Minimum inhibitory concentration in pH (MICpH) 

L. monocytogenes strains were examined in a range of pH: 3.46-7.02 (typical 

target pH were 7.02, 6.95, 6.78, 6.65, 6.32, 6.18, 6.07, 6.03, 5.87, 5.76, 5.65, 

5.57, 5.51, 5.35, 5.03, 4.95, 4.88, 4.68, 4.42, 4.35, 4.28, 4.14, 4.05, 3.97, 

3.91, 3.87, 3.76, 3.66, 3.54 and 3.46). One plate was used for each 

experiment. Each well of the honeycomb plate was filled with 200μl of the 

appropriate pH concentration (three replicates per pH). Then 50μl of a 

particular inoculum (approximately 105 cfu/ml) was added in every well 

resulting in a final volume of 250μl. The plate was then incubated in the 

Bioscreen at 30⁰C for 3 days.  

E. coli and S. Typhimurium were examined in a range of pH: 3.35-7.14 (typical 

target pH were 7.14, 6.95, 6.82, 5.58, 6.38, 6.22, 6.07, 5.95, 5.80, 5.64, 5.43, 

5.23, 5.01, 4.79, 4.59, 4.38, 4.16, 3.95, 3.75 and 3.35). Two plates were used 

for each experiment. Each column of the honeycomb plate filled with 180μl of 

the appropriate pH concentration (ten replicates per pH). Then 20μl of a 

particular inoculum (inoculum from dilution labelled -3, approximately 106 

cfu/ml) was added in every well resulting in a final volume of 200μl. The plates 

were then incubated in the Bioscreen at 30⁰C for 6 days.  

2.3.7  Combined inhibitors (NaCl-pH) 

E. coli and S. Typhimurium were examined in a range of combinations of pH-

NaCl concentrations. Ten solutions with 0.5% NaCl and different pH were 

prepared (typical target pH were 7.0, 6.50, 6.00, 5.61, 5.31, 5.00, 4.61, 4.31, 

4.01 and 3.50). Also, ten solutions with 8% NaCl and different pH were 

prepared (typical target pH were 7.0, 6.50, 6.00, 5.61, 5.31, 5.00, 4.61, 4.31, 

4.01 and 3.50). By combining different volumes of the solutions mentioned 

above in the Bioscreen plate, 100 different NaCl-pH concentrations were 
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obtained. Each column of the Bioscreen plate had the same NaCl 

concentration but different pH and each row had the same pH but different 

NaCl concentration (typical target percentage of NaCl concentrations were: 

0.5, 1.3, 2.2, 3.0, 3.8, 4.7, 5.5, 6.3, 7.2 and 8% NaCl). Each well of the 

honeycomb plate filled with 180μl of the appropriate pH-NaCl concentration. 

Then 20μl of a particular inoculum (inoculum from dilution labelled -3, 

approximately 106 cfu/ml) was added in every well resulting in a final volume 

of 200μl. The plates were then incubated in the Bioscreen at 30⁰C for 5 days. 

The experiments were carried out in duplicate.  

2.3.8 Mild temperature shifts 

The effect of non-isothermal conditions was studied for L. monocytogenes 

252. The culture preparation and the fill of the Bioscreen plates were made as 

described in paragraphs 2.1.1 and 2.3.4. For this study, identical plates were 

placed in different Bioscreens set at particular temperatures (25⁰C and 37⁰C). 

After a given time of incubation the plates were swapped between the 

machines, without changing the running of the machines 

(25⁰C37⁰C25⁰C37⁰C and vice versa). Typical experiments lasted 1 to 2 

days. The O.D of the wells was read at 600nm every ten minutes. 

One particular effect was noted with Bioscreen data when the plates were 

removed from a higher incubation temperature to a lower (but not vice-versa); 

a kink in the O.D/time plot due to the temporary presence of condensation on 

the underneath of the lid of the Bioscreen plates. In general the condensation 

took between 30 to 50 minutes to evaporate. Thus, TTD which met the O.D 

criterion were censored during the 30 to 50 minutes after the transfer. 

2.3.9 Heat injury 

2.3.9.1 Introduction 

The effect of a mild thermal injury was studied using the Bioscreen 

microbiological analyser, in conjunction with the methods developed for the 

analysis of the initial inoculum size on the TTD. The time-temperature 

treatment used was chosen after a series of screening trials. In particular, 

experiments were conducted by placing the Bioscreen plate in an oven, after 
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a period of incubation in the Bioscreen, at a set temperature (normally 60, 65 

and 70⁰C) for 5, 10, 12, 15, 20 and 25 minutes, before being placed back into 

the Bioscreen incubator (data not shown). Heat treatment at 60⁰C for 25min in 

the oven injured the existed populations without any microbial reduction.  

Furthermore, the effect of a mild thermal injury (60⁰C for 25 minutes in a 

preheated oven) was studied using the Bioscreen microbiological analyser. 

The effect of a mild heat treatment for the L. monocytogenes strains was 

studied in different NaCl concentrations (0.5, 3 and 6% NaCl) at 30⁰C while S. 

Typhimurium and E. coli were studied in different NaCl concentrations (0.5, 3 

and 6% NaCl), different pH (6.57, 5.68, 5.10 and 4.58) and NaCl-pH 

combinations (see paragraph 2.3.5.3) at 30⁰C.  

2.3.9.2 Heat injury after initial incubation in the Bioscreen 

Duplicate microtitre plates were prepared as described above (see 

paragraphs 2.1.1 and 2.3.4). Both plates were initially incubated in the 

Bioscreen at 30⁰C. After a given time (allowing for up to 1/3rd of the wells to 

reach the detection limit), one plate was chosen and placed in a preheated 

oven nominally set at 60⁰C for 25 minutes and then placed back into the 

Bioscreen incubator for the remainder of the experiment. The actual thermal 

treatment given was not examined; the conditions used with the particular 

oven were obtained through trial and error, to enable a reproducible 

observation of mild injury without incurring inactivation. Sample was taken 

from a particular well (well 199) and plated onto TSA plates from both plates 

(control plate and plate which was thermally injured) in order to examine if 

there was any microbial reduction after the heat treatment. The TTD (defined 

as the time to reach an O.D= 0.2 at 600nm in the Bioscreen, after background 

correction) was obtained for each well.  

2.3.9.3 Heat injury before incubation in the Bioscreen  

Experiments were conducted in the Bioscreen by filling column 10 of two 

(10x10) microtitre plates with the decimal dilution series mentioned above 

(400μl per well). Both plates were incubated at the given temperature (30⁰C) 

for approximately 2 hours to ensure the microbes were in exponential phase 

and then one plate was placed in the preheated oven at 60⁰C for 25 minutes 
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to induce a thermal injury. The procedure then followed that described 

previously, with the injured populations being half‒fold diluted across the 

plate, and subsequently re- incubated in the Bioscreen at 30⁰C.  

2.4 Data analysis and model development 

2.4.1 Model the traditional growth curves 

The data obtained from the construction of the growth curves using the 

traditional plate counts were fitted with the modified Gompertz equation 

(Gibson et al., 1987) which has been described in paragraph 1.3.2.2 and is 

given by (1-2).  

From this equation the growth rate (mu), the lag time (λ) and the generation 

time (GT) was calculated by (1-3), (1-4) and (1-5).  

2.4.2 Calibration curves 

O.D was directly related to microbial numbers for all the examined cases in 

the Bioscreen (200μl) and in the spectrophotometer (1cm path length) 

(Appendix D, Table D-1).  Also, O.D was related to microbial numbers using 

simple calibration curves. Cultures of the microorganisms were prepared as 

described in 2.1.1 and Bioscreen plates were filled as described in 2.3.4 using 

TSB (0.5% NaCl and pH:7.20). The plates were then incubated in the 

Bioscreen at 30°C for 1 day. From the honeycomb plate where all the wells 

had previously reached the maximum O.D, 2ml of TSB were mixed with 0.2ml 

of inoculum which had reached the maximum O.D. A series of dilutions and/or 

condensations were made in order to obtain different O.D values. The 

technique used is shown in Figure 2-3.  O.D was measured in the 

spectrophotometer (1cm path length) and in the Bioscreen (200μl volume). 

Moreover, 0.1ml of a well which had reached the maximum O.D was plated 

onto TSA plates in order to obtain the maximum population density (MPD) of 

the microorganisms. Each of the O.D obtained have been related with a 

number of microbial counts using the counts calculated from the MPD values 

but also using the counts from the standardised culture at an O.D=0.5 in the 

spectrophotometer. The microbial numbers used were calculated from the 

proportions of volumes used in Figure 2-3.   
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Figure 2-3 Representation of the technique for constructing calibration curves 

2.4.3 Data analysis 

From the resulting Bioscreen O.D/time data, the background O.D due to the 

media was removed from each. A TTD criterion of O.D = 0.2 was then used 

on the background corrected data: TTD were found using linear interpolation 

between O.D/time values which straddled the O.D = 0.2 value. That data 

obtained from the Bioscreen have approximately constant variance until the 

initial inoculum level is less than 102 cfu/ml, below this level the variance 

increases (Bidlas and Lambert, 2008). To preclude the need of weighted 

regression or for a data transformation data below this threshold were 

censored in the regression fits.  



62 

2.4.4 Models development for the growth curve prediction from 

O.D data 

2.4.4.1 Modified logistic and Gompertz 

The re-parameterised modified logistic and Gompertz models (Zwietering et 

al., 1990) were rearranged to equate the initial log inoculum with the time to 

detection of a known number of microbes per ml (ND), giving equations (2-1) 

and (2-2), respectively. 
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        (2-2) 

2.4.4.2 Three phase linear model  

The 3-PLM is a simplified model of the growth curve. Its simplicity has been 

regarded by some as its strength and too simplistic by others (Buchanan et 

al., 1997; Baranyi, 1997; Garthright, 1997). The 3-PLM has been described in 

paragraph 1.3.2.2.  

The parameter t of the model is the duration of lag time. This equation can be 

rearranged to equate the initial log inoculum with the time to detection of a 

known number of microbes per ml (ND), 

      
           

  
 (2-3) 

2.4.4.3 Baranyi and logistic models 

            
  

      
 

  

      
        

           
                        and (2-4) 

          
                                     

The Baranyi model is a non-autonomous equation. In the absence of lag the 

Baranyi model defaults to the basic logistic model of growth in which the time 

to detection for a given number of microbes is given by  
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(2-5) 

Where M = maximum population density (cfu/ml), ND = numbers of microbes 

per ml at the detection value, N0 = initial inoculum level (cfu/ml)  ,  = specific 

growth rate. 

A simple, empirical, approximation to the Baranyi equation when a lag exists 

is given by: 

      
 

 
   

 

  
  

 

  
  
  

(2-6) 

2.4.5 Logistic with lag model: Estimation of growth rate and lag 

from time to detection data 

For a given set of environmental conditions a plot of the initial inoculum size 

against the TTD gives a straight line relationship with a growth rate equal to 

the reciprocal of the gradient. In the absence of a lag this line will intersect the 

log initial inoculum axis at the detection value for the given O.D criterion used. 

In this study the TTD was defined as the time to produce an O.D=0.2. This is 

the methodology described by Cuppers and Smelt (1993).  

Theoretical Background: From the classical logistic equation 

  
 

   
 

  
       

   (2-7) 

Where μ is the specific growth rate and M is the maximum population density 

(also known as the carrying capacity, cfu/ml), the time taken (TTDN) to reach a 

specific population level (N) from a given initial value (N0, cfu/ml) is given by 

      
 

 
     

 

 
   

       

   
   (2-8) 

The TTDN is defined as the time to reach a given detection threshold (e.g. an 

optical density of 0.2) for which ND is the equivalent microbial numbers per ml.  

If the assumption that M>>N0 is made then this can be approximated by  
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   (2-9) 

When N0 =1, the TTD is given by the right hand expression of (2-9), if M>>ND 

then this can be approximated by lnND/μ. Hence, a plot of the initial inoculum 

against the TTD will give a gradient equal to the negative reciprocal of the 

growth rate, the TTD intercept at N0 = 1, is the time taken for one organism to 

reach the TTD criterion. This expression can be considered as the basis of the 

methodology of Cuppers and Smelt (1993) described above. In the presence 

of a lag (2-9) can be supplemented with a lag term (λ). The appropriate 

rearrangement of the logistic model with lag was used. A simple 

approximation being: 

       
 

 
   

  

  
  (2-10) 

2.4.6 Model development for the MIC studies: MICNaCl and MICpH  

The minimum inhibitory concentration (MIC) in NaCl and pH was defined 

using the Lambert-Pearson model (Lambert and Pearson, 2000). The LPM of 

microbial inhibition (equation (2-11)) describes the visual growth of a culture 

as an exponential decay function of the concentration of the applied inhibitor. 

A plot of the log concentration against the rate to detection (RTD) which is the 

reciprocal of the TTD of the test culture, gives a characteristic sigmoid curve, 

with inflexion at RTD=P0/exp(1), where P0 is the RTD of the positive control. A 

linear extrapolation from this point to the log concentration axis allows the 

estimation of the MIC (2-12).  

If y(x)=0 then
 
      

 

If y(x)<P1 then             
 

  
 
  
 ,  

If y(x)≥P1 then     
  

 
         

 

  
   

(2-11) 

 

Where RTD is the rate to detection, y(x) is the concentration of the given 

inhibitor, P1 is the concentration of inhibitor of 1/e, where e is the exponential 
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of 1 and P2 is a slope parameter which can be considered as a measure of 

the dose response.  

From the LPM the MIC which is an important biological parameter could be 

obtained from the intercept of the maximum plot of RTD against the 

percentage of NaCl concentration or the ion concentration.  

           
 

  
  (2-12) 

The minimum NaCl was calculated using the percentage of NaCl 

concentration and the minimum pH was calculated using ion concentration 

and then transformed back to pH. Analyses were done using the JMP 

Statistical Software (SAS Institute Cary NC USA), using non-linear regression 

with the minimised sum of squares as the search criterion. 

2.4.7 Analysis of combined inhibitors 

Three main approaches to modelling the observed data were used: nominal 

logistic modelling of the Growth/No Growth (G/NG) data, continuous modelling 

(response surface modelling) and the use of the Extended Lambert and 

Pearson model (ELPM).  

Nominal logistic modelling of the Growth/No Growth boundary 

E. coli and S. Typhimurium were examined in a range of combinations of pH-

NaCl concentrations. Data which showed growth (had an RTD > 0) were 

degraded to the label “G” and those showing no growth within the period of 

the experiment were labelled as “NG”. A nominal logistic model was fitted to 

the data using maximum likelihood: 

                
 

             
  

(2-13) 

Where f(var) is a function (normally polynomial) of the (independent) variables 

involved in the experiments. The selection of the most appropriate model was 

based on the minimum number of parameters required to achieve the highest 

r2 whilst still having high statistical significance for each parameter used (p < 

0.05). Forward elimination was used - in which additional variables (such as 

cross-products) are added only if they made a significant contribution to the fit. 
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Nominal logistic modelling was carried out using the appropriate platform in 

the JMP statistical package (SAS Institute, Cary NC, USA).    

Continuous modelling 

The TTD were transformed to RTD (reciprocal transformation) and a response 

surface model (RSM) was produced using the standard least of squares with 

emphasis on the effect of leverage. Scatter plots 3D, surface plots and 

contour plots were produced based on the observed and the modelled data. 

Response surface modelling was carried out using the appropriate platform in 

the JMP statistical package (SAS Institute, Cary NC, USA).  

Extended Lambert and Pearson model 

The model used in these studies was developed from a previously published 

version (Bidlas and Lambert, 2008). The model allows the direct calculation of 

an absolute G/NG boundary. For two inhibitors in combination, each of which 

can be modelled by the LPM, the additive effect is given by:  
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Where the effective concentration, EffConc is given by: 

           
  

  
 

  
    

  

  
  

  

 

(2-15) 
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Where the parameters Pi are those obtained from the LPM, and where P4 ≥ 

P2, [xi] is the concentration of the ith inhibitor and P0 is the RTD of the least 

inhibitory condition. 

2.4.8 Model development for the fluctuating temperatures studies 

The effect of mild temperature shifts was modelled using the geometric or 

Malthusian model in conjunction with the methods developed for the analysis 

of the initial inoculum size on the TTD. Consider two inoculum dependence 

experiments carried out on the Bioscreen at two different temperatures, where 

T1 is at more optimum temperature for growth than T2. Analysis of the TTD 

data would give something similar to that shown in Figure 2-4.The gradient 

observed at T1 is less than the gradient observed at T2.   

 

Figure 2-4 Inoculum size dependency on the time to detection (TTD) at two 

different temperatures, where T1 is more optimal for growth than T2 

The relationship between the TTD and the initial log inoculum is a linear 

relationship which was given by: 

                                                    (2-16) 

where logN is the log of the initial inoculum size used, m is the gradient and c 

is the intercept of the slope on the TTD axis. This can also be rewritten as: 

                                                                               (2-17) 
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where logND is the size of the inoculum for which TTD = 0. If we consider m 

as a negative value then (2-17) can be rewritten as : 

                                                                              (2-18) 

If two microtitre plates each containing identically prepared multiple inocula 

are incubated at different temperatures then each inoculum will grow at a rate 

dictated by the temperature and media conditions. The difference between the 

two plates will be governed only by the differential effect of temperature. In 

particular, if after a period of incubation (tx) at T1 the temperature was 

changed to T2, then the growth rate will change to accommodate the new 

temperature. It was hypothesised that this would cause an abrupt change in 

the slope (a discontinuity), Figure 2-5.  

 

Figure 2-5 The geometrical basis for equation (2-23): for a given rate (m1), over 

the time period Tx initial inocula between logND-logNx will reach the detection 

threshold of logND. If at Tx the rate is changed (m2) and there is no induction of 

lag, the TTD now follow the new rate. If a lag is induced a vertical separation at 

Tx equal to the time of lag will be present before growth recommences 

The first part of the TTD/logNo plot should follow the behaviour of the optimal 

temperature and the second part should follow the behaviour of the less 

optimal temperature slope. To model the behaviour of the slope it is a simple 

matter to obtain the value of the log of the initial inoculum size at the detection 

time given by tx. 
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For t ≤ tx,  

TTD = m0 (logNo - logND) (2-19) 

Where m0 is the gradient of the initial condition.  

At the time of the first temperature switch, t1 the logNt=t1 can be calculated by 

rearranging (2-19) as follows:  

               
  

  
                      (2-20) 

At the time (tx) when the temperature shifts, the point (logNx, tx) is used to 

calculate the equation of the second part of the slope 

                                                                  (2-21) 

Rearranging (2-21) and substituting with (2-20) gives: 

                      
  

  
                                                          (2-22) 

This model can be extended by using the same method to describe the effect 

of multiple temperature shifts as follows:  

If t<ti+1 , for i=0, 1, 2, .... (with t0=0) then:  

                        
       

    
 

   
                                                 (2-23) 

For example, for up to two temperature shifts, the overall model can be 

summarised by:  

i=0                                                                             (2-24) 

i=1                        
  

  
                                                          (2-25) 

i=2                         
     

  
 

     

  
                       

(2-26) 
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If lags are present then at a particular ti, this value can be modelled as ti + lagi. 

Since the models are simple linear models, the majority of the modelling was 

carried out using Excel (Microsoft) and the data analysis add-in package.  

2.4.9 Model of growth following thermal injury 

The basis of the model used is that in each well of the Bioscreen a population 

of organisms exists which results in the observation of the TTD. If these 

organisms are uninjured then the TTD is given by the model above. Hence the 

uninjured population will have a TTD given by  

      
 

 
   

  
  
                                                                                     

(2-27) 

Where Norm(0,σ) is the normal distribution of error about the line. After a 

thermal insult we hypothesise that the populations present in each well will 

become injured and present a lag due to the injury before the 

recommencement of growth. Hence the model  

       
 

 
   

  
  
                                                                   

(2-28) 

Where the distribution of lag due to injury (laginjury) is Log-normal and 

characterised by scale (μ) and shape parameters (σ), logNorm (μ, σ). The 

TTD observed is therefore a composite of the growth under the given 

conditions plus that induced by the need to repair after the thermal insult (the 

exponential of the logNorm (μ, σ)). 
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3 Growth curve prediction from optical density data 

3.1 Introduction 

A fundamental aspect of predictive microbiology is the shape of the microbial 

growth curve. General population growth can be modelled using the logistic 

model and variations of this model have been used in many diverse areas 

such as the analysis of fish stocks, forestry management and human 

population growth (e.g. Alexandrov, 2008). The general pattern of growth is 

sigmoidal, with an apparent slow phase followed by a more rapid increase in 

numbers followed by a slowing down, finally reaching a maximum population 

level. In most texts it is noted that the growth of bacteria also follows a similar 

pattern: a lag before replication, followed by exponential growth and then a 

period of maximum population density eventually followed by the ‘death-

phase’. A major difference is that the microbial growth curve is depicted in 

terms of log numbers of microbes. The microbial growth curve (as log 

numbers) has the characteristic sigmoid shape and the varieties of models 

which are used to fit the curve reflect this sigmoid character. There are two 

principal empirical curves used – the symmetric modified logistic and the 

asymmetric modified Gompertz (‘modified’ by virtue of using log numbers 

rather than numbers explicitly). Many models in the microbiological literature 

are variations on these two themes (Zwietering et al., 1990; Pruitt and Kamau 

1993; Li et al., 2007). 

The Baranyi model, however, is different to the normal growth models in that it 

is based on the logistic model of growth, but has an additional function which 

deals with the presence of lag making it a non-autonomous differential 

equation (Baranyi et al., 1993a; 1993b; Baranyi and Roberts, 1994).  

   

  
       (3-1) 

Where μn is a function of the specific growth rate, n is the numbers of 

microbes and at is termed the adjustment function. The derived equation uses 

the idea of Michaelis –Menten kinetics to suggest a lag time during which 

organisms adapt from one environment (the culture) to the test environment. 

The function used essentially delays the time before growth occurs.  
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Baranyi and Roberts (1995) in their paper on the fundamentals of 

mathematics in predictive microbiology stated that rapid methods such as 

turbidimetry or conductimetry cannot be used directly to obtain growth 

parameters such as the specific growth rate if the rescaling function employed 

has a constant other than zero; “if the measured quantity is q, then q=f(x), 

where f is a linear calibration function: f(x)=ax +b. If b is different from zero 

then neither q nor log q is linearly proportional to log x. Hence, in a strict 

sense, the rate of change in q should not be used to estimate the viable count 

specific growth rate unless the proportionality of q (turbidity, conductance, etc) 

to the original cell concentration, x, has been established over the complete 

matrix of environmental variables (temperature, pH, aw). Nor should the viable 

count models describing x(t) be directly applied to the model q(t). New 

calibration function, or other considerations, should be taken into account to 

model q(t) and/or to compare it with the viable count model.”(Baranyi and 

Roberts, 1995).  

Models used to examine the shape of microbial growth generally require four 

parameters: the initial and final population levels (I0 and MPD respectively), 

the maximum specific growth rate and the time at which this occurred. If three 

pieces of information are available, e.g. the initial population, the MPD and the 

specific growth rate, then knowledge of the population at a specific time can 

be used to reproduce the growth curve simply by substituting the values into 

the equations and solving for the missing parameter. Herein we show that this 

seemingly simple hypothesis serves as a “consideration” and also has 

ramifications on the validity of the modified empirical growth curves, whilst 

adding value to the interpretation of the Baranyi equation. 

3.2 Materials and methods 

The growth of L. monocytogenes 252 was studied at 30⁰C and 37⁰C in TSB 

(0.5% NaCl) and in different pH concentrations. The preparation of the 

cultures and the fill of the Bioscreen micro-array plates were done as 

described in paragraphs 2.3.5.1 and 2.3.5.2. The data obtained from the 

Bioscreen were analysed as described in 2.4.3 and the models used to predict 

the growth curves from O.D data were described in 2.4.4.  
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3.3 Results 

3.3.1 Growth rate of L. monocytogenes 252 at 37⁰C from O.D data 

The O.D/incubation time curves for different initial inocula of Listeria 

monocytogenes 252 in TSB (0.5% NaCl) are shown in Figure 3-1(without 

background correction). Each individual curve was essentially congruent with 

all other curves: there is no decrease in the slope with decreasing initial 

inocula. The average maximum O.D reached was 0.99 (= 0.034, se. mean = 

0.004). For each curve, the TTD of O.D = 0.2 was found using simple linear 

interpolation between O.D/time data which straddled the O.D = 0.2 position. 

