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SUYitaRY 

The effects of viscosity on the aerodynamic character-

istics of wings ani bodies at supersonic speeds can be assessed 

if we can calculate (a) the development of the boundary layers 

in the laminar and turbulent states, (b) the interaction of the 

boundary layers and main stream away from the neighbourhood of 

shock waves, (c) the effects of shock wave-boundary layer inter-

action. Comprehensive methods are developed and discussed for 

, dealing with problems (a) and (b), problem (c) is discussed in 

the light of existing experimental data but more systematic data 

are required before quantitative prediction of shock wave-boundary 

layer interaction effects in any particular case can be confid-

ently made. Fortunately, for many practical cases of interest 

these latter effects are small. 

The detailed results of calculations made on the lines 

described in this paper for a wide range of aerofoil thickness, 

body fineness ratio, Reynolds number, Mach number and transition 

position will be given in a subsequent report. 
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NOTATION 

distance measured along the surface (or meridian profile) 

y 
	

distance measured normal to the surface 

radial distance from axis in axi-symmetric flow 

r 	radius of cross-section of axi-symmetric body 

density 

coefficient of viscosity 

T 
	

temperature 

exponent in viscosity - temperature relation (i.e. pot:Tin 

u 	velocity component in x-direction 

v 	velocity component in y-direction 

k 
	

coefficient of heat conduction 

cp 
	coefficient of specific heat at constant pressure 

v 
	coefficient of specific heat at constant volume 

Y 	c p/c 

a' 	 cp/k (Erandt1 number) 

M 	Mach number 

8 	boundary layer thickness 

0 	momentum thickness 

If 8 ou 
o 
P1 u1 

.dy, in two dimensions 
1 

7 

r 
0 

.cosI9 Cu  
ui 

in 

axi -symmetric flaw 

.dy, in two dimensions 

displacement thickness 
q8 

= 0(1  

iS 

U 0 
r 
 COS 7-9 E 

nu ').ay,  

P1 1/  
axi-symmetric flow 

ou 
0
1
U

1 

in 

angle between tangent to meridian profile and axis 

• /cf 	OOR 
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A 	boundary layer area =27 (r 	y cos 7.51-)dy (axi-ayruaetrio flew) 
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NOTATION  

(Cont a. ) 

of 	local skin friction coefficient 

overall skin friction coefficient 

wing chord 

frictional stress 

standard length 

Reynolds number based on 

Rx 	Reynolds number based on x. 

A4:1 	displacement area = 2t r0.8*  (amnetric flow) 

f, g 
	

functions defined by equation 2 

A 
	

function defined by equation 3 

h(MRo) function defined by equation 7 

01' 02' 
&I.1 constants (see equations 5,6 and 7) 

F(x),G(x) functions defined by equation 8 

d 	a reference length. 

Suffix 	refers to quantities measured at the outer edge 

of the boundary layer, suffix w to quantities at the surface, 

suffix o to quantities measured at some reference station e.g. the 

undisturbed stream or just aft of the leading edge shock, suffix i 

to incompressible flow, suffixes p and a to two dimensional and 

axi-symmetric flow respectively, and a dash denotes differentiation 

with respect to x. 



1. Introduction  

It is now well established that the concept of the 

boundary layer is qualitatively as valid for high speed flow as 

for low speed flow. However, to reach the point at which we can 

begin to estimate the drag, lift and pitching moments of an aerofoil 

or body at supersonic speeds allowing for the effects of viscosity, 

we must clarify as far as possible our ideas on: - 

(a) The development of the boundary layer in both the 

laminar and turbulent states. 

(b) The interaction of boundary layer and main stream 

away from the neighbourhood of shock waves. 

(c) The nature and effects of boundary layer - shock 

wave interaction. 

Problem (a) for the laminar boundary layer can now be 

regarded as solved for practical purposes, for the turbulent 

boundary layer the position is less certain but it is possible to 

suggest eeceptable lines of attack. 	Problem (b) can on plausible 

if not mathematically rigid grounds be reduced to the familiar 

problem of determining the effective displacement of the surface 

which can be related to the displacement thickness of the boundary 

layer. Our knowledge on problem (c) is far from complete, but 

some data are available from which we can draw useful if interim 

deductions. 

Thus, it will be seen that though we have not yet 

available a complete theory on which to base the estimation of 

viscous effects at high speeds, we have arrived at an interesting 

stage at which a semi-empirical attack can be developed on some 

of the problems of major practical interest. 

This note is concerned with describing methods that 

have been adopted for the calculation of the profile drag of 

aerofoil sections and bodies of revolution. 	The results of such 

calculations covering comprehensive ranges of 7ach number, Reynolds 

number, transition position and thickness or fineness ratio will 

be given in a subsequent report. 

It should be noted that the term profile drag is here 

used to denote the drag arising from the viscosity of the medium 

and is a combination of the skin friction drag and the form drag. 

The latter at supersonic speeds is here defined as the change in 

wave drag due to the effective modification of the wing or body 

shape caused by the boundary layer. The inviscid wave drag, 

contrary to the practice adopted by some authors, is here excluded 

/from the ... 
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from the definition of profile drag. It may be remarked that 

the profile drag at supersonic speeds is not determinable, as it 

is at low speeds, from the momentum loss in the viscous wake, 

since this loss includes in part the wave drag which is also 

manifest in a loss of momentum downstream of the wing or body. 

The profile drag must therefore be determined directly as the 

sum of the separately determined skin friction and form drags. 

The following paragraph will discuss in this context the problems 

(a), (b) and (c) above and our methods of dealing with them. 

