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Abstract

With increasing emphasis on sustainability, Additive Layer Manufacturing

(ALM) offers significant advantages in terms of reduced buy-to-fly ratios

and improved design flexibility. Plasma Wire Deposition is a novel ALM

technique in which plasma welding and wire feeding are combined. In the

present work, a working envelope for the process using Ti–6Al–4V was

developed, and regression models were calculated for Total Wall Width,

Effective Wall Width and Layer Height. The Plasma Wire Deposition

process is able to produce straight walls of widths up to 17.4 mm giving a

maximum effective wall width after machining of 15.9 mm, which is

considerably wider than competing processes. In addition, for Ti–6Al–4V

the deposition efficiency averages 93% and the maximum deposition rate is

1.8 kg/h. Coarse columnar grains of β phase grew from the base during

deposition, which transformed into a Widmanstätten structure of α
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lamellae on cooling. Bands were identified in the deposits, which had a

repetitive basket-weave microstructure that varied in size. The strength

measured by micro-indentation hardness of 387 HV on average is as much

as 12% higher than the substrate. These preliminary results indicate that

Plasma Wire Deposition is likely to be a suitable process for the ALM of

large aerospace components.
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Nomenclature

ALM Additive Layer Manufacturing
CMT Cold Metal Transfer
DE Deposition Efficiency
EWW Effective Wall Width
I Current
GMAW Gas Metal Arc Welding
GTAW Gas Tungsten Arc Welding
LH Layer Height
PWD Plasma Wire Deposition
SW Surface Waviness
TS Travel Speed
TWW Total Wall Width
WFS Wire Feed Speed

1. Introduction

According to Baufeld et al. (2010), Additive Layer Manufacturing (ALM)

is a technology that enables the fabrication of complex, near net shape

components by deposition of many consecutive layers of a specific material.

The first applications of ALM, such as those described in Akula and
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Karunakaran (2006), involved rapid prototyping of plastic components and

facilitated shorter product development times and product life cycles.

Gradually, research efforts moved towards metal deposition, especially for

materials which are either difficult to machine or are expensive to buy,

where waste needs to be minimised. Metal ALM techniques differ

depending upon the heat source and the form of the fed material. Kruth et

al. (2007) provided an extensive review of Selective Laser Melting, in

which a powder bed is scanned by a laser. Wang et al. (2006) investigated

the Direct Laser Fabrication of Ti–6Al–4V supplying both blown powder

and fed wire, in the attempt to produce well bonded composites. An

alternative to Select Laser Melting is Electron Beam Melting: Murr et al.

(2010) used this process to additive layer manufacture Ti–6Al–4V cellular

foams. Aiming at increased deposition rates, arc-based welding techniques

have been used for ALM purposes. Baufeld et al. (2010) succeeded in

producing Ti–6Al–4V tubular components in high purity argon

atmosphere by using Gas Tungsten Arc Welding (GTAW). In Sequeira

Almeida and Williams (2010) the Cold Metal Transfer (CMT) Gas Metal

Arc Welding (GMAW) was used to deposit Ti–6Al–4V out-of-chamber.

This work included the development of a process model which enabled the

selection of the most appropriate process parameters for a given wall

geometry. Although some work on the combination of plasma welding

process and powder feeding is available (Xiong, 2008; Zhang et al., 2003),

to the best knowledge of the authors nothing has been published on the

combination of plasma welding and wire feeding.

All the powder-bed based techniques require support structures when

non-vertical parts are built. While laser-based techniques produce a higher

dimensional accuracy, there are some specific issues. First, the deposition
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rates are relatively low, with values typically being 9–120 g/h as reported

in Zhang et al. (2003). Second, during its scanning path the laser spot

could influence an area which is larger than the laser bead itself, thus

generating a phenomenon called balling, which is described in Tolochko et

al. (2004). Finally, with the currently available equipment, parts greater

than 300×350×300 mm3 are difficult to build with powder bed technology.

Wire-based techniques overcome many of the problems of powder-based

techniques for large structures. Their deposition rates can be more than

ten times higher, and there is almost no limitation regarding the size of the

part which can be built, provided the manipulator is sufficiently large and

gas shielding local to the torch can be implemented. There are fewer

contamination issues during the process, as all the fed wire goes in the

molten pool. Many of the powder based techniques use powder recycling

which can introduce contamination.