The analysis of the TTD of these multiple dilutions of initial inocula (the zero 

dilution starting culture had a viable count of 1.11 x109 cfu/ml), showed a 

simple linear relationship between the initial inoculum and the TTD criterion 

used (Figure 3-2). The reciprocal of the gradient gives a growth rate of 0.0092 

log10 cfu ml-1min-1, which equates to a specific growth rate of 1.27 ln cfu ml-1 

hr-1 (Table 3-1). The intercept of 961 minutes corresponds to the time taken 

for a single organism per ml to reach the TTD= 0.2 criterion; when TTD = 0, 

the regression line cuts the axis at an initial log inoculum of 8.81 log10 cfu ml-1 

(95% CI 8.77-8.86), which was statistically equivalent to the log10 cfu ml-1 

count of the viable count recorded from multiple wells with O.D = 0.2. Hence 

in this case there was no measurable lag; this was also confirmed from an 

analysis of Figure 3-1– the highest inocula examined do not show any lag 

period but immediate growth is observed.  
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Figure 3-1 Optical density-incubation time plot for the growth of multiple initial 

inocula of Listeria monocytogenes 252 at 37⁰C in TSB 

 

 

Figure 3-2 The time to detection of multiple initial inocula of Listeria 

monocytogenes 252 at 37⁰C in TSB. The TTD criterion was set at O.D =0.09 (▲), 

0.1 (□), 0.2 (■), 0.4 (○), 0.6 (●). An O.D = 0.2 at 600nm was equal to 8.9 log10 cfu 

ml-1 
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Table 3-1 Parameter estimates from linear regression fits to TTD data for multiple initial inocula of Listeria monocytogenes 252 at 

37⁰C in TSB for different time to detection criteria at 600nm 

  
Gradient 

 
 

 
Intercept 

  
 

O.D criterion Coefficient Lower 95% Upper 95%  Coefficient Lower 95.0% Upper 95.0% r
2
 log ND

* 

0.09 -104.17 -109.15 -99.19  766.52 740.22 792.81 0.981 7.358 

0.1 -104.17 -105.83 -102.50  824.96 816.37 833.54 0.997 7.919 

0.2 -108.49 -109.60 -107.38  956.29 950.29 962.30 0.999 8.814 

0.3 -109.20 -110.14 -108.26  996.36 991.23 1001.48 0.999 9.124 

0.4 -110.51 -111.54 -109.48  1032.31 1026.56 1038.05 0.999 9.341 

0.5 -110.23 -111.31 -109.14  1056.05 1050.08 1062.03 0.999 9.581 

0.6 -110.53 -111.63 -109.43  1085.84 1079.78 1091.90 0.998 9.824 

0.7 -110.34 -111.75 -108.93  1113.02 1105.24 1120.79 0.997 10.09 

0.8 -110.20 -112.44 -107.95  1153.58 1141.18 1165.97 0.994 10.47 

0.9 -110.32 -113.38 -107.26  1216.46 1199.52 1233.41 0.988 11.03 

0.95 -109.88 -113.23 -106.53  1252.31 1233.60 1271.02 0.987 11.40 

1.0 -110.81 -114.12 -107.50  1285.19 1266.28 1304.10 0.993 11.60 

* 
: Theoritical detection values (logND) calculated from the regression parameters (gradient and intercept).  

 



76 

 

3.3.2 Fitting the modified logistic and Gompertz models to O.D 

data 

From a plate count the MPD of the Listeria monocytogenes 252 culture was 

9.8 log cfu ml-1, the initial inoculum size for each well was calculated from the 

plate count of the initial inoculum and the dilution sequence used. From the 

O.D data, the specific growth rate and lag were obtained, hence all the 

parameters required to reproduce the growth curve using either the modified 

logistic or Gompertz equations were present. Equations (2-1) and (2-2) were 

used to calculate the TTD for the given initial inocula using the observed 

parameters.  A plot of the calculated TTD against the initial inocula gave a 

regression fit of TTDcalc = -125.53logNo+1087.7 min, r2 = 0.999 and TTDcalc = -

144.6logNo+1235 min, r2 = 0.997 for the modified logistic and Gompertz 

equations, respectively. The gradients were 16% and 33% greater for the 

modified logistic and Gompertz respectively over that observed. In both cases 

the plot was a curve rather than the observed linear relationship. The sum of 

squares between the observed TTD and that calculated using the two 

equations was minimised by regressing the growth rate and lag, this gave 

growth rates of 0.0107 and 0.0122 log10cfu ml-1min-1 with a lag of 17 and 31 

mins, respectively, but the gradient of the calculated TTD/ log initial inoculum 

plots were now equal to the observed (-108.5 log10cfu ml-1 min-1). Hence there 

is a discrepancy between the fit of the modified logistic and Gompertz 

equations with the interpretation of the observed values. 

Multiple growth curves were produced in-silico using the observed rate, lag 

and the known initial inocula and MPD. The calculated log numbers were 

transformed to numbers per ml and plotted against time. If the modified 

Gompertz equation was an adequate descriptor of the observed data then 

congruent plots should be observed. However, as the initial inocula decreased 

the modelled curves became shallower, i.e. they do not reflect the observed 

O.D curves (note a calibrant which transforms the number to an O.D will result 

in the same conclusion).  The analyses performed were also carried out using 

the modified logistic equation, resulting in the same conclusion: the modified 
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logistic model cannot reproduce the congruent shapes of the observed O.D 

curves shown in Figure 3-1. 

3.3.3 Fitting the 3-phase linear model to O.D data 

The 3-PLM (2-3) was fitted to the TTD data by minimising the sum of squares 

between the observed TTD and the modelled; initial values of  = 0.0092 and 

lag = 0 mins were used (note the MPD and the log of the detection numbers 

are fixed values).The fit gave  = 0.00922 (95% CI: 0.00914 – 0.00930), and a 

lag = -8.89 mins (95% CI: -12.84 to - 4.93).  A plot of the calculated TTD 

against the initial inocula gave a regression fit of TTDcalc = -108.5logNo 

+965.6, r2 = 1.00, i.e. the 3-PLM reproduced the observed TTD data and (by 

definition) was a straight line fit.  

Using the full form of the 3-PLM, multiple growth curves were produced in-

silico using the calculated rate, lag and the known initial inocula and MPD. 

The calculated log numbers were transformed to numbers per ml and plotted 

against time. In this case the 3-PLM produced congruent curves and 

reproduce the initial shape of the O.D curves (Figure 3-3) however, since the 

model gives only exponential growth until MPD is reached, i.e. there is no 

slow down in the rate of growth, the discrepancy between the shapes of the 

observed O.D and calculated numbers quickly increases. In this case the 

‘simple’ is good enough to fit the TTD data but not ‘enough’ to model the full 

data (Buchanan et al., 1997).  
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Figure 3-3 Predicted microbial numbers with time from the 3-PLM, with 

parameters =0.00921, Lag = -8.88 mins, MPD = 9.8, with a range of initial 

inocula 

3.3.4 Fitting the Baranyi model to O.D data 

The Baranyi model cannot apparently be used to explicitly obtain the TTD for 

a given set of parameters, although this can be easily solved numerically. To 

fit the Baranyi model to the observed TTD data, and obtain a growth rate and 

lag, the observed TTD was used as the independent variable and the model 

used to fit the difference between the size of the detection inoculum and the 

initial inoculum. The estimated growth rate was 0.00918 log10 cfu ml-1 min-1 

(95% CI:0.00910 – 0.00927), with a lag of -17.3 mins (95% CI: -21.8  to -

12.9).  

To compare the calculated TTD value from the Baranyi model, with respect to 

the observed values a growth rate of 0.00922 log10 cfu ml-1 min-1 and a lag of 

zero minutes were used along with the given MPD of 9.8 and the size of the 

known initial inoculum to produce, in-silico, multiple growth curves. The time 

taken to reach the inoculum detection value of 8.9 for all growth curves was 

obtained numerically using a simple linear interpolation procedure. A plot of 

the log initial inoculum against the calculated TTD gave a straight line fit with a 

regression fit of TTDcalc = -108.4log10No+956.49, r2 = 0.999. The multiple 
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growth curves obtained are congruent and have the desirable feature of a 

slow down in the rate of growth as MPD is approached unlike the 3-PLM 

(Figure 3-4).  

 

Figure 3-4 Predicted microbial numbers of Listeria monocytogenes 252 with 

time from the Baranyi model, with parameters  =0.00921, Lag = -8.88, MPD = 

9.8, with a range of initial inocula  

3.3.5 O.D- Baranyi calibration curve 

The Baranyi model and the O.D data are 1:1 up to the maximum O.D. Past 

the maximum O.D, in the cases studied here, there is a reduction in the O.D 

with incubation time, whereas the model stays at a constant MPD.  This is a 

failing of the model as it is a purely growth rather than a growth and decay 

model. The 1:1 nature of the relationship up to the maximum O.D can be used 

to construct a calibration curve between the O.D at a given time and the 

number of microbes per ml predicted from the Baranyi model. To construct the 

calibration curve ten observed O.D curves were chosen and a plot of the O.D 

(up to a maximum of 0.85) against the equivalent calculated numbers for the 

observation time constructed. Simple linear regression was applied ((3-2) and 

(3-3)), Figure 3-5. 

O.D =1.308x10-10 (No.) + 0.0946, r2 = 0.997 (3-2) 
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No. = 7.625x109(O.D)  - 7.172x108, r2 =0.997 (3-3) 

Where No. are the calculated microbial numbers per ml. Data up to an O.D = 

0.85 gave a good linear relationship between O.D and the calculated cfu ml-1; 

at O.D greater than 0.8, the inclusion of the cubic and quadratic terms (No. = -

8.38x109(O.D)3 +1.23x1010(O.D)2+ 2.67x109 (O.D) -7.049x108, R2 = 0.999, 

r2 =0.997; O.D = 3.217x10-30 (No.)3 - 2.787x10-20(No.)2 +1.896X10-10 (No.) + 

0.0831, R2 =0.998) gave better fits. 

 

 

Figure 3-5 Plot of the observed O.D against the calculated numbers/ml from the 

associated Baranyi equation (diamonds), the solid line is the regression fit 

used in this study  

Using the calibration curve derived from the Baranyi-analysis, the calculated 

microbial numbers were converted to O.D values. Figure 3-6 shows a direct 

comparison of the predicted O.D/time curves with the observed for five 

selected cases. 
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Figure 3-6 Comparison of the observed optical density incubation time plot 

(symbols) and the calculated (solid lines) for Listeria monocytogenes 252 

incubated at 37⁰C with initial log10 inocula of (from left to right) 8.789, 7.789, 

6.585, 5.09, and 3.284 respectively  

3.3.6 Classical population logistic model  

Fitting the classical logistic model (2-5) to the TTD data gave a straight line fit 

of TTDcalc = -105.43log10No+943.59, equating to a growth rate of 0.0095 log10 

cfu ml-1 min-1 (95% CI: 0.00945 – 0.00955). The addition of a constant lag 

(2-6) improved the fit giving a straight line fit of TTDcalc=-

108.48log10No+956.56, equating to a growth rate of 0.00923 log10 cfu ml-1 

min-1 (95% CI: 0.00915 – 0.00932). A lag of -14.3 minutes (95% CI: -18.4 to -

10.2) was obtained; the correlation between lag and growth rate was -0.90 

(negative correlation), a result very similar to the fitting of the Baranyi 

equation. 

3.3.7 Growth rate of L. monocytogenes 252 at 30⁰C from O.D data 

The TTD from a ten-fold dilution series of an initial standardised inoculum of L. 

monocytogenes 252 incubated at 30⁰C in TSB were obtained.  A regression fit 

gave TTD = -127.09log10No+1121.8, r2 = 0.999; giving a growth rate of 

0.00787 log10 cfu ml-1 min-1. The intercept of 8.83 log cfu ml-1 (95% CI: 8.80 – 

8.85) suggests the absence of a lag. Initially the Baranyi model was fitted to 

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200

Op
tic

al 
De

ns
ity

 (6
00

nm
)

Incubation time (mins)



82 

 

the TTD data using an MPD of 9.8 and a detection inoculum of 8.9. The 

specific growth rate obtained was 0.00786 log10 cfu ml-1 min-1 (95% CI: 

0.00780 – 0.00792) and a lag of -17.5 mins (-22.5 to -12.5 mins). Using the 

calibration curve found previously ((3-2) and (3-3)) the calculated numbers 

were transformed to O.D values. An MPD of 9.8 was found, however, to be 

too low for the maximum O.D observed. The MPD was increased to 9.9 and 

this gave reproducible O.D curves, Figure 3-7. Changing the MPD left the 

specific growth rate unchanged but the lag increased to -1.0 min. 

 

Figure 3-7 Comparison of the observed optical density incubation time plot 

(symbols) and the calculated (solid lines) for Listeria monocytogenes 252 

incubated at 30⁰C with initial log10 inocula of (from left to right) 7.97, 6.97, 5.97, 

4.97, 3.97, 2.97, 1.97 and 0.97, respectively  

3.3.8 Effect of pH 

An initial log10 inoculum of 5.4 (determined from plate counts) was used to 

study the effect of a range of pH (7.05 to 3.46) on growth.  No visible growth 

was observed during the 3 day incubation at 30⁰C at pH 4.42 or less.  As the 

pH was reduced, the O.D maximum was reduced and the rate of change of 

O.D also decreased. The O.D data at pH 6.95 were fitted with the Baranyi 

equation in concert with the calibration equation. Although the initial log 

inoculum size was determined as 5.4 from plate counts, from the TTD/log 
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initial inoculum calibration curve obtained at 30⁰C a count of 5.5 was 

expected. The initial log cfu ml-1 was held at 5.5 and the specific growth rate, 

lag and the MPD were obtained by regressing the calculated O.D against the 

observed, Figure 3-8 displays these results. Table 3-2 gives the parameters 

obtained; in no case was a significant value for a lag observed (i.e., in all 

cases the confidence interval for the calculated lags included zero). 

 

Figure 3-8 Comparison of the observed optical density incubation time plot 

(symbols) and the calculated (solid lines) for Listeria monocytogenes 252 

incubated at 30⁰C with initial log10 inocula of 4.97, at pH 6.95, 5.65, 5.51, 5.03, 

4.95, 4.88, 4.68 from left to right respectively, pH 4.42 failed to show any visible 

growth during the period of incubation (constant O.D = 0.088)  

Table 3-2 Parameter Estimates for the Baranyi equation fitting of O.D data at 

various pH values 

pH Mu (ln cfu ml
-1

 min
-1

) LCL UCL MPD -95% CI +95% CI 

6.95 0.01870 0.01864 0.01875 9.771 9.769 9.773 

5.65 0.01630 0.01625 0.01636 9.778 9.776 9.781 

5.51 0.01472 0.01467 0.01478 9.777 9.774 9.781 

5.03 0.01333 0.01328 0.01338 9.780 9.776 9.784 

4.95 0.00984 0.00980 0.00988 9.736 9.732 9.741 

4.88 0.00812 0.00808 0.00816 9.643 9.639 9.647 

4.68 0.00592 0.00591 0.00594 9.566 9.563 9.569 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

O
pt

ic
al

 D
en

si
ty

 (6
00

nm
)

Incubation Time (mins)



84 

 

3.4 Discussion 

Cuppers and Smelt (1993) described an observed linear relationship between 

the log of the initial inoculum size and the time taken for the incubating culture 

to reach a specified turbidometric detection level due to a 106.4 cfu ml-1 

culture. They modelled the TTD data using a model based on the presence of 

a lag and the time taken for the initial culture to grow to the threshold value. 

Hence, the growth rate could be calculated. Essentially this study modelled 

the underlying growth curve as a 3-phase linear model, ignoring the MPD 

value. 

From the classic logistic equation, the time taken (tN) to reach a specific 

population level (N) from a given initial value (N0)  is given by (2-8) where μ is 

the growth rate and M is the maximum population density (also known as the 

carrying capacity).  

This is almost in the linear form y = mx + c, especially when M >> N0, and a 

plot of the time to the specific level against the natural log of the initial 

population number gives a gradient from which the growth rate can be found. 

When N0 = 1, the intercept is obtained – the time taken for one organism to 

reach the specified detection number. One important point is that the logistic 

model as applied here has no lag.  When we consider the phenomenon of 

microbial lag, we could simply state that if t < t(lag) then N(t) = N(0) and 

change the time function to t-t(lag) to account for the change. Physically this 

makes sense; the logistic equation is devoid of a lag, microbial lag is caused 

by an event (or sequence of events) before the onset of growth, hence is not 

part of the original derivation. Mathematically, however, the resulting logistic 

with lag equation has some undesirable features: the formula is discontinuous 

at the end of lag. This was, essentially, the equation reported by Jason (1983) 

and indeed the linear relationship between the log of the initial inocula (of 

E.coli growth measured using conductivity) and the time to reach a specific 

value was reported then.  
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The Baranyi model (Baranyi et al., 1993a; 1993b) can be considered as a 

well-designed solution to the problem with the application of the Jason model. 

By invoking a time delay function, based on a firm biological foundation, the 

model becomes continuous, and remains biologically interpretable. A major 

feature of the model has been the assignment of the so-called pre-exponential 

factor which relates the fitness of an organism to thrive in an environment 

relative to another. If there is no difference between environments then the 

theory states that there should be no lag if the organism is transferred from 

one to the other and therefore the basic logistic model should apply – which is 

the default for the Baranyi model. 

The TTD data produced using the multiple inocula technique described could 

be well fitted using the 3-PLM, the Baranyi and the logistic (with or without 

lag), the parameters obtained were consistent between models and reflected 

the observed gradients well. Further, using a simple conversion between O.D 

and numbers (cfu ml-1), the basic features of the O.D/time plots could be 

reproduced with these models. The rescaling functions (2-6) and (2-8) 

overcome the peculiar problem described by Baranyi and Roberts (1995): that 

direct fitting of viable count data to turbidity or conductivity data or vice-versa 

should not be considered without additional information being available. The 

calibration curves used in this work can be used since they are obtained 

indirectly from pre-knowledge of the initial inoculum size, the maximum 

population density and the maximum specific growth rate.  

The modified logistic and modified Gompertz equations, however, failed to fit 

the observed data and could not reproduce the observed O.D/time plots. A 

simple simulation of growth data with a given max, lag and MPD for a number 

of initial inocula was produced using the modified Gompertz (or indeed the 

modified logistic) equation. A plot of the initial log inocula against the TTD 

((2-2)) for a given detection number (log Nd) gave approximate straight line 

fits. The gradients of the line, however, were not the reciprocal of the growth 

rates used. When TTD were obtained for the same initial conditions, but for 

differing log ND then these plots did not have the same gradient as was 

observed, and as log ND approached the MPD the plot became increasingly 
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curved. From a casual glance at equation (2-2), this equation cannot give a 

simple linear fit with respect to the initial log inoculum used. 

The 3-PLM, the Baranyi and the classical population logistic model were the 

only models examined which were capable of reproducing the straight line fit 

observed for the plot of the initial log numbers against the TTD. The 3-PLM, 

however, suffers from the inability to approach the MPD continuously, and 

although giving the correct TTD for O.D = 0.2 for the cultures, it failed to give 

the approach to the maximum O.D observed.  The Baranyi and the classical 

logistic models did not have this problem. 

Applying the method of fitting the Baranyi model directly to another set of data 

(30⁰C), by simply changing the MPD slightly, a good fit to the O.D data was 

found. Equally, the lack of an apparent lag (either from the fit of the model or 

from an analysis of the O.D/time plot for large initial inocula), suggested that 

the basic population logistic model would give an equivalent fit. This was 

indeed found to be the case. 

Several reports have suggested that the O.D technique is limited as it requires 

high initial inocula (Dalgaard et al., 1994; Dalgaard and Koutsoumanis, 2001; 

Baty et al., 2002; Perni et al., 2005). The observed data described herein 

show that this assumption is not valid.  If the growth rate of an organism under 

ideal conditions is obtained using the multiple inoculum dilution method then 

any subsequent study using non-ideal conditions can use a positive control to 

set the modelled fit. For example in the study of pH, the growth rate at the 

ideal growth pH was known. The size of the initial inoculum used could then 

be either found from the calibration curve (knowledge of the TTD) or from 

plate counts (or both if confirmation was required). As conditions change (e.g. 

reducing pH) the fixed parameters of the Baranyi model can be altered to fit 

the new growth rates and/or lag induction. In the case studied here, the 

Baranyi model suggested that the growth rate reduced but that lag was not 

induced over the pH range studied. This result reflects well the conclusions of 

McKellar et al. (2002). 
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In 2002, McKellar et al. produced a study of the effect of pH on the growth of 

Listeria monocytogenes (using the strain Scott A) stating that pH had no affect 

on the initial physiological state and that the calculated lag was constant. A 

graph of the initial log inoculum (per well) against the TTD for a range of pH 

showed multiple linear slopes apparently intercepting the loge inoculum axis at 

20.086 +/- 1.092: equivalent to a range of 8.25 to 9.2 log10 cfu per well. This 

range encompasses the 8.37 log10 cfu well-1 detection threshold found with 

this work. Further our study of the effect of pH also suggests that there was no 

change in lag– only a change in growth rate as described by McKellar. The 

difference between our interpretation and that of McKellar et al. is the 

presence or not of a lag. However, an important point must be made with 

respect to the detection value used in McKellar and Knight (2000) and 

McKellar et al. (2002): if the detection threshold is equivalent to 3.5x106 

cfu/well, then all the TTD values of wells containing greater than 3.5x106 

cfu/well should be zero; from figure 4 of McKellar et al. 2002 this is clearly not 

the case.  

In McKellar and Knight (2000) the time of lag was calculated as the difference 

between observed TTD data and the theoretical TTD plot of the log of the 

initial inoculum based on a detection limit of 3.5x106 cfu per Bioscreen well. 

Observed data had the theoretical growth rate but had greater TTD values 

since a lag was present. The observed data gave a regression fit of TTD30
o
C=  

– 132.84 log10 No+ 1221, but was quoted in terms of cfu per well, which were 

filled with 350l of culture.  The growth rate obtained was very similar to that 

obtained from the data observed in this report (-127.09), but the intercept was 

higher than was found (in terms of cfu per ml, the intercept was calculated to 

be 1281 mins, whereas a value of 1122+/- 4.6 was observed in this study).  

We suggest the discrepancy between the work reported here and the 

interpretation of the observations of these other workers may be due to an 

inadvertent use of the threshold detection value vs. a TTD based on a specific 

O.D. Figure 3-2 shows the TTD for different criteria: the O.D criteria of 0.09 is 

slightly above the background, this has a detection value of approximately 
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8x106 cfu/well (recalculated for a volume of 350l per well). If this calibration 

curve was considered as the threshold curve, then any of the other calibrants 

would have a constant time delay (i.e. interpreted as lag) between them and 

this line. This may explain the difference in interpretation between the studies. 

From the interpretation of the Baranyi model, the physiological state of the 

cells, denoted as 0, at t0 is a measure of the fitness of the cell in one 

environment to cope with being placed in a new environment. The negative 

natural log of 0 is the product of the maximum specific growth rate and the 

lag. Hence, if there is no lag then ln(0) = 0. Both the study described herein 

and that of McKellar et al. suggest, however, that the automatic link of lag and 

growth may be globally invalid; growth rates can alter without inducing lags 

(e.g. the observed data on the change of pH). Conversely, lags can be 

induced without inducing changes in growth rate (albeit after recovery from 

injury) as shown by the work of Stephens et al. (1997).  

3.5 Conclusion 

We would simply conclude, therefore, that the Baranyi model is the most 

capable primary model of those examined (in the absence of lag it defaults to 

the classic logistic model), but that the modified logistic and the modified 

Gompertz should not be used as Primary models as they cannot reproduce 

observed data. 
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4 Modelling of bacterial growth with shifts in 

temperature using automated methods with Listeria 

monocytogenes as an example 

4.1 Introduction 

The measurement of microbial growth rates, especially its temperature 

dependency, is of fundamental importance in food microbiology. For many 

food pathogens growth above 25⁰C and below 45⁰C is usually rapid with an 

optimum around 37⁰C. Below 5⁰C only a few (often spoilage, e.g. 

Pseudomonas aeruginosa, but pathogens are also represented e.g. Listeria 

monocytogenes) have growth rates that would give rise to concern. This has 

been shown, for example, by Thomas and O’Bierne (2000) on the 

temperature abuse of vegetables with respect to spoilage (lactic acid bacteria) 

and risk (L. monocytogenes).  

