

Cranfield University

Sarocha Phumbua

Simulation modelling of service contracts within the context of
Product-Service Systems (PSS)

School of Applied Science

PhD Thesis

Cranfield University

School of Applied Science

PhD Thesis

Academic Year 2011-2012

Sarocha Phumbua

Simulation modelling of service contracts within the context of
Product-Service Systems (PSS)

Supervisor: Dr Benny Tjahjono

January 2012

This thesis is submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

© Cranfield University 2012. All rights reserved. No part of this publication may
be reproduced without the written permission of the copyright owner.

I

Abstract

This thesis deals with the decision support tools for service contracting within the
context of Product-Service Systems (PSS). The research contributes to the modelling
constructs that can support modellers in developing service contract simulation
models in an effective and efficient manner. Overall, the models can assist
manufacturers to understand implications of contracting decisions that may either
lead to profitable solutions or loss of business opportunities.

PSS is recognised as a survival strategy for many manufacturers to sustain their market
competitiveness. It is an emerging manufacturing paradigm that integrates services
into products to ensure the required capability or availability of products. This concept
is often delivered as long-term service contracts which can be made in separation or
together with product acquisition. As the contracts can span over decades, the
manufacturers need to absorb the future risks. For this reason, a decision support tool
that allows the risks and rewards to be visualised and ultimately support contract
design is in urgent need. However, PSS has various characteristics beyond the
traditional product-selling businesses and involves potential dynamic behaviour.

Existing tools are inadequate to effectively analyse the issues and also to be reused
across cases or during the contract delivery phase. For this reason, this thesis intends
to provide modelling constructs that enhance effective and efficient development of
simulation models for PSS offerings

To accomplish this aim, various simulation modelling techniques have been first
explored from the literature and through the practical model developments to identify
the backbone of the constructs. The hybrid Discrete-Event Simulation and Agent-Based
Simulation has subsequently been selected as the most suitable technique to
represent the PSS cases. This technique was applied in four reported cases to
generalise the modelling approach. All the developed models have been verified and

validated using several methods. The approach was then analysed and refined to
enhance efficiency in building models. The refined approach was used to form the
modelling constructs. The constructs were validated using three other cases and tested
by three other modellers with different simulation background. The results have
demonstrated the applicability, practicality, feasibility, and efficiency of the constructs.

The outcomes of this research are the final modelling constructs which provide
significant contributions academically and practically. Academically, this research
provides a new way of capturing PSS characteristics and dynamic behaviour, and brings
together PSS theoretical research, operational planning and decision support tools.
Practically, manufacturers can effectively analyse the implication of service contracts
and modellers can rapidly develop service contract simulation models.

II

Acknowledgement

Three years have passed since the day I made a significant decision in my life – the
decision to have this PhD as my best friend. Since then, this friend brings me
contentment, responsibility, challenges, and concerns. However, I'm grateful for the
given opportunity. With this, I would like to express my deepest gratitude to the Thai
government for the supports over eight years, and also to the Office of Educational
Affairs for taking care of my welfare during this period.

I would like to thank my supervisor – Dr. Benny Tjahjono – for giving invaluable
opportunity and experience throughout my PhD. Additionally, I am heartily thankful to
Dr. John Ahmet Erkoyuncu, Evandro Leonardo Silva Teixeira, Prikshat Sharma, and
Dmitry Borisoglebsky, whose collaborations and feedback enabled me to reach the
end. In particular, it would not have been possible without the advice and the
encouragements from Dr. Peter Thomas.

Undoubtedly, my years could be filled with smiles and sweet memories thanks to my
friends: Joanna Zawadska, Marine Vienet, Agota Berkes, Catia Sousa, Robert Sawko,

Grzegorz Lachowski, and Martino Tomizioli. Particularly, my first few days in Cranfield
would have been a struggle without Katarzyna Panikowska - who also gave me a
perception of responsibility and capability. It was more than a pleasure that I could
share some moments with all of you.

And above all, I can have this life journey because of the motivation from the greatest
woman in my life. There was no single day in my childhood that I did not see her

passion in supporting her students and not a day was passed without her contribution
to the unfortunates. It has always been my honour to be raised with this admirable
mindset. Thanks to this, I could overcome difficulties and tiredness all these years.
Therefore, I would like to take this chance to thank my mum – Sarai Phumbua. My

appreciation also goes to my beloved friend – Jutharat Ahchawarattaworn – who made
me feel at home outside my country. Your friendship is one of the most precious things
I have ever had. And I hope our path will come across again in the future.

Last, my dedication should go to the man who has devoted his every day in the past
sixty years in helping others to have a better life. This man turns a ‘country’ to become
a ‘homeland’ for millions of people. This man has proven himself his capability, caring,
and kindness far beyond his responsibility. It is my pride to follow your footsteps. My
deepest appreciation is for our great ‘Father of the Country’.

III

List of publications

Phumbua, S. and Tjahjono, B., 2011. Understanding implication of service contracts in
product-service business: A simulation approach. In: Proceedings of the Operational
Research Society Simulation Workshop 2012 (SW12), March 27th-28th, Birmingham,
UK.

Phumbua, S. and Tjahjono, B., 2011a. Towards Product-Service Systems modelling: a
quest for dynamic behaviour and model parameters. International Journal of
Production Research, DOI: 10.1080/00207543.2010.539279.

Phumbua, S. and Tjahjono, B., 2011b. Simulation Modelling of Availability Contracts. In:
Proceedings of the 44th CIRP International Conference on Manufacturing Systems, June
1st-3rd, Madison, WI, USA.

Phumbua, S. and Tjahjono, B., 2010. Simulation Modelling of Product-Service Systems:
the Missing Link. In: Proceedings of the 36th International MATADOR Conference, July
14th-16th, Manchester, UK.

Phumbua, S. and Tjahjono, B., 2011. A hybrid simulation modelling approach for
availability contract. Computers in industry, Revised version submitted, July 2011.

Phumbua, S. and Tjahjono, B., 2011. Simulation Modelling Constructs to Enable
Evaluation of Service Offerings. Simulation Modelling Practice and Theory, Under
review, October 2011.

Phumbua, S. and Tjahjono, B., 2011. Exploring simulation modelling approaches for
service contracts of aero-engine overhaul. International Journal of Advanced
Manufacturing Technology, Under review, November 2011.

IV

Contents

Abstract .. I

Acknowledgement .. II

List of publications ... III

List of figures .. VII

List of tables ... X

Glossary of terms .. XI

1 Introduction ... 1

1.1 Overview of research context ... 2

1.2 Overview of research aim and objectives .. 3

1.3 Overview of scope of this research ... 4

1.4 Overview of research methodology ... 5

1.5 Thesis outline .. 6

2 Literature review ... 8

2.1 Drivers towards PSS adoption ... 9

2.2 Business cases of PSS offering ... 11
2.2.1 Overview of the offers .. 11
2.2.2 Contract parameters... 14

2.3 PSS characteristics and dynamic behaviour ... 16
2.3.1 PSS characteristics .. 16
2.3.2 Dynamic behaviour ... 16

2.4 State-of-the-art in PSS modelling ... 17
2.4.1 Existing modelling techniques and tools within PSS context 18
2.4.2 Model parameters .. 25

2.5 Research gaps and summary ... 29
2.5.1 Relationships between model parameters and PSS characteristics 30
2.5.2 Capability of modelling tools and techniques ... 31

3 Research programme ... 33

3.1 Development of research aim and objectives ... 34

3.2 Development of research scope ... 35

3.3 Development of research methodology ... 37
3.3.1 Methods for conducting a simulation study .. 38
3.3.2 Methods for data collection .. 40
3.3.3 The research methodology .. 42

3.4 Chapter summary .. 46

4 Investigation of simulation modelling techniques 47

4.1 SD, DES, ABS in literature .. 48

4.2 Model development in the PSS context ... 50
4.2.1 Business case I: SD technique .. 51
4.2.2 Business case II: DES technique ... 52

V

4.2.3 Business case III: Hybrid SD-ABS technique .. 54
4.2.4 Business case IV: Hybrid DES-ABS technique .. 55

4.3 Discussion ... 56

4.4 Chapter summary .. 58

5 Development of the modelling approach .. 59

5.1 The hybrid DES-ABS technique in case studies 60
5.1.1 Case I: Aircraft .. 61
5.1.2 Case II: Photocopier ... 70
5.1.3 Case III: Underground .. 73
5.1.4 Case IV: Carpet .. 76

5.2 Cross case discussion .. 78
5.2.1 Summary of the applied modelling approach ... 78
5.2.2 Assessment against strengths and weaknesses in PSS modelling literature...... 81
5.2.3 Complexity analysis .. 82

5.3 Managing modelling complexity .. 83
5.3.1 Handling problem-related complexities .. 83
5.3.2 Handling approach-related complexities .. 84
5.3.3 The refined modelling approach ... 87

5.4 Chapter summary .. 87

6 Formation of the modelling constructs ... 88

6.1 Overview of the constructs ... 89

6.2 Development of the basic service contract construct 90

6.3 Development of the case-dependent constructs 93
6.3.1 Service decision making structure ... 95
6.3.2 Subsystem characteristic ... 98
6.3.3 Work breakdown structure ... 101
6.3.4 Contract creation policy .. 104
6.3.5 Capacity adjustment policy .. 106
6.3.6 Contract termination likelihood ... 108
6.3.7 Relationship protocol .. 109

6.4 Assessment of the constructs against the current state of PSS
modelling ... 112

6.5 Chapter summary .. 114

7 Evaluation of the constructs .. 115

7.1 Case study validation .. 116
7.1.1 Case I: EngineCo ... 116
7.1.2 Case II: ShipCo .. 127
7.1.3 Case III: TrainCo .. 139
7.1.4 Discussion of case study validation ... 152

7.2 User validation ... 153
7.2.1 Simulation learner .. 154
7.2.2 DES expert ... 155
7.2.3 Simulation expert .. 156
7.2.4 Discussion of user validation .. 157

7.3 Refinements of the constructs ... 158

7.4 Chapter summary .. 159

8 Presentation of the final constructs .. 160

8.1 Overview of the constructs ... 161

8.2 The shared construct .. 162

VI

8.3 The case-dependent constructs ... 165
8.3.1 Service decision making structure ... 166
8.3.2 Subsystems .. 169
8.3.3 Work breakdown .. 171
8.3.4 Contractual mode ... 174

8.4 Chapter summary .. 178

9 Discussion ... 179

9.1 Discussion of research findings .. 180
9.1.1 Impacts from different contracts on simulation modelling approach 180
9.1.2 Simulation as a tool for PSS design ... 181
9.1.3 Agent-oriented approach in the PSS modelling context 184
9.1.4 The constructs as an aid for decision making .. 184

9.2 Strengths of the research ... 187
9.2.1 The research process... 187
9.2.2 Contribution to knowledge .. 188
9.2.3 Practical implication .. 191

9.3 Limitations ... 192

9.4 Emergent literature.. 193

9.5 Chapter summary .. 193

10 Conclusions ... 194

10.1 Summary of achievements against objectives 195

10.2 Future research ... 198

10.3 Concluding remarks .. 199

References .. 200

Appendices ... 212

A. Introduction to software elements ... 213

B. SD models ... 216

C. DES model ... 222

D. Hybrid SD-ABS model ... 237

E. Hybrid DES-ABS aircraft model ... 248

F. Hybrid DES-ABS photocopier model code .. 269

G. Hybrid DES-ABS underground model code .. 293

H. Hybrid DES-ABS carpet model code .. 306

I. Case study protocol .. 315

J. Questionnaires .. 317

K. Audit trail from the pilot sessions .. 321

L. Example of the constructs’ implementation on a software tool 324

VII

List of figures

Figure 1-1: Thesis outline ... 7

Figure 2-1: Chapter 2 outline .. 9

Figure 2-2: Strengths, weaknesses and opportunities of PSS modelling research 31

Figure 3-1: The five-stage methodology ... 37

Figure 3.2: Key modelling processes (Adopted from Robinson, 2004) ... 38

Figure 3-3: The research methodology adopted in this thesis .. 43

Figure 4.1: Chapter 4 outline .. 48

Figure 5-1: Chapter 5 outline .. 60

Figure 5-2: The aircraft contract model structure .. 62

Figure 5-3: Main model ... 65

Figure 5-4: Airline agent .. 66

Figure 5-5: MRO agent ... 67

Figure 5-6: Aircraft agent .. 68

Figure 5-7: Subsystem agent .. 68

Figure 5-8: OEM agent ... 69

Figure 5-9: Part agent ... 70

Figure 5-10: The photocopier contract model structure .. 71

Figure 5-11: The photocopier service contract model ... 72

Figure 5-12: The underground contract model structure ... 74

Figure 5-13: Underground train service contract model .. 75

Figure 5-14: The carpet contract model structure ... 77

Figure 5-15: Carpet service contract model .. 77

Figure 5-16: Four variations of agent architecture .. 87

Figure 6-1: The three step roadmap ... 89

Figure 6-2: High-level relationship of the basic service contract constructs .. 91

Figure 6-3: The basic service contract construct... 93

Figure 6-4: The basic model ... 93

Figure 6-5: A1 construct .. 96

Figure 6-6: A2 construct .. 97

Figure 6-7: Job allocation logic ... 98

Figure 6-8: B0 construct .. 99

Figure 6-9: B1 construct .. 100

Figure 6-10: B2 construct .. 101

Figure 6-11: C1 construct ... 103

Figure 6-12: C2 construct ... 104

Figure 6-13: D1 construct ... 105

Figure 6-14: D2 construct ... 105

Figure 6-15: E0 construct .. 106

Figure 6-16: E1 construct .. 107

Figure 6-17: Staff agent removal logic .. 107

Figure 6-18: E2 construct .. 108

Figure 6-19: F1 construct .. 109

Figure 6-20: G1 construct ... 111

Figure 6-21: G2 construct ... 112

VIII

Figure 7.1 Chapter 7 outline ... 116

Figure 7-2: Step 1 – EngineCo model ... 119

Figure 7-3: Step 3 – EngineCo model ... 120

Figure 7-4: Step 5 – EngineCo model ... 121

Figure 7-5: Step 6 – EngineCo model ... 121

Figure 7-6: EngineCo model ... 123

Figure 7-7: Demonstration 1 – EngineCo model ... 124

Figure 7-8: Demonstration 2 – EngineCo model ... 125

Figure 7-9: Demonstration 3 – EngineCo model ... 126

Figure 7-10: Demonstration 4 – EngineCo model ... 127

Figure 7-11: Step 1 – ShipCo model ... 129

Figure 7-12: Step 2 – ShipCo model ... 130

Figure 7-13: Step 3 – ShipCo model ... 131

Figure 7-14: Step 4 – ShipCo model ... 132

Figure 7-15: Step 8 – ShipCo model ... 133

Figure 7-16: ShipCo model ... 135

Figure 7-17: Demonstration 1 - ShipCo model .. 136

Figure 7-18: Demonstration 2 - ShipCo model .. 138

Figure 7-19: Demonstration 3 - ShipCo model .. 139

Figure 7-20: Step 1 – TrainCo model .. 142

Figure 7-21: Step 4 – TrainCo model .. 144

Figure 7-22: Step 7 – TrainCo model .. 146

Figure 7-23: TrainCo model .. 148

Figure 7-24: Demonstration 1 - TrainCo model ... 150

Figure 7-25: Demonstration 2 - TrainCo model ... 151

Figure 7-26: Demonstration 3 - TrainCo model ... 152

Figure 8-1: Overview of the constructs ... 161

Figure 8-2: The steps in building a model using the constructs .. 162

Figure 8-3: The shared service contract modelling construct .. 164

Figure 8-4: A0 construct .. 167

Figure 8-5: A1 construct .. 168

Figure 8-6: A2 construct .. 169

Figure 8-7: B0 construct .. 170

Figure 8-8: B1 construct .. 171

Figure 8-9: C1 construct ... 172

Figure 8-10: C2 construct ... 174

Figure 8-11: D1 construct ... 175

Figure 8-12: D2 construct ... 176

Figure 8-13: D3 construct ... 177

Figure 8-14: D4 construct ... 178

Figure 9-1: Chapter 9 outline .. 180

Figure A-1: Commonly used software elements ... 213

Figure B-1: An influence diagram of key enablers for sustaining service contracts 218

Figure B-2: A stock and flow diagram of key enablers for sustaining service contracts 219

Figure B-3: The result from increasing 70% of monitoring technology .. 220

Figure B-4: The result from increasing 70% of customer involvements .. 221

Figure B-5: The result from offering contracts on a 10-years basis ... 221

Figure C-1: Conceptual model for business case II .. 223

Figure C-2: Scenario 1 model ... 224

Figure C-3: Scenario 2 model ... 227

IX

Figure C-4: Scenario 3 model ... 232

Figure D-1: Business case III’s conceptual model .. 238

Figure D-2: High level agent behaviour and their interactions .. 239

Figure D-3: Subsystem agent ... 240

Figure D-4: OEM/Main model ... 241

Figure D-5: Implications .. 247

Figure E-1: Results from Experiment 1 ... 250

Figure E-2: Results from Experiment 2 ... 251

Figure E-3: Self-adaptive maintenance schedule mechanism .. 252

Figure E-4: Results from Experiment 3 ... 253

Figure E-5: Subsystem agent.. 253

Figure E-6: Aircraft agent .. 256

Figure E-7: Airline agent ... 259

Figure E-8: Airline’s MRO agent ... 263

Figure E-9: Part agent ... 265

Figure E-10: OEM agent ... 266

Figure F-1: Request agent .. 269

Figure F-2: Component agent ... 274

Figure F-3: Photocopier agent .. 279

Figure F-4: Customer agent .. 281

Figure F-5: Call centre agent .. 285

Figure F-6: Service unit agent ... 286

Figure F-7: Technician agent .. 289

Figure F-8: User agent .. 289

Figure F-9: Part agent ... 290

Figure G-1: Main model .. 293

Figure G-2: Underground agent .. 297

Figure G-3: Subsystem agent ... 300

Figure G-4: Technician agent.. 303

Figure H-1: Carpet agent .. 306

Figure H-2: Main model .. 309

Figure H-3: Service unit agent .. 311

Figure H-4: Staff agent .. 313

Figure L-1: The shared service contract model ... 324

Figure L-2: The shared service contract model in AnyLogic ... 325

Figure L-3: A0 model in AnyLogic ... 329

Figure L-4: A1 model in AnyLogic ... 330

Figure L-5: A2 model in AnyLogic ... 332

Figure L-6: B0 model in AnyLogic ... 336

Figure L-7: B1 model in AnyLogic ... 337

Figure L-8: C1 model in AnyLogic ... 340

Figure L-9: C2 model in AnyLogic ... 342

Figure L-10: D1 model in AnyLogic ... 345

Figure L-11: D2 model in AnyLogic ... 348

Figure L-12: D3 model in AnyLogic ... 350

Figure L-13: D4 model in AnyLogic ... 352

X

List of tables

Table 2-1: Classification of techniques and tools (Phumbua and Tjahjono, 2011a) 19

Table 2-2: Seven methods of UML ... 24

Table 2-3: Summary of parameters of PSS models (Phumbua and Tjahjono, 2011a) 26

Table 4-1: Summary of applied verification and validation methods ... 51

Table 4.2: Summary of model’s capability .. 57

Table 5-1: Summary of applied verification and validation methods ... 61

Table 5-2: Summary of input parameters .. 63

Table 5-3: Summary of the model’s capability .. 81

Table 5-4: Analysis of the elements .. 84

Table 5-5: Analysis of agents .. 86

Table 6-1: Summary of the variances from the basic contract .. 94

Table 6-2: Summary of the constructs’ capability against the current stage of PSS modelling. 113

Table 8-1: Summary of the case-dependent constructs .. 165

Table 9-1: Summary of capability and drawbacks of simulation techniques within the PSS context......... 183

Table 9-2: Benchmarking between the literature, the constructs, and current practice. 185

Table 9-3: List of contributions .. 189

Table C-1: Summary of experiment results ... 236

XI

Glossary of terms

ABS Agent-Based Simulation

ATTAC Availability Transformation: Tornado Aircraft Contract

BPMN Business Process Modelling Notation

CAD Computer-Aided Design

CfA Contracting for Availability

CIRP The International Academy for Production Engineering

CPN Coloured Petri Net

CLS Contractor Logistics Support

DEMATEL Decision Making Trial and Evaluation Laborat

DES Discrete-Event Simulation

DoD Department of Defense

EGT Exhaust Gas Temperature

EMSA European Maritime Safety Agency

FBD Functional Block Diagram

HiCPN Hierarchical Coloured Petri Net

HiCS Highly Customised Solution

IDEF0 Integration Definition for Function Modelling

IPPM Integrated Production Process Model

IPSS

IVHM

Industrial Product-Service System

Integrated Vehicle Health Management

LCH Lost Customer Hours

LCS Life Cycle Simulator

LLP Life-Limited Part

XII

MEPSS Methodology Development and Evaluation of PSS

MOD Ministry of Defence

MRO Maintenance Repair and Overhaul

MTBF Mean Time Between Failures

MTTR Mean Time To Repair

OEM Original Equipment Manufacturer

OML Optimization Modelling Language

OO Object-oriented modelling

PBC Performance-Based Contract

PBL Performance-Based Logistic

PDD Property-Driven Development/Design

PE Polyethylene

PP Polypropylene

PSS Product-Service System

PVC Poly Vinyl Chloride

QFD Quality Function Deployment

RAF Royal Air Force

RSP Receiver State Parameters

SC Scenario

SD System Dynamics

SLA Service Level Agreement

SOPMF Solution Oriented Partnership Methodology Framework

t-PSS technical Product-Service System

TAT Turnaround time

TRIZ Theory of Inventive Problem Solving

UML Unified Modelling Language

XIII

XML Extensible Markup Language

Chapter 1: Introduction

1

1 Introduction

Chapter 1: Introduction

2

This chapter introduces the PhD research on “Simulation modelling of service contracts
within the context of Product-Service Systems (PSS)”. Described in this chapter are
overviews of research context (Section 1.1), research aim and objectives (Section 1.2),
scope of this research (Section 1.3), research methodology (Section 1.4), and the thesis
outline (Section 1.5).

1.1 Overview of research context

This section summarises the key background knowledge and briefly describes the

contents in Chapter 2. It highlights the need of this research which led to the
development of the research programme in Chapter 3.

Embracing service offerings into products is commonly known as an alternative for
Original Equipment Manufacturers (OEMs) to increase competitiveness. The new
integrated offering is referred frequently in literature as “Product-Service System
(PSS)”, and commonly delivered in terms of service contracts. Numerous amount of
research highlights the benefits of the transformation, as summarised by Baines et al.
(2007). Among those, the driving forces towards the transition from business
viewpoint are in terms of the advent of the global market (Section 2.1). Nowadays,
competing on cost is no longer an option for western manufacturers. The OEMs need

to seek a way to defend themselves from the lower cost economies. Similarly,
sustaining leadership in innovation and technology becomes harder to achieve. On top
of that, product sales are pretty much sensitive to market conditions, and customers
have higher expectations than in the past. Faced with these threats, customising the
offers through services is an attractive solution for the OEMs.

Although the benefits and the driving forces are paramount, implementing the concept
requires a huge effort in changing the (established) cultural mindset, operation
structure, and infrastructure (Baines et al., 2009a). Furthermore, service contracts
often span over a long period of time. Estimating the condition in the far future
encompasses uncertainties, for example, equipment usage rate, repair turnaround
time, obsolescence rate, which entails a considerable risk to the OEMs (Erkoyuncu,

2011). Therefore, implementing PSS is an expensive decision and becomes the major
challenge for the OEM. For these reasons, a decision support tool is in an urgent need
to enable evaluation on the risks and rewards prior to making such an offer.
Moreover, such a tool should effectively address the decision parameters specified in
the contracts, for example, the availability performance required by customers, the
resources the OEM should invest to sustain the contract, the payments and penalty
structure (Section 2.2).

A number of modelling techniques have been proposed in the literature to enhance
understanding of product-service offerings (Section 2.4), categorised based on the

Chapter 1: Introduction

3

focus of the model as user-related, system-related, and product-service-related
(Phumbua and Tjahjono, 2011a). Considering the whole demand-supply network, the
first group requires insight knowledge of customers, whereas the second group
focuses on the OEM side. The last group is evolved from the traditional product design,
thus, this group perceives the system as a combination of product-related elements
and service-related elements. In comparison, the abstraction is increasing from the
user-focus to the product-service focus, and the system focus, respectively. Regardless
of the focus, the majority of these modelling techniques do not incorporate the
capability to handle the dynamic behaviour in PSS and to be reused in the contract
delivery phase (Phumbua and Tjahjono, 2011a). The exception is the simulation
modelling techniques, which allows what-if analysis to be carried out easily. Simulation

is defined as experimentation of a representation of dynamic operation system
(Robinson, 2004). Generally, simulation aims to provide better understanding or to
improve the system.

Within the context of PSS, application of simulation is still limited (Phumbua and
Tjahjono, 2010). In particular, the general approach that enables efficient
developments of simulation model is the major shortcoming in the PSS research area
(Section 2.5). This shortcoming indicated the direction for this research.

In summary, there exists driving forces for the OEMs towards service contracting.
Nonetheless, the challenges to the transition are significant. To better understand the
challenges and offer appropriate contracts, a number of models or modelling

techniques have been proposed in the literature. However, very few techniques enable
changes to contract negotiation to be effectively captured. An exception is simulation,
yet, the general simulation approach that supports effective and efficient model
developments has been missing in the literature. This led to the research aim and
objectives described in the next section.

1.2 Overview of research aim and objectives

The previous section provided the background towards the development of this

research. This section presents an overview of the research aim and objectives
explained in detail in Chapter 3. The aim of this research is

to propose the modelling constructs that enhance effective and efficient
development of service contract simulation models for PSS offering.

To realise this aim, a number of objectives were devised:

1. To identify a simulation technique that can potentially capture PSS
characteristics and dynamic behaviour

Chapter 1: Introduction

4

2. To determine an appropriate modelling approach that enables effective and
efficient development of the models

3. To form primary modelling constructs based on the approach

4. To evaluate and refine the primary constructs

5. To present the final constructs

In this thesis, the term construct covers modelling elements and modelling methods.
Examples of modelling elements include ‘source’, ‘sink’, ‘state’, ‘transition’ etc., whilst

modelling methods relate to technical programming commands used to describe, for
example, object creation, condition-based triggers etc. A technique indicates the
conceptual backbone of simulation models, for example, System Dynamics (SD),
Discrete-Event Simulation (DES), Agent-Based Simulation (ABS). A modelling approach
implies how a particular technique will be used to model a system in more details. To
illustrate, a book is written about simulation methodology which explains a systematic
process in conducting simulation studies. In a simulation study, a student builds a
model using the ABS technique to represent an enterprise which comprises several
business units. His approach is to capture this situation into three levels – business
unit level which is embedded in the enterprise level underneath market level. To
enable communication between units and enterprise, he sets up a message passing
method using a ‘transition’ with a defined message receiving command.

1.3 Overview of scope of this research

‘Product-Service System’ is defined as an integrated product and service offering that
delivers ‘value in use’ (Baines et al., 2007). Resulting from the concept is a wide range
of business models. In order to set the context, an attempt was made through
investigating various types and sub-categories of PSS, including related research areas.
The search mainly covered product-oriented PSS, use-oriented PSS, result-oriented
PSS, industrial PSS, technical PSS, product-centric servitisation, availability contract,

performance-based logistic, Contractor Logistics Support (CLS), and performance-
based contract. Eventually, this research adopts product-centric servitisation defined
by Baines et al. (2009a) as the offering in which the product itself is central to the
provision of services. Therefore, the context of this research was set as product-centric
PSS.

Chapter 1: Introduction

5

1.4 Overview of research methodology

Five stages of research methodology were devised to achieve the five objectives of this
research.

Stage I corresponds with the first objective to identify the technique that can
potentially capture PSS characteristics and dynamic behaviour. In this stage, the three
selected simulation techniques identified from the literature review from Chapter 2
were further evaluated in terms of capability and drawbacks in modelling service
contracts. The evaluation was based on both literature and actual model
developments. Therefore, research methods are associated with literature review,

steps in model development, verification and validation methods. Besides, four
business cases were collated from PSS literature and used as the data for developing
the models. The outcome of this chapter is the technique that underlines the core
structure of all the models developed from the constructs.

In Stage II, the technique obtained in Stage I was applied across cases to develop the
modelling approach, which responds to the second objective of this. Thus, the major
research methods also involve case studies, modelling steps, and verification and
validation methods. Four cases were chosen under the product-centric PSS context.
The resulting approach in this stage details the modelling requirements and methods
inside the constructs.

Stage III relates to the third objective of this research, which aims to form the primary
constructs based on the outcomes from Stage II. The methods applied in this stage are
associated with technical programming and presentation of the constructs.

Stage IV deals with the evaluation and refinements of the constructs, which
corresponds to the fourth objective of this research. The evaluation at this stage is in
terms of efficiency and effectiveness in enabling service contract model developments.
Efficiency refers to how quick a model can be developed using the constructs
compared to without using them. Effectiveness was considered as the applicability to
model existing cases, the practicality to aid decision making and the feasibility to
develop a model from the constructs. Two types of validation were conducted; case

study validation and user validation. Three case studies were conducted under the
product-centric PSS context via interviews, using a case study protocol. This validation
focussed on evaluating the applicability and the practicality, and enabled primary
evaluation of the efficiency and the feasibility. The other validation was conducted
with three users who have been involved in PSS research and have different levels of
simulation background. This validation aimed to further evaluate the efficiency and the
feasibility of the constructs. The analysis based on observations, feedback, and
questionnaires, was used to refine the primary constructs.

Chapter 1: Introduction

6

Stage V deals with the final objective of this research, which aims to present the final
constructs. Overarching, the purpose of the presentation is to instruct users how to
use the constructs to build a model. Therefore, the presentation includes the overview
of the constructs, a description of how to use them, the constructs, and an example of
the implementation on a software package.

1.5 Thesis outline

Chapter 1 – Introduction – provides an overview of the research context, research aim
and objectives, methodology, the scope, and the thesis structure.

Chapter 2 – Literature review – addresses challenges to manufacturers in the product-
selling business which suggest the reasons why making product-service contracts is an
attractive strategy. Following these drivers are existing business cases, including
detailed decision parameters in the contracts. The findings from this part built up an
understanding of offers and formulated the modelling scenarios in Chapter 4. The shift
in business characteristics from being a pure manufacturer to a PSS provider and the
additional dynamic behaviour are presented to build up the justifications as to why a
modelling tool is needed. Last, a review of existing modelling approaches within a PSS
context is provided along with the shortcomings in the field, which drives the direction
of this research.

Chapter 3 – Research programme – clarifies the developed aim, objectives and scope
of this research. Different ways to conduct the research are discussed in this chapter,
which formulated the applied research methodology into stages to realise each
objective.

Chapter 4 – Investigation of simulation modelling techniques – relates to the review of
potential modelling techniques primarily evaluated from Chapter 2, from literature
and actual model developments. Finally, analysis of the technique’s capability against
strengths and weaknesses of PSS modelling literature is provided. The detailed models
are illustrated in the Appendices (B, C, D, and E).

Chapter 5 – Development of modelling approach – is concerned with application of the
final chosen technique from Chapter 4 to various cases. The modelling approach is
stated in this chapter, whilst the model code is documented in the Appendices (E, F, G,
and H). This chapter summarises and discusses the adopted modelling approaches in
all the cases. Finally, the selected approach that underlines the details inside the
constructs is explained.

Chapter 6 – Formation of the modelling constructs – presents the modelling elements
and the detailed modelling methods, along with a three-stage-roadmap which
describes how to use these constructs to develop service contract simulation models.

Chapter 1: Introduction

7

The analysis of the constructs’ capability against strengths and weaknesses of PSS
modelling literature is also provided.

Chapter 7 – Evaluation of the constructs – describes the evaluation of the constructs
though multiple case studies, and various modellers. The analysis of the results
obtained from the cases and the modellers are presented in this chapter. The
amendments to the constructs based on this analysis are described.

Chapter 8 – Presentation of the final constructs – presents the final constructs which
contain modelling elements and methods, along with an instruction to use these
constructs. Example of the constructs implementation in a software package is
demonstrated in Appendix L.

Chapter 9 – Discussion and evaluation – discusses the research findings during the
execution of this research, the strengths and limitations of this research, and the
emergent literature in the area.

Chapter 10 – Conclusions – summarises achievements in correspondence with the
research objectives, identifies direction for future research, and concludes this thesis.

.

Figure 1-1: Thesis outline

Chapter 2:

Literature review

Chapter 3:

Research programme

Chapter 4:

Investigation of simulation

techniques

Chapter 5:

Development of modelling

approach

Chapter 6:

Formation of modelling

constructs

Chapter 9:

Discussion

Chapter 7:

Evaluation of the constructs

Chapter 1:

Introduction

Chapter 10:

Conclusions

Development of research

programme
Research execution Research assessment

Chapter 8:

Presentation of the final

constructs

Chapter 2: Literature review

8

2 Literature review

Chapter 2: Literature review

9

In Chapter 1, the significance of this research topic was introduced. This chapter
describes in detail the development towards the research aim and objectives. Section
2.1 addresses the drivers towards PSS implementation for manufacturers. This section
describes why traditional product-selling business may not be a sustainable solution.
Towards PSS adoption, the decision on what to offer involves a number of issues.
Section 2.2 highlights these issues through various PSS offering examples. Section 2.3
identifies PSS characteristics and dynamic behaviour during the service delivery phase,
which extends beyond traditional business. These two sections depict the need for an
approach that can capture the dynamic behaviour and enable alternative offerings to
be investigated prior to offering a contract. Following this need, existing techniques
and tools were investigated and are presented in Section 2.4. Finally, the research gap

in existed techniques and tools is discussed in Section 2.5 as well as the summary of
this chapter.

Figure 2-1: Chapter 2 outline

2.1 Drivers towards PSS adoption

The purpose of this section is to highlight the reasons why the OEMs may seek a PSS
solution in spite of the possible big investment.

The benefits and opportunities which PSS and servitisation can create have been
widely discussed in literature (e.g. Roy and Cheruvu, 2009; Neely, 2008; Baines et al.,
2007; Bey and McAloone, 2006; Mont, 2002). Along this line, the major driving forces

2.4
State-of-the-art of PSS

modelling

2.5
Research gap analysis

2.1
Drivers towards PSS adoption

2.2
Business cases of PSS offering

2.3
PSS characteristics and

dynamic behaviour

Chapter 2: Literature review

10

arise from a business point of view. Therefore, this thesis mainly highlights those which
impact on the survival of the business.

To defend from lower cost economies: An impact from global competition causes a
threat to the OEM, as supported by Chandraprakaikul (2008). The study exposed that
the drastic increase in pressure to the UK manufacturers come from an advent of low
cost economies such as China and India in the global market. This means competing on
cost is no longer an appropriate strategy for the OEMs. Whilst the manufacturers are
seeking for a solution, PSS appears as a survival alternative for the companies (Roy and
Cheruvu, 2009). This hypothesis is supported by Baines et al. (2009b) as “The
integrated product-service offerings are distinctive, long-lived, and easier to defend
from competition based in lower cost economies”.

To sustain competitiveness: As well as cost, competing on product innovation and
technological superiority is no longer sustainable, which is often not the case for
competing on services (Baines et al., 2009b). As service is intangible, service delivery is
heavily dependent on skill, more flexible, hence harder to imitate on one hand (Oliva
and Kallenberg, 2003). On the other hand, servicing skill can be continuously improved
throughout the contracts. Accordingly, competing on services seems to be more
sustainable in relation to other types of competitiveness.

To survive in economic crisis: Traditionally, business survival is tied up with product
sales, which heavily depend on market and economic conditions. On the contrary, PSS

contracts ensure continuity of income to the OEM as customers are obliged to pay
regularly. It can attract more customers since the payments are split into several
instalments in which they can afford more than buying the whole product. Therefore,
the impact from an economic crisis is less in PSS business than in the product selling-
only business. The potential in coping with a poor market condition of servitisation was
mentioned in Mallaret (2006), and Oliva and Kallenberg (2003). Also via simulation
modelling, Buxton et al. (2006) demonstrated that product-service business models
could generate a better robust revenue system to handle the demand crash than a
traditional business could.

To handle demand from customer: Satisfying customer need is a critical success factor

for a business. However, customers, especially industrial customers, become more
demanding on services (Oliva and Kallenberg, 2003), and lower prices
(Chandraprakaikul, 2008). The reasons may be caused by a wider range of choices
available in the market, or by the pressure the customers received from downstream.
For instance, the customers may also be faced with the budget constraints as in case of
the UK Ministry of Defence (MOD) (Erkoyuncu, 2011), or with the increase in in-service
costs as addressed by Berkowitz et al. (2005) and IFS (IFS, 2010). The PSS offerings can
avoid unnecessary expenses, for example, $1.4 billion over 30 years in the F/A-18
contract (Gansler and Lucyshyn, 2006), $53.4 million in the case of the F404 engine PBL
agreement (AIA, 2011), and £510 million over 10 years on an aircraft support contract

Chapter 2: Literature review

11

(IFS, 2010). In commercial contracts, £10.4 million was saved over four years on the
office printing in British Telecom (Xerox, 2010a).

In all, this section highlights that PSS is not only an opportunity for the manufacturers,
but also a survival strategy in today’s market. The next section identifies issues and
decision parameters prior to offering PSS to customers.

2.2 Business cases of PSS offering

Though PSS is an attractive solution, inexperience in pricing is a major barrier towards
transition (Baines et al., 2007). The intention of this section is 1) to provide background
on PSS offerings and 2) to present the major decision parameters regarding the
offerings via examples of existing contracts. Therefore, an overview of successful cases
reported in literature is presented in Section 2.2.1, and offering decision parameters
from actual contracts are covered in Section 2.2.2. The findings described in this
section were used as a basis for research gap analysis presented in Section 2.5 as well
as research context and modelling scenario developments presented in Chapter 3 and
4 respectively.

2.2.1 Overview of the offers

A number of business cases have been reported in implementing PSS in industries.
Examples include launderette, car sharing, carpet leasing, train leasing, document
management solution, and aircraft engine leasing (Khumboon et al., 2009; Baines et
al., 2009c; Mont, 2000; Harding and Watts, 2000), which were developed from
contract arrangements such as rental contract, pay-per-use, lease and take back
(Lindahl et al., 2009). Among these cases, five industries have been continuously
offering PSS solutions.

Aircraft: In commercial aircraft, the OEM sells both asset and services to support the
asset in use and the ownership is shifted to customers or a 3rd party such as financial
organisation (Baines et al., 2009c). However, the OEM provides remote monitoring to
ensure delivery of functionality, including efficient maintenance scheduling, effective

management of repairs and spares, and/or part re-manufacturing. The asset data are
recorded and used to trigger upgrades. Even so, low-level maintenance and
consumable management, are mostly carried out by customers (sometimes also with
their business partners). Another example of commercial service contracts in the aero-
industry was made between Pratt & Whitney (P&W) and Jet2. In this case, P&W
supplied Life-Limited Parts (LLPs) to support the CFM56-3 engine (Pratt & Whitney,
2009). In military context, PSS solutions are generally in the form of Performance-
Based Logistic (PBL), frequently adopted by US Department of Defense (DoD). PBL was
categorised by Aviation Week into four classes; components (which usually aim for
consistency and timely delivery), major subsystems (whereby availability is crucial),

Chapter 2: Literature review

12

entire aircraft (whereby availability is the goal), and mission capability (in which
readiness and continuous capability improvement become the focus). An example of
PBL includes the C-17, a long-range cargo/transport aircraft. The aircraft is capable of
performing airlift/drop missions and providing strategic delivery of troops and cargo to
main operating bases. It can also be configured for aero medical evacuation (Mahon,
2007). Other examples of military service contracts have been made between P&W
and Italian Air Force (Pratt & Whitney, 2011), Rolls-Royce and UK Royal Air Force
(RAF)(Rolls-Royce, 2010), and BAE and UK RAF (BAE Systems, 2006).

Train: In the railway industry, the operator’s risk and reward can be confined by the
department of transport, as reported by Macbeth and De Opacua (2009) that the

contract between the two parties is renewed every 7-10 years. Previously, the
operators were often responsible for both light and heavy maintenance. However, the
operators can have three options for heavy maintenance under PSS business model;
‘Dry’ in which ROSCO (i.e. a financial organisation such as HSBC) has no responsibility,
‘Wet’ which is the opposite, and ‘Soggy’ which is a combination of both. In the context
of an underground train, a service contract was made by ALSTOM, which aimed to
provide an agreed level of availability to London Underground Ltd (LUL). LUL took the
trains every morning and returned to ALSTOM at night after operation for
maintenance activities (Harding and Watts, 2000).

Photocopier: Typical example of service offers in integration with photocopiers can be
illustrated by Xerox’s document management solution. As highlighted by Anderson and

Tukker (2005), the focus of Xerox has moved to the entire commercial documentation
process in which the asset can be leased or sold under multi-year contract on
functional guarantee and the payment is fixed per copy. Five offering packages are
currently available from Xerox; Document Transaction Processing Services, Enterprise
Marketing Services, Enterprise Print Services, and Product Lifecycle Communication
Services (Xerox, 2010b). The service activities involve a mail handling system,
transforming document format, DocuCare and print-on-demand, and managing
document infrastructure (equipment, maintenances, suppliers, help desk support). In
other words, the company provides flexible contract (in 6-sigma project format) which
aims to reduce cost to clients. Xerox provides proactive asset management using a
software suite to discover, track, control, configure, and report on the multi-vendor

environment of clients in real time, which enables alerts. Indicated by one of the
contracts, preventive strategy is valid only to high-use equipment in some product
families (Xerox, 2010c). Consumable and parts can be stocked and supplied on-site.
Under a rental/leasing contract, a Thai company was reported to buy second hand
photocopiers from the second hand market after a three years in-service period, and
recondition the assets (Khumboon et al., 2009). The reconditions were associated with
rebuild, replacement, and cleaning of components; for example, disassembly and
repaint the cover. The reconditioned photocopiers were placed for rent to 5000
customers, in which the maintenance activities were in the provider’s responsibility. A
similar leasing case was also reported by Kuo (2011).

Chapter 2: Literature review

13

Carpet: A carpet’s life cycle can be divided into four phases; manufacturing,
transportation and installation, use phase, and disposal/recycling. A carpet is typically
constituted of a layer of face fibre made of Nylon, PE, or PPL, and a backing made of a
sandwich of PPL and latex (or PVC) (Lu, 2010). For this reason, carpet manufacture
causes chemical emissions, depletion of petroleum and other natural resources, indoor
air quality concerns, and disposal at landfills/recycling process. Therefore, the recycling
process can become the focus of service contracts in this industry. Regarding
maintenance, a carpet needs to be cleaned periodically and replaced within a specific
usage period, independent from the wear condition. A typical carpet leasing
programmed is offered by Interface Limited, named as Evergreen, and paid monthly.
The company’s current measures mostly involve environmental and social issues. For

instance, QUEST focuses on waste reduction, EcoMetric incorporates environmental
outcomes, and SocioMetric relates to social performance (Stubbs and Cocklin, 2008).
To achieve these targets, Interface has been redesigning products from renewable
resources to eliminate waste and emissions. For instance, the company is replacing
bio-based fibre from oil-based fibres. By doing so, worn (or damaged) carpet tiles
could be easily replaced and reused rather than being disposed in landfills. This can
reduce waste during installation and maintenance processes. Besides this strategy, the
company has been trying to recycle nylon and produce only fabrics made from
recycled PE and wood. Interface currently works with Universal (their supplier) to
utilise post-consumed nylon and PVC backing (Nelson, 2009). Besides Interface,
Dupont provides three choices to customers; 1) customers simply buy the particular

products, 2) the company selects the right products based on customer requirements,
and 3) the company leases the products to customers on 2-5 years contracts (Mont,
2000). Other services include installation, cleaning, consultation and providing
recommendation for cleaning products.

Washing machine: A washing machine life cycle can be divided into 6 stages;
fabrication (mostly done by suppliers), system assembly, product delivery, in-service
use, in-service maintenance, and recycle/disposal. The fabrication includes raw
materials extraction (such as iron, copper, and oil) from natural reservoir. These raw
materials are used to manufacture components of a washing machine which comprise
electrical components (e.g. motor, transmission), mechanical components (e.g. tub
and plumbing), electronic assembly (e.g. control panel, connector) and housing. After

being used, a washing machine and obsolete parts are disposed by landfill,
incineration, and recycling. Metals from equipment frame, plastic part, and packaging
boxes can be recycled, in fact, sixty percent of weight material is designed to be
recycled or reusable with no design changes required (Graedel, 1997). In general, 54%
of 5-year-old machines are repaired at least once, and motors are removed from the
end-of-life machines to be re-manufactured as spares (Simon et al., 2000). An existing
PSS offer from Electrolux (ELS) has provided system solutions, driven by customer
preferences, in which the necessary equipment for a launderette are supplied (Mont,
2000). Such solutions include installation, training, consultation (suggesting layout of
equipment location and advising on ironing and delivery), maintenance and repair,

Chapter 2: Literature review

14

financial schemes, and upgrades with the latest machine. Other than this PSS solution,
customers can opt to own equipment (with 1 year guarantee) or make Service Level
Agreement (SLA) in which full spares are included or lease the products, as reported by
Kowalkowski (2006) that there are three levels of SLA agreements; visit one or few
times a year, service plus spares, and full service. Kowalkowski also revealed that ELS
has technology to obtain usage data, called CMIS. The company can monitor
processes, error code and the time it starts to be out of operation promptly without
site visit.

To sum up, this section provides a background understanding on PSS offerings in the
five selected domains which expose different offering formats. In the commercial

aircraft context, contracts can be offered at fleet level (e.g. P&W fleet management
contracts), and individual level (e.g. power-by-the-hour from Rolls-Royce). In terms of
military aircrafts, contracts are often made on fleet basis (e.g. BAE Systems’ ATTAC
contracts). Both contexts offer services around maintenance activities. This is similar in
the context of train contracts. Differently, the strategic service in printing and washing
sectors is not on maintenance activity, but re-manufacturing. The launderette option
and document management solution share a common principle in providing capability
on the fleet-basis and leasing on an individual basis. With regards to the carpet sector,
the choice of raw materials and production process naturally encourages recycling as a
central strategy. Understanding this basic, the next part looks into decision
parameters.

2.2.2 Contract parameters

The literature search focused on the actual contracts or a case study report. However,
as the information is in a very detailed level, very few results have been found.

Aircraft: ATTAC (Availability Transformation: Tornado Aircraft Contract) is a
contractual agreement between BAE Systems and the UK’s Ministry of Defence,
reported to be worth in the region of £1.5bn (BAE Systems, 2010). ATTAC guarantees
availability of Tornado aircrafts for the Royal Air Force (RAF) by providing advanced
maintenance of the aircraft fleet throughout their service life. As with other
contracting for availability, ATTAC is an outcome-based contract in which payments
are linked to the performance of the availability. Key features of the ATTAC were

reported to include up to 140 flight hours per month and over 1000 demands per day
of asset and inventory, with two key contracting modes; availability or turnaround
time. Following these key features, the performance indicators include available flying
hours, spare parts and technical support. The service provides the customer with
flexibility in flying hours between 70% and 110%.

Train: In the case of LUL and Alstom (Harding and Watts, 2000), LUL requires a
complete package covering design, manufacture, maintenance, and cleaning of trains
and associated trackside equipment. Key performance parameters involve a
guaranteed number of trains in peak service, reliability in service and the management

Chapter 2: Literature review

15

of depot stocks, which are linked to the on-train run time. In case of not achieving the
targets, LUL can terminate the contract before the actual agreed term of 20 year. The
contract encompasses four elements; manufacturing, depot supports, communication,
and train supports, in which Alstom disseminates responsibility to different partners.
Trains are built by Alstom Transport Limited, having GPT to take care of
communication system such as train-to-train CCTV, and AMEC to look after the depot
supported work. Alstom Transport Service Limited carries out maintenance services
daily after the trains are returned from LUL at the end of operations.

Photocopier: Based on the Xerox DocuCare contract (Xerox, 2010c), issues stated in
the contract involves product family, contracted machines, maximum distance

between machines, location, contract hours (e.g. between 9 am - 5 pm), and monthly
availability hours. The measures are in the form of achievable percentages of service
responses within 1 hour period, equipment uptime, and technical response time. All
time dimensions are calculated from the point of receiving notifications from the
customers. Uptime is a comparison between the monthly contracted period and
downtime. The downtime is considered from the point Xerox receives notification until
the machine is ready for operation. Xerox keeps reporting the uptime statistic on a
monthly basis.

Oil Vessel: A vessel service contract was formulated by the European Maritime Safety
Agency (EMSA) for the standby oil spill recovery service (EMSA, 2006). The contractor
was obligated to provide vessels which had a stored capacity defined by EMSA, on the

point of request. The service also covered trained crews and equipment. However, the
vessels could be used by the contractor for other businesses when EMSA did not call
for services. Otherwise, EMSA could request the contractor for mobilisation if an oil
spill is foreseen, and for demonstrating up to 10 days or 3 days per vessel. The contract
was designed for 3 years, in which the payment was made quarterly. The contractor
was required to schedule annual repairs in the beginning of the year, for the operation
in summer. Once this happens, the process must finish in 10 days or the payment
would be decremented in the proportion of additional days. In case a period of 20 days
was exceeded, a replacement of vessel was needed. Contract termination by EMSA
was possible, also at the cost of the contractor.

To summarise, this section described the major decision parameters that have been
reported in PSS contracts. The requirements from customers can cover fleet
availability, maximum unavailable duration, availability within an agreed period,
reliability, time to respond, and capability. The penalty is ranged from contract
termination at the cost of the PSS provider to no serious penalty required. Therefore, a
vast range of PSS contracts exists under a similar format of decision parameters. This
suggests a need for decision support tools capable of evaluating the alternatives. The
next section addresses characteristics and dynamic behaviour which distinguish PSS
from traditional businesses. The outcomes of these two sections underlie major
capability requirements from potential decision support tools.

Chapter 2: Literature review

16

2.3 PSS characteristics and dynamic behaviour

This section addresses distinctive PSS characteristics from traditional business (Section
2.3.1), and the resulting additional dynamic behaviour (Section 2.3.2).

2.3.1 PSS characteristics

PSS implementation necessitates a number of investments and changes from
traditional business, as stated by Baines et al. (2009a), Manzini and Vezzoli (2003), and
Mont (2002). These can be associated to business and strategy, operation, and
network (Phumbua and Tjahjono, 2011a). This thesis captures only those which reflect
on the modelling implications.

On the business and strategy level, PSS customers generally care for asset availability
and performance rather than the features of the asset. It is possible to reuse the same
product for different contracts, thus, products in PSS are encouraged and often

designed to be reusable or recyclable. In replacement of production cost, life cycle cost
is the major issue in PSS business, which is, in many cases, influenced by product life.
Service efficiency is the area of significant contribution in system improvement (Mont,
2002), unlike production efficiency as in traditional business, which is enabled by
human capital.

From an operational perspective, it is crucial in PSS that staff are knowledgeable in the

products, and skilful in delivering services and managing ongoing relationships with
customers, as highlighted by Baines et al. (2009a). This leads to a more decentralised
decision making. Capacity utilisation is hard to achieve, as staff responsiveness to
unexpected events is more crucial to obtain the availability/performance defined in
the contract. Therefore, resources are mostly kept at maximum level. Several
companies manage existing technology to obtain efficiency and effectiveness, as

reported by Manzini and Vezzoli (2003). Especially, as information flow becomes much
more critical than in the traditional business (Mont, 2002), monitoring technology is
often used as a key enabling strategy for responsiveness optimisation, as evident in
aircraft, photocopy, and washing machine industries.

From a network viewpoint, relationships between stakeholders during the in-service
phase are mostly governed by asset availability and performances (Baines et al.,
2009a). Frequent interactions and strong cooperation in the network are commonly
known as a major characteristic of PSS. These interactions induce a number of dynamic
behaviours that are stated in the next section.

2.3.2 Dynamic behaviour

Dynamic behaviour is referred to as disturbances that may affect system performance,
both manageable and unmanageable (Phumbua and Tjahjono, 2011a).

Chapter 2: Literature review

17

In the broad sense, the dynamic behaviour involves external events such as natural
disaster, recession, regulation changes, and market and price changes. The impact
from these events can be varied. A natural disaster (such as the volcano ash) can delay
part/equipment supplied which may prolong the unavailability of contracted assets. A
recession can impact the main business of stakeholders and can cause the parties to
request for contract modification. A regulation change (such as an advent of new
standards) may require product modification. Finally, market and price changes affect
directly on the profits. As PSS expands an OEM’s responsibility to cover the in-service
and after-use phases, they are likely to be faced with more risks caused by this
dynamic behaviour than before. As a result, the payback period may take longer than
expected.

As each contract is designed specifically for each customer (Roy and Cheruvu, 2009), a
number of dynamic behaviours is brought in by customer involvement. The level of
asset usage (i.e. how heavy the asset is used by the customer) affects the in-service
time (or remaining life) of that particular asset (as evident in Aircraft Commerce,
2006). Customers may provide feedback on product functionality and service
performance, and ask for product modification and service quality improvement
(Mont, 2002). The asset availability/performance can influence customer loyalty on
one end (De Coster, 2008), and contract termination on another end as it appeared in
the vessel service contract (EMSA, 2006). Contract modification can take place during
the in-service phase, named as the adaptive phase by Roy and Cheruvu (2009).

On top of customer involvements, other factors originate from the OEM policy. Short-
term service contracts such as fleet management provided by MAN truck (Cantos,
2009) directly impact on total demands and resource availability. One subsystem
development in an asset may require an upgrade of other subsystems, which leads to
obsolescence. From an asset perspective, asset failure is one of the most significant
dynamic behaviours, which influences asset unavailability and triggers the OEM service
activities (Baines et al., 2009c).

2.4 State-of-the-art in PSS modelling

This section presents the state-of-the-art of PSS modelling techniques and tools.
Together with the results from Section 2.3, the outcome of this section identifies the
research gaps (Section 2.4) and the development of the research programme (Chapter
3).

A systematic process was formulated to conduct the study in the state-of-the-art in
PSS modelling. First, the databases that include journal papers, conference
proceedings, books and theses were selected. Due to the potential in covering the
wide range of databases and the ease of access, SCOPUS, Google Scholar, Ingenta

Chapter 2: Literature review

18

Connect and Emerald were initially chosen amongst other electronic databases. The
second stage involved identification of relevant keywords, which was guided by a
number of general PSS and servitisation review papers such as Baines et al. (2009b),
Almeida et al. (2008), and Baines et al. (2007). These review papers cover 95
publications related to product-service systems. As a result, the keyword included
product-service model, after-sale model, servitisation model, functional sale model,
and functional product model. In the third step, a manual search was conducted on the
Winter Simulation Conference online proceedings (years 1999 to 2009) and the CIRP
Industrial Product-Service Systems (IPS2) conference proceedings (year 2009). To do
so, the abstracts of those papers were first reviewed to filter from over 500 down to
some 90 articles that were relevant to the work. The selected papers encompass

service elements in production environment, and vice versa. The fourth step involved
with grouping and removing redundancy through skim-read. Finally, cross-references
of these papers were examined. The whole process resulted in 22 most relevant PSS
models, as shown in Table 2-1.

2.4.1 Existing modelling techniques and tools within PSS context

Commonly known methodologies are developed from Methodology Development and
Evaluation of PSS (MEPSS), and Highly Customised Solution (HiCS) projects. MEPSS was
a project funded by EU, which provides a toolkit for successful implementation of new
PSS. The methodology was devised into phases; strategic analysis, opportunity
assessment, PSS idea development, PSS development, and preparation for

implementation (Tukker and Tischner, 2004). Due to the generality, users can enter
from any phase, driven by their current status, and can make adjustments to suit their
cases. Similarly, the HiCS project also aimed at providing high-level methodology but
focused specifically on enhancing partnerships in network. As a result of HiCS project,
Solution Oriented Partnership Methodology Framework (SOPMF) was proposed.
SOPMF is a method developed and shared by a network to obtain a highly customised
solution (Evans et al., 2007). However, these methodologies will not be further
discussed as the scope of this thesis relates to modelling techniques.