2. The development of the boundary layer 

2.1. Two dimensions  

It will be appreciated that for the purpose of estimating 

profile drag we require a method of following the development of 

the boundary layer which must be reliable as far as providing 

assessments of overall characteristics are concerned, e.g. 

momentum thickness and skin friction, but which need not provide 

characteristics of the boundary layer in detail. For the laminar 

layer various methods are available for this purpose, the one that 

has been adopted here is that described in Ref. 1, because of its 

relative simplicity and of the fact that it is not restricted to 

any particular values of the Prandtl number (e') or the exponent 

	

of the viscosity temperature relation ((,)). 	It requires a simple 

graphical or numerical integration to determine the momentum thick-

ness at any point, the formula being 

'I i
r- 	

2
] 	 x1  

/2 6 	- 	
I_ 4- JO 	 g-1 

1 
2 

g 	ul 	dx  1 x1  

where x is the distance measured along the surface, p1 
 and u

1 
are the local values of the density and velocity, respectively, 

just outside the boundary layer, 0 is the momentum thickness of 

the boundary layer, f and g are functions of a reference Mach 

number E, e.g. the undisturbed stream Each number or the :Hach 

number just aft of the leading edge shock, and are given by 

1-w 

wIlOO (2) 

and o 
is the viocosity corresponding to the reference conditions. 

2T 
The skin friction coefficient c

f 
--2 ' where tivT  
o u o 

/is the ... 

\ f = 9.072 L 	0.365(r-1,02 112  0._ 
w 

g = 9.18 + 1.436 	- 	1 + (Y-1)  (;) 	DI21 o 	3 L_ 	2 	qF 



(.3A ) 

	 (1A) 

r"tx I 2 2 i 	 g-1 
.1 8 	= R-f u g 	Pi u1 cbz  L tt 

J 1  

and equation 3 becomes 

+ 12).111  cf 
3 R f 

where 
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is the local intensity of skin friction, is given by (see Ref.1) 

where 	 =-  
A 	R  1:11 82f2  Pi PI,  

ax 1104 Po 

is a standard reference length, e.g. the wing chord, 
u 
o o 	. - 	, i.e. the reference Reynolds number, and 
t o  

is the value of la at the surface and is given by 

• 	 2  
!-Lw 	(,.(-1) 	2 I 

2 
= 	+ 	11 1 1 + 	- 1 2 o L   uo 

If we express all quantities non-dimensionally in terms 

of their reference condition values (suffix o) then equation (1) 

becomes 

-- 	r" 
and 	

• 	II
2 
 11 + 

2 
= ) 1 + 	2 	o 	

02 _ 	j 

Knowing the distribution of cf 
along a surface to the 

transition point we can then readily determine by a simple 

integration the contribution of the laminar layer to the skin 

friction drag. 

As in incompressible flow, e is assumed to be con-

tinuous at the transition point, since otherwise a discontinuity 

in 0 there would imply an infinite local viscous stress. 

For the turbulent boundary layer the following approach 

has been adopted. The momentum equation of the boundary layer
2 

can be written 

ru t  
e + E} --I (1-T + 2) + 1-)L1 	- 	w2 

, 

u1 1 	 Pi j 
Pi ul 

/where the 

(4) 

(A+ 12)  111 	e cf 
- 

3R  f  • u
o 	

' (3) 
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where the dash denotes differentiation with respect to x, and 

H is the ratio of the displacement thickness of the boundary 
/ Its layer 0 ) to the momentum thickness (0). 	To solve this equation 

we require to know how H is varying with x and we require a 

further relation between T
w 

and O. Now for incompressible 

flow past a flat plate at zero incidence the velocity power law 

leads to the relations 

-1/n 
2 - 1 Rx p

l 
u
1 

and 
n-1 u  e 

- 	. C 	) 
v1 	n-1 	1 	x 

111 x  where C1 and n are related constants, and R
xv  . 

From these relations it follows that 	 1  
_ 1 

T
w u1

8 	n-1 

2 
U 	 ) 

= 0  n-1 (n-1) - where 	C 	 n-1 
2 1 	l n 	• 

'le now generalise eT)ntion (6) for compressible flow by assuming 

that 

T 	0 ) n.-1 

	

= c2 
	 . h 1 ) 

0
1 
u

1 

	

where h(1.11) is an as yet unspecified function of N1. 	Further, 

we assume equation (7) holds locally on the surface of the aerofoil, 

so that (4) becomes 
1 

	

U, 	 p 	 e 	n-1 
+ 9 	(H+2) + 	= C

2 	v 	1]. r 

	

) 	 1/ 

If we express all quantities non-dimensionally in terms of their 

reference condition values (suffix o), then this equation becomes 
1 	 1 

- 
u

-',1 (H+2) 	
P4 	n-1 ci  e ) 	 n-1 ) 

e' + e f 	vi+e) + — i = 02 
R 	 h (111  ) . 

	

Cul 	
Al
j 	

111 

Assuming isentropic conditions outside the boundary layer we can 

readily show that 

	

04 	2 u 
- 11 u1 1 

and hence this equation can be written in the form 

(5) 

	 (6) 

(7) 



(8) where F (x) = 	.1 (H-1-2) L 

n-1 e
T 

n 	 ,x 
,,E)  n-1 exp. 	_t (x). dx 

x1 1 	 n-1 

5 h(SI) = 

n 
Ifti 	T.v41.  \ I n-1 

c 	2 / 	 2 

	

Plu11 	,P1u1i /   
i 

n-1 
fi /7e require OVP 
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1 	1 
n-1 	n-1 

el + 6. F (x) = C2  R 	0 	G (x) 

n-1 

G(x) = ( 11-1  
"1' 	

h(111) . 

Equation (8) can be integrated to give 

1 
1 

=
n1 2 

R n-1 
n- 1 

G (x) . exp. 1 	F (x) . 	 • dx 	) 

T T  —11 

where suffix T refers to the transition point. Our problem is 

then effectively solved when we have determined the function 

h(111), the relation between H and x and have decided on the 

values of the constant C
2 and n. 

