CRANFIEID

The Determination in Flight of the Body Drag and the Mean Blade Profile Drag Coefficient of a Helicopter ${ }^{\text {F }}$

- by -
F.E. Bartholomew, D.C.Ae. and

W.S.D. Marshall, D.Ae. (Hull), A.F.R.Ae.S.

S $\underline{U} \underline{M} \underline{M} \underline{A} \underline{R}$

Slight modifications have been made to the energy equation which enable the results of partial climb tests to be plotted as two straight lines, the slopes of which are measures of the body drag of the helicopter and the mean profile drag coefficient of the rotor blades.

Sufficient data has been analysed to show that the method can be used to obtain an accurate measurement of the body drag.

The values of ($C_{Q}-\frac{\delta \sigma}{4}$) obtained by the method are of the right order of magnitude, and will give a good indication of the profile drag losses of the rotor if the transmission and tail rotor power can be assessed to an accuracy of one per cent.

YSB

[^0]$\mathbb{N} \mathbb{O} \mathbb{A} \underline{I} \underline{\underline{N}}$ (see also Figure 6).

1. Introduction

It has long been the practice to evaluate the drag constants for a fixed wing aircraft by plotting the results of flight tests as the drag coefficient against the square of the lift coefficient. The relationship is found to be linear, so that

$$
C_{D}=C_{D_{Z}}+K C_{L}^{2} .
$$

Thus, the constants $C_{D_{z}}$ and K can readily be obtained as the intercept and slope of the curve respectively.

At the present time, no attempt appears to have been made to evaluate the drag constants for a helicopter in a similar manner. In this report, use is made of the energy equation for the helicopter, and, by making small changes to the form of the equation, it will be shown that the results of flight tests can be plotted in such a way as to give iwo straight lines, the slopes of which are measures of the drag constants of the helicopter.
2. Evaluation of the Drag Constants for the Helicopter
2. 1 The energy equation

An energy equation has been derived (1) from a consideration that the power supplied to the rotor is used
(a) to overcome the drag of the fuselage,
(b) to overcome the profile drag of the rotor
(c) to provide an induced velocity through the rotor disc,
and (d) to climb.
In a non-dimensional form the energy equation
becomes

$$
\begin{equation*}
C_{Q}=C_{D} \cdot v^{3}+\frac{\sigma \delta}{4}\left(1+3 v^{2}\right)+\frac{C_{T}^{2}}{4 v}+\frac{V_{C} \cdot C_{T}}{\Omega R} \tag{2.1}
\end{equation*}
$$

In the derivation of equation (2.1) a component of velocity along the blades has been neglected. Glauert (2) has shown the effect of this velocity component to change the term $\left(1+3 v^{2}\right)$ into a term $\left(1+4.5 v^{2}\right)$. Equation (2.1) thus becomes

$$
C_{Q}=\frac{V_{C} \cdot C_{T}}{\Omega R}+\frac{C_{T}{ }^{2}}{4 v}+\frac{\sigma \delta}{4}\left(1+4.5 v^{2}\right)+C_{D}^{\prime} v^{3} \ldots \ldots(2.2)
$$

and it is this energy equation which will be used in the subsequent analysis.

The two drag constants in this equation are δ, the mean profile drag coefficient of the rotor blades, and C_{D}, the drag coefficient of the fuselage.

2.2 Evaluation of the body drag coefficient

Inspection of equation (2.2) reveals that, for a constant value of the torque coefficient C_{Q} and increasing velocity ν, values for the rate of climb V_{c} are given which rise to a maximum and then fall with further increase in v.

The value for v for the maximum V_{c} will be designated ν_{1}. It is found that for values of v well in excess of ν_{1} the variation in the terms

$$
\frac{C_{T}^{2}}{4 v}+4.5 \frac{\sigma \delta}{4} v^{2}
$$

is negligible compared with the variation in the term $C_{D}^{\prime} \cdot v^{3}$. This is to be expected, since at the high forward speed more power is used to translate the fuselage.