A model is defined as a simplification of the system that is of interest, and only
incorporates the aspects that affect the problem of the study (Banks et al., 2009).
Table 2-1 illustrates 22 models formulated from a number of techniques, mainly

representing a PSS for the design purpose. It can be seen that many modelling
techniques were combined with other analytical techniques such as model for value
and cost, analytical hierarchy process, activity-based costing, etc. This thesis will focus
only on modelling techniques.

Chapter 2: Literature review

19

Table 2-1: Classification of techniques and tools (Phumbua and Tjahjono, 2011a)

Reference Technique Tool

Low et al. (2000) TRIZ n/a

Morelli (2002) Functional and Use case analysis

Blueprint

n/a

Fujimoto et al. (2003) Discrete Event Simulation Life Cycle Simulator

Alonso-Rasgado et al.

(2004)

Molecular Modelling

Service blueprinting

Discrete Event Simulation

General programming

language

Weber et al. (2004) Property-Driven Design/Development n/a

Komoto et al. (2005) Discrete Event Simulation

and genetic algorithm

Life Cycle Simulator

Sakao and Shimomura

(2005)

Service Engineering

Quality Function Deployment

Analytical Hierarchy Process

Service Explorer

JAVA2 SDK, Std Edition

1.4.1

XML 1.0

Aurich et al. (2006) Life cycle oriented method

Process modularization

UML 2.0

Integrated Production

Process Model (IPPM)

Buxton et al. (2006) Agent-based Simulation AnyLogic

Hara et al. (2006) Service Engineering

Petri net Simulation

Quality Function Deployment

Analytical Hierarchy Process

DEMATEL

Model for Value & Cost

Service Explorer

CPN Tools

Morelli (2006) Scenarios and use case analysis

Service blueprinting

IDEF0

n/a

Evans et al. (2007) Solution map

Life Cycle Costing

n/a

Maussang et al. (2007) Functional Analysis

Agent-Based Value Design

Use case

n/a

Muller and Blessing

(2007)

Process entities/ V-Model n/a

Komoto and Tomiyama

(2008)

Service modelling Integrated Service CAD

and Life Cycle simulator

Shen and Wang (2008) Fuzzy Extended Quality Function

Deployment

Analytical Hierarchy Process

Optimisation model

n/a

Abramovici et al. (2009) UML n/a

Bianchi et al. (2009) System Dynamics n/a

Chapter 2: Literature review

20

Reference Technique Tool

Hara et al. (2009) Service blueprinting

Business Process Modelling Notation

(BPMN)

Service CAD

Kim et al. (2009) Ontological representation

Activity Modelling Cycle

UML

OML

Protégé, with conversion

to Jess

Schuh et al. (2009) Life Cycle Cost-Oriented Models

Activity-based costing

n/a

Schuh and Gudergan

(2009)

Service blueprinting

Advance sequential incident

Qualitative interdependence analysis

Pair Wise comparison

Progressive abstraction

n/a

Service blueprinting

Service blueprinting, introduced by Shostack (1982), models the flow of services, time
dimension, and time tolerances which can eventually be added up to the total
deviation tolerance and the total acceptable execution with a given execution time. In
a blueprint, a line of visibility can be used to separate the activities which are not
directly associated with the customer but affect service performance from other

functions. Within PSS, the technique modelled a list of events generated by a use case
(Morelli, 2002). The blueprint demonstrated a service cycle which encompasses
technical services, maintenance services, related tangible elements, and intangible
elements. The technique was also applied to develop a framework for analytical
methods and tools (e.g. pair wise comparison, progressive abstraction, advance
sequential incident) for the purpose of designing new PSS solutions (Schuh and

Gudergan, 2009). Blueprints can be constructed by a general graphical software tool or
BPMN 2.0 package.

Service engineering technique

Sakao and Shimomura (2007) define service engineering as a paradigm which seeks a

methodology for designing service. Service engineering technique represents the
modelling technique in the paradigm. In service engineering, service providers and
receivers are modelled. On the top level, a ‘flow model’ presents the stakeholders in
the network. Each pair of these stakeholders is further considered one by one in a
‘scope model’. Their states (e.g. being happy, being unhappy) can be changed as a
result of some parameters called receiver state parameters (RSPs) such as cost of
service and availability. These RSPs vary across customers, driven by the customer's
attributes (e.g. age, social status) and captured in a ‘view model’. Based on these RSPs,
associated products and services can be designed and customised to specific customer
need. Often, this modelling technique is integrated with other modelling techniques

Chapter 2: Literature review

21

for detailed analysis, for example, Business Process Modelling Notation (BPMN),
Hierarchical Coloured Petri Net (HiCPN), Functional Block Diagram (FBD), Discrete-
Event Simulation (DES). To support this service engineering technique, Service Explorer
(or Service CAD) was developed based on Java language in Eclipse environment. The
tool provides a design workspace to build a model using drag and drop operations, and
comprises four elements; scenario editor, flow editor, scope editor and view editor,
corresponding to the conceptual models described earlier.

Business Process Modelling Notation (BPMN)

BPMN was used to model a flow of service activities after being designed by the

service engineering technique (Hara et al., 2009a). Generally, BPMN models business
processes as a flow chart. BPMN offers several fundamental notations such as activity,
data, connector, pool, and lane. Within PSS, the authors defined interactions using
connecters which link between customers, products, and providers, represented as
pools. The staff pools were separated into two lanes which contained customer's
visible services and back office services. Regarding BPMN tools, BPMN 2.0 is currently
available on platform such as ARIS and Visio which enable simple drag on drop
operations.

Hierarchical Coloured Petri Net (HiCPN)

HiCPN was integrated with the service engineering technique to study effects of time

and variation in service delivery process (Hara et al., 2009). HiCPN is an extension of
Petri Net that breaks down complex systems into hierarchies for simplification. Petri
Net models a system using place, arc, transition, and token. An arc, connected
between a place and a transition, directs a path to a token. A token is moved once a
transition is fired. The simulation was implemented in the software called CPN tools
which offers drag and drop operations of the Petri Net conventions.

Functional Block Diagram (FBD)

FBD was used to capture servicing functions such as assisting customers in PSS. In FBD,
a block represents a function and has its own input and output. Based on the service

engineering technique, Maussang et al. (2007) determined value associated with
agents in the network and designed service functions (e.g. assisting customers)
associated with each pair of the agents. Products or service departments were then
derived from the functions. The author named this technique Agent-Based Value
Design.

Discrete Event Simulation (DES)

DES has been tried within the PSS context for two main purposes; to test functionality
of a new service support system (Alonso-Rasgado et al., 2004), and to evaluate total
life cycle effects on environment and finance. In general, DES models a system in which

Chapter 2: Literature review

22

the state variables change only at discrete points in time (Banks et al., 2009) using
queue and delay as a basis. The technique has been widely adopted in production-
based applications. In PSS, the technique was used to develop a life cycle model and
its three sub-models: process, product and user (Fujimoto et al., 2003). The first sub-
model entailed a network of processes such as manufacturing, operation, recycling and
remanufacturing. State changes between these processes were governed by a set of
rules. The product model was composed of modules having sets of attributes. The user
model managed customers according to types of product packages and their
behaviour. The life cycle model was developed to investigate sustainability and
economic impacts of a PSS strategy. Another application of PSS was proposed by
Komoto et al. (2005) who defined service, service provider, service receiver and

products and modelled their subsequent relationships. The author simulated
occurrences of PSS events (e.g. repair, reuse) in a number of traditional and PSS
business models. The results allowed the impacts on environment and company
finance to be assessed. Later, the authors combined DES with Service CAD to enhance
primary offering design (Komoto and Tomiyama, 2008). In their study, DES was
employed using general language programming and Life Cycle Simulator (LCS). LCS
simulates the stochastic behaviour of a product lifetime throughout product life cycle.
Actions, performed by actors, were triggered by product behaviour and denoted as
events (e.g. repair, dispose). Occurrence of these events was used as a basis for the
calculations.

System Dynamics

System dynamics (SD) was used to model the transition between product-oriented
manufacturers and PSS providers in a market (Bianchi et al., 2009). SD is generally used
for long-term decisions in a broad scope with high level of abstraction where ‘structure
determines behaviour’ (Brailsford, 2008). A quantitative SD allows the rate of change
from one state (stock) to another state to be investigated, using stock and flow
diagrams. The rate, represented by a flow variable, is governed by mathematical
formulations of variables and/or parameters. In PSS context, key success and failure
factors of PSS were captured qualitatively using a cause-effect diagram and modelled
quantitatively as parameters in a stock and flow diagram. The stocks illustrated
product-oriented manufacturers and PSS providers. Connecting between the two

stocks were two flows representing PSS adoption and unsuccessful implementation.
The authors demonstrated the use of the model in 1) investigating the impact of
different incentive policies on the ratio of traditional manufacturers to the PSS
providers, and 2) seeking for the condition where the market constituted equal
numbers of traditional and PSS manufacturers (Bianchi et al., 2009). In general, SD
software packages such as iThink, VenSim, and AnyLogic can provide drag and drop
operations on the stock and flow elements.

Chapter 2: Literature review

23

Agent-Based Simulation

Agent-based simulation (ABS) was used to simulate the dynamic behaviour of the
market to examine the agent’s performance in various PSS business models (Buxton et
al., 2006). In principle, ABS models interactions between agents having their own
decision rules and autonomy. Within PSS, the OEM, the marketplace and the aero
engines were all modelled as agents. The model encompassed activities throughout
the entire engine life cycle of 50 years. The simulation experiment generated a
numerical evaluation of system behaviour with subject to a set of inputs, using
AnyLogic. AnyLogic software package is capable of modelling SD, DES and ABS by
simple drag and drop operations, and also enables manual creation of object and class
using the Java language.

Ontology representation

Ontology representation was proposed by Kim et al. (2009) to model a network of
value elements, and relation elements among values, products and services in a PSS
context. The value elements consisted of nature, constraints, category and realisation.
The relations were classified by type (enable, enhance, and proxy) and subclass
(product-value, product-service, service, value). The approach was implemented in
Protege, a software package providing ontology graphical editor for the purpose of
knowledge management.

Object-oriented modelling (OO)

Based on the object principle of OO, Aurich et al. (2006) developed a process
modularisation technique and captured it in a reference life cycle service model. The
model had four fundamental objects defined by attributes. The description object
contained attributes such as objective, the reference object encompassed attributes
such as product components, the function object incorporated information such as
support, and the resource object identified physical and non-physical resources. In
general, OO is a modelling paradigm that models an entire system as several
interacted objects. Each object has its own attributes and methods shared with others.
The life cycle oriented concept was also adapted in combination with activity-based

costing to generate services throughout product lifetime and enable life cycle cost to
be evaluated (Schuh et al., 2009). In correspondence with the objects in the model,
Aurich et al. (2006) developed a tool named Integrated Production Process Model
(IPPM) for the stakeholders to compile and share processes.

Unified Modelling Language (UML)

Within PSS, UML was implemented to visualise a metadata reference model
(Abramovici et al., 2009), to develop an ontology (Kim et al., 2009), and to enable use
case analysis (Maussang et al., 2007; Morelli, 2006). UML can be constructed in seven
different ways depending on the feature that the model aims to expose (Table 2-2).

Chapter 2: Literature review

24

Kim et al. (2009) adopted object and class diagram to capture value and relation
elements as described before. Morelli (2002, 2006) applied use case to analyse
customer behaviour in using a system to design PSS. The same type of UML was
implemented in Abramovici's model (2009) to realise information objects entailed in
IPS2. The information objects were in accordance with, for example, service, product,
resource, usage, and function. Several software packages are available for UML, such
as Eclipse UML2 Tools.

Besides the aforementioned techniques, Evans et al. (2007) developed a solution map
which presented actors in service networks and their associated relationships on the
basis of material movement and information flow. An optimisation model, in

conjunction with a mathematical model and quality function deployment (QFD), was
applied by Shen and Wang (2008) to design services that maximised customer's value
under implementation cost and technical feasible range constraints. V-model was
suggested by Muller and Blessing (2007) to be used in the development of product and
service modules as well as in synchronisation of processes among stakeholders. The
property-driven development/design (PDD) was adopted by Weber et al. (2004) in
capturing PSS characteristics and properties driven by customers. They developed a
shell model which encapsulated three layers; product model on the core, process
model, and PSS respectively. Inside each layer were elements such as characteristics,
properties, resource, requirements, which were connected and positioned in
association with layers. Low et al. (2000) employed Theory of Inventive Problem
Solving (TRIZ) for systematic designing and clustering products to achieve eco-services.

These methodologies are at high level thus employed no specific tools in the
development process.

Table 2-2: Seven methods of UML

Method Focused feature

Use case diagram Actions of a user in a network

Object and class diagrams Objects/classes and their attributes.

Sequence and Collaboration diagrams Interactions between actors

Activity diagram A flow of activities

State diagram State changes

Component diagram Product structure

Deployment diagram Execution of a product

Overall, it can be seen that the majority of these methodologies are appropriate for
the primary offering design stage in which companies have little idea/knowledge what
product-service bundles should be offered to customers (e.g. Aurich et al., 2006;
Weber et al., 2004; Morelli, 2002; Low et al., 2000). In the later stage, a company will
have alternative options and requires a means to evaluate these; simulation

techniques were typically used (e.g. Fujimoto et al., 2003; Komoto et al., 2005; Komoto
and Tomiyama, 2008).

Chapter 2: Literature review

25

2.4.2 Model parameters

This section summarises how the models can be used for decision making by
investigating the outputs and the inputs (Table 2-3). To illustrate, if a company wants
to estimate how much it will cost for a particular offering throughout the contract, the
company may consider employing LCS (Komoto et al., 2005; Komoto and Tomiyama,
2008), Service Explorer (Sakao and Shimomura, 2007), or metadata (Abramovici et al.,
2009), by checking the outputs from the models. The company may then compare the
information required from the inputs across these tools. LCS requires a lot of product
property data, Service Explorer needs detailed knowledge of the customer, and the
metadata model asks for accurate product usage information. Based on the available

data and the nature of the business, the company can decide which tool is the most
appropriate.

Table 2-3 initially categorises input data into product, service, system and user, so that
the focus of each model can be realised quickly, as demonstrated from the example.
By considering a system of product, service and actor elements, the input parameters
can be recognised as properties attached to those elements. Some factors that cannot
be dictated to any of these elements are classified as system-related. On top of cost,
other accounting parameters involve cash flow, net present value and profit. On the
lower level, operation measures such as resource level and product specification were
included repeatedly in several models, e.g. Abramovici et al. (2009), Sakao and
Shimomura (2007), Aurich et al. (2006), Maussang et al. (2007), and Fujimoto et al.

(2003). There appears to be also environmental measures, for example, waste amount
and resource consumption.

To summarise, Section 2.4 presented state-of-the-art of PSS modelling in terms of
existing modelling techniques, supported tools, and model parameters. The findings
were used to identify the research gaps in Section 2.5 and develop the research
programme (Chapter 3).

Chapter 2: Literature review

26

Table 2-3: Summary of parameters of PSS models (Phumbua and Tjahjono, 2011a)

Reference Parameters

Product Service System User

Fujomoto et

al. (2003)

Price

Product development cycle

Failure change rate

Weight

Material

Lifetime

Recyclability

Process energy

Process cost

Monthly fee

Collection rate

Product change fee

n/a n/a

Alonso-

Rasgado et al.

(2004)

n/a Time taken to perform the

service

The quality and flow of information n/a

Komoto et al.

(2005)

Module cost

Process cost

Lifetime

Capacity

Wear out time

Failure rate

Price

Reparability

Reusability

Activity costs

Service fee

Number of operations

Usage rate

n/a

Aurich et al.

(2006)

Specifications Service process Resource

Information exchange

n/a

Chapter 2: Literature review

27

Reference Parameters

Product Service System User

Buxton et al.

(2006)

n/a n/a Sales frequency and volume

Engine Flight Hours

Engine Flight Cycles

Usage characteristics

Customer characteristics

Hara et al.

(2006)

n/a n/a n/a Demographic data

Psychological data

Sense of fulfilment

Being well respected

Self-respect

Fun and enjoyment in life

Morelli (2006)

n/a n/a Time dimension

Interaction between people

Cultural mind frames and social habit

n/a

Maussang et

al. (2007)

Quality/condition

Cost

Time for making design

Specifications

Time for delivery new product

Available time

Cost of activities

Cost of infrastructure

Security

Cost of ownership

Convenience

Sakao and

Shimomura

(2007)

Choices n/a n/a Name/Age/Gender

Family/Career

Excitement

Security

Being well respect

Self-fulfilment

Sense of accomplishment

Warm relationship

Fun and enjoyment

Self-respect

Chapter 2: Literature review

28

Reference Parameters

Product Service System User

Sense of belonging

Personality

Komoto and

Tomiyama

(2008)

Lifetime

Rate of failure occurrence

Market size

Interval of function release

Newness

Functionality

n/a Duration Preference of user to service

type

Abramovici et

al. (2009)

n/a n/a Product use information

(sensor data, environment parameters,

maintenance events, failure)

n/a

Bianchi et al.

(2009)

n/a n/a Initial members

Aptitude to PSS transition

Dissatisfaction to PSS

Barriers to PSS

Intensity and duration of incentives

First time of activation

n/a

Kim et al.

(2009)

Product design

Availability

Service roles Element relation

Relation type

User characteristics

Hara et al.

(2009)

Visibility to receiver

Interactivity with receiver

Visibility to receiver

Interactivity with receiver

n/a Degree of receiver participation

Chapter 2: Literature review

29

2.5 Research gaps and summary

This section first summarises the current state of PSS modelling on high level, then
maps it with the PSS characteristics and dynamic behaviour to identify the research
gaps. The gaps that were tackled later by this research are clarified in Chapter 3 based
on this gap analysis.

The primary observations from Section 2.4 can be summarised as follow.

 The majority of techniques in the literature produced results in the forms of
guidelines, configurations, or specifications, which are appropriate for the high

level design stage. Once designed, relationships in the system were mostly
fixed.

 There is no modelling framework proposed for different types of PSS, instead,
existing frameworks are either abstract or specific to a particular case.

 Simulation models are often valid for one problem/case, mostly for strategy
evaluation. The applicability of the model is mostly narrow.

 SD, DES, and ABS were all used in PSS, however, there is no existence of hybrid
simulation techniques proposed in PSS literature. This implies that an
evaluation could only be made separately between the hierarchies, thus the

effects of unexpected behaviours from across levels may be discarded in the
models.

 There appears to be a hybrid modelling approach between service engineering
technique and DES, in which design alternatives were generated by Service

Explorer while the lifecycle costs subsequent to each selection were simulated
using LCS.

 There is no guideline or feedback information on the usability and suitability of
the simulation techniques for a particular PSS problem.

 The means to assess value in Service Explorer is subjective.

 LCS, which supports DES, is capable of evaluating expenses throughout
contracts, yet, visual interactive features are limited.

 Existing measures cover an economical viewpoint (cost, profit), environmental
viewpoint (resource consumption, waste amount), financial viewpoint (net
present value), and operational viewpoint (performance level, resource level).

Chapter 2: Literature review

30

2.5.1 Relationships between model parameters and PSS characteristics

The first analysis is the mapping of the PSS model parameters in the literature (Section
2.4.2) with actual contract parameters (Section 2.2.2) and the PSS characteristics
(Section 2.3.1). The intention is to analyse the effectiveness of existing models in
modelling PSS. This effectiveness is referred to the extent to which the models can
explain the changing roles of a PSS provider from being a product manufacturer, in
other words, the ability to represent PSS environment.

With regards to the business and strategy characteristics, existing model parameters,
such as lifetime, reusability, asset usage and cost of ownership, indicate that the

extended responsibility of the manufacturer from design and manufacture to services
during the life cycle was considered in several papers. Value parameters, qualitatively
driven by customer needs were often entailed in many models. Yet, indicators of
service efficiency, such as asset availability, asset operating times, and functional
reliability, were not commonly found. The changes of states of assets during the in-
service phase, asset's relationships with manufacturer and customer, and the
associated risks and penalty, are still limitedly exposed.

In terms of operations and technology, designing service operations to maximise
product availability was considered in few papers. The majority of existing techniques
use a top-down approach, in other words, the models were built from the system
perspective rather than the individual’s viewpoint. No model incorporated autonomy

of service staff and their variation in skills, behaviour, and decision making. As a result,
decentralised decision making was not properly taken into account in any model. Also,
it was observed that there was no proposition for new technologies, which in fact
supports the study by Manzini and Verzolli (2003). Besides, service response time was
not examined as an output. Similarly, service levels were not explicitly incorporated.

In contrast, the interactions with the customers in the network were clearly illustrated
in the majority of the PSS models. Nonetheless, the relationships triggered by the
product availability and performance, were not emphasised. Similarly, redesigns
caused by customer feedback were not commonly found. Government influence which
can be a dominant player in public sectors such as the water sector was hardly
considered. The degree of interactions between suppliers and manufacturers, market

responsiveness and the influences between customers were also not explicitly
included in any model. Although the cultural mind sets and social habits were
mentioned in some models, none took into account the fact that profit can be
improved by efficiency provision and the increase in staff skills throughout the
contract.

To summarise, even though the theoretical PSS research has continuously proposed
new PSS business models, several PSS characteristics have not yet been covered and
realised in the models. The next section looks into the development of modelling
techniques in details.

Chapter 2: Literature review

31

2.5.2 Capability of modelling tools and techniques

The second analysis is the mapping between the capability of existing PSS modelling
techniques and tools (Section 2.4.1) with the dynamic behaviour of PSS (2.3.2). The
purpose of this section is to investigate the potential of existing techniques and tools in
capturing the dynamic behaviour.

A wealth of research incorporates analytical techniques with modelling techniques
which in turn allows better numerical evaluation of the PSS offerings. Nevertheless,
supporting tools have not yet been fully matured (Hara et al., 2006; Komoto et al.,
2005). The majority of the existing tools do not incorporate the time dependent

variables and so they did not allow for the dynamic behaviour to be investigated over
time. The exceptions are those found in the applied simulation techniques and lifecycle
concepts. Nonetheless, the tools and techniques that allow variations caused by
customer involvements to be captured are yet to be explored. Although the need for a
time dimension was suggested by Morelli (2006), the tool implementation was not
presented. Moreover, there was only one paper that mentioned the capability of the
tool in encapsulating customer's autonomy in asset operations and in assessing risks
from external events beyond the boundary of each agent (Buxton et al., 2006).

These strengths and weaknesses, which lead to opportunities, are summarised below.

Strengths:

Variety of technique stemmed from product

perspective and service perspective.

Rich combination between analytical methods

and simulation techniques.

Lifecycle perspective in an extension to product

selling.

Various value proposition from the use

Explicit interactions between parties in supply

chain and customer.

Wealth economic and environmental measures

evaluation.

Clear link between asset transformation and

service supports.

Weaknesses:

Lack of service efficiency measure (availability,

service response time)

Weak link between product performance and

customer-manufacturer relationship, as well as

customer involvements and redesigns.

Insufficient representation of decentralised

decision making process, cultural mind frame, and

social habits.

Absence of influences between customer, effect of

technology on the company’s capability, impacts

from government.

Opportunities:

New definition and customisation of performance measures in PSS

New techniques/approaches that can support the design of product-service offering more efficiently

Development of operational level, computer-based simulation tools that incorporate the dynamic

behaviour of PSS

Better illustration of PSS modelling techniques and tools through case studies and industry

implementation

Figure 2-2: Strengths, weaknesses and opportunities of PSS modelling research
(Phumbua and Tjahjono, 2011a)

Chapter 2: Literature review

32

Figure 2-2 reveals a number of weaknesses in the PSS modelling literature. This
research attempted to bridge these gaps, detailed in the next chapter.

To conclude, the importance of PSS as a survival strategy for today's market was
highlighted in this chapter (Section 2.). It also introduced successful cases and decision
parameters that appeared in aircraft, train, printing, washing, and carpet sectors
(Section 2.2). The extended characteristics of PSS beyond traditional business as well
as dynamic behaviour were addressed (Section 2.3). The applied modelling techniques
and tools in the PSS offering domain were presented and reviewed in Section 2.4 in
terms of their applicability and potential to evaluate alternative PSS offerings (Section
2.5). The review reveals that the research on PSS decision supports is still lagging far

behind the theoretical PSS developments. Techniques and tools that can effectively
describe PSS and enable dynamic behaviour to be captured are therefore needed.
Without a tool, a company may be reluctant to adopt PSS or may fail to sustain service
contracts or may be at great risk of losing business. Based on this outcome, the
research programme presented in Chapter 3 was developed.

Chapter 3: Research programme

33

3 Research programme

Chapter 3: Research programme

34

The previous chapter provided the detailed justification towards the development of
this research programme. In this chapter, the development of the research aim and
subsequent objectives are presented in Section 3.1. The scope of this research is
covered in Section 3.2, and the development of the research methodology is explained
in Section 3.2. Finally, Section 3.4 summarises this chapter.

3.1 Development of research aim and objectives

The driving force towards PSS for manufacturers (Section 2.1) highlighted the need for

a customised decision making tool prior to signing a contract. The scope of OEM’s
responsibility that goes beyond manufacturing activities (Section 2.2 and 2.3)
suggested the inadequacy of the modelling approach typically adopted in the
manufacturing paradigm. The review of the existing approaches (Section 2.4) identified
simulation modelling as potential in enabling detail evaluation of alternative offerings.
Nevertheless, the research gap analysis (Section 2.5) revealed that the simulation
modelling research within PSS context has been in the early stage of development.

Based on these findings, there were two alternatives for this research; developing an
accurate and detailed approach for a specific PSS case, or seeking for general
modelling constructs with sufficient details. The first option has less applicability but
provides in-depth knowledge. The outcome from this option can be made as a use

case. On the contrary, the second alternative can be applied to several cases. As PSS
research is still in an early stage, the second approach which enhances applicability is
more appropriate. Therefore, the aim of this research has been developed

to propose the modelling constructs that enhance effective and efficient
development of service contract simulation models for PSS offerings.

The following research objectives were defined to set up the stages towards the aim.

 To identify a simulation technique that can potentially capture PSS

characteristics and dynamic behaviour

 To determine an appropriate modelling approach that enables effective and
efficient development of PSS simulation models

 To form primary modelling constructs based on the approach

 To evaluate and refine the primary constructs

 To present the final constructs

Chapter 3: Research programme

35

3.2 Development of research scope

This section defines the research context according to the aim, in other words, the
scope for “PSS offerings”. To do so, there are two major issues to be addressed:
various closely related terminologies to PSS and the selected research boundary.

First, ‘Product-Service Systems’ is defined as an integrated product and service offering
that delivers value in use (Baines et al., 2007). Besides PSS, the less-often-used
terminologies which also refer to the integrated offering concept are ‘functional sales’
and ‘functional products’ (Lindahl et al., 2006). The process of creating value by adding
services into a product is denoted as ‘Servitisation’ (Baines et al., 2009b). ‘Product-

Centric Servitisation’ is the case of servitisation in which the product itself is central to
the provision of services (Baines et al., 2009a). Special cases under the product-service
concept are ‘availability contract’, ‘Performance-based Logistic (PBL)’, ‘Performance-
Based Contract (PBC)’ and ‘Contractor Logistics Support (CLS)’. All these four cases
share the same goal in providing system readiness, but used in different countries.
Within a PSS context, ‘technical Product-Service System (t-PSS)’, also referred to as
‘Industrial Product-Service System (IPS2)’ (Erkoyuncu, 2011), focuses on business-to-
business, high value assets (Meier et al., 2010; Aurich et al., 2006). IPS2 was used
interchangeably with ‘Contracting for availability (CfA)’ in Erkoyuncu (2011). CfA is
a commercial process which aims to sustain system readiness at an agreed level over a
period of time (Ng, 2008).

It can be seen that all the presented terminologies are closely linked and sometimes
used interchangeably. To avoid confusion, this thesis considered all product-service
offers as PSS and the research scope is addressed below.

Prior to the selection of the research scope, the first option was considered from a

well-known classification developed by Tukker (2004). The classification was ranged on
the significance of product to the total offering, categorised as product-oriented, use-
oriented, and result-oriented. At one end, services in product-oriented PSS are mainly
for enhancing product sales. At the other end, products are not pre-determined in
result-oriented PSS but driven by the required capability. Therefore, ownership of the
asset is often shifted to customers in product-oriented PSS, but remained with the

OEM in case of result-oriented PSS. The scope of this research was not based on this
classification due to two main ambiguities. To illustrate, consider the following
examples: 1) Pratt & Whitney was awarded a service contract to support F100-PW-
220E engines for the US and Italian Air Force (Pratt & Whitney, 2011), 2) Rolls-Royce
signed a service contract on RB199 engines with the UK Royal Air Force (RAF) (Rolls-
Royce, 2010), 3) Boeing provides support to C-17 for the US Air Force (Mahon, 2007).
These cases aim to provide capability but the assets are specified, already sold from
the OEMs and owned by the customers. This means the business models can fall under
result-oriented PSS by considering the aim, as well as product-oriented PSS based on
the importance of assets and the ownership perspectives. Additionally, this

Chapter 3: Research programme

36

classification includes some pure service businesses in PSS, for example, car sharing
and a taxi model. Therefore, the boundary of this research was not based on this
classification.

The alternatives were considered from the above mentioned terminologies. However,
availability contract (or PBL/PBC) is too specific, and IPS2 and t-PSS require several
criteria to identify the cases. On the contrary, “product-centric servitisation” focuses
on one key characteristic (i.e. the inseparable services to a specific asset) and leaves
flexibility in terms of asset characteristics, ownership, and performance requirements.
The definition also clearly indicates that the service contracts which are not tied up
with specific assets are excluded (such as an activity management type contract and a

product pooling contract), whilst all aforementioned examples of Pratt & Whitney,
Rolls-Royce, and Boeing are clearly included. Thereby, the scope of this research
adopted the product-centric terminology to PSS offerings.

Service contracts within a product-centric PSS context are often made in long term and
indicate services that will be applied to the particular tangible assets. At a detail level,
the contracts in the product-centric PSS context have the following characteristics:

 The contracted assets will be used by the same customer and will be replaced
primarily on a malfunction basis. However, these assets can be shared with
other customers if they are not used by the contracted customer.

 In case of asset replacements, the replaced asset must have identical structure
to the original asset.

 The contracted assets are not necessary to be manufactured by the OEM.

 The contracts can be made on the used assets as well as new assets.

In conclusion, the aim, objectives, and the scope of this research enabled the gaps of
knowledge that were handled by this research to be identified. Based on the strengths
and weaknesses in the PSS modelling literature analysed in the previous chapter, there
are six areas excluded in this study. First, this research focuses on product-centric

context, thus, the modelling constructs may not be applicable in the service-centric
context. Secondly, embedding an analytical technique inside the constructs was not
necessary as this research aimed to provide modelling capability rather than the
accuracy of a solution. Thirdly, service contracts are made between the OEMs and
their customers therefore the interactions between parties in supply chain limit to the
OEM-customers. Fourthly, environmental measures were excluded as it is unlikely that
OEMs will sign a contract based on environment impact. Fifthly, cultural mind frame,
social habits, and influence between customers are generally not in the OEMs’ concern
in deciding whether to sign a contract. Last, governments rarely influence the markets
in the product-centric PSS context, therefore, its effect was not considered in this
research.

Chapter 3: Research programme

37

The next section deals with the formation of the research methodology based on this
direction.

3.3 Development of research methodology

There are some differences between research methods and research methodology as
pointed out by Rajasekar et al. (2006) that research methods are procedures used in
the research whereas research methodology is a systematic way to solve a problem.
Therefore, a research methodology is formulated from a systematic management of
research methods.

In this research, research methodology has been formulated into five stages
corresponding to each objective (Figure 3-1). In Chapter two, simulation was
addressed as a potential approach for PSS offering design. Stage I to Stage III deals
with development of the modelling constructs. Therefore, it was important to realise
the research methods for developing a simulation model at these stages. On top of
that, the research methods for the data collection were necessary to form a model. In
the fourth stage, the focus was shifted to evaluation of the primary constructs, thus,
the research methods are linked with collection of data that comes from
implementation of the constructs. The final stage focuses on presentation of the
constructs. For these reasons, prior to the formation of the adopted research

methodology, relevant research methods from literature were explored. Section 3.1
focuses on research methods for simulation studies and Section 3.2 addresses data
collection methods and the rationale towards method selection. Finally, the selected
methods were formulated into the research methodology, described in Section 3.3.

Figure 3-1: The five-stage methodology

Objectives Methodology

Objective 2

Investigate simulation techniques

Develop the modelling approach

Formulate the modelling constructs

Evaluate and refine the constructs

Objective 1

Objective 3

Objective 4

Present the final constructs Objective 5

Chapter 3: Research programme

38

3.3.1 Methods for conducting a simulation study

The general methods for conducting a simulation study are linked with the key
modelling processes, and have been discussed by several authors, for example: Banks
et al. (2009), Robinson (2004), and Bennett (1995). However, Robinson (2004) stated
that the key modelling processes are very similar across different authors and the only
difference is in terms of terminology. The author summarises these processes as
shown in Figure 3-2.

Figure 3-2: Key modelling processes (Adopted from Robinson, 2004)

It was pointed out that these processes in Figure 3-2, including sub-process, are not
linear and can be cross-linked. Within the conceptual modelling phase, Robinson
(2004) highlighted that conceptual models should have four components; validity,
credibility, utility, and feasibility. Validity is defined as a modeller’s perception that the
conceptual model will produce a computer model with sufficient accuracy for the
purpose at hand. This definition is also applied to credibility but from the model user’s
viewpoint. Utility relates to the usefulness of the model in assisting decision-making
within the context. Finally, feasibility is concerned with the perception that a
development of computer model is achievable based on the conceptual model. The
implementation process can be achieved in three ways; applying the solution, using
the model, and learning from the model.

In addition, two other processes are suggested to be performed throughout model
development; model verification and validation. The purpose of verification is to check
if the model performs what it supposes to do, whilst validation aims to match the
model to the real world (North and Macal, 2007). Banks (2007) provides a full list of
verification and validation techniques, which covers over fifty methods. However, this
thesis presents those that are frequently suggested in literature.

In terms of verification, the following methods can be summarised from Banks (2007),
Law (2007), North and Macal (2007), and Robinson (2004):

Verification &

Validation

Chapter 3: Research programme

39

 Iteratively compare the model with the design document.

 Breakdown the whole model into several loops of events, and run the model
after completing each loop.

 Assign a fixed number instead of a distribution, and force extreme conditions to
occur.

 Manually run the models in single step. Timescale of occurrences may be
reduced to make the step walk-through possible.

 Document all the code and choices of methods, and walk through the code.

 Record the model results and check if they are realistic.

 Check the model log.

However, keeping the model logged can be costly and referring to the design
document may not be possible in exploratory research, especially in ABS context, as
most substantial designs undertake major revisions prior to completion (North and
Macal, 2007).

Validation can be made in terms of requirements, data, result, process, solution, and

theory. Additionally, agent validation (in case of ABS model) can be performed by
comparing agent behaviour and interactions with the real world behaviour (North and
Macal, 2007). The choices of validation are recommended to be considered against the
purpose of modelling (Robinson, 2004). The methods frequently covered in the
literature (Banks, 2007; Law, 2007; North and Macal, 2007; Robinson, 2004) are as
follows:

 Select real world cases with valid scenarios (or known results from other

approaches), and compare the results with real world (or the results from other
approaches). This includes checking whether the outputs realistically
correspond to the change of inputs.

 Compare across multiple cases.

 Refine the model with subject experts.

 Externally assess the usefulness of the model via third party.

In case of SD and ABS paradigms, these general guidelines for simulation studies can
be further detailed within conceptual modelling and model coding phases. In terms of
ABS, Macal and North (2010) stated that similar ways can be conceptually done as in
other models. These processes include: 1) identify the purpose of the model 2) analyse

Chapter 3: Research programme

40

the system under study 3) identify entities and their interactions, and 4) address
sources of data. The common components to be identified include agent, agent’s
activity, relationship configuration, agent’s goal, environment sensing (or message
receiving) method and action method (Cavrak et al., 2009; Macal and North, 2010;
Jennings, 2001; Guessoum and Briot, 1999). As for SD, key factors still need to be
addressed. Nonetheless, they are not explicitly separated as inputs and outputs. The
hypothesis should be formulated on the basis of internal effects which come from the
feedback structure (Sterman, 2000). This causal structure should be represented using
tools such as an influencing diagram or a stock-and-flow diagram. These processes are
recommended by Sterman to be completed prior to making simulation models.

Overall, the methods in simulation study are well defined and generalised to any case.
Therefore, these methods were adopted in this research, explained in Section 3.3.3.

3.3.2 Methods for data collection

This section provides general research methods in literature that relate to data
collection, and the rationale as to why the particular methods were selected in this
research.

The first step towards method selection was to decide whether this research is
quantitative or qualitative. Quantitative research usually makes use of numerical
analysis, whilst qualitative research is non-numerical and the data are collected in the

form of words and observations (Rajasekar et al., 2006; Johnson and Harris, 2002).
Creswell and Plano Clark (2007) highlighted that qualitative research is usually
intended to learn participant’s views about something whereas quantitative research
is often aimed to support or disprove existing theory.

In this research, the data required in the first three stages are linked with the first key
modelling process; understanding the problem. These data refer to decision
parameters and modelling scenarios in the models. Although numerical input values
are necessary, they are not critical considering that the aim of this research is not to
provide the contracting solution for a particular case. Therefore, the required data are
in descriptive format, which identifies this research as qualitative.

A number of research methods exist in the literature for qualitative studies. Creswell
(1998) compared key characteristics of five methods; biography, phenomenology,
grounded theory, ethnography, and case study. Biography is the study of individual
life, Phenomenology deals with understanding of experiences from a phenomenon,
grounded theory relates to development of theory from data, ethnography is
associated with social interactions and culture, and finally, case study is an exploration
of a system.

In the context of this research, using biography implies that contracting processes
would be explored from personal viewpoints of the interviewees rather than the actual

Chapter 3: Research programme

41

processes. This is similar to phenomenology, as described by Goulding (2004) that
interviewee’s view is taken as fact. Applying ethnographic and grounded theory in this
research would require a considerable amount of time for data collection, as Creswell
(1998) described that grounded theory requires interviews with 20-30 people and
ethnographic rely on observations and interviews after long time spent in the field. On
the contrary, case study has none of these limitations. For these reasons, case study
was selected as the research method for data collection during the first three stages in
this research.

During the final stage of this research, the data relate to feedback from constructs
implementation. Here again, grounded theory and ethnography would take a long

period of time. Biography was not valid at this stage as the collected data were not in
terms of an individual’s life. Phenomenology could have been used by interviewing
participant’s experiences after implementing the constructs. This would practically be
the same as conducting case studies by considering one user as one case (i.e. pilot case
study). Accordingly, case studies were also selected to obtain the constructs
implementation data.

The major sources of evidence for a case study were suggested by Yin (2009) as
documentation, archival records, interviews, direct observations, participant
observation, and physical artefacts. Participant observation differs from direct
observations from the point that the researcher also takes a role in the system being
studied. Yin provides a list of strengths and weaknesses of each source. Overall, bias is
a major issue in case study research.

To cope with bias, Robson (2002) suggested some techniques to enhance
trustworthiness in qualitative research. Trustworthiness is considered in terms of
validity, reliability, and generality perspectives. Validity is linked with correctness of
results, reliability deals with the use of standardised instruments in collecting data, and
generality relates to the applicability of conclusions. To enhance the trustworthiness,
several techniques can be adopted, as follows:

1. Prolong involvement of the researcher in the field.

2. Combine qualitative with quantitative method (methodological triangulation).

3. Use multiple sources for data collection (data triangulation).

4. Cover various theories (theory triangulation).

5. Include more than one observer (observer triangulation).

6. Discuss with a group of researchers (peer debriefing).

7. Re-check with the participants (member checking).

Chapter 3: Research programme

42

8. Search for instances that would disprove the researcher’s theory (Negative case
analysis)

9. Keep records of activities during the study (audit trail).

10. Standardise instruments for data collection.

The next section describes how these methods were adopted into this research and
addresses how the weaknesses of the applied methods were handled.

3.3.3 The research methodology

The methods in Section 3.1 and 3.2 were structured into steps for the five-stage
methodology as shown in Figure 3-3 and explained below.

Stage I: Investigate simulation techniques

This stage corresponds with the first objective of this research. The intention of this
stage was to seek for an appropriate simulation technique that enables the
characteristics and dynamic behaviour of a product-centric PSS to be captured.
Therefore, the main research question of this stage is:

What are the strengths and weaknesses of each simulation technique in modelling
service contracts?

The research question implies a need of insight knowledge on simulation techniques.
To answer this question, both theoretical and practical investigations were conducted.
Simulation literature was initially explored, followed by actual model development in
correspondence with each technique. The actual model developments were necessary
as the PSS context spans beyond a manufacturing context and there has been no
analysis on technique capability in PSS.

Three potential techniques have been identified from Section 2.5: SD, DES, and ABS.
Even so, ABS is often found embedded inside a larger system or built upon other
techniques (Macal and North, 2010). Accordingly, four models were examined in this
stage based on SD, DES, hybrid ABS-SD, and hybrid ABS-DES.

Within development of each model, the key modelling processes described in Section
3.1 were applied. These models were constructed based on the understanding of
product-centric PSS offers from the literature, and focussed on different sectors to
gain general knowledge. The verification and validation methods performed included
conceptual validation with PSS experts, break-down analysis of models, the use of
extreme situation, debugging walk-through, verification with a simulation expert,
documentation, and external presentations. The use of experts and external
presentations also allowed member checking technique to be undertaken.

Chapter 3: Research programme

43

To evaluate the capability of the techniques, they were assessed against the strengths
and weaknesses in PSS modelling literature analysed in Chapter 2. The most
appropriate technique was considered to be the one that better represents the PSS
context.

Figure 3-3: The research methodology adopted in this thesis

Identify the simulation technique

Develop the modelling approach

Form the modelling constructs

Present the final constructs

Literature review

(Simulation)

Evaluate and refine the constructs

Literature review (PSS)

Verification and

validation methods

Key modelling processes

3 pilot cases

Audit trail

Questionnaires

Member checking

Data triangulation

Interviews

Case study protocols

Research methodsThe research methodology

Explore the general capability of SD, DES, ABS

Investigate the capability of the techniques in the PSS context

Develop a model for each case based on the selected

technique

Analyse the applied modelling approach

Identify common elements and variances across the cases

Develop an approach for efficient model development

Develop the case-dependent constructs

Develop the basic construct

Assess the effectiveness in modelling the PSS context of the

constructs

Define the evaluation criterion

Select a case study and collect data(x3)

Implement the constructs (x3)

Test the constructs with users (x3)

Evaluate and refine the constructs

Demonstrate in a software

Document the constructs and a user manual

Build a model from each technique (x4)

Verification and

validation methods

Key modelling processes

Literature review (PSS)

Select a technique that effectively model the service contracts

Select a case study and collect data (x4)

Peer debriefing

Chapter 3: Research programme

44

Stage II: Develop the modelling approach

This stage corresponds to the second objective of this research. It aims to develop an
appropriate modelling approach that leads to effective and efficient development of
simulation models within the PSS context. Therefore, the main research question for
this stage is:

How should service contracts be modelled for efficiency?

This question requires experiences on using the selected simulation technique. The
approach should also incorporate levels of generality. To achieve these, several model

developments from various case studies which apply the final selected technique were
necessary. Therefore, four cases were selected from the aircraft, the photocopier, the
underground, and the carpet sectors.

Similar to the previous stage, the data used in the models were in terms of modelling
scenarios and key decision parameters. These data were collected from literature, and
based on product-centric PSS. The verification and validation processes covered
conceptual validation with PSS experts, break-down analysis of models, the use of
extreme situation, debug walk-through, code walk-through with a simulation expert,
documentation, and external presentations.

Having developed the models, the applied approaches were analysed and refined to

enhance efficiency in model development. The final approach was assessed against the
strengths and weaknesses in PSS modelling literature to primarily evaluate its
effectiveness in modelling PSS business.

Stage III: Form the modelling constructs

This stage is linked with the third objective of this research which aims to form
modelling constructs. Other approaches were also considered, for example, templates
and workbook. However, the number of variants across cases can result in excessive
number of templates. Moreover, a template gives limited flexibility for further
customisation which can be caused by different operating policies inside each
company. For instance, a ship building company may aim to adjust resource levels

based on ship utilisation which depend largely on the weather condition whereas a
train company may maintain the same number of staff throughout a year. Using a
template, these decision rules can be hard to modify. On the contrary, a workbook
may better handle the variants. However, using a workbook, modellers may spend too
much time in understanding the generic information about their cases. For these
reasons, modelling constructs were considered as a compromised option. The
constructs comprise modelling elements (e.g. source, sink, state, event, transition,
etc.) and methods (e.g. message passing mechanism, conditional trigger, action firing
mechanism). Following the refined approach from the previous stage, this stage

Chapter 3: Research programme

45

implemented the approach in a software package. Therefore, the research methods at
this stage relate to technical programming.

Stage IV: Evaluate and refine the constructs

This stage is associated with the final objective of this research. The purpose was to
evaluate the developed constructs in terms of effectiveness and efficiency in enabling
model developments. The validation outcomes led to the refined constructs including
instructions how to use them. Accordingly, the main research question of this stage is:

Do the constructs really enable effective and efficient development of service contract
simulation models?

To evaluate effectiveness and efficiency, the criteria for assessment were required.
Efficiency was measured by comparing the model development times between using
the constructs and without using them. The effectiveness at this stage was evaluated
from three criteria:

 The applicability of the constructs to existing cases

 The practicality of the constructs as an aid in making contracting decisions

 The feasibility in developing a model based on the constructs

Therefore, the data required at this stage deal with the evaluation of the constructs
based on these criteria.

Multiple case studies were selected within product-centric PSS. The focus of this
evaluation was to validate the extent of efficiency, applicability, practicality, and
feasibility of the constructs. Within the case study validation, interviews with three
existing cases were conducted to obtain the data for model customisation. Case study
protocol was used across cases to ensure consistency, thus, enhancing trustworthiness
of the results. The protocol was structured for system understanding, and mapping
case characteristics with the details in the constructs. Again, all cases are different and
fall under the product-centric PSS context. Peer debriefing was also performed to

enhance trustworthiness, by cross-checking the collected data with another student
who was also in the interviews. Additionally, the developed models from each case
were re-checked with the interviewees.

Another form of evaluation was carried out using third parties. User validation was
conducted in three pilot sessions which correspond to the tests by a simulation
learner, a DES expert, and a simulation expert. The participants were selected as they
have been involved in PSS research and all have different levels of simulation
background. This selection aimed to gain insight feedback and generalise results. Data
triangulation was performed based on direct observations and user feedback, and the

Chapter 3: Research programme

46

activities were recorded. Questionnaires were given to the participants to structure
their feedback and enable the assessments of the four criteria.

Based on the evaluation, the amendments to the constructs were identified to
enhance effectiveness and efficiency in developing service contract models.

Stage V: Present the final constructs

This stage corresponds to the fifth research objective which relates to presentation of
the final modelling constructs. It was intended to instruct users how to use the
constructs to build a model. Therefore, the presentation included the overview of the

constructs, instruction how to use it, the constructs, and example of the
implementation on a software package. The outcome of this phase is the main
contribution of this research.

3.4 Chapter summary

This chapter detailed the research programme. Section 3.1 clarified the research aim
and the five research objectives. Section 3.2 defined the context of this research as
product-centric PSS. Section 3.3 dealt with justification and structuring research
methodology, in which methods that centred around case studies and simulation were
described and led to a five-stage methodology. The next section presents the first

stage of the methodology, which relates to investigation of an appropriate simulation
technique.

Chapter 4: Investigation of simulation modelling techniques

47

4 Investigation of simulation
modelling techniques

Chapter 4: Investigation of simulation modelling techniques

48

Chapter 2 described a primary evaluation of PSS modelling techniques and tools in
terms of potentiality from the theoretical background. The outcome identified three
potential techniques; SD, DES, and ABS from existing techniques in PSS context. This
chapter corresponds to the first objective of this research, which aims to select an
appropriate simulation modelling technique as the core architecture for the modelling
constructs. To achieve this, Section 4.1 presents general strengths and drawbacks of
these techniques from simulation literature. Section 4.2, guided by the literature
findings, illustrates model developments based on these techniques in various PSS
cases. Section 4.3 provides assessment of the techniques in the PSS offering context
against the current state of PSS modelling, which led to the selection of the final
technique. Finally, Section 4.4 concludes the chapter.

Figure 4.1: Chapter 4 outline

4.1 SD, DES, ABS in literature

This section deals with general strengths and weaknesses of each simulation
technique, obtained from simulation literature.

Both SD and DES focus on a system level whilst ABS takes into account complex
relationships caused by interaction among agents (people, products, assets, etc.).
These agents can have different histories, intentions, desires and individual properties,
and are able to influence each other. By capturing interactions between these
individuals, ABS allows unexpected phenomena to emerge (this type of phenomena is
often referred to as a non-linear relationship). This capability can enable non-rigid or

Chapter 4: Investigation of simulation modelling techniques

49

non-defined relationships to be investigated which is lacking in other two techniques
(Jenning, 2001). Additionally, an agent can sense the environment, decide whether the
information matters to its own goal, and behave accordingly (Macal and North, 2010;
Guessoum and Briot, 1999). Therefore, ABS is flexible to changes and provides a
natural description of a close-to-reality system (Bonabeau, 2002). This agent capability
contradicts the usual passive nature of an object in other techniques. However, a
major drawback of ABS was reported by Yu (2008) in terms of the unrepeatability of
experiments due to the non-rigid interaction between agents.

Several studies further compared SD and ABS from a practical viewpoint, ABS
encourages the modeller to focus on defining agents and their behaviour rules, whilst

SD provides conceptual description and force the modeller to consider at an
appropriate level of aggregation (Datta, 2007; Wakeland et al., 2004). Therefore, ABS
investigates leverage points in complex aggregate systems through rules and agents,
while SD discovers the points through a feedback structure of the systems.
Accordingly, SD is deductive in that individual agents or events do not have a lot of
influences (Scholl, 2001).

In terms of DES and SD, several comparisons have been made (e.g. Chahal and Eldabi,
2008; Morecroft and Robinson, 2005; Tako and Robinson, 2005). Among these
publications, Chahal and Eldabi (2008) addressed the general differences between the
two approaches from a literature survey and grouped them into methodology,
problem, and system perspectives. The methodology viewpoint involves, for example,

philosophical assumptions, technical capabilities, limitations and characteristics of the
modelling techniques. The problem context justifies the reason why each technique is
considered appropriate. Finally, the system perspective is associated with the nature,
representation, and views of the system in real world. Key strengths of SD lie in the
fact that its structure is relatively flexible, a standard format can exist, the effect of
outputs to the system can be captured through a feedback loop, and the system is not
isolated but connected to the ‘world’. These features are not commonly found in DES
(Chahal and Eldabi, 2008). Nonetheless, DES structure is clearly defined, well animated
and tangible, and more importantly, the effect of randomness on model outputs can
be comprehensively examined. For these reasons, SD can potentially cope with
dynamic complexity whereas DES is powerful in handling detail complexity. The

confidence in using an SD or DES model remains an ongoing argument and case-
dependent. While the finding from Chahal and Eldabi (2008) gave more credit to DES,
Tako and Robinson (2005) and Han et al. (2005) revealed that similar levels of details
and accuracy can be produced from both techniques.

Overall, Siebers et al. (2010) suggests that technique selection is dependent on the
problem, and not application. Macal and North (2010) stated that the modellers
should stick with the familiar technique and seek for others when that applied
technique cannot fully describe the problem. Along this line, several propositions have
been made to combine techniques, for example, Rabelo et al. (2005), Borshchev et al.

Chapter 4: Investigation of simulation modelling techniques

50

(2004), Schieritz and Globler, (2003), Lee et al. (2002), and Scholl (2001). Based on
these findings, the models developed from a single technique were explored prior to
those from hybrid techniques. The next section describes this process.

4.2 Model development in the PSS context

As there was no technique analysis within the PSS context (Phumbua and Tjahjono,
2011a) and the simulation literature revealed its dependencies on cases, it was
inadequate to identify an appropriate technique for the PSS context merely based on
the literature. Therefore, actual model development was necessary in this research.

The investigation on single simulation technique is first presented, followed by hybrid
simulation developments. Each single technique assessment responds to each
independent PSS offering problem, whereas the contexts for hybrid technique arose
from the insufficiency of the single techniques. The structure of this section is divided
into several sub-sections corresponding to each technique assessment. Only the
analysis will be presented in this chapter as other details are not pertinent with the
focus of this chapter. However, more information is provided in the Appendices.

Robinson (2004) stated three methods for developing a simulation model;
spreadsheet, general language programming, and software packages. As software

packages provide better ease of use and validation and spreadsheets have limited
capability in showing animation and queue (Robinson, 2004), a software package was
used throughout this research. The introduction to software elements, based on
AnyLogic®, is provided in Appendix A. Anylogic® is a multi-paradigm simulation
modelling tool which enables SD, DES, and ABS to be implemented simultaneously. The
notations used in the software will be also adopted in this thesis.

The verification of each model follows the research methods detailed in Section 3.1,
which is summarised in Table 4-1. The empty cells imply the methods that are not
applied to a particular model. At least six methods have been applied to ensure the
model functionality. In this chapter, the business cases are drawn from the theoretical
need for the study, and supported by existing cases in the literature.

Chapter 4: Investigation of simulation modelling techniques

51

Table 4-1: Summary of applied verification and validation methods

Validation method SD model DES model SD-ABS model DES-ABS model

Business case exists ■ ■ ■ ■

Validate concept with

PSS experts

■

Breakdown the model

into several functions

and check one by one

■ ■ ■ ■

Simplify the input

value, force extreme

condition and observe

expected outcomes

■ ■ ■ ■

Manually step through

the models and check

expected outcomes

■ ■ ■ ■

Verify model with a

simulation expert

■ ■ ■ ■

Validate the model with

a practitioner

Document the model

and recheck it twice

■ ■ ■ ■

Present the model to an

external organisation

■ ■ ■

4.2.1 Business case I: SD technique

This study was carried out jointly with a group project at Cranfield University, which
aimed to develop general PSS business models for OEMs who are keen to implement
PSS. In this project, three PSS business models were constructed using influential
diagrams in order to capture three different servitisation levels. This difference is a
result from skilled workforce, monitoring technology, OEM-customer relationship, and
OEM-supplier relationship. The servitisation level can attract more customers, thus,
this interconnection is represented by stock and flow diagram. Details can be found in
Appendix B. Three case studies were conducted to demonstrate the concept, followed

by presentation to several PSS experts. Feedback from the project was evaluated,
which led to the final models used in this research.

The findings were analysed based on the feedback and the weaknesses identified from
PSS modelling literature. In terms of feedback, the subjective weighting and scaling of
SD appeared as a major issue in the model's applicability. The interviewees were
unsure how to estimate the four factors. For instance, the difference between values
for the relationship with the customer between five and six could not be clearly
justified. Moreover, the values of weight importance can be given differently by
different people from the same sector. In terms of modelling, the SD structure was

Chapter 4: Investigation of simulation modelling techniques

52

simple to form in this case and powerful in demonstrating the impact between
decision parameters. The latter aspect is beneficial in strategic investment.