To determine h(M1 ) we note that for fully turbulent 

flow along a flat plate at zero incidence F (x) = 0, and C(x) = h( 1), 

and hence equation (9) yields 

n. 	 1 

0 n-1 = n1 . 0
2 

R 
n-1 
 h (,:I1 ) ) . x 

from which it follows that 

n-1 

-.

n-1  
ao 	n 	n 

-0
x
-1/n

(2. 	
n 

2 	
- 	

n 	021 	• -(11-di. 
_,n-1 

= 0. R-1/n Th(M )1 n  
1 x 	L 
T 	 _n-1 

I h(111 )i n  
o u 

1, 

T \ 

( u 	

T 

where --52 
 is the value of Iv2 in incompressible flow (see 

°1 1 i 	 P1 ul 

equation 5) at the same value of Rx  . 	Thus 

n 

and 

P1U1 
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re require therefore data on the ratio cf/cfi  on a 
flat plate and its variation with Mach number. The available 

experimental evidence is scanty and is not as consistent as one 

would wish. Perhaps the most reliable data are those provided 

by Coles3, who has determined local skin friction coefficients 

on a flat plate by a direct method of force measurement and his 

results for the ratio cf/cfi  as a function of Mach number Mo 
are reproduced in Fig. 1. These results were obtained at a 

Reynolds number of 8 x 106. 	Other experimental results showing 

a similar fall of cf/ofi  with Each number, although not fully 

agreeing quantitatively with Coles' results, have been reported 

by 7ilson4 and Eckert5. There are various theories which have 

been developed from which values for cf/cfi  may be derived, but 

all such theories are extrapolations from incompressible flow 

theory and the results depend critically on the assumptions under-

lying the mode of extrapolation. However, the theory that gives 

closest agreement with the results of Coles is that developed by 

Cope6 based on an extrapolation of the familiar 'log' law of 

incompressible flow. honaghan , following what are essenLjn1ly 

the same lines of argument as Cope, obtained the fol1ewing 

interesting result. 	'write C for the overall skin friction Fg 
coefficient based on the density at the surface (ow), i.e. 

A where c is the chord length , 

111 	"PW) 
T1 ui c pw  

FL(--) and define a Reynolds number Rw 	
= 

W 	
Tw 	 lw w 

where T1 is the temperature just outside the boundary layer and 

Tw is the temperature at the wall. Then Monaghan's assumptions 

led him to deduce that the relation between CFiv 
and R is the 

same as that between CF 
and R in incompressible flow. Similarly, 

the relation between the correspondingly defined local values of 

the skin friction coefficient cfw 
 and the local Reynolds number 

R q  is also the same as that between cf and Rx in incompressible 
x 

flow. Corresponding to the accepted empirical incompressible flow 

relation between CF and R, due to Prandtl and Schlichting
8 
 , viz. 

	

CF  = 0.455 Plog R)2'58    (12) 

Sehlichting9  has also deduced the relation 

cf  = (2 log R 	0.65)2'3  	 (13) 

/If we ... 
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If we accept Monaghan's result, then we have that for compressible 

flow 

cfw  = (2 log R
xw 

 0.65)-2.3  

and hence 

T — 
2 log R c 	

-2.3. 
• w 1 	 w 

, — = 	. — PLI  Cl 
T
-1  i - 0. 6  — 	1 ' . 

Pi  
P 	L x 	1-1 	P1 	w_j 

Using the gas law and the relation p.c.x.. Tc°  we therefore have 

	

T1  [ 	 Tii, -2. 3 

cf = 	; 
' t 2 log Rx 

- 0.65 + 2 (2+co)log ( r j 	. 
 w L

. 
1 

Hence 2.3 
f _ 1 I 	  . . (14) cp. 	T 
L 	 w 	2 log R

x 
	0.65 + 2 (2+(o)log 	

. 
2 log R 	0. 65 

Similarly, from equation (10) we deduce that 

2.58 CF log R  
C _ T 
Fi 	 T1 R + (2+w)log 

1. e are confining ourselves to the case of zero heat transfer, and 

for our purposes there can be little error in using Squire, s10 

relation for the ratio T1/Tw , viz. 

T
1 	 -1 -1  -1) 	2 	1/3. 

+ 
(y2 

 _.! 

In Fig. 1 the 

0- = 0.72 and 

of Coles3 and 

relation given by equation (14) for R
x 

= 8 x 10
6
, 

8/9 is compared with the experimental results 

it will be seen that they agree remarkably well. 

This leads us then to look with some confidence to the relations 

given by equations (12) and (13) to enable us to deduce the 

function h
1

) • 

At first sight it would seem that equations (11) and (14) 

provide the answer, but it will be noted that they lead to the 

result that h (1/1
1  ) is a slowly varying function of R

x 
and 

therefore of x, and the possibility of any variation of h(1.11 ) 

with x on a flat plate was ignored in the derivation of 

equation (11). 	If we allow for this possibility and write 

h (11
1 ' 

x) instead of h (11
1

) 
' then revising the argument that led. 

to equation (10) we see that 

(1 5 ) 

	  (1 6 ) 

	

n 	 1 loc 

	

n-1 	n 	n-1 	
h ( e 	= 	0 R 	 11 x) 

	

n1 	2 	 1' • 
dx 

 
4 o i - — 

	

n 	n-1 = — 0 R 	. x. h CLA x) 

	

n1 	2 	 1' 	' /where ... 



where h(ilx) is a mean value of h(LI1'x) 
from the leading 

edge to the position x. 	Hence, putting x = 1, the non- 

dimensional chord length, we have at the trailing edge 
-- 

n 	 1 
e  n-1 	in 	cR n-11., 1, 

	

= I n-1 	2 	11 0  

	

1 	n-1 
I   But 	0 = 2 Cr, and i 71

n7 . C2  R n-1 = 2 CFi  , 

and therefore 

h (1.1.1,1) = (CF  / CFi) n-1 	
(17) 

If we are to ignore the slow variation of h(M
1
) with Rx 

in our 

general method of profile drag calculation, then it seems logical 

to take a mean value averaged over the whole chord. Consequently, 

we propose to use equation (17) to determine h(M1) and not 

equation (11), i.e. we shall take 

h(111) = (cF / ori) n-1    (18) 

the ratio (C:p, / CFi) being assumed to be given for each Reynolds 

number considered by equation (15). 	This ratio is shown plotted 

in Fig. 2 for R = 10 , 107 and 108, and the validity of equation 

(18) can to some extent be justified a posteriori by the relatively 

small differences between the three curves shown. 