While previous work in Sequeira Almeida and Williams (2010) has

demonstrated the production of 1000×200×4 mm3 titanium walls using

the GMAW processes, the subject of the present paper is the investigation

and characterisation of Plasma Wire Deposition (PWD). As described in

Messler (1999), non-transferred plasma arc welding is a process in which

an arc is created between between a non-consumable tungsten electrode

(cathode) and a copper anode within the torch. An inert gas (usually

argon) is forced through the orifice formed between the cathode and

anode, thus constricting the arc. This leads to higher energy density,

increased arc stability and reduced contamination when compared with

competing processes such as GTAW deposition. Weman (2003) reported

that higher travel speeds and quality can be achieved when welding with

this process, so it stands to reason that similar advantages can be achieved
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with ALM. Moreover, the production of a model capable of predicting the

main geometric features of the deposit is attempted.

2. Methodology

2.1. Experimental setup

Substrate

Wall

Deposition direction

Plasma torch
3-axes manipulator

Trailing shield

Wire feeder

Travel Speed (TS)

Gas inlet

Wire Feed Speed (WFS)

Aluminium
curtains

Clamps

Z

XY

Figure 1: Schematic representation of Plasma Wire Deposition
experimental equipment.

The equipment used for PWD is shown in Fig. 1 and consists of: Liburdi

Engineering PW-400C Plasma Torch, equipped with a 100 mm long

trailing shield; and a Liburdi Pulseweld LP4000-VC Power Source.

Pureshield Argon Gas was used for both the plasma and the shielding gas.

The torch standoff was 7 mm (enough to ensure no crash could occur) and

the electrode set back was 5 mm (suggested by torch manufacturer). These

were not adjusted during the experiments. The wire diameter was 1.2 mm

and the wire was fed from the front of the welding pool, as shown in Fig.

1. The wire chemical composition is shown in Table 1. The phases of the

deposition operation and the corresponding gas flow-rates for the plasma

gas, shield gas and trailing shield are shown in Table 2.
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2.2. Preliminary experiments for determining process window

Due to the novelty of using PWD for ALM, a set of 34 preliminary single

layer (bead on plate) experiments provided the necessary information for

understanding the general behaviour of the process and determining the

limitations of the process parameters. Deposition may be unfeasible due to

physical limits or impractical parameters combinations. The experimental

set up was the same as that described in Section 2.1. While two

parameters were kept constant, the other was varied in fixed steps till an

unfeasible combination was found on the basis of visual assessment of the

deposited layer.

2.3. Experiments for developing the process model

The walls were made of 14 layers and were 140 mm long. Layer deposition

always started from the same end. Before starting each wall, the plates

were cleaned with a stainless steel wire brush and acetone, to eliminate

surface contamination. Three ALM straight walls were built by PWD on

Ti–6Al–4V plates measuring 200×100×7 mm3. The part was allowed to

cool down to 100◦C before depositing a new layer for consistent part

geometry. Subsequent work has shown that the temperature of the

substrate affects the droplet surface tension, which in-turn effects the

deposit geometry.

Having established the process constraints, a D-Optimal design method

(Montgomery, 2005) was chosen for the experiment. Optimal designs are

computer-generated and are particularly suitable when the experimental

Table 1: Chemical composition of 1.2 mm Ti–6Al–4V wire.

Ti Al V Fe O C N H TOE Y Others

89.397 6.14 3.96 0.18 0.14 0.02 0.011 0.001 <0.1 <0.001 <0.05
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Table 2: Gas flow rates used for the different deposition stages.

Pre Purge Ignition Deposition Slope Down Post Purge

Plasma orifice gas flow rate [l/min] 1.5 1.5 1.5 1.5 1.5
Shield gas flow rate [l/min] 20 20 25 20 20
Trailing shroud gas flow rate [l/min] 12 - 30 30 30
Duration [s] 5 - 14 - 70a 5 20

aDuration depended on travel speed

region is irregular, the model is nonstandard (i.e. the experimenter knows

beforehand some interactions will not be significant), and/or there are

certain sample size requirements (i.e. a reduced number of runs must be

done). A design is D-Optimal if it “minimises the volume of the joint

confidence region on the vector of regression coefficients” (Montgomery,

2005). In practice, the experimenter inputs the constraint equations and

specifies any conditions related to unnecessary model terms and sample

size. The software then runs an algorithm and returns the set of

experiments that have the highest D-Optimal efficiency.