To compare against the weaknesses of existing work as dictated in Figure 2-1, this
model could present service efficiency measures (response time, availability), and
expose connections between 1) OEM-customer relationship and product
performances, 2) customer involvement and redesigns, 3) technology and the
company's capability, and 4) transformation of asset and service support. Nonetheless,
the technique was not appropriate to illustrate decentralised decision making, the
individuality of assets, as well as the stochastic nature of in-service activities. The
connection between ‘value’ and product/service could be captured vaguely at a high

level. Asset life cycle and interactions between stakeholders could not be illustrated
clearly. Therefore, SD on its own was not considered sufficient to be used in the PSS
context.

4.2.2 Business case II: DES technique

The second study looked into different asset usage scenarios of PSS contracts
presented in Section 2.2. Asset usage was selected since it appears as the key issue to
be specified in all reported contracts. It can also directly affect payments and scope of
OEM responsibility. For example, a failed asset outside contract hours does not affect
availability level or cost OEMs any penalty. In this study, assets in scenario one are
contracted all the time, as in military aircraft contracts. In scenario two, contracts are

made on an hourly-basis, as in the case of Xerox and LUL. Finally, scenario three
combines both scenarios, in other words, some assets are contracted all the time and
some are not. This scenario enables customers to chase demands in their businesses.
Three models were developed in correspondence with the three scenarios, explained
in Appendix C.

Observations related to technique capability were drawn in terms of level of
workarounds made to the models, insufficiencies to present PSS, and contribution to
PSS modelling.

Workarounds beyond modelling typical manufacturing system are required due to the
shift in modelling principle. In the manufacturing context, the common elements

typically include parts and their attributes (e.g. part number, due date, etc.), resources
(e.g. machines, workers), and queues or buffers (Chung, 2004; Law, 2007). A part is
created in the model, moved through a system in which resources are requested, and
usually discarded from the model. An arrival of entities (or passive objects) generally
activates activities in the manufacturing system, which dictates the ‘demand signal’. If
the resource is available, the part will be processed, otherwise it is queuing for
operation. In terms of performance measures, the typical outputs described in Chung
(2004) are in-system time, waiting time, average number of parts in queue, and
resource utilisation. Additionally, Law (2007) listed other measures, for examples,
throughput, timeliness of deliveries, numbers of process inventories, proportions of

Chapter 4: Investigation of simulation modelling techniques

53

parts that are reworked or scraped, and proportion of time a machine is not working.
In summary, the outputs of a model are based on time, number of parts, and resource
status. In PSS, an asset is equivalent to a ’Part’ in the model. These parts are moved
back and forth between the OEM and customers, depending on whether they are in
the contract period and capable for an operation. Therefore, the shifts in the
modelling principle are as follows:

 From an element viewpoint, ‘Delay’ elements in a customers’ site are

considered as in-service assets rather than process activities. Therefore, the
element’s cycle time does not imply the activity duration but either the
remaining life of an asset or the contract hours.

 The model's demand signal in PSS is based on the asset operating schedule. In

other words, contracted assets are retrieved back to customers every time the
contract period starts and can be moved elsewhere when the period ends.

 Assets always remain in the system, unless they reach the end of their life and
are not recyclable. In other words, the assets are not shipped out from the
models.

Secondly, DES is inadequate to model PSS offering since:

 The assets are a moving object, whilst the OEM’s service facility and the

customer’s facility are fixed in the DES models. Therefore, it is not natural to
describe the cases that in-service assets are used by contracted customers at
the OEM’s facility, for example, a case of machine tool reported by Azarenko et
al. (2009). The assets in this case are more appropriate to be fixed whilst the
customers should move in the models.

 DES is a system modelling approach, thus, the decision structure in the models

is controlled by one system. In other words, it is not appropriate to address the
decentralised decision making. For this reason, DES lacks the capability in
exposing the fact that in-service assets are autonomous and cannot be
managed by the OEM.

 Assets in DES are passive and their attributes (e.g. MTBF, usage) are hidden
inside the objects. Thereby, asset life cycle could not be explicitly exposed.

 Though asset performance triggered OEM’s service process in the models, the

actions could not be activated by the assets but by the ‘Delay’ element. This
means either the element must keep monitoring asset status to perform the
triggers (which can cause some signal delays), or the action must be
predetermined at the ‘Delay’ element in advance of the actual event. In the
first case, even though the delays could have been minimised by reducing the
monitoring interval, the speed of the models would be tremendously slow as a

Chapter 4: Investigation of simulation modelling techniques

54

result. On the other hand, the second approach requires extensive
programming. In this study, the first approach was applied to the third usage
scenario to capture the multi-level usage and multi-period contract
requirements.

Lastly, in comparison with existing techniques in the literature, this study was able to
capture the influence of product performance on customers-OEM relationship, ‘value’
parameters (agreed availability), as well as service efficiency (actual availability, missed
hours). Nonetheless, several factors need to be dropped from the models to avoid
extensive complexity, for example, redesigns from customer's involvements, effect of
monitoring technology, and connections between asset transformation and service
support.

4.2.3 Business case III: Hybrid SD-ABS technique

The previous two studies explored the capability in using single simulation techniques
within the PSS offering context. The results revealed the capability to describe PSS
business, yet, a few characteristics could not be effectively incorporated. Therefore,
this study employed ABS to cope with the inadequacies, using an aero-engine as the
modelling domain. Model description and programming code is detailed Appendix D.

This study revealed the capability of the technique in modelling the PSS offering
decisions via the embedded ‘value-in-use’ parameter (agreed turnaround time),

service efficiency measure (average delay, average availability), and the input’s
uncertainties. It could also expose asset life cycle, their autonomy in operating
independently from the OEM, and their active nature in initiating OEM service process
with no additional workaround. The assets could remain in the system as well as being
disposed, depending on the state definition.

Moreover, the hybrid technique enabled interactive changes of inputs during model
execution. This implies that redesigns from customer involvement can possibly be
modelled by this technique. The multi-layer design suggested that decentralised
decision making may potentially be exposed. The engine-OEM relationship depicts the
potential in representing interactions between stakeholders in the whole network,
including OEM-customer, as well as influences among the engines themselves. The

interactive capability in combination with the interaction feature may enable the
connection between asset transformation and service support to be explored. These
possibilities were investigated in business case IV below.

Despite the numerous potential benefits, the hybrid SD-ABS technique has two major
drawbacks. First, SD is a continuous modelling approach, thus, OEM workloads
appeared as real numbers. This means that the number of engines was shown in
decimal places rather than integers. Secondly, the ‘stock’ variables are aggregated;
there was no rule to define queues. As a result, the software may randomly arrange

Chapter 4: Investigation of simulation modelling techniques

55

queuing assets, which in turn, can affect penalty cost. These limitations were also
handled in business case IV below.

4.2.4 Business case IV: Hybrid DES-ABS technique

As service contracts have been implemented repeatedly in the aircraft sector, it was
chosen as the modelling domain for this study. Based on reported cases in the aircraft
sector (Section 2.2), PSS contracts exist in both fleet-basis and asset-basis. The fleet-
based contracts (widely adopted in the military sector) guarantee availability of the
entire fleet of aircrafts. Differently, aircraft-based contracts focus on turnaround time
and are usually more appropriate for commercial aircraft as it is critical to fly according

to their flight schedules. Also, the traditional business scenario is included in this study
to enable comparison of financial benefits across various offering alternatives.
Traditionally, an airline operator carries out maintenance internally or by employing
service partners. In both cases, OEMs are not responsible for supporting the sold
assets. For these reasons, three business scenarios were defined under aircraft
business in this study: traditional scenario, fleet-basis contracts, and aircraft-basis
contracts. The modelling approach is further discussed in the next chapter, and the
programming code is provided in Appendix E.

The model enables user's interactive adjustment of the following inputs during the
model execution:

 Contractual inputs: payments, penalty, turnaround time. This implies that the
model enables contract renegotiation after the contract is initiated.

 Market inputs: subsystem price, inventory holding cost per item, average profit
from sold flight ticket per flight. This suggests that the model enables the
marketing condition to be tailored during contract execution.

 Activity inputs: numbers of OEM and MRO technicians, time to perform each
maintenance task, lead time and inventory management decision. This means
that the model enables operational policy changes to be captured during
contract execution.

Additionally, this hybrid technique is powerful in describing the following
requirements:

 Service efficiency can be evaluated in forms of availability, demand satisfaction
rate, and delay hours, while financial risks and benefits can be examined from
spare cost, penalty, and revenue. The value parameters were represented by
turnaround time or fleet availability depending on the scenarios.

Chapter 4: Investigation of simulation modelling techniques

56

 Decentralised decision making can be represented by the hierarchy between
OEM service function and OEM inventory management function, and between
the central airline operator and MRO function.

 Aircraft and subsystems can be created as agents to represent their
individuality and heterogeneity and to be restored in the system throughout
the contract. The agents can be modelled using state modelling to expose their
life cycles and internal function.

 The model can randomly generate obsolescence and asset failure, thus, their
implication to financial benefits can be explored.

 The model enables user's manual adjustments during execution time to modify
and terminate contracts, as well as to change operational decisions.

 The model can capture the impacts of asset's performance on OEM-airline
relationship by defining communication protocol between the agents. This is
also applied to the interconnections between subsystem-aircraft, airline's
MRO-central airline, and OEM's service department–OEM's inventory
department.

The major drawback of this model is in terms of the complexity that comes from an
aircraft’s structure. An aircraft is made of several major subsystems (e.g. engines,

wings) and their components (e.g. turbine blades) which are all interconnected and
influence aircraft performance. During a flight, an accident to the aircraft affects all
subsystems and their components whereas a non-functional subsystem deactivates its
components but may or may not change aircraft’s state. Once a subsystem is broken, it
still needs to wait until landing to be repaired. Similarly, even if it is ready, it may not
be operated if the other subsystems are not functioning. These interdependencies
inside the aircraft agents require extensive coding and verification.

Due to these complexities, redesigns from the customer involvement, and the link
between asset transformation and service support have not yet explored. Still, this
model could indirectly capture the effect of design improvements in the form of
obsolescence.

4.3 Discussion

This section provides a summary of the major capability of each technique versus the
strengths and weaknesses in PSS modelling literature analysed in Section 2.5.

Chapter 4: Investigation of simulation modelling techniques

57

Table 4.2: Summary of model’s capability

No. Criteria SD

model

DES

model

SD-ABS

model

DES-ABS

model

1 Generalise to all PSS Out of scope

2 Incorporate some analytical techniques

3 Extend life cycle perspective from

product selling

■ ■ ■ ■

4 Address value parameter explicitly ■ ■ ■

5 Highlight interactions between parties

in supply chain and customer.

Out of scope

 6 Include both economic and

environmental measures

7 Demonstrate the link between asset

transformation and service support

■

8 Present service efficiency measures ■ ■ ■ ■

9 Capture link between product

performance and customer-

manufacturer relationship

■ ■ ■

10 Illustrate redesigns from customer

involvements

■ ■

11 Demonstrate decentralise decision

making

 ■

12 Represent cultural mind frame, social

habits, and influence between

customers

Out of scope

13 Capture effect of technology on

company’s capability

■

14 Incorporate government influence Out of scope

15 Embed input uncertainties ■ ■ ■

16 Explicitly present asset’s lifecycle ■ ■

17 Expose asset’s autonomy ■ ■

According to the table, the six out-of-scope areas were excluded from this research as
clarified in Section 3.2. All models were capable in presenting the extended asset life

cycle beyond product selling and visualising service efficiency outputs, whereas
decentralised decision making was only better represented in the hybrid DES-ABS
model. Redesigns from customer involvements were encompassed in the SD and
hybrid DES-ABS models. The link between asset transformation and service support
has only been explored in the SD model as it could increase complexity in other
models. Along this line, an asset’s autonomy and its life cycle could only be highlighted
by incorporating ABS.

Overall, the analysis revealed the capability of incorporating ABS in DES over other
techniques. Accordingly, the hybrid technique was chosen as the backbone for the
modelling constructs. It should be noted that the capability analysis limit to these

Chapter 4: Investigation of simulation modelling techniques

58

studies, nonetheless, the drawbacks revealed from these model developments were
sufficient to direct this research to the hybrid technique.

4.4 Chapter summary

This chapter presented the use of simulation techniques in the PSS context and an
analysis of their capability. Their general strengths and drawbacks were examined
from the literature (Section 4.1) and actual model developments were conducted in
the context of PSS (Section 4.2). Among the selected techniques, a hybrid technique

developed from ABS and DES was considered the most appropriate to model PSS
offering decision. This outcome accomplishes the first objective of this thesis. The next
chapter focuses on the modelling approach using this hybrid technique.

Chapter 5: Development of the modelling approach

59

5 Development of the
modelling approach

Chapter 5: Development of the modelling approach

60

This chapter deals with how to use the hybrid DES-ABS technique to ultimately
enhance effectiveness and efficiency of the modelling constructs. This responds to the
second objective of this thesis. Section 5.1 presents the implementation of the hybrid
techniques in various cases, Section 5.2 discusses the applied modelling approach,
Section 5.3 refines the approach for effectiveness and efficiency, and Section 5.4
concludes this chapter.

Figure 5-1: Chapter 5 outline

5.1 The hybrid DES-ABS technique in case studies

This section applies the hybrid technique selected from Chapter 4 to various cases so
that the lessons learnt in terms of detailed modelling methods in representing PSS

characteristics can be captured and generalised for developing the constructs. All
models were developed from existing business cases obtained from the literature
review in Section 2.2.1 and 2.2.2 which include aircraft, photocopier, underground
train, and carpet sectors. The majority of the applied approach is repeatable across
cases. Therefore, this section details the approach for the aircraft case and highlights
only the differences in other cases that result in the model variety. The verification and
validation can be summarised as presented in Table 5-1. All models have been verified
and validated using at least six methods. The models have not been validated with
companies as this stage aims for technical developments and the accuracy of
numerical input values in the models is not the key accuracy of this thesis.

5.1

Case studies

Aircraft

5.3:

Improvements

5.4:

Conclusions

Model developments Approach analysis

Photocopier

Underground

Carpet

5.2:

Cross-case analysis

Chapter 5: Development of the modelling approach

61

Table 5-1: Summary of applied verification and validation methods

Validation method Case I Case II Case III Case IV

Business case exists ■ ■ ■ ■

Validate concept with

PSS experts

 ■ ■

Breakdown the model

into several functions

and check one by one

■ ■ ■ ■

Simplify the input

value, force extreme

condition and observe

expected outcomes

■ ■ ■ ■

Manually step through

the models and check

expected outcomes

■ ■ ■ ■

Verify model with a

simulation expert

■ ■ ■ ■

Validate the model with

a practitioner

Document the model

and recheck it twice

■ ■ ■ ■

Present the model to an

external organisation

■

5.1.1 Case I: Aircraft

The first model was developed to initially investigate the capability of the hybrid DES-
ABS technique in modelling PSS contracts as described in Chapter 4. Three modelling
scenarios have been covered in this model; traditional scenario, fleet-contracts, and
aircraft-contracts. This chapter presents this model from a modelling approach
perspective. Details of the model coding are provided in Appendix E.

The first step recommended in building an ABS model is agent identification (Macal
and North, 2010). Driven by the gaps of knowledge and weaknesses identified from
the PSS modelling literature, the model consists of the following agents:

 To enable product performance monitoring, aircraft’s behaviour should be
exposed. Therefore, an aircraft should be modelled as an individual entity.
Generally, an aircraft is scheduled for routine maintenance which may be
changed to improve contract performance during the delivery phase. For these
reasons, aircraft was modelled as an agent.

 Aircraft are composed of heterogeneous subsystems (power system, structural
system, avionic system) which exhibit different failure patterns. Thus, each

Chapter 5: Development of the modelling approach

62

subsystem should be modelled as an individual entity. The OEM and the
airline’s MRO disassemble and service these subsystems therefore
communication is required between subsystems and the parties. For these
reason, subsystem, OEM, and MRO were modelled as agent.

 Customers tend to monitor OEM performance and renegotiate or continue a

contract based on that performance. Thus, customer needs to be highly
adaptive, hence, an agent.

 Design changes can take place with particular spare parts therefore the OEM’s
part stock was modelled as an agent.

These resulted in six agents in total, summarised in Figure 5-2.

Figure 5-2: The aircraft contract model structure

Figure 5-2 illustrates the structure of a multilayer model with the input and output
parameters. The model presents a hierarchical structure of agents. The top layer
represents Airline agent and OEM agent as the two main actors in the simulation
environment where aircraft operation, maintenance activities, and business
transactions take place.

Agents have behaviour (i.e. anything that an agent does), for instance, the OEM agent
performs aircraft maintenance, the Airline agent monitors contract performances, etc.
An agent may encapsulate other agents; for instance, the Airline agent encapsulates
MRO agent and Aircraft agents. In this case, the MRO agent illustrates the
maintenance function carried out by the airline exclusively from the normal aircraft
operations. Similarly, within the OEM agent, the Part agent illustrates the spare part
stock function performed by the OEM in addition to the usual maintenance function
carried out by the OEM.

Main model

OEM agent

Part agent

Airline agent

Aircraft agent

Subsystem

agent

MRO agent

Input

parameters

Output

parameters

Chapter 5: Development of the modelling approach

63

Input parameters

To a large extent, the input parameters are led by the report cases which include
maintenance cycle, life-time of the assets, required availability level, penalty charges
etc. These parameters were assigned to the Airline, OEM, Aircraft and Subsystem
agents in correspondence with the modelling scenarios, and consequently one
parameter can be used by more than one agent. Examples of input parameters related
to the OEM agent include service cycle time, number of technicians, obsolescence rate
etc. Parameters linked with the Airline agent cover the required fleet availability,
contract price, etc. Typical input parameters for the Aircraft agent are product family,
maintenance cycle, turnaround time etc. Finally, life time, Mean Time Between

Failures (MTBF), and spare part costs are input parameters for the Subsystem agent
(e.g. engines). The full set of input parameters are described in Table 5-2. The empty
cells imply the absent parameters in the model subject to the particular modelling
scenario.

Table 5-2: Summary of input parameters

Model Input

parameter

Parameter description Scenarios *

SC1 SC2 SC3

Main Spare cost Cost of stocking one unit of spare part ■ ■ ■

Aircraft Product family Different designs of aircraft ■ ■ ■

Maintenance

cycle

Flight hours between maintenance schedules ■ ■ ■

Emergency rate Frequency of random events that interrupt

flight operations

■ ■ ■

Number of

subsystems

Number of the subsystems in an aircraft ■ ■ ■

Contract price The monthly payment that the OEM receives to

sustain aircraft’s capability

 ■

Penalty charge The payment incurred to the OEM for failure to

achieve the required performance

 ■

Turnaround

time

Duration that an aircraft is not ready for

operation

 ■

Subsystem Asset price The price for buying the subsystem ■

Lifetime Flight hours that the subsystem is capable of

operating

■ ■ ■

MTBF Flight hours between the subsystem’s failures ■ ■ ■

OEM Number of

technicians

Number of maintenance staff ■ ■

Obsolescence

rate

Frequency of product design changes ■ ■

Service cycle

time

Duration that maintenance staff takes to

perform service

 ■ ■

Reorder interval Duration in which the stock level is regularly

monitored

 ■ ■

Chapter 5: Development of the modelling approach

64

Model Input

parameter

Parameter description Scenarios *

Reorder

quantity

The quantity of spares to be refilled ■ ■

Base level The stock level at which a replenishment is

suggested

 ■ ■

Airline Loss of

opportunity

cost

Expenses incurred to an airline due to delays ■

Number of

technicians

Number of maintenance staff ■

Skill Relative skill of airline’s technicians to OEM’s

technician

■

Average profit

per flight

Profits an airline generally generates each flight ■ ■ ■

Reorder level The stock level at which stock needs to be

refilled

■

Reorder

quantity

The quantity of spares to be refilled ■

Delivery lead

time

Time waiting for spares to be delivered ■

Required

availability

Percentage of time the aircrafts are required to

be capable for operation

 ■

Contract price Monthly payment of a contract an airline make

to the OEM

 ■

Penalty charge Charges incurred to OEM for failure to achieve

the required performance

 ■

 *

SC1 = Traditional scenario

SC2 = Fleet-based contract

SC3 = Aircraft-based contract

The agent-based model

The main model (Figure 5-3) represents the top layer simulation environment
comprising an OEM and several airlines. This approach implies that these agents are

independent and can exist without one another, yet, interact under the same
environment.

Chapter 5: Development of the modelling approach

65

Figure 5-3: Main model

Airline agent (Figure 5-4) monitors financial benefits and operational performances of
the three business scenarios. Availability can be described as the fraction of available
aircraft in the fleet against the requirements and the payment depends on available
aircraft, mean time between critical failures, and demand satisfaction rate (Richardson

and Jacopino, 2006). Besides the monitoring function, the Airline agent also
encapsulates the Aircraft and MRO agents, which implies that the airlines can
manipulate aircraft operations and MRO activity separately from one another. Fleet-
contract requirements can be amended inside the Airline agent.

Chapter 5: Development of the modelling approach

66

Figure 5-4: Airline agent

The airline’s MRO carries out maintenance and inventory management activities under
the traditional scenario. Thus, it represents service processes and stock condition.
Generally, three levels of scheduled maintenance are performed (Pall, 2008). These
are also known as the A, B and C checks, and reported to take place after 50, 100 and
600 flight hours (Bazargan and McGrath, 2006). In addition to scheduled maintenance,
unplanned maintenance can take place randomly. Therefore, four lines of service
processes are modelled (Figure 5-5). Regarding the inventory management function,
the model is simplified by having only three aircraft families which result in three types
of spares. The three state charts describe states of each spare stock. An order is taken
place once the stock level falls below the defined level.

Chapter 5: Development of the modelling approach

67

Figure 5-5: MRO agent

The Aircraft agent can possess operating state (Fly) and non-operating state
(Maintenance), as shown in Figure 5-6. This is governed by the condition of its
subsystems, maintenance schedule, and external emergencies. Emergency landing can
directly be a major risk to the OEMs in delivering contracts. For this reason, Subsystem
agents are embedded, a maintenance cycle (RoutineCheck) is defined, and an
emergent rate is encompassed inside this agent. Furthermore, inputs for the aircraft-
contract are incorporated within this agent.

Chapter 5: Development of the modelling approach

68

Figure 5-6: Aircraft agent

The Subsystem’s health defines the customer-OEM relationship, thus, two major
states (Figure 5-7) refer to subsystem authorisation by the customer (CanWork) and
OEM (Maintenance). If the subsystem is with the customer, actual asset usage must be
recorded because it affects the aircraft’s health directly. Accordingly, the state when a

subsystem is operating (Working) must be separated from when it is not operating.
Similar to the Aircraft agent, an external event can stop the subsystem operation (e.g.
a bird strike on an engine), represented by Stop. Besides, a subsystem may need to
wait for landing or wait for others to be assembled, and may be scraped after some
time, depicted as Waiting and Dead respectively.

Figure 5-7: Subsystem agent

Chapter 5: Development of the modelling approach

69

Similar to the MRO agent, the OEM agent illustrates service processes, and stock
management. The OEM manages stock separately from service operations, thus, Part
agents are encapsulated inside the OEM layer. The three Part agents correspond to the
three types of spare parts. In addition to the two functions, design change can take
place, thus, it is embedded inside the OEM agent. Once this happens, the agent sends
a message to the obsolete Part agent. The OEM can also analyse financial benefits
from the contracts. Therefore, the resulting OEM model was developed, as
represented in Figure 5-8.

Figure 5-8: OEM agent

There are two important aspects addressed in the Part agent: stocking policy and
obsolescence. Stocking policy affects the time to recover an aircraft whereas
obsolescence can reflect redesigns and also the recovery period. Therefore, the agent
was modelled as presented in Figure 5-9.

Chapter 5: Development of the modelling approach

70

Figure 5-9: Part agent

A Java object is initiated from the Subsystem agent to the MRO agent (in the
traditional scenario) or to OEM agent (in contracting scenarios) to provide asset
information and specified services prior to servicing.

Output parameters

Output parameters refer to performance measures related to demand satisfaction
rate, average missed hours, spare cost, penalty, revenue, and availability. The formulas
to calculate these measures have been derived from many PSS cases, e.g. Harding and
Watts (2000), Xerox (2010c), EMSA (2006) etc, as well as from PSS experts. The
formulas are hypothetical to prove the concept and can be adjusted if necessary:
(therefore) they are not directly associated with the modelling approach. These
details, as well as examples of experimentation are attached in Appendix E.

5.1.2 Case II: Photocopier

In this case, the modelling scenario is based on the DocuCare contract (Xerox, 2010c).
Service information was collected from the Xerox case study reported by Watson et al.
(1998), and refined with researchers involved in Xerox service contract.

Xerox stocks and supplies consumables and parts for customers on their sites and has
proactive asset management software to monitor asset condition in real time. These
assets are contracted for specific period such as between 9 am – 5 pm. The key
measures deal with the percentage of services responded within a one hour period,
equipment uptime, and technical response time. All the time dimensions are

calculated from the point of receiving notification from customers. Uptime is
monitored monthly, and considered against contract hours.

The conceptual and detailed models can be presented in Figure 5-10 and 5-11
respectively. These are based on the modelling approach for the aircraft case with
some amendments due to the following differences from the aircraft sector:

Chapter 5: Development of the modelling approach

71

Figure 5-10: The photocopier contract model structure

 Unlike the aircraft sector, field service is common and arranged by local service
unit in the photocopy (or printing) sector. Therefore, service technician and
local service units should be created as individual entities. Besides, the two
entities need to communicate with one another and with the inventory
function, thus they were created as agents.

At the service unit, the job due in one hour is first allocated to an idle
technician. If there is no such a job, the technician can pick the closest to his
location. A technician works according to the shifts and it is assumed that an
ongoing task will be continued until the completion.

 The OEM-customer relationship is not only governed by an asset’s health, but
also other services such as technical advice and training provided by a call
centre and service units. This communication with the call centre suggests that
it should be modelled as agent. On top of that, the OEM manages the assets

throughout their life cycle and all functions are primarily handled centrally by
the call centre. Therefore, the call centre was modelled as an agent and acts as
the main model.

The call centre (Main model) forwards the request to the local service unit if a
site visit is necessary. However, in the case that a part replacement is also
required, the call centre forwards the job to the inventory department (i.e.
Stock agent) first. The service unit will be notified only if there is available part
in stock.

Call centre agent

Service unit

agent

Technician

agent

Customer agent

Request agent

Input

parameters

Photocopier

agent

Output

parameters

Stock agent

User object

Component

agent

Chapter 5: Development of the modelling approach

72

Figure 5-11: The photocopier service contract model

User

Stock

Call centreService unit

Request

Photocopier

Component

Customer

Technician

Chapter 5: Development of the modelling approach

73

 A response from the OEM is monitored twice – one after being handled by the
call centre and the other by a service technician. Besides, there are different
forms of enquiry. For these reason, Request agent was created to establish
interactions and record these differences.

Within the Request agent, job progress is modelled using state modelling. Once
the Request is initiated (by customer, photocopier, or components), a Java
object which contains the request information is sent to the call centre to be
proceeded. Four types of requests were modelled: general enquiry from
customers solved by called, general enquiry from customers which requires a
site visit, misuse signals sent by photocopiers and solved by call, and
component replacements.

 The utilisation of a photocopier is not predefined, unlike a flight schedule.

Therefore, the usage depends on the end users. Each usage also affects levels
of paper and ink. A simple way to illustrate the usage and its impacts is to
model a user as an individual object containing the ink and paper required.

 Hardware upgrade in the printing sector does not tend to be included in a
service contract, unless a malfunction is detected. Therefore, obsolescence
only occurs in a software component. As a result, the model separates different
types of components within the Photocopier agent. Similarly, emergent events
rarely happen with photocopiers. Therefore, its presence is not necessary.

 In the printing industry, remanufacture/recycle/recondition of components (or
subsystem in aircraft) can take place in addition to maintenance. This means
the after-life state should be modelled within the Component agent and also
linked to OEM’s stock function. However, some components are disposed.
Thus, each component must be defined whether it is recyclable or not.

Additionally, all components must be working for the photocopier to be
functional; therefore the idle sub-state of the component is not necessary to
model as in the aircraft case.

Similarly, there is no predefined level of maintenance. Hence, maintenance
services do not have to be segregated. Therefore, it was not necessary
modelled a sub-state inside maintenance state of the Component agent.

The model code is provided in Appendix F.

5.1.3 Case III: Underground

The case for underground train service contracts was based on the northern line
service contracts between Alstom and London Underground (Harding and Watts,

Chapter 5: Development of the modelling approach

74

2000). The data was also cross-checked with the PSS expert who conducted a case
study with the company.

Generally, the financial organisation named as ROSCO (e.g. HSBC bank) buys assets
from the OEMs and leases it to train operators. The operators may then sign service
contracts with the OEMs to sustain a train’s operation. In the Northern Line service
contract, Alstom guarantees an agreed level of fleet availability to London
Underground Ltd (LUL). The availability is considered against contract hours. LUL takes
the trains every morning and returns to Alstom at night. The contract covers repair
services and cleaning of trains and associated trackside equipment, which can happen
at two depots. The key performance parameters involve a guaranteed number of

trains in peak service, reliability in service and the management of depot stocks, which
are all linked to Lost Customer Hours (LCH). This LCH is a metric for calculating penalty
and can vary from one occasion to another.

At a high level, this case differs from the other two cases as follows:

 There is no call centre involved in this case. Thereby, the main model can
represent the OEM’s maintenance. In effect, Call centre and Service unit agents
were excluded.

 Similarly, upgrading service is outside the OEM’s responsibility, and stocks can
be differentiated using an array. Thus, Part agent is not necessary in the model.

 The operator only operates on a contracting scenario, hence, no MRO agent as
in the aircraft model is needed.

 The operator is not interested in the job progress as long as the agreed
availability is achieved hence no Request agent is needed.

Consequently, the model structure of this case is presented in Figure 5-12.

Figure 5-12: The underground contract model structure

The underground train service contract model was developed as shown in Figure 5-13.

Main model

Technician

agent

Input

parameters

Underground

agent

Output s:

Availability

ProfitsSubsystem

agent

Chapter 5: Development of the modelling approach

75

Figure 5-13: Underground train service contract model

According to Figure 5-13, the main model presents OEM’s services happening at the

two depots owned by ROSCO. The four lines refer to the jobs that required no part
replacements and the jobs required three different parts. Service technicians are
located on both sites to perform these jobs.

Also at the depots, spare parts are stocked and supplied by the OEM’s factory when 1)
there is a job in the system, 2) the required part is unavailable at the depot, and 3) the
required part is available at the OEM’s plant. Availability and cash flow related to this
contract between the OEM, ROSCO, and the operator are monitored monthly.

Customer model

Main model

Technician

Subsystem

Underground

Chapter 5: Development of the modelling approach

76

Underneath the main layer are Underground and Technician agents. The underground
trains are manufactured by Alstom, sold to ROSCO, leased by LUL and terminated by
LUL or ROSCO. This model provides user interactive input for buying, leasing, and
termination, using buttons and represented in the state chart. During the use-phase,
an Underground agent can be ready for operation or not ready. If it is ready, it can be
operating or waiting for operation. This mechanism is governed by trip frequency and
duration which can be adjusted by users during model execution. In the case of being
not ready, the OEM is in charge of asset recovery. If the agreed recovery period is
reached, an inner transition is activated to penalise the OEM. The agents can be
terminated and fall into the after-life phase. Nonetheless, it can be reconditioned and
used again.

A train’s health is dependent on major subsystems which also have a life cycle (before-
use, being used, and after-use). A Subsystem agent can also be ready or not ready for
operations. The agent may not be ready due to routine check, breakdown, or being
upgraded. If the train is terminated, these subsystems can be reused directly or
replaced with a new one.

In terms of the Technician agents, this model incorporates emergent events that can
happen with staff. A Technician agent cannot work outside the shift period or due to
an emergency. Otherwise, the agent is either busy or idle, depending on whether a job
order is received or not.

Model code is provided in Appendix G.

5.1.4 Case IV: Carpet

The underlying concepts behind the carpet model can be summarised as follows:

 Unlike other previous products, carpets are not assembled from several
modules but considered as one unit after being produced. Accordingly,
Component agents can be discarded.

 It is not necessary to separate Customer agents from Carpet agents. One
Carpet agent can be treated as one Customer agent.

 Services such as installation, cut-out or repair of the damaged part, and

disposal tend to be carried out by the central plant. Additionally, routine
cleanings are likely to be assigned to local staff just after making a new
contract. Therefore, a Service unit agent has a role to assign jobs to staff and
supply consumables. It should be noted that the staff are not technicians, thus,
the service staff in this model is named as Staff agent.

 A carpet is changed after some time regardless of the condition, unless some

random events cause damage which require cut out and replacement. Once

Chapter 5: Development of the modelling approach

77

this happens, the centre arranges transportation for collection and installation.
Therefore, recycling is also a key function in the model.

For these reason, the model structure and screenshots were developed as shown in
Figure 5-14 and 5-15 respectively.

Figure 5-14: The carpet contract model structure

Figure 5-15: Carpet service contract model

Carpet

Main model Staff

Service unit

Chapter 5: Development of the modelling approach

78

As a carpet can be made from a specific combination of face fibre and two backings,
the main model (Figure 5-15) illustrates production of carpets from these contents
using SD.

Underneath the main model layer is Service unit agents at which staff allocation to a
particular carpet takes place. This process happens after a contract is signed and staff
is hired, manually initiated by users. A business unit also stores some consumables for
cleaning.

In terms of cleaning staff, a record of their location, cleaning schedule and their
workload is kept inside the Staff agent.

Once a contract is signed, a Carpet agent is activated to the use-phase. During this
phase, a carpet can be cleaned by local staff, repaired by the central OEM, or be in a
ready state. Besides being repaired, the central OEM is responsible to recycle the
carpet if it has been used for a while. The OEM is charged if a carpet’s replacement can
not be made within the agreed period. Performance and payment are updated
monthly.

Model code is provided in Appendix H.

5.2 Cross case discussion

This section summarises the approach used to develop the four models.

5.2.1 Summary of the applied modelling approach

At a high level, the approach attempts to capture the common elements in a PSS
contract. These elements include asset characteristics, OEM’s service processes,
relationships between OEMs-customer, and customer requirements, which have been
modelled in all cases as follows:

In terms of asset characteristics, an asset’s health directly influences success or failure

in delivering the required capability in the contract. The models apply state modelling
to the asset life cycle to illustrate this health which is covered in the in-service and
afterlife phases (It should be noted that an asset can be a product as well as its
subsystem and the term ‘subsystem’ is used interchangeably with ‘component’ in this
thesis depending on the sector). The in-service phase included operating, idle, and
under different services performed by OEM, while the afterlife phase incorporated
recycling and disposal. The actual asset usage was recorded on leaving the operating
state. The change in states inside the state chart triggers the events and interactions in
the models.

Chapter 5: Development of the modelling approach

79

The OEM’s service process implies the capability to sustain a contract. The structure of
these service processes outlines OEM agent behaviour. The OEM central function was
modelled using DES, where working shift is controlled by ‘Hold’ elements, whereas the
staff agent (named as Technician agent or Staff agent in the model) is modelled with
state modelling to illustrate his current working state. Furthermore, the structure of
these service processes could also be linked to asset’s state-chart, hence the agent
model. For example in the aircraft context, service offerings are centred around
maintenance and different levels of maintenance result in sub-states inside Subsystem
agent.

With regards to relationships between OEMs-customer, the OEM’s commitment and

relationship with customers highlights agent interactions. The OEM is obliged to take
care of the contracted assets, thus, this relationship needs to link with asset agents.
The models capture this issue by establishing a communication protocol between asset
and OEM agents.

Customer requirements embed stochastic dynamic behaviour in the contract
performance as this demand can change over time, influenced by factors such as
market conditions and willingness to pay. Therefore, contract modification was
enabled manually during model execution in terms of the number of contracted
assets, maximum asset’s unavailable duration, and the penalty cost. External risks
were captured at different levels of assets (product, component), either randomly (e.g.
accident rate) or statistically (e.g. MTBF).

The requirements can also be linked to contract performance monitoring which can be
described by output parameters and were related to measure settings and calculations
in the models. The contract-related parameters were presented in customer agents,
monitored regularly using a synchronous programming method. The parameters
exhibited the following variations across contracts:

 Unit of contract: fleet level (aircraft fleet, a system of printers and

photocopiers, Northern Line undergrounds), platform level (aircraft,
photocopier, carpet, underground), component level (aero-engine)

 Penalty structure (time basis, level basis, both)

 Payment structure (monthly basis, single use)

At a detailed level, the approach incorporates several methods to model agent
behaviours and interactions. These can be summarised as follows:

 Asset information was encapsulated as a Java object and passed between asset

agents and OEM agents (and the MRO agent in case of aircraft) during servicing
activities. The message passing method was preferably adopted as a trigger
rather than a variable trigger method to reduce the number of variables.

Chapter 5: Development of the modelling approach

80

 The jobs allocated to technicians were modelled using an asynchronous
modelling method. In other words, the function is activated when an OEM
agent receives the information Java object.

 Stock-out was presented using DES by a ‘Hold’ element inside an OEM agent or
as a Part agent, triggered by an ‘Event’ element.

 Obsolescence was generated from an OEM agent and triggers the state chart
inside a Part agent.

 A Part agent was replicated and assigned different attributes to demonstrate
different types of spares.

 Applying state modelling inside a Request agent allows job progress to be
monitored. The type of the request (general enquiry, asset breakdown etc.)
was distinguished by the agent’s attribute.

 Inputs could be presented in three ways, named in this thesis as user
interactive inputs, independent inputs, and embedded inputs. Interactive
inputs can be used by users who are not familiar with the models to adjust the
input values within a defined range. If these adjustments take places during
model execution, it can imply contract renegotiation. Independent inputs can
be applied to important parameters, defined by modellers. This method allows

modellers to change input to any value easily. Finally, embedded inputs are
defined in the model logic and not presented explicitly in the models. This was
applied when the input is required but its value does not normally change.

 A component agent could be modelled using state modelling or SD depending
on the nature of products. In case of the carpet sector, the components are
continuous entities and recycling can be the key service. Therefore, the carpet
model applies SD to capture carpet production/recycling processes.

The next section examines this approach against the current state of PSS modelling
literature in terms of capability in describing PSS characteristics and dynamic
behaviour.

Chapter 5: Development of the modelling approach

81

5.2.2 Assessment against strengths and weaknesses in PSS modelling

literature

Table 5-3: Summary of the model’s capability

No. Criteria SD

model

DES

model

SD-ABS

model

DES-ABS

model

1 Generalise to all PSS Out of scope

2 Incorporate some analytical techniques

3 Extend life cycle perspective from

product selling

■ ■ ■ ■

4 Address value parameter explicitly ■ ■ ■ ■

5 Highlight interactions between parties

in supply chain and customer.

Out of scope

6 Include both economic and

environmental measures

7 Demonstrate the link between asset

transformation and service support

8 Present service efficiency measures ■ ■ ■ ■

9 Capture link between product

performance and customer-

manufacturer relationship

■ ■ ■ ■

10 Illustrate redesigns from customer

involvements

■ ■

11 Demonstrate decentralise decision

making

■ ■ ■ ■

12 Represent cultural mind frame, social

habits, and influence between

customers

Out of scope

13 Capture effect of technology on

company’s capability

14 Incorporate government influence Out of scope

15 Embed input uncertainties ■ ■ ■ ■

16 Explicitly present asset’s lifecycle ■ ■ ■ ■

17 Expose asset’s autonomy ■ ■ ■ ■

The six out-of-scope areas and the extended life cycle perspective were excluded from
the scope of this research. There are seven areas that have been demonstrated in all
models.

1. Value parameters can be clearly defined using input parameters such as
required availability (aircraft, photocopier, underground train, carpet), target respond
time (photocopier), and target recovery time (aircraft, carpet).

2. Service efficiency measures can be presented using output variables which are
linked to the ‘value’ parameters, such as demand satisfaction rate (carpet,

Chapter 5: Development of the modelling approach

82

photocopier, aircraft), average delay (aircraft), and availability (underground train,
photocopier, aircraft).

3. All models enable influence of product performance on OEM-customer
relationship by linking asset state chart with OEM agent.

4. All models can represent decentralised decision making, for example, MRO
(aircraft) and servicing staff (carpet, underground train, photocopier) by representing
them as individual autonomous agents.

5. All models can encapsulate input uncertainties using input distribution.

6. Asset life cycle can be exposed in the asset’s state chart.

7. Asset autonomy can be highlighted by creating it as an individual autonomous
agent.

Nevertheless, effects of technology on OEM’s capability have not yet entailed in any
model to avoid extensive complexity.

Along this line, the link between asset transformation and service support can be
illustrated in the models via asset recycle in the photocopier, train, and carpet cases.
Redesigns from customer involvements can be captured as a random obsolescence
event in case of aircraft and underground train sectors.

It can be seen that the applied approach contributes to PSS modelling knowledge
significantly. However, there is also a need to refine this approach to enhance
efficiency in building models.

5.2.3 Complexity analysis

The purpose of this section is to clarify complexity that can be handled in the scope of
this research, so that an efficient modelling approach can be defined prior to the
formation of modelling structures. Based on the model developments, the
complexities in the models can be related to the technique itself, the nature of
problems, and the approach.

The complexities from the technique were mainly caused by two reasons. First, ABS is
still an emerging technique in modelling products and services. Software support is still
limited in relation to DES and SD. Therefore, the models heavily rely on extensive use
of programming code. Second, ABS is a bottom-up modelling approach which enables
modellers to focus on one agent at a time (Grimm et al., 2005; Bonabeau, 2002; Macy
2002; Jennings, 2001). When it is applied to the PSS context, which involves many
actors and where the overall system behaviour is not entirely emergent from
individual rules, the author could lose sight of the ‘big picture’ easily. Eventually, the

Chapter 5: Development of the modelling approach

83

models become over complicated. These complexities are technical and out of this
research’s scope.

The complexities caused by the problem mainly relate to contracted assets and service
activities. In terms of assets, the contracts can be based on the product itself (e.g.
aircraft, photocopy) or the entire fleet. The scope may include spares support (e.g.
turbine blades) in which a spare replacement can incur significant costs and each spare
can influence one another. Besides, the product’s performance can rely on the overall
condition of subsystems but may not be influenced by single subsystems (e.g. aero-
engine). Therefore, all assets (aircraft, engines, blades) could be agents and their
interdependencies were difficult to model.

With regards to service activity, decentralised decision making increased the number
of individual entities. Thus, job allocation and message passing mechanism must be
defined. Furthermore, services can be performed differently depending on the cause
of problem and can take a different length of time. Therefore, each service must be
treated separately. As shown in the photocopier case, the signal for replacement
service was sent by the Component agent, the signal of misuse was activated by the
Photocopier agent, and the signal for general enquiry was initiated from the Customer
agent. Moreover, recycling and obsolescence influence stock level, thus, exhibit
additional interconnections. This type of complexity can be organised, and
consequently, it is handled in Section 5.3.1.

Finally, the complexities from the approach resulted from the attempt to present
close-to-reality models to resolve the weaknesses identified in PSS modelling
literature. Some characteristics and dynamic behaviour may not significantly affect
contract performances, yet, it was presented in the models. Furthermore, some agents
could have been excluded from the models as their autonomies were not necessary to
expose. This type of complexity can also be managed and is handled in Section 5.3.2.

5.3 Managing modelling complexity

This section details the process of the approach’s refinement based on the complexity
analysis above.

5.3.1 Handling problem-related complexities

As with other complex problems, complexities often arise due to the increase level of
detail. Therefore, the first attempt to refine the approach was to classify the details in
the four models into common PSS elements, case-dependent PSS elements, and as-is
traditional business elements. The results are presented in Table 5-4.

Chapter 5: Development of the modelling approach

84

Table 5-4: Analysis of the elements

Common PSS elements Case-dependent PSS elements As-is tradition business
elements

Asset health and life cycle

OEM service process

In-service asset information

Service efficiency measures

Usage as a unit of analysis

Contract modifications

Contract termination

Contract creation

Decentralised service decision

making

Asset structure

Track of work-in-progress

Adaptive capacity

Inventory management

Job allocation algorithm

Customer service department

Call centre

With subject to Table 5-4, since the as-is traditional business elements do not highlight
the shift towards PSS adoption, they were excluded from the scope of the modelling
constructs and will not be further described in this thesis. On the contrary, the
common PSS elements exhibit the standard elements of PSS offering models, and
those of case-dependent PSS exhibit variation across PSS models. Therefore, the two
parts were included.

5.3.2 Handling approach-related complexities

The second improvement concerns the approach-related complexities. In ABS models,
the complexities are often closely associated with the number of agents as it may

complicate message passing and verification methods. Accordingly, the second
dimension for improvements was to reduce the number of agents. To do this, the
understanding of agents was revised and the reasons why agents are generally needed
in a model were examined from literature.

Bonabeau (2002) clarified that agents can be simple in which their simple interaction
rule can assist in problem solving, or they can be sophisticated in which reality can be
closely described via complex learning and adaptive rules. Guessoum and Briot (1999)
stated that agents differ from objects as they have reasoning ability. Agents can have
different behaviour, described as autonomy, proactivity, sociability, and adaptability.
Autonomy refers to an agent’s ability to perform functions without external

intervention. Proactivity describes an agent’s ability to respond to the information only
according to their goals. Sociability illustrates interactions between agents, and finally,
adaptability represents an agent's ability to adjust itself from the current situation.
Shehory (2001) highlighted an agent’s concurrency ability, in other words, agent can
perform several tasks simultaneously. In addition, Macal and North (2010) added that
agents are identifiable and situated in an environment. Identifiable can be seen as a
description of agents which contains information about its attributes, behaviour rules,
decision logics, and so on. This description shows the boundary of an agent, and the
size of this description implies the level of detail in a model. With this, modellers can
also determine what can be shared between agents. Being situated means an agent

Chapter 5: Development of the modelling approach

85

can be interacted by others agents and be able to respond to the environment. It also
implies that the agent is able to recognise and distinguish other agents, which
indicates a communication protocol.

Therefore, it can be seen that a general conclusion on the difference between agent-
oriented and object-oriented views is still lacking in literature. On one hand, agent-
oriented philosophy is implemented using object-oriented modelling. Therefore, it can
imply that the difference between the two is only because one is a philosophy and the
other is an approach. On the other hand, an object is an agent that is always reactive.
Thus, an agent has a proactive capability that an object does not have. From the model
development in this thesis, an object was often defined as an agent to enable a

message passing mechanism. Consequently, the agents in the four models are simple
agents as described by Bonabeau (2002).

In a manufacturing application, the agent’s interaction functionality was used as a
coupling between manufacturing plants and the enterprise to enable hierarchy of
resource planning, hence, an estimation of long term earnings (Rabelo et al., 2005). A
life cycle cost of a product can be calculated from the resulting interactions between
the plant agents and the enterprise agent involved during the in-service phase
(Schumann et al., 2011; Yu, 2008). This functionality, in combination with, the agent’s
heterogeneity was incorporated into the customer agents to examine impacts from
different customer movements and their interactions in a café (Robinson, 2010). This
study can enable the café’s layout to be designed. The same concept was also adopted

to design a location for an emergency exit (Borshchev et al., 2004). From a supply
chain perspective, a decision rule was defined to each supply chain agent (Schieritz and
Globler, 2003). The simulation result indicates the final arrangement of the supply
network based on the defined rules. Similarly, an aero-engine overhaul could be
rescheduled based on a scheduling algorithm inside the fleet manager agent (Stranjak
et al., 2008).

These examples illustrate various use of an agent’s functionality. The next step was to
refine the approach to capture the PSS elements in Table 5-2. By doing so, it was first
assumed that “The problem can be captured merely in one layer, thus, no agent is
needed”. The disapproval to this proposition identified the need to decompose the

main model to a series of agent models. The insufficiencies of applying the single
techniques were addressed in Chapter 4, which identified the need for an OEM agent
and asset agents as fundamental modelling elements. Based on this structure, the
characteristics in Table 5-4 were examined to see whether additional agents are
needed. This analysis is summarised in Table 5-5.

Chapter 5: Development of the modelling approach

86

Table 5-5: Analysis of agents

Requirements No additional agent is needed?

TRUE FALSE

Asset health and life cycle

OEM service process

In-service asset information

Service efficiency measures

Usage as a unit of analysis

Contract modifications

Contract termination

Contract creation

Decentralised service decision making
Asset structure
Track of work-in-progress
Adaptive capacity

The majority of requirements can be fulfilled based on the fundamental model
structure. However, the exception applies to decentralised decision making, asset
structure, and the tracking of work-in-progress.

In terms of decentralised decision making, three methods could have been used to
capture variation among staff. First, the OEM agent could have been replicated in the
main model (which also contains asset agents) and assigned different attributes to
represent individual staff. However, this would imply that the central OEM would be
absent and visualising the overall OEM’s financial evaluation would be difficult.
Secondly, a staff agent could have been embedded in the main model which would

become an OEM agent. Again, it would mean that an asset can exist only if the OEM
exists. This can contradict a contracting scenario where the OEM only assists
customers in a specific service (such as depth maintenance). The third option was
adopted in this research, which encompasses both staff agents and an OEM agent in
addition to the main model. This approach eliminates the drawbacks from the other
approaches.

Regarding asset structure, the fact that the contracted asset may or may not be
influenced by its components could not be easily performed in one level. Besides, the
components may also have their own attributes which can vary significantly among
themselves, and the condition of one component may be affected by others. Lastly, as
work-in-progress naturally involves a number of states, it cannot be modelled explicitly
and individually without an additional agent.

Chapter 5: Development of the modelling approach

87

5.3.3 The refined modelling approach

As a result from the two steps, the refined approach can be summarised in Figure 5-16.
Three additional agents were incorporated in the basic architecture to capture the
variances caused by decentralised service decision making, asset breakdown structure,
and the track of work-in-progress. It should be pointed out that the three variances
can be combined, which can ultimately add a number of different model structures.

Figure 5-16: Four variations of agent architecture

5.4 Chapter summary

In summary, the applied approach based on the hybrid modelling technique in Chapter
4 was analysed in this chapter. In Section 5.1, the application of this technique to

various cases was presented. The cases include aircraft, photocopier, underground
train, and carpet sectors. The results were discussed in Section 5.2 in terms of
modelling methods, contributions to PSS modelling research, and complexities. This
led to the improved approach in Section 5.3. The approach presents the common PSS
elements and the variances which can lead to various model structures. All model
structures are evolved from a Java information object and a main model which consists
of an OEM agent and asset agents in a PSS environment. These structures underlie the
modelling constructs presented in the next chapter.

PSS environment

Assets

Basic architecture

OEM

Information object

PSS environment

Assets

Decentralise servicing architecture

OEM

Information object

Staff

PSS environment

OEM

subsystems architecture

Assets

Information object

Subsystems

PSS environment

OEM

Work in-progress architecture

Assets

Information object

Requests

Chapter 6: Formation of the modelling constructs

88

6 Formation of the modelling
constructs

Chapter 6: Formation of the modelling constructs

89

In the previous chapter, the refined approach suggested a fundamental model
structure for service contracts and its variations for case customisation. This chapter is
in accordance with the third objective of this thesis which aims to form modelling
constructs, based on the refined approach from Chapter 5. To achieve this, Section 6.1
gives an overview of the constructs, Section 6.2 is associated with the basic service
contract constructs, Section 6.3 provides a description of case-dependent variances
and their constructs, and Section 6.4 presents the summary of this chapter.

6.1 Overview of the constructs

The term construct in this thesis covers modelling elements and modelling methods.
Examples of modelling elements involve source, sink, state, transition etc., whilst
modelling methods relate to message passing, object creation, condition-based
triggers etc. A three-stage roadmap, presented in Figure 6-1, illustrates how to use the
constructs.

Figure 6-1: The three step roadmap

1. The first stage is to develop a basic service contract model. This basic model
captures the common PSS elements among service contracts.

2. The second stage is to customise the model to suit the business case. At this
stage, the characteristics of the case are mapped with the given variants.

Step 1:
Build the basic constructs

Step 2: Map case with the
characteristic variants

Step 3: Expand the basic model
with the construct variances

Case

Step 2.1

Service decision making
structure

Step 2.2

Subsystem characteristic

Step 2.3

Work breakdown
structure

Step 2.4

Contract creation policy

Step 2.5

Capacity adjustment
policy

Step 2.6

Contract termination
likelihood

Step 2.7

Relationship protocol

Chapter 6: Formation of the modelling constructs

90

3. The last stage is to modify the basic model using the case-dependent constructs
provided for the selected variants. Unless stated and highlighted in black, the
constructs are identical to the basic model. Users can also apply this resulting model
for further detailed developments.

The next section describes the first stage of this roadmap.

6.2 Development of the basic service contract
construct

The shared PSS elements are associated with asset health and life cycle, OEM service
process, in-service asset information, service efficiency measures, and usage unit. To
account for these PSS elements, the basic construct consists of two layers and
encapsulates four fundamental model components.

The first layer contains the following components: an OEM agent and Asset agents in a
PSS environment, whereas the second layer details the OEM service process inside the
OEM agent and asset’s states inside the Asset agents. The last element is a Java object
which refers to the asset information passed to the OEM prior to servicing. This
information relates to communication method in the constructs which represent OEM-
customer relationships in PSS businesses.

The two-layer design implies that the in-service assets are not managed by the OEM. In
other words, they are independent but interact under the PSS environment. This
design can also expose individual asset information, and demonstrate that interactions
between the OEM and customers during the in-service phase are triggered by the
asset state.

The relationship configuration and the agent role in the model were designed using a
role-based agent modelling approach, and presented by Business Process Modelling
Notation (BPMN) in Figure 6-2. The role-based approach identifies agent’s interactions
in a model as a result of agent’s recurrent activity (Kendall, 1998). This coincides with

the fact that in-service assets and OEM operate independently but interact on the
servicing basis. According to Figure 6.2, the simulation engine keeps monitoring the
service schedule input by users, and generates unplanned services randomly.
Simultaneously, assets operate according to their own schedule until either the
operation is completed or the simulation engine notifies a servicing event. In the latter
case, the Asset agent issues a Java package which contains asset information so that
the OEM agent can perform the appropriate service. This mechanism also
automatically activates the OEM’s servicing process. The role of the OEM is to carry
out necessary services and approve that the asset is capable for operations after

Chapter 6: Formation of the modelling constructs

91

having been serviced. The next step is the detailed modelling of corresponding asset
behaviour following this role-based design.

Figure 6-2: High-level relationship of the basic service contract constructs

The basic construct is shown in Figure 6-3. State modelling is implemented inside Asset
agents to visualise the asset’s state within the in-service phase. The asset construct
also includes essential attributes of an individual asset. For example, ReqAvail refers to
an availability agreement input by the customer. This parameter is also compared
against the actual service performance to calculate the penalty after being returned
from the OEM. The actual service performance is set to depend on delay shown as
MissedHrs and updated continuously during the NotReady state. Assets are operated

once notified by the event Demand. Upon the change in state, the operating condition
(OpCon) is defined. After the operation, the asset’s usage is updated. The construct
results in the model in which its elements are captured as shown in Figure 6-3.

The programming methods such as message-type trigger are typical in an agent-based
model. The choice of these methods is based on lessons learnt during the model
development in Chapters 4 and 5 and aims for case generalisation. As it is not directly
linked with the contribution to knowledge, the details will be excluded from this thesis.

Chapter 6: Formation of the modelling constructs

92

As for the OEM agent, the personnel are often trained to follow a procedure when
carrying out services. Thus, these tasks can be process-driven, in which process
modelling methods (typically based on DES) can be used to model the agent behaviour.
By using DES, it can be implied that the Asset agents become passive and lose their
autonomy once they enter the OEM’s system. The cycle time of the service is linked
with Mean Time To Repair (MTTR) which also indicates the time taken to recover an
asset. This scenario results in the elements shown in the OEM agent in Figure 6-4 and
the modelling methods detailed in Figure 6-3. In the figure, the time assets entering
the OEM system is recorded via the ‘Enter’ element, which allows recovery period to
be calculated (in the ‘Exit’ element of Figure 6-4).