For the variation of H with x we assumed that H is 

a function of MI  only, the relation being the same as that for 

flow past a flat plate at zero incidence and iLach number MI. 

Making the plausible assumption that the total energy is constant 

across the boundary layer Cope
6 

has evaluated the relations 

between H and M1  for boundary layer velocity distributions 

following various power laws. These relations are reproduced 

in Fig. 3 and it will be seen that H is not particularly 

sensitive to the power law assumed, and for the purposes of this 

investigntion it is probably sufficiently accurate to take the 

relation appropriate to the 1/9th power law, as this is consistent 

with the value of n equal to 6, which for reasons described in 

the next paragraph was the value chosen. 

In order to choose suitable values of n and C2, values 

were sought that gave the best fit with the accepted empirical 

incompressible overall skin friction coefficient formula for a 

flat plate at zero incidence with fully turbulent boundary layer viz. 

_2.58 
C
F 

= 0.455 /1 i log10 Rt 	,   (12) 

/over the • • • 



over the range of Reynolds number considered which was 10
6 
to 10

8
. 

It is clearly possible to choose values of n and C2 
to give 

a close fit with this formula over small specified ranges. of 

Reynolds number, allowing the values of n and 02  to change 

from one range to the next. However, it was found that by taking 

n = 6, and C2 = 0.00878, which lead in the incompressible flow 

case to the relation 

	

Cr 
= 0.0450 R-1/6 
	

(19) 

agreement to within 0.0001 was obtained with the relation given 

in equation (12) over the Reynolds number range considered. This 

is illustrated in Jig. 4 where the two relations (equations 12 

and 19) are compared. 	It is doubtful whether these values of 

n and C2 could be applied much outside the Reynolds number 

range considered without exceeding the above order of error, and 

were it decided to extend the range of Reynolds number then other 

and more suitable values of n and C2 would be required for the 

extensions. 

1 	_ 	....1  

cf  = ---7 - 2 C2  R 	. el-1.11  

	

v 1 	. h (M1) -2 
2Tw 	 n-1 	,_ 0 _1_ 1 

u 8 n-1 
o u 	 — 1.1 1 1 

. We note that the displacement thickness 8*  is given by 

8*  = H.0 	  (21) 

2.2. Axi-symuetric flow 

Mangler11 
has demonstrated that for flow in the laminar 

boundary layer on a body of revolution a transformation exists 

which will correlate the flow with that in a laminar boundary 

layer in two dimensions. 	The proviso is made that the body is 

sufficiently slender for the boundary layer thickness to be small 

compared with ro, the radius of cross section of the body. The 

following discussion reproduces his results but involves a 

different approach which has some intrinsic interest. 

The momentum equations of the boundary layer in two dimensional 

/and in ... 

Having determined 0 as a function of x we can obtain 

the skin friction distribution making use of equation (7), thus: -  
1 

1 
'uOR 	n-1 , 

= .01756 p u2 	1  1 
 1 1

. 	 h(M) v
1  ._  

	 (20 ) 
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and in axi-symmetric flow are.- 

0 	+ e 

and 

e,  + e a 

where suffix 	p 

p 

a 

r- 	u, 	- ; 	 -1  
 	(22) cH +2) 

a 

(23)  

to 

p 	11 - 2 
1 	p1 	ui  

F- 	u' 	p; 	r 	, 	'clva  
+2) 	+ 	+ 	!= 	y 	  

refers 

a
p1 	1'0 	p 1.11  

to two dimensional flaw and suffix 

axi-symmetric flow. It should be noted that in axi-symmetric 

flow the displacement and momentum thicknesses are defined by 

05  

	

6* 	(I 	. cos 1Y) (1 	 dy 

	

a 	 ro 	 pl ui  
0 

(24)  

08 

e = 	-Ea- e + 	. cosz9 	- 19. dyr a j p1  u1 ro 

. where Lr Is the angle between the tangent to the meriainn of the 

body and the axis; x and y are Lies.surod along and normal to 

the meridian. 

It will now be assumed that to every axi-symmetric 

boundary layer there exists a two dimensional boundary layer such 

that at corresponding stations the boundary layer velocity profiles 

are the same except for a change in the scale of y, u1  being 

the same. The conditions in the external flows will be assumed 

to be the some and isentropic, and the plausible assumption will 

also be made that the relation between temperature (T) and u 

at corresponding stations in the boundary layer are the same. 

Consequently, the relations between o and u as well as the 

temperatures and viscosities at the wall (Tw  and p.w) are the 

Same. Accepting the proviso that the boundary layer thickness 

is small compared with ro, it follows that the term Y-- cos 

can be neglected compared with unity in equation (24) ° and 

consequently 

e 	s a 	a 
= 

p 	p 
and H

a 
= H

p 
. 

But, it follows from the above assumptions that 

and 

' o 

r-- 

7-y- 
1 	Oul 

Ewa 	iwa 

Twp 	aul 
aYI wp 

= 8
p/8a . /Hence 
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Hence 

Twa 	_2 
0 

O
a 
' 

wP 

Equation (23) can therefore be written 

	 (25) 

T 
ip P 
0 r 

w 	0  (r
oa
)1 	(r 0 ) (1-1 +2) — — 

o a 	p 	u1 1 . 	0 o u
2 

a 1 1 

	 (26) 

Now, consider the transformation 

cx 
a 

xp = 	 ro  `- dx a2 	 a ' 
rl 0 

  

(27) 

  

where d is some reference length. 	Equation (26) can then be 

written 

d 
dx 

p 

1 	roea  # 
+ 

iroea) ! (i +2) dui  1  

1 

del  0 . d T 

d 
— - 

d 	u dx p dx p 
-re 	

• o a 
v  2 
ol  

	 (26) 