After the preliminary experiment and factors reduction, Wire Feed Speed

(WFS) [X1], Travel Speed (TS) [X2] and Current (I) [X3] were selected as

the factors for the model. WFS is the speed [mm/s] at which wire is fed

into the molten pool (Fig. 1); TS is the travel speed [mm/s] of the

manipulator (and consequently of the torch) along the Y axis; and I [A]

influences the heat input.

The three responses used in the model were Total Wall Width, Effective

Wall Width and Layer Height, which are described in the next section. As

cubic behaviour was expected, three-factor third-order polynomial
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functions were fitted:

Y = β0 +

3∑
i=1

βixi +

3∑
i=1

βiix
2
i +
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i=1

βiiix
3
i +

3∑
i<j

βijxixj

+
3∑

i 6=1

βiijx
2
ixj + β123x1x2x3

(1)

where Y is the predicted response, β0 is the constant process effect, βi is

the the linear effect of Xi, βii are the quadratic effects of Xi, βiii are the

cubic effects of Xi, βij are the interactions of first order, βiij are the

interactions of second order, and β123 is the interaction of third order.

Stat-Ease Design-Expert R© 7.1 is a statistical software that creates and

evaluates general factorial designs, fractional factorial designs, response

surfaces, optimal designs, and it was used in the present research. The

software indicated that 28 experiments were necessary to calculate the

regression coefficients for the full model.
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Figure 2: Schematic representation of a generic part cross-section. The
Total Wall Width takes into account the entire width of the specimen,

while the Effective Wall Width measures only what remains after having
machined away the irregular side surfaces. Area A is the cross section

enclosed by the Effective Wall Width, while areas B and C correspond to
the cross sections that must be machined.
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2.4. Measurements

The deposited layer height was measured at 50 mm, 80 mm and 110 mm

from the deposition starting point. The average was used to determine the

height increment for deposition of the following layer. When calculating

the average layer height, the first four layers were excluded because of the

thermal effect of the base plate (Fig. 2). Transverse sections were taken,

placed into resin, ground, polished and etched with hydrofluoric acid in

order to take macro and micro images. The deposited walls have an

irregular surface finish which makes a machining operation necessary to

achieve plane side surfaces. The widths before and after machining are

named the Total Wall Width (TWW) and the Effective Wall Width

(EWW), respectively, the latter representing the width which is effectively

usable. Both are shown in Fig. 2. Area A is the cross sectional area

enclosed by the EWW; and areas B and C are the cross sectional areas of

the material that would need to be removed by the machining operation.

Adobe Photoshop R© CS4 was used to measure both the widths and areas.

In Adobe Photoshop, chromatic-based selection was used to highlight the

various regions (A, B or C). After defining the scale on the image, the

software calculated their areas.

Surface waviness was calculated as

SW = (TWW − EWW )/2 (2)

and deposition efficiency as

DE = A/(A+B + C) (3)

Both surface waviness and deposition efficiency indicate the amount of
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material that must be machined to achieve dimensional accuracy.

3. Results and discussion

3.1. Working envelope

The preliminary investigation on Ti–6Al–4V deposition showed that the

constraints on the parameters could be represented by the following

equations:

20 ≤Wire Feed Speed ≤ 100 (4)

2 ≤ Travel Speed ≤ 10 (5)

120 ≤ Current ≤ 300 (6)

160 ≤ −5 ×Wire Feed Speed+ 3 × Current (7)

−520 ≤ −8 ×Wire Feed Speed+ Current (8)

10



−200 ≤Wire Feed Speed− Current (9)

0 ≤ −Wire Feed Speed+ 20 × Travel Speed (10)

0 ≤Wire Feed Speed− 5 × Travel Speed (11)

−58 ≤ −Wire Feed Speed+ 6 × Travel Speed (12)

These are represented graphically in Fig. 3 in which they are related to the

defects that can occur outside the working envelope. The low WFS and TS

limits are due to the need for high deposition rates and therefore lower

values were not considered. The WFS upper limit was due to a hardware

limitation. The Current upper limit is related to the WFS upper limit, as

300 A is the current necessary to melt the amount of the WFS upper limit

(100 mm/s). On the one hand, when the heat input was insufficient,

incomplete melting occurred (eq. (6), (7), (8); Fig. 3, images B3 and B4);

on the other hand if the heat input was too high, the bead shape

uniformity was badly affected (eq. (9); Fig. 3, images B1 and B2).