Within the literature several studies have looked at the effect of non-

isothermal conditions on microbial growth using established modelling 

methods (e.g. Baranyi et al., 1995; Bovill et al., 2000; Dalgaard et al., 2002; 

Giannakourou et al., 2005; Koutsoumanis, 2001; Koutsoumanis et al., 2006; 

Li and Torres, 1993; Taoukis et al., 1999; Zwietering et al., 1994). The aim of 

many of these studies was to test the ability of using models based on growth 

data obtained isothermally to predict growth under non-isothermal conditions. 

Zwietering et al., (1994) concluded that, within the exponential phase, the 

hypothesis of no lag occurrence was accepted statistically in more than 70% 

of their experiments for Lactobacillus plantarum, however within the lag 

phase, the hypothesis of additional lag occurrence was accepted statistically 

in more than 90% of their experiments. 

Corradini and Peleg (2005) have eloquently questioned the reasoning and 

conclusions being drawn from the use of the empirical standard primary and 

secondary models used to interpret and predict data from isothermal and 

fluctuating temperature studies. They suggest abandoning specific formats 

and using, instead, a generalized scheme for both primary and secondary 
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modelling, “in the absence of a decisively superior theoretical model… [ad hoc 

empirical models] have the advantage of being simpler mathematically and 

free of assumptions that require independent verification”.   

Automated techniques such as turbidometry tend to come under fire from 

traditional microbiologists since they cannot directly reproduce the standard 

microbial growth curve, which the multitude of primary models are fitted to 

(Augustin et al., 1999; Dalgaard et al., 1994; McClure et al., 1993), yet their 

very persistence reflects their ease of use, the high quantity and quality of the 

data obtained and the large savings in consumable costs over that of the 

traditional (plate-count) methods.  It has been shown that the modified 

Gompertz and modified logistic models are at odds with the observed TTD 

data obtained using turbidometry (Mytilinaios et al., 2012). The classic 

logistics models (and by default the Baranyi equation) were the only models 

used able to reconstruct the observed TTD data.  The three parameter model 

has a firm (if simple) theoretical foundation. Its application to standard 

microbiological data results in mismatch due to methodological inadequacies 

(plate counting) and the presence of lag and so is rarely used in its original 

form. Herein, we further examined the application of the basic logistic model 

to microbial growth data (obtained as TTD) and use small temperature shifts 

(or shunts) to examine their effect on the growth rates of L. monocytogenes 

252.  

4.2 Materials and methods 

L. monocytogenes 252 was studied using small temperature shifts to examine 

their effect on the growth rate. The preparation of the cultures and the fill of 

the Bioscreen micro-array plates were done as described in paragraph 2.3.8. 

The data obtained from the Bioscreen were analysed as described in 2.4.3 

and the model used to fit the data which is based on the Malthusian 

approximation of the logistic model as described in paragraph 2.4.8.   
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4.3 Results 

4.3.1 Iso-thermal studies 

The O.D/time curves for the growth of multiple inocula of L. monocytogenes 

252 at 25⁰C and 37⁰C in TSB (0.5% NaCl) were obtained over a 24 hour 

period. Figure 4-1 shows the typical results of such experiments: a linear 

relationship between the log of the initial inoculum size and the time to 

detection (when O.D = 0.2). Table 4-1 gives the regression parameters 

obtained. 

 

Figure 4-1 Relationship between TTD with the initial populations of Listeria 

monocytogenes 252 at 25ºC () and 37ºC () in TSB with 0.5% NaCl   

 

Table 4-1 Regression and growth parameters from the inoculum size 

dependency of Listeria monocytogenes 252 on the TTD at 25ºC and 37ºC  

Microorganism 
Temp 
(⁰C) 

Gradient 
(mins/Log(cfu/ml)) 

Intercept (mins) 

Specific 
growth 

rate 
(hours

-1
) 

Generat
ion 

time 
(hours) 

L. monocytogenes 
252 

25 -183.40 (-185.94—180.86) 1687.6 (1671.7-1703.6) 0.753 0.920 

37 -109.98 (-110.85—109.10) 999.22 (993.90- 1004.6) 1.256 0.544 
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4.3.2 Non-isothermal studies 

To examine the effect of multiple temperature shifts, two Bioscreens were 

used; one Bioscreen was set at one particular temperature (37⁰C), the other 

machine at a different temperature (25⁰C). Identically prepared micro-titre 

plates were placed in each Bioscreen and incubated for a set time. At the set 

time the plates were swapped between the machines, without stopping the 

Bioscreens themselves.  

Figure 4-2 shows the observed TTD for multiple initial inocula of L. 

monocytogenes 252 undergoing either a 37-25-37-25⁰C or a 25-37-25-37⁰C 

temperature incubation sequence, changing temperatures after 360, 500 and 

900 minutes. The observed gradients were -107.9, -179.3,-105.2,-NA for the 

37-25-37-25⁰C sequence and -193.5,-104.7,-172.6,-110.0 for the 25-37-25-

37⁰C sequences respectively. Superimposed, on Figure 4-2 are the predicted 

values from the model used (lines), the TTD predictions of which are based on 

the growth rate data given in Table 4-1. From the observed, fitted and 

predicted data it can be concluded that no induction of lag occurred when 

moving from the higher to the lower temperatures used: the intercept of the 

regression lines for each temperature coincide at the time of the temperature 

shunt, if lags were present this would not occur. 

The Geometric model (equation (2-23)) can be either used to predict the 

outcome of hypothetical experiments –as was done for the multiple 

temperature shunt with Listeria shown in Figure 4-2, or can be used to fit the 

observed data by minimising the sum of squares of the errors. Another 

method of using the predictive capacity of the model is to predict the TTD 

observed from a single Bioscreen incubating at a given temperature, when 

identical plates are moved in or out of the machine. Figure 4-3 shows a 

prediction of the pattern of TTD/log initial inocula from the single Bioscreen 

incubating at 37⁰C. Using the growth rates described in Table 4-1, in 360 

minutes the model predicts that 3.27 logs of growth will occur in this plate, 

whereas the other plate incubating in the other machine at 25⁰C will increase 
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by only 1.97 logs. When the latter plate is placed in the machine at 37⁰C, if 

there are no lags then over the next 240 minutes there will be further increase 

of 2.18 logs in this plate. By calculating the log increase in the numbers of L. 

monocytogenes at 37⁰C and that incubated at 25⁰C and then subsequently 

placed at 37⁰C, the pattern shown in Figure 4-3 was obtained. The observed 

data are overlain on the predicted lines.  

 

 

Figure 4-2 Observed TTD data for L. monocytogenes 252 incubating at 37-25-

37-25ºC () or 25-37-25-37ºC () with temperature shunts occurring at 360, 600 

and 900 minutes. The solid and the dashed lines, respectively, are the 

predicted values based on the data of Table 4-1, with ND = 9.4  
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Table 4-2 Observed regression parameters from the observed TTD from 

multiple initial inocula of Listeria monocytogenes 252 shunted from 37, 25, 37 

and 25ºC and concurrently from 25, 37, 25 and 37ºC  

Time 
(min) Temp (⁰C) 

Parameter 
(logID) 

Estimate 
(9.48) LCI (9.26) UCI (9.71) r

2
 (obs) 

<360 37 m0 -107.92 -108.36 -106.47 0.998(38) 

<600 25 m1 -179.29 -188.04 -170.54 0.992 (17) 

<900 37 m2 -104.62 -106 -103.25 0.998(52) 

>900 25 m3 - - - no obs 

       Time 
(min) Temp (⁰C) 

Parameter 
(logID) 

Estimate 
(9.58) LCI (7.98) 

UCI 
(11.52) r

2
 (obs) 

<360 25 m0 -193.5 -212.59 -174.4 0.981 (12) 

<600 37 m1 -104.73 -106.54 -102.93 0.997(42) 

<900 25 m2 -174.69 -189.12 -160.26 0.971 (21) 

>900 37 m3 -109.52 -114.69 -104.35 0.984 (33) 

 

Figure 4-3 Observed TTD data (symbols)  and predicted data (solid line) from a 

single Bioscreen incubating at 37ºC for multiple inocula of L. monocytogenes 

252 undergoing plate changes to and from another machine incubating at 25ºC 

(see Figure 4-2). The solid lines are the predicted TTD based on the data of 

Table 4-1 and the use of the logistic model to calculate the expected increase 

in numbers in both plates during the periods of incubations at 37ºC and 30ºC. 

The parallel thin lines are the linear regression fits to the observed data  
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4.4 Discussion 

The simple, classical 3-parameter logistic model can model the TTD data 

obtained from turbidometric experiments using multiple initial inocula 

incubated iso-thermally. In all cases studied no lags were observed either 

from the O.D/incubation time plots or from the plotted or modelled data. Plots 

of the log initial inoculum against the TTD cut the log N0 axis at 9.22 log10 

cfu/ml (95% CI 9.05 – 9.4 log10 cfu/ml) for L. monocytogenes 252. The 

detection number (ND) was confirmed by plate counting and from calibration 

curves of O.D against microbial numbers. In the presence of a lag the plot 

would fail to cross the axis at the ND, and a vertical separation equal to the lag 

between the x-axis and the TTD of the ND would be present. This was not 

observed in any of the isothermal studies performed.  

The linear approximation (equation (2-17)) to the logistic expression (equation 

(2-8)) assumes that M>>N0 and also that M>>ND; when N0 = ND, TTD = 0. If M 

< 10ND then curvature of the observed TTD occurs, if M < 3ND then this 

curvature is substantial and the mismatch between equation (2-17) and 

equation (2-8) becomes significant. In all the cases studied here, M >10ND 

and this curvature was not observed. If the detection threshold is increased, 

e.g. use of a higher O.D threshold, then curvature is observed. Conversely, 

lowering the threshold would reduce any observed curvature. Equation (2-17) 

does not require the estimation of the MPD and in the absence of a lag is a 

two parameter model. Rearranging equation (2-17) results in the Malthusian 

approximation of biological growth – i.e. growth without limit. The value of M 

is, however, used in the full form of the logistic model. M can be obtained 

through plate count, from dilutions of the MPD culture to produce a calibration 

curve using O.D or from using the phenomenon of curvature discussed above. 

When a temperature shunt was applied to growing bacteria, the cultures 

reduced or increased their growth rate commensurate with the incubation 

temperature. When cultures were shunted from a lower temperature to a 

higher temperature there was no evidence of an induced lag and growth 

continued at the rate dictated by the new temperature. These observations 
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are in accordance with the general conclusion of Zwietering et al., (1994). 

When cultures were shunted from a higher to a lower temperature 

condensation on the inside of the plate lid occurred and this led to unusable 

data for a period after the shunt (the period depended on the temperature 

difference). From the observed, fitted and predicted data it can be concluded 

that no induction of lag occurred when moving from the higher to the lower 

temperatures used: the intercept of the regression lines for each temperature 

coincide at the time of the temperature shunt, if lags were present this would 

not occur (e.g. Figure 4-2). 

The traditional method of examining growth using plates can be considered to 

be a repeated measures experiment following the growth of an initial inoculum 

with time, whereas the method used here is a multiple inoculum experiment 

with a single time measurement (the TTD) per inoculum. These methods 

should be considered not as complementary but methods describing the same 

phenomenon of microbial growth, done in a different fashion. However, the 

models used to extract the growth rate data from the two methods are not 

consistent: the modified Gompertz and modified logistic model cannot 

reproduce the observed TTD data (Mytilinaios et al., 2012). This has 

implications when such models are used to examine data obtained from 

turbidimetry.  

4.5 Conclusion 

Using micro-titre plates with multiple inocula allows the investigation of a 

wealth of phenomena - such as the temperature shifts investigated here. From 

our modest results, we would conclude that for small temperature shifts, for L. 

monocytogenes 252, growth rates quickly changed to the new environment 

without the induction of lags and conclude that the classic logistic model is an 

adequate descriptor and theoretical model for TTD data obtained from 

turbidimetry.  
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5 Modelling the effect of sodium chloride, pH and 

their combinations on the growth of Listeria 

monocytogenes, Salmonella Typhimurium and 

Escherichia coli using a rapid optical density 

method 

5.1 Introduction 

Listeria monocytogenes is a dangerous foodborne pathogen especially for the 

vulnerable members of the society with high mortality rates up to 30-40% 

(Datta, 2003). L. monocytogenes can grow in low pH and aw concentrations 

as well as at temperatures lower than 0°C (Tienungoon et al., 2000). The 

aforementioned in conjunction with the intracellular characteristic of L. 

monocytogenes have made that pathogen a main concern of food safety. 

Salmonella Typhimurium and Escherichia coli are also of much concern within 

the food industry as they have been responsible for many outbreaks (EFSA, 

2010). Salmonella has been reported as one of the most common pathogens 

which cause foodborne diseases in Europe in 2010 (EFSA, 2012). S. 

Typhimurium has been considered as one of the most commonly associated 

serovars with human infections (EFSA, 2010). The low infective dose of E. coli 

in conjuction with the most recent consumer trend for less preserved and 

processed food have increased the need for collecting growth data on these 

microorganisms (Shadbolt et al., 1999). 

Obtaining growth rates and lag times is fundamental in food microbiology. 

There are many studies within the literature which have looked at the growth 

parameters of several microorganisms (Perni et al., 2005; Augustin and 

Carlier, 2000; McKellar and Knight, 2000). Also, the so called inoculum effect 

and the increased variability in the low inoculum sizes have been the subject 

of many studies (Pin and Baranyi, 2006; Metris et al., 2006; Masana and 

Baranyi, 2000; Koutsoumanis and Sofos, 2005). With predictive microbiology 

all the knowledge of the microbial responses in different environmental 

conditions is summarised as mathematical models or equations (McMeekin et 

al., 1997). The collection of data regarding the behaviour of the 
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microorganisms in different condition requires a large amount of work. The 

development of rapid, automated, accurate and cheap methods (such as the 

optical density method) which offer new possibilities is essential in predictive 

food microbiology.  

The Bioscreen microbiological analyser is a machine which measures O.D 

and it has been used in food microbiology for several applications such as the 

determination of growth rates (Dalgaard et al., 1994; Dalgaard and 

Koutsoumanis, 2001). The use of the Bioscreen can give a large amount of 

data in a very short period of time. However, the interpretation of the results is 

the most important but also the most difficult part when using O.D methods.  

In the literature, there are some authors who do not use any type of calibration 

between O.D and viable counts and directly fit primary models such as the 

modified Gompertz or the logistic model to O.D data (Dalgaard and 

Koutsoumanis, 2001; Cheroutre-Vialette and Lebert, 2002). Also, there are 

several methods that have been used in order to define the relationship 

between the measured O.D and the viable cell counts. There are authors who 

have used linear models based on the Lambert and Beer law (Lack et al., 

1999), quadratic models (McClure et al., 1993), cubic models (Stephens et al. 

1997) as well as logarithmic transformations for both O.D values and the 

viable counts in order to normalise the variance (Francois et al., 2003; 2005) 

or the natural logarithmic transformations (Chorin et al., 1997).  

The evaluation of the Growth/No Growth (G/NG) interface is of particular 

interest in terms of the food safety where a possible contamination of the food 

with foodborne pathogens resulting in bacterial growth and subsequently the 

risk for a foodborne illness would increase (Tienungoon et al., 2000).   

Herein, we have been developing the use of O.D for obtaining growth rates 

and lag times using multiple inocula, of L. monocytogenes strains in different 

NaCl concentrations and incubation temperatures. Also, S. Typhimurium and 

E. coli were studied in different NaCl concentrations, different pH and their 

combinations. All analyses were performed in the Bioscreen microbiological 

analyser and the classic logistic model was rearranged to fit TTD data. The 



99 

 

Lambert and Pearson model (LPM) was used to calculate the MICNaCl and/or 

MICpH of all L. monocytogenes strains, S. Typhimirium and E. coli. In addition, 

the G/NG boundaries using pH and NaCl as hurdles were determined from 

O.D measurements based on nominal logistic regression and a response 

surface model (RFM) was produced and compared with the Extended 

Lambert and Pearson model (ELPM) from the continuous data which 

transformed in rate to detection (RTD). The results obtained showed that the 

rearranged logistic model with lag could give accurate growth rates and lag 

times and that the inoculum size did not affect the growth rates but affected 

only the TTD. The LPM and ELPM can also analyse results from individual 

and combined inhibitors, respectively. 

5.2 Materials and methods 

Calibration curves were made as described in 2.4.2 for four L. monocytogenes 

strains (252, 271, 177 and ScottA), S. Typhimurium and E. coli. The growth of 

the L. monocytogenes strains was studied at 30°C and 37°C in 0.5, 3, 6 

and/or 9% NaCl as described in 2.3.5.1 while the growth of S. Typhimurium 

and E. coli was studied at 30⁰C in 0.5, 3 and 6% NaCl as described in 2.3.5.1, 

in different pH as described in 2.3.5.2 and in their combinations (NaCl-pH) as 

described in 2.3.5.3. The data obtained from the Bioscreen were analysed as 

described in 2.4.3 and the rearranged logistic model with lag was used to fit 

the data as described in 2.4.5. Also, the MICNaCl and the MICpH was calculated 

for all microorganisms as described in 2.3.6.1 and 2.3.6.2, respectively and 

modelled as described in 2.4.6 with the LPM model. Finally, the G/NG 

boundaries were determined using combinations of NaCl-pH as described in 

2.3.7 and modelled using three approaches as described in 2.4.7.  

5.3 Results 

5.3.1 Construction of calibration curves 

In the literature there are several methods used to define the relationship 

between O.D and microbial numbers. O.D was directly related to microbial 

numbers by measuring different O.D in the Bioscreen microbiological analyser 
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(volume 200μl) and in the spectrophotometer (1cm path length) and then plate 

samples onto TSA plates. The results obtained are shown in Table D-1 

(Appendix D).  

O.D was also related to microbial numbers by accomplishing a series of 

dilutions and condensations following two protocols. In the first, O.D was 

related to microbial numbers using as a basis the plate counts obtained from a 

culture which had previously reached the maximum O.D. In the second, O.D 

was related to microbial numbers using as a basis the average plate counts 

calculated from the standardised cultures at an O.D=0.5 from each individual 

experiment carried out into the Bioscreen (see 2.1.1, culture maintenance and 

preparation). The relationship between O.D and microbial numbers was linear 

and Figure 5-1 shows the calibration curves constructed using the average 

counts from the standardised culture (O.D=0.5), for S. Typhimurium in the 

Bioscreen (200μl volume) and in the spectrophotometer (1cm path length). 

Similar figures obtained for all cases.  

The detection limits calculated from the three protocols, for an O.D=0.2 which 

is the criterion used for all studies carried out, were similar (Data not shown). 

However, we have used the detection limits calculated from the calibration 

curves using the counts measured from the standardised cultures at an 

O.D=0.5 because the measurements we have got are much greater and it 

was considered as more accurate. The parameters describing the relationship 

between the O.D against the microbial populations calculated from the 

average value (microbial numbers) of the standardised culture at an O.D=0.5 

are shown in Table 5-1.  

The TTD was defined as the time for each inoculum to reach an O.D=0.2, 

which is the O.D criterion used in all studies performed. The detection values 

(ND) for an O.D=0.2 are shown with their confidence intervals in Table 5-1.  

We would conclude that the detection values (ND) found to be 9.16, 9.15, 

9.31, 9.22, 8.69 and 8.78 logs for L. monocytogenes ScottA, L. 

monocytogenes 252, L. monocytogenes 271, L. monocytogenes 177, E. coli 

and S. Typhimurium, respectively (Table 5-1). 
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Figure 5-1 Relationship between Optical Density (O.D) against the microbial 

numbers of Salmonella Typhimurium in the spectrophotometer (, 1cm path 

length) and in the Bioscreen (, 200μl volume).The counts used were 

calculated from the standardised culture at an O.D= 0.5  
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Table 5-1 Parameters describing the linear relationship between O.D against the microbial populations of L. monocytogenes 252, L. 

monocytogenes 39, L. monocytogenes 271 and L. monocytogenes 177, S. Typhimurium and E. coli as measured in the Bioscreen 

(200μl volume) and in the spectrophotometer (1cm path length) using the average counts from the standardised culture at an O.D=0.5 

Microorganism 

Spectrophotometer Bioscreen 

  
Gradient (*10

10
) Intercept (*10

2
) Gradient (*10

10
) Intercept (*10

2
) Detection value 

(ND) 

L. monocytogenes 252 3.88 (3.62-4.14) 0.03 (-1.0-1.07) 1.42 (1.33-1.52) -0.004 (-0.39-0.38) 9.15 (9.11-9.19) 

L. monocytogenes 39 3.52 (3.24-3.80) 0.97 (-0.1-2.05) 1.35 (1.24-1.45) 0.29 (-0.1-0.7) 9.16 (9.12-9.21) 

L. monocytogenes 271 2.87 (2.66-3.08) -0.7 (-1.7-0.4) 0.99 (0.89-1.08) -0.08 (-0.5-0.4) 9.31 (9.26-9.36) 

L. monocytogenes 177 3.32 (2.95-3.69) 0.7 (-0.6-2.1) 1.19 (1.01-1.37) 0.03 (-0.6-0.7) 9.22 (9.15-9.32) 

E. coli 10.3 (9.49-11.1) 3.9 (-0.8-8.6) 4.21 (3.43-4.99) -1.0 (-5.5-3.5) 8.69 (8.52-8.87) 

S. Typhimurium 6.86 (6.36-7.35) 1.4 (-1.8-4.7) 2.48 (2.29-2.66) 4.9 (3.6-6.1) 8.78 (8.72-8.85) 
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5.3.2 Estimation of growth rates and lag times from TTD data 

The effect of sodium chloride (0.5%, 3%, 6% and/or 9% NaCl) on the growth 

of the four L. monocytogenes strains, E. coli and S. Typhimurium was studied 

at 30⁰C and/or 37⁰C using the Bioscreen microbiological analyser. Figure 5-2 

depicts the relationship between the TTD against the initial populations of L. 

monocytogenes ScottA at 30⁰C in different NaCl concentrations (0.5, 3, 6 and 

9% NaCl). The relationship is linear and the observed TTD were modelled 

with the rearranged with lag logistic model. As the NaCl concentration 

increased, the gradient and the intercept of the rearranged logistic model 

increased. Similar findings were observed for all microorganisms.  

The growth parameters (including their confidence intervals) obtained from the 

model at 30⁰C for the L. monocytogenes strains are shown in Table 5-2 while 

for E. coli and S. Typhimurium are shown in Table 5-4. With increasing NaCl 

concentration the growth rate decreased while the lag time increased for all 

cases. Also, the root mean square error (RMSE) increased as the NaCl 

concentration increased. An increased RMSE suggests that the differences 

between the observed and the modelled values are also increased.  