Comparing this e qua  -Lion with equation (22) we see that they are 

identical if 
r 0 

_ 0 a 
' 

and if xp  is the coordinate parallel to the surface in the two 

dimensional flow, i.e. corresponding stations are related by the 

transformation (27). Summarising the argument we see that with 

the assumption of similar velocity profiles for the flows past a 

two dimensional and axi-symmetric shape, such tl'at corresponding 

stations are related by equation (27), and with the same values 

of the main stream velocity at corresponding points, then the 

values of the boundary layer momentum thicknesses are related by 

equation (29). Further, the frictional stresses at the wall at 

corresponding points are related by (from equations 25 and 29) 

ti 0 
wa 	E 	r

o 
Oa 	d 	• wp 

If we define local Reynolds nuMbers R 	and Rxp  by xa  

R 	- 	, 	R 	- 	, xa 	P./ 	xp 	
111 

'Ica 2 

	

1 	 1 /- 	rodxa / R 	
,,- .. 	i 

TWP I 	LI_ ( '_c_.0 	) 
T 	

0  

Wa. 
ik,.. R

xa- 	r
o - 

x
a
) 	- )  

( r
2 
 . x 
o a 

(29)  

(30)  

uixaol 	 ulxpoi  

then 2 

(31)  

This relation .,. 



This relation was derived by Mangler, who then deduced that in 

the particular case of the flow past a circular cone at zero 

incidence in an otherwise uniform supersonic stream 

cfp  / cfa  = 1 //3. 

In this case, of course, the corresponding two dimensional flow 

is that past a flat plate at zero incidence with the same constant 

pressure, velocity, etc. just outside the boundary layer as that 

behind the shock wave attached to the cone tip. Equation (32) 

refers to the local skin friction coefficients at points the same 

distance downstream from the cone nose and the plate leading edge, 

in terms of the density and velocity just outside the boundary 

layer in the two cases. 

There is nothing in the above argument that refers 

explicitly to the laminar boundary layer and it might at first be 

thought that it could be applied with equal justification to the 

turbulent boundary layer. 	rte  note, however, that the initial 

assumption of the existence of similar velocity profiles leads 

to equation (30) viz. 

T
wa _E 

0a - d 	• rr 

Now consider the body of revolution to be a circular cylinder of 

large radius ro  Then in the limit as r
o 

tends to infinity 

the flow past the body must tend to that past a flat plate, and 

hence the relation between T 	and 0 must tend to that between tip 
ti 	and 0a 	But we have accepted for incompressible flow on wa 
both theoretical and experimental grounds a relation between 

wp and 0 of the form given by equation (6), i.e. for the case 

considered 
1 
n-1 

wp = const. 0 

where for laminar flow n = 2, but for turbulent flow n = 6. 
Hence for large ro 

1 

Wa. 
= const. (ea) n-1  

and therefore 

n-1 

wa 	a/ 

We see that this relation is not consistent with equation (30) 

/unless • • • 

(32) 



unless n=2, i.e. unless the boundary layer is laminar. 	It 

follows, therefore, that whilst the assumption that similarity of 

velocity profiles exist between the two dimensional and axi-

symmetric flows does not lead to inconsistencies in the case of 

the laminar boundary layer it does so in the case of the turbulent 

boundary layer and the argument based on it is then invalid. 

A different approach must therefore be used when we consider the 

turbulent boundary layer. 

Reverting, however, for the moment to the axi-symmetric 

laminar boundary layer case and dropping the suffix a, it follows 

from equations (1A), (27) and (29) that 

ix 
2 2 	 g-1 2 

ro -x 	
o u 	ro  dx, 	 (33) 

i 
I 1 Rfu 3  

1 	o 

where we have put d = k, the reference length used in R. 

Further, from (3A) and (30) 

(A+ 12)u1  

where J1 = R  ut e2 ..c. 2 
'L 	PI P.w 	' 

In dealing with the turbulent boundary layer, we bear 

in mind the fact that for large r
o 

the axi-symmetric case must 

tend to the two dlmensional case. 	This leads us to make the 

assumption that equation (7) holds for axi-symmetric flow as well 

as for two dimensional flow. The momentum eqqatj on (equation 23) 

for rxi-symmetric flow can then be written 

	

1 	 1 

(r00)' + (ro
e) F(x) = C

2
R n-1 ( -1

0
6) n-1  G (x) . r 	.... (35) 

where F (x) add G(x) are the functions already defined. in 

equation (3) when considering the two dimensional case. 	Like 

equation (8) equation (35) is readily integrated. to give 

n — 1 
(r e) n-1 	exp. 	F(x). 11_1  . 	(r 

o 
0)

T
11-1 

xi 

1 	pxi n 	r- (pc 

- n1 	
n -1 	• G(x) ron-1 exp 	F(x). 1-7111,1- dx . dx C2  R 

 
U I 	 -t) T 

	  (36) 

Having determined ro0 as a function of x by means of equation (36) 

/we can ... 

cf  - 
3 Rf 0 

(320 



we can obtain the skin friction distribution from equation (7), 

thus.- 1 
1 	 n-1 	1 

cf  = 2 C2 
 R n-1  p

1  u
1  2 (111roe  

. ro n--1 . h(Mi  ) 
1 

ui ore R
;)  n-1 	1 

= .01756 pi  
2 

v 	
. r

o

n-1 . h(:VI
1
) 

i 
	. 