To enable a record of the individual asset, a Java object is created prior to the servicing
task to represent the actual asset and it behaves as if the Asset agents themselves are
moving in and out of the OEM’s process. The fact that this object is created from the
Asset agents (enabled by From in Figure 6-3) and destroyed by the OEM agent, only at
the point of interactions, distinguishes this approach from the traditional approach.
Traditionally, the asset information is often encompassed inside the asset and cannot
be visualised.

Asset agent:

General:

Setup string message receiver

Attribute:

ReqAvail

ReqTAT

Variable:
OpCon

Usage

MissedHrs

Penalty

Cyclic Timer:

Service

…….………………..

Fire “ToOEM!”

Demand

…………………….

Fire “Work!”

Ready

Idle

Operating

Not ready

Delay:

Signal:
“Work!”

Generate OpCon
Signal:
“Approved!”

Increment penalty if

missed

Delay:
ReqTAT

Increment MissedHrs

Signal:
“ToOEM!”

Create an information

object and issue to OEM

OEM agent:

Attribute:

MTTR

Dataset:

ServiceTime

Graph:

Histogram

ServiceTime

Entity class:

Info

Receive

Info

On enter:
Stamp entered time

Being

serviced

On exit:
Calculate ServiceTime and

add to histogram.

To the asset: “Approved!”.

Return

object

Capacity: Delay: fn(MTTR)

Information Java object:

From:

Asset

Enter:

double

Input by user:

On exit:

Update usage

Q

Super class:

Entity

Chapter 6: Formation of the modelling constructs

93

Figure 6-3: The basic service contract construct

Figure 6-4: The basic model

Next, the second and third stages of the roadmap are explained.

6.3 Development of the case-dependent constructs

The case-dependent constructs capture differences among service contracts, using the
basic construct as the baseline. Therefore, the variances are categorised as follows:

 Service decision making structure

 Subsystem characteristic

 Work breakdown structure

 Contract creation policy

 Capacity adjustment policy

 Contract termination likelihood

 Relationship protocol

Chapter 6: Formation of the modelling constructs

94

The variants within these categories are summarised in Table 6-1, along with the
resulting modelling variances from the basic constructs.

Table 6-1: Summary of the variances from the basic contract

Characteristic

variance

Characteristic variants Construct variances

Service decision

making structure

A0: An OEM has a fixed routine in

performing services and each service

has standard time

Use the basic model with an input

distribution in the OEM’s delay element

A1: An OEM has a fixed service

routine, but with adaptive

productivity upon the global view of

situation

There are two levels of inputs in the

OEM’s delay element

A2: An OEM has adaptive

productivity and flexible routine

Staff are created as another agent under

the central OEM

Subsystem

characteristic

B0: The contracted product’s state

can be predicted on an aggregate

level

A rate event is created inside the Asset

agents to account for non-scheduled

services

B1: The contracted unit requires

breakdown analysis into subsystem

levels.

Subsystems are created as another agent

under the Asset agent

B2: Subsystem behaviour can

influence one another and the

contracted unit

In addition to B1, Interaction between the

Subsystem agents are enable

Work breakdown

structure

C0: Service performance is measured

only at the end of all operations

n/a

C1: Jobs are preceded by several

departments and service

performances are measured

separately (A1)

Jobs are created as a separate agent

issued by the Asset agent to track

different performance requirements

C2: Jobs are preceded by several

departments and service

performances are measured

separately (A2)

Based on A2 structure, Jobs are created

as a separate agent issued by the Asset

agent to track different performance

requirements

Contract creation

policy

D1: A new contract is signed based

on staff utilisation

OEM agent reacts to real time utilisation

D2: There is no predefined situation

when the OEM should make new

contract

User can interact to create new contract

Capacity

adjustment policy

E0: There is no rule when to adjust

capacity (A1)

User can interact to adjust number of

staff

E1: There is no rule when to adjust

capacity (A2)

Based on A2 structure, user can interact

to adjust number of staff

E2: Capacity is regularly adjusted

based on certain rule

OEM agent learns and adjusts number of

staff in real time.

Chapter 6: Formation of the modelling constructs

95

Characteristic

variance

Characteristic variants Construct variances

Contract

termination

likelihood

F0: Contract termination is not

possible

n/a

F1: Customers can negotiate to end

the contract

The Asset agents monitor OEM

performance and reacts in real time.

Relationship

protocol

G0: The OEM proceeds all demands

from the contracted customers

n/a

G1: The OEM may subcontract or

reject the demands from the

contracted customers, but it may

cost the OEM a penalty (in case of

A1).

The Asset agent state chart’s are modified

to include outsourcing, and OEM agent

has another servicing choice in addition

to basic structure

G2: The OEM may subcontract or

reject the demands from the

contracted customers, but it may

cost the OEM a penalty (in case of

A2).

Following A2 structure, the Asset agent’s

state chart is modified to include

outsourcing, and OEM agent has another

servicing choice in addition to basic

structure

6.3.1 Service decision making structure

The variation in this category results from various level of decentralised decision
making. Three scenarios can be evolved from this category.

A0: An OEM has a fixed routine in performing services and staff productivity is
constant for the same type of service.

This refers to the case in which the OEM’s servicing staff are trained to follow a
sequence of tasks and are not allowed to deviate from the instructions. The staff are
restricted in the sense that they will not be able to speed up the job as the workload
increases. In other words, the productivity does not change for the same type of job.
For instance, in aero engine overhaul, staff are obliged to carry out the full sequence of
inspection procedures and the judgement on asset condition is based on the
predefined property. The construct of this type of system can be based on the basic

OEM construct, in which a statistical distribution can be encompassed inside the delay
element to capture cycle time variation among staff. In the case that various services
are offered by the OEM, for example machine tools (Meier et al., 2010), services cover
function maintenance, planning, logistic, and training, the replication of a delay
element can capture these different services.

A1: An OEM has a fixed service routine, but with adaptive productivity upon the
global view of situation

This refers to the case in which the productivity can change significantly in the same
job depending on the overall workload, and the staff can realise and share the

Chapter 6: Formation of the modelling constructs

96

workload equally. In other words, staff can shorten service cycle time (per one job)
once they realise that they have more assets to be serviced than they usually do.

This characteristic can be captured through minor modification to the basic OEM
construct (Figure 6-5). The cycle time is self-adjusted upon the overall workload. This
implies that the staff are aware of the queuing jobs in the system at the beginning of
each operation, and adopt their productivities accordingly. Here, the parameter
Adaptive depicts the baseline of the number of jobs the staff often perceive as a high
workload.

Figure 6-5: A1 construct

A2: Adaptive productivity, flexible routine, no global view of situation

In this case, jobs are assigned to servicing staff from the central OEM thus the staff
have no knowledge about the overall situation. Therefore, their productivity is
according to their jobs in hand. The staff can use their own judgement, based on their
skills and experiences, to perform necessary tasks. An example of this situation was
described by Watson et al. (1998) in case of Xerox field services.

As the staff become more autonomous and decentralised in this case, the basic OEM
construct is not suitable. Following the approach from Chapter 5, the staff are created
as agents embedded inside the OEM model (Figure 6-6). However, the central OEM

model still needs to play its role in assigning jobs to the field staff. Therefore in the
model, the incoming jobs are collected at the AssetInQ. Once this happens, the OEM
agent activates the AssignJob to allocate the job to field staff based on the staff’s
workload. The algorithm inside the AssignJob can be implemented as shown in Figure
6-7. Here, the staff have flexibility to perform tasks. Once completed, the asset is
approved for operational-readiness.

OEM agent:

Attribute:

Adaptive

MTTR

Dataset:

ServiceTime

Graph:

Histogram

ServiceTime

Entity class:

Info

Receive

Info

On enter:
Stamp entered time

Q Being

serviced

On exit:
Calculate ServiceTime and

add to histogram.

To the asset: “Approved!”

Return

object

Capacity:

Delay:
If jobs exceed Adaptive, the cycle time

is fn1(MTTR), otherwise fn2(MTTR)

Chapter 6: Formation of the modelling constructs

97

 Figure 6-6: A2 construct

Asset agent:

General:

Setup message receiver

Variable:
OpCon

Usage

MissedHrs

Penalty

Cyclic Timer:

Service

………………………….

To the asset “ToOEM!”

Demand

……………………….

To the asset “Work!”

Ready

Idle

Operating

Not ready

Delay:

Signal:
“Work!”

Generate OpCon
Signal:
“Approved!”

Increment penalty if

missed

Delay:
Agreed turnaround time

Increment MissedHrs

Signal:
“ToOEM!”

Create an information

object and send to OEM

OEM agent:

Dataset:

ServiceTime

Graph:

Histogram

ServiceTime

Input by user:

General:

Collect messages to the collection

Staff agents:

Conditional Event:

There is queuing asset

To the staf f with the least jobs in

hand: “Work!”, remove this job, and

restart the event

On exit:

Update usage

Collection:

AssetInQ

Element class: Info

Staff agent:

Variable:

DoneA:

DoneB

ProductivityA

ProductivityB

Idle

Activity A

Activity B

If haven’t

completed the task

Delay:
Task’s productivity

Update task’s

completion

Signal:
“Work!”

Input by user:

Collection:

Asset

Element class:

Info

General:

Collect messages to the

collection, adjust

productivities according to

workload in-hand

If completed both tasks

To asset: “Approved!”.

Remove asset, update

ServiceTime, reset

status

Probability

Attribute:

ReqAvai

ReqTAT

Chapter 6: Formation of the modelling constructs

98

 Figure 6-7: Job allocation logic

In summary, this case-dependent characteristic focuses on OEM processes. It
highlights staff’s autonomy in performing services and staff’s learning ability to adapt
themselves according to workload. This corresponds with the agent’s capability in
being flexible, described in Section 5.3.1.

6.3.2 Subsystem characteristic

The variants in this category are linked with product complexity and contracted unit,
which can be divided into three scenarios.

B0: The contracted product’s state can be estimated on an aggregate level

This characteristic refers to the case that the contracted product has a failure pattern
and it is sufficient to consider on a high level. Therefore, it is not necessary to
decompose asset analysis into individual subsystems. Examples of this case are carpet,
washing machine, and a software package in which the PSS providers can estimate
time between services quite accurately from historical data.

The basic asset construct is applicable to this classification. As shown in Figure 6-8, the
Service events are created to trigger an asset’s state both randomly and once the
MTBF is reached.

Chapter 6: Formation of the modelling constructs

99

 Figure 6-8: B0 construct

B1: The contracted unit requires breakdown analysis into subsystem levels.

This variant can be applied if the contracted assets are made up of heterogeneous
subsystems which have significant differences in their failure pattern. This can refer to

a launderette which consists of several washing machines and dryers, and a computer
network which comprises a number of computers and printers. Note that the
subsystems in this variant are independent and not influenced by one another.

In this case, the contracted asset’s state depends on its subsystem behaviour.
Therefore, these subsystems can be defined as agents encapsulated inside the
contracted product (Figure 6-9). Each subsystem can encounter different degradation
rates from other subsystems, and adjust itself differently on various operating
conditions. Once servicing is performed, degraded subsystems may be replaced or not,
depending on the variable ChangeLikelyhood. This variable is driven by the remaining
useful life which is a function of the past operating conditions (AveOpCon) and the
estimated life (Life).

Condition Event:
Service1

If MTBF is reached

To the asset “ToOEM!”

Rate Event:
Service2

……………………….

To the asset “ToOEM!”

Asset agent:

General:

Setup message receiver

Variable:
OpCon

Usage

MissedHrs

Penalty

Cyclic Timer:
Demand

……………………….

To the asset “Work!”

Ready

Idle

Operating

Not ready

Delay:

Signal:
“Work!”

Generate

OpCon

Signal:
“Approved!”

Increment penalty if

missed

Reset the usage

Restart Service1

Delay:
Agreed turnaround time

Increment MissedHrs

Signal:
“ToOEM!”

Create an information

object and issue to OEM

Input by user:

On exit:

Update usage

Attribute:

ReqAvai

ReqTAT

MTBF

Chapter 6: Formation of the modelling constructs

100

 Figure 6-9: B1 construct

B2: Subsystem behaviour can influence one another and the contracted unit

This situation can happen, for example, in aircraft when one failed engine may carry on
flying and does not affect the whole aircraft for a short period of time, but causes
other engines to operate at a higher load.

In addition to B1 construct, a state chart is added to the subsystem model (Figure 6-
10). The subsystem can be exhausted from itself or from others (through the message
passing mechanism).

Asset agent:

General:

Setup message receiver

Attribute:

ReqAvail

ReqTAT

Variable:
OpCon

MissedHrs

Penalty

AveOpCon

Cyclic Timer:

Demand

……………………….

To the asset “Work!”

Ready

Idle

Operating

Not ready

Delay:

Signal:
“Work!”

Generate OpCon

Signal:
“Approved!”

Increment penalty if

missed, enable all

events inside

subsystems

Delay:
Agreed turnaround time

Increment MissedHrs

Signal:
“ToOEM!”

Create an information

object and send to OEM

Part agent:

Input by user:

Part_1 agents: Part_2 agents:

Part_3 agents:

Attribute:

Life

RandFail

Variable:
Remain:

Initial value: fn(Life)

ChangeLikelyhood

Rate Event:

Non-schedule

RandFail

To the asset “ToOEM!”.

Disable other internal

event.

Reset remaining life

Cyclic Timer:

Schedule

……………………1.

Update ChangeLikelyhood as

fn(Remain).

If no remaining life, to asset:

“ToOEM!”, disable other internal

event and reset remaining life.

If worn-out and already with OEM,

disable other internal event and

reset remaining life.

On exit:
Update Part’s

remaining life

Chapter 6: Formation of the modelling constructs

101

 Figure 6-10: B2 construct

In conclusion, this category adopts agent functionality in capturing subsystem's
heterogeneity and loose interaction, since predicting system behaviour from an
aggregate level can be a tedious task.

6.3.3 Work breakdown structure

C0: Service performance is measured only at the end of all operations

This case refers to the basic construct in which intermediate servicing states do not
have to be monitored.

C1: Jobs are preceded by several departments and service performances are
measured separately (A1)

Examples of this category are Xerox DocuCare package, in which service performance
is evaluated twice: upon issue response and technical response.

Asset agent:

General:

Setup message receiver

Attribute:

ReqAvail

ReqTAT

Variable:
OpCon

MissedHrs

Penalty

AveOpCon

Cyclic Timer:

Demand

……………………….

To the asset “Work!”

Ready

Idle

Operating

Not readyDelay:

Signal:
“Work!”

Generate OpCon

Signal:
“Approved!”

Increment penalty if

missed, enable all

events inside

subsystems

Delay:
Agreed turnaround time

Increment MissedHrs

Signal:
“ToOEM!”

Create an information

object and send to OEM

Part agent:

Input by user:

Part_1 agents: Part_2 agents:

Part_3 agents:

Attribute:

Life

RandFail

Variable:
Remain:

Initial value: fn(Life)

ChangeLikelyhood

Rate Event:

Non-schedule

RandFail

To the asset “ToOEM!”.

Disable other internal

event.

Reset remaining life

Cyclic Timer:

Schedule

……………………1.

Update ChangeLikelyhood as

fn(Remain).

If no remaining life, to asset:

“ToOEM!”, disable other internal

event and reset remained life.

If worn-out and already with OEM,

disable other internal event and

reset remaining life.

Environment:

Platform:

Local variable:
Exhausted rate

Normal

Worn out

Input by user:

If all events are

enable

General:
Probability of receiving message

Signal:
“Worn!”

Delay:
……………..

To all: “Worn!”

On exit:
Update Part’s

remaining life

Chapter 6: Formation of the modelling constructs

102

Based on the refined approach in Chapter 5, an agent, named Request is embedded
inside the Asset agents. The following modifications to the basic construct are
required:

1. Identify that the information package is issued by the Request agents instead of
the Asset agents (see information Java object in Figure 6-11).

2. Add a delay element to represent different departments of the OEM agent and
declare that the information package is passed along these departments (see OEM
construct in Figure 6-11).

3. Decouple all communication between the OEM and the Asset agents and centralise
all interactions to the Request agent. In other words, all types of requests are
created by the Asset agents once the assets are not ready (see the asset construct
in Figure 6-11). Following the creation, the information object is issued by the
Request agent and passed to the OEM agent. The OEM agent handles the request
and updates the status of the request by each department (see OEM construct in
Figure 6-11). Therefore after all services are performed, the Request agent signals
the Asset agent and destroys itself (see Request construct in Figure 6-11).

4. The delays (MissedHrs) are updated by the Request agents at the end of each state,
rather than by the Asset agents at the completion.

These results are shown in the construct in Figure 6-11.

Chapter 6: Formation of the modelling constructs

103

 Figure 6-11: C1 construct

C2: Jobs are preceded by several departments and service performances are
measured separately (A2)

This characteristic is identical to C1, yet, the construct is different due to the
decentralised service structure in A2. The majority of methods are the same as C1,
except that the job completion is no longer updated by the last service element of the
OEM agent but the Staff agent.

The resulting construct are presented in Figure 6-12.

Asset agent:

General:

Setup message receiver

Variable:
OpCon

Usage

MissedHrs

Penalty

Cyclic Timer:

Service

………………………….

To the asset “ToOEM!”

Demand

……………………….

To the asset “Work!”

Ready

Idle

Operating

Not ready

Delay:

Signal:
“Work!”

Generate OpCon
Signal:
“Approved!”

Increment penalty if

missed

Delay:
Agreed turnaround time

Increment MissedHrs

Signal:
“ToOEM!”

Create Request agent

OEM agent:

Attribute:

MTTR

Dataset:

ServiceTime

Graph:

Histogram

ServiceTime

Entity class:

Info

Receive

Info

On enter:
Stamp entered time

Task2

On exit:
Calculate ServiceTime and

add to histogram.

To the Request: “Done2!!”.

Return

object

Capacity: Delay: fn(MTTR)

Information java object:

From:

Request

Enter:

double

Input by user:

On exit:

Update usage

QTask1Q

On exit:.
To the Request:

“Done1!”

Request agent:

Task1

Task2 Signal:
“Done1!”

Create

information object

and issue to OEM

Request agent:

Signal:
“Done2!”

To the asset:

“Approved#!”.

Dispose itself

Attribute:

ReqAvail

ReqTAT

Chapter 6: Formation of the modelling constructs

104

 Figure 6-12: C2 construct

This category adopts an agent’s capability to define and expose recovery progress of
individual asset. The agent’s functionality in socialising is also used to update and
monitor the progress.

6.3.4 Contract creation policy

Two variants are introduced with regards to making new contracts.

Asset agent:

General:

Setup message receiver

Variable:
OpCon

Usage

MissedHrs

Penalty

Cyclic Timer:

Service

………………………….

To the asset “ToOEM!”

Demand

……………………….

To the asset “Work!”

Ready

Idle

Operating

Not ready

Delay:

Signal:
“Work!”

Generate OpCon
Signal:
“Approved!”

Increment penalty if

missed

Delay:
Agreed turnaround time

Increment MissedHrs

Signal:
“ToOEM!”

Create Request agent

OEM agent:

Dataset:

ServiceTime

Graph:

Histogram

ServiceTime
Entity class:

Info

Receive

Info

On enter:
Stamp entered time

Return

object

Capacity:

Delay: fn(MTTR)

Information java object:

From:

Request

Enter:

double

Input by user:

On exit:

Update usage

Task1Q

On exit:.
To the Request: “Done1!”.

Send the job to the staf f

with the least job in-hand

Request agent:

Task1

Task2 Signal:
“Done1!”

Create

information object

and issue to OEM

Request agent:

Signal:
“Done2!”

To the asset:

“Approved#!”.

Dispose itself

Staff agent:

Variable:

DoneA

DoneB

ProductivityA

ProductivityB

Idle

Activity A

Activity B

If haven’t

completed the task

Delay:
Task’s productivity

Update task’s

completion

Signal:
“Work!”

Input by user:

Collection:

Asset

Element class:

Info

General:

Collect message to the

collection, adjust

productivities according to

workload in-hand

If completed both tasks

To the request:

“Done2!”.

Remove asset, update

ServiceTime, reset

status

Probability

Saff_2agents:

Attribute:

ReqAvail

ReqTAT

Chapter 6: Formation of the modelling constructs

105

D1: A new contract is signed once staff utilisation is low

In this case, the OEM regularly checks staff utilisation. If the value is low and the
accumulated penalty is still acceptable, the OEM seeks for a new contract.

A NewContract event and an adjustable AllowPenalty variable are incorporated into
the OEM model (Figure 6-13). The action code inside the event corresponds to the
aforementioned constraint.

 Figure 6-13: D1 construct

D2: There is no predefined situation when the OEM should make new contract

In this case, there is no predefined rule for contract creation. Therefore, the main
model was modified to enable interactive creation by users via a button control (Figure
6-14).

 Figure 6-14: D2 construct

Overall, this category applies the agent’s functionality to the OEM agent so that it can
sense current performances and adapt the policy accordingly. Besides, D1 construct
can be used to estimate an appropriate number of contracted assets as a result of a
defined rule against current capability. On the contrary, A2 enables users to interact
and make immediate decision.

OEM agent:

Fixed attribute:

MTTR

Dataset:

ServiceTime

Graph:

Histogram

ServiceTime

Entity class:

Info

Receive

Info

On enter:
Stamp entered time

Q Being

serviced

On exit:
Calculate ServiceTime

and add to histogram.

To the asset:

“Approved!”

Return

object

Capacity:

Delay:
fn1(MTTR)

Adjustable attribute:

Allow penalty

Cyclic Timer:

NewContract

………………………….

If low utilisation and

within allowable penalty,

contract more asset Input by user:

Main model:

Button:
Action : Add assets

Asset agents: OEM agent:

Environment:

PSS

Chapter 6: Formation of the modelling constructs

106

6.3.5 Capacity adjustment policy

This category accounts for resource planning, which involves recruiting and laying-off
servicing staff.

E0: There is no rule when to adjust capacity (A1)

This means the decision on capacity takes place in a flexible manner. There is no
predefined standard why the OEM should increase or decrease capacity. Accordingly,
the OEM construct is modified to allow an interactive capacity adjustment by the
model users (Figure 6-15). The parameter Capacity is linked to the service element,
and can be changed during the model execution e.g. by the connected slider.

 Figure 6-15: E0 construct

E1: There is no rule when to adjust capacity (A2)

This classification is identical to E0, but corresponds with the A2 servicing
characteristic. The OEM construct is modified to enable user interactive adjustments
(Figure 6-16). Here, an algorithm is required to ensure that the removal takes place
only to idle staff, otherwise the job would be also removed without completion. An
example of programming logic to handle this situation is shown is Figure 6-17.

OEM agent:

Fixed attribute:

MTTR

Dataset:

ServiceTime

Graph:

Histogram

ServiceTime
Entity class:

Info

Receive

Info

On enter:
Stamp entered time

Q Being

serviced

On exit:
Calculate ServiceTime and

add to histogram.

To the asset: “Approved!”

Return

object

Capacity:
Delay: fn(MTTR)

Adjustable attribute:

Capacity

Capacity:

Capacity

Chapter 6: Formation of the modelling constructs

107

 Figure 6-16: E1 construct

 Figure 6-17: Staff agent removal logic

OEM agent:

Dataset:

ServiceTime

Graph:

Histogram

ServiceTime

General:

Collect message to the collection

Staff agents:

Conditional Event:

There is queuing asset

To the staf f with the least jobs in

hand: “Work!”, remove this job, and

restart the event

Collection:

AssetInQ

Element class: Info

Button:

Add staf f Remove staf f

/Remove the

idle staf f

Chapter 6: Formation of the modelling constructs

108

E2: Capacity is regularly adjusted based on certain rule

If the rule is based on utilisation, the OEM keeps monitoring utilisation levels and
makes decisions based on the maximum and minimum levels. The Adaptive event
updates the Capacity once the MaxU or MinU input by the user is exceeded (Figure 6-
18).

 Figure 6-18: E2 construct

In summary, this category embeds the agent's capability to learn for demonstrating a
demand chasing strategy in resource planning. The algorithm for staff removal, which
prevents lost jobs, encapsulates the agent’s functionality in being goal-directed. The
self-adaptive functionality in E2 enables automatic adjustment based on the OEM’s
goal whereas the E0 and E1 variants embrace the flexibility in manually adjusting input.

6.3.6 Contract termination likelihood

F0: Contract termination is not allowed

This case ties up both parties until the end of the contract, which can be represented
by the basic construct.

F1: It is possible that customers will negotiate to end the contract

For instance, if a customer is not satisfied by the increasing delays, he may request to
terminate the contract. After receiving the request, the OEM may accept or negotiate
to continue the contract.

In the asset construct (Figure 6-19), a cyclic event (Learning) and a parameter
(MaxMiss) captures the customer dissatisfaction. The event keeps monitoring whether
a delay exceeds the acceptable limit (MaxMiss). If so, a Java object (Quit) is sent to the

OEM agent:

Fixed attribute:

MTTR

Dataset:

ServiceTime

Graph:

Histogram

ServiceTime

Entity class:

Info

Receive

Info

On enter:
Stamp entered time

Q Being

serviced

On exit:
Calculate ServiceTime and

add to histogram.

To the asset: “Approved!”

Return

object

Capacity:

Delay: fn(MTTR)

Adjustable attribute:

Minimum utilisation baseline

Maximum utilisation baseline

Capacity:

Capacity

Variable:
Capacity

Cyclic Timer:

Adaptive

………………………….

Increase capacity if

maximum utilisation is

exceeded, decrease

capacity when the utilisation

is lower than the minimum

baseline

Chapter 6: Formation of the modelling constructs

109

OEM agent to ask for termination. The OEM agent registers the request in the
EndRequest which activates the Termination event. The role of this event is to consider
whether to approve the termination.

 Figure 6-19: F1 construct

On the whole, this category embeds the agent's capability to learn inside the Asset
agent and agent autonomy inside the OEM agent. As this mechanism can influence the
number of contracts, F1 construct can be use to self-generate an affordable number of
contracts.

6.3.7 Relationship protocol

G0: The OEM precedes all demands from the contracted customers

An example of this classification is Performance-Based Logistic (PBL) which commits
the OEM to provide all support services to deliver mission capable assets. This
classification can be demonstrated by the basic OEM construct.

Asset agent:

General:

Setup message receiver

Attribute:

ReqAvail

ReqTAT

MaxMiss

Variable:
OpCon

Usage

MissedHrs

Penalty

Cyclic Timer:

Service

………………………….

To the asset “ToOEM!”

Demand

……………………….

To the asset “Work!”

Ready

Idle

Operating

Not ready

Delay:

Signal:
“Work!”

Generate OpCon
Signal:
“Approved!”

Increment penalty if

missed

Delay:
ReqTAT

Increment MissedHrs

Signal:
“ToOEM!”

Create an information

object and issue to OEM

Input by user:

On exit:

Update usage

OEM agent:

Fixed attribute:

MTTR

Dataset:

ServiceTime

Graph:

Histogram

ServiceTime

Entity class:

Info

Receive

Info

On enter:
Stamp entered time

Q Being

serviced

On exit:
Calculate ServiceTime and

add to histogram.

To the asset: “Approved!”

Return

object

Capacity:

Delay: fn(MTTR)

Learning

…………………………………………..

Create and send a Quit object to OEM to

end contract if delays exceed MaxMiss

Collection:

EndRequest

Element class:

Quit

Conditional Event:

There is quit request

Decide whether to terminate.

If so, remove this asset,

remove this request, and

restart the event

Quit java object::
From: Asset

General:

Collect message to the collection

Chapter 6: Formation of the modelling constructs

110

G1: The OEM may subcontract or reject the demands from the contracted customers,
but it may penalise the OEM (in case of A1).

For instance, the OEM is obliged to provide services, however, it may take longer than
it was agreed. Thus the customer selects another service provider and charge the OEM
according to the agreed penalty. Another example takes place in the Electrolux case
who offered a contract that specifies certain number of services per year. The OEM
can reject additional services if staff are unavailable.

A variable JobIn and one additional route are added to the basic OEM construct, as
shown in Figure 6-20. The variable updates the number of jobs-in-hand. If it is beyond

available staff, the job is routed away from OEM system and the asset’s state is
updated.

The asset state chart is modified to Figure 6-20. The Asset agent moves to the
WithOther state once a rejection message is received from the OEM.

Chapter 6: Formation of the modelling constructs

111

Figure 6-20: G1 construct

G2: The OEM may subcontract or reject the demands from the contracted customers,
but it may penalise the OEM (in case of A2).

This characteristic is the same as G1 but corresponds to the A2 servicing characteristic.

WithOther

Asset agent:

General:

Setup message receiver

Variable:
OpCon

Usage

MissedHrs

Penalty

Cyclic Timer:

Service

………………………….

To the asset “ToOEM!”

Demand

……………………….

To the asset “Work!”

Ready

Idle

Operating

Delay:

Signal:
“Work!”

Generate

OpCon

Signal:
“Approved!”

Increment

penalty if missed

Delay:
ReqTAT

Increment MissedHrs

Signal:
“ToOEM!”

Create an information

object and issue to OEM

Input by user:

On exit:

Update usage

OEM agent:

Attribute:

MTTR

Dataset:

ServiceTime

Graph:

Histogram

ServiceTime

Demands:

JobIn

Entity class:

Info

Receive

Info

On enter:
Stamp entered

time.

Increment

JobIn

Being

serviced

On exit:
Calculate ServiceTime and

add to histogram.

Decrement JobIn

To the asset: “Approved!”

Return

object

Delay: fn(MTTR)

NotReady

WithOEM

Delay:
…………………

Fire “Approved!”

Signal:
“No!”

Increment

penalty

Variable:
JobIn

Return

object

If not all

resources are

utilised

On exit:
Decrement JobIn

To the asset: “No!”

Attribute:

ReqAvail

ReqTAT

Chapter 6: Formation of the modelling constructs

112

Figure 6-21: G2 construct

All constructs have been verified individually after being completed. Next, their
contributions to knowledge in PSS modelling field are discussed.

6.4 Assessment of the constructs against the current
state of PSS modelling

This section identifies the merits in the constructs in describing PSS business in relation
to the current state of PSS modelling, as summarised in Table 6-2. The plus signs
indicate strengths in the literature or covered issues in the constructs, whilst the minus
signs dictate weaknesses in the literature or uncovered issues in the constructs.

WithOther

Asset agent:

General:

Setup message receiver

Variable:
OpCon

Usage

MissedHrs

Penalty

Cyclic Timer:

Service

………………………….

To the asset “ToOEM!”

Demand

……………………….

To the asset “Work!”

Ready

Idle

Operating

Delay:

Signal:
“Work!”

Generate

OpCon

Signal:
“Approved!”

Increment

penalty if missed

Delay:
ReqTAT

Increment MissedHrs

Signal:
“ToOEM!”

Create an information

object and issue to OEM

Input by user:

On exit:

Update usage

NotReady

WithOEM

Delay:
…………………

Fire “Approved!”

Signal:
“No!”

Increment

penalty

OEM agent:

Dataset:

ServiceTime

Graph:

Histogram

ServiceTime

General:

Collect messages to the collection

Staff agents:

Conditional Event:

There is an asset

If no staf f available, to the asset:

“No!”. Otherwise, to the staf f with

the least jobs in hand: “Work!”,

remove this job, and restart the

event

Collection:

AssetInQ

Element class: Info

Attribute:

ReqAvail

ReqTAT

Chapter 6: Formation of the modelling constructs

113

Table 6-2: Summary of the constructs’ capability against the current stage of PSS
modelling.

No. Criteria Literature The constructs

1 Generalise to all PSS + -

2 Incorporate some analytical techniques + -

3 Extend life cycle perspective from product selling + +

4 Address value parameter explicitly + +

5 Highlight interactions between parties in supply

chain and customer.

+ -

6 Include both economic and environmental measures + -

7 Demonstrate the link between asset transformation

and service support

+ +

8 Present service efficiency measures - +

9 Capture link between product performance and

customer-manufacturer relationship

- +

10 Illustrate redesigns from customer involvements - +

11 Demonstrate decentralise decision making - +

12 Represent cultural mind frame, social habits, and

influence between customers

- -

13 Capture effect of technology on company’s

capability

- -

14 Incorporate government influence - -

15 Embed input uncertainties - +

16 Explicitly present asset’s lifecycle - +

17 Expose asset’s autonomy + +

It can be seen that the constructs contribute to the gap of knowledge to a great extent.
The constructs can demonstrate ten issues in which six are lacking in literature, as
follows:

1. Extended product life cycle from manufacturing (No.3) can be described in the
Asset agents by their state charts.

2. The ‘value-in-use’ parameter (No. 4) can be defined, in this case, as required
availability (ReqAvail) in the Asset agents.

3. The link between asset transformation and service support (No. 7) can be
demonstrated through the Subsystem agent’s lifetime and the OEM agent’s MTTR as in
B1 and B2 constructs.

4. Service efficiency measure (No.8) can be highlighted, in this case, as
turnaround/ recovery time in the histogram inside the OEM agent, and delays
(MissedHrs) inside the Asset agent.

Chapter 6: Formation of the modelling constructs

114

5. Impacts of product performance on OEM-customer relationship (No.9) can be
illustrated from the fact that a Java object is created from the Asset agent’s state chart
and passed along to the OEM agent.

6. Redesigns from customer involvements (No.10) can be changed in the
Subsystem agent’s life (as in B1 and B2 constructs) during model executions (by using
sliders).

7. Decentralised decision making (No.11) can be demonstrated by decomposing
the OEM agent to the Staff agent in the lower hierarchy (as in A2 construct).

8. Input uncertainties (No.15) can be incorporated using input distribution.

9. Asset life cycle (No.16) can be exposed using the state chart inside the Asset
agents.

10. An asset’s autonomy (No.17) can be implied by modelling the Asset agents in
the same layer as the OEM agent.

However, four areas are excluded in the constructs but covered in literature. These
relate to the scope of PSS offering (No.1), implementation of analytical methods
(No.2), interactions in supply chain (No.5), and environmental measures (No.6). Along
this line, three areas of improvements can be made in terms of social influences
(No.12), technology (No.13), and regulation (No.14).

6.5 Chapter summary

To conclude, this chapter stated the development of modelling constructs which aim
to enhance effective and efficient development of PSS offering simulation models. The
constructs consist of two parts; the basic service contract construct and the case-
dependent constructs. The basic construct incorporates common PSS elements
whereas the case-dependent constructs capture the case-dependent elements

analysed in Chapter 5. The contribution to knowledge of the constructs was examined
against the current state of PSS modelling discussed in Chapters 2 and 4. The next
chapter deals with validation of the constructs.

Chapter 7: Evaluation of the constructs

115

7 Evaluation of the constructs

Chapter 7: Evaluation of the constructs

116

This chapter corresponds with the fourth objective of this research, which aims to
evaluate and refine the primary constructs. To do so, Section 7.1 describes the first
evaluation process via multiple-case studies. In this section, the models were
developed for these cases based on the constructs, and presented to industrial users.
Section 7.2 deals with the second evaluation process, in which the constructs were
tested by users. The findings are discussed at the end of both sections, which led to
the refined constructs in Section 7.3. Finally, the chapter is concluded in Section 7.4.

Figure 7.1 Chapter 7 outline

7.1 Case study validation

This section describes the first type of evaluation which is the case study validation.
Three cases were chosen under product-centric PSS and from different industries to
enhance generalisation. Case study protocol was used for all cases, which focuses on
system understanding, and mapping case characteristics with the construct variants
(see Appendix I). The interview data were cross-checked with another interviewer who
was also present in the interviews to enable member checking technique. Having

developed the models using the constructs, they were then demonstrated and
rechecked with the case companies. The analysis was made in terms of efficiency,
applicability, practicality, and feasibility.

7.1.1 Case I: EngineCo

Data collection process

EngineCo manufactures aero-engines and also provides services such as customer
training, engineering support, fleet management and overhaul service. The company
has offered service contracts for both military and airline customers globally in the

7.1

Case studies

Aero-Engine

Case study validation User validation

Ship

Train

Discussion

7.3

Refinements

7.4

Conclusions

Improvements

7.2

Users

Simulation learner

DES expert

Simulation expert

Discussion

Chapter 7: Evaluation of the constructs

117

past five years. Generally, the contract period spans over five years with the value in
the region of around $1b and the focus of services is centred around overhaul.

The validation followed an iterative process with a team leader of an overhaul centre.
The interaction involved an introduction of this research, face-to-face semi-structure
interview, facility visit, presentation of sample models, and follow-up emails for
feedback. During the follow-up, a set of slides was attached along with the final model
to introduce the user in how to use the model for actual decision making, realised
through the interview. The total amount of interaction exceeded 15 hours.

In aero-engine service contracts, airline operators generally own the contracted

engines, however, EngineCo is responsible for maintaining them. The contract specifies
turnaround time (TAT) and the exhaust gas temperature (EGT) margin based on a given
engine operating cycle. The margin is a comparison between the operating gas
temperature (an indicator of engine performance) and the maximum allowable gas
temperature during flight take-off, hence the higher the number the better.

Based on the requirements, the company gathers past usage information of the
engine, checks the leftover cycles of each Life-Limited Parts (LLP), and forms the
overhaul schedule to achieve the agreed engine cycle. LLPs are the critical components
of an engine, for example, turbine blades. The leftover cycle of each component is
obtained from testing, and adjusted by the condition where the engine will be
operated. This operating condition is crucial as it can cost millions of dollars more than

the expected expense. There are approximately 15 critical LLPs in an engine. The
expected number of scraps during each overhaul is estimated and used for calculations
of expense and resource required.

Once a contract is made, it is rarely renegotiated, and the contract lasts 5-10 years.
The customer generally pays per cycle, but is obliged to pay at a minimum fee if the
engine is not used. Contracts are not normally renegotiated and terminating a contract
costs the terminator the predefined charge.

Regarding service operations, four major stages take place in an overhaul, referred to
as Gate 0 to Gate 3. Gate 0 collects all engine information, which generally takes one

day. Gate 1 disassembles and cleans the engine or passes the modules to partners. It
also involves non-destructive testing and inspection. Gate 2 deals with repairs which
may take up to 20 days. Finally, Gate 3 reassembles and tests the engine. Different
groups of staff are assigned to different stages. However, staff are trained to be
capable of performing any tasks.

Based on these data, the next section maps the case characteristics with the
constructs.

Chapter 7: Evaluation of the constructs

118

Validation outcomes

Step 1: Formulate the basic model

At this step, the basic model was formed based on the basic construct as follows:

1. The main model was created, which consists of a PSS environment, an OEM
agent, and Asset agents.

2. The information Java object was created.

3. The OEM agent was defined. At this stage, some amendments from the basic
OEM construct were made to the model. Firstly, BeingServiced was divided into four
elements to demonstrate the four gates of the overhaul service. Secondly, MTTR was
no longer made as an independent attribute, but embedded inside the ‘delay’
elements. This is because each gate always has a fixed and predictable standard time.

4. The Asset agents were defined. Three modifications from the construct took
place at this stage. Firstly, OpCon was created as a user’s interactive input because the
operating condition is specified in the contracts. Secondly, the performance
requirement in this contract is not availability level, but turnaround time. Thirdly, the
MissedHrs variable was eliminated as the penalty could be calculated directly from the
delayed turnaround time.

This step resulted in the model in figure 7-2.

Chapter 7: Evaluation of the constructs

119

Figure 7-2: Step 1 – EngineCo model

Step 2: Apply service decision making construct

This case exhibits A0 variant as the overhaul service process follows a predefined
manual and fixed routine from Gate 0 to Gate 3. Therefore, no change was made from
Step 1.

Step 3: Apply subsystem construct

During a flight, an engine’s health can be dictated by the LLP condition. If an LLP is

cracked within an acceptable range, the engine may still function throughout the flight.
However it can happen that the cracked LLP can affect other LLPs and cause them to
fail. Therefore, an engine’s subsystem exhibits B2 characteristics. In other words, each
LLP can influence one another and the entire engine, yet, the interaction cannot be
controlled. The following actions were made to the model:

1. The Part agent was created as defined by B2 construct.

2. The Platform environment was created, and all LLP agents were placed in that
environment.

Step 1:

Main model OEM model

Asset model

Info object

Chapter 7: Evaluation of the constructs

120

3. The Service event was removed from the Asset agent in B2 asset construct.

4. The interactive attribute was added for the users to capture the service cost of
each LLP replacement, and summed up the total cost of all LLPs within the Asset agent.

This step produced the model shown in Figure 7-3.

Figure 7-3: Step 3 – EngineCo model

Step 4: Apply work breakdown construct

All contracts only monitor an asset’s turnaround time after the service is completed.
Thus, this case exhibits C0 variant and required no further action from the previous
step.

Step 5: Apply contract creation construct

EngineCo has no predefined policy regarding making new contracts. Accordingly, the
case exhibits D2 variant. Users are provided with interactive capability to add a new
contract during model execution. The resulting model from this step is shown in Figure
7-4.

Step 3:

Asset model

LLP agent

Chapter 7: Evaluation of the constructs

121

Figure 7-4: Step 5 – EngineCo model

Step 6: Apply capacity adjustment construct

This step embeds the capacity adjustment policy. EngineCo adjusts the capacity
through staff working shifts, depending on the maintenance schedule. Therefore user
interactive adjustment was applied rather than incorporating adaptive logic. This is
because the OEM does not adjust capacity from a current situation but from a planned
maintenance. As a result, the number of staff was created as an interactive attribute
(Figure 7-5).

Figure 7-5: Step 6 – EngineCo model

Step 7: Apply contract termination construct

As there has been no case for early termination, this case demonstrates F0 variant and
no further modification is necessary.

Step 5:

Main model

Step 6:

OEM model

Chapter 7: Evaluation of the constructs

122

Step 8: Apply relationship construct

EngineCo can subcontract some activities to other suppliers in case of excessive
demand. Therefore, the case represents G1 variant. The following actions were made
at this step:

1. The Asset agent’s statechart and transitions were modified as defined by G1
construct, presented in Figure 6-20

2. An additional branch for services and its programming logic were created in the
OEM agent as defined by the constructs.

The resulting model is presented in Figure 7-6. In the main model, the OEM currently
provides 10 service contracts which guarantee turnaround time (TAT) to customers.

In the OEM model, the OEM currently has 10 servicing staff for all gates. The total
servicing period takes around 30 days. If there are more engines waiting to be serviced
than available staff to service them, the OEM subcontracts the excessive demands
(which will top up the penalty cost).

The asset model represents engine states. The customers pay per use of an engine.
Demands for flights are randomly generated and the duration of each flight is
predetermined. An engine enters the overhaul facility when an LLP is randomly broken
or has no remaining life.

To simplify the model, each LLP can have from 1 to 20 replications and a life time
between 500 and 1000 cycles.

Besides these settings, users can interactively adjust the agreed TAT, pay-per-use fee,
operating condition, LLP's life, LLP's service cost, occurrence of random failures,
number of staff, and number of contracted engines. Regarding outputs, the model can
estimate service cost, penalty, actual TAT, revenue, and number of engines demanded
for services, all in real time.

Chapter 7: Evaluation of the constructs

123

Figure 7-6: EngineCo model

In summary, the case study proved the applicability of the constructs to a great extent.
Approximately three quarters of model development time could be shortened using
the constructs. This approximation is based on a number of days taken to build the
model by the author without using the constructs in comparison with using the
constructs. Only few minor elements were amended for practical benefits, which
include:

 The required availability was discarded as it is irrelevant to this case. Similarly,
the MissedHrs variable could be eliminated as the penalty could be calculated
directly from the delayed turnaround time.

 Service cost and real time demands were presented in this case, as different
operating conditions of the engines can largely influence actual service costs
and the overhaul schedule.

OEM Model

Default setting:

MTTR around 30 hrs

Main model

Default setting:

10 contracts, time unit
in hrs

Engine model

Default setting:

15 LLPs, 0.5 m$ per use,
1m$ penalty cost, 40 days
agreed TAT

LLP model

Chapter 7: Evaluation of the constructs

124

 The adaptive capacity could be performed manually by the user for
convenience.

 In terms of operations, the maintenance function was broken down into four
service elements to capture the four stages.

Practical implications

After the model had been built, it was sent to EngineCo along with instruction to use
the model to assist decision making. Four samples of situation were demonstrated as
follows:

In the first situation, the company aims to estimate profits between two alternative
contracts.

A) The customer pays $0.5m per use on 40 days TAT guarantee and $1m per delay

B) The customer pays $0.7m per use on 30 days TAT guarantee and $1m per delay

An experiment was conducted to compare the alternatives.

To set up the experiments, the PricePerUse’s slider and ReqTAT’s slider were adjusted
to 0.5 and 40 in Experiment A and 0.7 and 30 in Experiment B. After the model was
executed, the result is drawn in Figure 7-7.

Figure 7-7: Demonstration 1 – EngineCo model

Chapter 7: Evaluation of the constructs

125

The result indicates no significant difference in service cost and penalty cost but
almost double increase in revenue from the second option. Based on this outcome, the
OEM may prefer to offer the second contract.

In the second situation, an airline company proposes a contract in which the engine
would be used in a harsh environment (twice as a normal condition). Based on this
requirement, the OEM estimates the price of this contract.

To set up this experiment, the OpCon’s slider was set to two before running the model.
After completing the execution, the result is illustrated in Figure 7-8.

Figure 7-8: Demonstration 2 – EngineCo model

The experiment reveals that the accumulated cost would become four times higher
under the harsh condition. Based on this estimation, the OEM may propose the
contract at four-times the higher price than the normal contracts.

Thirdly, the OEM is deciding whether to invest in a research and development project.
The company is querying if more profit will be obtained if an LLP’s life time is extended
from 500 cycles to 600 cycles after the first year of contract.

To set up this experiment, the model was run until the simulation time reached around
19000 (i.e. corresponds to approximately 2 years), then, the model was paused. Next,

Chapter 7: Evaluation of the constructs

126

the Life sliders for all LLP_1 agents were moved to around 600. After that, the model
was continued until the end of the simulation. The result is presented in Figure 7-9.

Figure 7-9: Demonstration 3 – EngineCo model

Surprisingly, the result indicates no obvious benefit from the improvement in the life
time. Therefore, the company should not waste budget on this project unless there are
other factors to consider.

The last situation refers to the growth plan of service contracts. In other words, the
OEM is exploring if the current capability would be sufficient to support the growth of
10 new contracts per year.

In this experiment, the New Contract button on the main model was clicked repeatedly
10 times at every consecutive 9000 time unit. The result is illustrated in Figure 7-10.

No life change

Life changes at
year 2

No sigbificant
benefit

No significant
benefit

Chapter 7: Evaluation of the constructs

127

Figure 7-10: Demonstration 4 – EngineCo model

The outcome shows substantial increase in revenue as well as cost. This means the
growth plan would lead to a major burden to the OEM despite benefits. Therefore, this
plan is not recommended.

These demonstrations relied on one simulation run as it aimed to address potential
benefits to EngineCo. In reality, more repeats should be performed to improve
confidence in the estimations.

On the whole, these examples demonstrate the model’s capability in comparing gains
and losses between alternative offers, customising contract from different usage
requirements, provisioning investment strategy, and evaluating operational capability
against growth plans.

7.1.2 Case II: ShipCo

Data collection process

ShipCo operates its main business in the area of military ship building and provides
through-life support to its customers. Three types of service contracts have been
offered by ShipCo: after-sales, leasing and output-based contracts. Leasing contracts
are made in the long term and guarantee availability of ships (for 25 years), whilst
after-sales and output-based contracts generally span over 5 years and provide spares,
maintenance, and technical supports at the customers’ cost. The output-based
contracts differ from the after-sales contracts as the ships are typically designed as
specified by each customer. In this study, the model was developed only for the

Chapter 7: Evaluation of the constructs

128

leasing-type service contract. With this type, ShipCo has offered the contracts since
approximately five years ago.

The validation followed an iterative process with the project leaders of service
contracting. The interaction involved an introduction of the project, presentation of
sample models, and a face-to-face semi-structured interview. The final model and the
instructions as to how to use it were emailed to the participants for follow-up
feedback.

ShipCo leases a fleet of ships to its customers based on the total required days in a
month. Additionally, the company also rents these ships to commercial customers on a

short-term basis, when the ships are not in use by the long-term customer. The
payment is made on a monthly basis and considered from the actual available days of
a ship in comparison with the agreed available days. The operating condition is
predefined in the form of locations in which the ships will operate, for instance, 70%
operating in the UK and 30% outside the UK. Yet, these numbers, as well as the
required available days, can be renegotiated during the contract execution phase.
Early termination of a contract has not happened in this case.

A ship is made of several heterogeneous subsystems which influence the maintenance
schedule. Similar to EngineCo, the planned maintenance is formulated based on these
subsystems’ life time. Once the service is due, service engineers perform services as
appropriate. The number of these engineers can be adjusted to support the desired

utilisation level of the ship. When the level is low, ShipCo may have short-term
contracts with commercial customers to increase ship utilisation. If there are more
demands than available staff, the OEM may outsource service activities.

Validation outcomes

Step 1: Formulate the basic model

At this step, the following actions were made:

1. The main model was created as instructed by the basic construct.

2. An interactive attribute was added for users to capture short-term demands
from commercial customers. Once there is a demand, a signal is sent to any available
ship.

3. The information Java object was created.

4. The Asset agents were defined as described in the basic asset construct.
However, some modifications were made as follows. Firstly, OpCon and ContractPrice
were created as user interactive inputs. This is because the location where the ships
will be operated from and the contract price are specified before making a contract

Chapter 7: Evaluation of the constructs

129

and can be customised for each contract. Secondly, the actual demands (LT_demand)
for a ship depend on the agreed available day and the status of the ship. Thirdly, the
variable Available was added to illustrate actual available days, which is compared
against ReqAvail to calculate monthly availability (Availability). This monitoring activity
is triggered by MonthlyMonitor. Finally, the MissedHrs variable was eliminated as the
penalty could be calculated from actual availability.

This step resulted in the model in Figure 7-11.

Figure 7-11: Step 1 – ShipCo model

Step 2: Apply service decision making construct

In terms of the service structure variance, this case reveals A2 variant as staff in the

ship industry have more flexibility to carry out services. There is no predefined manual
to follow, hence, a high variety in productivity. Based on the A2 construct, the OEM
model and the staff model were defined as illustrated in Figure 7-12. At this stage, the
activity’s cycle times within the staff model were created as adjustable attributes to
allow users to adjust these values.

Step 1:

Main model

Asset model

Info object

Chapter 7: Evaluation of the constructs

130

Figure 7-12: Step 2 – ShipCo model

Step 3: Apply subsystem construct

The ship’s condition is largely affected by a few major components. Yet, each
component does not tend to influence others. Therefore, this case exhibits B1
characteristics. The following actions were made based on B1 construct:

1. The Part agent was created as defined by B1 construct.

2. The service cost was created as an adjustable input.

3. The Service event was from the Asset agents which were modified according to
B1 asset construct.

4. The revenue and maintenance cost variables were added, including graphs of
availability and financial status for the benefit of analysis in the Asset agents.

This step produced the model as shown in Figure 7-13.

Step 2:

OEM model

Staff model

Chapter 7: Evaluation of the constructs

131

Figure 7-13: Step 3 – ShipCo model

Step 4: Apply work breakdown construct

ShipCo’s customers are primarily concerned about available days for operations. Thus,
there is no need to monitor a job’s progress. This means ShipCo exhibits C0 variant and
required no further action at this step.

Step 5: Apply contract creation construct

ShipCo has only one major long-term customer with a leasing-type contract as its main
business is scoped down to military surface ships. It is unlikely that new contracts will

emerge during the contract period. The emergence of short-term demands from
commercial customers was already covered in Step 1. Therefore, no change from the
previous step took place at this stage.

Step 6: Apply capacity adjustment construct

Similar to EngineCo, ShipCo also adopt service capacity through staff’s working shifts,
depending on the major components and actual usage information. Thus, this case
reveals E2 variant. Nonetheless, this model was created to enable user interactive
adjustment as in E1 variant rather than embedding an adaptive feature in the model’s

Step 3:

Part model

Asset model

Chapter 7: Evaluation of the constructs

132

logic as in E2. This is because E2 aims to capture a demand chasing strategy, yet,
capacity adjustments are not an issue for ShipCo. Consequently, it is not necessary to
include the adaptive logic. Instead, two buttons were added to control the size of
workforce as shown in Figure 7-14.

Figure 7-14: Step 4 – ShipCo model

Step 7: Apply contract termination construct

There was no history of early termination at ShipCo. Besides, it is unlikely to happen as
the company has been in a strong relationship with the customer (who is a national
military organisation) for several years. Therefore, this case demonstrates F0 variant
and no further amendment took place.

Step 8: Apply relationship protocol construct

ShipCo can subcontract service operations to other suppliers when there is excessive
demand. Therefore, the case represents G2 variant. The following actions were
implemented at this step:

1. The Asset agent’s state chart and transitions were defined as instructed in G2
construct.

2. The conditional event in the OEM agent was modified as described in the
construct.

Step 6:

OEM model

Chapter 7: Evaluation of the constructs

133

Figure 7-15: Step 8 – ShipCo model

Step 9: Add analysis elements

This step involves placing additional graphs and variables for the benefit of analysing
output data. This includes placing a time colour chart showing each ship status
(operating, idle, not ready), and a time plot of the OEM’s financial measures (cost,
revenue, penalty) in the OEM model.

The resulting model is presented in Figure 7-16. The time unit in this model is in days.
The main model illustrates an OEM that provides ship leasing contracts. These ships

Step 8:

Asset model

OEM model

Chapter 7: Evaluation of the constructs

134

can also be rented out to other customers on a short-term basis if they are not being
used by the contracted customers. Model users can change the rate of occurrence of
this short-term demand during model execution by moving the slider of ST_Demand
e.g. 5 ships a day.

The ship model describes each ship’s state which could be ready or not ready for
operations, influenced by its major components’ behaviour. If it is ready, then it can be
in operations or waiting for an operation. This is triggered by both short-term and
contracted demands. The ship is not ready if it is under service by the OEM or
subcontractor. The OEM outsources maintenance services if the maintenance staff are
not available. This model monitors monthly performance of each ship in terms of

achieved availability level, cost, revenue and penalty, throughout the contract. Users
can interactively change the contract prices/charges, operating condition and agreed
available days in a month during model execution. These changes can imply contract
renegotiation. In this example, each ship is assumed to have three key components
(e.g. vessels, controllers, gears), and each component has 3 replications (e.g. 3
vessels).

The spare part model depicts each Part agent’s behaviour, based on lifetime, failures,
and incurred service costs. Users can interactively change these values. Practically,
these changes can be caused by redesigns. Ship maintenance takes place if one of its
components has no remaining useful life (governed by Schedule) or simply fails
randomly (controlled by NonSchedule). Nevertheless, once the ship is under the

maintenance service, the OEM may decide to replace other degrading parts as well.
This decision, denoted as ChangeLikelyhood, is considered from the remaining useful
life of the part.

Within the OEM model, risks and rewards from signing the service contracts are
visualised from total service cost, revenue, and penalty. The OEM can also monitor
operational capability based on the recovery performance (represented as Turnaround
time histogram) and the ships’ behaviour. The OEM agent assigns jobs to the
maintenance team that has the fewest jobs in-hand. It is assumed that the team can
complete all required tasks. Users can change the number of teams during the model
execution using the buttons. These changes can represent capacity adaptability of the
OEM.

The staff model encapsulates the difference amongst teams of maintenance staff in
performing services. This difference is depicted by a selected sequence of tasks and
productivity. The model was simplified to have two maintenance tasks. Once the team
receives a job order from the OEM agent, the job is restored in Asset. The team can
speed up the task depending on jobs-in-hand. Having all tasks completed, the ship is in
a ‘ready-to-work’ state. Users can interactively adjust the activity’s cycle time in the
staff model as required.