Very high TS produced an exacerbated form of humping (eq. (5), (11);

Fig. 3, images A1 to A3); the high surface tension made the droplet

solidify as soon as it touched the cold substrate; and the higher the WFS
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Figure 3: Working envelope for (a) WFS - TS and (b) WFS - Current
plans. The numbers indicate the constraint each line refers to. (c) shows a
3D representation of the working envelope shaped by the constraints; the

dots correspond to the 28 experiments necessary to calculate the regression
coefficients for the models.
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Figure 4: Examples of Ti–6Al–4V walls build by Plasma Wire Deposition
(main ruler unit is cm).

the larger the humps. This was the reason for the upper TS limit.

3.2. Process capability

A typical deposit is shown in Fig. 4, and a comparison against competing

processes is shown in Fig. 5. The comparison data, for the GMAW and

Figure 5: Comparison between PWD and other ALM processes in terms of
Total Wall Width, Effective Wall Width and Layer Height. Effective Wall
Width data are not available for High Frequency GTAW, Direct Current

GTAW, Selective Laser Melting and Direct Laser Fabrication.
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GTAW processes considers only out-of-chamber manufacturing methods,

and is taken from the work of Sequeira Almeida and Williams (2010), Eze

(2009), Milewski et al. (1999) and Tolochko et al. (2004). Note that it was

assumed that the wall width equalled the spot size for laser-based

processes. The main advantage of the powder-bed laser deposition process

is the small feature size capability. Finally it is interesting how the

capabilities of PWD complement those of the GMAW-CMT process, with

the latter producing thinner walls with a much greater layer height.

Therefore, a combination of the two different processes could provide the

capability to meet any geometric requirement.

The maximum deposition rate achieved using PWD was 1.8 kg/h; however,

it was constrained by the 100 mm/s limit of the wire feeder. The process

showed the potential for further increasing the deposition rate, provided

both the power and the WFS could be increased. The surface waviness

ranged from 0.35 mm to 1.51 mm, averaging 0.70 mm. The average

deposition efficiency was 93%, and ranged from 85% to 98%. These values

were much higher than those from the GMAW-CMT process, whose

average was around 80% (Sequeira Almeida and Williams, 2010). The time

to deposit the 14 layers, considering deposition time only, ranged from 3

min 16 s to 16 min 20 s and depended on the travel speed. The width of

the first four layers was approximately 77% of the Total Wall Width, and

88% of the Effective Wall Width of the subsequent layers. In practice,

different parameters which produce a larger Effective Wall Width would be

required for the first four layers. This was not studied within the scope of

this work.

3.3. Macrostructure

Transverse cross sections of all the specimens revealed a common
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macrostructure, in which prior β columnar grains grew from the base plate

(Fig. 7a) throughout the deposition process. In the ALM context, Baufeld

et al. (2010), etc. described how Ti–6Al–4V solidifies in the body centred

cubic β phase, and then on cooling below 1000 ◦C partially transforms to

the hexagonal closed packed α phase, surrounded by a matrix of β phase.

The grains were much larger than those in the base plate and are a

consequence of epitaxial grain growth (that occurred during the deposition

process) in which the favourably oriented grains grew instead of those

what were not. The preferred direction is the one of the heat flow.

In addition there were a series of bands in the microstructure which were

convex at the bottom of the wall and were perpendicular to the wall

toward the top. This feature will be discussed in the next section.