The incubation temperature also affected the results. The results obtained at 

30⁰C (Table 5-2) showed a higher effect on the growth rates and lag times 

than at 37⁰C (Table 5-3) which is what was expected as 37⁰C is more optimal 

temperature than 30⁰C. In particular, at 37⁰C the growth rates were higher 

while the lag times were shorter than at 30⁰C. Listeria strains were examined 

in 9% NaCl only at 30⁰C because at 37⁰C and in 9% NaCl concentration cell 

clumping was observed at the bottom of the honeycomb plates and O.D 

measurements were not reliable. S. Typhimurium and E. coli did not grow in 

9% NaCl.  
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Figure 5-2 Relationship between TTD with the initial populations 

(logNo(cfu/ml)) of Listeria monocytogenes 39  in TSB with 0.5% NaCl (), 3% 

NaCl (), 6% NaCl () and 9% NaCl () at 30⁰C  
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Table 5-2 Parameters describing the growth kinetics of L. monocytogenes 252, L. monocytogenes 39, L. monocytogenes 271 and L. 

monocytogenes 177 in different NaCl concentrations as calculated from data fitted with the rearranged logistic model at 30⁰C, 

including their confidence intervals, the root mean square error with the number of observations and the r-squared  

 

   

Obtained parameters 

 
Organism Temp (0C) NaCl (%) SGR (lncfu/h) Lag (h) RMSE (obs) r2 

L. monocytogenes 252 30 0.5 1.07 (1.06-1.08) 0.28 (0.21-0.35) 6.91 (61) 0.999 

ND 9.15 30 3 0.91 (0.91-0.92) 0.65 (0.57-0.73) 7.95 (61) 0.999 

 
30 6 0.62 (0.61-63) 0.98 (0.79-1.18) 18.5 (60) 0.998 

 
30 9 0.30 (0.29-0.31) 12.69 (11.66-13.71) 84.5 (51) 0.989 

L. monocytogenes 39 (ScottA) 30 0.5 1.02 (1.01-1.03) 0.85 (0.73-0.96) 11.9 (63) 0.998 

ND 9.16 30 3 0.83 (0.81-0.84) 0.75 (0.59-0.92) 16.2 (61) 0.997 

 
30 6 0.58 (0.57-0.59) 2.00 (1.67-2.32) 30.2 (60) 0.995 

 
30 9 0.29 (0.28-0.30) 16.14 (15.08-17.19) 92.6 (53) 0.988 

L. monocytogenes 271 30 0.5 1.03 (1.02-1.04) -0.43 (-0.54—0.32) 9.77 (60) 0.998 

ND 9.31 30 3 0.86 (0.85-0.87) -0.08 (-0.19-0.02) 9.67 (61) 0.999 

 
30 6 0.59 (0.58-0.60) 0.33 (0.15-0.50) 15.6 (60) 0.999 

 
30 9 0.30 (0.28-0.33) 20.06 (17.23-22.89) 197 (49) 0.935 

L. monocytogenes 177 30 0.5 0.95 (0.94-0.95) -0.40 (-0.47—0.34) 7.79 (98) 0.999 

ND 9.22 30 3 0.79 (0.78-0.79) -0.41 (-0.50—0.32) 8.03 (60) 0.999 

 
30 6 0.59 (0.58-0.59) 0.54 (0.35-0.73) 17.0 (60) 0.998 

 
30 9 0.29 (0.28-0.31) 10.05 (8.74-11.36) 102 (52) 0.985 
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Table 5-3 Parameters describing the growth kinetics of L. monocytogenes 252, L. monocytogenes 39, L. monocytogenes 271 and L. 

monocytogenes 177 in different NaCl concentrations as calculated from data fitted with the rearranged logistic model at 37⁰C, 

including their confidence intervals, the root mean square error with the number of observations and the r-squared  

   

Obtained parameters 

Organism Temp (
0
C) NaCl (%) SGR (lncfu/h) Lag (h) RMSE (obs) r

2
 

L. monocytogenes 252 37 0.5 1.29 (1.28-1.30) 0.30 (0.24-0.35) 5.66 (63) 0.999 

ND 9.15 37 3 1.08 (1.07-1.09) 0.06 (-0.02-0.14) 7.26 (60) 0.999 

 

37 6 0.67 (0.66-0.68) 0.10 (-0.18-0.39) 28.2 (61) 0.995 

L. monocytogenes 39 37 0.5 1.26 (1.24-1.28) 0.58 (0.48-0.69) 10.7 (63) 0.997 

ND 9.16 37 3 1.03 (1.02-1.04) 0.39 (0.27-0.51) 11.6 (61) 0.998 

 

37 6 0.68 (0.67-0.69) 1.17 (0.93-1.41) 22.3 (60) 0.996 

L. monocytogenes 271 37 0.5 1.25 (1.24-1.26) 0.58 (0.51-0.64) 6.01 (63) 0.999 

ND 9.31 37 3 1.02 (1.00-1.04) -0.20 (-0.40-0.00) 18.6 (61) 0.995 

 

37 6 0.67 (0.66-0.68) -0.22 (-0.45-0.00) 20.1 (60) 0.997 

L. monocytogenes 177 37 0.5 1.07 (1.06-1.08) 0.34 (0.29-0.39) 4.99 (63) 0.999 

ND 9.22 37 3 0.87 (0.85-0.89) -1.01 (-1.27--0.75)  23.2 (60) 0.994 

 

37 6 0.62 (0.61-0.63) -0.288 (-0.59-0.03) 28.2 (60) 0.995 

 



107 

 

Table 5-4 Parameters describing the growth kinetics of Salmonella Typhimurium and Escherichia coli in different NaCl 

concentrations (0.5, 3 and 6% NaCl) as calculated from data fitted with the rearranged logistic model at 30⁰C, including their 

confidence intervals, the root mean square error with the number of observations and the r-squared  

   

Obtained parameters 

Organism Temp (
0
C) NaCl (%) SGR (lncfu/h) Lag (h) RMSE (obs) r

2
 

E. coli 30 0.5 1.42 (1.40-1.43) -0.006 (-0.07-0.06) 6.34 (58) 0.999 

ND 8.69 30 3 1.08 (1.07-1.09) 0.69 (0.63-0.76) 6.82 (59) 0.999 

 

30 6 0.36 (0.34-0.38) 4.85 (3.43-6.27) 132 (56) 0.964 

S. Typhimurium 30 0.5 1.21 (1.19-1.24) 1.06 (0.89-1.22) 16.6 (59) 0.994 

ND 8.78 30 3 0.95 (0.93-0.96) 1.93 (1.79-2.07) 14.3 (59) 0.997 

 

30 6 0.32 (0.31-0.33) 4.14 (3.25-5.03) 82.0 (53) 0.988 
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E. coli and S. Typhimurium were also studied in different pH (6.57, 5.68, 5.10 

and 4.58) as well as in different combinations of NaCl-pH at 30⁰C. The 

relationship between the TTD against the initial populations of the 

microorganisms was linear and as the conditions became harsher (decreased 

pH or increased NaCl and decreased pH), the gradient and the intercept 

increased. Figure 5-3 shows the observed TTD against the initial populations 

of S. Typhimurium at 30⁰C in different pH. Similar figures were obtained for all 

cases.  

The observed TTD were modelled with the rearranged logistic model and the 

parameters obtained in different pH at 30⁰C are shown in Table 5-5 while the 

parameters obtained in different combinations of NaCl-pH at 30⁰C are shown 

in Table 5-6. With decreasing pH (or decreasing pH and increasing NaCl) the 

growth rate decreased while the lag time increased in all cases. The r2 was 

high in all cases which suggest a high correlation between the model and the 

observed data while the RMSE increased as the conditions became harsher. 

Under the more extreme NaCl-pH combinations used (6% NaCl-pH: 5.17, 3% 

NaCl-pH: 4.58 and 6% NaCl-pH: 4.58) E. coli did not grow. 
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Figure 5-3 Relationship between TTD with the initial populations 

(logNo(cfu/ml)) of Salmonella Typhimurium  in TSB with pH:6.57 (), pH:5.68 

(), pH:5.10 () and pH:4.58 () at 30⁰C fitted with the rearranged logistic 

model (continuous lines) 
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Table 5-5 Parameters describing the growth kinetics of Salmonella Typhimurium and Escherichia coli in different pH (6.57, 5.68, 5.10 

and 4.558) as calculated from data fitted with the rearranged logistic model at 30⁰C, including their confidence intervals, the root 

mean square error with the number of observations and the r-squared  

 

 

   

Obtained parameters 

Organism Temp (⁰C) pH SGR (lncfu/h) Lag (h) 
RMSE 
(obs) r2 

E. coli 30 6.57 1.45 (1.43-1.46) -0.25 (-0.31—0.20) 4.34 (52) 0.999 

ND 8.69 30 5.68 1.48 (1.47-1.50) 0.31 (0.24-0.38) 6.40 (57) 0.998 

 

30 5.10 1.29 (1.28-1.30) 0.45 (0.38-0.51) 6.00 (56) 0.999 

 

30 4.58 0.99 (0.97-1.02) 0.89 (0.66-1.12) 21.3 (57) 0.992 

S. Typhimurium 30 6.57 1.21 (1.20-1.22) -0.07 (-0.15-0.01) 6.71 (55) 0.999 

ND 8.78 30 5.68 1.15 (1.14-1.16) 0.49 (0.43-0.56) 6.08 (57) 0.999 

 

30 5.10 1.01 (1.00-1.02) 0.43 (0.36-0.50) 6.79 (58) 0.999 

 

30 4.58 0.80 (0.79-0.81) 1.08 (0.95-1.21) 12.6 (58) 0.998 
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Table 5-6 Parameters describing the growth kinetics of Salmonella Typhimurium and Escherichia coli in different combinations of 

NaCl-pH as calculated from data fitted with the rearranged logistic model at 30⁰C, including their confidence intervals, the root mean 

square error with the number of observations and the R-squared 

 

  
 

 
Obtained parameters 

 Organism Temp (
0
C) NaCl (%) pH SGR (lncfu/h) Lag (h) RMSE (obs) r

2
 

E. coli 30 3 6.53 1.06 (1.05-1.07) 0.38 (0.32-0.44) 6.82 (96) 0.999 

ND 8.69 30 6 6.51 0.38 (0.37-0.39) 11.24 (10.48-11.99) 86.9 (86) 0.975 

 
30 3 5.80 1.08 (1.07-1.09) 0.61 (0.56-0.65) 5.72 (96) 0.999 

 
30 6 5.75 0.34 (0.32-0.36) 10.30 (9.10-11.50) 137 (80) 0.951 

 
30 3 5.17 0.90 (0.89-0.91) 0.22 (0.14-0.30) 9.64 (96) 0.998 

S. Typhimurium 30 3 6.53 0.77 (0.76-0.778) 1.34 (1.23-1.45) 13.7 (98) 0.998 

ND 8.78 30 6 6.51 0.30 (0.29-0.31) 3.91 (2.94-4.88) 117 (93) 0.973 

 
30 3 5.80 0.96 (0.95-0.97) 1.33 (1.28-1.38) 6.63 (98) 0.999 

 
30 6 5.75 0.35 (0.34-0.36) 3.26 (2.65-3.88) 79.9 (98) 0.985 

 
30 3 5.17 0.89 (0.87-0.90) 1.29 (1.22-1.36) 9.28 (98) 0.999 

 
30 6 5.15 0.39 (0.37-0.40) 5.31 (4.58-6.04) 91.9 (96) 0.976 

 
30 3 4.58 0.71 (0.70-0.72) 1.48 (1.40-1.57) 10.7 (98) 0.999 

 
30 6 4.59 0.25 (0.23-0.28) 8.92 (5.62-12.22) 413 (99) 0.824 
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5.3.3 Calculation of the Minimum Inhibitory Concentration using 

NaCl and pH  

The MIC in different NaCl concentrations (MICNaCl) and different pH (MICpH) 

for all the microorganisms were calculated from O.D measurements. L. 

monocytogenes was tested in a range of NaCl and pH, incubated at 30⁰C 

and/or 37⁰C and the TTD were obtained. The TTD were transformed to RTD 

and the data were fitted with the LPM model (Lambert and Pearson, 2000). 

Figure 5-4 shows the relationship between the RTD against the percentage of 

NaCl concentration of L. monocytogenes Scott A at 30⁰C and 37⁰C and the fit 

of the LPM. Also, Figure 5-5 shows the relationship between the RTD against 

the different pH of L. monocytogenes Scott A at 30⁰C and the fit of the LPM. 

Similar results were obtained for all strains. The parameters obtained from the 

LPM (including their confidence intervals) for all cases are shown in Table 5-7. 

The relative rate to detection (RRTD) was also calculated at 30⁰C and 37⁰C to 

examine the relative effect of temperature. Figure 5-6 shows the plot of RRTD 

of L. monocytogenes ScottA at 30⁰C and 37⁰C against the percentage of NaCl 

concentration. The parameter P0 of the LMP was dependent on the 

temperature while the parameters P1 and P2 were not. The results obtained 

for the LPM parameters from Table 5-7 and Figure 5-6 showed that 

temperature did not have any effect on the determination of the MIC.  

Figure 5-7 shows the relationship between O.D with the incubation time of L. 

monocytogenes Scott A in the range of NaCl concentrations tested. That 

figure represents the different shape of the O.D curves in the different NaCl 

concentrations. As the concentration of NaCl increased the maximum O.D 

decreased and also fluctuations in the O.D measurements occurred as the 

maximum O.D was reached. This might be due to cell clumping which was 

observed at the bottom of the Bioscreen plate under the most inimical 

conditions. Similar findings were observed for all cases.  
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Figure 5-4 Relationship between the rate to detection (RTD) against the 

percentage of NaCl concentration of Listeria monocytogenes 39. The symbols 

represent the observed data (, ), the lines the fitted Lambert-Pearson model 

(continuous, dashed) at 30⁰C and 37⁰C, respectively  

 

Figure 5-5 Relationship between rate to detection (RTD) against pH of Listeria 

monocytogenes Scott A at 30⁰C. The opened symbols represent the observed 

data and the solid line the fitted Lambert-Pearson model 
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Figure 5-6 Relationship between the relative rate to detection (RRTD) against 

the percentage of NaCl concentrations of Listeria monocytogenes Scott A at 

30⁰C () and 37⁰C (), respectively  

 

Figure 5-7 Relationship between O.D-Time of Listeria monocytogenes Scott A 

at 37⁰C, in a range of 0.5-16.625% NaCl  
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The MICNaCl and the MICpH were also calculated for S. Typhimurium and E. 

coli from O.D measurements. The microorganisms were tested in a range of 

NaCl and pH at 30⁰C and the TTD obtained. The TTD were transformed to 

RTD and the data fitted with the LPM (Lambert and Pearson, 2000). The 

relationship between the RTD against the percentage of NaCl concentration of 

S. Typhimurium and E. coli at 30⁰C was similar to that described above. 

Figure 5-8 shows the relationship between the RTD against the pH of both 

microorganisms at 30⁰C and the fit of the LPM.  The parameters obtained from 

the LPM (with their confidence intervals) for all cases (NaCl and pH) are 

shown in Table 5-8. The results obtained showed that both the MICNaCl and 

MICpH of E. coli and S. Typhimurium are lower than those obtained for the 

Listeria strains suggesting that E. coli and S. Typhimurium are more sensitive 

to NaCl and pH than the Listeria strains.  

 

 

Figure 5-8 Relationship between RTD against pH of Salmonella Typhimurium 

and Escherichia coli at 30⁰C. The symbols represent the observed data (, ) 

and the lines the fitted Lambert-Pearson model (continuous, dashed) of S. 

Typhimurium and E. coli, respectively  
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Table 5-7 Parameters describing the Lambert and Pearson model, the MICNaCl and the MICpH calculated for all Listeria monocytogenes 

at 30⁰C and/or 37⁰C with their confidence intervals 

Microorganism T (
o
C) NaCl/pH P0 P1 P2 MICNaCl/MICpH 

L. monocytogenes 252 30oC NaCl 0.00255 (0.00253-0.00257) 8.023 (7.970-8.078) 2.063 (2.012-2.116) 13.03 (12.96-13.10) 

L. monocytogenes 252 37oC NaCl 0.00319 (0.00317-0.00320) 7.598 (7.553-7.644) 1.857 (1.815-1.899) 13.02 (12.94-13.11) 

L. monocytogenes 252 30oC pH 0.00229 (0.00226-0.0023) 1.88*10-5 (1.79*10-5-2*10-5) 0.976 (0.897-1.062) 4.28 (4.22-4.34) 

L. monocytogenes 39 30oC NaCl 0.00237 (0.00234-0.00240) 7.931 (7.845-8.023) 1.897 (1.836-1.967) 13.44 (13.34-13.53) 

L. monocytogenes 39 37oC NaCl 0.00304 (0.00303-0.00306) 7.676 (7.627-7.725) 1.774 (1.732-1.817) 13.49 (13.39-13.58) 

L. monocytogenes 39 30oC pH 0.00241 (0.00238-0.00245) 2.06*10-5 (1.98*10-5-2.1*10-5) 0.795 (0.755-0.835) 4.14 (4.09-4.18) 

L. monocytogenes 271 30oC NaCl 0.0038 (0.00378-0.00382) 7.706 (7.663-7.749) 2.092 (2.052-2.132) 12.43 (12.38-12.47) 

L. monocytogenes 271 37oC NaCl 0.00494 (0.00493-0.00496) 7.336 (7.311-7.362) 1.935 (1.909-1.962) 12.30 (12.26-12.35) 

L. monocytogenes 271 30oC pH 0.00225 (0.00223-0.00228) 2.16*10-5 (2.0*10-5-2.3*10-5) 0.869 (0.797-0.947) 4.16 (4.09-4.23) 

L. monocytogenes 177 30oC NaCl 0.00395 (0.00392-0.00397) 7.762 (7.717-7.7807) 2.045 (2.008-2.083) 12.66 (12.62-12.70) 

L. monocytogenes 177 37oC NaCl 0.00484 (0.00479-0.00489) 7.486 (7.408-7.566) 1.911 (1.842-1.985) 12.63 (12.52, 12.75) 

L. monocytogenes 177 30oC pH 0.00219 (0.00216-0.00222) 1.8*10-5 (1.7*10-5-1.9*10-5) 0.815 (0.762-0.871) 4.22 (4.16-4.27) 
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Table 5-8 Parameters describing the Lambert and Pearson model, the MICNaCl and the MICpH calculated for Escherichia coli and 

Salmonella Typhimurium at 30⁰C, with their confidence intervals  

Microorganism T 

(oC) 

NaCl/pH P0 P1 P2 MICNaCl/MICpH 

E. coli 30oC NaCl 0.00174 (0.00172-0.00176) 5.240 (5.195-5.285) 2.445 (2.361-2.534) 7.89 (7.84-7.93) 

) E. coli 30oC pH 0.00263 (0.00262-0.00264) 5.2*10-5 (5.1*10-5-5.3*10-5) 0.851 (0.837-0.865) 3.78 (3.77- 3.78) 

S. Typhimurium 30oC NaCl 0.00145 (0.00144-0.00146) 5.335 (5.312-5.359) 2.226 (2.185-2.268) 8.36 (8.33-8.39) 

S. Typhimurium 30oC pH  0.00193 (0.00192-0.00194) 8.8*10-5 (8.7*10-5-9.0*10-5) 1.011 (0.991-1.031) 3.62 (3.62- 3.63) 
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5.3.4 Combined inhibitors (NaCl-pH) 

E. coli and S. Typhimurium were examined in a range of multiple 

combinations of pH-NaCl concentrations. The range of NaCl was 0.5-8% NaCl 

while the range of pH was 3.5-6.9 and the incubation time was 7000 min (5 

days). Figure 5-9 and Figure 5-10 show the observed data (in duplicate) 

obtained from the Bioscreen of E. coli and S. Typhimurium, respectively.  As 

the pH decreased and the NaCl increased, higher TTD were obtained. It was 

also suggested, that increasing the percentage of NaCl concentration, 

increased the minimum pH allowing growth. An interesting overall trend is that 

the TTD’s obtained, increased both at high and low pH’s for different NaCl 

concentrations, resulting in parabolic curves instead of monotone trends as it 

would be expected.  

E. coli did not give growth at any pH with 8% NaCl and at any NaCl 

concentration with pH 3.5. The most inimical condition where growth was 

observed was the combination 1.3% NaCl with pH 4.05. S. Typhimurium did 

not growth at any NaCl concentration with pH 3.5 and the most inimical 

condition where growth was observed was the combination 8% NaCl with pH 

4.67. The results obtained from these studies are in agreement with the 

results obtained from the individual inhibitor studies (determination of the 

MICNaCl and MICpH).  
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Figure 5-9 Relationship between the TTD with a particular inoculum size (≈105 

cfu/ml), in different pH (3.5, 4.05, 4.36, 4.67, 5.07, 5.38, 5.67, 6.01, 6.45 and 6.9) 

and different NaCl concentration (legend), of Escherichia coli at 30⁰C, in 

duplicate  

 

Figure 5-10 Relationship between the TTD with a particular inoculum size (≈105 

cfu/ml), in different pH (3.5, 4.05, 4.36, 4.67, 5.07, 5.38, 5.67, 6.01, 6.45 and 6.9) 

and different NaCl concentration (legend), of Salmonella Typhimurium at 30⁰C, 

in duplicate  
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Three main approaches to modelling the observed data were used: nominal 

logistic modelling of the G/NG data, continuous modelling and the use of the 

ELPM.  

5.3.4.1 Probabilistic modelling 

The determination of G/NG boundaries is dependent on time. The incubation 

time of the combined inhibitor experiments was 5 days. The TTD data from 

these experiments were analysed after 1 day, 3 days and 5 days of incubation 

at 30⁰C, in order to define the G/NG boundaries at different time intervals. The 

TTD data where transformed to nominal G/NG data (TTD=0 means no growth 

observed experimentally within the time frame studied and was labelled as 

NG) and nominal logistic regression was used to fit these data. The nominal 

logistic models produced for each day of the two microorganisms are 

summarised in Table 5-9 and in all cases the model produced was linear 

described by the intercept and two parameters (NaCl and H+).  

The most likely G/NG data were also obtained and the contingency analysis of 

G/NG by the most likely G/NG were obtained for E. coli after 1 day of 

incubation as shown in Table 5-10 as well as the mosaic plot as shown in 

Figure 5-11. Similar findings were obtained for all days tested and for S. 

Typhimurium.  

Using the nominal logistic models described in Table 5-9 the G/NG interface 

of E. coli and S. Typhimurium using combinations of NaCl-pH were 

determined after 1 day, 3 days and 5 days at 30⁰C (Figure 5-12). With 

increasing incubation time the G/NG interface changed in both cases.  
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Table 5-9 Nominal logistic models after 1 day, 3 days and 5 days of incubation 

for Escherichia coli and Salmonella Typhimurium at 30⁰C  

Microorganism Day 1 Day 3 Day 5 

Escherichia coli f(NaCl,H
+

)=17.43-(2.86*NaCl)-

(167615.63*H
+
) 

f(NaCl,H
+

)=13.70-(1.94*NaCl)-

(136116.60*H
+
) 

f(NaCl,H
+

)=18.35-(2.55*NaCl)-

(178309.54*H
+
) 

Salmonella 

Typhimurium 

f(NaCl,H
+

)=468.36-(75.41*NaCl)- 

(2119597.78*H
+
) 

f(NaCl,H
+

)=45.10-(5.53*NaCl)-

(140489.21*H
+
) 

f(NaCl,H
+

)=41.10-(4.83*NaCl)-

(133994.63*H
+
) 

Table 5-10 Contingency table of Escherichia coli after 1 day of incubation at 

30⁰C resulted from the contingency analysis of G/NG by most likely G/NG  

 G/NG 

M
o

st
 L

ik
e

ly
 G

/N
G

 

Total count % 

 

G NG  

G 100 

50.00 

94.34 

94.34 

6 

3.00 

6.38 

5.66 

106 

53.00 

NG 6 

3.00 

5.66 

6.38 

88 

44.00 

93.62 

93.62 

94 

47.00 

 106 

53.00 

94 

47.00 

200 

 

Figure 5-11 Mosaic plot of Escherichia coli after 1 day of incubation at 30⁰C 

resulted from the contingency analysis of G/NG by most likely G/NG  
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Figure 5-12 Growth/No Growth interface of Escherichia coli (top) and 

Salmonella Typhimurium (bottom) after 1 day, 3 days and 5 days of incubation 

at 30⁰C using combinations of NaCl and pH. The closed symbols represent the 

growth data while the opened symbols represent the no growth data. Also, the 

blue lines represent the nominal logistic models while the red lines the 

confidence intervals of the models.  