Chapter 7: Evaluation of the constructs

135

Figure 7-16: ShipCo model

To summarise, ShipCo utilises most elements defined in the constructs. Over half of
model development time could be shortened using the constructs. Again, the
approximation is based on a number of days taken to build the model by the author
without using the constructs compeared to using the constructs. Minor modifications
were made due to the following reasons.

 As the ships can be shared by short-term customers, it affects the pattern of

operations. Therefore, short-terms demands were included but separated from
contracted demands.

 As the user was not familiar with ABS, some input attributes were created

explicitly for users to adjust the values during model execution rather than
being input implicitly in the model prior to model execution. These attributes
include contract price, cycle times, service cost, and workforce size.

Ship model

Part model

Main model

OEM model

Staff model

Chapter 7: Evaluation of the constructs

136

 Some elements were added for tracking contract performances and analysis,
for example: MonthlyMonitor, Availability, graphs.

Practical implications

After the model was built, ShipCo had four weeks to experiment with the model and
provided feedback. The instructions to use the model were illustrated and three
situations were proposed to demonstrate the use of the model.

The first situation involved an estimation of the potential maintenance cost of a ship,
based on the usage requirement and life time of the critical components. The ship is to

be used 70% in UK and 30% elsewhere. Currently, the life time of the three critical
components are approximately 500, 800 and 1000 operations, and their associated
replacement costs are estimated at $0.5 million, $1 million and $1.5 million per part
per replacement respectively. The military customer required a guaranteed availability
of 10 days for a ship in a month.

To set up this experiment, the OpCon slider in the ship model was set to 0.43 (i.e.
30/70), the ReqAvail slider was moved to 10, the Life sliders of all Part1 models were
set to around 500 and their ServCost sliders were set to around 0.5. The given values
were also assigned to the Part2 and Part3 models. The result is presented in Figure 7-
17.

Figure 7-17: Demonstration 1 - ShipCo model

Chapter 7: Evaluation of the constructs

137

The figure describes the accumulated cost of $12 million at the end of the contract.
The OEM can consider this information together with the ship production cost and
desirable cash flow pattern for pricing the contract.

In the second demonstration, the OEM can evaluate the impacts if the customer
renegotiates the contract from the first experiment to operate the ship 50% of the
time in the UK and 50% outside the UK at year 11.

To do this, the model was executed until around 4000 time units. Then, the model was
paused to move the OpCon slider in the ship model to 1 (i.e. 50/50). Having done this,
the model was continued until the end of the simulation. The result (referred to as

Experiment B) was contrasted against the first demonstration (denoted as Experiment
A), as presented in Figure 7-18.

(a) Impact on contract performance

Chapter 7: Evaluation of the constructs

138

(b) Overall impact on OEM

Figure 7-18: Demonstration 2 - ShipCo model

The outputs reveal that the change can cause this contract a significantly poorer
availability performance, a double cost, and a ten-fold increase in penalty charge.

However, it would not significantly affect the OEM’s financial status. Therefore, the
OEM may not need to be concerned about this risk.

In the last demonstration, the OEM considers giving a discount of $0.1 million per
month, per ship to the contracted customer if the ships will also be used by other
short-term customers at the rate of 5 ships per day.

To set up this experiment, the ST_Demand slider in the main model was set to 5, and
the ContractPrice slider on all ship models were set to 0.2 (the default setting is at $0.3
million). The result was compared against the first situation (i.e. Experiment A)
presented in Figure 7-19.

Chapter 7: Evaluation of the constructs

139

Figure 7-19: Demonstration 3 - ShipCo model

The outputs reveal that the OEM may incur more penalty and maintenance costs even
if there is no significant revenue change. Thus, this discount should not be offered.

Overall, the demonstration illustrated the model’s capability in estimating cost based
on usage requirement and subsystem information, enabling contract renegotiation,
and provisioning a marketing strategy. In addition to these examples, users can adjust
other inputs, which cover the number of maintenance teams, penalty cost, activity's
cycle times, number of contracted ships, a part's random failures, agreed available
days, staff's adaptive capability, chance of opportunity fixing, number of major
components, and all uncertainties subject to these inputs.

7.1.3 Case III: TrainCo

Data collection process

TrainCo manufactures trains and provides a wide range of services such as
maintenance and repair, daily checking, spares and technical supports, reconditioning,
fleet management, and cleaning. The company has been in the service business for
almost 20 years. Generally, the focus of services is maintenance and repairs.

The validation followed an iterative process with a service engineer. The process
involved an introduction of this research, a face-to-face semi-structured interview,
presentation of sample models, and follow-up emails for feedback. Again, the follow-

Chapter 7: Evaluation of the constructs

140

up email includes a set of slides to introduce the user how to use the model for actual
decision making.

In the train company, service contracts evolve around maintenance service. Engineers
follow an instruction to perform services and each task has a standard time. There are
several types of contracts offered by the OEM, depending on the scope of work.
However, there is a standard format regulated and applied to all train service
contracts.

Prior to making a contract, the train operating schedule is given by the customer, and
the OEM will propose the number of trains that should be leased to comply with the

given schedule, including spare trains. Availability is monitored every morning if the
agreed number is achieved. For instance, the OEM may suggest leasing 10 trains in
total, in which 8 trains are required to operate every morning and 2 trains can be on
standby. In this case, the availability is 100% if there are 8 trains available for
operations in the morning. If less than 8 trains are available or the schedule is delayed
during the day, the OEM is penalised.

The OEM can estimate when each train should be retrieved for maintenance based on
experience, and sometimes outsource services to meet the demands. However, if the
penalty becomes too high, more staff are recruited. In which case, the customer can
request to leave the contract. However, there is no policy to lay-off staff or seek for
more contracts when staff utilisation is low.

Validation outcomes

Step 1: Formulate the basic model

Unlike EngineCo and ShipCo, TrainCo provides contracts on a fleet basis, monitors
performance monthly and has several customers. These characteristics imply that the
basic construct must be modified, which can be done in two ways. The first option
would be to represent one customer as one Asset agent. The second option, which
was adopted in this thesis, was to replace Asset agents with Customer agents in the
main model, hence, moving the Asset agents to the Customer model.

Consequently, the following actions were made at this step:

1. The information Java object was created as defined in the basic construct.

2. The main model was created which consists of an OEM agent and Customer
agents (there are five customers in this model) in the PSS environment.

3. Adjustable attributes were created for each customer, which include ReqAvail
and MonthlyFee. By doing so, the agreed available trains and the contract’s monthly
price can be customised to each contract and modified by users at any time. Similarly,

Chapter 7: Evaluation of the constructs

141

the variables Availability, Penalty, and Revenue were created to allow monthly
monitoring of each contract.

4. The events DailyMonitor and MonthlyMonitor were placed in the main model
to monitor the number of available trains in the morning, penalty, and monthly
contract performance (indicated by Availability, Penalty, and Revenue).

5. The time plots of availability, profit, demands for maintenance, and a histogram
of actual recovery period were placed in the OEM model for the benefit of
performance analysis on the main model.

6. The Asset agents were created inside a Customer agent and the Demand event
was moved from asset model to customer model.

7. The OEM agent was defined based on the basic construct. However, MTTR was
created as an adjustable input and moved to the main model so that TrainCo could
conveniently apply all values directly to the main model.

8. The Asset agents were defined according to the basic construct with the
following modifications. Firstly, OpCon is absent in the model as different operating
conditions do not significantly affect contract performances in this case. Similarly,
MissedHrs is neglected as the penalty is directly tied up with the number of available
trains every morning (recorded by DailyMonitor) and the accumulated delays in a

month (MonthlyPenalty). Secondly, Service is triggered by a rate function of
TimeBetweeServices rather than cyclic timer as TrainCo estimates the maintenance
cycle as a rate, for example, once every three month. Thirdly, the transition inside the
NotReady state was removed as TrainCo’s customers are not interested in each train’s
downtime as long as there are available trains for operations as agreed.

This step resulting in the model in Figure 7-20

Chapter 7: Evaluation of the constructs

142

Figure 7-20: Step 1 – TrainCo model

Asset model

Main model

OEM model Customer model

Chapter 7: Evaluation of the constructs

143

Step 2: Apply service decision making construct

In terms of the service structure variance, TrainCo’s staff follow instructions and
standard time in performing services and are not allowed to deviate from this. Thus,
this case exhibits A0 variant. Consequently, there was no modification at this step.

Step 3: Apply subsystem construct

Even if trains have heterogeneous subsystems, TrainCo can confidently estimate the
interval that each train requires between two maintenance services. This means a
train’s behaviour can be predicted at the aggregate level. Therefore, it shows B0
characteristic at which no further action was necessary at this step.

Step 4: Apply work breakdown construct

As TrainCo’s customers are only interested in available trains for operations, it is not
necessary to monitor a train’s status during maintenances. This means TrainCo exhibits
C0 variant, thus, no further action was required at this step.

Step 5: Apply contract creation construct

TrainCo has no strict strategy when the company should seek for a new contract. This
can be described as D2 variant, thus, an interactive button was added to each

customer in the main model to allow manual contract creation by the user. This
resulted in the main model in Figure 7-21.

Chapter 7: Evaluation of the constructs

144

Figure 7-21: Step 4 – TrainCo model

Step 6: Apply capacity adjustment construct

TrainCo does not pursue a lay-off policy when the utilisation is low. On the contrary,
the company recruits more staff when the incurred penalty becomes too high. Thus,
this case demonstrates E2 variant in which its policy is based on the level of penalty.
Nonetheless, the observation during the interview revealed that capacity adjustment is
not an issue for TrainCo. Accordingly, this characteristic was absent from the model
and no action took place at this step.

Main model

Chapter 7: Evaluation of the constructs

145

Step 7: Apply contract termination construct

Early termination of service contracts from customers happened when they were
unsatisfied with the contract performances. Accordingly, the following actions were
made at this stage:

1. Followed F1 construct to modify the OEM model and the Quit Java object.

2. As the cause of early termination was not explicitly stated during the interview,
this model captures this situation via manual command by users. Therefore, two
buttons were added in the main model to perform two types of terminations; Remove

a contracted train invokes an immediate removal of one train in the fleet and Leave
contract initiates a command to deactivate the whole fleet.

As a result, this step led to the model in Figure 7-22

Chapter 7: Evaluation of the constructs

146

Figure 7-22: Step 7 – TrainCo model

Main model

OEM model

Information object

Chapter 7: Evaluation of the constructs

147

Step 8: Apply relationship construct

TrainCo can subcontract service operations to other suppliers when there is excessive
demand. Besides, this case has a basic service decision making structure, therefore,
the case represents G1 variant. The following actions were made at this step:

1. The Asset agent’s state chart and transitions were amended to G1 construct in
Figure 6-20. However, the transition inside NotReady state was neglected from the
model as the penalty is not considered from an exceeded turnaround time.

2. The OEM agent was modified as described in G1 construct. Nonetheless, the

maintenance demand graph has already been presented in the main model. As a
result, the graph was removed from the OEM model.

The resulting model is shown in Figure 7-23. The model illustrates an OEM which offers
service contracts to 5 customers. Each customer leases 5 trains and signs a
maintenance contract with the OEM to ensure availability and on-time operations. In
terms of operations, the OEM currently has 5 servicing staff. If there are more trains
waiting to be serviced than available staff, the OEM subcontracts the excessive
demands. In this default setting, the OEM estimates that each train should require
service every 1000 operations. Yet, users can interactively adjust the required
availability level, contract's monthly fee, MTTR, time between each service of a train,
and the number of contracted trains. Besides, users can terminate any contract within

the model execution. The outputs of this model are availability performance, recovery
duration (turnaround time), profits, and the number of trains demanded for services.

Chapter 7: Evaluation of the constructs

148

Figure 7-23: TrainCo model

On the whole, TrainCo’s model adopts most elements defined in the constructs.
However, some of these elements were transferred between sub-models. Overall,
approximately one third of the model development time could be shortened using the
constructs compared to building the model from scratch. This was also based on the
experiment conducted by the author. The modifications can be concluded as follows:

 Some elements were added to the model. Firstly, the fleet contracting scenario

led to an addition of the Customer agents. Secondly, DailyMonitor responds to

Chapter 7: Evaluation of the constructs

149

the daily availability checking. Lastly, the monthly payments and the review of
contract performances called for MonthlyMonitor, Availability, Revenue,
MonthlyPenalty, and subsequent graphs.

 Some elements in the constructs were moved between the agent models as a

result of the presence of Customer agents (Demand, Asset agents), and for user
convenience in investigating outputs (Recovery histogram, MTTR, ReqAvail).

 Some characteristics are not major issues for TrainCo, therefore, the associated

elements were discarded. These included OpCon, MissedHrs, and those
associated with the capacity policy variance.

 The way in which the company estimates input affects the method inside the
constructs, thus, the model adopts some modifications to suit the user’s
familiarity. For example, TrainCo generally describes the maintenance’s
frequency in the form of rate, therefore, the Service event is triggered by rate
rather than cyclic timer as defined in the constructs.

 Contract termination is captured using a manual input because the trigger was
not provided explicitly during the data collection.

Practical implications

Upon the model completion, the model was sent to TrainCo along with instruction on
how the model can be used to assist decision making for the company. The company
had four weeks to experiment with the model. Three example situations were
presented to illustrate the use of the model to contribute in decision making.

Firstly, the situation deals with prediction of contract performance, profits, and losses

based on the proposed number of available trains, reliability of services, monthly fee
and penalty. In this example, one customer wants to lease 7 trains and for all to be
available in the morning, 100% on-time, at a $7m monthly fee, and $1m penalty,
whereas the other customers leases and contracts 5 trains at a $5m monthly fee (at
default setting).

To set up the experiment, the Add button of Customer1 on the main model was clicked
to have 7 leased trains, the ReqAvail's slider was moved to 7 contracted trains, and the
MonthlyFee’s slider was set to $7m. The model was run until the end of the simulation
time.

Chapter 7: Evaluation of the constructs

150

Figure 7-24: Demonstration 1 - TrainCo model

The overall output (Figure 7-24) demonstrates that the OEM would have one train (out
of 27 trains in total) demanded for maintenance, and 70% of the trains demanded for
maintenance services would be recovered within 30 hours. Comparing between the
two contracts, the 7-train-contract would generate profit more than twice as much as
in the other contracts and availability performance is generally better. This example
illustrated the capability of the model in customising contract and predicting
performance.

The second example aims to expose the capability of the model in capturing a critical
dynamic behaviour of PSS – an early termination of contract. The demonstration
investigated the result from the customer’s sudden termination of a contract at the
second year.

To capture this phenomenon, the Leave contract button of Customer1 was clicked
when the simulation time was around 15000. The output was compared with the first
experiment, as shown in Figure 7-25.

Make more prof its
than other contracts

45% of assets can be
recovered in 30 hrs

Achieve 80-100%
availability most of the time

Service 1 train
most of the time

Chapter 7: Evaluation of the constructs

151

Figure 7-25: Demonstration 2 - TrainCo model

According to Figure 7-25, the result reveals no significant impact on the OEM even if
the profit from this contract would be four times less than the first experiment. This is
because the profits from other contracts would be improved between 1-2 times than
the first experiment, thus these profits ultimately cancel out the effect from the
terminated contract.

The third illustration also deals with a dynamic behaviour of PSS. It aimed to address
the model’s capability in capturing the continuity of making new contracts. In this

example, the OEM investigates whether they can cope with the workload if 10 trains
were added every year at the additional $1m monthly fee.

To set up this experiment, the model was paused every 9000 time units. Then, the Add
contract button was clicked twice for every customer and the MonthlyFee and
ReqAvail sliders were moved to 7 (because the default values are 5).

After the execution, the result (Figure 7-26) reveals that the availability and recovery
performances were improved for all contracts. Approximately 75% of the trains
demanded for maintenance services would be recovered within 30 hours. Profits

Receive only $50m from the
contract but other contract's

profits improve!!

Slightly more than
45% of assets can be

recovered in 30 hrs

No obvious impact on
overall availability level

Service demands
rarely exceed 4

Chapter 7: Evaluation of the constructs

152

would be continuously rose for all contracts. Similarly, the demands for maintenance
services are increased.

Figure 7-26: Demonstration 3 - TrainCo model

To summarise, the potential of the model in predicting contract performances,

customising a contract based on availability requirements, and encapsulating major
dynamic behaviour in PSS (contract termination and creation) during contract delivery
phase were highlighted to TrainCo.

7.1.4 Discussion of case study validation

The detailed discussion on applicability and practicality of the constructs were already
covered in each case. Next, the efficiency and effectiveness of the constructs at a high
level are discussed. The efficiency was defined in Chapter 3 as the capability in
shortening model development time, whilst the effectiveness is measured against the

Gain more profits each year

Less than 40% of assets can
be recovered in 30 hrs

Availability level is
improved!!

Service demands is
going up

Chapter 7: Evaluation of the constructs

153

applicability to the real world, the practicality in aiding decision making, and the
feasibility in developing a simulation model.

In terms of efficiency, the constructs can shorten model development time between
30%-75% in the three cases. However, model development time is generally be
influenced by understandings of the system and modelling experiences of modellers.
Therefore, the efficiency of the constructs was also further evaluated from user
viewpoints.

As for comparison of the applicability, the EngineCo model applies the elements and
methods inside the constructs to the greater extent, followed by ShipCo and TrainCo.

This was because EnginCo contracted on an individual basis whereas ShipCo and
TrainCo contract on the entire fleet. Besides, ShipCo provides a leasing contract with
only one long-term customer, whilst TrainCo has several customers. The level of
applicability to each case is also affected by contract requirements. EngineCo
guarantees on turnaround time, ShipCo contracts on accumulated available days in a
month, and TrainCo is responsible for both daily availability and delays. Therefore, the
number of model elements to monitor these requirements increases between the
EngineCo and TrainCo models. However, at least approximately half of the elements
and methods could be reused in all cases. Regarding the variances from the basic
constructs, the three cases share the same work breakdown, capacity adjustment and
contract creation variants. To enhance applicability and reduce amendments, these
aspects were handled in the final constructs.

The practicality of the models has been evaluated in the demonstration of each case.
The feedback validates the contribution of the models in practice. The feasibility can
be evaluated from the fact that all models could be developed within a few days by
using the constructs. Similar to the efficiency evaluation, the feasibility was also
highlighted by the use of a third party in the next section.

7.2 User validation

This evaluation focused on direct users of the constructs. To obtain insights into the
feasibility of the constructs, close observation of model developments was required.
Additionally, the validation was aimed at generalising the feedback. Accordingly,
participants were selected from different levels of simulation background but have
involved in the PSS research. The first participant has basic knowledge of simulation
techniques, the second participant is an expert in other simulation techniques but
relatively new for ABS, and the last participant is an expert in all simulation techniques.

Questionnaires were given prior to and after piloting sessions (see Appendix J). The
pre-test questionnaire investigates the participant’s background in PSS simulation

Chapter 7: Evaluation of the constructs

154

modelling whereas the post-test questionnaire aims to evaluate feasibility, practicality,
applicability, and efficiency of the constructs. The audit trail of the piloting sessions is
provided in Appendix K. Data triangulation was performed by using both direct
observations and feedback from the users.

7.2.1 Simulation learner

The first participant is a practitioner in an aircraft company moving towards PSS
offerings. This participant has been involved in PSS research for four months and has
experience in DES for one month. Therefore, the software package and some applied
Java commands were first illustrated. The participant was asked to follow the

methodology and apply the constructs to his company, with some help from the
author. The whole process, including model completion, took less than two days.

The following results could be drawn from observations:

1. The participant had limited understanding of the case variants and their
connection to model elements.

2. The participant had difficulty in understanding some programming languages
such as string, double, object. As a result, the author needed to assist in handling
technical errors.

3. The participant performed very well in adopting the given Java commands to
different situations, despite the unfamiliarity with Java language.

4. The aircraft context exhibits both B1 and B2, thus, some modifications were
required. The participant struggled to complete this stage and required the author’s
help. To cope with this variation, the delay transition inside Part agent was enabled to
all connected agents rather than all agents, and a start up code was inserted inside the
model’s general property to connect subsystems together that can be influenced by
one another.

5. The difference between some software elements required further clarification,
for example, source and enter, and sink and exit.

Besides the observations, the participant provided the feedback that the constructs
were well-presented, reasonably-easy to modify, reasonably-easy to implement, could
help the participant to develop the model faster, and had a very good coverage of PSS.
The participant showed his interest to use the model in his company and would
recommend the constructs for future applications. The areas for improvements were
suggested to simplify the description and give clear examples of the case-dependent
characteristics.

Chapter 7: Evaluation of the constructs

155

7.2.2 DES expert

The second participant is a researcher in the area of simulation of prognostic
technology for PSS application. He has 3-years experience in PSS and DES. In this
validation, there was no introduction of the software. Instead, a document and a brief
explanation on the research and the constructs were given. The document comprises a
description of the TrainCo case study, instruction on how to use the constructs,
examples of adopted Java commands, and the constructs. Based on this document, the
participant was asked to develop the model.

This validation was completed in two meetings which took four hours excluding some

additional hours that the participant spent with the model himself. During this time,
the participant required minor assistance. The observations revealed the following
points:

1. The participant still required an explanation of what each agent describes.

2. The participant was unsure how to complete the model and modify the
commands.

3. Assistance was needed to cope with some error messages.

4. The participant interpreted the scenario of the case differently from the real
scenario.

Additionally, the participant provided the following feedback:

1. The presentation of constructs needed further explanation, for example, the
difference between dataset and histogram dataset.

2. The construct could have included contract termination by OEMs.

3. The constructs were very effective in capturing PSS characteristics, very
efficient in helping rapid simulation model development, and could help to perform
the task very easily.

4. The constructs were reasonably well-presented. The implementation of
constructs on a software tool was recommended to enhance more understanding.

5. The constructs were easy to modify, yet, could have been easier if all Java code
could be inserted in the model without amendments.

Additionally, the participant saw the benefits of the constructs’ presentation that is
independent from any software packages, but some of the UML notations were also
suggested to use along with the constructs.

Chapter 7: Evaluation of the constructs

156

In conclusion, the participant stated that the constructs could provide significant
contributions in PSS contract modelling, and can be used as modular structures that
help users develop the model more easily. They can represent a meta-modelling
language which guides users to build agent models and to understand PSS contracts
with minimum effort in programming.

7.2.3 Simulation expert

This participant is a consultant well-known in the area of simulation in strategic
decision making, and has a 5-year involvement in PSS research. He has extensive
experience in using several software packages based on spreadsheet, SD and DES with

speciality in ABS. During the validation process, a document which contains a
description of the ShipCo case study, instruction on how to use the constructs, Java
commands adopted in the constructs, and the constructs, was given to the participant.
It was aimed that the participant could complete the model without any help. As a
result, the model was completed in approximately one day.

After the completion, the feedback was obtained as follows:

1. The constructs were very easy to use but would be easier for general users by
presenting them as a drag and drop modelling solution or a building block approach in
which these agents are pre-defined and therefore become configurable through
simple modification or input data.

2. The constructs could help to develop the model more quickly. The participant
described that it is a very good step towards configurable modelling for contract
negotiation and asset optimisation in a PSS environment as it can increase visibility in
the negotiation processes. He highlighted that the constructs can be commercially
delivered as ‘simulation as a service’ online to enable further customisation and
comparison between different potential options.

3. The constructs could capture PSS characteristics reasonably well. It was also
suggested to implement cost modelling in the constructs.

4. The constructs could have been presented more clearly by systematically

explaining them agent by agent. A balance scorecard may be adopted to enhance
clarity of performance indicators.

5. The modifications to the model were not relatively simple and it could be too
complex for users who are not familiar with the software package. Recommendations
were made on implementing more user interactive inputs and scenario configuration.
The input screen could have been made separate from the model.

On the whole, the participant was impressed by the generality and capability of the
constructs in capturing major aspects of service contracts. He also declared the merits

Chapter 7: Evaluation of the constructs

157

and novelty of the constructs and was keen to follow and recommend it to others in
the future.

7.2.4 Discussion of user validation

The validation revealed a wide range of opinion, which was most likely caused by their
different experiences in developing ABS models. Although they have all involved in PSS
research, all participants had never come across any existing methodology which
enables comparison across PSS offering alternatives using simulation. Moreover, all
participants acknowledged the potentials of the constructs and would recommend
them for future use.

In terms of understanding of the constructs, this depended highly on the simulation
background of each user. However, the author attempted to enhance the
understanding later in the final constructs by providing an overview of the construct
and their implementation in a software package. The implementation identifies both
screenshots and programming code agent by agent. This should also improve
confidence in completing the models.

Regarding the selection of the variants, the user’s interpretation could be influenced
by the given explanation to a large extent. However, it should be noted that the direct
users of the constructs are the OEMs who also have simulation modelling background.
Therefore, the issue would be resolved once the description of the constructs becomes
clearer.

The suggestion to include contract termination by OEMs could be implemented in the
construct, and is detailed in the next section. Nevertheless, the cost aspect was too
time-consuming to be included in the scope of this research. Similarly, the capability to
implement the constructs as a drag and drop modelling solution or a configurable
building block / input screen can be explored in future work.

Overall, despite the fact that the constructs may still be complicated for some users,
this validation revealed that no participant took longer than two days to develop the
models. This implies a high feasibility of developing a model from the constructs. The
feedback from all users also supports the efficiency of the constructs in rapid model

development. The simulation learner also performed very well in adopting Java
commands without previous knowledge of the Java language. And in fact, the
complexity indicates the extensive efforts required in developing service contract
models without using the constructs, thus, it highlights the significance of this
research.

Chapter 7: Evaluation of the constructs

158

7.3 Refinements of the constructs

This section deals with the amendments of the constructs after being evaluated by
both case study validation and user validation.

The evaluation suggested two major areas of improvements; the presentation and the
elements/methods inside constructs. The improvement of the presentation aims to
provide better understanding of the developed constructs, especially when further
customisation is required. The elements and methods were amended to improve the
ease of use.

From the presentation viewpoint, the constructs were amended to provide model
elements and higher level modelling methods, so that users can understand the ‘big
picture’ of the modelling mechanism inside the constructs. In addition to the
constructs, a user manual, and examples of detailed programming are included to
support the use.

In terms of elements and methods, major changes were made as follows:

 The basic construct was amended to become the shared construct. The basic
construct enables a user to complete a model. Further modifications are made
by changing code as well as adding and removing elements (or code). This
caused confusion to some users, and therefore, the shared construct was

developed so that users can only add elements and methods for further case
customisation.

 For generalisation, user interactive control was provided to adjust capacity,
make new contracts, and terminate contracts. Short-term demands are always
included in the constructs. Users can disable these functions if they are absent
in the case. A monthly fee, penalty, service cost, and MTTR are adjustable by
control sliders. Customer agents are presented in the shared construct to allow
easy modelling of a fleet scenario.

 Subcontract options were removed as capacity becomes adjustable during
execution.

 Contracting unit (fleet versus individual), value parameters (availability-based
versus time-based), and payment mode were added into the case-dependent
characteristics.

 B2 variant is removed as the influence between Subsystem agents is difficult to
define in practice.

Chapter 7: Evaluation of the constructs

159

7.4 Chapter summary

This chapter detailed the evaluation process on the constructs developed in the
previous chapter. The evaluation was made through three case studies and tested
externally by three users. Feedback was taken from the three case interviewees, the
three users, and the author’s observations. Overall, all practitioners and users clearly
saw the potential and benefits from using the models, and were keen to apply the
constructs in practice. However, for some users, the constructs were not easy to
implement and modify. This led to improvements to the final constructs presented in
the next chapter.

Chapter 8: Presentation of the final constructs

160

8 Presentation of the final
constructs

Chapter 8: Presentation of the final constructs

161

This chapter describes the final constructs. Section 8.1 provides the overview of the
constructs and instruction on how to use them. Section 8.2 describes the shared
constructs and Section 8.3 deals with the case-dependent constructs. These constructs
can be implemented in any software package that supports a hybrid ABS-DES
technique. Finally, Section 8.5 summarises this chapter.

8.1 Overview of the constructs

The final constructs follow the same structure as the primary constructs. The

constructs consist of two parts: the shared construct provides common modelling
elements across service contracts and the case-dependent constructs contain
elements that can be different across cases. These elements relate to service decision
making, subsystem, work breakdown, and contractual mode. A construct is given in
correspondence with each variant. The constructs can be summarised into Figure 8-1.

Figure 8-1: Overview of the constructs

Figure 8-2 illustrates how to use these constructs to build a service contract model.

Chapter 8: Presentation of the final constructs

162

Figure 8-2: The steps in building a model using the constructs

1. The first stage is to develop a shared service contract model from the shared
service contract construct.

2. The second stage is to customise the model using the case-dependent
constructs. At this stage, the characteristics of the case are mapped with the
characteristics identified by the case-dependent constructs.

Users are required to complete each variance (step 2.1 – step 2.4) to get to the final
model. The variants within each characteristic variance are summarised in Figure 8-1.

The next section describes the shared construct.

8.2 The shared construct

The shared PSS elements are associated with asset health and life cycle, OEM service
process, in-service asset information, service efficiency measures, and usage unit. To
account for these PSS elements, the shared construct consists of three layers and
encapsulates five fundamental model components.

The first layer contains the following components: OEM agent and Customer agents in
a PSS environment. The second layer details the OEM service process inside the OEM

Chapter 8: Presentation of the final constructs

163

agent and encapsulates Asset agents inside the Customer agent. The third layer
presents the asset’s state inside Asset agent. The last element is a Java object which
represents the asset information passed to the OEM prior to servicing. This
information object refers to the communication method in the construct which depicts
an OEM-customer relationship in PSS business.

The first layer is represented by the main model (Figure 8-3) which describes an OEM
agent who signs PSS contracts with Customer agents. The OEM may also use the assets
for short-term demands (ST_Demand) if they are not used by contracted customers.
This mechanism is governed by SearchFree.

The OEM agent describes list of activities; an asset enters the OEM system, waits for
service, is serviced if there is available staff, and returned to the customer once
finished. The OEM always records the number of assets in the system (JobIn) and the
time each asset stays in the system (ServiceTime). Users can adjust MTTR and the
number of staff (Capacity) at anytime.

The Customer agent contains contracted assets. Customers may renegotiate to have
more or fewer assets during the contract delivery phase.

The Asset agent shows the asset’s state in the life cycle. It can be ready for operation
or not. If it is ready, it can be in operation or waiting for an operation. The asset’s
usage is always recorded. Customers may renegotiate to change the agreed operating
condition (OpCon) of an asset during the contract delivery phase.

The information object stores asset information and enables the OEM to record the
time it enters the service process.

Chapter 8: Presentation of the final constructs

164

Figure 8-3: The shared service contract modelling construct

OEM agent:

Adjustable attribute:

MTTR

Capacity

Histogram Dataset:

ServiceTime

Graph:
Histogram of ServiceTime

Entity class: Info

Receive

On enter:
Stamp entered time

Update JobIn

Being

serviced

On exit:
Update ServiceTime to histogram.

Trigger asset state to Ready

Update JobIn

Return

Delay: fn(MTTR)

Q
Variable:

JobIn
Staff

Main model

Adjustable attribute:

ST_Damnd

Environment:

PSS:

Rate Event:

SearchFree

ST Demand

Search available asset

and trigger asset state

to Operating

OEM agent

Customers agent

Capacity: Capacity

Asset agent:

General:

Set up message receiver

Adjustable attribute:

OpCon

Variable:
Usage

Ready

Idle

Operating

NotReady

Customer agent:

Asset agent

Interactive addition of asset agent

Interactive removal of asset agent

Information java object:

From:

Asset

Enter:

double

Super class:

Entity

Chapter 8: Presentation of the final constructs

165

8.3 The case-dependent constructs

The case-dependent constructs result from different case characteristics dictated by
the following PSS elements:

• Service decision making constructs

• Subsystem constructs

• Work breakdown constructs

• Contractual mode constructs

The variants within these variances are summarised in Table 8-1.

Table 8-1: Summary of the case-dependent constructs

Characteristic

variance

Characteristic variants Construct variances

(from the shared constructs)

Service decision

making

A0: OEM has fixed routine in

performing services and each service

has standard time

Input distribution is encapsulated in the

OEM’s delay element and communication

protocol is establish between asset and

OEM agents

A1: Fixed service routine, but adaptive

productivity upon the global view of

situation

There are two levels of inputs in the

OEM’s delay element. Communication

protocol is establish between asset and

OEM agents

A2: Adaptive productivity and flexible

routine

Staff are created as another agent under

the central OEM. Communication

protocol is establish among Asset, OEM ,

and Staff agents

Subsystem B0: The contracted product’s state can

be predicted on an aggregate level

Servicing schedule is monitored

periodically via a cyclic timer

B1: The contracted unit requires

breakdown analysis into subsystem

levels.

Subsystems are created as another agent

under the Asset agents

Work breakdown C0: Service performance is measured

only at the end of all operations

Same as the shared construct

C1: Jobs are preceded by several

departments and service

performances are measured

separately (A1)

Jobs are created as a separate agent

issued by the Asset agents to track

different performance requirements

C2: Jobs are preceded by several

department and service performances

are measured separately (A2)

Based on A2 structure, Jobs are created

as a separate agent issued by the Asset

agents to track different performance

requirements

Chapter 8: Presentation of the final constructs

166

Characteristic

variance

Characteristic variants Construct variances

(from the shared constructs)

Contractual

mode

D1: Fleet contracting

Daily available asset

Daily penalty

Monthly payment

Contract requirements, performance

measure, risk and reward are captured.

Three cyclic timers represent daily

monitoring, monthly monitoring, and

asset operating activities. Transitions

captures asset’s operating state.

D2: Individual contracting on recovery

time basis

Penalised on exceeded agreed

duration

Monthly payment

Contract requirements, risk and reward

are captured.

Two cyclic timers represent monthly

monitoring and asset operating activities.

Transitions captures asset’s operating

state and penalty mechanism.

D3: Individual contracting on

percentage uptime or available days

Penalise on failure to achieve the

required level

Monthly payment

Contract requirements, performance

measure, risk and reward are captured.

Two cyclic timers represent monthly

monitoring, and asset operating activities.

Transitions captures asset’s operating

state and % uptime of the asset.

D4: Pay-per-use

Penalise if failure occurs during

operation

Contract requirements, risk and reward

are captured.

Cyclic timer represents asset operations.

Transitions capture penalty mechanism

and asset’s operating state.

Unless stated and highlighted in black, the construct is identical to the shared
construct. Users can also further detail this final model to suit their cases.

8.3.1 Service decision making structure

A0: OEM has fixed routine in performing services and each service has a standard
time.

For example, overhaul services always cover 4 successive stages and each stage always
takes around 1, 3, 20, and 4 days respectively.

In this case, the transitions and communication are defined within the Asset agent
(Figure 8-4) to allow service interactions between OEM and Asset agents.

Chapter 8: Presentation of the final constructs

167

Figure 8-4: A0 construct

A1: Fixed service routine, but adaptive productivity upon the global view of the
situation

For example, disassembling a wheel always includes four executive stages, and staff
generally take 10 hours to disassemble wheels for a car of a train, yet, they can take
only 5 hours if there are other trains waiting to be disassembled.

Minor modification to the shared OEM construct can represent this variant (Figure 8-
5). The cycle time is self-adjusted upon the overall workload. This implies that the staff
are aware of the queuing jobs in the system at the beginning of each operation, and

adopt their productivities accordingly. Here, the parameter Adaptive depicts the
baseline of the number of jobs the staff often perceive as a high workload. Within the
Asset agent, the transitions and communication are defined to allow service
interactions between OEM and Asset agents.

Asset agent:

General:

Set up message receiver

Adjustable attribute:

OpCon

Variable:
Usage

Ready

Idle

Operating

NotReady

Receive trigger for service.

Send information to OEM

Triggered by OEM agent

Chapter 8: Presentation of the final constructs

168

Figure 8-5: A1 construct

A2: Adaptive productivity and flexible routine

For instance, within a photocopier context, field-service staff can check a
photocopier’s condition or refill papers/ink first. There is no predefined rule what to
perform first.

As the staff become more autonomous and decentralised in this case, they are created
as agents embedded inside the OEM agent (Figure 8-6). Within the Asset agent, the
transitions and communication are defined to allow service interactions between OEM
and the Asset agents. Asset agent notifies the OEM agent for the service. The OEM
agent registers the request in AssetInQ, and activates the AssignJob to allocate the job

to field staff based on the staff’s workload. The staff have flexibility to select a
sequence of tasks. Once completed, the asset is approved for operational-ready.

Asset agent:

General:

Set up message receiver

Adjustable attribute:

OpCon

Variable:
Usage

Ready

Idle

Operating

NotReady

OEM agent:

Adjustable attribute:

MTTR Capacity

Adaptive

Histogram Dataset:

ServiceTime

Graph:
Histogram of ServiceTime

Entity class: Info

Receive

On enter:
Stamp entered time

Update JobIn

Being

serviced

On exit:
Update ServiceTime to histogram.

Trigger asset state to Ready

Update JobIn

Return Q
Variable:

JobIn Staff

Delay: fn(workload, MTTR)

Receive trigger for service.

Send information to OEM

Triggered by OEM agent

Capacity: Capacity

Chapter 8: Presentation of the final constructs

169

Figure 8-6: A2 construct

8.3.2 Subsystems

B0: The contracted product’s state can be predicted on an aggregate level

For instance, it can be estimated that the assets will require service once every three
months. In B0 construct (Figure 8-7), servicing schedule is monitored periodically via a
cyclic timer and triggers asset state. The asset usage is updated after an operation.

OEM agent:

Dataset:

ServiceTime

Graph:

Histogram

ServiceTime

General:

Store asset required service in

the collection

Staf f agents:

Conditional Event:

AssignJob

If there is queuing asset

Assign staff with minimum

workload to service asset

Collection:

AssetInQ

Element class: Info

Asset agent:

Adjustable attribute:

OpCon

Variable:
Usage

Ready

Idle

Operating

NotReady

Receive trigger for service.

Send asset information to OEM

Triggered by Staff agent

Interactive addition of staff agent

Interactive removal of staff agent

General:

Set up message receiver

Staff agent:

Idle

Activity A

Activity B

Collection:

Asset

Element class:

Info

General:

Store assigned

assets

Adjustable attribute:

CycletimeA

CycletimeB

Delayed by fn(workload, CycletimeB).

Update task’s completion

Be assigned to

an asset
Input probability that

staf f starts activity A

before activity B

If haven’t

completed

the task

If haven’t

completed

both tasks

If completed both tasks

Trigger asset state to

Ready, record recovery

time, and reset status Delayed by fn(workload, CycletimeA).

Update task’s completion

Chapter 8: Presentation of the final constructs

170

Figure 8-7: B0 construct

B1: The contracted unit requires breakdown analysis at a subsystem level

For example in an aircraft, the fuselage needs maintenance every 200 flying cycles,
while engines require maintenance every 5000 flying cycle. Therefore, the OEM cannot
estimate when the aircraft needs servicing on a fixed interval.

In B1 construct (Figure 8-8), the servicing schedule is monitored periodically via a cyclic
timer and triggers the asset state. The asset’s state depends on its subsystem
behaviour. Therefore, these subsystems can be defined as the agents encompassed

within the Asset agent. Each subsystem can encounter different degradation rates
from other subsystems and adjust itself differently on various operating conditions.
Once servicing is performed, whether degraded subsystems can be replaced or not,
depends on the variable ChangeLikelyhood. This variable is driven by the remaining
useful life which is a function of the past operating conditions and the estimated life.

Asset agent:

Adjustable attribute:

OpCon

Variable:
Usage

Ready

Idle

Operating

NotReady

Cyclic Timer:

Service

Input servicing schedule

And trigger asset to

NotReady state

Update asset usage

General:

Set up message receiver

Chapter 8: Presentation of the final constructs

171

Figure 8-8: B1 construct

8.3.3 Work breakdown

C0: Service performance is measured only at the end of all operations

For instance, a contract guarantees up to 40-day turnaround time. No further
customisation from the shared construct is required in this case.

C1 Jobs are preceded by several departments and service performances are
measured separately (in case of A1 variant)

For instance, a contract guarantees that the OEM will respond to the call within 1 hour
and recover the asset within 4 hours, and the OEM exhibits A1 decision making variant.

A Request agent is encompassed within the Asset agent in C1 construct (Figure 8-9).
The information object is amended to be issued by the Request agent upon the change
of the asset’s state.

Another delay element is added to represent the additional department within the
OEM agent. Each department completes each task in the Request agent. After all
services are performed, the Request agent signals the Asset agent and destroys itself.

Asset agent:

Adjustable attribute:

OpCon

ServiceCost

Variable:
Usage

Ready

Idle

Operating

NotReady

Subsystem agents:

Update Usage and

subsystem’s remaining

life as fn(OpCon) once

finish operating

Subsystem agent:

Adjustable attribute:

Life

RandFail

ServCost

Variable:
Remain:

Initial value: fn(Life)

ChangeLikelyhood

Rate Event:

Non-schedule

Fn (RandFail)

Trigger asset state to
NotReady if it was ready

Reset Remain

Update asset’s

ServiceCost

Cyclic Timer:

Schedule

Keep updating ChangeLikelyhood

as fn(Remain).

If the value is high and the asset
is with the OEM, reset Remain

and update asset’s ServiceCost

If no remained life, trigger asset

state to NotReady,

reset Remain and
update asset’s ServiceCost

General:

Set up message receiver

Chapter 8: Presentation of the final constructs

172

Figure 8-9: C1 construct

C2 Jobs are preceded by several departments and service performances are
measured separately (in case of A2 variant)

For instance, the contract guarantees to respond to the call within 1 hour and to
recover the asset within 4 hours, but the OEM exhibits A2 decision making variant.

A Request agent is encapsulated within the Asset agent in C2 construct (Figure 8-10).
The information object is amended to be issued by the Request agent upon the change
of the asset’s state. After the object is sent to the OEM agent, the agent registers the
request in AssetInQ, and activates AssignJob to allocate the job to field staff based on

Information java object:

From:

Request

Enter:

double

Task1

Task2 Receive signal

from OEM

Create

information object

and issue to OEM

Request agent:

Receive signal

from OEM

Trigger asset

to Ready

Dispose itself

Asset agent:

Adjustable attribute:

OpCon

Variable:
Usage

Ready

Idle

Operating

NotReady

Request agents:

Create Request

agent

General:

Set up message receiver

OEM agent:

Adjustable attribute:

MTTR

Adaptive

Histogram Dataset:

ServiceTime

Graph:
Histogram of ServiceTime

Entity class: Info

Receive

On enter:
Stamp entered time

Update JobIn

Depart

ment 1

On exit:
Update ServiceTime to histogram.

Update JobIn and asset’s Usage

Return Q
Variable:

JobIn
Staff

A

Remove the trigger to

asset

Depart

ment 2

Staff
B

Update Request stateUpdate Request state

Chapter 8: Presentation of the final constructs

173

the staff’s workload. The staff have flexibility to select a sequence of tasks to perform
the service.

StaffB agents are created to represent the additional department within the OEM
agent. Each department completes each task in the Request agent. After the service is
performed by both departments, the Staff agent signals the Request agent to further
update the Asset agent’s state and to dispose off itself. If the service has not been
completed by both departments, the Staff agent signals the Request agent to update
its state.

(a) Asset, Request, and Information object constructs

Information java object:

From:

Request

Enter:

double

Task1

Task2 Receive signal

f rom OEM

Create

information object

and issue to OEM

Request agent:

Receive signal

f rom OEM

Trigger asset

to Ready

Dispose itself

Asset agent:

Adjustable attribute:

OpCon

Variable:
Usage

Ready

Idle

Operating

NotReady

Request agents:

Create Request

agent

General:

Set up message receiver

Chapter 8: Presentation of the final constructs

174

(b) OEM and Staff constructs

Figure 8-10: C2 construct

8.3.4 Contractual mode

D1: Fleet contracting, daily available assets, daily penalty, and monthly payment

In this category, the service contract is made on the entire fleet of assets, available
assets and charges are recorded daily, but the payment is made monthly.

D1 construct is shown in Figure 8-11. Within the Customer agent, the variables depict

contract performance (Availability), reward (Revenue), and risk (Penalty). These
variables result from the three attributes, specified in the contracts. These attributes
are adjustable during model execution to represent contract renegotiation. The three
cyclic timers control the daily monitoring of available assets (hence, penalty), the
monthly contract payment, and the asset operating schedule. The transitions inside
the Asset agent correspond to the operating schedule.

Conditional Event:

AssignJob

If there is queuing asset

Assign staf f with minimum

workload to service asset

AssignJob2

If there is queuing asset

Assign staf f with minimum

workload to service asset

AssetInQ2

Element class: Info

Staff agent:

Variable:

DoneA:

DoneB

Idle

Activity A

Activity B

Collection:

Asset

Element class:

Info

General:

Store assigned

assets

Adjustable attribute:

CycletimeA

CycletimeB

Delayed by fn(workload, CycletimeB).

Update task’s completion

Be assigned to

service asset
Input probability that

staf f starts activity A

before activity B

If haven’t

completed

the task

If haven’t

completed

both tasks

If completed both tasks,

trigger asset state to Ready and

record recovery time.

Otherwise update Request state

and pass to another department
Delayed by fn(workload, CycletimeA).

Update task’s completion

OEM agent:

Dataset:

ServiceTime

Graph:

Histogram

ServiceTime

General:

Store asset required service in

the collection
Staff agents:

Collection:

AssetInQ

Element class: Info

StaffB agents:

Interactive addition of staf fB agent

Interactive removal of staf fB agent

Interactive addition of staf f agent

Interactive removal of staf f agent

Chapter 8: Presentation of the final constructs

175

Figure 8-11: D1 construct

D2: Individual contracting on recovery time basis, charges for exceeded agreed
duration, and monthly payment

In this case, the service contract is made on individual assets with monthly
transactions, guarantees recovery period, and incurs charges for failure to recover the
asset within the period.

D2 construct is illustrated in Figure 8-12. Within the Asset agent, the variables depict
reward (Revenue), and risk (Penalty). These variables result from the three attributes
specified in the contracts (guaranteed recovery period, contract price, charge). These
attributes are adjustable during model execution to represent contract renegotiation.
The two cyclic timers control monthly contract payment and asset operating schedule.

The transitions inside the Ready state correspond to the operating schedule, whilst the
transition inside the NotReady state updates the penalty if the guaranteed period is
exceeded.

Asset agent:

Adjustable attribute:

OpCon

Variable:
Usage

Ready

Idle

Operating

NotReady

Customer agent:

Asset agent

Interactive addition of asset agent

Interactive removal of asset agent

Receive trigger to operate

Delayed by input

operating duration

Adjustable attribute:

ReqAvail

Fine

MonthlyFee

Variable:
Availability

Revenue

Penalty

Cyclic Timer:

DailyMonitor

Daily checking available assets

against the required value.

updating Penalty, Availability

MonthlyMonitor

Monthly update revenue based

on contracted assets

Operation

Send trigger to any

available asset to operate

General:

Set up message receiver

Chapter 8: Presentation of the final constructs

176

Figure 8-12: D2 construct

D3: Individual contracting percentage uptime or available period basis, charges for
failure to achieve the level, and monthly payment

In this case, the service contract is made on individual assets with monthly

transactions, guarantees available period or percentage uptime, and incurs charges for
failure to achieve the level.

D3 construct is illustrated in Figure 8-13. Within the Asset agent, the variables depict
contract performance (UpTime), reward (Revenue), and risk (Penalty). These variables
result from the three attributes specified in the contracts (guaranteed uptime, contract
price, charge). These attributes are adjustable during model execution to represent
contract renegotiation. The two cyclic timers control monthly contract performance
(including payment) and asset operating schedule. The transitions inside the Ready
state correspond to the operating schedule and uptime monitoring.

Cyclic Timer:

Operation

Input operating frequency

Send trigger to any

available asset to operate

MonthlyMonitor

Monthly update revenue

Asset agent:

Variable:
Usage

Revenue

Penalty

Ready

Idle

Operating

NotReady

Receive trigger to operate

Delayed by input

operating duration

Activate once

AgreedRecoveryDuratio

n is exceeded.

Update Penalty
Adjustable attribute:

OpCon

AgreedRecoveryDuration

Fine

MonthlyFee

General:

Set up message receiver

Chapter 8: Presentation of the final constructs

177

Figure 8-13: D3 construct

D4: Pay-per-use and charges for failure occurs during operation.

In this case, the customer pays only when the asset is operating and the OEM is
charged if the asset fails during the mission.

D4 construct is illustrated in Figure 8-14. Within the Asset agent, the variables depict
reward (Revenue) and risk (Penalty). These variables result from the two attributes
specified in the contracts (price-per-use, charge). These attributes are adjustable
during model execution to represent contract renegotiation. The cyclic timer controls
the asset operating schedule. The OEM is charged in advance of the operation and
receives it back after the operation to penalise only if the asset’s failure occurs during
an operation.

Asset agent:

Variable:
Usage

Revenue

Penalty

UpTime

Ready

Idle

Operating

NotReady

Receive trigger to operate

Delayed by input

operating duration

Cyclic Timer:
Keep updating UpTime

Adjustable attribute:

OpCon

PercentUptime

Fine

MonthlyFee

Operation

Input operating frequency

Send trigger to any

available asset to operate

MonthlyMonitor

Monthly compare UpTime

with PercentUptime, and

calculate penalty

Update revenue

General:
Set up message receiver

Chapter 8: Presentation of the final constructs

178

Figure 8-14: D4 construct

All constructs are independent from software tools. In other words, modellers can
apply the constructs on any software packages that support ABS and DES techniques.

The demonstration how to implement these constructs in a software package is
provided in Appendix L.

8.4 Chapter summary

This chapter presents the final modelling constructs that can be used to provide
effective and efficient simulation model developments. The constructs comprise two
parts: the shared service contract construct and the case-dependent constructs. The
shared construct incorporates common PSS offering model elements whereas the
case-dependent constructs capture the case-dependent elements. The case-

dependent elements are caused by the variants in service decision making,
subsystems, work breakdown, and contractual mode. The next chapter discusses the
achievements of this research.

Asset agent:

Variable:
Usage

Revenue

Penalty

Ready

Idle

Operating

NotReady

Receive trigger to operate

Update revenue

Fine the OEM in advance

Delayed by input

operating duration

Return the fine

Cyclic Timer:

Adjustable attribute:

OpCon

PricePerUse

Fine

Operation

Input operating frequency

Send trigger to any

available asset to operate

General:

Set up message receiver

Chapter 9: Discussion

179

9 Discussion

Chapter 9: Discussion

180

The previous chapter detailed the final modelling constructs, which completed the last
objective and the aim of this research. This chapter discusses research findings in
Section 9.1, strengths of this research in Section 9.2, limitations of this research in
Section 9.3, and emergent literature in Section 9.4. This chapter is then summarised in
Section 9.5.

Figure 9-1: Chapter 9 outline

9.1 Discussion of research findings

The findings obtained during the research described in this thesis are discussed below.

9.1.1 Impacts from different contracts on simulation modelling approach

PSS has been an ongoing interest for the research community. Before the case studies
were conducted with the companies, the ideas and developments of models in this
thesis were led by reported cases from literature and various discussions with other
researchers within the PSS community. There were two extremes of opinions from the
community. At one end, PSS is perceived as having a large variety and a wide range of
contracts. This range is seen so wide that at the beginning of this PhD research
programme, the community doubted whether the aim of this research can be

9.1
Discussion of key findings

9.2
Strengths of this research

9.3
Research limitations

9.4
Emergent literature

9.5
Summary

Chapter 9: Discussion

181

achieved. At the other end, another group of researchers viewed PSS contracts as a
standard format which has the agreed availability, reliability, and supportability levels.
However the body of literature cannot provide sufficient evidence to justify these
arguments.

Along this line, it is always believed that although there might be a wide range of
contracts, some of them would share a common format. Therefore, some differences
among these contracts may not affect the modelling approach. This means it is
possible that two different contracts can be designed using the same model. This
research has always attempted to support this hypothesis.

Having discussed with the practitioners involved during the evaluation process, all
cases have their own formats which apply for all contracts in the company. The
parameters are consistent between contracts, but the values of these parameters may
change across contracts. Similarly, the scope of services can be renegotiated. This
implies that, for each company, a model can be built and reused for all contracts.
Among these cases, one company opens for new contracting ideas. In other words,
there has been one format, but other formats can be implemented if it proves
beneficial.

Based on the validation of the primary constructs, the hypothesis was supported from
the fact that many model elements have been repeatedly adopted across cases.
Particularly in the final constructs, the case-dependent variants are even further

decreased from the primary constructs. Nonetheless, it has to be noted here that to a
large extent the constructs were formulated from a product perspective. It may need
additional modifications in order for them to be applicable to service-centric PSS
context.

9.1.2 Simulation as a tool for PSS design

Having presented the models, researchers in the community were mostly impressed
by what the models were capable of. Very positive feedback was often received in
terms of the model’s capability in visualising contract performance in real time and the
interactive functionality that allows users to interact with the models. In other words,
users were excited by seeing how the contract performances were affected after their

decisions to change the particular inputs. However, there were some doubts about the
underlying logic inside the models.

From the experience throughout the research, a simulation model of service contracts
could take several months to develop and verify without the constructs, in contrast to
a matter of days using the constructs. Therefore, developing the models from scratch
depends greatly on the modeller’s experience and his understanding of the problem,
especially, when detailed modelling is required.

Chapter 9: Discussion

182

Besides, it was found that an important factor in ensuring a reliable model is the
understanding of some underlying mechanisms inside the software package. For
instance, two replications of the same experiment were conducted with identical
inputs at different days with the same random number stream. It was noticed that the
outputs of the first asset and the last asset in the array were interchanged. At that
time it was understood to be an effect from multi-thread execution, as stated by Yu
(2008) that a multi-thread feature is often incorporated in an agent paradigm.
However, the software vendor clarified later that the package runs in single-thread
mode. Therefore, the interchanged outputs were a result of the next-event time
handling method when two events take place simultaneously. In that experiment, the
two assets had identical inputs, thus, they triggered events at the same time. This

means that an experiment may not produce an identical debugging sequence. It has to
be noted that this time handling method is typical in DES and ABS and independent
from software package. Consequently, it is important to check how the applied
software engine handles this effect in order to avoid misbehaviour.

For these reasons, simulation may not be the most appropriate tool considering the
effort and time spent to model complex systems if the modeller has no guideline,
inexperience, or lack of understanding in the system.

Nonetheless, simulation has been proven effective in enhancing an understanding of
the system and the topic. Having completed several PSS offering models, the contract
success-failure mechanism was clearer, the interview questions were appropriately

structured, and the unexpected scenarios during the interviews were better
understood.

Three fundamental simulation modelling techniques have been analysed in this thesis:
SD, DES, and ABS. Section 4.1 already introduced their capability and drawbacks from
other contexts. In the context of product-centric PSS, they are summarised as shown in
Table 9-1. In the Table, DES-ABS is considered from the final constructs.

Chapter 9: Discussion

183

Table 9-1: Summary of capability and drawbacks of simulation techniques within the PSS context

 SD DES SD-ABS DES-ABS

Capability Simple to form.

Clearly shows influences and

relationships between

parameters.

Can include more factors to be

investigated than other methods.

Easy to communicate the model.

Can capture customers-OEM

relationship as a result from

product performance.

Can clearly present ‘value’

parameters and service efficiency.

Can clearly present ‘value’

parameter, service efficiency

measure, and input’s

uncertainties.

Can expose individual assets, their

life cycles and their active nature.

Enable assets to remain in the

model as well as being disposed at

the end of their life.

Enable effects of dynamic

behaviour such as contract

renegotiation to be explored.

Can clearly present ‘value’

parameter, service efficiency

measure, and input’s

uncertainties.

Can expose individual assets, their

life cycle and their active nature.

Enable assets to remain in the

model as well as being disposed at

the end of its life.

Enable effects of dynamic

behaviour such as contract

renegotiation to be explored.

Can embed priority rule to assets

waiting in the queues.

Drawbacks Could not illustrate decentralised

decision making and stochastic

nature of in-service activities.