3.4. Microstructure and Hardness

Analysis of the deposited microstructure has shown a number of key

features. Firstly, there is the upper region which consists of a fine

microstructure as shown in Fig. 6. The microstructure within this region

is relatively uniform and consists of very fine Widmanstätten and some

needle-like α lamellae. The Widmanstätten microstructure consists of

small α colonies that nucleate into former β grains, which now appear as a

matrix surrounding the α lamellae. α nucleation starts at the grain

boundaries; when the nucleated α lamellae collide with each other and

cannot grow further, additional nucleation occurs on the lamellae

boundaries, causing new lamellae to grow perpendicular to the original

ones, to minimise the elastic strain (Lütjering and Williams, 2007). While

some authors (Gil et al., 2001; Lütjering and Williams, 2007) have

interpreted the grid-looking microstructure such as the one found in the

top region as martensite, others (Baufeld et al., 2009) have claimed that
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Figure 6: Fine lamellar structure typical of the top region of the deposits.
Note some needle-like lamellae which suggests the presence of martensite.

such a microstructure is fine basket-weave. Irrespective of the

interpretation, such a microstructure is typically produced by rapid cooling

the material from above the β transus temperature to room temperature,

as described by Lütjering and Williams (2007), Gil et al. (2001), Filip et

al. (2003), and Ahmed and Rack (1998). Underneath this region a series of

bands is observed with one band being produced with each deposited layer.

A generic band is indicated by the letter F in Fig. 7a. Analysis of the

microstructure between two bands in Fig. 7, shows that there is an

increase in α lamellae size (which was assessed visually) with increasing

distance in the Z direction, i.e. within two bands the size of the

microstructure increases gradually towards the torch (see Fig. 7b to Fig.

7f). This kind of microstructure has also been observed by Kelly and

Kampe (2004a), who claimed that the variation in microstructure size was

due to compositional gradients or thermal effects.

An alternative explanation of the final microstructure is the consequence of

multiple thermal cycles including: the one where the material was
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Figure 7: (a) macrostructure of a deposit; (B-F) microstructure of locations
indicated in (a). The increase in Widmanstätten features size can be seen.
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Figure 8: Suggested cooling curves for locations B and F in Fig. 7. TB and
TF are the peak temperature achieved in these two points, while tB and tF

are the times they are exposed to them for.

deposited, and the subsequent ones due to the succeeding layers. Analysis

of the thermal history during ALM by Kelly and Kampe (2004b) and by

an in-house thermal model of the process demonstrated little difference in

the cooling rate in the top 4 to 5 mm of the deposit. Therefore provided

that the temperature exceeds the β transus temperature, there is unlikely

to be any significant differences in the microstructure, and indeed a high

cooling rate will produce a uniform martensitic (or fine Widmanstätten)

microstructure.

Just below this region, i.e. the region identified by point B in in Fig. 7a,

the peak temperature will be just below the β transus temperature, so the

microstructure will not fully transform to the β phase. A typical thermal

cycle is shown in Fig. 8, with peak temperature TB. When held at this

temperature for a time tB, the β phase transformation is avoided and there

is sufficient temperature and time to induce coarsening of the α-laths, a

phenomenon also reported by Baufeld et al. (2009), the temperature being
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higher than the α dissolution temperature (Tdiss= 748 ◦C), which is the

one “above which the equilibrium volume fraction of α begins to decrease”

(Kelly and Kampe, 2004b). At a point further from the torch, i.e. at the

point represented by point F in Fig. 7a the peak temperature is not

known, however it will be significantly lower than that obtained at point

B. This is represented by the second thermal profile in Fig. 8 which has a

peak temperature TF which is retained for a period of time tF . This lower

temperature is insufficient to induce coarsening, so the previous

microstructure is largely retained, i.e. there is very little difference with

the martensitic microstructure contained in the top region. Therefore the

different microstructures that are observed within the bands are primarily

a function of the peak temperature that the material achieves on the first

thermal cycle where the peak temperature is less than the β transus

temperature; and are not due to differences in cooling rate as claimed by

some authors. Note that the peak temperature in the subsequent thermal

cycles is insufficient to cause significant microstructural changes.

Hardness measurements were done every 1.5 mm on four specimens along

the centreline. While the average base plate hardness is 347 HV, the

hardness of the four analysed specimens ranged from 342 HV to 430 HV,

averaging 387 HV. There was no particular trend in hardness values along

the deposit. The standard deviation of the samples (20 HV) was similar to

the base plate (19 HV). The values indicated that some hardening of the

material has occurred in the deposition process.