Therefore, over the range $y>v_{1}$

$$
\begin{equation*}
\frac{V_{C} \cdot C_{T}}{\Omega R}=a \text { constant }-C_{D}^{\prime} v^{3} \tag{2.3}
\end{equation*}
$$

from which it is seen that, for a constant thrust coerficient, the rate of climb varies linearly with v^{3}. Hence, by plotting V_{c} against v 3 the body drag coefficient, $C_{D}{ }^{\prime}$, can be evaluated from

$$
\begin{equation*}
C_{D}^{\prime}=-\frac{d V_{c}}{d v^{3}} \cdot \frac{C_{T}}{\Omega R} \tag{2.4}
\end{equation*}
$$

2. 3 Evaluation of the mean profile drag coefficient

If equation (2.2) is multiplied throughout by v and re-arranged, there results an expression for the rate of climb as follows -

$$
\begin{equation*}
\frac{V_{C} \cdot C_{T}}{\Omega R} \cdot v=\left(C_{Q}-\frac{\delta \sigma}{4}\right) v-\frac{C_{T}^{2}}{4}-\frac{4 \cdot 5 \sigma \delta}{4} v^{3}-C_{D} \cdot v^{4} \tag{2.5}
\end{equation*}
$$

In this case, only values of v well below v_{1} are considered, and over this range the variation in the terms involving v^{3} and v^{4} is negligible in comparison with the term in v on the left-hand side of the equation.

Thus, for the range $v \ll v_{1}$, the expression for the rate of climb becomes

$$
\begin{equation*}
\frac{V_{C} \cdot C_{T}}{S R} \cdot v=\left(C_{Q}-\frac{\delta \sigma}{4}\right) v-a \text { constant } \tag{2.6}
\end{equation*}
$$

and the value of the mean profile drag coefficient, S, for the blades can be evaluated from

$$
\begin{equation*}
\left(C_{Q}-\frac{\delta \sigma}{4}\right)=\frac{C_{T}}{\Omega R} \cdot \frac{d}{d v}\left(V_{c} \cdot v\right) \tag{2.7}
\end{equation*}
$$

2.4 The application of the method

The method of analysis described in the preceding paragraph is seen to be readily applicable to the results of flight tests. If measurements of the rate of climb are made at various forward speeds, the results of these partial climb tests can be reduced to curves of V_{c} against v^{3} (over the range $v>v_{1}$) and $V_{c} \cdot v$ against v (over the range $\left.v_{1}>v\right)$.

In the evaluation of the body and mean profile drag coefficients, it is necessary to assume that the thrust is constant and equal to the weight. It is also necessary to assume that the angle of tilt, x, of the rotor axis is small, so that the forward speed, as measured by the airspeed indicator, equals the velocity, V_{t}, tangential to the rotor disc, and that the rate of climb V_{c} is equal to the velocity V_{a}, normal to the disc.

It is also necessary to estimate the induced velocity through the disc. A chart has been prepared (Figure 1) which gives the induced velocity v for various values of the velocity normal and parallel to the disc. This chart (10) is based on experimental values obtained by Brotherhood and Stewart (3,4).
3. Results and Discussion

Flight test results were available for the following aircraft.

Sikorsky	S.51	(ref.5)
Hoverfly	Mk.I	$(r e f .6)$
Bristol	171	$(r e f .7)$

The leading particulars of these aircraft are given in Table I.

In each case V_{c} was plotted against ν^{3} and $\mathrm{V}_{\mathrm{C}} \cdot \nu$ against v. The graphs were found to be straight lines, thus supporting the predictions of the energy equation. The only departure from the linear relationship was in the region where the forward speed was close to the forward speed for maximum rate of climb. A specimen reduction is given for the S .51 in Table II and the graphs in Figures 2 and 3.

3.1 The body drag

The results obtained from the analysis are tabulated below -

	$\frac{\mathrm{dV}_{c}}{\mathrm{dv}}$	D_{100}^{\prime} (lb.)
S.51	$-34,800$	269
Hoverfly Mk. I	$-84,000$	250
Bristol 171	$-57,100$	154

The values for the body drags follow the expected trend, the Bristol 171 being obviously the cleanest of these three aircraft. In the case of the Hoverfly a rough check on the value of pioo is possible, Stewart having made an estimate ${ }^{(6)}$ of the component drags. In this reference the body drag at $100 \mathrm{f} . \mathrm{p} . \mathrm{s}$. is quoted as 240 lb ., which is seen to be close to the value derived from the flight test results.