3. The interaction of the boundary layer and the external flow 

3.1. The effective dis  lacement of the surface due to the  

boundary layer (not in the neighbourhood of shock waves) 

It is usual to assume, as in incompressible flow, that 

the effect of the boundary layer on the external flow is equiva-

lent to a displacement of the surface equal to the displacement 

thickness (or area) of the boundary layer. As far as the author 

is aware, however, there has been as yet no published justifica-

tion of this assumption for compressible flow. The following 

discussion follows in essentials the lines of the argument 

developed for incompressible flow by Preston.
1 2 
 

Consider first two dimensional flow. The equation of 

continuity is 

	

a (pu) 	

a ui 	7-7 ( ,pv) = 0, 

and hence, integrating with respect to y through the boundary 

layer, we have 

	

L7j = 	-52; (Pu)* dy 
o 

1'16  

86x I pu. dy 	p u . 1 1 	ax: 
U 

a , 
d x. Dui (5

4̀  - 8) 	p u  I 1 ax 

Or 	+171,- 	:1 	841-8 
	a 

	

u 	
d 

	

i 	x 
• .— (p u1) 	a84g  dx 	  (38) 

where 1  is the angle, assumed small, that the streamline at the 

outer edge of the boundary layer (i.e. at y = 8) makes with the 

/direction y=0. 

(37) 



direction y=0. 

Now suppose the surface to be displaced outwards by a 

small distance 8*, and consider an inviscid flow past this 

surface, keeping the coordinate system the some as in the original 

flow. The equation of continuity is unchanged and again, by 

integrating with respect to y from 0 to 8 we have 

P;r1
8  = 
	p1  u1  (I - 	u 	. dy - pi  1215 + pi  ui 	. 

dB 

But for y < 841, u = 0, and for y 8
*, pu = pi  u1  , hence 

15v1  = -dx FI'l ul(8*- 8  J8 	a 

and therefore 

dB u
'1 dx I  

pvi J8 	(541- 6) 	d d8
(D 	) \J 

1u1 	a z 	uaz 

i.e. the direction of the streamlines at y = 8 in the inviscid 

flow with the displaced surface is the some as the direction in 

the actual viscous flow at y = 8 if we can assume p1  u1 is the 

same in both cases. 	ThLs fact does not by itself prove that the 

two flows for y .7 ,5 are identical. 	However, it follows from 

the above analysis that any other displacement of the surface 

other than 8*  leads to flow conditions in the inviscid case at 

y = 8 differing from those in the actual case. 	It follows that 
if there exists an effective displacement of the surface to yield 

an equivalent boundary in inviscid flow, it must be a displacement 

equal to the displacement thickness of the boundary layer. A 

proof that such an effective displacement exists in the general 

case does not seem easy, but there are ample grounds for accepting 

the existence of such a displacement, as a working hypothesis, 

particularly when the equivalence of the boundary layer to an 

effective source distribution is borne in mind. 	It should be 

noted, however, that in the above discussion the usual assumptions 

of boundary layer theory are implicit, hence the deductions would 

not necessarily be valid if the associated limitations required on 

boundary layer thickness and curvature of the streamlines and 

surface did not apply. Thus, it is doubtful whether a displace-

ment equal to the displacement thickness, as normally defined, 

will produce an effect on the outside inviscid flow equivalent to 

that of the boundary layer in regions of high curvature of flow 

or surface. 	It is possible, however, that by modifying the 

/definition of 
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definition of the displacement thickness on the lines suggested 

in Ref. 12 it could still be shown to be equal to the effective 

displacement of the surface in such cases. But regions of high 

flow curvature on aerofoils or bodies generally result from the 

influence of shock waves on the boundary layer, and such cases 

require special treatment. 

In the case of axi-symmetric flow we note that the 

equation of continuity can be written 

	

(Pru) + 	(pry) = 0, 
x 	 a y 

where x and y are the usual curvilinear coordinates parallel 

to and normal to the meridian profile of the body considered, 

and r is measured from the axis of symmetry. Again integrating 

with respect to y between the limits 0 and 8, multiplying 

by 27c we get 

1115  
2,7c (r. f 8 cos, 	

P117 	
= 	a

a 
 x 	27 (ro 

+ y cos %) pu dy 0  1 
 

dB 
+ p 1111  27c (r0  + 8 cos 7,..9-) . --a-x  , 	. . 	(39) 

where ro is the radius of cross-section of the body, and 1-;'.  is 

the angle between the tangent to the meridian profile and the axis. 

We now define the displacement area A8* by 

18 

A * = 21 ro. S 	- 2ic(ro + y cos1})(p1u1-pu).dy, olui  
U o 

and we define the boundary layer area A8  by 

cS 
. 	= AS 

 

2.A (ro  + y cos 	dy. 

It follows from equation (39) that 

dA
5 

Pi 11-1 (A8*  - 
AS) 
	+ P1 ui Tr 

) 

	  u  ( u + --IQ-, 	+0) 
r N. _ A8) , 	 dA,* 

= P1 u1 	pi  ui 	a x Pi 1
) 	

ax 1 
0 

 

We now consider the surface displaced outwards normal to itself 

a small distance c, such that the area As  traversed in the 

displacement normal to the surface is equal to AS* , and we 

/consider inviscid 

p1v1 
27-c (r

o 
+ 8 cos 0-) = a ax 
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consider inviscid flow past this displaced surface but as before 

keeping the coordinate system undisplaced. From the equation of 

continuity we again obtain at a distance S from the surface 

that 

27. (r
o 

+ S cos 	(0v)8 	
a = - 
x 

r
o + y costHou dyi 

dA 
o u  
1 1 	dx 

But for y s, u = 0, and for y s, u = 121, and. hence 

8 
i 

211: (ro + S coslA)(pv)
8  - --- . u

1 

1  
27: (ro  + 8 cosV)dyl d ux

a 

   f. 8 

(1/1
8 

	

+ P1 ul 	dx 

d181 
3  Lu (A-A1-p u 

	

=- a x 	u1 8 	
)1 	

1 1 dx 

f(k8* - A.,  , ^ l 	
dA. 

d  (emu  )+ + 	
, 

 --- 
= p1 u1 1 
	P1111 	

d x r1 1 	dx 
) L 

(since A
Z
* = A

e
) . 