3.5. Process Issues

As stated in the methodology, it was necessary to wait until the material

cooled down to 100 ◦C, before depositing the next layer. The thermal

conductivity of Ti–6Al–4V is relatively poor (7.2 W/mK), so the waiting
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time can be substantially larger than the actual deposition time. This

problem was particularly acute with the small specimens investigated in

this study. It is intended that the process will be implemented on large

structures, where the time between successive layers will be long due to the

size of the component, hence it is unlikely to be an issue in practice. Other

solution strategies may involve depositing multiple components at once or

in-process cooling.

The wall height was inconsistent; there was a distinct hump at the

beginning and a depression towards the end, which is shown in Fig. 4. The

depression at the end is likely to be due to the build-up of heat caused by

the lack of heat sink in front of the torch. This could be addressed by

reducing the current at the end of the travel. The likely cause of the hump

at the beginning may be the thermal effect associated with the deposition

on the cold base material. Both problems can be solved by changing the

deposition strategy: instead of starting each layer form the same point,

each layer could be started where the previous one finished. In this way,

humping and sloping would be equally distributed at the two ends,

compensating each other. This solution, which does not require any

modification to the process parameters, has been successfully tested.

In only 4 specimens (out of a total 32) a cavity in the longitudinal

direction was observed (Fig. 9a and b). In these specimens, the cooling

rate was sufficiently high to prevent the molten metal filling the cavity

created by the plasma jet. In two of the specimens the cavity was only

observed in the base material while in the other two the cavity extended

through the deposit. These two specimens had the same deposition

parameters, the second being a replication of the first, in the design of the

experiment. Therefore the occurrence of the defect was to be expected in
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both of them. Cavity formation is undesirable in an industrial application,

therefore parameters combinations that cause cavity formation should be

excluded from the working envelope.

Oxidation represents a major issue in this phase of the process

development. A number of samples showed surface discolouration after

deposition (Fig. 9c). The colour may vary from yellowish to dark grey and

was more prevalent as the deposit height increased due to the difficulty in

adequately shielding the component. More effective shielding devices need

to be developed for out-of-chamber deposition. Finally distortion was

evident even on these small samples indicating that residual stresses in the

deposited layers are likely to be significant and will need to be addressed.

3.6. Statistical Analysis

To determine the relationship between the measured response and the

statistically significant variables, analysis of variance (ANOVA) was

performed. This produced the following response models for the Total

Wall Width (TWW in [mm]), Effective Wall Width (EWW in [mm]) and

Figure 9: Issues include cavities and surface oxidation (c). Cavities were
observed in 4 specimens: (a) cavity in the baseplate only and (b) extended

through the deposit.
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the Layer Height (LH in [mm]):

TWW = 6.88239 − 0.044619 ×WFS − 2.24209 × TS + 0.11751

× I + 0.00111 ×WFS × I − 0.00332 × TS × I − 0.00132

×WFS2 + 0.14513 × TS2 − 0.000316 × I2

(13)

EWW = 8.5012 − 2.27791 × TS + 0.073942 × I + 0.000906

×WFS × I − 0.00329 × TS × I − 0.00144×

WFS2 + 0.15051 × TS2 − 0.000179 × I2

(14)

LH = 2.13394 − 0.075481 ×WFS − 0.257 × TS − 0.022745

× I − 0.00027 ×WFS × I − 0.000763 × TS×

I − 0.0000725 × I2

(15)

Even though cubic models were used, the analysis of variance indicated

that none of the cubic terms were significant. Surprisingly, the linear term

of WFS has statistical relevance in the TWW model but not in the EWW.

Table 3 presents the coefficients of determination (R2) and adjusted-R2 for

the three models. Both R2 coefficients, which according to Montgomery

(2005) measure the proportion of the variability in the data that can be

explained by the model, indicate that over 95% of the variability can be

explained by the models, except for the LH response. The poorer value of

R2 for the LH could have been a consequence of the large variability in the

wall height, which was observed along the sample. This could have affected

the reliability of the regression analysis. In fact, in the case of the LH
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model the p-value for Lack of Fit is significant (0.0154). Montgomery

(2005) explains that the p-value helps the decision maker to determine the

significance of the data, and its threshold is usually 0.05; and Lack of Fit is

the sum of squares of dropped factors. Provided that all and only the

non-significant terms were excluded from the model, one can assume that

the significant Lack of Fit is given by random errors in the data. Further

experiments are necessary using longer walls, in which the steady state

deposition is extended providing more accurate measurements.