 

5.3.4.2 Response surface modelling (Continuous modelling) 

The TTD data obtained from the combined inhibitor experiments were also 

transformed to RTD. Using the standard least squares with emphasis to the 

effect of leverage a response surface model (RSM) was produced for each 

day and for both microorganisms at 30⁰C. In this type of modelling data where 

TTD=0 have been excluded from the analysis. In all cases the best RSM was 

described by 5 parameters (intercept, NaCl, pH, NaCl2 and pH2). Table 5-11 

summarises the parameters of the RSM with the summary of fits obtained 

from JMP 8.  
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Figure 5-13 shows the scatter plots 3D of the observed data in relation with 

the two inhibitors (NaCl and pH) and the RSM in relation with the two 

inhibitors of E. coli after 1 day at 30⁰C. Similar findings were obtained for each 

day and both microorganisms. Figure 5-14 shows the surface plot of the RSM 

in relation with the two inhibitors, obtained for E. coli after 1 day of incubation 

at 30⁰C. Similar plots were obtained for each day and both microorganisms. 
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Table 5-11 Parameters of the response surface models (RSM) of Escherichia coli and Salmonella Typhimurium with the summary of 

fits at 30⁰C for 1 day, 3 days and 5 days of incubation  

Microorganism Day 1 Day 3 Day 5 

Escherichia coli Term Estimate Std error Term Estimate Std error Term Estimate Std error 

 Intercept 0.00093 7.3e-5 Intercept 0.001 8.9e-5 Intercept 0.0008 0.0001 

 NaCl -0.00029 6.3e-6 NaCl -0.0003 6.5e-6 NaCl -0.0003 8.1e-6 

 pH 0.00035 0.00001 pH 0.0003 1.5e-5 pH 0.0004 1.9e-5 

 
(NaCl-2.85) * 
(NaCl*2.85) 

-4.1e-5 3.4e-6 
(NaCl-3.31) * 
(NaCl*3.31) 

-2.9e-5 3.1e-6 
(NaCl-3.35) * 
(NaCl*3.35) 

-2.6e-5 3.8e-6 

 
(pH-5.67)* (pH-

5.67) 
-0.0003 1.5e-5 

(pH-5.70)* (pH-
5.70) 

-0.0003 1.8e-5 
(pH-5.69)* (pH-

5.69) 
-0.0003 2.3e-5 

 Summary of fit Summary of fit Summary of fit 

 R
2
 0.968161 R

2
 0.96418 R

2
 0.945868 

 RMSE 0.000102 RMSE 0.000132 RMSE 0.000168 

Salmonella 
Typhimurium 

Term Estimate Std error Term Estimate Std error Term Estimate Std error 

 Intercept 0.00069 5.3e-5 Intercept 0.00086 5.7e-5 Intercept 0.00091 5.7e-5 

 NaCl -0.00021 5.1e-6 NaCl -0.00022 3.9e-6 NaCl -0.00023 3.8e-6 

 pH 0.00028 9.5e-6 pH 0.00025 1.0e-5 pH 0.00024 1.0e-5 

 
(NaCl-2.87) * 
(NaCl*2.87) 

-0.00003 3.4e-6 
(NaCl-3.91) * 
(NaCl*3.91) 

-1.3e-5 1.9e-6 
(NaCl-4.03) * 
(NaCl*4.03) 

-1.2e-5 1.8e-6 

 
(pH-5.48)* (pH-

5.48) 
-0.00023 1.1e-5 

(pH-5.43)* (pH-
5.43) 

-0.00021 1.2e-5 
(pH-5.44)* (pH-

5.44) 
-0.00021 1.2e-5 

 Summary of fit Summary of fit Summary of fit 

 R
2
 0.957697 R

2
 0.959644 R

2
 0.960449 

 RMSE 8.862e-5 RMSE 0.000113 RMSE 0.000114 
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Figure 5-13 3D Scatter plot of the rate to detection (RTD) of the observed data 

in relation with the two inhibitors (NaCl and pH) (left) and 3D scatter plot of the 

Response Surface Model (RSM) in relation with the two inhibitors (right) of 

Escherichia coli after 1 day at 30⁰C 

 

 

Figure 5-14 Surface plot of the Response Surface Model (RSM) in relation with 

the two inhibitors (NaCl and pH), obtained for Escherichia coli after 1 day of 

incubation at 30⁰C 
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5.3.4.3 Extended Lambert and Pearson modelling 

The continuous data obtained from these experiments were also modelled 

with the Extended Lambert and Pearson model (ELPM), equation (2-14) and 

(2-15) and the parameters describing this model are shown in Table 5-12 for 

E. coli and S. Typhimurium at 30⁰C after 1 day, 3 days and 5 days. 

Figure 5-15 shows the contour plots of E. coli after 1 day of incubation at 

30⁰C, derived from the actual data (RTD), the RSM and the ELPM. Similar 

plots obtained for S. Typhimurium.  
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Figure 5-15 Contour plots of Escherichia coli after 1 day of incubation at 30⁰C, 

derived from the actual rate to detections (RTD), the Response Surface Model 

(RSM) and the Extended Lambert and Pearson model (ELPM), produced using 

JMP 8  
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Table 5-12 Parameters describing the Extended Lambert and Pearson model 

used to fit experimental data from Escherichia coli and Salmonella 

Typhimurium at 30⁰C 

Microorganism Day 1  

Escherichia coli Parameter Estimate Lower CI Upper CI RMSE 

 P1 6.22 6.04 6.41 0.0001146 

 P3 0.000097 8.9e-5 0.0001072  

 P4 2.049 1.829 2.291  

 P2 0.774 0.683 0.873  

 P0 0.00257 0.00250 0.00264  

Salmonella Typhimurium Parameter Estimate Lower CI Upper CI RMSE 

 P1 6.72 6.47 6.99 0.000091 

 P3 0.000125 0.000113 0.000141  

 P4 1.555 1.388 1.734  

 P2 0.838 0.740 0.946  

 P0 0.00209 0.00202 0.00216  

 Day 3  

Escherichia coli Parameter Estimate Lower CI Upper CI RMSE 

 P1 5.99 5.84 6.16 0.000138 

 P3 0.000101 9.2e-5 0.000112  

 P4 2.455 2.217 2.714  

 P2 0.728 0.640 0.826  

 P0 0.00251 0.00244 0.00258  

Salmonella Typhimurium Parameter Estimate Lower CI Upper CI RMSE 

 P1 6.20 6.04 6.37 0.0001035 

 P3 0.000143 0.000128 0.000162  

 P4 1.790 1.657 1.931  

 P2 0.867 0.754 0.995  

 P0 0.00203 0.00198 0.00210  

 Day 5  

Escherichia coli Parameter Estimate Lower CI Upper CI RMSE 

 P1 6.04 5.84 6.26 0.0001692 

 P3 0.000102 0.000091 0.000117  

 P4 2.576 2.283 2.901  

 P2 0.650 0.560 0.751  

 P0 0.00251 0.00243 0.00260  

Salmonella Typhimurium Parameter Estimate Lower CI Upper CI RMSE 

 P1 6.16 6.00 6.33 0.0001086 

 P3 0.000144 0.000129 0.000164  

 P4 1.837 1.703 1.979  

 P2 0.881 0.765 1.012  

 P0 0.00202 0.00196 0.00208  

 

 



129 

 

5.4 Discussion 

We have been developing the use of O.D for obtaining growth rates and lag 

times using multiple inocula rather than using the traditional methods which 

use one single inoculum. McKellar et al. (2002) and McKellar and Knight 

(2000) have suggested a method for the analysis of lag time using the same 

methodology employed in our laboratory. O.D was directly related to microbial 

numbers with simple calibration curves. Calibration curves showed that a 

direct relationship between O.D and cfu/ml existed and that a specific O.D 

was equivalent to a specific number of organisms per ml.  

The analysis of the data obtained from the inoculum size experiments in 

elevated NaCl concentrations, in different pH and in their combinations (NaCl 

and pH) showed that the growth rate was independent of the inoculum size. 

The inoculum size affected only the time to reach the TTD, where the higher 

inocula needed less time to reach the TTD criterion (e.g. O.D = 0.2) compared 

with lower inocula. However, the literature does show some controversy over 

the so called ‘inoculum effect’. For example, there is the assumption that the 

inoculum size does not have any effect on the microbial growth rate 

parameters (Buchanan et al., 1993a,b; Bhaduri et al., 1994). In contrary, there 

are observations that the inoculum size, could have an effect on the duration 

of the lag phase (Pin and Baranyi, 2006; Metris et al., 2006; Francois et al., 

2005; Guillier et al. 2005; Augustin et al., 2000; Robinson et al., 2001) or that 

the inoculum size may affect microbial growth (Masana and Baranyi, 2000; 

Koutsoumanis and Sofos, 2005). An increased variance was observed as the 

inoculum size decreased which might be due to the fact that as the inocula 

are diluted across the plate, the probability of obtaining a well in the 

honeycomb plate with precisely the expected number of microbial cells 

decreases. This leads to an increased variability in the TTD as the cell density 

decreases (Bidlas and Lambert, 2008).  

The classic 3 parameter logistic model was rearranged to provide the 

theoretical foundation for the observed TTD and it was able to fit the TTD data 

obtained from turbidometric experiments using multiple inocula incubated iso-
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thermally. In all cases, with increasing incubation temperature (30⁰C and 

37⁰C) the growth rate increased hence the lag time decreased which shows 

that 37⁰C is a more optimal temperature. The parameters obtained suggest 

that as the conditions became more inimical (increased NaCl concentration, 

low pH or combinations of NaCl-pH) the growth rate decreased while the lag 

time increased. A higher lag time was observed for S. Typhimurium and E. 

coli in 6% NaCl and in pH 4.58 while for the L. monocytogenes strains a 

higher lag time was observed in 9% NaCl. Under the more extreme NaCl-pH 

combinations used (6% NaCl-pH: 5.17, 3% NaCl-pH: 4.58 and 6% NaCl-pH: 

4.58) E. coli did not grow which suggests that it is more sensitive under these 

conditions from S. Typhimurium. Also, the minimum and maximum values of 

NaCl and pH for growth found from this study for E. coli and S. Typhimurium, 

were in agreement with the corresponding values suggested by the ICMSF 

(1996) and were reported in paragraph 1.1.5.1.  

There are studies in the literature which suggest morphological changes occur 

when the growth conditions becoming more unfavourable. Bereksi et al. 

(2002) reported that some L. monocytogenes strains may change their 

adhesion properties due to modification of their surface properties under high 

NaCl concentrations. Similar, Giotis et al. (2007) observed filament formations 

or elongated chain forms of L. monocytogenes in sub-lethal alkaline 

environment.  Isom et al. (1995) observed increased filament formations of L. 

monocytogenes with increasing NaCl concentration and in low or alkaline pH 

adjusted using NaOH. It was also observed that no morphological changes 

occurred when the media were acidified using HCl.  However, no gross 

morphology changes were observed microscopically under the most inimical 

conditions used in this work. In some cases cell clumping was observed at the 

bottom of the Bioscreen plate which resulted in non reliable O.D 

measurements.  

McMeekin et al. (2000) stated the importance of the G/NG interface modelling 

by mentioning its practical and scientific implications. Probabilistic modelling 

using logistic regression has been used extensively in the literature. Lopez-
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Malo et al. (2000) predicted the G/NG boundary of Saccharomyces cerevisiae 

under the effect of aw, pH and potassium sorbate. Also, Gysemaans et al. 

(2007) based on a case study with monoculture and mixed strain culture data 

compared the ordinary logistic regression model with the nonlinear logistic 

regression model derived from a square root type kinetic model and 

concluded that the first one performed slightly better than the square root type 

model.  

E. coli and S. Typhimurium were examined in a range of combinations of pH-

NaCl concentrations. The TTD data obtained from the Bioscreen where 

transformed in G/NG data and using nominal logistic regression to the data 

after 1 day, 3 days and 5 days of incubation the G/NG interfaces were 

determined and were dependent on the time. The data from these 

experiments were also transformed to RTD and were fitted with RSM as well 

as with the ELPM. In all cases examined the RMSE of the RSM was lower 

than the RMSE of the ELPM, plus both models had an equivalent number of 

parameters (5), which suggest a better fit of the data by the RSM over the 

ELPM. However, the differences between the RMSE are not statistically 

significant. Also, the results obtained from the ELPM can be extrapolated 

while the results from the probabilistic modelling or the response surface 

modelling can not be extrapolated. This advantage of the ELPM in conjuction 

with the low RMSE makes it an effective and accurate model of analysing 

results of combined inhibitors.  

5.5 Conclusion 

The rearranged logistic with lag model could give accurate growth rates and 

lag times from O.D measurements. The growth rate was found to be 

independent from the inoculum size; the inoculum size affected only the TTD. 

Also, the LPM and the ELPM can analyse results for individual and combined 

inhibitors.  
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6 Modelling microbial growth after a mild thermal 

injury: An analysis using optical density 

6.1 Introduction 

Foodborne disease is a threat to public health and as the trend towards more 

natural and less preserved and processed foods continues, the threat is not 

diminishing. Heat is a basic and common form of preservation (Gould, 1989); 

reducing the severity of the thermal process increases the acceptability of a 

product but can also increase the risk of foodborne illness. It is not a 

balancing act between safety and palatability – safety first and always is the 

food producer’s mantra. One way of assessing the impact of a control strategy 

is to model the effects of the various processes on the growth or inactivation 

of microbes present in the foods. Modelling, however, is normally carried out 

in conjunction with actual testing of the process – a 2-phase process with the 

modelling, the cheaper alternative, given the availability of a model 

(Zwietering et al., 1992; Koutsoumanis et al., 2006) guiding the more 

expensive on-site testing/validation.   

A successful model will allow the prediction of the impact of varying process 

and product conditions on the microbes present in the foodstuff. However, the 

model can either be highly specific – can only be used with predefined 

conditions or more general but less precise with respect to the particular 

foodstuff.  

Predictive models are often based, initially, on the growth of a particular 

species in a laboratory growth media. Typically for a given set of conditions a 

growth curve is constructed to which a standard ‘primary’ model such as the 

modified Gompertz is fitted (Li et al., 2007). From the fitted parameters the 

growth rate, lag, and maximum population density are found for a given initial 

inoculum. Changing the conditions alters these parameters, and these 

changes are modelled themselves with respect to the environmental 

conditions (secondary modelling). The standard methodology using plate 

counts is both tedious and expensive but is also very time consuming and 

large experimental designs can be prohibitive – and become more the realm 
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of the large research grant than the ability of an industrial microbiological 

laboratory. 

Recently further developments of obtaining growth rates from O.D data was 

published (Mytilinaios et al., 2012). It was shown using this technique that the 

standard modified Gompertz equation was unable to model O.D data and that 

the basic logistic model fitted the data extremely well. Further, in the 

experiments carried out no lag was observed when grown under the 

conditions used.  It was hypothesised that in the systems studied no lag was 

observed because there was no injury present nor did the conditions used 

induce a lag (i.e. the pre-exponential factor was 1). These conditions were 

useful since the fitting of the logistic model was facile. In the presence of 

conditions that induced a lag, it was envisaged we would have to invoke the 

logisitic with lag or the Baranyi model to give cogent fits to the data (Jason, 

1983; Baranyi et al., 1993a). To investigate this idea we also proposed to 

study the effect of a mild thermal insult against Listeria monocytogenes, 

Salmonella Typhimurium and Escherichia coli during the growth process, in 

the presence of NaCl, pH and their combinations – all known to induce a lag 

before the onset of growth (Stephens et al., 1997), and to couple this with the 

O.D technique developed to study growth rates. 

6.2 Materials and methods 

The effect of a mild thermal injury on the growth of four L. monocytogenes 

strains (252, 39 or Scott A, 271 and 177), S. Typhimurium and E. coli was 

studied in different NaCl concentrations at 30ºC and the procedure followed 

was described in paragraph 2.3.9.1 . Also, the effect of a mild thermal injury 

on the growth of S. Typhimurium and E. coli was studied at 30ºC in different 

pH and pH-NaCl concentrations, as described in paragraphs, 2.3.9.2 and 

2.3.9.3, respectively. The model used to fit the data before and after the 

thermal injury was described in paragraph 2.4.5 while the model used to 

simulate the observed TTD data was described in paragraph 2.4.9.  
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6.3 Results 

6.3.1 Selection of time-temperature treatment 

The effect of a mild thermal injury was studied using the Bioscreen 

microbiological analyser, in conjunction with the methods developed for the 

analysis of the initial inoculum size on the TTD. In these studies the Bioscreen 

plate was incubated in an oven, after a period of incubation in the Bioscreen, 

at 60ºC for 25 minutes, before being placed back into the Bioscreen incubator. 

This time-temperature treatment was chosen after a series of screening trials 

using L. monocytogenes 252 at 60ºC  for 5, 10, 15 and 20 min, at 65ºC for 5 

and 10 min and at 70ºC for 5 min (Data not shown). Also, L. monocytogenes 

252 was examined in TSB with 0.5% NaCl at 37ºC, with placement in a 

preheated oven at 60ºC for 25, 30, 35 or 45 min (Figure 6-1). An increased 

variability was observed when the time of heat treatment was increased 

(Table 6-1). Heating for more than 25 minutes resulted in reduction of the 

microbial counts (data not shown) and thus, the populations which should be 

used for those treatments (Figure 6-1), are different from the values used. 

Heat treatment at 60ºC for 25 min in a preheated oven injured the existing 

populations without any microbial reduction. Table D-2 (Appendix D) shows 

the plate counts from a specific well (well 199 and 299) before and after the 

mild heat treatment respectively at 60ºC for 25 min. The plates counts before 

and after the heat treatment, were not significantly different and so it was 

concluded that the chosen heat treatment induced an injury without any 

microbial reduction.  
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Figure 6-1 Relationship between TTD with the initial populations of Listeria 

monocytogenes 252, grown in TSB with 0.5% NaCl at 37ºC. The symbols (, ▲, 

, ) represent the observed data before the heat injury and the symbols (, 

, , ) represent the observed data after the heat injury in a preheated oven 

at 60ºC  for 25, 30, 35 and 45 min, respectively  

Table 6-1 Parameters describing the linear relationship between the TTD 

against the initial populations of L. monocytogenes 252 at 37ºC in TSB 0.5% 

NaCl, before and after the heat treatment at 60⁰C for 25, 30, 35 or 45 min   

Micoorganism Heat treatment 
Gradient 

(h/Log(cfu/ml)) 
Intercept (h) 

Growth rate 

(hours 
-1

) 

L. monocytogenes 

252 

Before 1.72 15.29 0.58 

After 25min 1.69 18.06 0.59 

Before 1.72 15.61 0.58 

After 30min 3.03 28.81 0.33 

Before 1.69 15.66 0.59 

After 35min 5.77 50.84 0.17 

Before 1.66 15.42 0.60 

After45min 6.82 60.69 0.15 
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6.3.2 Thermal injury in different NaCl concentrations, different pH 

and different NaCl-pH combinations 

The effect of a mild thermal injury in a preheated oven at 60ºC for 25 min, on 

the growth of four strains of L. monocytogenes, S. Typhimurium and E. coli 

was studied in different NaCl concentrations at 30ºC incubation temperature. 

At 30ºC, E. coli in TSB with 0.5%, 3% or 6% NaCl grew with an observed SGR 

= 1.358, 1.082 and 0.319/h respectively, with an induction of an apparent lag 

in 6% NaCl (lag=4.89h). After 400-1300 mins of incubation the micro titre-

plates were placed in an oven at 60⁰C for 25 mins, and then subsequently 

placed back in the Bioscreen to continue the incubation at 30ºC. The resulting 

TTD of the thermally treated plate showed a significant step, with an apparent 

larger variance compared to the control TTD; Figure 6-2 shows the observed 

data for the thermal treatment (before and after the heat treatment) of E. coli 

at 3% TSB.  A regression line through the thermally treated TTD data gave a 

gradient (and so a growth rate) approximately equal to that of the control, 

however the fit was poor, Table 6-2.  

The observed TTD for multiple initial inocula of S. Typhimurium at 30ºC in 

TSB (0.5, 3 or 6% NaCl) showed the presence of a short lag before the start 

of growth in all cases (Table 6-2). This was manifested in curvature close to 

the detection threshold. After the thermal treatment, the resulting TTD gave 

similar results to those of E. coli: a definite step between the expected, 

untreated control TTD and the observed, with the latter showing a large 

variance, Table 6-2.  

The four strains of L. monocytogenes examined were more tolerant of the 

thermal insult than either of the strains of S. Typhimurium or E. coli used. In all 

cases an apparent lag was observed in 6% NaCl (Table 6-2). After the 

thermal insult, a lag was induced and the growth rate was approximately the 

same as in pre-treatment.  
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Figure 6-2 The observed effect of a small thermal insult (60ºC for 25 mins) after 

400 mins of growth at 30ºC on the TTD against the initial populations of E. coli 

in 3% NaCl. The closed symbols represent the observed data before the heat 

treatment while the open symbols represent the observed data after the heat 

treatment  

The effect of a mild thermal injury on the growth of S. Typhimurium and E. coli 

was also studied at 30⁰C in different pH and different combinations of NaCl-

pH. The relationship between the initial inoculum sizes against the TTD was 

the same as described previously. The results obtained from the Bioscreen 

before the treatment showed that with decreasing pH or decreasing pH and 

increasing NaCl concentration the growth rate decreased while the lag time 

increased and were similar and reproducible with the results obtained from the 

inoculum size studies under the same conditions. Following the heat 

treatment, the TTD suggested that the growth rate of the data was essentially 

the same as that before the heat treatment (Table 6-4 and Table 6-6) but with 

a higher degree of variability. The observed discontinuity after a period of 

thermal injury was interpreted as a heat induced lag before growth 

recommenced. Similar results were obtained for all cases and for both 

microorganisms.  
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The differences in time between the observed thermally treated TTD and the 

expected TTD for the given initial inoculum without treatment were calculated 

(lag due to thermal injury, laginjury) and tested with the Log-normal, Gamma 

and Weibull distribution. These distributions are characterised by 2 

parameters (scale and shape parameter) and they were compared using the -

2*LogLikelihood ratio test and the Akaike Information Criterion (AIC) test to 

examine which distribution best fits the distribution of laginjury. From the results 

obtained, it was observed the distribution of laginjury was best described by the 

Log- normal distribution in most cases (Table 6-2, Table 6-4, and Table 6-6) 

with p>0.05. From the studies performed in different NaCl concentrations, only 

for E. coli in 3% NaCl and for L. monocytogenes 39 in 0.5% NaCl was the 

laginjury distribution best described by the Gamma distribution (Table 6-3) but 

even in this case, the fit of the Log-normal distribution was very good with 

p>0.05. From the studies performed in different pH, only the laginjury of S. 

Typhimurium at pH=6.50 was better fitted with the Gamma model but still the 

Log-normal distribution could describe the data well (Table 6-5) while from the 

studies in different combinations of NaCl-pH, only in two cases of S. 

Typhimurium in 3% NaCl-pH=5.84 and in 3% NaCl-pH=5.16 the Gamma 

distribution found to fit the laginjury better but the Log-normal distribution fit the 

data well with p>0.05 (Table 6-7).  

TTD data were simulated using equation (2-28), with the lag given by the fit of 

the Log-normal distribution; Figure 6-3 gives a resulting simulation for the 

experimental data described in Figure 6-2 for E. coli at 3% NaCl. A similar 

result was obtained for all the microorganisms and in all the conditions tested.  