Hence, comparing this equation with equation (4J0) we see, 

as in the two dimensional case, that the directions of the stream-

lines at y = 8 in the inviscid flow considered are the same as 

in the viscous flow if p1  u1 is the same. with the same argument 

and provisos as before we deduce that the required effective dis-

placement of the surface equivalent in effect on the external flow 

to the boundary layer is s, i.e. is such that the area normal to 

the surface traversed in the displacement is equal to the displace-

ment area, 

In regions other than in the neighbourhood of shock waves, 

we can allow then for the effect of the boundary layer on the 

external flow by assessing the effect of the equivalent surface dis-

placement. 	Strictly the boundary layer development should then 

be recalculated using the modified external flow, but the calcula-

tions that have been made to date indicate that at least in the 

case of two dimensional flow such further recalculations are 

unnecessary. 

It is clear that the effective displacement of the 

surface will result in an increase of pressure over the whole 

/surface of ... 
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surface of the wing or body, 

relative to some datum being 

two dimensional flow and by 

flow. 

the effective slope of the surface 
015* 

increased by dx — in the case of 
de in the case of axi-symmetric 
dx 

To estimate the effect of this increase of slope in two 

dimensional flog it is assumed that it is sufficiently accurate 

to consider the flow outside the boundary layer as a simple wave 

flow. 	It then follows that the pressure increase due to the 

pressure of the boundary layer is 

YP 1
12 

Lp  = 	1 .1 	d8 	°11-11
2  

r-72.._ • ax  

	

VI4 - 	 1 1 	 1 

From equation (41) the resulting changes in drag, lift 

and pitching moment can be readily calculated. It will be clear 

that with the boundary layer turbulent the increment in pressure 

p is generally greater than when the boundary layer is laminar, 

and this effect will become increasingly marked with increase of 

Reynolds nuniper. 	Consecjiently, it is possible for the resulting 

change in drag to be negative when transition occurs at about 

0.50, although with a. fully laminar or fully turbulent boundary 

layer the integrated effeet of this pressure increment on drag 

is generally positive. These remarks are illustrated by the 

results of some specimen calculations shown in Fig. 5. 

In the axi-symmetric case the problem of estimating the 

effect of the equivalent displacement is perhaps less simple. 

Over the forebody any of the simple methods for calculating the 

pressure distribution developed by Bolton Shaw and Zienkiewicz13  

can be readily applied with adequate accuracy. Over the rear 

the method of characteristics or the second order method of Van 

Dyke14  is always available, but it is hoped to develop simpler 

methods of adequate accuracy for the problem in mind. Such 

methods are under investigation. 

3.2. Shock wave - boundary layer interaction effects  

A review of current knowledge on the complex nature and 

problems of shock wave - boundary layer interaction effects has 

been given by Zienkiewicz15, and only a brief summary of the 

main points relevant to the problem under consideration as well 

as of further information that has become available since Ref.15 

was written need be given here. 

It is clear from the available evidence16'17 that in 

/practice the ... 

as* 
dx 
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practice the conditions at the leading edge of a sharp nosed 

aerofoil or body may differ markedly from those predicted by 

inviscia flow theory, and those differences are due to interaction 

effects between the leading edge shock waves and the boundary 

layer and in some measure to the fact that the leading edge of a 

wing is never truly sharp. Nevertheless, these differences 

appear to have relatively little effect on the pressure distribu-

tion except very close to the lea3ing edge, and the pressure 

distribution obtained from inviscid flow theory corrected for 

the displacement thickness effect of the boundary layer gives 

very close agreement with experiment except perhaps within about 

0.02c of the leading edge. At the leading edge the rate of 

growth of the displacement thickness becomes infinite according 

to theory and the corresponding correction to the pressure 

according to equation (41) becomes inacceptable. 	However, a 

plausible extrapolation of the pressure distribution forward 

from 0.02c can readily be made and is recommended, the resulting 

possible error in overall characteristics being small. 

It is near the trailing edge of a wing, and also 

presumably at the rear of a body, that the interaction between 

shock waves and boundary layer can have a most profound effect 

on the pressure distribution and hence on the overall aerodynamic 

characteristics. 	It is of course well known that in a region of 

interaction between a shock wave and a boundary layer, the 

pressure rise across the shock is diffused upstream and downstream 

in the layer, and both boundary layer and shock are to some extent 

modified by the interaction. 	Thus, the boundary layer on an 

aerofoil section near the trailing edge will be subjected to a 

positive pressure gradient due to the shock wave springing from 

the rear of the wing; the boundary layer will thicken in that 

region as a result and may separate before reaching the trailing 

edge. The effective shape of the wing, however, will then be 

such as to modify the shock pattern and strength at the trailing 

edge. 	The resulting effect on the pressure distribution and 

hence on the lift, drag and pitching moment may be considerable 

if the separation is extensive. 	In the main region of separation 

the pressure is generally nearly constant, and our problem 

therefore reduces to that of determining the surface pressure and 

extent of the separated region in any given case. 	The subject 

is still largely unexplored, and the data required for a simple 

empirical approach is not yet available. However, there are 

indications discussed below that the problem may be resolved with 

the accumulation of sufficient experimental data for which a 

relatively modest experimental programme may suffice. The work 

/of Holder and Gadd ... 
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of Holder and Gadd1819 Drougge
20 

and Lighthill
21 are valuable 

contributions in this connection. 

It is known that with the boundary layer laminar 

approaching the shock separation of the layer is likely to occur 

even with relatively weak shocks, both theory and experiment 

suggest that shocks with a pressure rise ratio of the order of 

1.05 - 1.1 will cause separation. 	On the other hand with the 

boundary layer turbulent much stronger shocks with pressure rise 

ratios of the order of 1.7 - 1.8 are required for separation to 

occur. 	This latter fact indicates that for a wide range of 

practical cases with the boundary layers turbulent ahead of the 

trailing edge separation will not occur. 	This is fortunate from 

the point of view of the problem discussed in this paper because 

it appears that the thickening of the turbulent boundary layer 

associated with the shock wave is confined, in the absence of 

separation, to a distance ahead of the trailing edge less than 

the boundary layer thickness, and therefore the effects of such 

thickening can be ignored. 	In the first instance it is proposed 

to consider, in the main, cases for computation based on the 

methods described in this paper where transition occurs in the 

boundary layer ahead of the trailing edge, and where the trailing 

edge shock pressure rise ratio is less than about 1.8, consequently 

the problems introduced by separation effects will not arise in 

such cases. 