Could capture ‘value’ on high

level.

Asset life cycle could not be

visualised.

Not natural to present hierarchy

of decision making.

Could not show asset autonomy.

Asset life cycle and usage

information could not be exposed.

Required a lot of analogy.

Could not incorporate queuing

rule.

Unnatural to present asset’s life

cycle in the OEM model.

May result in an overly-detailed

model.

Chapter 9: Discussion

184

9.1.3 Agent-oriented approach in the PSS modelling context

This research finding is linked with the use of agent-oriented approach in a new
context. An agent is capable of being identifiable, situated, goal-directed, autonomous,
and flexible. These functionalities are encompassed in the final constructs as follows.

By being identifiable, agent behaviour was designed inside the OEM agent, Customer
agents, and Asset agents. Thus, it enabled fast and easy replication of agents. Only
their attributes/parameters (e.g. contract price) needed to be defined. Additionally, it
allowed the entire system to be broken down to agent by agent, which encouraged the
modellers to model and verify the whole system bit by bit.

By being situated, the influences and communication between agents can be
established. An example of the influences is the impact from Subsystem agents’
condition on the Asset agent’s health. The flexibility functionality triggers several
events in the constructs, for instance, Staff agents can adapt their productivities
depending on their workloads. Finally, the goal-directed and autonomous
functionalities prevent inappropriate interactive commands by users. For instance,
once a user interactively removes a staff during model execution, a decision rule can
be programmed to activate only if the staff is idle.

Nonetheless, as the entire system can be modelled by breaking it down to pieces, the
modellers may lose the ‘big picture’, and hence, include too many details in one agent.

As a result, an ABS model can be overly-complicated. Therefore during modelling
process, it is recommended to initially assume that “No agent is needed, and the model
can be developed from SD or DES”, then find the argument to prove otherwise. This
was applied to the modelling approach prior to the formation of the constructs, which
proved to significantly reduce complexity. ABS should be used only when the
traditional techniques: 1) are insufficient, 2) can be considered unnatural, and 3) can
be created only through extensive coding. The hypothesis can be applied from the
main model down to the lower layer.

The speed of model execution can also be easily influenced in an ABS model. For
instance, it can be executed substantially slowly by modelling agent behaviour in the
lowest hierarchy using continuous modelling elements such as flow variables. Besides,

it can be significantly slower as agents in the model increase and it is run in single-
thread mode. This is because an agent is executed in series and in a very small time
step.

9.1.4 The constructs as an aid for decision making

In the existing PSS literature (e.g. Baines et al., 2007; Tukker, 2004; Mont, 2002),
product element and service element are often considered as a combined package.
However, both TrainCo and EngineCo separate these two elements. In TrainCo, the
trains are normally sold to ROSCO, and the operators lease these trains from ROSCO

Chapter 9: Discussion

185

but sign service contracts from TrainCo. Moreover, in EngineCo, contracted engines
may not be manufactured by EngineCo. This finding indicates that the school of
thought between the literature and practice are not quite match.

Another sign of mismatch between PSS literature and practice comes from the
criticality in delivering the agreed performance. The pre-defined penalty and the fact
that the contracts commit the OEMs for long period of time led to the perception that
it is extremely important to deliver the agreed performance in PSS. However, the
results from interviews during SD model development and validation indicate that this
issue is important but not critical, particularly with EngineCo and ShipCo. In the
EngineCo case, the OEM could negotiate to pay no penalty with the customer. In case

of ShipCo, the company could even negotiate for additional payments with the
customer under some unexpected circumstances.

Whilst these findings revealed some misperceptions between PSS theory and practice,
the constructs can incorporate both theoretical concept and closely capture practical
situations, as can be seen from Table 9-2. In the table, the plus signs indicate strengths
or included issues, while the minus signs depict weaknesses or uncovered issues.

Table 9-2: Benchmarking between the literature, the constructs, and current
practice.

Criteria Literature Constructs EngineCo ShipCo TrainCo

Generalise to all PSS

Out of scope Incorporate some analytical

techniques

Extend life cycle perspective

from product selling

+ + + + +

Address value parameter

explicitly

+ + + + +

Highlight interactions between

parties in supply chain and

customer.

Out of scope

Include both economic and

environmental measures

Demonstrate the link between

asset transformation and

service support

+ + - + +

Present service efficiency

measures

- + + + +

Capture link between product

performance and customer-

manufacturer relationship

- + + + +

Illustrate redesigns from

customer involvements

- + - - +

Chapter 9: Discussion

186

Criteria Literature Constructs EngineCo ShipCo TrainCo

Demonstrate decentralise

decision making

- + - + -

Represent cultural mind frame,

social habits, and influence

between customers

Out of scope

Capture effect of technology on

company’s capability

- - - - -

Incorporate government

influence

Out of scope

This table shows the contribution of the constructs in four areas (No.8 – No.13) and
the direction for future research in three areas (No.12 – No.14). It can also be seen
that PSS modelling literature is lagging behind the industrial implementation, whilst
the constructs can capture all issues that appeared in the case industry. Therefore,
from a theoretical point of view, the constructs can be a potential solution that aids
decision making.

This research produced two versions of the constructs; the primary constructs which
cover more scenarios and the final constructs that are easier to implement.

The primary constructs include more variants and amounts of decision logic to

encompass more scenarios. They were also intended to enable model verification at
the end of each step, and therefore, each step could be executed by itself. This
intention, however, resulted in more modifications once all the steps were integrated.
Furthermore, the constructs are independent from any software package. Therefore,
exact code was not provided in this version of the constructs. However, this attempt
reduced the confidence in completing the model of a user.

For these reasons, the amounts of decision logic and variants were reduced and user
interactive features were added in the final constructs. The basic construct was
modified to become the shared construct so that the customisation from the shared
construct can be mostly made by adding elements rather than modifying them.
Moreover, the constructs were implemented as an illustration in a software package.

Nevertheless, this research neither aims to adopt the best modelling methods, nor
provides a tutorial on using the software package. Therefore both versions exclude
general basic functions such as agent creation.

Accordingly, the final version is easier to use, nonetheless, covers less functionality in
analysing problems than the primary version. However, both versions can be
effectively used to understand contracting issues and the correlation between
contracting, operational planning, and financial issues.

Chapter 9: Discussion

187

9.2 Strengths of the research

This research can be evaluated from several viewpoints; research process, the
contribution to knowledge, and the practical functionality.

9.2.1 The research process

This research has systematically developed and contains explicit evidence to support
a conclusion for each objective of this thesis. In Chapter 2, a literature review was
conducted to examine successful cases and existing modelling techniques, which led to
the identification of gaps of knowledge. The review was evaluated and refined by a

wider community in a journal publication. In Chapter 3, the research aim and
objectives were developed based on the gap analysis. This led to the logical
construction of a research methodology. Chapter 4 provided a detailed evaluation of
the potential modelling techniques from literature and actual model developments.
The analysis from this stage was primarily made against the gaps in knowledge
identified in Chapter 2 which built up the arguments as to why a hybrid ABS-DES was
considered the most appropriate technique to underline the core structure of the
modelling constructs. The evidence in this stage, which includes a literature review of
the relevant modelling techniques, the resulting models, and their analysis, were
presented as conference and journal papers and to other simulation experts and
practitioners. In Chapter 5, the hybrid technique was applied to different case studies
to refine and generalise the modelling approach. The analysis and lessons learnt from

this stage led to the modelling approach and underlying modelling methods inside the
constructs. The detailed models were verified with a simulation expert and are
documented in the Appendices (E, F, G, H). The constructs presented in Chapter 6
were validated using case studies and external users in Chapter 7. Based on the
validation result, the final constructs were developed. Throughout this research, the
research methods for carrying out simulation study have always been followed to
ensure model functionality.

Besides the reviews by the wider community, this research attempted to ensure
quality of results and empirical study by selecting relevant case studies, and by
following case study protocol. The cases were chosen from different sectors under a

product-centric PSS context so that generality of results could be enhanced. The
interviewees are all directly involved in offering service contracts. Seven different
cases have been covered in this thesis, including four cases in Chapter 5. The case
study methodology was selected to enable insight into the contracting decisions and
the modelling approach. The case study protocol ensured completeness and relevance
of the data. All interviews were conducted jointly with another researcher to
reassure consistency of information.

To evaluate reliability and repeatability, the constructs were validated externally by
other modellers with different simulation experiences. The author closely observed
the development process to collect implementation data. Additionally, the modellers

Chapter 9: Discussion

188

provided feedback after developing models from the constructs. This process also
aimed to remove bias while evaluating the usability of the constructs. The usefulness
of the constructs was also evaluated by practitioners who were involved in the
validation. Moreover, the concepts and the models applied in this research have been
continuously discussed with other researchers in the PSS community to verify the
underlying assumptions and develop wider understanding of the topic.

Lastly, throughout this research, the literature survey and assessment of the
developed models against the gaps in knowledge have been conducted iteratively
after the end of each step. The intention was to continuously evaluate the
achievement and novelty of the constructs.

9.2.2 Contribution to knowledge

A number of contributions to knowledge have been produced in this research,
summarised in Table 9-3. The main contribution is a new way of rapid development of
simulation models of service contracts (using modelling constructs), which can assist
modellers to build and analyse service contracting implications in an effective and
efficient manner. In addition to that, this thesis also provides secondary contributions
which relate to the use of simulation techniques in a new context, new ways of
capturing the extended characteristic and dynamic behaviour of PSS beyond the
traditional business, and rapid developing service contract simulation models. This
research also brings together theoretical PSS research, operational planning and
decision support tools.

Chapter 9: Discussion

189

Table 9-3: List of contributions

Contributions Related gap in knowledge (Section 2.5) Potential benefits Related chapter

Identification of gaps in knowledge

in PSS modelling

n/a Address future researches in the

potential areas.

Provide lists of model parameters for

further model customisation.

Chapter 2

Use of simulation in a new context

“There was no guideline on the usability and suitability of

simulation techniques for a particular PSS problem.”

Use to map an appropriate

technique to a particular PSS

problem.

Chapter 4

A new approach that brings together

three research areas: theoretical

PSS, operational planning, and

decision support tools

“The majority of techniques in the literature produced results in

the forms of guidelines, configurations, or specifications, which

are appropriate for the high level design stage. Once designed,

relationships in the system were mostly fixed.”

“…an evaluation could only be made separately between the

hierarchies, thus the effects of unexpected behaviour from

across levels may be discarded in the models.”

Guide how to effectively use

simulation for decision making.

Provide a potential step towards a

powerful decision support tool.

Lower barrier in PSS adoption.

Chapters 4, 5, 7

A new way of rapid developing

service contract simulation models

“The applicability of existing models in the literature was narrow

and cannot be reused across cases.”

Shorten model development time. Chapters 6 and 8

Chapter 9: Discussion

190

Contributions Related gap in knowledge (Section 2.5) Potential benefits Related chapter

A new way of capturing the

characteristics beyond traditional

business.

“Indicators of service efficiency, such as asset availability, asset

operating times, and functional reliability, were not commonly

found.”

“The changes of states of assets during the in-service phase,

asset's relationships with manufacturer and customer, and the

associated risks and penalty, are still limitedly exposed.”

“Decentralised decision making was not properly taken into

account in any model.”

“Service response time was not examined as an output.”

“The relationships triggered by the product availability and

performance, were not emphasised.”

“The degree of interactions between suppliers and

manufacturers, market responsiveness and the influences

between customers were also not explicitly included in any

model.”

Enable effective provision of a

contract and avoid losses.

Visualise risk and reward mechanism

during the contract delivery phase.

Chapters 4, 5, 6,

8

A new way of capturing dynamic

behaviour in the contract delivery

phase

“The majority of the existing tools do not incorporate the time

dependent variables.”

“The capability in encapsulating customer's autonomy in asset

operations and in assessing risks from external events beyond

the boundary of each agent is still limited.”

Chapter 9: Discussion

191

9.2.3 Practical implication

The constructs bring two levels of practical benefits. On a high level, the effectiveness
of the constructs enables the OEMs to understand the risk-reward mechanism and
implications of service contracting prior to making a contract. On the lower level, the
effectiveness of the constructs allows the modellers to appropriately model service
contracts, and the efficiency of the constructs assists the modellers to perform the task
in a timely manner. Without the constructs, the modellers need to develop a model
from scratch. The modelling elements can also be reused once created, which means a
model can be created more quickly as the modellers get more familiar with the
constructs.

In summary, the models showed the following benefits:

 A contract can be customised based on the asset usage and the price of the
contract can be estimated rapidly. This means an OEM can be flexible to
customer needs.

 A guaranteed contract performance can be estimated based on the OEM’s

current operational capability and the asset capability. This also enhances
contract customisation.

 The profits from alternative contracts can be compared prior to making a

contract. This capability is beneficial for an OEM to negotiate a contract with a
customer.

 Impacts of any possible risks or any potential dynamic behaviour during the

implementation phase (e.g. change of the asset usage, price changes) can be
visualised before making a contract. This capability allows an OEM to take into
account the impacts, and therefore, avoid losses from a contract.

 Alternative strategies can be compared so that an effective capability

improvement strategy can be identified, for example, an asset life extension
and staff recruitments. Consequently, unnecessary investments can be
avoided.

 Performances of both individual level and the entire system can be monitored

throughout the contract period simultaneously. This allows the effects between
hierarchies to be captured.

 The profits and losses from a particular ratio of traditional business and

contract business can be evaluated. Therefore, inappropriate marketing
strategies can be prevented.

These capabilities were detailed in Chapter 7.

Chapter 9: Discussion

192

9.3 Limitations

This section identifies some limitations of this research, which can be associated with
the research process and the constructs.

In terms of the research process, the first issue was related to the number of case
studies. Even though several models have been built in this research, the constructs
were primarily developed from four case studies and refined using another three case
studies. The limited number of case studies was constrained by time which was
devoted to handle other important aspects. Firstly, it was important to apply a
simulation technique that could cope with the shifts in modelling. Howevert, literature

that mapped different simulation techniques with PSS environment was lacking.
Therefore, additional empirical studies were required before the final technique was
selected (Chapter 4). Secondly, as ABS is generally new, a lot of manual code was
unavoidable. This characteristic, in combination with the fact that PSS is complex,
required a significant amount of time in developing, verifying, and validating the
models without any guideline (Chapter 5). Last, each validation required a series of
interactions and commitment between the author and the company/user. As a result,
the time to include more cases was limited. However, the author participated in PSS
events and discussed the scenarios with other researchers in the PSS community to
gain wider understanding of the topic.

The second issue is related to bias. The initial source of bias could arise from the fact
that the author is familiar with the research area and the constructs. As a result, model
modification could be performed in a timely manner with less extensive effort.
Nonetheless, this bias was minimised by involving external participants to evaluate the
usability of the constructs. The second bias could be caused by the participant’s
experience in developing ABS models. The participants might compare the ease of use
of the constructs with their familiar software packages developed from other
commonly-used simulation techniques (such as DES). As those techniques have been
matured, their software packages tend to be well-developed and user-friendly.
Consequently, participants may expect the constructs to be as easy as those software
packages. Moreover, their experience and understanding of the topic potentially
influenced the modifications. To enable a fair comparison, implementation of the

constructs as a commercial-off-the-shelf tool would be necessary. However, in this
research, this bias was handled by involving an expert in ABS and PSS areas in the
validation. The last bias could be a result from the limited number of participants
involved in the user validation. Nonetheless, the author aimed to closely observe their
difficulties during the modelling process, and to ensure that their feedback was
insightful and valid. This required the participants to actually follow the constructs and
develop the model, which cannot be ensured by using surveys. This process is too
time-consuming to involve many users.

Chapter 9: Discussion

193

There are two limitations regarding the constructs. Firstly, they still require
modification to suit each case to some extent. This is because different companies
may be interested in different model parameters to experiment with. In fact, the
constructs could have been designed to cover as many analysis elements as possible.
Nevertheless, it means that there would be too many unnecessary elements for some
companies. Therefore, the constructs include only commonly-used elements and
further modifications are left to the users. Secondly, the constructs aim to provide a
guideline to users, not the best modelling methods. Thus, they need some levels of
modelling experience to apply programming code. Additionally, as PSS simulation
modelling literature is still in an early phase, this research focussed on building
modelling capability from the fundamental stage. Therefore, the constructs were

developed for learning rather than providing solution. For this reason, output
validation was excluded in this research.

9.4 Emergent literature

PSS offering design was an ongoing interest in literature during the undertaking of this
research. In high level design, attempts have been made to conceptualise PSS using
reference model and modelling language (Becker, 2010), and UML (Lin, 2010).
Similarly, ServiceCAD (described in the literature review chapter) has been

continuously developed. At a detailed level, Monte Carlo was adopted to simulate life
cycle cost of machine tools (Lanza et al., 2011). DES was used to enable comparison
across different product-service business models (Kuo, 2011; Ball et al., 2010). Also, a
hybrid SD-ABS was proposed to estimate costs whilst including risks and uncertainties
in a PSS supply chain (Erkoyuncu, 2011).

Nevertheless, these publications do not highlight active nature of in-service assets and
their life cycle as well as the possibility of renegotiation and early termination of
contracts.

9.5 Chapter summary

This chapter discussed key findings, highlighted strengths of this research in terms of
research process, contributions to knowledge, and contributions to practice.
Limitations were also addressed. The chapter ended the discussion by identifying
related literature that emerged during the period of research. This reveals an ongoing
interest in the area, yet, it does not impact on the contributions of this research. The
next chapter concludes this thesis.

References

194

10 Conclusions

References

195

The previous chapter already discussed the research findings obtained during the
undertaking of this research. This chapter concludes the outcomes from this research
in correspondence with the research objectives (Section 10.1) and provides direction
for future research (Section 10.2). Finally, concluding remarks are stated in Section
10.3.

10.1 Summary of achievements against objectives

Ultimately, this research aims to propose the modelling constructs that enhances

effective and efficient development of service contract simulation models. The
constructs can enhance efficient development of simulation models as they can
shorten modelling development time significantly. The constructs also enable effective
development due to four reasons. Firstly, the characteristics and dynamic behaviour in
PSS can be captured, which was lacking in the body of knowledge. Secondly, some

degrees of case customisation are incorporated which enhances applicability of the
constructs. Thirdly, the models developed from the constructs have been proved by
practitioners and experts to be practical and meaningful. Finally, it is feasible to
develop valid models based on the constructs.

The constructs are led by the achievements of each research objective as follows:

1. To identify a simulation technique that can potentially capture PSS
characteristics and dynamic behaviour

A systematic process was conducted to ensure that this objective is achieved and the
conclusion is valid.

The first stage reviewed existing modelling techniques in PSS. The review addresses
PSS characteristics (Section 2.3.1), dynamic behaviour (Section 2.3.2), and existing
modelling techniques in PSS (Section 2.4.1). The techniques were then evaluated in
terms of capability in capturing the effects from dynamic behaviour in PSS (Section
2.5.2). As a consequence, three simulation techniques were primarily identified as
potential techniques: SD, DES and ABS.

The second evaluation was presented in Chapter 4. In this chapter, the capabilities and
drawbacks of these three techniques, obtained from the simulation literature, were
first described (Section 4.1). To enhance the insight of analysis, actual model
developments were conducted using these three techniques and their combinations
(Section 4.2). The model functionalities were contrasted with 1) the strengths and
weaknesses of PSS modelling literature analysed in Section 2.5, and 2) the shifts in
modelling principle addressed during the model development, summarised in Section
4.2.5.

References

196

The outcome of this stage justifies the hybrid DES-ABS technique as an appropriate
technique as it can potentially fill the gap of knowledge from both PSS and modelling
viewpoints. From the PSS perspective, the hybrid technique could expose value
parameters, service efficiency measures, decentralised decision making, extended life
cycle from manufacturing, and OEM-customer relationship as influenced by product
performance. In terms of modelling, the technique effectively represented input
uncertainties, asset states, asset’s heterogeneity, and their independency from the
OEM. Besides, the hybrid model was proven to enable user interactive adjustment of
several inputs during model execution. This functionality can illustrate contract
renegotiation, operational changes, and market sensitivity.

The validity of achievement from this stage is enhanced due to two reasons:

 The primary investigation explored a broad scope and covered wide results,
whereas the secondary investigation provided insights. Therefore, the
conclusion is valid from both horizontal and vertical perspectives.

 The analysis was obtained from literature and practical viewpoints. Thus, the
arguments are both conceptually and practically valid.

2. To determine an appropriate modelling approach that enables effective and
efficient development of the models

To achieve this objective, the author applied the hybrid technique to various case
studies in Section 5.1. These cases were led by the available information from
literature, and selected from different sectors. The intention was to generalise the
knowledge in modelling from different contracting scenarios. As the data obtained
from the literature were not complete, the author validated the underlying
assumption with PSS experts in most cases. However, it has to be pointed out that the
focus of this stage is on the knowledge captured during the modelling. Accordingly, the
external validations were mainly carried out by presentation to an expert in simulation
within PSS context.

The results from model development led to the following major conclusions:

 It is too complex to design a construct which covers all theoretical PSS
characteristics and dynamic behaviour.

 To optimise both feasibility and applicability of the constructs, common PSS
elements and case-dependent elements should be managed separately.

 The common PSS elements relate to asset life cycle, OEM service process, in-

service asset information, service efficiency measures, and usage-based
analysis. The case-dependent elements involve contract modifications and

References

197

termination, contract creation, decentralised service decision making, asset
structure, the track of job progress and an adaptive capacity.

 The case-dependent PSS elements resulted in various high-level model

structures. However, the fundamental model elements in all cases comprise a
Java information object, an OEM agent, Asset agents, and PSS environment.

3. To form primary modelling constructs based on the approach

This objective was achieved in Chapter 6. The findings in Chapter 5 were implemented
in a simulation software package. The constructs consist of two parts: the basic service

contract construct and the case-dependent constructs which enable the customisation
of the basic model to suit each business case. The basic construct represents the
common PSS elements and the case-dependent constructs capture their variances.

The basic construct consists of two layers and contains four fundamental model
elements. The first layer contains an OEM agent, Asset agents and a PSS environment,
whereas the second layer details the OEM service process inside the OEM agent and
asset states inside the Asset agents. The state change inside the agents initiates the
last element: a Java object which contains asset information and is passed between
OEM and Asset agents.

The constructs were evaluated in terms of the ability to represent a PSS environment
and the outcome reveals the effectiveness to model service contracts.

4. To evaluate and refine the primary constructs

To achieve this stage, the constructs were validated using three case studies under a
product-centric PSS context and tested by three users. This step was presented in
Chapter 7. To enhance generality, the cases were selected from different industries
and the users were chosen from different simulation backgrounds. The outcome from
both validation approaches proved applicability, practicality, feasibility, and capability
in shortening model development time to a great extent. Additionally, the analysis
highlighted opportunities to improve the constructs by making implementation
explicit, simplifying the customisation, as well as reducing some variants.

5. To present the final constructs

As a result from the validation, the constructs were amended to have the following
features:

 To enhance the use of the constructs for modellers, the overview and the user
manual were first presented, and followed by the constructs. An example of
implementation on a software package is provided in Appendix L.

References

198

 Similar to the primary constructs, the final constructs consist of two parts: the
shared construct and the case-dependent constructs. However, the case-
dependent constructs reduce the number of code modification made to the
shared construct and are primary based on element additions for the ease of
case customisation.

 The shared construct consists of three layers and contains five fundamental
model elements. The first layer contains OEM agent, Customer agents and a
PSS environment. The second layer details the OEM service process inside the
OEM agent and Asset agents inside Customer agents. Finally, the third layer
models asset’s state within the in-service phase. The state change inside Asset

agent initiates the last element: a Java object which contains asset information
and is passed between OEM and Asset agents.

 The case-dependent constructs relate to variants within service decision
making, subsystem, work breakdown, and contractual mode.

 The constructs are intended to guide model development independently from
a software package, therefore, exact programming code is excluded. This
enables experienced modellers to apply their familiar modelling methods.
However, the example implementation in a software package should bring
confidence to users in using the constructs and ensure repeatability of results.

In conclusion, this research completed all objectives and the aim. The next section
identifies possible future directions of work based on this research.

10.2 Future research

Firstly, other techniques may be used along with the constructs to improve the
understanding and clarify parameters prior to model development. For example, IDEF0
(Integration Definition for Function Modelling) can be applied to visualise all inputs
and outputs of the contracting decision process, a balance scorecard can be adopted

to systematically clarify and classify the contract’s performance indicators, and a
checklist can be used to map the case with the variants.

Secondly, feedback from the user validation and the case companies reveal
opportunities in implementing visual interactive capability. To accomplish this, an
input screen may be separated from the model via tools such as Microsoft Excel. A
conceptual modelling tool such as BPMN can be linked after the input screen to
illustrate relationships between actors in one page. Also, the shared construct can be
made as a template provided as an option prior to model creation, and the elements

References

199

which indicate the characteristic variances can be encapsulated in a module that can
be quickly created by drag and drop operations.

Thirdly, there are some weaknesses identified in the PSS modelling literature that were
not covered in the constructs to avoid over-complicating them. These include the
impact of monitoring technology and influences between parties in the supply chain.
Similarly, as the constructs focus on the OEM’s standpoint, the measures in the
constructs are in terms of economic (cost, revenue) and operation (recovery time,
queuing assets) whereas environmental measure (waste amount, material
consumption) and financial measures (net present value) were not included. These
aspects can be further investigated and possible to incorporate in the constructs. In

fact, this research explored effects of technology and influences from stakeholders
using SD. However, they were not presented in the constructs as SD elements can slow
down model execution considerably and these aspects can be more complicated using
other techniques.

Fourthly, this research focused on modelling capability. Further improvements can also
be made in applying some analytical techniques such as cost analysis to maximise the
precision of outputs, and optimisation techniques to automatically provide a solution
to the OEMs.

Finally, the scope of this research applies to product-centric PSS. This scope can be
expanded so that decision support tools can be made available for other types of PSS.
These include the impact of cultural mind frames and social habits.

10.3 Concluding remarks

This chapter aimed to demonstrate that the research contained in this thesis has
accomplished all the defined objectives in Chapter 3. It summarised the achievements
related to the research objectives, and provided directions for future research. Overall,
this thesis has illustrated that the hybrid Agent-Based Simulation and Discrete-Event
Simulation is capable of capturing key PSS characteristics and dynamic behaviour that

span beyond the traditional product selling businesses. With the modelling constructs
delivered in this thesis, it is now possible to build a model by directly mapping case
characteristics with the construct variants, dragging and dropping elements, and the
associated code will be generated on-the-fly. This suggests a shifted modelling
paradigm/mindset from building a model to assembling a model. Lastly, it is believed
that the developed methodology can contribute in evaluating various PSS offerings
prior to making a contract, in the real world. Also, the constructs can realistically be
further implemented as a computer-based tool that eases the modelling tasks for
OEMs.

References

200

References

Abramovici, M., Neubach, M., Schulze, M. and Spura, C., 2009. Metadata reference
model for IPS2 lifecycle management. In: Proceedings of the CIRP IPS2 conference
2009, 1st-2nd April, Cranfield, UK.

Aircraft commerce, 2006. CFM56-3 maintenance analysis & budget. In: Aircraft
Commerce issue No.45 April/May.

AIA, 2011. Performance-Based Logistics Award [online]. Available from:
http://www.aia-dev.org/newsroom/awards/pbl_award/ [Accessed 24th June 2011].

Almeida, F.L., Miguel, P.A.C. and Silva, M.T.D., 2008. A literature review of
servitisation: a preliminary analysis. In: Proceedings of the POMS 19th annual
conference, 9th–12th May, California, USA.

Alonso-Rasgado, T., Thompson, G. and Elfström, B-O., 2004. The design of functional
(total care) products. Journal of Engineering Design, 15(6): 515–540.

Anderson, M. and Tukker, A., 2005. Perspectives on radical changes to sustainable
consumption and production. In: Proceedings of SCORE conference, Copenhagen.

Aurich, J.C, Fuchs, C. and Wagenknecht, C., 2006. Life cycle oriented design of technical
product-service systems. Journal of Cleaner Production, 14(17): 1480–1494.

Azarenko, A., Roy, R., Shehab, E. and Tiwari, A., 2009. Technical product-service
systems: some implications for the machine tool industry. International Journal of
Manufacturing Technology and Management, 20(5): 700–722.

BAE Systems, 2006. BAE Systems Awarded £947M Tornado Support Contract [online].

Available from: http://www.baesystems.com/Newsroom/NewsReleases/2006/
autoGen_10711123731.html [Accessed 26th June 2011].

BAE Systems, 2010. Case Study: ATTAC (Availability Transformation: Tornado Aircraft
Contract [Online]. Available from: http://www.sanders.com/WorldwideLocations/
UnitedKingdom/UKDefenceIndustrialStrategy/CaseStudies/autoGen_10721411422.ht
ml [Accessed 8th November 2010].

Baines, T.S., Lightfoot, H.W., Evans, S., Neely, A., Greenough, R., Peppard, J., Roy, R.,
Shehab, E., Braganza, A., Tiwari, A., Alcock, J.R., Angus, J.P., Bastl, M., Cousens, A.,

References

201

Irving, P., Johnson, M., Kingston, J., Lockett, H., Martinez, V., Michele, P., Tranfield, D.,
Walton, I.M. and Wilson, H., 2007. State-of-the-art in the product-service systems.
Journal of Engineering Manufacture, 221(10): 1543–1552.

Baines, T.S., Lightfoot, H.W., Peppard, J., Shehab, E., Johnson, M., Tiwari, A. and Swink,
M., 2009a. Towards an operations strategy for product-centric servitisation.
International Journal of Operations and Production Management, 29(5): 494–519.

Baines, T.S., Lightfoot, H.W., Benedettini, O. and Kay, J.M., 2009b. The servitisation of
manufacturing: a review of literature and reflection on future challenges. Journal of
Manufacturing Technology Management, 20(5): 547–567.

Baines, T.S., Lightfoot, H.W. and Kay, J.M., 2009c. Servitised manufacture: practical
challenges of delivering integrated products and services. Proceedings of the IMechE
Part B: Journal of Engineering Manufacture, 223(9): 1207–1215.

Ball, P.D., Tiwari, A., Alabdulkarim, A., Cuthbert, R. and Thorne, A., 2010. Using discrete
event simulation to investigate engineering product service strategies. In: Proceedings
of the 8th International Conference on Manufacturing Research ICMR, 14th-16th
September, Durham, UK.

Banks, J., Nelson, B.L. and Nicol, D., 2009. Discrete-event system simulation. Upper
Saddle River, NJ: Pearson Prentice Hall.

Banks, J., 2007. Handbook of Simulation: Principles, Methodology, Advances,
Applications, and Practice [online]. Wiley online library. Available from:
http://onlinelibrary.wiley.com/doi/10.1002/9780470172445.fmatter/summary
[Accessed 20th July 2011].

Bazargan, M. and McGrath, R.N., 2003. Discrete event simulation to improve aircraft
availability and maintainability. In: Reliability Maintainability Symposium, Daytona
Beach, FL, USA.

Becker, J., Beverungen, D.F. and Knackstedt, R., 2010. The challenge of conceptual
modelling for product-service systems: status-quo and perspectives for reference

models and modelling languages. Information Systems e-Business Management, 8(1):
33-66.

Bennett, B.S., 1995. Simulation fundamentals. Hertfordshire, UK: Prentice Hall
International (UK) Ltd.

Berkowitz, D., Gupta, J.N., Simpson, J.T. and McWilliams, J.B., 2005. Defining and
implementing Performance-Based Logistics in government. Defense Acquisition Review
Journal, 11(3): 255-267.

References

202

Bey, N. and McAloone, T., 2006. From LCA to PSS –Making leaps towards sustainability
by applying product/service-system thinking in product development. In: Proceedings
of the 13th CIRP International Conference on Life Cycle Engineering, 571-576.

Bianchi, N.P., Evans, S., Revetria, R. and Tonelli, F., 2009. Influencing factors of
successful transitions towards product-service systems: a simulation approach.
International Journal of Mathematics and Computers in Simulation, 3(1): 30–43.

Bonabeau, E., 2002. Agent-based modeling: Methods and techniques for simulating
human systems. The National Academy of Sciences, 99(7): 280–7287.

Borshchev, A. and Filippov, A., 2004. From System Dynamics and Discrete Event to
Practical Agent Based Modelling: Reasons, Techniques, Tools [Online]. XJ Technologies
and St. Petersburg Technical University, Russia. Available from:
http://www.systemdynamics.org/conferences/2004/SDS-2004/PAPERS/
381BORSH.pdf [Accessed 8th November 2009].

Brailsford, S.C., 2008. System dynamics: what's in it for healthcare simulation
modelers. In: Proceedings of the 2008 winter simulation conference, 7th–10th
December, Miami, Florida, 1478–1483.

Buxton, D., Farr, R. and McCarthy, B., 2006. The aero-engine value chain under future
business environments: using agent-based simulation to understand dynamic

behaviour. In: Proceedings of the MITIP2006, 11th–12th September, Budapest,
Hungary.

Cantos, J.N., 2009. An investigation of the service delivery systems at Man Truck and
Bus UK Ltd. Thesis (MSc). Cranfield University.

Cavrak I., Stranjak, A. and Zagar, M., 2009. SDLMAS: A Scenario Mode ling Framework
for Multi-Agent Systems. Journal of Universal Computer Science, 15(4): 898-925.

Chahal, K. and Eldabi, T., 2008. System dynamics and discrete event simulation: a
meta-comparison. In: C. Currie, K. Kotiadis, S. Robinson and S. Taylor, eds. Proceedings
of the Operational Research Society Simulation Workshop 2008 (SW08). Birmingham,
UK: Operational Research Society.

Chandraprakaikul, W., 2008. Strategic positioning within global supply chains. Thesis
(EngD). Cranfield University.

Chung, C. A., 2004. Simulation modelling handbook: a practical approach. CRC press.

Creswell, J.W. and Plano Clark, V.L., 2007. Designing and conducting mixed methods
research. CA, USA: Sage.

References

203

Creswell, J.W., 1998. Qualitative inquiry and research design: Choosing among five
traditions. Thousand Oaks, CA: Sage.

Datta, P.P. and Roy, R., 2009. Cost modelling techniques for availability type service
support contracts: a literature review and empirical study. In: Proceedings of the 1st
CIRP Industrial Product-Service Systems (IPS2) Conference, 1st -2nd April, Cranfield, UK.

De Coster, R., 2008. Differences in forecasting approaches between product firms and
product-service systems (PSS). In: Proceedings of the 6th international conference on
manufacturing research (ICMR08), 9th-10th September, Brunel, 539–547.

EMSA, 2006. Enclosure 2:Part A- Vessel Service Contract [online]. Available from:
http://www.emsa.europa.eu/Docs/opr/emsa_op1_2006_enclosure2a_vessel_availabil
ity_contract.pdf [Accessed 27th June 2011].

Erkoyuncu, J.A., 2011. Cost uncertainty management and modelling for industrial
product-service systems. Thesis (PhD). Cranfield University.

Evans, S., Partidario, P.J. and Lambert, J., 2007. Industrialization as a key element of
sustainable product-service solutions. International Journal of Production Research,
45(18): 4225-46.

Fujimoto, J., Umeda, Y., Tamura, T., Tomiyama, T. and Kimura, F., 2003. Development

of service-oriented products based on the inverse manufacturing concept.
Environmental Sciences & Technology, 37(23): 5398–5406.

Gansler, J.S. and Lucyshyn, W., 2006. Evaluation of Performance Based Logistics
[online]. Maryland University College Park Centre for Public Policy and Private
Enterprise. Available from: http://handle.dtic.mil/100.2/ADA536805 [Accessed
27th June 2011].

Goulding, C., 2004. Grounded theory, ethnography and phenomenology - a
comparative analysis of three qualitative strategies for marketing research. European
Journal of Marketing, 39(3/4): 294-308.

Graedel, T.E., 1997. Designing the Ideal Green Product: LCA/SLCA in Reverse. The
International Journal of Life Cycle Assessment, 2(1): 25–31.

Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F., Thulke, H.H.,
Weiner, J., Wiegand, T. and DeAngelis, D.L., 2005. Pattern-oriented modelling of agent-
based complex systems: lessons from ecology. Science, 310(5750): 987-991.

Guessoum, Z. and Briot, J.P., 1999. From active objects to autonomous agents. IEEE
Concurrency, 7(3): 68-76.

References

204

Han, S., Park, M. and Pena-Mora, F., 2005. Comparative Study of Discrete-Event
Simulation and System Dynamics for Construction Process Planning, In: Construction
Research Congress, San Diego, USA.

Hara, T., Arai, T. and Shimomura, Y., 2006. A concept of service engineering: a
modelling method and a tool for service design. In: Proceedings of the international
conference on service systems and service management, 25th–27th October, Troyes,
France, 13–18.

Hara, T., Arai, T., Shimomura, Y. and Sakao, T., 2009. Service CAD system to integrate
product and human activity for total value. CIRP Journal of Manufacturing Science and
Technology, 1(4): 262–271.

Harding, A. and Watts, P., 2000. The Northern Line train service contract. Proceedings
of the Institute of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit,
214(1): 55-60.

IFS, 2010. BAE Systems and IFS in PBL [online]. Available from:
www.ifsworld.com/.../BAE%20Systems%20and%20IFS%20in%20PBL/BAE%20Systems
%20%20IFS%20in%20PBL.pdf [Accessed 27th June 2011].

Jacopino, A., 2007. Modelling R&M in Performance Based Contracts-When does risk
equal reward?. In: the proceedings of Reliability and Maintainability Symposium.

Jennings, N.R., 2001. An agent-based approach for building complex software systems.
Communications of the ACM, 44(4): 35-41.

Johnson, P. and Harris, D., 2002. Qualitative and Quantitative Issues in Research
Design. In: D. Partington, ed. Essential Skills for Management Research. London: Sage,
99-116.

Kececioglu, D.B., 1995. Reliability engineering handbook. Prentice Hall.

Kendall, E.A., 1998. Agent Roles and Role Models: New Abstractions for Multiagent
System Analysis and Design. In: Proceedings of the International Workshop on
Intelligent Agents in Information and Process Management, Bremen, Germany.

Kilpia, J., Töyli, J. and Vepsäläinen, A., 2009. Cooperative strategies for the availability
service of repairable aircraft components. International Journal of Production
Economics, 117(2): 360–370.

Kim, Y.S., Wang, E., Lee, S.W. and Cho, Y.C., 2009. A product-service system
representation and its application in a concept design scenario. In: Proceedings of the
CIRP IPS2 conference 2009, 1st-2nd April, Cranfield, UK.

References

205

Komoto, H., Tomiyama, T., Nagel, M., Silvester, S. and Brezet, H., 2005. Life cycle
simulation for analyzing product service systems. In: Proceedings of the fourth
international symposium on environmentally conscious design and inverse
manufacturing, 12th–14th December, Tokyo, 386–393.

Komoto, H. and Tomiyama, T., 2008. Integration of a service CAD and a life cycle
simulator. CIRP Annals – Manufacturing Technology, 57(1): 9–12.

Kowalkowski, C., 2006. Enhancing the Industrial Service Offering. Thesis (PhD).
Linköping University.

Kozanidis, J. and Skipis, A., 2006. Flight and maintenance planning of military aircraft
for maximum fleet availability: a bio objective model. In: Proceedings of the Multiple
Criteria Decision Making, 19th -23rd June, Chania, Greece.

Khumboon, R., Kara, S., Manmek, S. and Kayis, S., 2009. Environmental Impacts of
Rental Service with Reconditioning - A Case Study. In: Proceedings of the CIRP IPS2
conference 2009, 1st-2nd April, Cranfield, UK.

Kuo, T.C., 2011. Simulation of purchase or rental decision-making based on product
service system. The International Journal of Advanced Manufacturing Technology,
52(9–12): 1239–1249.

Lanza, G., Behmann, B., Werner, P. and Vöhringer, S., 2011. Simulation of Life Cycle
Costs of a Product Service System. Functional Thinking for Value Creation, DOI:
10.1007/978-3-642-19689-8_29, 159-164.

Law, A.M., 2007. Simulation modelling and analysis. McGraw-Hill, New York.

Lee, Y.H., Cho, M.K., Kim, S.J. and Kim, Y.S., 2002. Supply chain simulation with
discrete-continuous combined modelling. Computer and Industrial Engineering, 43(1–
2): 375–392.

Lin, J., 2010. An analytical framework for the development of product service systems-
application of GTST-MLD and UML. Thesis (MSc). The National Central University of
Taiwan.

Lindahl, M., Sakao, T. and Öhrwall-Rönnbäck, A., 2009. Business Implications of
Integrated Product and Service Offerings. In: Proceedings of the 1st CIRP Industrial
Product-Service Systems (IPS2) Conference, 1st -2nd April, Cranfield, UK.

Lindahl, M., Sundin, E., Rönnbäck, A.Ö., Ölundh, G. and Östlin, J., 2006. Integrated
product and service engineering-the IPSE project: changes to sustainable consumption.
In: Proceedings of the Changes to Sustainable Consumption, Workshop of the
Sustainable Consumption Research Exchange Network, Copenhagen, Denmark.

References

206

Low, M.K., Lamvik, T., Walsh, K. and Myklebust, O., 2000. Product to service eco-
innovation: the TRIZ model of creativity explored. In: Proceedings of the IEEE
international symposium on electronics and the environment, 8th–10th May, California,
209–214.

Lu, D., 2010. Environmental life cycle driven decision making in product design. Thesis
(PhD). Georgia Institute of Technology.

Macal, C. M. and North, M. J., 2010. Tutorial on agent-based modelling and simulation.
Journal of Simulation, 4: 151–162.

Macbeth, D.K. and de Opacua, A.I., 2010. Review of Services Science and possible
application in rail maintenance. European Management Journal, 28(1): 1-13.

Macy, M. W. and Willer, R., 2002. From factors to actors: Computational sociology and
agent-based modelling. Annual Review of Sociology, 28: 143–166.

Mahon, D., 2007. Performance-Based Logistics: Transforming Sustainment. Journal of
Contract Management, 53-71.

Malleret, V., 2006. Value creation through service offers. European Management
Journal, 24(1): 106-116.

MAN Truck & Bus UK., 2010. MAN Truck & Bus UK services [online]. Available from:
http://www.man-mn.co.uk/en/Services/Services.jsp [Accessed 1 June 2010].

Manzini, E. and Vezzoli, C., 2003. A strategic design approach to develop sustainable
product service systems: examples taken from the ‘environmentally friendly
innovation’ Italian prize. Journal of Cleaner Production, 11(8): 851–857.

Maussang, N., Sakao, T., Zwolinski, P. and Brissaud, D., 2007. A model for designing
product-service systems using functional analysis and agent based model. In:
Proceedings of the international conference on engineering design ICED’07, 28th–31st
August, Paris, France.

Meier, H., Roy, R. and Seliger, G., 2010. Industrial Product-Service Systems—IPS2. CIRP
Annals - Manufacturing Technology, 59: 607-627.

Mont, O., 2002. Clarifying the concept of product-service system. Journal of Cleaner
Production, 10(3): 237–245.

Mont, O., 2000. Product-Service Systems: Final report. Stockholm, Sweden: Swedish
Environmental Protection Agency.

References

207

Morecroft, J. and Robinson, S., 2005. Explaining Puzzling Dynamics: Comparing the Use
of System Dynamics and Discrete-Event Simulation. In: Proceedings of the 2005
International Conference of the System Dynamics Society, Boston, USA.

Morelli, N., 2006. Developing new product service systems (PSS): methodologies and
operational tools. Journal of Cleaner Production, 14(17): 1495–1501.

Morelli, N., 2002. Product-service systems, a perspective shift for designers: a case
study: the design of a telecentre. Design Studies, 24(1): 73–99.

Muller, P. and Blessing, L., 2007. Development of product-service-systems –

comparison of product and service development process models. In: Proceedings of
the international conference on engineering design ICED’07, 28th–31st August, Paris,
France.

Neely, A., 2008. Exploring the financial consequences of the servitization of
manufacturing. Operations Management Research, 1(2): 103–108.

Nelson, E., 2009. How Interface innovates with suppliers to create sustainability
solutions. Global Business and Organizational Excellence, 28(6): 22–30.

Ng, I.C.L., Williams, J. and Neely, A., 2008. Service Transformation and the New
Landscape of Performance-based Contracting: An Executive Briefing [online]. Centre

for Service Research, University of Exeter. Available from: https://eric.exeter.ac.uk/
repository/handle/10036/48236 [Accessed 22/12/2011].

North, M.J. and Macal, C.M., 2007. Managing Business Complexity: Discovering
Strategic Solutions with Agent-Based Modelling and Simulation. Oxford, UK: Oxford
University Press.

Oliva, R. and Kallenberg, R., 2003. Managing the transition from products to services.
International Journal of Service Industry Management, 14(2): 160-172.

Pall, R., 2008. On the Availability of the CH149 Cormorant Fleet. In: Proceedings of the
40th Conference on Winter Simulation, Austin, TX, USA.

Phumbua, S. and Tjahjono, B., 2011a. Towards Product-Service Systems modelling: a
quest for dynamic behaviour and model parameters. International Journal of
Production Research, DOI: 10.1080/00207543.2010.539279.

Phumbua, S. and Tjahjono, B., 2011b. Simulation Modelling of Availability Contracts. In:
Proceedings of the 44th CIRP International Conference on Manufacturing Systems, June
1st-3rd, Madison, WI, USA.

References

208

Phumbua, S. and Tjahjono, B., 2010. Simulation Modelling of Product-Service Systems:
the Missing Link. In: Proceedings of the 36th International MATADOR Conference, July
14th-16th, Manchester, UK.

Pratt & Whitney, 2009. Pratt & Whitney and Jet2.com Gear Up for Installation of First
GMS Life Limited Parts for CFM56-3 Engine [online]. Available from:
http://www.pw.utc.com/media_center/press_releases/2009/04_apr/4-23-
2009_10412146.asp [Accessed 26th June 2011].

Pratt & Whitney, 2011. Pratt & Whitney Receives Maintenance Contract Extension to
Support F100 Engines for Italian Air Force [online]. Available from:

http://www.pw.utc.com/media_center/press_releases/2011/03_mar/3-31-
2011_00002.asp [Accessed 21st June 2011].

Quayzin, X. and Arbaretier, E., 2009. Performance modelling of a surveillance mission.
In: the Proceedings of Reliability and Maintainability Symposium RAMS, Fort Worth, TX,
USA.

Rabelo, L., Helal, M., Jones, A. and Min, H.S., 2005. Enterprise simulation: A hybrid
system approach. International Journal of Computer Integrated Manufacturing, 18(6):
498–508.

Rajasekar, S., Philominathan, P. and Chinnathambi, V., 2010. Research Methodology

[online]. Physics Educations. Available from: http://arxiv.org/abs/physics/0601009v2
[Accessed 27th June 2011].

Richardson, D. and Jacopino, A., 2006. Use of R&M measures in Australian Defence
Aerospace Performance-based Contracts. In: Proceedings of Reliability and
Maintainability Symposium, 331-336.

Robson, C., 2002. Real world research. Oxford: Blackwell Publishing.

Robinson, S., 2010. Modelling service operations: A mixed discrete-event and agent-
based simulation approach. In: the Proceedings of the Operational Research Society
Simulation Workshop 2010 (SW10), Birmingham, UK.

Robinson, S., 2004. Simulation: The Practice of Model Development and Use: John
Wiley & Sons.

Rolls-Royce, 2010. Rolls-Royce signs £690 million contract to support UK Tornado fleet
[online]. Available from: http://www.rolls-royce.com/defence/news/2010/100407_
contract_support_uk_tornado_fleet.jsp [Accessed 21st June 2011].

References

209

Roy, R. and Cheruvu, K.S., 2009. A competitive framework for industrial product-
service systems. International Journal of Internet Manufacturing and Services, 2(1): 4–
29.

Sakao, T. and Shimomura, Y., 2005. A novel design methodology for services to
increase value combining service and product based on service engineering. In:
Proceedings of the 4th international symposium on environmentally conscious design
and inverse manufacturing, 12th–14th December, Tokyo, 402–409.

Sakao, T. and Shimomura, Y., 2007. Service Engineering: a novel engineering discipline
for producers to increase value combining service and product. Journal of Cleaner
Production, 15(6): 390–604.

Schieritz, N. and Größler, A., 2003. Emergent Structures in Supply Chains –A Study
Integrating Agent-Based and System Dynamics Modelling. in: Proceedings of the 36th
Annual Hawaii International Conference on System Sciences, Washington, USA.

Scholl, H.J., 2001. Looking across the fence: Comparing findings from SD modelling
efforts with those of other modelling techniques. In: Proceedings of the
19thInternational Conference of the System Dynamics Society, Atlanta.

Schuh, G., Boos, W. and Kozielski, S., 2009. Life cycle cost-oriented service models for
tool and die companies. In: Proceedings of the CIRP IPS2 conference, 1st–2nd April,
Cranfield, UK, 249.

Schuh, G. and Gudergan, G., 2009. Service engineering as an approach to designing
industrial product service system. In: Proceedings of the CIRP IPS2 conference, 1st–2nd
April, UK.

Schumann, B., Scanlan, J.P. and Takeda, K., 2011. A Generic Operational Simulation for
Early Design Civil Unmanned Aerial Vehicles. In: Proceedings of the 3rd International
Conference on Advances in System Simulation, Barcelona, Spain.

Shehory, O. and Sturm, A., 2001. Evaluation of modeling techniques for agent-based
systems. In: Proceedings of the International Conference on Autonomous Agents, New
York, USA.

Shen, J. and Wang, L., 2008. A methodology based on fuzzy extended quality function
deployment for determining optimal engineering characteristics in product-service
system design. In: Proceedings of 2008 IEEE international conference on service
operations and logistics and informatics, 2nd–15th October, Beijing, China, 331–336.

Shostack, G.L., 1982. How to design a service. European Journal of Marketing, 16(1):
49–63.

References

210

Siebers, P.O., Macal, C.M., Garnett, J., Buxton, D. and Pidd, M., 2010. Discrete-Event
Simulation is Dead, Long Live Agent-Based Simulation. Journal of Simulation, 4(3): 204-
210.

Simon, M., Bee, G., Moore, P., Pu, J. and Xie, C., 2000. Life cycle data acquisition unit -
design, implementation, economics and environmental benefits. In: Proceedings of the
IEEE Symposium on Electronics and the Environment, Piscataway, NJ, USA, 284–289.

Stranjak, A., Dutta, P.S., Ebden, M., Rogers, A. and Vytelingum, P., 2008. A multi-agent
simulation system for prediction and scheduling of aero engine overhaul. In:
Proceedings of the 7th international joint conference on Autonomous agents and
multiagent systems: industrial track, 12th -16th May, Estoril, Portugal.

Sterman, J.D., 2000. Business dynamics: systems thinking and modelling for a complex
world. Boston, USA: Irwin/McGraw-Hill.

Stubbs, W. and Cocklin, C., 2008. An ecological modernist interpretation of
sustainability: The case of Interface Inc. Business Strategy and the Environment, 17(8):
512-523.

Tako, A.A. and Robinson, S., 2009. Comparing discrete-event simulation and system
dynamics: users' perceptions’. Journal of the Operational Research Society, 60(3): 296-
312.

Tukker, A., 2004. Eight types of product-service system: eight ways to sustainability?
Experiences from SusProNet. Business Strategy and the Environment, 13(4): 246–260.

Tukker, A. and Tischner, U., 2004. New business for old Europe. Final report of
SusProNet. TNO-STB, Delft, the Netherlands.

Wakeland, W.W., Gallaher, E.J., Macovesky, L.M., and Aktipis, C.A., 2004. A comparison
of system dynamics and agent-based simulation applied to the study of cellular
receptor dynamics. In: Proceedings of the 37th Annual Hawaii International Conference
on System Sciences, 86-95.

Watson, E.F., Chawda, P.P., McCarty, B., Drevna, M.J. and Sadowsk, R.P., 1998. A
simulation metamodel for response-time planning. Decision Sciences, 29: 217–241.

Weber, C., Steinbach, M., Botta, C. and Deubel, T., 2004. Modelling of product-service
systems (PSS) based on the PDD approach. In: Proceedings of the international design
conference-Design 2004, 18th–21st May, Dubrovnik, Croatia, 547–554.

Xerox, 2010a. Improving enterprise print services to achieve demanding business
objectives [online]. Available from: http://www.xerox.co.uk/consulting/case-
studies/engb.html [Accessed 26th June 2011].

References

211

Xerox, 2010b. Xerox document service [online]. Available from:
http://www.consulting.xerox.com/ [Accessed 26th June 2011].

Xerox, 2010c. Customer Service Agreement Exhibit A [online]. Available from:
www2.dir.state.tx.us/DIR_Contracts/1243454341976.pdf [Accessed 26th June 2011].

Yin, R.K., 2009. Case study research: design and methods. Sage Publications.

Yu, T.T., 2008. The Development of a Hybrid Simulation Modelling Approach Based on
Agents and Discrete-Event Modelling. Thesis (PhD). University of Southampton.

212

Appendices

Appendix A

213

A. Introduction to software elements

This section outlines commonly used elements in the models developed in this thesis,
based in AnyLogic 6.5. The tool is developed from object-oriented concept which
supports ABS, and enables SD and DES. The first part of this section introduces
modelling techniques and their representations in the software. The second part
highlights the functions and pitfalls that the modellers should keep in mind during
model development to avoid errors during the compiling.

Modelling elements (as presented in Figure A-1) are in correspondence with SD,
statechart, DES, or some commonly-used objects. The modelling elements
corresponding to these techniques are presented.

Figure A-1: Commonly used software elements

SD is ideal to study interconnected system. Generally, the frequently used elements in
SD are stock variables, flow variables, and parameters. The stock can be seen as to the
major variations in a system, whose continuous pattern of changes (flow variable) is
governed by some factors (parameter). For instance, a model looks at the ratio
between traditional manufacturers and product-service manufacturers. Manufacturers
can change from one group to the other as a result of the pressure from the low cost
economies. In this case, each group is represented by a stock variable, the transition

Appendix A

214

between the two groups refers to a flow variable, and the pressure depicts a
parameter.

Besides the direct representation of systems, a flow variable can substitute a normal
variable to enable continuous value updates. Nonetheless, the feature can slow down
model execution tremendously. Therefore, it has been used only if it is unnatural to
use other modelling techniques, or as a supplement when the model scale is small.

Even though state modelling also captures state changes, the change is modelled from
an individual perspective (not a system) and can be governed by other events (e.g.
upon receiving a message) in addition to rate of occurrences. The ‘Statechart’
elements are rarely used to perform other functions like the flow variable.

DES technique naturally represents a sequence of processes and queues in a system. It
is generally used to study impacts of interconnected uncertainties. Although there are
several DES elements provided by the software package, commonly ones in this thesis
are as follows:

 Enter is performed as a gateway that allows an asset to get inside the system.

 Queue represents assets waiting to be serviced.

 Selected output separates assets for different services and customers.

 Hold is activating due to unavailable resources, off-shifts, or non-contracted
hours.

 Service refers to a process used when the absence of a resource affects the
problem of study.

 Resource pool represents resource used when the difference among entities in
the resource is not significant to the study.

 Delay also refers to a process but used when the absence of a resource can be
handled.

 Sink completes OEM service process.

Modelling an actor is not limited to the modelling techniques mentioned above, but
also includes simple event, collection, parameter, or variable. Parameters are the
inputs to the model, including actor’s attributes. Collection can be used to store a
message and ensure that no message is dropped if the agent is already occupied by the
former message. Events (time-based or condition-based) are useful to initiate actions
and update status. Nonetheless, several cares must be taken using this element.
Particularly with a condition-based event, the condition must not embed the function

Appendix A

215

time(), otherwise the model can stop advancing. The alternative can be done using a
single step cyclic event with the conditional action code since it ensures time
progressing. However, additional code is required to guard action repetitions, which
often leads to wrong outputs. Besides, it can slow down the model execution since the
event is scheduled more frequent than necessary, and can be too excessive in many
cases. This method is recognised as synchronous programming. An additional issue is
related to the parameter types (e.g. boolean, double, integer), which must be match
when a comparison between them is made. A condition is required if a situation can
lead to the zero value of denominators.