Pred-R2 values, which predict the variability explained by the model for

new data, are in reasonable agreement with the Adjusted-R2 values and in

all three cases the Adeq. Precision tests, which measure the signal-to-noise

ratio, are greater than 4, which is the minimum value typically accepted

for this term.

To evaluate model reliability further, four additional walls were built; their

responses were then compared with those predicted by Stat-Ease

Design-Expert R© 7.1. TWW and EWW values were always within the 95%

confidence interval; however two of the four measured LH values fell

outside the 95% confidence interval. This confirms what has been

discussed previously regarding the low reliability of the regression analysis

for the LH response.

Contour plots were generated to represent graphically the regression

equations. The EWW (Fig. 10) is maximised when the TS is minimised;

Table 3: Statistical tests performed on the final models.

Statistical Test TWW model EWW model LH model

R2 0.9675 0.9540 0.9108
Adjusted-R2 0.9552 0.9393 0.8885
Pred-R2 0.9310 0.9228 0.8093
Adeq. Precision 32.026 29.052 22.471
P-values <0.0001 <0.0001 <0.0001
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Figure 10: Effective Wall Width contour plots. (a) TS=2 mm/s; (b) TS=6
mm/s; (c) TS=10 mm/s.
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Figure 11: Layer Height contour plots. (a) TS=2 mm/s; (b) TS=6 mm/s;
(c) TS=10 mm/s.
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the walls get thinner when the TS increases. The process has a behaviour

similar to GMAW, in which Sequeira Almeida and Williams (2010)

reported that the wall width depends on the WFS/TS ratio. In fact, the

higher the ratio, the thicker the walls, as the amount of fed material per

unit length increases. The Current also affects the EWW (Fig. 10), with

larger values causing wider walls.

Note that the maximum TWW is achieved at virtually the same conditions

as the maximum EWW (WFS=42 mm/s, TS=2 mm/s and Current=237

A for the TWW vs. WFS=41 mm/s, TS=2.1 mm/s and Current=240 A

for the EWW) showing the strong correlation between the two responses.

The LH results are shown in Fig. 11 which demonstrates a behaviour

which is in contrast to the one described for TWW and EWW: LH

increases as WFS increases and Current decreases. As noted previously,

high currents cause spreading of the deposit, so lower currents which

reduce the heat input enable the deposit to solidify earlier. Maximum LH

is obtained with an intermediate travel speed at the following conditions:

WFS=68 mm/s, TS=3.4 mm/s and Current=167 A.

An attempt to optimise the process could present the typical problems of

multi-objective optimisation, which according to Trautmann and Mehnen

(2009) aims at optimising concurrent objectives which are contradictory

but depend on the same set of variables. Therefore, as reported by Ehrgott

(2005), there is no unique optimal solution, but often a set of different

solutions calculated by using desirability functions. In PWD, EWW is the

first parameter that must be specified, as it represents the main design

specification; WFS, to which the deposition rate depends on, should be

maximised to build the walls as fast as possible, whenever productivity is a

key factor. Most of the optimal solutions have a Desirability Index above
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0.90. The Desirability Index, which is the output of a desirability function,

is equal to 1 when the response is at its target, or to 0 when the response

is not acceptable (Montgomery, 2005). In some cases, it is possible to

calculate solutions with Desirability Index=1, as when, given EWW=12

mm, it follows WFS=100 mm/s, Current=294 A and TS=7 mm/s.

4. Conclusions

In this paper it has been demonstrated:

• The feasibility of using Plasma Wire Deposition for ALM of large

aerospace structural components;

• The process window for Plasma Wire Deposition, including a

description of the parameters combination where deposition becomes

unfeasible and the defects that are likely to occur outside those

parameters ranges;

• Compared to competing Additive Layer Manufacturing processes,

the Effective Wall Width and deposition rates are much higher.

Nevertheless, the layer height was lower than with the GMAW-CMT

process;

• The metallography shows a Widmanstätten microstructure within

large columnar grains;

• Oxidation and distortion can be issues, particularly when the

deposition occurs out-of-chamber;

• A statistical model that enabled the selection of process parameters

to maximise the layer height and deposition rate for a given Effective

Wall Width.
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