Nevertheless, some of the facts relating to conditions 

when boundary layer separation has occurred are worth reviewing. 

Zienkiewicz15  has analysed available data obtained with a ten 

per cent thick biconvex section and a nine per cent thick 

symmetrical section with a 4°  trailing edge angle tested at the 

N.P.L. 	The tests referred to were made at Reynolds numbers in 

the region of 0.5 to 1.0 x 106 and the boundary layers approach-

ing the trailing edge were laminar but became turbulent after 

separation. 	The Mach numbers covered varied from about 1.6 to 

2.5. 	Zienkiewicz showed that for these results the values of 

the ratio p 	/p (where p 	is the nearly constant surface sep. o 	sep. 
pressure in the region of separated flow and po  is the un-

disturbed stream static pressure) fell reasonably close to a 

single curve as a function of wing incidence up to quite large 

angles of incidence, the variations in trailing edge angle and 

Mach number covered appearing to have little significant effect 

(Fig. 14, Ref. 15). 	It is almost certain that if a larger 

range of Reynolds number had been covered scale effect would have 

been revealed, thus the results of Gadd and Holder's18'
19

work on 

/shock wave • • • 



sheep wave boundary layer interaction on a flat plate suggest 

Po r  

that 	 31- approx. 	It is aleo possible that there 
o 	RI/3  

is a wing thickness effect in addition and further data are 

clearly needed. nevertheless, the simple nature of this result 

is encouraging. Further, Zienkiewicz found tleat the extent of 

the separated region of flow also agreed fairly closely with a 

single curve when plotted as a function of incidence fcr the same 

ranges of Mach /limber and wing shape (Fig. 16, Ref. 15). 	In this 

connection Gadd and Holder's results suggest a scale effect such 

that the separation distance is approximately inversely propor- 

tional to the Reynolds number. 	It will be readly apexeciated 

that if a set of such sin.ele relations can be established for a 

prnctical range of 'Each mriThers, Reynolds numbers and wing shapes 

it should be possible to predict not only tLe effects cf viscosity 

on drag, but its effects on lift, pitching moment and aerodynamic 

centre, etc., over a wide range of incidence. 	It is one of the 

consolations of the study of purely supersonic flow that the 

pressure distribution and the overall aerodynamic characteristics 

are not markedly more sensitive to conditions at the trailing edge 

than elsewhere, and no greater accuracy is needed in determining 

the boundary layer development for the purposes of estimating 

lift and pitching moment than is needed for determining the drag. 

In marked contrast we may note that for subsonic flow the lift 

and pitching moment but not necessarily the drag can only be 

adequately estimated when the extension of the Kutta-Joukowski 

condition at the trailing edge for viscous flow, first formulated 

by Preston
12
, has been properly applied. 	This is a process 

involving considerable computation, and it has so far only been 

applied in the absence of separation. 

In the case of the turbulent boundary layer when the 

pressure ratio across the shock is large enough to cause separation, 

the available data indicates that scale effects are very small, but 

no comprehensive information on other effects is yet available. 

However, Gadd
22 

has suggested a simple if approximate hypothesis 

for determining the pressure in the region of separation that 

gives values in reasonable agreement with available experimental 

data. 	His argument is that except very close to the wall the 

effects of pressure gradient on the flow in the boundary layer are 

much greater than the effects of friction, and it is assumed that 

the lower limit of the region in which this is so is where the 

velocity is 0.6 of the velocity just outside the boundary layer. 

This corresponds to the 'shoulder' of the zero pressure gradient 

boundary layer velocity distribution. 	It is then argued 

/accordingly ... 
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accordingly that the separation pressure is that required to bring 

the air at this 'shoulder' to rest isentropically, this leads to 

values of psep./p1 of 1.84 and 2.51 at values of i:[1 of 2.0 and 

3.0, respectively, where p1 and N1  refer to the pressure and 

Each number ahead of the shock. The corresponding values of the 

separation pressure coefficient cps  = (ps 
- p

1
) / IQ u

2 are 2 

0.3 and 0 . 24. 

The available data for the extent of the separated 

region cannot her ever be so readily generalised. Gadd and Ho1R49  

have investigated the interaction of oblique shock waves of various 

strengths and the boundary layer on a flat plate over a range of 

Hach numbers from 1.5 to 4.0 and their results show that with 

increasing shock strength the separation distance increases. 

Expressing the pressure rise across the shock as a coefficient 

c in terms of p1  u-  then with c = 0.5 the separation distance 2 

is about 355*  whilst with c = 1.0 the separation distance is 

about 1406* for the 7_ach numbers tested. 	However, Drougge 

has investigated the flow in corners less than 1800  where the shock 

is generated by the corner and the flow bears more direct similar-

ity to that at the rear of an aerofoil than do the cases investi-

gated by Gadd and Holder. His separation distances are consider-

ably less than those of Gadd and Holder for a given value of cp,  

thus for c = 0.5 Drougge obtains a separation distance of the 

order of 108 and faro = 1.0 the separation distance is about 256. 

The two types of experiment exemplified in the work of Gadd and 

Holder on the one hand and. Drougge on the other differ in important 

respects, and it is not altogether surprising that their results 

do not agree. 	However it is clear that without further 

experimental evidence one could not confidently apply the results 

of either set of experiments to the problem of the separation 

distance on an aerofoil, although it is likely that the results 

of Drougge will provide a closer estimate. 
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VARIATION OF H WITH M FOR VARIOUS VELOCITY POWER LAW 

RELATIONS, CALCULATED ON THE ASSUMPTION THAT THE TOTAL 

ENERGY IS CONSTANT ACROSS THE BOUNDARY LAYER. 
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