Appendix B

216

B. SD models

Introduction

Prior to offering a particular contract to customers, it is vital for OEMs to realise the
current capability in sustaining the contract, so that the essential and lagging capability
can be improved or the offer can be modified. The capability can be measured in terms
of operational capability and network managing capability. However, the major
challenges are exposed from the dependencies among offering factors, operational
factors and networking factors. Thus, the first important step is to realise which factor
has the greatest influences to the offering. Therefore, this study aimed to study levels

of influences each factor have on the entire system.

Methodology

This study was carried out jointly with a group project at Cranfield University which
aimed to develop general PSS business models.

Based on the review in Section 4.1, the research context was matched with simulation
techniques. The criteria were based on the nature of the problem, as highlighted by
Siebers et al. (2010). Subsequently, DES was not chosen as 1) the complexity in the
system is not arisen from randomness 2) the outputs are not designed to influence the
inputs in DES whereas the offering and the capability tend to have two-way relations.

On the contrary, SD incorporates the feedback feature that allows a two-way relation
to be examined.

A number of factors related to PSS offers, operational capability and network capability
were selected from the literature (described in Section 2.3.1) and refined with several
PSS experts. These key variables include:

Customer value: This is linked with the ‘value in use’, which affects the success/failure
in delivering service contracts directly.

Service offer: This is a key factor for customers to value service contracts.

Product offer: This is another key factor which influences the customer value,
particularly in the product-centric PSS context.

Monitoring technology: The technology (e.g. pressure sensor, trouble shooting)
enables the OEM to receive information quicker and realise the cause of asset failures,
thus, it enhances the responsiveness and product innovation.

Skilled workforce: Staff’s skill influences the quality of services and customer
involvements in the product-service improvements.

Appendix B

217

Customer involvements: This factor enhances relationships with customers, and
enables the OEM to receive feedback for product-service improvements in a timely
manner.

Supplier involvements: This factor affects product availability directly, and enables the
OEMs to commit their suppliers in improving product quality and carrying out some
service activities (e.g. detail inspection of a product’s component) to improve service
availability.

Customer satisfaction: Ultimately, a contract can be sustained if the customer satisfies
with the offer and the OEM’s performances. Therefore, this variable is crucial.

Shareholder satisfaction: The PSS concept requires cooperation within the entire
supply chain. Consequently, the shareholder satisfaction is an enabling factor in
sustaining service contracts.

In general, a reference model is required in developing an SD model after having key
variables identified. However, this study excluded the reference model as there was no
available numerical report of the interconnected behaviour. Besides, the behaviour is
expected to change across cases. Three qualitative SD models (i.e. influence diagrams)
were developed during the project: traditional business model, intermediate-
servitisation business model, and advance-servitisation business model. The
intermediate level refers to the product-service offers which entail services to enhance

product sales. An example of the intermediate sertitisation includes a warranty,
whereas the advance level dictates the integrated offer such as Rolls-Royce's power by
hour. In addition to the qualitative SD models, a stock and flow diagram was
formulated to assess the impact of each factor on attracting more customers.

Three case studies were conducted within two water companies, two train
manufacturers, and two wind turbine companies to validate the models. The team
introduced the project and interviewed the industrial representatives in terms of their
service offering mechanism during the company visits. Using PowerPoint presentation
of the model, the interviewees were asked to give feedback and the weight importance
of each factor in attracting their customers. In addition to the case studies, the models
validated by the Integrated Vehicle Health Management (IVHM) community and PSS

experts on a frequent basis.

After the project, the models were modified, as shown in Figure B-1. The influence
diagram shows the feedback structure of service contracting. To illustrate, an increase
in the customer value can attract more demands, and the rise in the demands
necessitates capacity expansion, hence, more service facilities. This, in turn, improves
service responsiveness, and hence, customer satisfaction. The satisfied customers tend
to develop a good relationship with the OEM, which allows the OEM to receive useful
feedback to improve the right product/service. Eventually, the improvements can
increase the customer value, and so on.

Appendix B

218

Figure B-1: An influence diagram of key enablers for sustaining service contracts

The influence diagram was converted to a stock and flow diagram, as represented in

Figure B-2. In the Figure, general customers (PotentialCustomers) are attracted for
service contracting and become contracted customers (LongTermCustomers) as a
function of the customer value. This value is influenced by technology, skilled
workforce, customer involvements and supplier involvements. A contracted customer
can also leave the contract as a result of a decrease in the four factors and after the
contract ends. The time plot captures the changes in the number of long term
customers and potential customers in approximately 12 years period. The weight
importance of the variables can be input by model users, depending on the case.
Similarly, the values of the four factors can be adjusted by the users.

Appendix B

219

Figure B-2: A stock and flow diagram of key enablers for sustaining service contracts

Experimentation

To demonstrate the use of the model, a case from a wind turbine company is

illustrated. In this case, the manufacturer traditionally sold a wind turbine to an energy
company which was responsible for maintenance by itself. Currently, a maintenance
service is performed in a reactive manner where technicians need to repair the
turbines from a helicopter. Consequently, the task was a burden for the energy
company and also involves safety issues. For this reason, the manufacturer is moving
toward an integrated offering in which an availability of a wind turbine is guaranteed
but the turbine belongs to the OEM. In other words, the OEM can lease a turbine to
several companies on a product availability basis and carry out necessary maintenance
services.

Appendix B

220

Based on this requirement, the product availability becomes the key variable for an
energy company to sign a contract and leave the contract. On the contrary, service
design has no influence as the service offering is already tied up with maintenance.
Along this line, turbine specifications (i.e. product performances) has few influences in
attracting the energy companies as it depicts the amount of energy a turbine can
transform. Service availability and performance can have a greater impact as they
depict how quick the OEM responds and recovers a malfunctioned turbine. As a result,
the weight importance of these variables was given to the Value equation as 0.5, 0, 0.1,
0.2, and 0.2 respectively. In terms of the LeftCustomers equation, as a customer can
leave a contract only if the guaranteed product availability is not achieved, the weight
importance was input as 1, 0, 0, 0, and 0 respectively. A similar analysis was conducted

to derive the weights for other ‘Auxiliary variables’.

In terms of parameter scaling, the initial setting was set to the technology, skilled
workforce, customer involvements and supplier involvements, as 1, 8, 1, 8 respectively.
These values were based on the interpretation of the company’s current capability.
Potential and contracted customers were initialised as 100 and 0, respectively.

The first experiment aimed to demonstrate how the model can be used for investment
strategy. In the first option, the OEM considers improving the monitoring technology
for 70%, whilst the alternative strategy is to arrange more events with customers for a
70% stronger relationship. Accordingly, the technology’s slider and the customer
involvements’ slider were set to 3 in the first and second run respectively. The term of

contract is input as 5 years in all cases. The results are shown in Figures B-3 and B-4.

Figure B-3: The result from increasing 70% of monitoring technology

Appendix B

221

Figure B-4: The result from increasing 70% of customer involvements

These results reveal that improving technology capability can attract customers more
quickly than increasing customer involvements. Nonetheless, there is no significant
difference in terms of contracted customers.

The next experiment intended to illustrate the use of the model in designing service
contracts. In this run, the setting was based on the improved technology experiment
(i.e. Figure B-3), but the contract duration were input as ten years. The result is
presented in Figure B-5, which shows an increase in contracted customers. Therefore,
the OEM should extend the contracts to 10 years.

 Figure B-5: The result from offering contracts on a 10-years basis

In conclusion, the experiments demonstrated the model’s capability in realising a
potential investment strategy and contracting strategy, as well as the influence levels
among operational capability, network capability, and PSS offerings.

Appendix C

222

C. DES model

Introduction

The definition of PSS defined by Baines et al. (2007) emphasises the use aspect of
asset. Existed contracts also indicate the significance of usage requirement, for
example, up to 140 flying hours per week in the case of aircraft (BAE Systems, 2010),
approximately 40 degree EGT margin in an engine case (Aircraft commerce, 2006),
between 9 am and 5 pm in the case of photocopier (Xerox, 2010c), and all the time in
the case of the vessel (EMSA, 2006). These examples imply that a contract can be
customised on a usage basis to suit each customer need. However, it is vital for an

OEM to realise if a particular usage requirement will bring benefit prior to making
contracts Therefore, the aim of this study was to understand the risks and rewards
from making a contract on different asset usage requirements.

Methodology

The risks in a service contract are caused by dynamic behaviour (Section 2.3.2) and can
be absorbed or multiplied by management of services. Therefore, the focus of this
problem naturally entails randomness and roots down to the process level, in which
DES can potentially describe. For this reason, DES was chosen as the modelling
technique for this study.

Three model scenarios were identified based on the usage requirements in existed
contract. Assets in scenario one are contracted for continuous use throughout the
contract, for example, the Tornado aircrafts are contracted for operating at any time.
In the second scenario, the assets are contracted for specific duration in the contract
period such as 5 am – 12 pm the case of LUL and 9 am – 5 pm in the Xerox DocuCare

contract. This type of contracts allows the OEMs to monitor the asset's condition
continuously outside the operating time. As a result, the chance that the assets fail
unpredictably is expected less than the first scenario. Finally, the third scenario
corresponds to the cyclic usage pattern with a multi-duration, for example, an airline
may contract 20 aero-engines from an OEM during the peak period (i.e. December,
January, April, July, August) and 12 engines for the rest of the year. In this case, the

OEM can use the 8 engines elsewhere in the world to globalise seasonal effect and still
keep assets at maximum utilisation, while the customer can customise and may pay
less for the contract.

The risk and reward measures were proposed in correspondence with the common
performance requirements. These measures comprise availability level, missed hours,
man hours, and the thrown-away life of the assets.

All scenarios consist of one OEM and two business customers; the first customer (C1)
requires three assets to be available, and the second customer (C2) agrees on two

Appendix C

223

assets. Asset's usage is continuously updated once being returned to the OEM. The
inputs are associated with the contract hours, MTBF, service cycle times, and the
number of staff. The basic unit is in hours and the model is simplified to always have
available spare parts.

In summary, a conceptual model was developed as shown in Figure C-1.

Figure C-1: Conceptual model for business case II

The model

Inputs:

Contract hours

(scenarios 2

and 3 only)

Service cycle

times

Number of staff

MTBF

Outputs:

Missed hours

Availability

Man hours

Thrown-away

life (scenario 2

only)

Appendix C

224

Model code

1. Scenario one: assets are contracted all the time.

Figure C-2: Scenario 1 model

Sign:

Action:

//Issue 5 assets from the factory in the beginning of the model.

for (int i=1;i<6;i++) {

 Job thisAsset = new Job();

 thisAsset.Asset=i;

 thisAsset.ServTime= 0;

 thisAsset.MTBF=(int)normal(10,5000);

 Factory.take(thisAsset);

}

Count

Appendix C

225

Action:

//Update availability every one hour.

 if (Asset.size()==0){

 Missed1++;

 }

 if (Asset1.size()==0){

 Missed1++;

 }

 if (Asset2.size()==0){

 Missed1++;

 }

 if (Asset3.size()==0){

 Missed2++;

 }

 if (Asset4.size()==0){

 Missed2++;

 }

Availability1 = ((3*time())-Missed1)/(3*time());

Availability2 = ((2*time())-Missed2)/(2*time());

ServFacility

On enter:

//Define the required service cycle time of each asset.

Appendix C

226

entity.ServTime=normal(1,5);

Maintenance

Delay time:

//Apply the defined service duration.

entity.ServTime

On exit:

//Update service hours.

 ManHrs=ManHrs+entity.ServTime;

selectedOutput5

On Condition 0: entity.Asset==5 // Return the leased asset to the leaser.

On Condition 1: entity.Asset==4

On Condition 2: entity.Asset==3

On Condition 3: entity.Asset==2

Asset

Delay time:

//i.e. in-service duration.

entity.MTBF

ToServ

On exit:

//Send the asset back to the OEM.

ServFacility.take(entity);

entity.Enter++;

Appendix C

227

2. Scenario 2: Both customers contract assets daily for 8 hours. If not stated, the
code inside an element is identical to scenario 1.

Figure C-3: Scenario 2 model

ContractPeriod1

Action:

//C1 retrieves 3 assets every beginning of each day.

 if (hold.isBlocked()){

 hold.setBlocked(false);

 }

 if (hold1.isBlocked()){

 hold1.setBlocked(false);

 }

 if (hold2.isBlocked()){

Appendix C

228

 hold2.setBlocked(false);

 }

//Update availability daily and reset the contract hours.

Availability1=(Total1-Missed1)/Total1;

RemainHrs1=8;

ContractPeriod2

Action:

//C2 retrieves 2 assets every beginning of each day.

 if (hold3.isBlocked()){

 hold3.setBlocked(false);

 }

 if (hold4.isBlocked()){

 hold4.setBlocked(false);

 }

//Update availability daily and reset contract hours.

Availability2=(Total2-Missed2)/Total2;

RemainHrs2=8;

EndPeriod1

Action:

// Activate the ‘Hold’ elements in C1 daily at the end of the contract hours.

 hold.setBlocked(true);

 hold1.setBlocked(true);

Appendix C

229

 hold2.setBlocked(true);

EndPeriod2

Action:

//Activate the ‘Hold’ elements in C2 daily at the end of the contract hours.

 hold3.setBlocked(true);

 hold4.setBlocked(true);

Count

Action:

//Check if assets are operating on an hourly basis.

if (hold.isBlocked()==false){

 Total1++;

 if (Asset.size()==0){

 Missed1++;

 }

}

if (hold1.isBlocked()==false){

 Total1++;

 if (Asset1.size()==0){

 Missed1++;

 }

}

if (hold2.isBlocked()==false){

 Total1++;

Appendix C

230

 if (Asset2.size()==0){

 Missed1++;

 }

}

if (hold3.isBlocked()==false){

 Total2++;

 if (Asset3.size()==0){

 Missed2++;

 }

}

if (hold4.isBlocked()==false){

 Total2++;

 if (Asset4.size()==0){

 Missed2++;

 }

}

Appendix C

231

ServFacility

On enter:

//Replace the asset if a failure is expected soon.

if (entity.MTBF-entity.Usage<normal(2,50)){

 ThrowLife=ThrowLife+entity.MTBF-entity.Usage;

 entity.Usage=0;

 entity.ServTime=normal(1,24);

}else{

 entity.ServTime=normal(0.2,2);

}

Hold

On enter:

//Input service cycle time of the followed ‘Delay’ and update the asset usage.

int AveOperations = 50;

int RealOperation = (int)normal(10, AveOperations);

if (RealOperation + entity.Usage >= entity.MTBF) {

 if (entity.MTBF-entity.Usage<RemainHrs1){

 entity.OpTime= triangular(0,entity.MTBF-entity.Usage);

 entity.Usage=entity.MTBF;

 }else{

 entity.OpTime= RemainHrs1;

 entity.Usage=entity.Usage+RemainHrs1;

 }

Appendix C

232

}else{

 if (RealOperation>RemainHrs1){

 entity.OpTime= RemainHrs1;

 entity.Usage=entity.Usage+RemainHrs1;

 }else{

 entity.OpTime=RealOperation;

 entity.Usage=entity.Usage+RealOperation;

 }

}

3. Scenario 3: Variable contracted assets. Unless stated, the code for the
presented elements are identical to scenario 1.

Figure C-4: Scenario 3 model

ContractPeriod1

Action:

// C1: 3 assets at month 1, 4, 7, 8, 12, otherwise 2 assets

Appendix C

233

// C2: 1 assets at month 1, 4, 7, 8, 12, otherwise 2 assets

Month++;

if ((Month==1)||(Month==4)||(Month==7)||(Month==8)||(Month==12)){

 hold.setBlocked(false);

 hold1.setBlocked(false);

 hold2.setBlocked(false);

 hold3.setBlocked(true);

 hold4.setBlocked(false);

}else{

 hold.setBlocked(false);

 hold1.setBlocked(false);

 hold2.setBlocked(true);

 hold3.setBlocked(false);

 hold4.setBlocked(false);

}

if (Month>12){

 Month=0;

}

Availability1=(Total1-Missed1)/Total1;

Availability2=(Total2-Missed2)/Total2;

ServFacility

//Replace the asset if a failure is expected soon.

if (entity.MTBF-entity.Usage<normal(2,50)){

Appendix C

234

 entity.Usage=0;

 entity.ServTime=normal(1,24);

}else{

 entity.ServTime=normal(0.2,2);

}

Asset

Input an Asset from C1 and another from C2 with the cycle time of one time unit.

ToServ

//Send the failed assets to the OEM but the mission-capable asset back to the
customer.

if (entity.MTBF-entity.Usage>0){

 Dummy.take(entity);

}else{

 ServFacility.take(entity);

}

Count

if (hold.isBlocked()==false){

 Total1++;

 if (Asset.size()==0){

 Missed1++;

 }

}

if (hold1.isBlocked()==false){

 Total1++;

Appendix C

235

 if (Asset1.size()==0){

 Missed1++;

 }

}

if (hold2.isBlocked()==false){

 Total1++;

 if (Asset2.size()==0){

 Missed1++;

 }

}

if (hold3.isBlocked()==false){

 Total2++;

 if (Asset3.size()==0){

 Missed2++;

 }

}

if (hold4.isBlocked()==false){

 Total2++;

 if (Asset4.size()==0){

 Missed2++;}}

Experiment

The models allow the implications of making a contract from different usage
requirements to be investigated. To illustrate this point, three experiments were
conducted to the three usage scenarios based on the inputs shown in the model code
section. Practically, all three models provide an estimation of contract performances

Appendix C

236

(in terms of average asset availability, downtime, and total service duration) over a 10-
years period, subject to the current number of staff, their productivity, and the asset
health (i.e. MTBF). The results are presented in Table C-1.

Table C-1: Summary of experiment results

Experiment Availability (%) Downtime (hours) Man hours Thrown-

away life C1 C2 C1 C2

1 (scenario 1) 99.5 99.5 1458 1017 2276 -

2(scenario 2) 99.5 99.6 546 251 42202 1539

3(scenario 3) 99.9 1 244 27 1530 -

4(scenario 2) 99.5 99.5 362 320 50551 1478

5(scenario 2) 99.9 99.8 119 154 42345 1567

The results from Experiments 1 to 3 reveal that the scenario with the multi-level usage
and multi-period contract can give the highest availability level and require the lowest

man hours to perform services. This means the same level of operational capability can
lead to different contract performances, thus, the OEM can customise the contract
configuration to increase the performance level based on the OEM’s current capability.

Besides the understanding of contract implication, the models can be used to evaluate
investment strategies. To demonstrate, the fourth and fifth experiments were carried

out based on the second usage scenario. The objective of the two experiments was for
the OEM to decide a better strategy in improving contract performance: between
stocking a spare asset (Experiment 4) and recruiting an additional staff (Experiment 5).
To set up these experiments, the i variable in the action code of the Sign element was
increased to 7 in Experiment 4, and the capacity of the Staff element was adjusted to 2
in Experiment 5.

The results (Table C-1) reveal that the staff recruitment strategy can lead to a better
availability and downtime value. However, it can lead to an increased thrown-away life
of the assets.

It should be noted that more experiment runs and sensitivity analysis should be

performed in practice to obtain a more reliable solution. Nevertheless, this thesis aims
to illustrate the use of the models. Therefore, the interpretations of results are made
on one single run and the sensitivity analysis was not performed at this stage. Similarly,
a warm-up period is usually taken into account in a simulation study. However, the
warm-up period can imply contracting on new assets, which is typical in the context of
service contracts. On the other hand, excluding this period can mean a contract on a
used assets basis. Accordingly, a warm-up period was not excluded in the experiments
of this research.

Appendix D

237

D. Hybrid SD-ABS model

Introduction

In business cases I and II, the feasibility in using single simulation techniques were
explored within PSS offering context. The results reveal the capability to corporate
dynamic behaviour with the passage of time, however, a few PSS characteristics could
not be effectively captured. Therefore, this study attempted to enhance the modelling
capability by collaborating ABS with the applied simulation techniques.

Methodology

This study was the first attempt in exploring hybrid technique in the contracting
decisions, thus, the detail modelling technique was avoided. Accordingly, this study
combined SD and ABS to initially explore the capability of the hybrid technique.

A modelling scenario was formulated based on an existing business case in the aircraft
engine sector, due to the following reasons:

1. Aircraft engines have high value which encourages airline companies to lease
them from an OEM and pay for a service contract instead of acquiring an engine.

2. An engine's overhaul and repair require high level of servicing skill and
knowledge, which can become burdens for airline companies.

3. Monitoring technologies in the aero-industry are well advanced thus the
prediction of asset’s failure is sufficiently accurate. This means the risks can now be
shifted to other external dynamic behaviour and allows them to be investigated rather
than the asset’s breakdown itself.

The data required for model development were considered from the literature. First,
the inputs and outputs were collated from the aircraft contract literature which
included Jacopino (2007), Pall (2008), and Quayzin and Arbaretier (2009). Jacopino
(2007) examined profitability and risks via Monte Carlo simulation. In his study, a

number of available aircrafts, categorised into three levels depending on their
conditions, was used as an input parameter. Operating hours of an aircraft were used
as a unit of inputs. Also via Monte Carlo, Quayzin and Arbaretier (2009) evaluated
helicopter availability, penalty, and corrective/preventive maintenance cost, with
subject to the actual asset usage. Unlike the others, Pall (2008) investigated the level
of aircraft availability using DES based on the actual running hours. These literature
findings on inputs and outputs were used as a basis in developing measures for this
study.

Appendix D

238

On top of the measures, the literature associated with aircraft maintenance was
investigated to acquire and develop the structure in the model. Typically, an aircraft
constitutes three major systems; avionic for communication, engines, and structural
components such as wings. An airline often has their own MRO but subcontract the
availability of the components and general supports to business partners (Kilpia, 2008).
It was reported in Bazargan and McGrath (2003) that an aircraft was scheduled to A,B
or C checks after 50, 100, 600 of flight hours, and it could take 2 hrs, 2-4 hrs or more
than 4 hours for the minor, medium, and major repair respectively. The first level of
maintenance check, carried out on site, involves inspection, repair and parts
replacement. The second level performs deeper inspections and analysis, and the third
level necessitates high skill professionals to perform thorough repair and replace
(Kozanidis and Skipis, 2008).

The conceptual model is represented in Figure D-1. The model encompasses service
efficiency measures such as availability level and delay hours, and separates assets as
another layer embedded under the OEM layer. Within the asset layer, its state is
exposed using state chart modelling which is one type of UML (Section 2.4.1). Its state
triggers the OEM service processes modelled using SD to visualise the amount of
workload (i.e. engines queuing for maintenance). The outcome from this model
enables the OEM to estimate contract performances with subject to the given
resources, maintenance schedule, and external risks that cause engine failure such as
bird strike.

Figure D-1: Business case III’s conceptual model

Appendix D

239

The high level model mechanism is illustrated using BPMN as shown in Figure D-2. The
maintenance schedule and the external causes of failure are input by users and stored
in the simulation engine that, in turns, keeps monitoring these events. Generally, an
asset is operating according to an operating schedule that is independent from the
OEM, unless a trigger is received by the simulation engine. Once this happens, the
asset changes its state to maintenance and further activates the OEM service's process.
Once the OEM finishes servicing, the asset is triggered back to the operating state.

Figure D-2: High level agent behaviour and their interactions

As a result, the agent models were formulated as presented in Figure D-3, D-4 The

OEM is responsible for all maintenance activities, in which service hours required to
finish the task are customized on tasks, servicing skill and the number of technician
carrying out the task (input by the user). The stock A, B ,C, and unplanned represent
engines that are queuing for the different services, the stock DoneA, DoneB, DoneC,
and DoneZ describe serviced assets. The servicing rates (ServiceA, ServiceB, ServiceC,
ServiceZ) are influenced by the skill and the number of technicians.

Within the engine layer, an engine can be in the maintenance state (A, B, C and
unplanned) or capable for a mission (CanWork). Since the engines in PSS are not
necessary to be newly made, it requires different maintenance schedule. A mission-

Appendix D

240

capable engine is either flying or waiting for the flight hours. Since an aircraft is
operating on more than one engine, it can still fly even if an engine stops working. An
engine can stop working due to external dynamic behaviour, which is captured by the
rate of occurrence (RandFail).

With regards to the performance measures, several calculations of availability have
been reported in literature, for example, inherent, achieved and operational availability
(Kececioglu, 1995). This study applies the calculation from Xerox’s DocuCare contract
(Xerox, 2010c), defined as having the agreed number of assets ready to fly at any time.
The penalty is based on the turnaround time required by an airline customer. In other
words, if the aircraft is supposed to have an A-check, and the maximum allowable

downtime is 2 hours, a minute delay from the schedule leads to a penalty.

Figure D-3: Subsystem agent

Appendix D

241

Figure D-4: OEM/Main model

Model code

1. Subsystem agent

Schedule

Action:

// The service schedule is notified.

ToMtc=true;

 A=1;

 B++;

 C++;

// Monitor if C-check is due.

 if (C==12*A){

 Check_C = true;

 } else {

Appendix D

242

 Check_C = false;

 }

// If not C-check, monitor whether B-check is due.

 if ((C<12*A)&&(B==2*A)) {

 Check_B = true;;

 } else {

 Check_B = false;

 }

// if C- Check and B-Check are not due, A-check is performed.

 if ((Check_C== false)&&(Check_B==false)) {

 Check_A = true;

 }

//Reset the variables.

 if (B>2) {

 B=0;

 }

 if (C>12) {

 C=0;

 }

CanWork

Entry action:

//Report the engine status.

State=1;

Appendix D

243

MyAircraftStateDS.add(time(), CanWork);

Maintenance

Entry action:

State=2;

Exit action

Check_A=false;

Check_B=false;

Check_C=false;

The transition to Maintenance is triggered by the condition ‘ToMtc==true’.

The transition back to CanWork is set as default with the following action:

//Reset status and update penalty.

ToMtc=false;

if (ToFine==true){

 Penalty=time()-StartMiss;

 get_Main().TotalPenalty=get_Main().TotalPenalty+Penalty;

 get_Main().NoOfMiss++;

}else{

 Penalty=0;

}

ToFine=false;

The transition to Stop is a function of RandFail rate, and the action code is

//Reset the status.

ToMtc=true;

Appendix D

244

x++;

The transition to Unplanned is based on the condition x>0, and the action code is

//Reset the status.

 x--;

The transition to CheckA is based on the condition Check_A==true, similar to other
checks. Their inner-state transitions are triggered by the agreed turnaround time, and
the subsequent action is

//Activate the penalty counts.

StartMiss=time();

ToFine=true;

The exit transition from CheckA follows the conditions ‘get_Main().DoneA>=1’, and the
subsequent action is

//Update the stock variable.

get_Main().DoneA--;

The other transitions of the maintenance’s sub-states apply the same structure.

2. Main model

Subsystem statistics:

Name: SubsystemsStat1

Condition: item.MySubsystem.isStateActive(Subsystem.CheckA)

Name: SubsystemsStat2

Condition: item.MySubsystem.isStateActive(Subsystem.CheckB)

Name: SubsystemsStat3

Condition: item.MySubsystem.isStateActive(Subsystem.CheckC)

Name: SubsystemsStat4

Condition: item.MySubsystem.isStateActive(Subsystem.Unplanned)

Appendix D

245

Count

Action:

// Count the number of the assets currently undergone the 1st-level maintenance.

A= Subsystems.SubsystemsStat1();

//Define the productivity when there is a ‘Check-A’ job.

if (A>0){

 ServiceA=0.2*NoOfResource*SkillLevel;

}else{

 ServiceA=0;

}

// Count the number of the assets currently undergone the 2nd-level maintenance.

B= Subsystems.SubsystemsStat2();

//Define the productivity when there is a ‘Check-B’ job.

if (B>0){

 ServiceB=0.1*NoOfResource*SkillLevel;

}else{

 ServiceB=0;

}

// Count the number of the assets currently undergone the 3rd-level maintenance.

C= Subsystems.SubsystemsStat3();

//Define the productivity when there is a ‘Check-B’ job.

if (C>0){

 ServiceC=0.05*NoOfResource*SkillLevel;

Appendix D

246

}else{

 ServiceC=0;

}

// Count the number of the assets currently undergone the unplanned maintenance.

UnPlan= Subsystems.SubsystemsStat4();

//Define the productivity when there is an ‘unplanned’ job.

if (UnPlan>0){

 ServiceZ=0.75*NoOfResource*SkillLevel;

}else{

 ServiceZ=0;

}

//Update the availability if the assets can work.

int availableCount = 0;

for(int i=0; i<Subsystems.size(); i++) {

 if(Subsystems.get(i).State==1) {

 availableCount++;

 }

}

if (time()>0){

Availability = (Availability*(time()-1) +(100.0 * availableCount /
Subsystems.size()))/time();

}

//Update the monthly revenue.

for (int i=0; i<100;i++){

Appendix D

247

 if (time()==i*720){

 Revenue=Revenue+100;

 }

}

//Update the penalty.

for(int i=0; i<Subsystems.size(); i++) {

 if(Subsystems.get(i).State==2) {

 ToOEM++;

 AveMissHrs=TotalPenalty/ToOEM;}}

Experimentation

To demonstrate the use of the model, an experiment was conducted and the
simulation results could be interpreted as explained in Figure D-5.

Figure D-5: Implications

Appendix E

248

E. Hybrid DES-ABS aircraft model

Performance measure

With regards to the measure calculation, the following notations have been applied.

ns = The number of aircrafts under the tradition businesses

np = The number of aircrafts under the availability-type contracts

na = The total number of airline operators

ne = The number of subsystems in each aircraft

nm = The number of demands for maintenance

t = Current time

First, the measures for the tradition business were inserted. From an airline
perspective, the income is a function of sold tickets driven by the number of flights.
The model therefore estimates the income as:

Income = Average Profit * (∑ Number of flight)
ns
i=1 (1)

where

ns is the number of aircrafts under traditional airline business model.

The airline may encounter penalty on an hourly basis, as a function of Charge, in case
of flight delays. Though denoted as Charge, the penalty is postulated in the form of the
airline’s reputation lost from each delay and customer’s dissatisfaction.

Total penalty = ∑ Penalty
ns
i=1 (2)

Penaltyt = Penaltyt-1+ Charge (3)

Once an engine reaches the end of its life, the operator needs to pay the OEM for new
engine acquisition. On top of the acquisition cost, the operator needs to hold spare
parts for maintenance activities. Consequently,

Total cost = (Inventory * Holding cost per item) + ∑ ∑ Price
ne
i=1

ns
j=1 (4)

Availability is derived as a percentage of mission-capable aircrafts in relation to the
fleet size at a particular time, while the average availability is an accumulated value.
Thus,

Appendix E

249

Availability = 100 *
AvailCount

Fleet size
 (5)

Average availability =
(Availability

t-1
*(t-1)) + Availabilityt

t
 (6)

The demand satisfaction rate refers to a percentage of jobs finished within the agreed
turnaround time. In case of a delay, the NoOfMiss is incremented and the MissedHrs is
updated on an hourly basis.

Demand satisfaction rate = 100 *(
nm – Number of Missed

nm
) (7)

Average missed hours = ∑
Missed Hours

nm

ns
i=1 (8)

Next, the measures for the contracting scenario were defined. The majority are
identical to the traditional scenario. Still, the operators now shifts the burden of

inventory holding cost to the OEM and only pays for the contract price.

Contract price = ∑ ContPrice
np

i=1 (9)

From the OEM perspective, the revenue is accumulated from the contract paid by the
airline companies. Hence,

Revenue = ∑ ∑ ContPrice
np

i=1
na
j=1 (10)

Similarly, the total penalty is deducted from all operators. A unit of inventory is
updated with subject to the production lead time. This gives the total profit of,

Profit =∑ Revenue
na
i=1 - ∑ Total penalty

na
i=1 - (Holding_Cost_per_Item * Inventory)

 (11)

The differences between the two contracting scenarios take place in the availability
calculation: justified monthly against the whole fleet and against individual turnaround
time. Similarly in this case, the penalty compares the actual availability against the
require availability.

Availability = 100 * PthAvail (
1

720 * np
) (12)

Where PthAvail is point availability and can be formulated as:

PthAvail = ∑ ∑ xt
i=1

np

j=1 (13)

x = 0 if the aircraft is in maintenance, otherwise x=1.

Appendix E

250

Experiment

This section provides an overview on how the simulation model works and
demonstrates some of the key features of the model. The model itself is versatile and
consequently numerous experimental cases can be tried out by varying the input
parameters (listed in section 4.1). Three experiments have been carefully designed to
illustrate how the model can be used to aid decision making in the contracts:

 Experiment 1 aims to explore the implications of the different contracting

scenarios (e.g. fleet-based vs aircraft-based) to the OEM;

 Experiment 2 aims to estimate the fleet availability that the OEM could offer to
the airline based on a particular engine’s MTBF;

 Experiment 3 aims to illustrate the Aircraft’s agent adaptive capability in

rescheduling maintenance services (maintenance cycle).

For all experiments, the run time is 100,000 simulation unit times, which is equivalent
to approximately 11 years contract period. Replications could have been performed by
using different random number seeds, but this is not the main scope of the study.

Experiment 1

This experiment aims to compare financial outcomes (in terms of profit) the OEM can

obtain from offering different contracting scenarios. Two scenarios were tested. First,
the OEM offers a contract of a fleet of three aircrafts with 95% availability level, and
second, the OEM offered a contract of three aircrafts with turnaround time of 3 hours,
5 hours, 7 hours, and 5 hours for A, B, C, and unplanned maintenance respectively. In
either case, the airline operator pays the contract amount (say $30K per month) and
demands 10% penalty charges to the OEM if the required performance is not achieved.
The outcomes from the two experiments are illustrated in Figure E-2.

Figure E-1: Results from Experiment 1

Appendix E

251

The result demonstrates a substantial difference between the two contract scenarios.
The OEM can make profit from the fleet-based contract but will have a loss from the
aircraft-based contract. This suggests that the OEM should offer the fleet-based
contract instead of the aircraft-based contract.

Experiment 2

This experimentation intends to estimate the availability performance that the OEM
can offer based on the engine’s MTBF. In this scenario, an airline proposes a required
level of fleet availability and the OEM would like to investigate whether or not this can
be achieved by the existing engine’s specification. Furthermore, the OEM may also

investigate, for instance, if an investment should be made in redesigning the engine to
extend the engine’s MTBF. In this experimentation, only the fleet-based contract (SC2)
will be considered, thus, the Aircraft agents in SC1 and SC3 are disabled. The two
inputs experimented in the model are the required availability (at 95%) and the two
ranges of engine’s MTBF (1000-1200 and 1200-1500 flying hours). The actual
availability and financial performances are shown in Figure E-3.

(a) MTBF between 1000-1200 flying hours

(b) MTBF between 1200-1500 flying hours

Figure E-2: Results from Experiment 2

The results indicate that approximately 96% availability level can be achieved from
both MTBF ranges, thus, the OEM can guarantee the 95% fleet availability to the
airline. However, there is only a slight increase in profit that can be obtained by

Appendix E

252

extending the engine’s MTBF. In this case, the OEM is not recommended to invest in
redesigning engines in order to improve their MTBF.

Experiment 3

This experiment aims to highlight the agent’s adaptive capability to monitor the
current availability performance of a fleet contract and to adjust the maintenance
cycle to optimise availability in the following months. Subsequently, the mechanism
summarised in Figure E-4 is enabled inside the Airline agent. Additionally, the Aircraft
agents in SC1 and SC3 are disabled.

Figure E-3: Self-adaptive maintenance schedule mechanism

Initially, maintenance cycle (RoutineCheck) is set to every 200 flying hours. In effect, A,
B and C checks take place at every 200, 400, 2400 flying hours respectively. Engine’s
minimum expected MTBF value is set at 1000, and the availability is required at 95%
minimum level. The model is run in equivalent to 100,000 hours. The logic results in
the availability performance shown in Figure E-5.

Required

availab ility >

Actual availab ility

Adjusted cycle >

engine’s m in MTBF

Don’t increase

ad justed cycle

Double ad justed

cycle

Next cycle is MTBF
Next cycle is the

ad justed cycle

Determ ine curren t m ain tenance cycle

Start

Calcu late fleet availab ility

Yes No

NoYes

Appendix E

253

Figure E-4: Results from Experiment 3

It can be seen that availability is improved from approximately 96% to 98% and the
maintenance cycle is adjusted to 1000 eventually. This means that the OEM can
consider scheduling maintenance approximately in every 1000 flying hours rather than
200 in the contract.

Code

1. Subsystem

Figure E-5: Subsystem agent

Appendix E

254

A subsystem can entitle to 3 phases; workable, maintenance, and scrapped. The
CanWork state includes flying and waiting (either for other systems or itself to be
check). During a flight (InAir), a subsystem can be operating or broken and the aircraft
is flying under redundancy.

In terms of maintenance, the signal is received from the Aircraft agent for a scheduled
service, and generated from the random failure rate (RandFail) in the case of
unplanned maintenance. In the latter case, a Working subsystem is transferred to the
Stop state and immediately in a Waiting state until the aircraft lands and undergoes
maintenance. Once a maintenance service is required, a Subsystem agent changes to
the Maintenance state, triggered by the condition:

(get_Aircraft().ToMtc==true)&&(get_Aircraft().Gate==0)

The Gate variable ensures no-repetitive update since each subsystem is ready to work
at different time. The variable is incremented when the subsystem is ready to work.
Without this variable, the Subsystem agent would be triggered back to maintenance
state since the ToMtc variable is updated after the whole aircraft is ready to fly.

When the Subsystem agent undergoes maintenance, it sends a signal to the repair
station depending on scenario.

JobOrder thisOrder = new JobOrder();

thisOrder.From = this;

thisOrder.Family = get_Aircraft().Family;

if (MTBF-Usage<get_Aircraft().RoutineCheck){

 thisOrder.NeedPart=1;

 Usage=0;

}

if (get_Aircraft().Scenario==1) {

 get_Aircraft().get_Airline().MROs.Family3.take(thisOrder);

}else{

 Main.OEMs.Family3.take(thisOrder);}

Appendix E

255

During a service, if the subsystem’s condition is unlikely to survive until the next
routine check, it will be scrapped. Hence, the transition to the Dead state is

Lifetime-AccHrs<get_Aircraft().RoutineCheck

In which case, a new subsystem is replaced, generated by the Replacement event in the
Aircraft agent under the condition

Subsystems.size()-Subsystems.DeadStat()<ReqSubS

Note that the size() method is not used since the dead subsystem is not destroyed
from being an agent. Also, the replacement is done immediately based on the

assumption that there is always available spares in stock. This is realistic since the
lifetime of engine dictates and allows enough time for the OEM to manufacture it.

Since the old engine is out of system, the new engine must update the status as if it
was undergone maintenance.

add_Subsystems();

Gate++;

Replacement.restart();

After checked, the Subsystem agent is waiting for other Subsystem agents to be ready,
triggered by the condition:

get_Aircraft().MyAircraft.isStateActive(Maintenance)==true

The agent is triggered to be in air by the condition:

(get_Aircraft().MyAircraft.isStateActive(Maintenance)==false)&&(GateBroke==
0);

GateBreak represents the breakdown maintenance. Without this parameter, the agent

can resume the Working state directly from Waiting without being checked. The
GateBreak parameter is triggered when the Subsystem agent breaks and when the
aircraft is recovered.

Appendix E

256

2. Aircraft

 Figure E-6: Aircraft agent

On the aircraft level, an aircraft is assumed to fly if not maintenance. However, an
emergency landing is needed if only one engine (i.e. Subsystem agent) is (randomly)
broken. Therefore, a transition to the Emergency state is

(Subsystems.WorkingStat()<=2)&&(Subsystems.RandFailStat()>2)

Besides, an external factor (such as the volcanic ash) can lead to emergency landing.
This is governed by the EmerRate.

In the case of a scheduled maintenance, the Aircraft agent receives a trigger from the
StepUpdate event as:

if (FlyHrs>=RoutineCheck) {

 ToMtc=true;

 A=1;

 B++;

 C++;

 if (C==12*A){

 Check_C = true;

Appendix E

257

 } else {

 Check_C = false;

 }

 if ((C<12*A)&&(B==2*A)) {

 Check_B = true;;

 } else {

 Check_B = false;

 }

 if ((Check_C== false)&&(Check_B==false)) {

 Check_A = true;

 }

 if (B>2) {

 B=0;

 }

 if (C>12) {

 C=0;

 }

}

During a maintenance service, the penalty is incremented if the agreed turnaround
time in an aircraft-contract is exceeded, dependent on the type of checking. Thus, the
timeout transition is

(Check_A==true)?TurnaroundA: (Check_B==true)?TurnaroundB:
(Check_C==true)?TurnaroundC: TurnaroundU

Once this happens, it activates

StartMiss=time();

Appendix E

258

ToFine=true;

And the Step event updates the status.

if (ToFine==true){

 Penalty=Penalty+Charge;

 MissedHrs++;

 if (Close==false){

 NoOfMiss++;

 Close=true;

 }

}

Note that the penalty is incremented per hour, therefore, the Close variable is added to
increment the NoOfMiss variable. The Close variable is initially set as fault.

The aircraft is recovered if all the subsystems are functional. Hence,

 (Subsystems.CanWorkStat()==ReqSubS)&&(Gate>0)

The aircraft usage is recorded during the flight via the Step event.

if (MyAircraft.isStateActive(Fly)==true){

 FlyHrs++;

 AccHrs++;

}

The FlyHrs variable is for scheduling a maintenance service whereas the AccHrs is
compared against lifetime for the subsystem replacement.

Appendix E

259

3. Airline

Figure E-7: Airline agent

An airline operator can operate aircrafts in three ways. In scenario 1, the airline buys
the aircrafts and carries out maintenance on their own. The second scenario operates
under the contract on the fleet basis where monthly fleet uptime is specified and
penalty is incurred if this level is not met at the end of the month. The third scenario
also operates under contracts but on aircraft basis, where the penalty is incurred if the
aircraft is not ready to fly at the end of defined turnaround times. The measures are
formed as follows:

Appendix E

260

Availability

If an aircraft is mission capable, the AvailableCount is incremented on an hourly basis.
Hence, the average availability up to this point in time is the comparison of this
variable and the whole fleet size. This number is recorded in the bar chart and time
plot shown in Figure E-7.

int availableCount = 0;

for(int i=0; i<Aircraft_SC1.size(); i++) {

 if(Aircraft_SC1.get(i).State==1) {

 availableCount++;

 }

}

Availability1 = (Availability1*(time()-1) +(100.0 * availableCount1 /
Aircraft_SC1.size()))/time();

Note that the time is a denominator, thus the condition time()>0 is necessary.

Nonetheless, there are two types of availability for the second scenario, one is used for
penalty calculation and the other is for consistent comparison between scenarios.
Therefore, the monthly availability is calculated additionally as follow:

PthAvail=PthAvail+Aircraft_SC2.AvailStat2();

for (int i=1; i<500;i++){

 if (time()==i*720){

 MthAvail=100*PthAvail/(Aircraft_SC2.size()*720);

 if (MthAvail<ReqAvail){

 TotalPenalty2=TotalPenalty2+Charge2;

 }

 PthAvail = 0;

 }}

Appendix E

261

The PthAvail accumulates the available aircrafts over a month and compares against
the whole fleet to get a monthly availability at the end of each month. It is then reset
for next month.

Average delay

This measure is unchanged across scenarios. At every hour, the accumulated missed
hours of each aircraft is summed up and contrasted against the number of all
maintenance jobs.

for(int i=0; i<Aircraft_SC3.size(); i++) {

 if(Aircraft_SC3.get(i).State==2) {

 AveMissHrs3=Aircraft_SC3.MissedHrsStat3()/ToOEM3;

}

}

Demand satisfaction rate

The DSR is also fixed across scenarios. The measure compares the jobs waiting for an

available spare with those without waiting.

if (Aircraft_SC1.ToRepair1Stat()>0){

SatisfactionRate1=100*(Aircraft_SC1.ToRepair1Stat()-
Aircraft_SC1.NoPart1Stat())/Aircraft_SC1.ToRepair1Stat();

}

The statistic ToRepair comes from the ToRepair variable in the Subsystem agents. The
NoPart statistic was considered against the stock-outs represented by the blocked
‘Hold’. Thus, the action at the ‘Queue’ before the ‘Hold’ is

if (hold14.isBlocked()==true) {

 entity.From.NoPart++;

}

Note that each ‘Hold’ represents different types of checking and different spares.

Appendix E

262

Pie chart

Each pie chart represents an income, penalty, and cost in each scenario. The income is
identical across scenarios: a function of the total fly hours and the average profit on an
hourly basis. Hence,

AveProf*Aircraft_SC1.FlyHrsStat1()

The cost incurred to the airline from SC2 and SC3 are from monthly contract fee,
whereas that of SC1 is from the asset price and the spare cost. The spare cost is a
function of the total inventory and the cost per unit, whereas the asset price is

collected from total subsystems, thus,

 (MROs.Inventory*get_Main().InvCostPerItem)+(Aircraft_SC1.PriceStat1())

The penalty in SC1 and SC3 are calculated from the delayed turnaround time whereas
that of SC2 is based on the agreed availability level at the end of each month.
Therefore,

The penalty in SC1 and SC3 is collected from the Aircraft agents where

if (ToFine==true){

 Penalty=Penalty+Charge;

}

Appendix E

263

4. MRO

Figure E-8: Airline’s MRO agent

The airline’s MRO deals with maintenance services and stocking activities. The
JobOrder Java object is recorded in all DES elements as the entity. The first ‘selected
output’ segregates the job that required a part replacement from simple checks,
dictated by the NeedPart property of the Java object.

If the job requires a part replacement, the code is required to update the stock as
follows:

if (entity.Family==1){

 Part1--;

}

if (entity.Family==2){

 Part2--;

}

Appendix E

264

if (entity.Family==3){

 Part3--;

}

The second and the third ‘Selected outputs’ address different types of spare parts. The
‘Holds’ are blocked if there is no available part in the stock, controlled by the CheckPart
event as:

if (Part1>=1) {

 hold3.setBlocked(false);

 hold12.setBlocked(false);

 hold15.setBlocked(false);

 hold18.setBlocked(false);

} else {

 hold3.setBlocked(true);

 hold12.setBlocked(true);

 hold15.setBlocked(true);

 hold18.setBlocked(true);

}

In which case, the DSR is updated at the ‘Queue’ before the ‘Hold’ via the code

if (Part1<1){

 entity.From.NoPart++;

}

Similarly, the total part replacements are recorded at the ‘Selected outputs’.

entity.From.ToRepair++;

Appendix E

265

The stocking decision is based on the reorder level and quantity. The delivery lead time
is taken into account. Note that the airline operator may not buy parts from the OEM,
thereby the interactions between the two agents are absent in the model.

When the service finishes, a signal is sent back to the Subsystem agent and triggers the
agent’s state. Hence, the code at the ‘Sinks’ is

send("Finish!", entity.From);

5. Part

Figure E-9: Part agent

This agent is created for capturing the impact from obsolescence on the OEM’s
upgrade service. The OEM’s stocks are checked regularly as a function of the
RefilInterval. If the level falls below the base level, the order of the BatchSize quantity
is made. Unlike the MRO, the logistic time is assumed negligible in this model as the
parts are also manufactured by the OEM.

Appendix E

266

6. OEM

Figure E-10: OEM agent

The OEM structure is similar to MRO, however, the difference are as follows:

 The NoPart statistic is checked from the status of the ‘Holds’ rather than the
stock module due to the different hierarchies. Hence,

if (hold12.isBlocked()==true) {

 entity.From.NoPart++;

}

 Product developments become a part of the model, controlled by the
NewFamily random event. When this occurs, a message is sent to a particular
Part agent to trigger its state to Obsolete and a new agent is added to the array.

//Randomly generates root family.

b=uniform_discr(1,3);

Appendix E

267

//Stop producing the root family.

if (b==1){

 send("Dead!", PartRoot1.get((int)z1));

 add_PartRoot1();

 z1++;

}

if (b==2){

 send("Dead!", PartRoot2.get((int)z2));

 add_PartRoot2();

 z2++;

}

if (b==3){

 send("Dead!", PartRoot3.get((int)z3));

 add_PartRoot3();

 z3++;

}

 The chart illustrates

o Spare cost = Inventory*get_Main().InvCostPerItem

o Revenue =
get_Main().Airlines.RevenueStat3()+get_Main().Airlines.RevenueStat2()

o Penalty =
get_Main().Airlines.PenaltyStat3()+get_Main().Airlines.PenaltyStat2()

o Profit =
get_Main().Airlines.RevenueStat3()+get_Main().Airlines.RevenueStat2()-
get_Main().Airlines.PenaltyStat3()-get_Main().Airlines.PenaltyStat2()-
(Inventory*get_Main().InvCostPerItem)

Appendix E

268

o Soldasset = get_Main().Airlines.SoldStat();

The SoldStat statistic is created from the Subsystem agent’s Price parameter.

Appendix F

269

F. Hybrid DES-ABS photocopier model code

1. Information Java object

Request From; //To keep the track of a job, enable the queuing rule, and return
the message back to the right Subsystem (or Component) agent.

 double DueIn; // To prioritise the urgent job.

 double Enter; // To record the time that the job enters the OEM’s system.

 boolean NeedEng; // to separate the job that can be solved on phone from
 those require a site visit.

 boolean NeedPart; // To classify the jobs that require a part replacement from
 other jobs.

 int Family; // To indicate the right stock.

 double CoX; // To record the site of customer.

 double CoY; // To record the site of customer.

 int No; // To allocate part to the right part.

2. Request

Figure F-1: Request agent

There are four types of requests:

1 = A general question from a customer that can be solved on phone, thus, NeedEng=0
and NeedPart=0.

Appendix F

270

2 = A general question from a customer that requires a site visit, thus, NeedEng=1 and
NeedPart=0.

3 = A misuse sent by a photocopier, solvable on phone, thus, NeedEng=0 and
NeedPart=0.

4 = A component replacement, thus, NeedEng=1 and NeedPart=1;

Upon the agent creation, an order is sent to OEM agent.

Start=time();

Order thisOrder = new Order();

thisOrder.From = this;

thisOrder.Enter = time();

if (Type==1){

 thisOrder.DueIn=get_Customer().TargEng;

 thisOrder.CoX=get_Customer().CoX;

 thisOrder.CoY=get_Customer().CoY;

thisOrder.NeedEng=false;

thisOrder.NeedPart=false;

get_Customer().get_Main().enter.take(thisOrder);

}else if (Type==2){

 thisOrder.DueIn=get_Customer().TargEng;

 thisOrder.CoX=get_Customer().CoX;

 thisOrder.CoY=get_Customer().CoY;

 thisOrder.NeedEng=true;

 thisOrder.NeedPart=false;

 get_Customer().get_Main().enter.take(thisOrder);

Appendix F

271

}else if (Type==3){

 thisOrder.DueIn=get_Photocopier().get_Customer().TargEng;

 thisOrder.CoX=get_Photocopier().get_Customer().CoX;

 thisOrder.CoY=get_Photocopier().get_Customer().CoY;

 thisOrder.NeedEng=false;

 thisOrder.NeedPart=false;

 get_Photocopier().get_Customer().get_Main().enter.take(thisOrder);

}else if (Type==4){

 thisOrder.NeedEng=true;

 thisOrder.NeedPart=true;

thisOrder.DueIn=get_Component().get_Photocopier().
get_Customer().TargEng;

thisOrder.CoX=get_Component().get_Photocopier().
get_Customer().CoX;

thisOrder.CoY=get_Component().get_Photocopier().
get_Customer().CoY;

 if (get_Component().Standard==false){

 thisOrder.Family=get_Component(). get_Photocopier().Family;

 }else{

 thisOrder.Family=0;

 if (get_Component().getIndex()==1){

 thisOrder.No=2;

}else if ((get_Component().getIndex()==0)
&&(get_Component().Recyclable==true)){

 thisOrder.No=1;

Appendix F

272

 }else{

 thisOrder.No=0;

 }

 }

get_Component().get_Photocopier().get_Customer().get_Main().enter.
 take(thisOrder);

}

And the record must be incremented on the exit of the WaitCall state for contract
performance evaluation.

//Count the late call response.

double duration = time()-Start;

x=duration;

if (Type<3) {

 if (duration>get_Customer().TargCall){

 get_Customer().NoOfMiss++;

 }

 get_Customer().ToOEM++;

}else if (Type==3){

 if (duration>get_Photocopier().get_Customer().TargCall){

 get_Photocopier().get_Customer().NoOfMiss++;

 }

 get_Photocopier().get_Customer().ToOEM++;

}else if (Type==4) {

If (duration>get_Component().get_Photocopier().
get_Customer().TargCall){

Appendix F

273

get_Component().get_Photocopier().get_Customer().
NoOfMiss++;

 }

 get_Component().get_Photocopier().get_Customer().ToOEM++;

}

Similarly, the job progress must be updated again after signalled by a Technician agent.
Therefore, the on exit action of WaitEng is

//type 2 and 4

if (Type<3) {

 get_Customer().ToSite++;

 get_Customer().ServTime=get_Customer().ServTime+(time()-Start);

}else{

 get_Component().get_Photocopier().get_Customer().ToSite++;

get_Component().get_Photocopier().get_Customer().ServTime=
get_Component().get_Photocopier().get_Customer().ServTime+(time()-
Start);

}

After an issue is solved, it triggers the component’s state.

if (Type==4){

 get_Component().Replaced=true;

 get_Component().get_Photocopier().get_Customer().x=x;

}

A misuse also triggers the photocopy’s state, therefore, it must be removed once
handled.

// Type 1 and 3

Appendix F

274

if (Type==3){

 get_Photocopier().remove_Signal(this);

 get_Photocopier().get_Customer().x=x;

}

To set up the communication protocol, the following code was applied to the on
message received command.

statechart.receiveMessage((String)msg);

2. Component

Figure F-2: Component agent

There are several types of components in a photocopier included in the model.

1 = Recyclable parts that are not obsolete, such as cartridge. In this case, Recycle =true
and Standard=true.

2 = Recyclable parts that can be obsolete e.g. a software control chip. Thus,

Recycle=true and Standard=false.

3 = Non-recyclable parts that are not obsolete, such as connectors. Hence,
Recycle=false and Standard=true.

4 = Non-recyclable parts that can be obsolete e.g. motor. Therefore, Recycle=false and
Standard=false.

Appendix F

275

A component can undergo 2 stages once manufactured: in-use and after-use (once this
happens the component can be reused again or scraped, dependent on the level of
damage and the raw material). The life of the component is reset at the Working state.

AccLife=0

The variable is incremented via the UpdateUse event if the component is in use, via
the code:

if ((MyComponent.isStateActive(Working))&&
(get_Photocopier().MyPhotocopier.isStateActive(Photocopier.Operating))){

 AccLife++;

}

The value of a photocopier’s component is not very high, unlike the aircraft context.
Accordingly, it is thrown away or recycled once broken. Therefore, there is no
presence of the broken state in the model. A service related to a component is often
centred around consumable replenishment and cleaning.

A component is disposed due to 2 reasons: a random breakdown (governed by the
RandFail rate) or the end of life (triggered by the timeout transition of the Lifetime
value). Upon the disposal, a signal is created (i.e. a request of type 4). A replaced

component is treated as the same component that is recovered and ready for an
operation. The replacement is controlled by the condition:

Replaced==true;

Therefore, the variable must be initialised as false, and reset upon the replacement.