3.2 The value of $\left(C_{Q}-\frac{\sigma \delta}{4}\right)$

The results obtained from the flight tests are given in the following table -

	$\frac{d}{d \nu}\left(V_{c} \cdot \nu\right)$	$C_{Q}-\frac{\delta \sigma}{4}$
S.51	1860	.000666
Hoverfly Mk. I	1740	.000370
Bristol 171	1130	.000146

With the existing available data it is not possible to make a conclusive independent check of these values. However, Stewart ${ }^{(8)}$ gives information concerning the collectivgpitch angles; and with the additional aid of Tables ${ }^{(9)}$ of rotor characteristics, an estimate of the quantity $\left(C_{Q}-\frac{\sigma \delta}{4}\right)$ is possible. The following table gives the estimated values.

These two estimated values verify the order of the results obtained from the flight measurements.

The usefulness of the parameter $\left(C_{Q}-\frac{\delta \sigma}{4}\right)$ is limited, as in itself it does not give an indication of the profile drag of the rotor blades. Separation of the profile drag coefficient, δ, by the evaluation of C_{Q} requires an accurate assessment of the power expended in overcoming transmission losses and in driving the tail rotor. For the three helicopters considered here, this information regarding wasted power was not readily available. However, if firstly ten per cent and then fifteen per cent of the total engine power is
assumed for the power losses, the following values for δ are obtained.

	δ	
	10 per cent Waste power	15 per cent Waste power
S. 51	. 0134	. 0106
Bristol 171	. 0184	. 0160
Hoverfly Mk. I	. 0208	. 0181

These values for s are all of the expected order of magnitude, but the differences with each power loss are such that they are of little value in assessing the profile drag losses of the rotor. Consequently, an assessment of the waste power to an accuracy of one per cent of the total engine power is required before a satisfactory value of δ can be determined.

3. 3 The application of the method to the auto-rotative glide

The energy equation (2.2), without alteration, is applicable to the helicopter in an autorotative descent. It must be noted in this case that C_{Q} is small and negative. It is based on the torque required to overcome the transmission losses and to drive the r tail rotor.

Flight test results for the Bristol 171 have been plotted in Figures 4 and 5. The predictions concerning the linearity of the curves are again verified. Analysis of the results leads to the following results.

D_{100}^{\prime}	$C_{Q}-\frac{\delta \sigma}{4}$	10 per cent Waste power			15 per cent Waste power
141 lb.	-.00016	.00955	.00795		

The value for the body drag gives further support for the method since the ten per cent variation from the value quoted in paragraph 3.1 can easily be accounted to the change in direction of the resultant velocity over the body.

The values for the mean profile drag coefficient for the blade are considerably less than those for powered flight quoted in paragraph 3.2. But at high forward speeds the degree of stalling of the retreating blade is greater in powered flight than in auto-rotation, and this blade stalling would account for the increase in the mean profile drag coefficient of the rotor blades.

4. Conclusions

(a) Sufficient data has been analysed to show that the method can be used to obtain an accurate measurement of the body drag.
(b) The values of $\left(C_{Q}-\frac{\delta \sigma}{4}\right)$ obtained by the use of the method are of the right order, and will give a good indication of the profile drag losses of the rotor if the transmission and tail rotor power can be assessed to an accuracy of one per cent.
(c) The value of δ obtained from flight test results by this analysis represents a mean of the values over the range $v \ll \nu_{1}$, and cannot be assigned to any particular forward speed. Further, the value of δ thus obtained will include the effects of blade stalling.