In all cases there were no significant correlations between the difference of 

the TTD following injury and the TTD calculated for the untreated control and 

the initial inoculum. 
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Figure 6-3 The simulated effect of a small thermal insult (60ºC, 25mins) after 

400 mins of growth at 30ºC  on the TTD of E. coli in 3% NaCl. The closed 

symbols represent the simulated data before the heat treatment while the open 

symbols represent the simulated data after the heat treatment. The simulation 

was based on equation (2-28) with intercept = 1144.5 mins, gradient = -

127.8/min, lag = exp(LogNorm(6.46,0.260))  
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Table 6-2 Growth parameters calculated from the regression lines before and after the heat treatment for all the microorganisms 

   

Pre Thermal Post Thermal 
Post Thermal lag parameters 

(Log-Normal distribution) 

Organism Temp (⁰C) Salt (%) SGR /h Lag (h) RMSE (obs) r
2
 SGR /h Lag (h) RMSE (obs) r

2
 Scale Shape P 

E. coli 30 0.5 1.358 -0.21 7.43 (56) 0.998 1.446 6.12 186  (33) 0.206 1.647 0.504 >0.05 

ND 8.69 30 3 1.082 0.69 6.82 (60) 0.999 1.029 11.07 169 (34) 0.406 2.361 0.260 >0.05 

 

30 6 0.319 4.89 179 (96) 0.937 0.186 18.06 736 (61) 0.433 3.537 0.263 >0.05 

S. Typhimurium 30 0.5 1.212 1.17 14.5 (56) 0.995 0.943 3.44 113 (35) 0.705 1.200 0.500 >0.05 

ND 8.78 30 3 0.912 1.68 13.3 (59) 0.998 0.803 12.3 295 (41) 0.334 2.343 0.394 >0.05 

 

30 6 0.285 2.81 192 (94) 0.938 0.332 24.58 464 (47) 0.425 3.511 0.195 >0.05 

L. monocytogenes 252 30 0.5 1.073 0.28 6.91 (61) 0.999 1.040 2.32 75.8 (40) 0.817 0.633 0.474 >0.05 

ND 9.15 30 3 0.915 0.65 7.95 (61) 0.999 0.903 2.62 51.8 (44) 0.940 0.498 0.412 >0.05 

 

30 6 0.616 1.29 18.9 (98) 0.997 0.569 2.02 77.9 (51) 0.892 0.542 0.590 >0.05 

L. monocytogenes ScottA 30 0.5 1.025 0.851 11.9 (63) 0.998 1.043 2.95 36.6 (40) 0.948 0.356 0.376 >0.05 

ND 9.16 30 3 0.810 1.10 13.5 (62) 0.998 0.895 4.04 33.0 (39) 0.967 0.466 0.377 >0.05 

 

30 6 0.571 1.15 34.9 (99) 0.993 0.574 2.70 89.5 (54) 0.874 0.278 0.674 >0.05 

L. monocytogenes 271 30 0.5 1.029 -0.433 9.77 (60) 0.998 1.020 1.18 36.4 (30) 0.934 0.379 0.396 >0.05 

ND 9.32 30 3 0.875 -0.153 9.79 (98) 0.999 0.833 2.07 69.2 (59) 0.859 0.811 0.445 >0.05 

 30 6 0.566 0.335 25.9 (98) 0.996 0.536 1.47 146 (58) 0.768 0.267 0.999 >0.05 

L. monocytogenes 177 30 0.5 0.948 -0.403 7.79 (98) 0.999 0.907 0.68 29.2 (49) 0.959 0.369 0.300 >0.05 

ND 9.33 30 3 0.812 0.042 6.67 (98) 0.999 0.833 1.98 59.7 (58) 0.891 0.314 0.550 >0.05 

 30 6 0.606 0.765 25.8 (98) 0.995 0.542 1.05 94.9 (42) 0.830 0.872 0.595 >0.05 
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Table 6-3 Comparison tests between the Log-normal, Weibull and Gamma distribution in different NaCl concentrations 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Lognormal distribution Weibull distribution Gamma distribution 

Organism Temp (⁰C) Salt (%) -2*LogLikelihood AICC -2*LogLikelihood AICC -2*LogLikelihood AICC 

E. coli 30 0.5 426.4 430.8 430.8 435.2 428.2 432.6 

ND 8.69 30 3 442.9 447.3 443.5 447.9 442.6 447.0 

 30 6 893.9 898.1 902.5 906.7 894.2 898.4 

S. Typhimurium 30 0.5 420.4 424.8 423.6 428.0 421.2 425.6 

ND 8.78 30 3 566.9 571.2 576.4 580.8 569.8 574.1 

 30 6 693.5 697.8 698.3 702.6 693.7 697.9 

L. monocytogenes 252 30 0.5 431.0 435.3 445.3 449.7 437.6 442.0 

ND 9.15 30 3 450.0 454.3 463.5 467.8 455.1 459.4 

 30 6 576.3 580.5 578.0 582.2 576.4 580.7 

L. monocytogenes 39 30 0.5 394.8 399.1 397.5 401.9 394.5 398.9 

ND 9.16 30 3 382.7 387.0 389.2 393.5 384.2 388.5 

 30 6 508.6 512.8 511.0 515.2 508.7 512.9 

L. monocytogenes 271 30 0.5 316.8 321.2 320.8 325.3 317.9 322.3 

ND 9.32 30 3 649.9 654.1 658.2 662.4 652.1 656.3 

 30 6 600.1 604.3 607.9 612.1 607.9 611.4 

L. monocytogenes 177 30 0.5 457.6 461.9 470.0 474.3 459.4 463.7 

ND 9.33 30 3 605.7 609.9 618.0 622.2 610.5 614.7 

 30 6 409.6 413.9 410.7 415.1 409.8 414.2 
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Table 6-4 Growth parameters calculated from the rearranged logistic model for TTD data for E. coli and S. Typhimurium at 30ºC and in 

different pH (6.50, 5.88, 5.16 and 4.58) and the parameters describing the laginjury distribution 

 

 

   
Pre Thermal Post Thermal 

Post Thermal lag 
parameters (Log-

normal distribution) 

Organism Temp (⁰C) pH SGR /h 
Lag 
(h) 

RMSE 
(obs) 

r2 SGR /h 
Lag 
(h) 

RMSE 
(obs) 

r2 Scale Shape P 

E. coli 30 6.50 1.396 -0.288 7.64 (98) 0.998 1.240 3.937 146 (47) 0.329 1.649 0.404 >0.05 

ND 8.69 30 5.88 1.482 0.31 6.40 (57) 0.998 1.344 4.381 109 (41) 0.328 1.539 0.347 >0.05 

 
30 5.16 1.292 0.45 6.00 (56) 0.999 1.141 7.387 250 (43) 0.142 1.918 0.477 >0.05 

 
30 4.58 0.886 1.073 11.3 (98) 0.998 0.914 9.810 483 (48) 0.077 1.736 0.891 >0.05 

S. Typhimurium 30 6.50 1.212 -0.07 6.71 (55) 0.999 1.067 7.736 169 (32) 0.205 2.031 0.353 >0.05 

ND 8.78 30 5.88 1.147 0.49 6.08 (57) 0.999 1.039 9.618 216 (27) 0.129 2.201 0.347 >0.05 

 
30 5.16 1.013 0.43 6.79 (58) 0.999 0.734 11.42 379 (20) 0.044 2.598 0.422 >0.05 

 
30 4.58 0.804 1.08 12.6 (58) 0.998 0.785 11.85 405 (41) 0.101 2.301 0.543 >0.05 
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Table 6-5 Comparison tests between the Log-normal, Weibull and Gamma distribution in different pH 

   Lognormal distribution Weibull distribution Gamma distribution 

Organism Temp (⁰C) pH -2*LogLikelihood AICC -2*LogLikelihood AICC -2*LogLikelihood AICC 

E. coli 30 6.50 587.0 591.3 596.2 600.4 589.9 594.2 

ND 8.69 30 5.88 490.6 494.9 498.1 502.4 492.2 496.5 

 30 5.16 574.4 578.7 584.9 589.2 578.0 582.3 

 30 4.58 683.8 688.1 691.2 695.5 689.7 693.9 

S. Typhimurium 30 6.50 415.2 419.6 416.0 420.4 415.1 419.5 

ND 8.78 30 5.88 358.4 362.9 363.8 368.3 359.8 364.3 

 30 5.16 288.9 293.6 290.6 295.3 289.4 294.1 

 30 4.58 589.7 594.0 596.6 600.9 592.8 597.1 
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Table 6-6 Growth parameters calculated from the rearranged logistic model for TTD data for E. coli and S. Typhimurium at 30ºC and in 

different NaCl-pH combinations and the parameters describing the laginjury distribution (Log-normal distribution)  

 

 

 

 

 

 

 

 

 

 

 

 

   
 Pre Thermal Post Thermal Post Thermal lag parameters 

Organism Temp (
0
C) pH NaCl (%) SGR /h Lag (h) RMSE (obs) r

2
 SGR /h Lag (h) RMSE (obs) r

2
 Scale Shape P 

E. coli 30 6.45 3 1.060 0.381 6.82 (96) 0.999 1.073 8.198 207 (52) 0.240 1.998 0.411 >0.05 

ND 8.69 30 6.42 6 0.379 11.24 86.9 (86) 0.975 0.373 35.69 393 (64) 0.541 3.176 0.240 >0.05 

 
30 5.84 3 1.021 0.625 7.55 (98) 0.999 0.953 7.317 157 (63) 0.481 1.982 0.334 >0.05 

 
30 5.81 6 0.339 10.30 137 (80) 0.951 0.336 33.35 309 (59) 0.731 3.134 0.209 >0.05 

 
30 5.16 3 0.831 0.294 15.9 (98) 0.997 0.802 11.87 284 (52) 0.258 2.446 0.376 >0.05 

S. Typhimurium 30 6.45 3 0.926 1.323 11.4 (98) 0.998 0.885 12.85 275 (42) 0.156 2.358 0.391 >0.05 

ND 8.78 30 6.42 6 0.345 3.767 82.5 (98) 0.984 0.341 23.05 464 (43) 0.346 2.998 0.353 >0.05 

 
30 5.84 3 0.966 1.330 6.63 (98) 0.999 0.804 14.19 268 (48) 0.237 2.538 0.317 >0.05 

 
30 5.81 6 0.378 3.789 85.2 (94) 0.978 0.365 23.97 738 (32) 0.102 2.953 0.557 >0.05 

 
30 5.16 3 0.918 1.453 11.6 (98) 0.998 0.819 13.40 285 (44) 0.184 2.487 0.376 >0.05 

 
30 5.15 6 0.386 5.312 91.9 (96) 0.976 0.283 29.91 877 (19) 0.132 3.539 0.382 >0.05 

 
30 4.61 3 0.751 1.420 13.4 (98) 0.998 0.664 15.24 401 (35) 0.115 2.695 0.423 >0.05 

 
30 4.60 6 0.255 8.919 413 (99) 0.824 0.169 17.90 729 (42) 0.471 3.069 0.526 >0.05 
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Table 6-7 Comparison tests between the Lognormal, Weibull and Gamma distribution in different NaCl-pH combinations 

    Lognormal distribution Weibull distribution Gamma distribution 

Organism Temp (
0
C) pH NaCl (%) -2*LogLikelihood AICC -2*LogLikelihood AICC -2*LogLikelihood AICC 

E. coli 30 6.45 3 687.7 691.9 695.8 700.0 689.5 693.8 

ND 8.69 30 6.42 6 928.6 932.8 949.0 953.2 932.8 937.0 

 30 5.84 3 805.3 809.5 813.8 818.0 806.6 810.8 

 30 5.81 6 834.5 838.8 847.7 852.0 836.2 840.5 

 30 5.16 3 725.0 729.2 730.8 735.1 725.6 729.8 

S. Typhimurium 30 6.45 3 498.1 502.4 500.2 504.5 498.2 502.5 

ND 8.78 30 6.42 6 641.5 645.8 646.7 651.0 642.7 647.0 

 30 5.84 3 537.3 541.6 538.9 543.1 537.1 541.4 

 30 5.81 6 503.3 507.8 505.6 510.0 504.0 508.4 

 30 5.16 3 616.9 621.2 618.4 622.7 616.8 621.1 

 30 5.15 6 306.4 311.1 308.6 313.4 306.8 311.5 

 30 4.61 3 513.3 517.6 514.6 519.0 513.4 517.7 

 30 4.60 6 665.9 670.2 668.9 673.2 666.9 671.2 
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6.3.3 Growth rate of inocula following repair and relationship 

between the MaxO.D and initial populations 

From the observed TTD after the thermal insult, although the parameters for 

the best fit of equation (2-28) were obtained, it was hypothesised that the 

growth rate was equivalent to that of the control for each observation. Once 

injury had been repaired each inoculum grew at the rate governed by the 

imposed environmental conditions of temperature and NaCl, however, only 

one point (the TTD) was available. To test the hypothesis two methods were 

used: 1. shape of the O.D/time curve post-treatment compared to an 

equivalent control curve; 2. performing a serial dilution on a heat treated 

inoculum prior to the onset of growth. 

Figure 6-4 gives the observed O.D/time curves for three control inocula and 

those from the corresponding wells of the heat treated plate for the growth of 

E. coli in TSB with 3% NaCl. The calculated lags for the three control wells 

were 499, 680 and 880 mins for the initial inocula of 5.03, 3.63 and 1.94, 

respectively. By translating these control curves by 495, 700 and 980 minutes 

respectively, the O.D curves coincided to a high degree with those of the heat 

treated, Figure 6-5. This implied that the growth rates of the inocula following 

the heat treatment, once recovered from injury, were the same as the 

uninjured wells. This phenomenon was observed for all analyses conducted. 

Figure 6-6 shows results from several half-fold dilutions of a known inoculum 

of S. Typhimurium in 3% TSB following the heat injury procedure. The plate 

was prepared using five initial inocula serially diluted from a known amount 

and these were added to the first column in duplicate; and incubated at 30ºC 

for 2 hours prior to the heat injury step to ensure that the inocula were in 

exponential phase. Equation (2-28) was fitted to the control TTD data giving a 

lag of 2.01 h (1.93 – 2.10) and a SGR = 0.912/h (0.903 – 0.920) with 98 

observations used. After the thermal treatment, data from the serial dilutions 

with an initial inoculum of 7.771 log10 cfu/ml gave a lag of 15.45 h (15.3 – 

15.6) and a SGR of 0.975/h (0.947 – 1.004);  from an initial inoculum of 4.771 

log10 cfu/ml a lag of 15.4 h (13.1 – 17.7), and a SGR of 0.898/h (0.772 – 
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1.076) were observed; two rows with an initial inoculum of 6.771 log10 cfu/ml 

gave lags of 16.8 h (16.1 – 17.5) and 20.4 h (18.3 – 22.5) and SGR of 0.94/h 

(0.865 – 1.026) and 0.800/h (0.659 – 1.019) respectively. Data from the serial 

dilution of the largest initial inoculum used shows a substantial curvature as 

the inocula approaches the detection threshold of 8.78. 

 

Figure 6-4 Displays three optical density /incubation time curves of E. coli in 

3% NaCl at 30⁰C from identical well numbers in the control (grey solid lines, 

from left to right with initial inoculum 5.032, 3.635, 1.936 log10 cfu/ml) and from 

the heat treated wells (symbols; dash, 5.032 log10 cfu/ml; dash-dot, 3.635 log10 

cfu/ml; dots, 1.936 log10 cfu/ml)  
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Figure 6-5 Gives the resulting displacement to the right for the three control 

curves of E. coli in 3% NaCl at 30⁰C by 495, 700 and 980 mins respectively; the 

observed TTD (O.D = 0.2) for the heat treated wells relative to the untreated 

controls were 970, 1388 and 1856 minutes, respectively  

 

Figure 6-6 Salmonella Typhimurium (3% NaCl, 30⁰C); control (), SGR = 0.91/h, 

lag = 2.01 h; selected initial inocula from a  heat treated plate –treated after 120 

mins incubation at 30⁰C- and subsequently half-fold diluted across the plate : 

log10 Initial inocula, 8.470 (); 7.771 () SGR = 0.975, lag = 15.4 h; 6.771 (), 

6.771 (), 4.771 (), SGR = 0.898/h, lag = 15.4 h  
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By plotting the maximum O.D against the initial populations of the 

microorganisms before and after the heat treatment, the effect of the thermal 

treatment on the max O.D (which corresponds to the maximum population 

density) was observed. In particular, Figure 6-7 shows the maximum O.D with 

respect with the initial populations of L. monocytogenes 252 incubated at 

30ºC, in TSB with 3% NaCl, before and after the heat treatment. At an 

inoculum size of approximately 106 cfu/ml, a decrease in the O.D was 

observed after the heat treatment. A hypothesis for this observation is that 

inocula with lower populations than 106 cfu/ml, have enough nutrients after the 

heat treatment to grow and reach the maximum O.D, while inocula with higher 

populations, have already reached the maximum O.D, before the heat 

treatment. Samples with inoculum sizes of approximately 106 cfu/ml, had not 

reached the maximum O.D before the treatment, however, the nutrients had 

already been consumed prior to injury and therefore these populations could 

not reach the maximum O.D because the available nutrients were used to 

repair the injury. Similar findings were observed in all NaCl concentrations for 

all the L. monocytogenes strains with the maximum O.D being decreased as 

the NaCl being increased, e.g from max O.D=0.9 at 0.5% NaCl to max 

O.D=0.7 at 6% NaCl for L. monocytogenes 252. On the contrary, E. coli and 

S. Typhimurium did not show such an effect on the max O.D. The max O.D 

remained the same before and after the heat treatment in all NaCl 

concentrations.  

When the maximum O.D was plotted against the initial populations of E. coli in 

the different pH and different combinations of NaCl-pH studied, showed the 

same effect as described previously e.g a reduction of the max O.D after the 

heat treatment compared with the max O.D before the heat treatment. On the 

other hand, this effect was not observed in any of the pH or NaCl-pH 

combinations studied for S. Typhimurium, which means that the max O.D 

before and after the heat treatment remained the same. Figure 6-8 show the 

maximum O.D with respect with the initial populations of S. Typhimurium 

incubated at 30ºC, in TSB with pH=4.58 before and after the heat treatment 

while Figure 6-9 show the maximum O.D with respect with the initial 
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populations of S. Typhimurium incubated at 30ºC, in TSB with 3% NaCl and 

pH=5.88 before and after the heat treatment. As it can be observed there 

were no differences between the max O.D before and after the thermal 

treatment.  

 

 

Figure 6-7 Relationship between maximum optical density with the initial 

populations of Listeria monocytogenes 252, grown in TSB with 3% NaCl at 

30ºC, before (closed symbols) and after heat treatment (opened symbols) at 

60⁰C for 25 min  
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Figure 6-8 Relationship between maximum optical density with the initial 

populations of Salmonella Typhimurium, grown in TSB with pH=4.58 at 30ºC, 

before (closed symbols) and after heat treatment (opened symbols) at 60ºC for 

25 min  

 

 

Figure 6-9 Relationship between maximum optical density with the initial 

populations of Salmonella Typhimurium, grown in TSB with 3% NaCl and 

pH=4.58 at 30ºC, before (closed symbols) and after heat treatment (opened 

symbols) at 60ºC for 25 min  
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6.4 Discussion 

The standard lag and growth rate can be easily obtained from TTD 

experiments when modelled using the rearranged logistic with lag model 

(equation (2-10)). Growth rates, (and lags) change accordingly when the 

environment is more amenable for growth (e.g. move to more optimal 

temperature) or less cordial (e.g. increasing salt concentration). In the studies 

performed here, L. monocytogenes strains were the most recalcitrant to the 

effect of increasing NaCl concentration, whereas S. Typhimurium and E. coli 

were quite sensitive. L. monocytogenes strains were not studied in different 

pH or combinations of NaCl-pH because cell clumping was observed under 

these conditions and so O.D measurements were not reliable.  

When a small thermal insult (nominally 60ºC for 25mins) was applied to the 

Bioscreen plate, whilst the organisms were in exponential phase, E. coli and 

S.Typhimurium showed a significant response relative to L. monocytogenes. 

The observed TTD data showed a step between the control (no thermal injury) 

and the treated wells, the size of the step appeared correlated with the growth 

conditions and was dependent on the species under observation. There was 

also a large increase in the variance of the data following the thermal process, 

again the magnitude of which appeared to be dependent on the 

environmental conditions and the species under test.  

The distribution of the thermally induced lags was found to be Log-normal for 

the majority of experiments; only in some cases was the Gamma distribution 

found to fit the lags due to injury better than the Log-normal but even in those 

cases the Log-normal distribution had a good fit with p>0.05. McKellar and 

Hawke (2006) assessed several distributions for fitting lag times of individual 

cells using six strains of E. coli O157:H7 and suggested that the Log-normal 

distribution can be used successfully to characterise the individual cell lag 

times, a result similar with our observations.  

Data were simulated (using equation (2-28)) using the hypothesis that the 

organisms undergoing a thermal insult have an induced lag the size of which 
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is randomly given by the Log-normal distribution, but when repair is over (the 

time of lag) growth occurs at the same rate as before, dictated by the 

environment. However, although the simulations appear to give credible 

reconstructions of the observed data, there was no-way to obtain the growth 

rate data from a single observation of the TTD. However, each well provides a 

wealth of O.D data, at values other than the set O.D criterion. 

The shape of the O.D-incubation time curve is a reflection of the lag, the 

growth rate and the MPD attained. Different inocula with the same lag and 

growth rate will have congruent O.D/incubation time curves, but shifted up or 

down the time axis depending on whether the initial inoculum is greater or less 

than a given value. If the shapes for a series of control experiments are 

known, from which the growth rates have been calculated, then any test 

inoculum having the same growth rate will have the same O.D/time shape, i.e. 

it will show congruence with the controls. It is known that as growth conditions 

become more inimical, growth rates and lags increase and the shape of the 

O.D/incubation curve become shallower relative to a positive control (e.g. 

grown under optimal conditions). In the experiments carried out here, the 

thermally treated inocula had congruent O.D/time curves after the injury had 

been dealt with (lag due to injury). Indeed, Figure 6-4 and Figure 6-5 show 

that the control and treated inocula grew identically, but after the mild thermal 

injury, the treated inoculum showed no growth for the period of lag, before the 

onset of growth recommenced at the same rate as the control. 

To further show that the treated inocula grew at the same rate once recovery 

was complete, it was hypothesised that if an initial inoculum which underwent 

the mild thermal process was then subsequently serially diluted, then the 

distribution of injury occurring to the population in the initial well would be 

identical to those diluted across the plate. Once recovery was achieved the 

wells would show a linear relationship, if the lag is a function of the injury 

distribution, with a gradient equal to that of the untreated control. Such 

experiments carried out on all the organisms studied confirmed this 

hypothesis. Figure 6-6 shows the results from an experiment with S. 

Typhimurium, all plots show a linear relationship with the log of the initial 
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inoculum, with gradient approximately equal to that of the control. The 

curvature of the highest inoculum used is due to the approach to the detection 

threshold; equation (2-28) suffers from the same problem that the logistic with 

lag growth model has – no growth until the end of lag. Figure 6-4, Figure 6-5 

and Figure 6-6 show that, as predicted by the Baranyi equation, growth occurs 

prior to the end of lag, as the organisms adapt to the new environment. 

Stephens et al. (1997) conducted work on thermally injured S. Typhimurium 

cells using multiple dilutions to examine injury with single cells. In their work 

lag times for single cells undergoing a mild thermal process was highly 

variable with lag times commonly greater than 20 h, but with longer than 30 h 

observed. From the data given in Table 6-2, a model for the TTD of a single S. 

Typhimurium (grown at 30oC, in TSB with 3% NaCl), can be constructed, and 

for such a model the mild thermal process carried out here gives lags between 

between approximately 1700 and 2900 mins (approx. range between the 2.5 

and 97.5 quantiles for multiple simulations of the TTD for a single cell, 

according to equation (2-28). The calculation suggests that for high inoculum 

densities (e.g. 108 cfu/ml) the distribution of injury is also wide; a similar 

calculation to that done for single cells gives an interquantile range (2.5 to 

97.5%) of approx 500 to 1700 min, whereas the uninjured have a TTD = 213 

min. 

It would be interesting to conclude that the examination of lags from single cell 

studies can be extrapolated from using larger initial inocula, however, this 

requires further study, as, for example, the effect of a definitive log reduction, 

e.g. a 3 log reduction has yet to be added to the simple model discussed here.  

When the maximum O.D before and after the thermal injury in different NaCl 

concentrations, was plotted against the initial populations of the L. 

monocytogenes strains showed a decrease of the max O.D after the heat 

treatment at an inoculum size of approximately 106 cfu/ml because the 

available nutrients were used to repair injury. With large numbers of microbes 

the available pool of nutrients is reduced significantly, hence the maximum 

O.D observed in untreated cases cannot be attained. On the other hand, the 
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max O.D of S. Typhimurium and E. coli was the same before and after the 

thermal injury. This suggests a problem or that there were enough nutrients 

available to be used from the microorganisms and reach the maximum O.D, at 

all inoculum sizes. Also, the plots mentioned above were obtained for S. 

Typhimurium and E. coli when studied in different pH and combinations of 

NaCl-pH. E. coli showed a decrease of the max O.D after the heat treatment 

while S. Typhimurium did not.  

6.5 Conclusion 

Optical density can be used to determine accurate growth rates and lags. 

Following a mild thermal process a lag is induced, the magnitude of which is 

dependent on the organism and environmental conditions; the observed 

distribution of the lags appears, in general, to follow the Log-normal 

distribution. After the lag period due to injury, growth recommences at the rate 

dictated by the growth environment.  The examination of lags from single cell 

studies might be extrapolated from using larger initial inocula according to the 

studies accomplished herein.  
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7 Traditional growth curves for different NaCl 

concentrations compared with the Bioscreen 

technique using Listeria monocytogenes strains, 

Salmonella Typhimurium and Escherichia coli 

7.1 Introduction 

The development of rapid, sensitive and specific methods to detect foodborne 

pathogenic bacteria is a major factor for effective practices which ensure food 

safety and security. Monitoring is one of the most important control points in 

the prevention of diseases by foodborne pathogens. To control foodborne 

pathogens in food products effective detection and inspection methods are 

necessary. “Conventional microbiological methods have been a standard 

practice for the detection and the identification of pathogens in food for nearly 

one century and continue to be a reliable standard for ensuring food 

safety’’(Yang and Bashir, 2008). However, the conventional methods build 

almost exclusively upon the use of specific agar media to isolate and 

enumerate viable bacterial cells in samples. These methods usually include 

microbiological culturing and isolation of the pathogen, which is followed by 

confirmation with biochemical and or serological tests, taking up to 5-7 days to 

get a confirmed result for a particular pathogenic organism (Swaminathan and 

Feng, 1994; Vasavada, 1997). Even if the conventional methods are reliable, 

they are time consuming and labour intensive and are therefore not suitable 

for modern food quality assurance to make a timely response to possible risks 

(Yang and Bashir, 2008). In order to obtain sufficient data using the traditional 

methods it may take several days of work.  As a result, over the past 25 years 

numerous novel methods which offer new possibilities, are cheaper, 

automated, accurate and most importantly they have been developed to 

reduce the assay time.  