NO	Author	Title, etc.
1.	Squire, H. B.	The Flight of a Helicopter. A.R.C. R. and M. 1730 , 1935.
2.	Glauert, H.	A General Theory of the Autogiro. A.R.C. R. and M. 1111, 1927.
3.	Brotherhood, P.	Flow through a Helicopter Rotor in Vertical Descent. R.A.E. Report No. Aero. 2272, Tuly 1948.
4.	Brotherhood, P. and Stewart, W.	An Experimental Investigation of the Flow through a Helicopter Rotor in Forward Flight. R.A.E. Report No. Aero. 2330 , May 1949.
5.	Glass, J.S. and Mailer, H.A.	Sikorski S.51. VW 209, Performance and Handling Tests. AFEE Report No. Rotor 3 .
6.	Stewart, W.	Brief Performance Tests on the Hoverfly Mk. I by the Aneroid Method and Flight Path Recorder. R.A.E. Tech. Note No. Aero. 1889, May 1947.
7.		```Sycamore Mk.I. VL. }958 Performance and Handling Trials. 1st part of A. and A.E.E./874, October 1950.```
8.	Stewart, W.	Helicopter Control to Trim in Forward Flight. R.A.E. Report No. Aero. 2358, March 1950.
9.	Squire, H.B. and Sibbald	Tables of Rotor Characteristics. R.A.E. Tech. Note No. Aero. 1883 , April 1947.
10.	Hafner, R.	Rotor Systems and Control Problems in the Helicopter. Aeronautical Conference, London, 1947, pp. 579-632. (Roy.Aero. Soc.).

TABLE I

Leading Particulars of the Aircraft Considered in this Report.

	S. 51	Bristol 171	Hoverfly I
Weight lb .	4985	4850	2650
Rotor diameter	48^{\prime}	$47^{\prime}-5^{\prime \prime}$	38^{\prime}
Disc loading lb/ft.	2.756	2.746	2.335
Solidity	0.073	0.050	0.058
Tip speed (under power)ft/sec.	486	669	449
Tip speed (autorotation)" "		640	

TABLEII

Specimen Reduction of Flight Test Results
Sikorsky S. 51.

V_{c} $\mathrm{ft} / \mathrm{min}$.	V_{i} knots	u	$\mathrm{~V}_{\mathrm{t}} / \mathrm{U}_{\mathrm{T}}$	$\mathrm{V}_{\mathrm{a}} / \mathrm{U}_{\mathrm{T}}$	$\mathrm{V} / \mathrm{U}_{\mathrm{T}}$	λ	v
765	20	.073	1.43	.514	.46	.057	.093
875	25	.091	1.78	.587	.50	.055	.106
960	30	.109	2.14	.645	.43	.055	.122
1030	35	.127	2.48	.691	.39	.055	.138
1070	40	.145	2.84	.719	.34	.054	.155
1090	45	.163	3.19	.732	.30	.053	.171
1075	50	.182	3.57	.722	.28	.051	.189
1045	55	.199	3.90	.702	.26	.049	.204
985	60	.218	4.26	.661	.24	.046	.223
910	65	.236	4.64	.611	.22	.043	.240
815	70	.254	4.99	.547	.20	.038	.256
690	75	.272	5.34	.464	.19	.033	.274
540	80	.291	5.71	.362	.19	.028	.292
370	85	.309	6.06	.249	.19	.022	.310
185	90	.327	6.41	.124	.19	.016	.327

$$
\begin{aligned}
\text { Height } & =3,000 \mathrm{ft} . \\
\Omega R & =486 \mathrm{ft} . / \mathrm{sec} . \\
\mathrm{C}_{\mathrm{T}} & =.0105 .
\end{aligned}
$$

CHART FOR DETERMINATION OF

$$
v_{c .} \sim \nu^{3} \cdot \text { FOR } \nu>\nu_{0}
$$

$$
V_{e} \sim V^{3} \quad \operatorname{FOR} \quad v>v_{i}
$$

COLLEGE OF AERONAUTICS
REPORT No. 56.

FIG. 5.

AUTOROTATIVE DESCENTS AT I,OOOFT.

$$
V_{c .} \nu \sim \nu \text { FOR } \nu_{1}>\nu
$$

$u=V_{d}+v=V \sin i+v$
$V_{Q_{1}}=V \operatorname{cosi}$
$v^{\prime}=\left(v_{t}^{2}+u^{2}\right)^{\frac{1}{2}}$

[^0]: ${ }^{\text {F }}$ This report is part of a thesis submitted by the first mentioned author in par fulfilment of the requirements of the Diploma Course at the College.