However, rapid methods often have high detection limits and they may exhibit 

false positive results (e.g. ELISA). Rasch (2004) reported some examples of 

these methods, like turbidity, flow cytometry, microscopic methods etc. In 

particular, the turbidity method measures the optical density (O.D) of a cell 
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suspension and has been used by many scientists in the area of predictive 

microbiology. Dalgraard and Koutsoumanis (2001) stated that turbidimetric 

methodologies such as the use of Bioscreen microbiological analyser which 

measures O.D might be another way (instead of the traditional viable counts 

method) of studing the bacterial growth since O.D measurements give a real 

time measure of bacterial population. It has also been stated that, despite the 

high threshold detection of turbidimetric devices which is often the most 

important limitation of this method, the measurements have practical 

significance when dealing with bacteria at high cell densities. Predictive 

modelling requires the collection of adequate data. The advantage of the 

turbidimetric methods is that large numbers of experiments can be set up in a 

short period of time conversely with the time-consuming nature of plate counts 

and thus these methods constitute a valuable tool for predictive modelling.   

Herein, traditional growth curves using the plate count method were 

constructed and compared with the results obtained from the Bioscreen 

microbiological analyser under the same conditions. The results suggested 

that the growth parameters (growth rate and lag time) obtained from the 

traditional plates counts are higher than the growth parameters obtained from 

the TTD method which could be explained as an artifact of the plating method 

or may be due to the use of the modified Gompertz model to study the growth.   

7.2 Materials and methods 

Growth curves of L. monocytogenes strains (252 and 39), S. Typhimurium 

and E. coli were constructed at different NaCl concentration (0.5, 3, 6 and/or 

9% NaCl) at 30ºC using the traditional plate counts as described in paragraph 

2.2. Simultaneously, a Bioscreen experiment was set up under the same 

conditions as described in paragraph 2.3.5.1. The data obtained from the 

traditional growth curves were fitted with the modified Gompertz equation as 

described in paragraph 2.4.1 while the data obtained from the Bioscreen were 

fitted with the rearranged logistic with lag model as described in paragraph 

2.4.5.  
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7.3 Results 

7.3.1 Traditional growth curves 

Growth curves were made with the traditional plating method in TSB with 

0.5%, 3%, 6% and/or 9% NaCl at 30⁰C for L. monocytogenes 252, L. 

monocytogenes 39, E. coli and S. Typhimurium. Figure 7-1 to Figure 7-4 show 

the growth curves (Log (cfu/ml)/time) for the microorganisms examined in 

different NaCl concentrations. The data obtained were fitted with the modified 

Gompertz model and using JMP 8, the parameters (A, C, b and m) of the 

model determined.  

The growth parameters (growth rate and lag time) as well as the maximum 

population density (MPD) were calculated from the parameters of the modified 

Gompertz model and are shown in Table 7-1. The modified Gompertz model 

uses the logarithm of the microbial numbers and thus the growth rates 

calculated are expressed in Log cfu/hours. The growth rates were also 

expressed in Ln cfu/hours (Table 7-1), in order to be able to directly compare 

them with the growth rates obtained from the experiments conducted in the 

Bioscreen microbiological analyser under the same conditions but calculated 

from the rearranged lag logistic model which was used to fit the O.D data.  

As the NaCl concentration increased, the growth rate decreased while the lag 

time increased in all cases. L. monocytogenes 252 and L. monocytogenes 39  

had a high lag time (19.83 and 15.32 hours, respectively) and a low growth 

rate (0.392 and 0.345 Ln cfu/hour, respectively) in 9% NaCl and were more 

salt tolerant than S. Typhimurium or E. coli which did not grow at 9% NaCl.  S. 

Typhimurium and E. coli had high lag time (8.08 and 14.88 hours, 

respectively) and a low growth rate (0.368 and 0.391 Ln cfu/hour, 

respectively) in 6% NaCl and E. coli found to be the most salt sensitive 

microorganism from those examined. Also, with increasing NaCl 

concentration, a decrease in the MPD was observed in all cases.  
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Figure 7-1 Growth curves of Listeria monocytogenes 39 in TSB with 0.5% NaCl 

(), 3% NaCl (), 6% NaCl () and 9% NaCl () at 30⁰C, fitted with the modified 

Gompertz equation 

 

 

Figure 7-2 Growth curves of Listeria monocytogenes 252 in TSB with 0.5% 

NaCl (), 3% NaCl (), 6% NaCl () and 9% NaCl () at 30⁰C, fitted with the 

modified Gompertz equation 
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Figure 7-3 Growth curves of Salmonella Typhimurium in TSB with 0.5% NaCl 

(), 3% NaCl () and 6% NaCl () at 30⁰C, fitted with the modified Gompertz 

equation 

 

 

Figure 7-4 Growth curves of Escherichia coli in TSB with 0.5% NaCl (), 3% 

NaCl () and 6% NaCl () at 30⁰C, fitted with the modified Gompertz equation 
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Table 7-1 Parameters obtained from the modified Gompertz equation for 

Listeria monocytogenes 252, Listeria monocytogenes 39, Escherichia coli and 

Salmonella Typhimurium in TSB with 0.5% NaCl, 3% NaCl, 6% NaCl and/or 9% 

NaCl at 30⁰C 

Microorganism 
NaCl 

(%) 

Growth rate 

(Log cfu/hours) 

Growth rate 

(Ln cfu/hours) 

Lag time 

(hours) 

MPD       

(log cfu/ml) 

Listeria 

monocytogenes 

252 

0.5 0.59 (0.54-0.66) 1.37 (1.24-1.52) 2.75 (1.91-3.46) 9.9 

3 0.37 (0.35-0.40) 0.86 (0.81-0.91) 2.97 (2.18-3.62) 9.7 

6 0.29 (0.26-0.31) 0.66 (0.60-0.72) 7.39 (6.24-8.42) 9.4 

9 0.17 (0.16-0.18) 0.39 (0.37-0.42) 19.8 (18.8-20.9) 8.9 

Listeria 

monocytogenes 

39 

0.5 0.47 (0.45-0.49) 1.08 (1.04-1.12) 1.37 (0.77-1.89) 10.3 

3 0.42 (0.39-0.45) 0.96 (0.89-1.02) 3.31 (2.42-4.04) 9.8 

6 0.31 (0.29-0.33) 0.71 (0.67-0.75) 6.09 (5.27-6.85) 9.3 

9 0.15 (0.14-0.16) 0.35 (0.34-0.37) 15.4 (14.5-16.2) 8.6 

Salmonella 

Typhimurium 

0.5 0.65 (0.62-0.68) 1.50 (1.43-1.57) 1.37 (0.76-1.89) 9.9 

3 0.50 (0.48-0.52) 1.16 (1.12-1.20) 1.91 (1.38-2.37) 9.7 

6 0.16 (0.15-0.17) 0.37 (0.34-0.40) 8.08 (5.40-10.3) 9.1 

Escherichia coli 

0.5 0.72 (0.68-0.75) 1.65 (1.57-1.73) 0.76 (0.09-1.30) 9.9 

3 0.58 (0.55-0.62) 1.34 (1.26-1.42) 2.49 (1.88-3.04) 9.3 

6 0.17 (0.15-0.19) 0.39 (0.35-0.45) 14.9 (11.5-17.8) 9.2 

7.3.2 Performing tests in the Bioscreen 

A Bioscreen experiment was set up under the same conditions in order to 

compare the growth parameters obtained from the two methods. Figure 7-5 

shows the relationship between the initial log inocula against the TTD of S. 

Typhimurium at 30⁰C in different NaCl concentrations (0.5, 3 and 6% NaCl). 

Similar figures were obtained for all analyses conducted.   
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The relationship between the initial populations of the microorganisms against 

the TTD was linear and the observed TTD were modelled with the rearranged 

lag logistic model. As the NaCl concentration increased, the gradient and 

intercept increased. The growth parameters obtained showed an increased 

lag time and a decreased growth rate as the NaCl concentration increased 

(Table 7-2). Also, the results obtained from the studies herein were similar 

and thus reproducible, with the results obtained from the inoculum size 

studies accomplished in the Bioscreen under the same conditions in Chapter 

5.   

Comparing the growth parameters obtained from the fit of the modified 

Gompertz model to the data obtained from the traditional growth curves 

(Table 7-1) against the growth parameters obtained from the fit of the 

rearranged logistic with lag model to the data obtained from O.D 

measurements (Table 7-2), it can be observed that these results are 

significantly different from each other. In particular, the lag times obtained 

from the fit of the modified Gompertz model, were significantly higher than 

those obtained from the TTD technique while the growth rates obtained from 

the fit of the modified Gompertz model were, in most cases, higher than those 

obtained from the TTD technique.  

 

Figure 7-5 Relationship between TTD with the initial populations of Salmonella 

Typhimurium in TSB with 0.5% NaCl (), 3% NaCl () and 6% NaCl () at 30⁰C 
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Table 7-2 Parameters describing the growth kinetics of 3 different 

microorganisms (with their confidence intervals), as calculated from data 

obtained from the rearranged logistic with lag model at 30⁰C 

Microorganism 
NaCl 

(%) 

Growth rate 

(Ln cfu/hours) 

Lag time 

(hours) 

Listeria 

monocytogenes 

252 

0.5 1.073 (1.065-1.081) 0.279 (0.207-0.351) 

3 0.915 (0.908-0.922) 0.653 (0.571-0.735) 

6 0.616 (0.609-0.623) 0.985 (0.787-1.184) 

9 0.300 (0.291-0.309) 12.69 (11.66-13.71) 

Listeria 

monocytogenes 

39 

0.5 1.043 (1.036-1.050) 1.269 (1.204-1.334) 

3 0.848 (0.838-0.858) 2.060 (1.923-2.198) 

6 0.614 (0.605-0.624) 4.239 (3.991-4.487) 

9 0.295 (0.286-0.304) 16.14 (15.08-17.19) 

Salmonella 

Typhimurium 

0.5 1.264 (1.251-1.277) 0.583 (0.505-0.660) 

3 1.535 (1.522-1.548) 0.948 (0.896-1.001) 

6 0.295 (0.290-0.299) 2.568 (2.077-3.059) 

Escherichia coli 

0.5 1.506 (1.496-1.517) -0.02 (-0.06-0.022) 

3 1.076 (1.070-1.082) 0.212 (0.164-0.260) 

6 0.352 (0.345-0.360) 6.078 (5.534-6.622) 
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7.4 Discussion 

The growth data obtained at 30⁰C, in different NaCl concentrations using the 

traditional plate method were fitted with the modified Gompertz model and 

compared directly with the growth data obtained from the Bioscreen which 

were fitted with the rearranged lag logistic model for TTD data. In the 

literature, one of the most common used models to fit growth data is the 

modified Gompertz model (McClure et al., 1994; Linton et al., 1995a; 1995b; 

Li et al., 2007). However, it has been previously shown that the modified 

Gompertz model (as well as the modified logistic model) was not able to fit 

TTD data (Mytilinaios et al., 2012). In contrary, the classical 3 parameter 

logistic model (and by default the Baranyi model) was able to give accurate 

growth rates and lag times from O.D data.  

The traditional method of examining growth using plates can be considered to 

be a repeated measures experiment following the growth of an initial inoculum 

with time, whereas the method used here is a multiple inoculum experiment 

with a single time measurement (the TTD) per inoculum. These methods 

should be considered not as complementary but methods describing the same 

phenomenon of microbial growth, done in a different fashion. However, the 

growth rates and the lag times obtained from the two methods were 

significantly different. In particular, the growth rates and lag times obtained 

from the modified Gompertz model which was used to fit the data from the 

traditional growth curves were significantly higher in comparison with the 

growth parameters obtained from the classical logistic model which was used 

to fit the TTD data from O.D measurements.  

There are studies within the literature which report differences between the 

parameters obtained from O.D data compared with those from the plate 

counts (Augustin et al., 1999; Baty et al., 2002). Francois et al. (2005) stated 

that these discrepancies may be explained because of the underestimation 

that may occur from the plate counts as the condition becoming harsher and 

subsequently the estimation of the growth parameters is less accurate. Also, 

Farber et al. (1996) studied the effect of temperature, pH and carbon dioxide 
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on the growth or survival of five strain mixture of L. monocytogenes and used 

two primary models (modified Gompertz and Baranyi) to fit the data. They 

stated that the Baranyi model appeared to fit the data better than the modified 

Gompertz model and that the modified Gompertz model predicted longer lag 

times.  

Furthermore, the discrepancies mentioned above could be an artifact of the 

plating method and could be explained from the mitotic process. In particular, 

if we consider a single cell which starts growing and duplicating its DNA 

(interphase), it appears on the agar plate as one colony. As the mitosis begins 

the cell starts dividing itself into two identical cells (daughter cells), even at the 

end of the telophase, on the plate it appears as a single colony. Only at the 

final phase (cytokinesis) where the cell is completely divided in two identical 

cells, on the plate appears as two colonies. On the other hand with the 

Bioscreen microbiological analyser the growth of the microorganisms is 

monitored continuously and any difference in the size of the cells results in a 

higher O.D. The aforementioned details could be the explanation for the 

differences on the growth data obtained from the two methods compared.  

It is also noteworthy to mention the differences in the quantity of the materials 

used for conducting each experiment with the two methods as well as the 

differences in time needed to accomplish each experiment. Figure 7-6 

illustrates the differences in the materials used with the two methods studied. 

It is obvious that the materials used for the traditional plate counts are much 

more than the materials used to set up a Bioscreen experiment and thus the 

costs are increased. Also, the time consumed to set up a Bioscreen 

experiment was approximately 2 hours hence with the traditional method 

measurements needed to be taken every 2-5 hours for 1-5 days. This is also 

important for modern food quality assurance to make a timely response to 

possible risks (Yang and Bashir, 2008) and for effective practices which 

ensure food safety and security. 
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Figure 7-6 Materials used to set up a Bioscreen experiment (left) and to obtain 

a growth curve with the traditional plate counts (right) 

 

7.5 Conclusion 

The increased lag times and growth rates obtained from the traditional plate 

counts compared with the values obtained from the Bioscreen microbiological 

analyser, might be an artifact of the plating method or may be due to the use 

of the modified Gompertz to study the growth. This is an empirical model 

which we have already shown to be incapable of describing the results of TTD 

experiments. It is also possible that the modified Gompertz is not as 

applicable to plate data as thought. The study herein suggests that growth 

parameters can be obtained from TTD data faster, cheaper and more 

accurately compared with the so far used plate count method.  
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8 General discussion  

Microorganisms in foodstuffs can cause spoilage, food poisoning or can affect 

their properties in a beneficial way (food fermentation). Food poisoning is 

defined as any illness caused by bacterial, chemical or biological 

contamination of food and is related to food safety.  Foodborne disease is a 

serious threat to public health and it seems to be increasing globally 

(Knowels, 2007). Foodborne pathogens are dynamic and even the well known 

ones can evolve and create new public health challenges but also there are 

several unknown foodborne pathogens constantly emerging (Newell et al., 

2010). It is clear that the prevention of foodborne disease is important for food 

safety. Traditionally, food safety control was based on the inspection of the 

end product but nowadays, new strategies and technologies have been 

developed like the food safety tools (GMP, GHP), the implementation of 

HACCP systems/plans and the MRA which all together constitute a proactive 

and preventative concept of assuring food safety.  

The multi-target hurdle technology is a concept developed several years ago 

in food production for the mild but effective preservation of foods (Leistner, 

1995 a; 1995 b). Also, with predictive microbiology the knowledge of the 

microbial responses in different environmental conditions is summarised as 

mathematical models or equations and therefore has become a valuable 

research tool. To control foodborne pathogens in food products the effective 

detection and inspection methods are necessary. Conventional methods built 

almost solely upon the use of agar plates, are time consuming, labour 

intensive and costly. On the other hand, the TTD method (measure of O.D) is 

a rapid, cheap and reliable method which has been used for many 

applications in food microbiology (e.g. McClure et al., 1993; Francois et al., 

2005; Dalgaard and Koutsoumanis, 2001; Guiller et al., 2006; Standaert et al., 

2005; Stephens et al., 1997).  

We have been developing the use of O.D for obtaining growth rates and lag 

times using multiple inocula rather than using the traditional methods which 

use one single inoculum. In particular, all analysis were performed in the 
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Bioscreen microbiological analyser which measures O.D and the TTD was 

defined as the time which each inoculum needs to reach an O.D=0.2 (TTD 

were found using linear interpolation between O.D/time values which 

straddled the O.D = 0.2 value).  

The first part of this project examined the use of the Bioscreen to predict 

growth curves from O.D data. Models used to examine the shape of microbial 

growth generally require four parameters: the initial and final population levels 

(I0 and MPD respectively), the maximum specific growth rate and the time at 

which this occurred. If three pieces of information are available, e.g. the initial 

population, the MPD and the specific growth rate, then knowledge of the 

population at a specific time can be used to reproduce the growth curve 

simply by substituting the values into the equations and solving for the missing 

parameter.  

The TTD data produced using the multiple inocula technique described could 

be well fitted using the 3-PLM, the Baranyi and the logistic (with or without 

lag), the parameters obtained were consistent between models and reflected 

the observed gradients well. Further, using a simple conversion between O.D 

and numbers (cfu ml-1), the basic features of the O.D/time plots could be 

reproduced with these models and thus the peculiar problem described by 

Baranyi and Roberts (1995): that direct fitting of viable count data to turbidity 

or conductivity data or vice-versa should not be considered without additional 

information being available could be overcome. The modified logistic and 

modified Gompertz equations, however, failed to fit the observed data and 

could not reproduce the observed O.D/time plots. Several reports have 

suggested that the O.D technique is limited as it requires high initial inocula 

(Dalgaard et al., 1994; Dalgaard and Koutsoumanis, 2001; Baty et al., 2002; 

Perni et al., 2005). The observed data described herein showed that this 

assumption is not valid. If the growth rate of an organism under ideal 

conditions is obtained using the multiple inoculum method then any 

subsequent study using non-ideal conditions can use a positive control to set 

the modelled fit.  
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The measurement of microbial growth rates, especially its temperature 

dependency, is of fundamental importance in food microbiology. Within the 

literature several studies have looked at the effect of non-isothermal studies 

conditions on microbial growth using established modelling methods (Baranyi 

et al., 1995; Bovill et at., 2000; Dalgaard et al., 2002; Giannakourou et al., 

2005; Koutsoumanis, 2001; Koutsoumanis et al., 2006; Taoukis et al., 1999; 

Zwietering et al., 1994). The aim of these studies was to test the ability of 

using models based on growth data obtained isothermally to predict growth 

under non-isothermal conditions. 

Using micro-titre plates with multiple inocula allowed the investigation of a 

wealth of phenomena such as small temperature shifts using L. 

monocytogenes 252 as an example. The model used to fit the data obtained 

from the Bioscreen microbiological analyser was based on the Malthusian 

approximation of the logistic model. The results obtained from the non-

isothermal studies showed that when a temperature shunt was applied to 

growing bacteria, the culture reduced or increased its growth rate 

commensurate with the incubation temperature. When the culture was 

shunted from a lower temperature to a higher temperature there was no 

evidence of an induced lag and growth continued at the rate dictated by the 

new temperature. When the culture was shunted from a higher to a lower 

temperature condensation on the inside of the plate lid occurred and this led 

to unusable data for a period after the shunt (the period depended on the 

temperature difference). From the observed and the fitted data it can be 

concluded that no induction of lag occurred when moving from the higher to 

the lower temperatures used: the intercept of the regression lines for each 

temperature coincide at the time of the temperature shunt, if lags were 

present this would not occur.  

Our better understanding from these studies regarding the O.D curves (TTD 

method) and the way they can be fitted, led to the use of the rearranged 

logistic with lag model. O.D was directly related to microbial numbers with 

simple calibration curves. Calibration curves showed that a direct relationship 

between O.D and cfu/ml existed and that a specific O.D was equivalent to a 
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specific number of organisms per ml. McKellar et al. (2002) and McKellar and 

Knight (2000) have suggested a method for the analysis of lag time using the 

same methodology employed in our laboratory. The classic 3-parameter 

logistic model was able to fit the TTD data obtained from turbidometric 

experiments using multiple inocula incubated iso-thermally. In all cases, with 

increasing incubation temperature (30-37⁰C) the growth rate increased hence 

the lag time decreased which shows that 37⁰C is a more optimal temperature. 

Also, the parameters obtained suggested that as the conditions became more 

inimical (increased NaCl concentration, low pH or combinations of NaCl-pH) 

the growth rate decreased while the lag time increased. The analysis of the 

data obtained from the inoculum size experiments showed that the growth 

rate was independent of the inoculum size. The inoculum size affected only 

the time to reach the TTD, where the higher inocula needed less time to reach 

the TTD criterion (e.g. O.D = 0.2) compared with lower inocula. The MICNaCl 

and MICpH were obtained from O.D measuremenets using the LPM (Lambert 

and Pearson, 2000). The results obtained were in agreement with the 

inoculum size experiments.  

When the microorganisms were thermally injured, a lag (due to thermal injury) 

was also induced (laginjury). The standard lag and growth rate can be easily 

obtained from TTD experiments when modelled using the logistic with lag 

equation. Growth rates, (and lags) change accordingly when the environment 

is more amenable for growth (e.g. move to more optimal temperature) or less 

cordial (e.g. increasing salt concentration). When a small thermal insult 

(nominally 60⁰C for 25mins) was applied to the Bioscreen plate, whilst the 

organisms were in exponential phase, E. coli and S.Typhimurium showed a 

significant response relative to L. monocytogenes. The observed TTD data 

showed a step between the control (no thermal injury) and the treated wells, 

the size of the step appeared correlated with the growth conditions and was 

dependent on the species under observation. There was also a large increase 

in the variance of the data following the thermal process, again the magnitude 

of which appeared to be dependent on the environmental conditions and the 

species under test. 
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The distribution of the thermally induced lags was found to be Log-normal for 

the majority of experiments; in some cases the Gamma distribution had a 

slightly better fit from the Log-normal distribution but even in those cases the 

fit of the Log-normal distribution was quite well with p>0.05.  

Data were simulated using the hypothesis that the organisms undergoing a 

thermal insult have an induced lag the size of which is randomly given by the 

Log-normal distribution, but when repair is over (the time of lag) growth occurs 

at the same rate as before, dictated by the environment. However, although 

the simulations appear to give credible reconstructions of the observed data, 

there was no-way to obtain the growth rate data from a single observation of 

the TTD. However, each well provides a wealth of O.D data, at values other 

than the set O.D criterion. 

The shape of the O.D-incubation time curve is a reflection of the lag, the 

growth rate and the maximum population attained. Different inocula with the 

same lag and growth rate will have congruent O.D/incubation time curves, but 

shifted up or down the time axis depending on whether the initial inoculum is 

greater or less than a given value. If the shapes for a series of control 

experiments are known, from which the growth rates have been calculated, 

then any test inoculum having the same growth rate will have the same 

O.D/time shape, i.e. it will show congruence with the controls. It is known that 

as growth conditions become more inimical, growth rates and lags increase 

and the shape of the O.D/incubation curve become more shallow relative to a 

positive control (e.g. grown under optimal conditions). In the experiments 

carried out here, the thermally treated inocula had congruent O.D/time curves 

after the injury had been dealt with (lag due to injury).  

To further show that the treated inocula grow at the same rate once recovery 

is complete, it was hypothesised that if an initial inoculum which underwent 

the mild thermal process was then subsequently serially diluted, then the 

distribution of injury occurring to the population in the initial well would be 

identical to those diluted across the plate. Once recovery was achieved the 

wells would show a linear relationship, if the lag is a function of the injury 
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distribution, with a gradient equal to that of the untreated control. Such 

experiments carried out on all the organisms studied confirmed this 

hypothesis. All plots showed a linear relationship with the log of the initial 

inoculum, with gradient approximately equal to that of the control. The 

curvature of the highest inoculum used is due to the approach to the detection 

threshold. The model used after the heat treatment suffers from the same 

problem that the logistic with lag growth model has – no growth until the end 

of lag.  

It would be interesting to conclude that the examination of lags from single cell 

studies can be extrapolated from using larger initial inocula, however, this 

requires further study, as, for example, the effect of a definitive log reduction, 

e.g. a 3 log reduction has yet to be added to the simple model discussed here.  

Finally, the growth curves obtained at 30⁰C, in different concentrations of salt 

(3, 6 or 9% NaCl) using the traditional plate method, compared directly with 

the Bioscreen method. The growth rates and the lag times obtained from the 

two methods were significantly different. Additionally, there are studies that 

report differences between the parameters obtained from O.D data compared 

with those from the plate counts (Augustin et al., 1999; Baty et al. 2002). 

Francois et al. (2005) mentioned that these discrepancies may be explained 

because of the underestimation that may occur from the plate counts as the 

condition becoming harsher and subsequently the estimation of the growth 

parameters is less accurate. Similarly, the study herein suggests that growth 

parameters can be obtained from TTD data faster, cheaper and more 

accurately compared with the so far used plate count method. 
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9 General conclusions 

The conclusions which can be derived from this study are: 

 Optical density can be used to determine accurate growth rates and lag 

times;  

 The Baranyi model is the most capable primary model of those 

examined (in the absence of lag it defaults to the classic 3 parameter 

logistic model), but the modified logistic and the modified Gompertz 

should not be used as primary models as they cannot reproduce 

observed (TTD) data;  

 Studies of the mild temperature shifts using the Malthusian 

approximation of the logistic model suggested that there were no 

indications of induced lags when the plates were exchanged from one 

temperature to the other;  

 The classic 3-parameter logistic model (with a lag term) was 

rearranged to provide the theoretical foundation for the observed TTD.  

 Inoculum size studies showed that as the conditions became more 

inimical the growth rate decreased while the lag time increased. Also, 

the growth rate was independent of the inoculum size. The inoculum 

size affected only the time to reach the TTD;  

 The Lambert and Pearson model (LPM) and the Extended Lambert and 

Pearson model (ELPM) can analyse results from individual and 

combined inhibitors, respectively;  

 A heat injury induced a lag due to inhury (laginjury), the magnitude of 

which is dependent on the organism and environmental conditions; the 

observed distribution of the lags appears, in general, to follow the Log-

normal distribution. After the lag period due to injury, growth 

recommences at the rate dictated by the growth environment;  

 Growth rates can alter without inducing lags or lags can be induced 

without inducing changes in growth rate;   

 The increased lag times and growth rates obtained from the traditional 

plate counts compared with the values obtained from the Bioscreen, 
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might be an artifact of the plating method or may be due to the use of 

the modified Gompertz to study the growth.  The study herein suggests 

that growth parameters can be obtained from TTD data faster, cheaper 

and more accurately compared with the so far used plate count 

method;  

 The aforementioned in combination with the models developed herein 

can offer new possibilities both to the research and food industry.  
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10 Future Work 

Based on the findings of the present study further work could include: 

 The use of the methodology and models developed from the mild 

temperature shifts studies in order to examine more extreme 

temperature shifts (e.g. shifts between refrigeration temperatures and 

ambient temperatures) which can be considered as a more accurate 

simulation of the temperature shifts that foods could undergo after 

purchased from the consumers;   

 The use of the methodology and the models developed to fit and to 

simulate the data obtained from the mild thermal injury studies in order 

to examine the effect of a definitive log reduction, e.g. a 3-log 

reduction, which is one of the most common processing factors used 

by the food industry to control microbial growth as well as the 

examination of the effect of refrigeration temperatures in combination 

with a (mild) thermal injury;  

 The use of flow cytometry in order to have a better understanding of 

the thermal injury applied by quantifing the number of healthy and dead 

cells; 

 The use of other methodologies such as the flow cytometry and/or 

molecular methods in conjunction with the Bioscreen technique would 

supplement this rapid and cheap method with physiological and 

molecular information which would result in a more integrated 

methodology for the effective application of predictive microbiology; 

 The better understanding and the wider knowledge obtained from the 

studies accomplished herein regarding the TTD method, can be used 

as the basis for applying the same methodologies in real food such as 

milk or other food products which can be used using the Bioscreen 

microbiological analyser.  
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APPENDICES 

Appendix A Bioscreen microbiological 

analyser 

The Bioscreen C Reader System (Figure A-1) is a fully automated instrument 

developed to perform a wide range of microbiology experiments. The system 

consists of:  

 Bioscreen C reader which includes an incubator and a measurement 

unit 

 Computer 

 EZE experiment software 

 Honeycomb plates 

 

Figure A-1  The Bioscreen C reader system  

The incubation temperature can be set from 1 to 60ºC in steps of 0.1ºC. The 

maximum temperature of 60ºC is reached when the lid is 60ºC and the 

cassette holding the samples has reached 59ºC. Bioscreen can reach 6ºC 

below and 30ºC above ambient temperature. If lower temperatures are 

desired, the whole Bioscreen must be placed in a cooled room. The 

measurement is done kinetically using the principle of vertical photometry. In 
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this technique a light beam passes up through the bottom of the plate well, 

through the sample suspension to the detector. All functions are controlled by 

computer software according to the parameters entered by the user. Each 

honeycomb plate consists of 100 wells and the instrument can handle two 

plates at time, so the maximum capacity is 200 samples per run. Each well of 

the plate is an individual test vessel, so 200 microbiological growth 

experiments can be performed in a single run. The plate was designed to give 

the most even temperature possible across the whole plate, as well as to 

eliminate evaporation and condensation, common problems with the 

conventional 96-well plates. Bioscreen C monitors the growth of 

microorganisms by measuring the turbidity of liquid growth medium in the well. 

These measurements are done kinetically and recorded as optical density 

(O.D) measurements. These values are recorded by the controlling PC. 

Bioscreen C can measure growth of any organism that will cause turbidity in 

its growth medium such as bacteria, yeasts and fungi.  

The reader includes three interrelated systems:  

 Mechanical transport 

 Incubator and 

 An optical system 

These three systems work in a coordinated way to provide automated heating 

or cooling sample indexing and O.D readings. 

Mechanical transport 

The incubator tray assembly holds the honeycomb plates in the correct 

position. The assembly shuttles left from the plate loading section into the 

measurement compartment, where light is passed through each well of the 

plate and the detector makes the O.D readings. 

Incubator 

The incubator consists of the incubator tray itself and the incubator tray cover. 

The incubator has a liquid circulation heat exchanger which gives constant 

temperature to all wells and at the selected value. This is essential for 
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developing high quality “growth curves”. It should be noted that the curves 

obtained from the Bioscreen is a curve which relates the O.D in relation with 

the time (O.D/Time curves) at a particular wavelength. This is not a growth 

curve i.e. a curve which relates the number of microorganisms in relation with 

the time. The latter means that what we can see from that curve as an 

apparent lag phase, is in fact the time taken for a culture, with an initial 

inoculum below the detection threshold, to reach the detection capability of 

the Bioscreen. Further, the apparent linear phase of the O.D curve is not 

exponential growth but it is due to the linear increase in microbial numbers.  

Optical system 

A halogen lamp produces light which then passes through the chopper wheel. 

The light path is turned 90 degrees by a mirror. The light then passes through 

the filter wheel. The correct filter is chosen by the user, by making the 

appropriate entry during the experiment’s set up. After that, the filtered light 

moves through an optical fiber to the lens assembly in the measurement 

compartment, below the honeycomb plate(s). The light passes through the 

bottom of each well and the results are collected from the detector. The 

detector is on a retractable arm which moves into the right places above the 

plate. The optical system is shown in Figure A-2.  
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Figure A-2 The optical system of the Bioscreen C  

Some of the applications of the Bioscreen C in microbiology are mentioned 

below:  

 General research (Skytta et al., 1993); 

 Food microbiology research (Stephens et al., 1997; Francois et al., 

2005; Bidlas and Lambert, 2008; Lambert and Bidlas, 2007a, 2007b, 

2007c; Carlos et al., 2009); 

 Dairy applications (Mattila and Alivehmas, 1987); 

 Food QC for measuring total counts (Mattila, 1987); 

 Veterinary microbiology (Mattila et al., 1988); 

 Estimating the effects of chemicals on microorganisms (Adams and 

Hall, 1988).   
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Appendix B API 20E test 

API 20E is a standardised and rapid identification system for 

Enterobacteriaceae and other Gram negative bacteria. Moreover, the API 20E 

strip consists of 21 miniaturised biochemical tests (Table B-1). The microtubes 

in the strip contain dehydrated substrates. The principle on which these tests 

are based is that after inoculation of the tests with the bacterial suspension, 

metabolism produces colour changes that are either spontaneous or revealed 

by the addition of reagents. A single colony from an isolation plate was 

removed and resuspended in a tube with 5ml sterile distilled water. The 

incubation box (tray and lid) was prepared by distributing 3-5ml of distilled 

water into the wells of the tray to create a humid atmosphere. The test 

microtubes on the strip consist of the tube and the cupule. With a Pasteur 

pipette the bacterial suspension is distributed into the tubes of the strip. The 

tip of the pipette should be placed on the side of the cupule in order to avoid 

the formation of bubbles. For the tests CIT, VP and GEL the tube and the 

cupule was filled while for the tests ADH, LDC, ODC, H2S and URE 

anaerobiosis was created by overlaying with mineral oil. Then the incubation 

box must be closed with the lid and then be incubated at 37ºC for 24 hours. 

After 24h of incubation at 37ºC three tests required the addition of reagents. 

TDA test required the addition of one drop of TDA reagent, IND test required 

the addition of one drop of JAMES reagent and VP test required the addition 

of one drop of VP 1 and one drop of VP 2 reagent.  The metabolism produces 

changes in the colour of the tests which can be characterised as positive or 

negative using the reading table. According to the reactions (number of 

positive and negative tests) the identification obtained with the numerical 

profile using the database (V4.1) with the apiwebTM identification software. 
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Table B-1 Reading table for the API 20E 

Tests Active ingredients Reactions/Enzymes 

ONPG 2-nitrophenyl-βD-galactopyranoside β-galactosidase 

ADH L-arginine Arginine dihydrolase 

LDC L-lysine Lysine Decarboxylase 

ODC L-ornithine Ornithine Decarboxylase 

CIT Trisodium citrate  Citrate utilisation  

H2S Sodium triosulfate H2S production 

URE Urea Urease 

TDA L-tryptophane Tryptophane Deaminase 

IND L-tryptophane Indole production 

VP Sodium pyruvate Acetoin production 

GEL Gelatin (bovine origin) Gelatinase 

GLU D-glucose Fermentation/Oxidation Glucose 

MAN D-mannitol Fermentation/Oxidation Mannitol 

INO Inositol Fermentation/Oxidation Inositol 

SOR D-sorbitol Fermentation/Oxidation Sorbitol 

RHA L-rhamnose Fermentation/Oxidation Phamnose 

SAC D-sucrose Fermentation/Oxidation Saccharose 

MEL D-melibiose Fermentation/Oxidation Melibiose 

AMY Amygdalin Fermentation/Oxidation Amygdalin 

ARA L-arabinose Fermentation/Oxidation Arabinose 
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Appendix C Mathematical modelling of 

growth data 

C.1 Non-linear and linear regression 

Non-linear regression is used to fit data to a model which defines y as a 

function of x. y must be a continuous variable. If y is a binomial outcome then 

logistic regression should be used instead. Linear regression can be 

characterized as a special case of non linear regression. A linear function is 

described by: 

       (C-1) 

Where a is the slope and b is the intercept. 

If the slope is positive y increases as x increases while if slope is negative y 

decreases as x increases.  

Regression is done by minimizing the sum of squares (SS) of the vertical 

distances of the data from the line or the curve. The SS is the sum of the 

squares of the vertical distances of the points from the curve. Non linear 

regression minimizes the sum of the square of the vertical distances of the 

data points from the curve. On the other hand, linear regression is modelling 

data in a straight line. When modelling data it is not only necessary to obtain 

the parameters of the model which give the best fit but also an indication of 

how good a fit the model gives.  Linear regression uses the idea that we 

minimise the sum of squares of the differences between the modelled and the 

observed data, by changing values of the intercept and gradient until the 

minimum values are reached. We then state that this minimised sum of 

squares is a measure of the inherent variability of the data, i.e. the ‘stochastic’ 

part of the data that we cannot model directly. The difference between linear 

and nonlinear regression is that non linear regression is an iterative or cyclical 

process while linear regression needs only one single calculation to get the 

lowest SS required (Brown, 2001).  
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The aim of regression is to find the best fit values for the parameters of the 

model. The assumptions where non linear regression is based, are that x 

values are known, all the error is in y values, the variability of y values follow 

the Gaussian distribution, the standard deviation of the residuals is the same 

all the way along the curve and that the observations are independent. The 

assumptions where linear regression is based are that all x values are known, 

and that the entire scatter is in the assessment of the dependent y values.  

C.2 Weighted regression 

One of the assumptions of linear and non linear regression is that the 

standard deviation of the error is constant over all values. In cases where the 

standard deviation (SD) of the error is not consistent, minimizing the SS would 

be inappropriate. Data points with large deviations from the curve would have 

a large impact on the SS value whilst data points with small deviations from 

the curve would have little impact. This is undesirable as we want all the data 

points to have the same influence to the goodness of fit. In order to 

accomplish this weighted least squares can give each data point the proper 

amount of influence over the parameter estimates. One method to do this is to 

use the reciprocal of the variance found for replicates as the weighting regime.  

C.3 Logistic regression 

If an experiment gives two possible outcomes – e.g. live or dead, like 

growth/no growth experiments, then the data is considered to be either 

categorical or nominal if you can assign a number to it. Such data are 

dichotomous - they have two possible values or outcomes and are also known 

as binary variables.  In a particular situation the values may be dependent on 

a multiple set of explanatory variables. 

The Odds of some event occurring is the probability of an event occurring 

relative to the probability that it will not. 

          
    

      
 

(C-2) 
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The probability of success can have values between 0 and 1 only. A linear 

model of the variables can take any value. We need to link the two systems by 

a transformation of the model to the probability. This is called the link function, 

and often the logistic function can be used to achieve this. 

When probabilities are plotted against a variable a sigmoid curve is obtained. 

There are lots of functions which can reproduce a sigmoid shape, however, 

one of the most common is  

     
 

               
 

(C-3) 

The parameters β0 and β1 determine the slope and the spread of the curve.  

The function is symmetric about the point x=-β0/β1, and at this point P(x) = 0.5. 

If logs are taken, then we obtain: 

                       

 

             
      

    
 

 

            
    

      
 

          
    

      
  

(C-4) 

 

The expression on the RHS is known as the logit. The expression is now 

linear in the x-variable. The ratio P(x)/(1-P(x)) is the ratio between the 

probability of success and the probability of failure. Hence the RHS is the log 

of the odds of success. The log odds ratio is the difference between the 

probability of success when x = x=1 and when x=x; and this is simply β1. The 

odds ratio is therefore eβ1, also known as the odds multiplier.  
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Regression modelling 

The relationship between a dichotomous variable Y and n explanatory 

variables x1,x2,….xn is described by the logistic regression model. Consider a 

series of observations, let pi be the mean probability of the observations, then  

   
 

              
 
        

 
(C-5) 

Applying the logit transformation gives the logit form of the model  

                
 

   
     

(C-6) 

In general, when the explanatory variables are quantitative, each of the 

regression parameters x1,x2, . . . , xk can be interpreted as log odds ratios for 

the corresponding explanatory variable, when all other explanatory variables 

are held fixed. That is, the odds multiplier for xi is equal to eβi. When the 

explanatory variable xi is increased by 1 unit, and all other explanatory 

variables are held constant, the odds of success is increased by a factor eβi . 

(Note that, if βi is negative, then eβi< 1, so the odd of success is actually 

reduced by that factor. 

Significance of explanatory variables is tested in a different way to normal 

regression because the response variables are Bernoulli distributed as they 

are binary. In logistic regression the parameters are obtained by using 

maximum likelihood estimation.  

C.4 Distributions 

C.4.1 Normal distribution 

The normal distribution which is also known as the Gaussian distribution is a 

continuous probability distribution that has a bell shaped probability density 

function. The distribution is given by  

          
 

    
 
 
 
 
 
   
 
 
 

 
(C-7) 



209 

 

Where μ is the mean (continuous location parameter) and σ (continuous scale 

parameter) is the standard deviation and σ2 is the variance, with 

domain        . When μ=0 and σ=1, the distribution is called standard 

normal distribution.  

C.4.2 Log-Normal distribution 

The log normal distribution is a continuous probability distribution of a variable 

whose logarithm is normally distributed. The distribution is given by: 

         
 

     
 
 
 
 
 
     
 

 
 

 
(C-8) 

Where μ which is the mean and σ which is the standard deviation, are 

continuous parameters (μ>0 and σ>0) with domain        .  

C.4.3 Weibull distribution 

The Weibull distribution is given by: 

         
 

 
 
 

 
 
   

 
  
 
 
 
 

 
(C-9) 

Where the variable x and the parameters a (shape parameter) and σ (scale 

parameter) are all positive real numbers. The parameter σ is a scale 

parameter and the variable    
 

 
 has the distribution given by: 

     
      

 
 (C-10) 

C.4.4 Gamma distribution 

The Gamma distribution is given by: 

              
           (C-11) 

 

Where the variable x and the parameters a (shape parameter) and b (scale 

parameter) are all positive real quantities and Γb is the Gamma distribution.  
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C.4.5 Comparison between distributions 

In statistics a widely accepted test for evaluating the goodness of fit of models 

is the likelihood ratio test. In particular the loglikelihood test compares two 

models, a null model and an alternative, of which the first one is a special 

case of the other one. The test is based on the likelihood ratio which 

represents how many times more likely the data are under one model than the 

other. Most of the times the logarithm of the likelihood test is used 

(loglikelihood) to calculate the p-value. The model (δ=2logΛ) is given by: 

  
                        

                                  
 

(C-12) 

Where L0 is the likelihood under the null hypothesis and L1 is the likelihood 

under the alternative hypothesis.  

Another way of comparing models is the Akaike Information Criterion (AIC). 

The AIC is given by:  

             (C-13) 

Where L is the maximum value of the likelihood function for a model and n is 

the number of the parameters of the model. Small AIC values indicate better 

models. Also, the AIC does not test a null hypothesis but it is a good tool-

measure of how good a fit of a model is but imposes a penalty of unnecessary 

parameters.  
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Appendix D Additional information for the 

studies accomplished  

Table D-1 Relationship between optical density in the Bioscreen (200μl volume) 

and in the spectrophotometer (1cm pathway) with microbial numbers of L. 

monocytogenes 252, L. monocytogenes 39, S. Typhimurium and E. coli. 

Microorganism 
O.D (Bioscreen, 

200μl, 600nm) 

O.D (Spectrophotometer, 1ml, 

600nm) 
Log (cfu/ml) 

ND value for 

an O.D=0.2 

L. monocytogenes 252 

0.373 

0.373 

0.325 

0.325 

0.253 

0.253 

0.194 

0.194 

0.152 

0.152 

0.125 

0.125 

0.067 

0.067 
 

1.01 

1.01 

0.735 

0.735 

0.56 

0.56 

0.435 

0.435 

0.34 

0.34 

0.265 

0.265 

0.169 

0.169 
 

9.27 

9.24 

9.12 

9.03 

9.08 

9.02 

8.87 

9.00 

8.84 

8.87 

8.61 

8.67 

8.57 

8.44 
 

ND=8.99 

L. monocytogenes 39 

0.382 

0.382 

0.306 

0.306 

0.237 

0.237 

0.186 

0.186 

0.15 

0.15 

0.133 

0.133 

0.076 

0.076 
 

0.987 

0.987 

0.768 

0.768 

0.597 

0.597 

0.465 

0.465 

0.36 

0.36 

0.282 

0.282 

0.17 

0.17 
 

9.53 

9.5 

9.44 

9.32 

9.25 

9.28 

9.08 

9.2 

9.02 

9.04 

8.77 

8.79 

8.62 

8.64 
 

ND=9.17 

S. Typhimurium 

0.424 

0.424 

0.379 

0.379 

0.314 

1.021 

1.021 

0.811 

0.811 

0.64 

9.27 

9.28 

9.08 

9.11 

8.93 

ND=8.38 
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0.314 

0.263 

0.263 

0.227 

0.227 

0.192 

0.192 

0.125 

0.125 
 

0.64 

0.507 

0.507 

0.41 

0.41 

0.326 

0.326 

0.225 

0.225 
 

8.83 

8.5 

8.65 

8.8 

8.5 

8.38 

8.35 

8.02 

8.00 
 

E. coli 

0.530 

0.530 

0.470 

0.470 

0.407 

0.407 

0.335 

0.335 

0.292 

0.292 

0.260 

0.260 

0.231 

0.231 
 

1.044 

1.044 

0.842 

0.842 

0.739 

0.739 

0.575 

0.575 

0.425 

0.425 

0.357 

0.357 

0.264 

0.264 
 

9.2 

9.16 

9.13 

9.1 

9.06 

9.07 

8.84 

8.83 

8.69 

8.71 

8.31 

8.23 

7.64 

7.75 
 

ND=8.30 

 

 



213 

 

Table D-2 Plate counts from a particular well (well 199) from the control plate 

and from the plate after the heat treatment (well 299) at 60ºC for 25min in the 

oven 

Organism NaCl pH LogN (Control plate) LogN (Heat treated plate) 

E. coli 

ND 8.69 

0.5 7.2 9.34 9.24 

3 7.2 9.06 8.91 

6 7.2 8.74 8.36 

0.5 6.50 9.11 8.93 

0.5 5.88 9.19 9.07 

0.5 5.16 9.0 8.93 

0.5 4.58 9.83 9.48 

3 6.45 8.9 8.61 

6 6.42 7.86 7.56 

3 5.84 8.9 8.6 

6 5.81 7.54 7.24 

3 5.16 8.60 8.20 

S. Typhimurium 

ND 8.78 

0.5 7.2 9.38 9.20 

3 7.2 9.18 8.90 

6 7.2 8.58 8.33 

0.5 6.50 9.53 9.16 

0.5 5.88 9.64 9.24 

0.5 5.16 9.74 9.53 

0.5 4.58 9.67 9.34 

3 6.45 9.05 8.85 

6 6.42 8.64 8.3 

3 5.84 9.16 8.97 

6 5.81 8.56 8.45 

3 5.16 9.02 8.88 

6 5.15 8.20 8.10 

3 4.61 8.87 8.84 

6 4.60 8.01 7.7 

L. monocytogenes 252 

ND 9.15 

0.5 7.2 9.65 9.61 

3 7.2 9.48 9.40 

6 7.2 9.26 9.34 

L. monocytogenes 39 

ND 9.16 

0.5 7.2 9.5 9.3 

3 7.2 9.58 9.41 

6 7.2 9.45 9.36 

L. monocytogenes 271 

ND 9.31 

0.5 7.2 9.63 9.54 

3 7.2 9.49 9.14 

6 7.2 9.24 9.20 

L. monocytogenes 177 

ND 9.22 

0.5 7.2 9.60 9.62 

3 7.2 9.62 9.56 

6 7.2 9.28 9.30 
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Appendix E Activities and publications 

E.1 Peer reviewed publications 

 I. Mytilinaios, M. Salih, H.K. Schofield and R.J.W. Lambert (2012). 

Growth curve prediction from Optical Density Data. International 

Journal of Food Microbiology 154, 169-176.  
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 M. Salih, I. Mytilinaios, H. K. Schofield and R.J.W Lambert (2012). 

Modelling of Bacterial Growth with Shifts in Temperature Using 

Automated Methods with Listeria monocytogenes and Pseudomonas 

aeruginosa as examples. International Journal of Food Microbiology 

155, 29-35.  

 

 

E.2 Oral presentations 

 7th International conference (2011). Predictive Modelling of Food quality 

and Safety. Growth of Listeria monocytogenes, Salmonella 

Typhimurium and Escherichia coli in the presence of sodium chloride 

following a mild thermal process (Ioannis K. Mytilinaios, Ronald J.W. 

Lambert).  

 FSA workshop (2011). Modelling the impact of mild food processing 

conditions on the microbiological safety of food (Ioannis K. Mytilinaios, 

Ronald J.W. Lambert). 
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 Cranfield Health postgraduate conference (2012). Modelling the impact 

of mild food processing conditions on the microbiological safety of food 

(Ioannis K. Mytilinaios, Ronald J.W. Lambert).  

E.3 Poster presentations 

 Unilever symposium (2011). Growth of Listeria monocytogenes, 

Salmonella Typhimurium and Escherichia coli in the presence of 

sodium chloride following a mild thermal process (Ioannis K. 

Mytilinaios, Ronald J.W. Lambert).  

 Cranfield workshop (2011). Growth of Listeria monocytogenes, 

Salmonella Typhimurium and Escherichia coli in the presence of 

sodium chloride following a mild thermal process (Ioannis K. 

Mytilinaios, Ronald J.W. Lambert).  

 