If the component is recyclable, there is no waste. Otherwise, the stock must be
decremented. A workaround is needed to update the right stock, as follows.

if (Standard==false) { //NN

 if (get_Photocopier().Family==1){

 if (getIndex()==0) {

 Main.StockF1.get(Main.z1).Stock1--;

 }else if (getIndex()==1) {

 Main.StockF1.get(Main.z1).Stock2--;

 }else{

Appendix F

276

 Main.StockF1.get(Main.z1).Stock3--;

 }

 }else if (get_Photocopier().Family==2){

 if (getIndex()==0) {

 Main.StockF2.get(Main.z2).Stock1--;

 }else if (getIndex()==1) {

 Main.StockF2.get(Main.z2).Stock2--;

 }else{

 Main.StockF2.get(Main.z2).Stock3--;

 }

 }else if (get_Photocopier().Family==3){

 if (getIndex()==0) {

 Main.StockF3.get(Main.z3).Stock1--;

 }else if (getIndex()==1) {

 Main.StockF3.get(Main.z3).Stock2--;

 }else{

 Main.StockF3.get(Main.z3).Stock3--;

 }

 }

}else{ //SN

 Main.StdParts.get(getIndex()).Stock1--;

 }

 Replaced=false;

Appendix F

277

However, the consumable stocks are monitored weekly if the component is still in use,
via the SendOrder event. An order is placed for the right stock.

 if (Lifetime-AccLife<168){

 if (Standard==false) {

 if (get_Photocopier().Family==1){

 if (Recyclable==false){

 if (getIndex()==1) {

 Main.StockF1.get(Main.z1).Order3++;

 }else{

 Main.StockF1.get(Main.z1).Order1++;

 }

 }else{

 if (getIndex()==1) {

 Main.StockF1.get(Main.z1).Order3++;

 }else{

 Main.StockF1.get(Main.z1).Order2++;

 }

 }

 }else if (get_Photocopier().Family==2){

 if (Recyclable==false){

 if (getIndex()==1) {

 Main.StockF2.get(Main.z2).Order3++;

 }else{

 Main.StockF2.get(Main.z2).Order1++;

Appendix F

278

 }

 }else{

 if (getIndex()==1) {

 Main.StockF2.get(Main.z2).Order3++;

 }else{

 Main.StockF2.get(Main.z2).Order2++;

 }

 }

 }else if (get_Photocopier().Family==3){

 if (Recyclable==false){

 if (getIndex()==1) {

 Main.StockF3.get(Main.z3).Order3++;

 }else{

 Main.StockF3.get(Main.z3).Order1++;

 }

 }else{

 if (getIndex()==1) {

 Main.StockF3.get(Main.z3).Order3++;

 }else{

 Main.StockF3.get(Main.z3).Order2++;

 }

 }

 }

Appendix F

279

 }else{

 Main.StdParts.get(getIndex()).Order1++;

 }

 }

3. Photocopier

Figure F-3: Photocopier agent

A photocopier contains four types of components as mentioned earlier. A Photocopier
agent is operating when a User agent demands for it, hence, the condition of the
transition is

User.size()>0

It finishes the operation as a function of time. Once finished, the User agent is
removed and the paper and ink stocks are updated.

get_Customer().Paper=get_Customer().Paper-User.get(0).Paper;

get_Customer().Ink=get_Customer().Ink-User.get(0).Ink;

remove_User(User.get(0));

The Photocopier agent changes its state from ‘Ready’ and ‘NotReady’ as a result of its
Component agent and misuse, governed by the condition

Parts_SN.WorkingStat()<ReqSubSN ||

Appendix F

280

Parts_SR.WorkingStat()<ReqSubSR ||

Parts_NR.WorkingStat()<ReqSubNR ||

Parts_NN.WorkStat()<ReqSubNN ||

Signal.size()>0

If the photocopier is broken during an operation, the user leaves to others. Therefore,
on the NotReady state:

State=1;

get_Customer().Transfer=get_Customer().Transfer+User.size();

for (User u:User){

 u.Leave=true;

}

It becomes ready again by the condition

(Parts_SN.WorkingStat()==ReqSubSN) &&

(Parts_SR.WorkingStat()==ReqSubSR) &&

(Parts_NR.WorkingStat()==ReqSubNR) &&

(Parts_NN.WorkStat()==ReqSubNN) &&

(Signal.size()==0)

The StepUpdate event keeps updating the downtime and the asset usage.

Appendix F

281

4. Customer

Figure F-4: Customer agent

There are three primary functions within a Customer agent; to enquire the OEM, to
generate demands for using photocopiers, and to refill consumables (inks and papers).

The first function is controlled by the RandRequest event, occurring randomly.
Requests from customer can be divided into 2 groups; those can be solved by call and
those require a site visit. Hence,

if (ContractTime==true){

int j;

double i = random();

if (i>0.9){

 j=1;

}else{

 j=2;

}

Appendix F

282

add_Req(j);

}

The second activity is triggered by Demand and Demand2 events. The Demand
represents the situation when a photocopier is broken during an operation and the
user must go to other photocopiers. Thus, the condition is

(Transfer>0)&&(Photocopiers.ReadyStat()>0)

Once this happens,

for (int r=0; r<Photocopiers.size();r++){

 if (Photocopiers.get(r).State!=1){

 Photocopiers.get(r).add_User();

 Transfer--;

 }

}

Demand.restart();

The Demand2 is a rate function that a photocopy is required by a user (separated by
the time of the day). Thus, the condition is

((ContractTime==true)&&(Transfer<=0))?1:

((ContractTime==false)&&(Transfer<=0))?0.5:0

And it will record the number of users in the system, as

int m = (int)triangular(0,Photocopiers.size()-1,0);

if (Photocopiers.get(m).MyPhotocopier.isStateActive(Photocopier.NotReady)
==false){

 Photocopiers.get(m).add_User();

 Transfer++;

}

Appendix F

283

The contract period is controlled by the events OutContrat’ and InContract.

The last activity is the consumable replenishment, controlled by the Replenishment,
event which takes place weekly. When this happens, papers and inks are refilled to the
levels input by users (denoted as PaperMax and InkMax).

DocuCare Service Response Time (i.e. DSR(1))

This measure compares the number of calls responded within 1 hour with the total
number of calls.

Average technical service response time (by product family)

This measure compares the target time for an engineer arrived at site against the
actual performance.

Equipment downtime (i.e. availability)

This is considered against the contract hours.

All these measures are monitored by the count event, as follows:

if (time()>0){

 if(ContractTime==true) {

Availability = ((Availability*(time()-1)) +(100.0 *
(Photocopiers.size()-Photocopiers.DownStat()) /
Photocopiers.size()))/time();

 }

}

double TotalHrs;

double MthAvail;

for (int i=0; i<500;i++){

 if (time()==i*720){

 ContPrice=ContPrice+ContractPrice;

Appendix F

284

MthAvail= 100*((30*ContractHrs*Photocopiers.size())-
(Photocopiers.DowntimeStat()))/(30*ContractHrs*Photocopiers.
size());

 UpTime=MthAvail;

 if (MthAvail<ReqAvail){

 TotalPenalty=TotalPenalty+Charge;

 }

 MthAvail = 0;

 if (ToOEM>0){

 SatisfactionRate=100*(ToOEM-NoOfMiss)/ToOEM;

get_Main().AggTime=get_Main().AggTime+
SatisfactionRate;

 ToOEM=0;

 NoOfMiss=0;

 }else{

 SatisfactionRate=100;

get_Main().AggTime=get_Main().AggTime+
SatisfactionRate;

 }

 if (ToSite>0) {

 Achievement=100*TargEng/(ServTime/ToSite);

 get_Main().AggEff=get_Main().AggEff+Achievement;

 ToSite=0;

 ServTime=0;

 }

Appendix F

285

 for(Photocopier p: Photocopiers)

 p.Downtime=0;

 }

}

 }

Note that all denominators must not be zero, therefore, the initialisation is crucial.

5. Call centre (Main)

Figure F-5: Call centre agent

The main model illustrates a call centre where all the requests from the Customer
agents and signals from the Photocopier and Subsystem agents are initially handled.
The first ‘Hold’ element responds to the staff working hours, controlled by the twp
timeout events: ShiftStart and ShiftEnd.

 hold.setBlocked(false);

Appendix F

286

If the job can be handled, it is terminated. Otherwise the job is considered whether a
part replacement is needed. If so, the job is forward to a particular stock to check the
part’s availability at the ‘Exit’.

if (entity.Family==1) {

 StockF1.get(z1).enter.take(entity);

}else if (entity.Family==2) {

 StockF2.get(z2).enter.take(entity);

}else if (entity.Family==3) {

 StockF3.get(z3).enter.take(entity);

}else if (entity.Family==0) {

 StdParts.get(entity.No).enter.take(entity);

}

If no part replacement is necessary, the job is allocated to the local business unit, and

update the state of the request at the SiteVisit.

send("Wait!", entity.From);

send(entity, UnitA.get(entity.From.get_Customer().Area));

6. Service unit

Figure F-6: Service unit agent

Appendix F

287

A Service unit agent receives the jobs passed from the Call centre agent, therefore, the
following code must be inserted upon the message received:

MyMsg.add((Order)msg);

The message is stored in the MyMsg collection of class Order. The JobAllocation event
checks if a technician is available upon receiving a job. Thus, the event is activated
based on the condition

(A<Engineers.size())&&(Engineers.get(A).statechart.isStateActive(ServEng.Idle))
&&(MyMsg.size()>0)

Note that the first part of the code is to ensure that the simulation engine does not
check beyond the technician array. The job is assigned to a technician by the code:

int i;

int s;

double m;

double n;

//select the urgent job.

for (s=0; s<MyMsg.size()-1; s++){

 if (time()-MyMsg.get(s).Enter>MyMsg.get(s).DueIn-1){

 send(MyMsg.get(s),Engineers.get(A));

Engineers.get(A).moveTo(MyMsg.get(s).CoX, MyMsg.get(s).CoY
);

 MyMsg.remove(s);

 A++;

 if (A==Engineers.size()){

 A=0;

 }

 JobAllocation1.restart();

Appendix F

288

 }

}

s=0;

//If not an urgent job, select the closest job to the technician.

for (i=0; i<MyMsg.size()-1; i++){

m= hypot(MyMsg.get(s).CoX-Engineers.get(A).getX(),
MyMsg.get(s).CoY-Engineers.get(A).getY());

n =hypot(MyMsg.get(i+1).CoX-Engineers.get(A).getX(),
MyMsg.get(i+1).CoY-Engineers.get(A).getY());

 if (m>n) {

 s=i+1;

 }

}

send(MyMsg.get(s),Engineers.get(A));

Engineers.get(A).moveTo(MyMsg.get(s).CoX, MyMsg.get(s).CoY);

MyMsg.remove(s);

A++;

if (A==Engineers.size()){

A=0;

}

JobAllocation1.restart();

Appendix F

289

7. Technician

Figure F-7: Technician agent

A Technician agent receives a message from the Service unit agent, and the message
must be stored globally. Thus,

MyMsg.add((Order)msg);

The technician is working according to his shift, triggered by a timeout transition.
When he receives a message from the Service unit agent, he becomes busy and
updates the job progress in the Request agent.

MyMsg.get(0).From.Handling=true;

The technician finishes his task at a random time, dependent on his skill. Once this
happens, a signal is sent to the Request agent to update its status.

send("Solved!", MyMsg.get(0).From);

MyMsg.remove(0);

Note that the signal is sent on the exit of the Busy state rather than the transition. This
is to ensure that the signal is not missing if the off-shift is activated during an
operation.

8. User

Figure F-8: User agent

Appendix F

290

A User agent is removed from the Photocopier agent when the job is completed.

get_Photocopier().remove_User(this);

9. Part

Figure F-9: Part agent

The component health is checked weekly whether a replacement is expected during
the week. The information is fed to the Order variable within a particular Part agent.
Once the agent checks its stock (governed by the RefillInterval), the order is sent and
reset. Therefore at the transition inside the Producing state:

Time=time();

double a = Order1+SafetyStock;

if (a>Stock1){

 Batch1 = a - Stock1;

}

if (a>Stock2){

 Batch2 = a - Stock2;

Appendix F

291

}

if (a>Stock3){

 Batch3 = a - Stock3;

}

DelTime=exponential(Leadtime);

Order1=0;

Order2=0;

Order3=0;

Once the goods are received, the stock is updated. This is controlled by the
OrderDelivered event with the condition

 (time()-Time>DelTime)&&(Batch!=0);

With the following action code:

Stock1=Stock1+Batch1;

Stock2=Stock2+Batch2;

Stock3=Stock3+Batch3;

get_Main().Inventory=get_Main().Inventory+Batch1+Batch2+Batch3;

Batch1=0;

Batch2=0;

Batch3=0;

OrderDelivered.restart();

If no part is available, the ‘Holds’ are blocked by the CheckPart event.

if ((Standard==true)&&(Stock1<1)){

 Stockout.setBlocked(true);

}else if ((Standard==false)&&(Stock1<1)){

Appendix F

292

 Stockout.setBlocked(true);

}else if ((Standard==false)&&(Stock2<1)){

 hold.setBlocked(true);

}else if ((Standard==false)&&(Stock3<1)){

 hold1.setBlocked(true);

}

The job is allocated to the local business unit, and the Request agent’s state is updated
at the ‘Sinks’.

send("Wait!", entity.From);

send (entity, get_Main().UnitA.get(entity.From.get_Component().
get_Photocopier().get_Customer().Area));

Appendix G

293

G. Hybrid DES-ABS underground model code

1. Information Java object

Subsystem From;

 int NeedPart; //To indicate stock

 double ManHrs; //To control cycletime

 int Site; // To locate service operation

2. Main model

Figure G-1: Main model

Three major parts are delivered from the plant to the depots prior to failures, denoted
as Stock1 and Stock2.

Appendix G

294

These two array variables are of type double[] with the initial value ‘new double[3]’.

The Step event continuously produces parts to the plant’s stocks, using the command

for(int i=0; i<3; i++) {

 Stocks[i] = Stocks[i]+ProdRate[i];

}

Services take place at both sides and are separated based on the requited parts. Thus,
on the SelectOutputs’s exit:

entity.NeedPart==10

A technician starts servicing if the required part is available in the stock. Otherwise, all
‘Hold’ elements are activated and lead to queues of jobs. This is also controlled by the
Step event.

if ((queue2.size()>0)&&(Stocks1[0]<1)&&(Stocks[0]>=1)){

 hold2.setBlocked(false);

}else{

 hold2.setBlocked(true);

}

if ((queue3.size()>0)&&(Stocks1[1]<1)&&(Stocks[1]>=1)){

 hold3.setBlocked(false);

}else{

 hold3.setBlocked(true);

}

if ((queue4.size()>0)&&(Stocks1[2]<1)&&(Stocks[2]>=1)){

 hold4.setBlocked(false);

}else{

 hold4.setBlocked(true);

Appendix G

295

}

if ((queue6.size()>0)&&(Stocks2[0]<1)&&(Stocks[0]>=1)){

 hold6.setBlocked(false);

}else{

 hold6.setBlocked(true);

}

if ((queue7.size()>0)&&(Stocks2[1]<1)&&(Stocks[1]>=1)){

 hold7.setBlocked(false);

}else{

 hold7.setBlocked(true);

}

if ((queue8.size()>0)&&(Stocks2[2]<1)&&(Stocks[2]>=1)){

 hold8.setBlocked(false);

}else{

 hold8.setBlocked(true);

}

If the job can be carried out without a part replacement or the replacement takes
place with non-critical parts, the trigger is only based on the technician’s availability.
This is controlled separately by a Technician agent.

Upgrading can take place randomly after a design change, controlled by the cyclic
DesignChange event.

int i = uniform_discr(0,2);

Stocks[i]=1;

Stocks1[i]=0;

Stocks2[i]=0;

Appendix G

296

Upgrade[i]++;

Outside the contract hours, the idle technician notifies particular Subsystem agents to
be upgraded. This is triggered by the Step event.

for (Train t:Undergrounds){

for (int n=0; n<3; n++){

if ((t.Package[n]!=Upgrade[n])&&(Technicians1.Idle1Stat()>0)&&
(t.InContract==false) &&(t.statechart.isStateActive(Train.InUse))){

 t.Package[n]=Upgrade[n];

 send("Upgrade!", t.Subsystems.get(n));

 }

 }

}

As with other cases, the performance monitoring is carried out by the Step event

for (int k=0; k<500;k++){

 if (time()==k*720){

 CashROSCO=CashROSCO+LeasePrice;

 Availability= 100*((30*ContHrs*Undergrounds.size())-
 (Undergrounds.DowntimeStat()))/
 (30*ContHrs*Undergrounds.size());

 if (Availability<ReqAvail){

 Penalty=Penalty+normal(10,LCH);

 }

 CashVirgin=CashVirgin-LeasePrice+Penalty-ServFee;

 CashOEM_S=CashOEM_S+ServFee-Penalty;

Appendix G

297

 Penalty=0;

 for(Train t:Undergrounds){

 t.DownTime=0;

 }

 }

}

3. Underground

Figure G-2: Underground agent

Once a train is manufactured, it is sold using the manual trigger Buy. Thus, the button
has the following command:

 statechart.fireEvent("Buy!");

A train is leased in the same way, if it still has a useful life. Once leased, it starts
operating from any site.

Appendix G

298

 for (Subsystem s: Subsystems) {

 if (s.AccLife < s.Life){

 statechart.fireEvent("Lease!");

 }

}

boolean x=randomTrue(0.5);

if (x==true){

 Site=1;

}else{

 Site=2;

}

This also activates all Subsystem agents, triggered by the transition to the InUse state.

for (Subsystem s: Subsystems) {

 s.statechart.fireEvent("Use!");

}

A train can also be manually terminated before it reaches the end of life, via the
button that has the command

 statechart.fireEvent("Dead!");

Within the in-service phase, the trains operate on a daily contract-hours basis. This is
controlled by the transition inside InUse, with the action code

 for (int i=0; i<20000;i++){

 if ((time()>i*24)&&(time()<=get_Main().ContHrs+(i*24))){

 InContract=true;

 }

Appendix G

299

}

When the train is InUse, it may be ready for an operation or not. If not, the downtime
is recorded and a penalty is incremented in the case of broken during the contract
hours. This is monitored by the transition inside NotReady, with the action code

if (Subsystems.ReadyStat()==Subsystems.size()){

 statechart.fireEvent("Done!");

}

if (Subsystems.ReadyStat()<Subsystems.size()){

//To input availability.

 if (InContract){

 DownTime++;

 }

 for (int i=0; i<20000;i++){

 //Penalise if broken during the peak hours.

 if ((time()>=(i*24)+2)&&(time()<=4+(i*24))){

 get_Main().Penalty=get_Main().Penalty+
 normal(10,get_Main().LCH);

 }

 }

}

Although a train is ready for an operation, it may or may not be used. Once operated,
the variable Usage is updated.

if (statechart.isStateActive(Operating)==true){

 AccUse++;

 for (Subsystem s: Subsystems){

Appendix G

300

 s.AccLife++;

 }

}

The operations are input by TripFreq rate and TripDuration.

After terminated, all Subsystem agents are deactivated by the code

for (Subsystem s: Subsystems) {

 s.statechart.fireEvent("Dead!");

}

On the contrary, if the train is retrieved for services, all Subsystem agents are
activated.

 for (Subsystem s: Subsystems) {

 s.statechart.fireEvent("Use!");

}

4. Subsystem

Figure G-3: Subsystem agent

Appendix G

301

The subsystem’s communication was setup using the code:

 statechart.receiveMessage((String)msg);

Within the in-service phase, the transition inside Ready keeps monitoring if the
subsystem requires a service. Thus, it has the following action code:

//Dead --> Update stock, trigger the state, and send a replacement query to the OEM.

if (AccLife>=normal(10,Life)){

 statechart.fireEvent("Dead!");

 if (Recyclable==true){

 int i = getIndex();

 get_Train().get_Main().Stocks[i]++;

 }

 JobOrder thisOrder = new JobOrder();

 thisOrder.From = this;

 thisOrder.NeedPart = getIndex();

 thisOrder.ManHrs = Change;

 double i=get_Train().getX();

 double j=get_Train().getY();

 if (hypot(40-i, 360-j)< hypot(470-i, 100-j)){

 get_Train().get_Main().enter1.take(thisOrder);

 }else{

 get_Train().get_Main().enter.take(thisOrder);

 }

}

//Broken --> trigger the state and send a replacement query to the OEM.

Appendix G

302

if ((AccLife==NoOfFails*FailExpected)||(randomTrue(RandBreak))){

 statechart.fireEvent("Break!");

 JobOrder thisOrder = new JobOrder();

 thisOrder.From = this;

 thisOrder.NeedPart = 10;

 thisOrder.ManHrs = Repair;

 double i=get_Train().getX();

 double j=get_Train().getY();

 if (hypot(40-i, 360-j)< hypot(470-i, 100-j)){

 get_Train().get_Main().enter1.take(thisOrder);

 }else{

 get_Train().get_Main().enter.take(thisOrder);

 }

}

Regarding an upgrade service, the agent receives a trigger from the main model as
mentioned earlier. Once this happens, it issues the Java object to the registered site
and resets its life using the code:

JobOrder thisOrder = new JobOrder();

thisOrder.From = this;

thisOrder.NeedPart = getIndex();

thisOrder.ManHrs = Modify;

if (get_Train().Site==1){

 get_Train().get_Main().enter1.take(thisOrder);

}else{

Appendix G

303

 get_Train().get_Main().enter.take(thisOrder);

}

AccLife=0;

The serviced subsystem becomes ready again after receiving a trigger from a
Technician agent.

A Subsystem agent moves to the after-life phase once it receives a trigger from the
Train agent, and it can be used again for the same reason or after being replaced and
activated by a Technician agent.

5. Technician

Figure G-4: Technician agent

A technician stores an assigned job in the Job collection via the on message received
code

Job.add((JobOrder)msg);

InAction=true;

This triggers the state to become busy. The service cycle time depends on the type of
jobs, thus, the transition is based on a time out i.e.

normal(0.5,Job.get(0).ManHrs)

Once the job is finished, the staff approve the subsystem for operational-readiness.

Appendix G

304

send("Ready!", Job.get(0).From);

if (Job.get(0).NeedPart<10){

 if (Site==1){

 get_Main().Stocks1[Job.get(0).NeedPart]--;

 }else{

 get_Main().Stocks2[Job.get(0).NeedPart]--;

 }

}

Job.remove(Job.get(0));

InAction=false;

Staff cannot work because of two reasons; an emergency or off-shift. In the case of
emergency during an operation, the job is transferred to another technician with the
code:

if (InAction==true){

 Job.get(0).ManHrs=Job.get(0).ManHrs-(time()-Enter);

 Job.get(0).NeedPart=10;

 if (Site==1){

 get_Main().enter1.take(Job.get(0));

 }else{

 get_Main().enter.take(Job.get(0));

 }

 InAction=false;

 Job.remove(Job.get(0));

}

Appendix G

305

In the case of shift ending during an operation, the staff still need to contibue the job
and approve the subsystem for operational-readiness.

if (InAction==true){

 send("Ready!", Job.get(0).From);

 if (Job.get(0).NeedPart<10){

 if (Site==1){

 get_Main().Stocks1[Job.get(0).NeedPart]--;

 }else{

 get_Main().Stocks2[Job.get(0).NeedPart]--;

 }

 }

 InAction=false;

 Job.remove(Job.get(0));

}

The staff can work again when the shift starts. This is controlled by the ShiftControl
event with action code

Start++;

if (Start==Shift){

 statechart.fireEvent("Start!");

}else{

 statechart.fireEvent("Stop!");

}

if (Start==3){

 Start=0;}

Appendix H

306

H. Hybrid DES-ABS carpet model code

1. Carpet

Figure H-1: Carpet agent

After a contract is signed, Carpet agents are added to the model. The cleaning

schedule for each customer is arranged with service staff. Therefore, the following
code is placed at the state chart entry.

Order thisOrder = new Order();

thisOrder.From = this;

thisOrder.Enter = time();

thisOrder.CoX= CoX;

thisOrder.CoY= CoY;

thisOrder.Size=Size;

send(thisOrder,get_Unit());

Appendix H

307

After the schedule is arranged, the information is sent back to the customer. Hence,
the on message received is

Routine=(Routine)msg;

Receive=true;

Once this happens, a weekly cleaning schedule is activated, controlled by the Schedule
event with the following code:

if (Receive==true){

 if (time()>=Routine.CleanHrs+(168*Clock)) {

 statechart.fireEvent("Clean!");

 }

}

If the carpet is due to be changed, a Staff agent signals the centre upon the cleaning
service.

if (Usage-time()<168){

 statechart.fireEvent("Change!");

 Cut=Size;

 Usage=Usage+TimeToChange;

}

x++;

Clock++;

There are few points to be noted here. Firstly, the Clock must be updated to activate
the next cleaning schedule independent from how long the staff take to clean the
carpet. Secondly, the Usage was used rather than TimeToChange since the actual time
is already progressing ahead of the TimeToChange after the 1st recycling. Thirdly, the
Cut was used rather than Size, since only the cut-out part due to random damage is
undergone recycling (not the whole carpet). This damage occurs as a rate, and triggers
the following action:

Appendix H

308

x1++;

Cut=triangular(1,Size);

statechart.fireEvent("Change!");

If not yet the time to change, the staff finish cleaning as function of carpet’s size, and
the consumable stock is updated as

get_Unit().Consumables--;

When a recycling is required (either due to a random damage or a scheduled
replacement), the order is sent to the main model. Hence, the transition’s action is

Order thisOrder = new Order();

thisOrder.From = this;

thisOrder.Enter = time();

thisOrder.CoX= CoX;

thisOrder.CoY= CoY;

thisOrder.Size=Cut;

send(thisOrder,get_Unit().get_Main());

StartDown=time();

AfterUse=true;

The AfterUse triggers the material record of wastes (face fibre and 1st backing) and
recycling (2nd backing), controlled by the Dead event using the following action code:

if (AfterUse==true) {

 Clock2++;

 if (Clock2>=ReTime) {

 Recycled=get_Unit().get_Main().R_Back2*Cut;

 Backing2=Backing2+Recycled;

Appendix H

309

get_Unit().get_Main().Backing2=get_Unit().get_Main().Backing2
+ Recycled;

 FaceFibre=FaceFibre+Cut*get_Unit().get_Main().R_Face;

 Backing1=Backing1+Cut*get_Unit().get_Main().R_Back1;

 Clock2=0;

 AfterUse=false;

 }

}

Note that only the 2nd backing is fed back to the main model, and the ReTime
parameter allows delays in the collection and recycling cycle time.

2. Main

Figure H-2: Main model

This model refers to the central OEM. Unlike other industries, the recycle activity is
linked closely with the production and the OEM manufactures a carpet from raw
materials. Consequently, the production element is modelled explicitly.

SD was used to model the manufacturing process since a carpet is not a discrete but a
continuous entity. Accordingly, it was more natural to use SD.

The main model receives a signal from a Carpet agent upon a recycling, hence, the on
receive message has the code:

MyOrder.add((Order)msg);

Appendix H

310

A unit of a carpet is manufactured from a fixed ratio of face fibre, 1st backing, and 2nd
backing. Thus the Production event has the condition

(FaceFibre>=R_Face)&&(Backing1>=R_Back1)&&(Backing2>=R_Back2)

Once produced, the raw material stocks are updated.

Product++;

FaceFibre=FaceFibre-R_Face;

Backing1=Backing1-R_Back1;

Backing2=Backing2-R_Back2;

Production.restart();

The OEM needs to keep checking their order, triggered by the Replacement event.

if (MyOrder.size()>0){

int j=0;

//Check if the carpet is enough for an order.

 if (Product>MyOrder.get(j).Size){

 MyOrder.get(j).From.Reuse=true;

 Product=Product-MyOrder.get(j).Size;

 MyOrder.remove(j);

 }

}

Appendix H

311

3. Service unit

Figure H-3: Service unit agent

The unit allocates the job sent by the customer, hence, the on message receive:

MyMsg.add((Order)msg);

When there is a message and available staff, the JobAllocation event is triggered i.e.

(A<Staffs.size())&&(MyMsg.size()>0 }

The element checks whether there are idle staffs in the reasonable travel distance. The
allocation always starts from the 1st staff unless she is no longer free or too far from
the customer site. If the increment is made to the final member but nobody is
available in the acceptable reach, new staff are hired.

//A is free.

if (40-Staffs.get(A).Workload>MyMsg.get(0).Size/100){

//A is in range.

if (hypot(Staffs.get(A).getX()-MyMsg.get(0).CoX, Staffs.get(A).getY()-
MyMsg.get(0).CoY)<50){

 send(MyMsg.get(0),Staffs.get(A));

Staffs.get(A).Workload=Staffs.get(A).Workload+
MyMsg.get(0).Size/100;

 MyMsg.remove(0);

 A=0;

Appendix H

312

 }else{ //A is not in range.

 A++;

 if (A==Staffs.size()){ //None is in range

 add_Staffs(MyMsg.get(0).CoX, MyMsg.get(0).CoY);

 send(MyMsg.get(0),Staffs.get(Staffs.size()-1));

Staffs.get(Staffs.size()-1).Workload=

Staffs.get(Staffs.size()-1).Workload
+MyMsg.get(0).Size/100;

 MyMsg.remove(0);

 A=0;

 }

 }

}else{ //A is not free.

 A++;

//None is free.

 if (A==Staffs.size()){

 add_Staffs(MyMsg.get(0).CoX, MyMsg.get(0).CoY);

 send(MyMsg.get(0),Staffs.get(Staffs.size()-1));

Staffs.get(Staffs.size()-1).Workload= Staffs.get(Staffs.size()-
1).Workload+MyMsg.get(0).Size/100;

 MyMsg.remove(0);

 A=0;

 }

}

JobAllocation1.restart();

Appendix H

313

The model allows a staff hiring in the case that the schedule is too tight. Also, the
consumables are refilled every week, controlled by the event CheckStock even. Once
this happens,

Consumables=MaxLevel;

4. Staff

Figure H-4: Staff agent

After a job is allocated by the unit, the status is updated and the information is sent to
the customer as mention earlier. Hence, on the receive action

Schedule=(Order)msg;

Routine thisRoutine = new Routine();

if (Workload<8) {

 thisRoutine.CleanHrs = Workload;

}else if ((Workload>=8)&& (Workload<16)) {

 thisRoutine.CleanHrs = Workload+16;

}else if ((Workload>=16)&& (Workload<24)) {

 thisRoutine.CleanHrs = Workload+32;

}else if ((Workload>=24)&& (Workload<32)) {

 thisRoutine.CleanHrs = Workload+48;

}else{

Appendix H

314

 thisRoutine.CleanHrs = Workload+64;

}

send(thisRoutine, Schedule.From);

Note that the Routine Java object was added to the model. On top of that, the logic
adopted since the workload refers to working hours whereas the routine is the running
time.

Appendix J

315

I. Case study protocol

Case study protocol

The protocol is developed as part of the PhD research “Simulation modelling of service contracts within

the context of Product-Service Systems (PSS)”. The first part of this protocol entails a series of open-

ended questions, aimed at understanding problem. The second part lists characteristics for the purpose

of case customisation.

Part I: General information

Issues Questions

Contractual

level

Design What are the service offerings in the contract?

Who owns what?

Who is responsible for what?

When does the OEM/service provider interact with customer?

What issues are covered in a contract?

When is the OEM/service provider penalised?

How to decide whether to accept the proposed contract?

What is the major concern in delivery the contract?

Modification Can existed contracts be renegotiated? If yes, what happen next?

Operational

level

Asset’s

operation

Is asset operation defined? If yes, how is it defined?

Is the operating condition defined? If yes, how is it defined?

Service

operations

What are the factors that trigger the activity?

How to predict it?

How accurate is the prediction?

How is the activity carried out?

What are decision/factors involved in the activity?

How long does the activity take?

What circumstances can delay the processes? And how to manage

it?

Individual

level

 How can an individual entity in the system influence overall system

behaviour?

Part II: Case characteristics

1. OEM service decision making

A0: OEM has fixed routine in performing services.

A1: Adaptive productivity, fixed routine, global view of situation.

A2: Adaptive productivity, flexible routine, no global view of situation.

2. Subsystem characteristic

Appendix J

316

B0: The contracted product’s state can be predicted on aggregate level.

B1: The contracted unit requires breakdown analysis into subsystem levels,
 but there is no influence between subsystems.

B2: Subsystem behaviour can influence one another and the contracted unit.

3. Work breakdown structures

C0: Service performance is measured only at the end of all operations.

C1: Jobs are preceded by several department and service performances are
 measured separately (A1).

C2: Jobs are preceded by several department and service performances are
measured separately (A2).

4. Contract creation policy

D1: A new contract is signed based on utilisation.

D2: There is no predefined situation when the OEM should make new contract.

5. Capacity adjustment policy

E0: There is no rule when to adjust capacity (A1).

E1: There is no rule when to adjust capacity (A2).

E2: Capacity is regularly adjusted based on certain rule.

6. Contract termination likelihood

F0: Contract termination is allowed.

F1: Customer can negotiate to end the contract.

7. Relationship protocol

G0: The OEM must accept all the services required by the customer.

G1: The OEM does not need to respond to all services, but it may cost
 the OEM penalty (in case of A1).

G2: The OEM does not need to respond to all services, but it may cost
 the OEM penalty (in case of A2).

Appendix J

317

J. Questionnaires

Pre-testing questionnaire

This questionnaire is part of the PhD research "Simulation modelling of service contracts within the

context of Product-Service Systems (PSS)", which aims to evaluate the efficiency and effectiveness of the

developed constructs. Along with this questionnaire, a case study description and the constructs will be

provided. The participants will be asked to apply the constructs in building a simulation model based on

the case. The purpose of the model is to enable evaluations of offering alternatives for the OEMs to

design a service contract.

Researcher: Sarocha Phumbua

1. Name:

2. Have you been involved in PSS research?

Yes

No

If yes, how long?

3. How confident are you in using simulation software to perform the task?

1 Not at all 2 3 4 5 Very

4. Have you used any of the following simulation techniques before?

 Spreadsheet

System Dynamic

Discrete-Event Simulation

Agent-Based Simulation

Never

If yes, how long and what software package?

Appendix J

318

5. Have you followed any guideline/methodology for evaluating alternative PSS offers
before?

Yes

No

6. If yes,

 Can it be used to capture PSS characteristics effectively?

1 Not at all 2 3 4 5 Very

 How easy is it to be followed?

1 Not at all 2 3 4 5 Very

 How easy is it to be modified if it cannot be used directly?

1 Not at all 2 3 4 5 Very

 How quicker it can shorten the model development?

1 Not at all 2 3 4 5 Very

 How easier it can help to perform the task?

1 Not at all 2 3 4 5 Very

 What is the methodology?

Appendix J

319

Post-testing questionnaire

1. Name:

2 How confident are you in using simulation software?

1 Not at all 2 3 4 5 Very

3. How effective can the constructs capture PSS characteristics?

1 Not at all 2 3 4 5 Very

If no, please state why?

4. Are the constructs clearly presented?

1 Not at all 2 3 4 5 Very

If not, what can be improved?

5. Can the constructs be used directly or some modifications are required?

Yes, it can be used directly

No, some modifications are required

If no, what modification?

6. How easy are the constructs to be modified?

1 Not at all 2 3 4 5 Very

If not, what can be improved?

7. How quick can the constructs help to perform the task?

1 Not at all 2 3 4 5 Very

If not, what can be improved?

8. How easy can the constructs help to perform the task?

1 Not at all 2 3 4 5 Very

If not, what can be improved?

Appendix J

320

9. Will you follow these constructs or recommend to others in the future?

Yes

No

If no, please state why not?

10. Please state your perception on the constructs

Appendix K

321

K. Audit trail from the pilot sessions

All participants were given the pre-test questionnaire prior to the testing (see
Appendix J).

1. Simulation learner

Date: 11/08/2011 – 12/08/2011

Scheduled time: 09.30-15.30, 09.30-14.00

Place: Cranfield University, Building 50, Dr. Benny Tjahjono ’s research area

Participants: Anonymous

List of activities (Day 1):

1. Brief the aim of the meeting – to validate efficiency and effectiveness of the
constructs.

2. Introduce the software’s interfaces, basic operations and shortcuts, how to
create a model, Java object, agents, attributes, and variables.

3. The participant gets familiar with the software and creates a model, agents,
Java object.

4. Introduce the DES elements used in the constructs from the software and their
important input parameters to be defined.

5. The participant builds the high-level OEM agent (no detailed actions).

6. Introduce state modelling and important commands.

7. The participant builds the high-level Asset agent.

8. Introduce different communication methods.

9. The participant completes the Asset agent and runs the model.

10. Lunch

11. Introduce analysis and presentation functions e.g. slider, button, graphs, and
associated Java commands e.g. add/remove agents, monitor utilisation.

12. The participant continues developing the model.

Appendix K

322

List of activities (Day 2):

1. The participant completes the model.

2. Questions and answers.

2. DES expert

Date: 01/09/11, 09/09/11, 01/10/11, 09/10/11

Scheduled time: 12.00-14.00, 12.00-14.00, 15.00-17.00, 13.00-14.00

Place: VDO conference

Participants: Anonymous

List of activities (Day 1):

1. Brief the aim of the meeting.

1. Explain the document briefly – case description, applied Java command, the
constructs.

Activity (Day 2): Explain the constructs in details.

Activity (day 3): Complete the basic model.

List of activities (Day 4):

1. Check the selected variants and the participant’s model.

2. Questions and answers.

3. Simulation expert

Date: 15/08/2011

Scheduled time: 09.30-13.00

Place: Cranfield University, Building 50, Dr. Benny Tjahjono ’s research area

Participants: Anonymous

List of activities

1. Brief the aim of the meeting.

Appendix K

323

2. Brief the session – the participant was asked to model a case based on
constructs.

3. Highlight the role of the participant that he needs to complete the model with
no intervention from the author.

4. Explain the constructs.

5. The participant completes the basic model.

Appendix L

324

L. Example of the constructs’ implementation on a
software tool

This section aims to prove the concept inside the constructs by implementing it in
AnyLogic.

The shared model

Figure L-1: The shared service contract model

Appendix L

325

Figure L-2: The shared service contract model in AnyLogic

Main model

1. Drag and drop a Parameter from the General Pallete.

 Name: ST_Demand

2. Drag and drop a Slider from the Control Pallete.

Input Min and Max values.

Default value: ST_Demand

Action code: set_ ST_Demand (value);

2

6

1

3

4

59

7

8

5

21

4

3

4

2

3

4

1 3

2

1

Appendix L

326

3. Drag and drop an Environment from the General Pallete.

Name: PSS

4. Create an OEM and Customer agents and define their environments.

Environment: PSS

5. Drag and drop an Event from the General Pallete.

Trigger type: Rate Mode: ST_Demand

Action code:

int m=0; int n=0;

for (Customer c: Customers){

 for (Asset s: c.Assets){

 if (s.statechart.isStateActive(Asset.Idle)){

 m =c.getIndex();

 n=s.getIndex();}}}

if (Customers.get(m).Assets.get(n).statechart.isStateActive(Asset.Idle)){

 send(“Work!",Customers.get(m).Assets.get(n));}

OEM agent

1. Create these elements from the General Pallete.

2. Drag and drop a Slider from the Control Pallete.

Input Min and Max values.

Default value: Capacity

Action code: set_Capacity((int)value);

3. Drag and drop a Histogram from the Analysis Pallete.

Histogram: ServiceTime

Appendix L

327

4. Drag and drop a Histogram Data from the Analysis Pallete.

Name: ServiceTime

5. Drag and drop a Slider from the Control Pallete.

Input Min and Max values.

Default value: MTTR

Action code: set_MTTR(value);

6. Drag and drop a Sink from the Enterprise Library Pallete.

Entity class: Info

On enter:

send("Approved!", entity.From);

ServiceTime.add(time()-entity.Enter);

JobIn--;

7. Drag and drop a Service from the Enterprise Library Pallete.

Entity class: Info

Delay time: normal(0.05*MTTR,MTTR)

8. Drag and drop an Enter from the Enterprise Library Pallete.

Element class: Info

On enter:

entity.Enter=time();

JobIn++;

9. Drag and drop a Resource Pool from the Enterprise Library Pallete.

Capacity: Capacity

Appendix L

328

Customer agent

1. Create an Asset agent.

2. Drag and drop a Button from the Control Pallete.

Action : add_Assets();

3. Drag and drop a Button from the Control Pallete.

Action:

int m=0;

if (Assets.size()>0){

 for (Asset s: Assets){

 if (s.statechart.isStateActive(Asset.Idle)){

 m=s.getIndex();}}

 if (Assets.get(m).statechart.isStateActive(Asset.Idle)){

 remove_Assets(Assets.get(m));}}

Asset agent

1. Go to the Agent tab of the Properties window.

On message received: statechart.receiveMessage((String)msg);

2. Create these elements from the Statechart Pallete.

3. Create these elements from the General Pallete.

4. Drag and drop a Slider from the Control Pallete.

Input Min and Max values.

Default value: OpCon

Action code: set_OpCon(value);

Appendix L

329

A0 Model

Figure L-3: A0 model in AnyLogic

Asset agent

1. Trigger by: Message Message type: String

Fire transition if message equals: “ToOEM!“

Action:

Info thisAsset = new Info();

thisAsset.From=this;

get_Customer().get_Main().OEM.enter.take(thisAsset);

3. Trigger by: Message Message type: String

Fire transition if message equals: “Approved!"

2

1

Appendix L

330

A1 model

Figure L-4: A1 model in AnyLogic

Asset agent

1. Trigger by: Message Message type: String

Fire transition if message equals: “ToOEM!“

Action:

Info thisAsset = new Info();

thisAsset.From=this;

get_Customer().get_Main().OEM.enter.take(thisAsset);

2. Trigger by: Message Message type: String

Fire transition if message equals: “Approved!"

2

1

2

1

3

OEM agent

Appendix L

331

OEM agent

1. Drag and drop a Parameter from the General Pallete.

2. Drag and drop a Slider from the Control Pallete.

Input Min and Max values.

Default value: Adaptive

Action code: set_Adaptive((int)value);

3. Delay:

Service.queueSize()>Adaptive?normal(0.025*MTTR,MTTR/2):
normal(0.05*MTTR,MTTR)

Appendix L

332

A2 model

Figure L-5: A2 model in AnyLogic

Asset agent

1. Trigger by: Message Message type: String

Fire transition if message equals: “ToOEM!“

Action:

Info thisAsset = new Info();

thisAsset.From=this;

2

1

3 4

5

6

2

1

OEM agent

7

8
9

11

10

13

12

14

1

4

3

5
22

6

Staff agent

Appendix L

333

send(thisAsset, get_Customer().get_Main().OEM);

2. Trigger by: Message Message type: String

Fire transition if message equals: “Approved!"

OEM agent

1. Go to the Agent tab of the Properties window.

On message received: AssetInQ.add((Info)msg);

2. Create a Staff agent.

3. Drag and drop a Button from the Control Pallete.

Action: add_Staff();

4. Drag and drop a Button from the Control Pallete.

Action:

int x=0;

for (Staff s:Staff){

 if (s.Asset.size()==0){

 x = s.getIndex();}}

if (Staff.get(x).Asset.size()==0){

 remove_Staff(Staff.get(x));}

5. Drag and drop a Collection from the General Pallete.

Element class: Info

6. Trigger type: Condition Condition: AssetInQ.size()>0

Action code:

int s=0;

for (int i=0;i<Staff.size();i++){

Appendix L

334

 if (Staff.get(s).Asset.size()>Staff.get(i).Asset.size()){

 s=i;}}

if (Staff.get(s).Asset.size()==0){

 send(AssetInQ.get(0), Staff.get(s));}

AssetInQ.remove(0);

AssignJob.restart();

Staff agent

1. Go to the Agent tab of the Properties window.

On message received: Asset.add((Info)msg);

2. Create the elements from the Control Pallete.

3. Element class: Info;

4. Drag and drop a Slider from the Control Pallete.

Input Min and Max values.

Default value: CycletimeA

Action code: set_ CycletimeA(value);

5. Drag and drop a Slider from the Control Pallete.

Input Min and Max values.

Default value: CycletimeB

Action code: set_ CycletimeB(value);

6. Create the elements from the Statechart Pallete.

7. Trigger by: Condition

Condition: (Asset.size()>0)&&(Gate==0)

Action:

Appendix L

335

statechart.fireEvent("Work!");

Gate=1;

8. Trigger by: Message Message type: String

Fire transition if message equals: “Work!"

9. Trigger by: Condition Condition: randomTrue(0.5)

10. Trigger by: Timeout

Timeout:

(Asset.size()>2)?(int)normal(0.05*CycletimeB/2,CycletimeB/2):
(int)normal(0.05*CycletimeB,CycletimeB)

Action: DoneB=true;

11. Trigger by: Condition Condition: DoneB==false

12. Trigger by: Condition Condition: DoneA==false

13. Trigger by: Timeout

Timeout:

(Asset.size()>2)?(int)normal(0.05*CycletimeA/2,CycletimeA/2):
(int)normal(0.05*CycletimeA,CycletimeA)

Action: DoneA=true;

14. Trigger by: Condition

Condition: (DoneA==true)&&(DoneB==true)

Action:

send("Approved!", Asset.get(0).From);

get_OEM().ServiceTime.add(time()-Asset.get(0).Enter);

Asset.remove(0);

DoneA=false;

Appendix L

336

DoneB=false;

Gate=0;

B0 model

Figure L-6: B0 model in AnyLogic

Asset agent

1. Drag and drop an Event from the General Pallete.

Trigger type: Timeout Mode: Cyclic

First occurrence time: Input the time between services

Recurrence time: Input the time between services

Action code: statechart.fireEvent("ToOEM!");

2. On exit: Usage=Usage+(int)normal(0.05*OpCon, OpCon);

1

2

Appendix L

337

B1 model

Figure L-7: B1 model in AnyLogic

Asset agent

1. Create the variables.

2. Create the Part agent.

3. On exit:

int m= (int)normal(0.05*OpCon, OpCon);

Usage=Usage+m;

for (Subsystem p:PartB){

 p.Remain=p.Remain-m;}

4. Add action

Action:

for (Subsystem p:PartB){

3

2

4

1

3

5

6

7

2

4 1

Asset agent

Subsystem agent

Appendix L

338

 p.Gate=0;}

Subsystem agent

1. Create the elements from the Control Pallete.

2. Create the elements from the Control Pallete.

3. Drag and drop a Slider from the Control Pallete.

Input Min and Max values.

Default value: RandFail

Action code: set_RandFail(value);

4. Drag and drop a Slider from the Control Pallete.

Input Min and Max values.

Default value: Life

Action code: set_Life((int)value);

5. Drag and drop a Slider from the Control Pallete.

Input Min and Max values.

Default value: ServCost

Action code: set_ServCost(value);

6. Trigger type: RateRate: RandFail

Action code:

if (Gate==0){

 Gate=1;

 send("ToOEM!", get_Asset());

 Remain=(int)normal(5,Life);

 get_Asset().ServiceCost=get_Asset().ServiceCost+ServCost;}

Appendix L

339

7. Trigger type: Timeout Mode: Cyclic

First occurrence time: 0 Recurrence time: 1

Action code:

ChangeLikelyhood=1000/Remain;

if
((ChangeLikelyhood>100)&&(get_Asset().statechart.isStateActive(NotReady))){

Gate=1;

Remain=(int)normal(5,Life);

get_Asset().ServiceCost=get_Asset().ServiceCost+ServCost;}

if ((Remain<=0)&&(Gate==0)){

Gate=1;

get_Asset().statechart.fireEvent("ToOEM!");

Remain=(int)normal(5,Life);

get_Asset().ServiceCost=get_Asset().ServiceCost+ServCost;}

Appendix L

340

C1 model

Figure L-8: C1 model in AnyLogic

Information object

1. Change to Request.

Asset agent

1. Create the Request agent.

2. Change the action code.

1 2

3

1

Information object

2

3

4

1

5

1

2

1 Asset agent

OEM agent

Request agent

Appendix L

341

Action: add_Requests();

Request agent

1. Go to the Agent tab of the Properties window.

On message received: statechart.receiveMessage((String)msg);

2. Create the elements from the Statechart Pallete.

3. Action:

Info thisAsset = new Info();

thisAsset.From=this;

get_Asset().get_Customer().get_Main().OEM.enter.take(thisAsset);

4. Trigger by: Message Message type: String

Fire transition if message equals: “Done1!"

5. Trigger by: Message Message type: String

Fire transition if message equals: “Done2!“

Action:

get_Asset().statechart.fireEvent("Approved!");

get_Asset().remove_Requests(this);

OEM agent

1. On exit: send("Done1!", entity.From);

2. On exit: send("Done2!", entity.From);

3. Remove the code

 send("Approved!", entity.From);

Appendix L

342

C2 model

Figure L-9: C2 model in AnyLogic

Information object

1. Change to Request

Asset agent

1. Create a Request agent.

2. Change the action code.

1

2

3

4

5

1

Information object

2

3

4

1

5

1

2

1 Asset agent

Request agent

1

6

OEM agent

Staff agent

Appendix L

343

Action: add_Requests();

Request agent

1. Go to the Agent tab of the Properties window.

On message received: statechart.receiveMessage((String)msg);

2. Create the elements from the Statechart Pallete.

3. Action:

Info thisAsset = new Info();

thisAsset.From=this;

get_Asset().get_Customer().get_Main().OEM.AssetInQ1.add(thisAsset);

4 Trigger by: Message Message type: String

Fire transition if message equals: “Done1!"

5 Trigger by: Message Message type: String

Fire transition if message equals: “Done2!“

Action:

get_Asset().statechart.fireEvent("Approved!");

get_Asset().remove_Requests(this);

OEM agent

1. Go to the Agent tab of the Properties window and remove On message received
code.

2. Create a StaffD2 agent.

3. Drag and drop a Button from the Control Pallete.

Action: add_StaffD2();

4. Drag and drop a Button from the Control Pallete.

Action:

Appendix L

344

int x=0;

for (Staff s:StaffD2){

 if (s.Asset.size()==0){

 x = s.getIndex();}}

if (StaffD2.get(x).Asset.size()==0){

 remove_StaffD2(StaffD2.get(x));}

5. Drag and drop a Collection from the General Pallete.

Element class: Info

6. Trigger type: Condition Condition: AssetInQ2.size()>0

Action code: int s=0;

for (int i=0;i<Staff.size();i++){

 if (Staff.get(s).Asset.size()>Staff.get(i).Asset.size()){

 s=i;}}

if (Staff.get(s).Asset.size()==0){

 send(AssetInQ2.get(0), Staff.get(s));}

AssetInQ2.remove(0);

AssignJob2.restart();

Staff agent

1. Change the action code to

 Action:

 if (Asset.get(0).Stage==2){

 send(“Done2!", Asset.get(0).From);

 get_OEM().ServiceTime.add(time()-Asset.get(0).Enter);

Appendix L

345

}else{

 send("Done1!", Asset.get(0).From);

 get_OEM().AssetInQ_D2.add(Asset.get(0));}

Asset.remove(0);

DoneA=false;

DoneB=false;

Gate=0;

D1 model

Figure L-10: D1 model in AnyLogic

2

1

Asset agent

1

2

3

4

56

7

Customer agent

Appendix L

346

Customer agent

1. Create these elements from the General Pallete.

2. Drag and drop a Slider from the Control Pallete.

Input Min and Max values.

Default value: MonthlyFee

Action code: set_MonthlyFee(value);

3. Drag and drop a Slider from the Control Pallete.

Input Min and Max values.

Default value: Fine

Action code: set_Fine(value);

4. Drag and drop a Slider from the Control Pallete.

Input Min and Max values.

Default value: ReqAvail

Action code: set_ReqAvail((int)value);

5. Input frequency of asset operations.

Action code:

int m=0;

if (Assets.size()>0){

 for (Asset s: Assets){

 if (s.statechart.isStateActive(Asset.Idle)){

 m=s.getIndex();}}

 if (Assets.get(m).statechart.isStateActive(Asset.Idle)){

 Assets.get(m).statechart.fireEvent("Work!");}}

Appendix L

347

6. Trigger type: Timeout Mode: Cyclic

First occurrence time: 720

Recurrence time: 720

Action code:

if (Assets.size()>0){

 Revenue=Revenue+MonthlyFee;}

7. Trigger type: Timeout Mode: Cyclic

First occurrence time: 24 Recurrence time: 24

Action code:

int m=0;

for (Asset s:Assets){

 if (s.statechart.isStateActive(Asset.Ready)){

 m++;}}

if ((m<ReqAvail)&&(Assets.size()>0)){

 Penalty=Penalty+Fine;

 Availability=100*m/ReqAvail;

}else{

 Availability=100;}

Asset agent

1 Trigger by: Message Message type: String

Fire transition if message equals: “Work!"

2. Trigger by: Timeout

Timeout: Input asset operating duration

Appendix L

348

D2 model

Figure L-11: D2 model in AnyLogic

Asset agent

1. Create these elements from the General Pallete.

2. Drag and drop a Slider from the Control Pallete.

Input Min and Max values.

Default value: Fine

Action code: set_Fine(value);

3. Drag and drop a Slider from the Control Pallete.

Input Min and Max values.

Default value: AgreedRecoveryDuration

Action code: set_ AgreedRecoveryDuration (value);

6

2

1
3

7

4

5

9

8

Asset agent

Appendix L

349

4. Drag and drop a Slider from the Control Pallete.

Input Min and Max values.

Default value: MonthlyFee

Action code: set_MonthlyFee(value);

5. Input frequency of asset operation.

Action:

if (statechart.isStateActive(Idle)){

 statechart.fireEvent("Work!"); }

6. Trigger type: Timeout Mode: Cyclic

First occurrence time: 720

Recurrence time: 720

Action code: Revenue=Revenue+MonthlyFee;

7. Drag and drop a Transition from the Statechart Pallete.

Trigger by: Timeout

Timeout: AgreedRecoveryDuration

Action code: Penalty=Penalty+Fine;

8. Trigger by: Message Message type: String

Fire transition if message equals: “Work!"

9. Trigger by: Timeout

Timeout: Input asset operating duration

Appendix L

350

D3 model

Figure L-12: D3 model in AnyLogic

Asset agent

1. Create these elements from the General Pallete.

2. Drag and drop a Slider from the Control Pallete.

Input Min and Max values.

Default value: Fine

Action code: set_Fine(value);

3. Drag and drop a Slider from the Control Pallete.

Input Min and Max values.

Default value: PercentUptime

Action code: set_PercentUptime(value);

4. Drag and drop a Slider from the Control Pallete.

6

1

7

4

3

2

5
9

8

Asset agent

Appendix L

351

Input Min and Max values.

Default value: MonthlyFee

Action code: set_MonthlyFee(value);

5. Input frequency of asset operation.

 Action:

if (statechart.isStateActive(Idle)){

 statechart.fireEvent("Work!"); }

6. Trigger type: Timeout Mode: Cyclic

First occurrence time: 720

Recurrence time: 720

Action code:

Revenue=Revenue+MonthlyFee;

if (UpTime*100/720<PercentUptime){

 Penalty=Penalty+Fine;}

UpTime=0;

7. Drag and drop a Transition from the Statechart Pallete.

Trigger by: Timeout

Timeout: 1

Action code: UpTime++;

8. Trigger by: Message Message type: String

Fire transition if message equals: “Work!"

9. Trigger by: Timeout

Timeout: Input asset operating duration

Appendix L

352

D4 model

Figure L-13: D4 model in AnyLogic

Asset agent

1. Create these variables and parameters from the General Pallete.

2. Drag and drop a Slider from the Control Pallete.

Input Min and Max values.

Default value: PricePerUse

Action code: set_PricePerUse(value);

3. Drag and drop a Slider from the Control Pallete.

Input Min and Max values.

Default value: Fine

Action code: set_Fine(value);

1

2

3

6

4

5

Asset agent

Appendix L

353

4. Drag and drop an Event from the General Palette.

Input frequency of asset operation.

Action:

if (statechart.isStateActive(Idle)){

statechart.fireEvent("Work!"); }

5. Trigger by: Message Message type: String

Fire transition if message equals: “Work!"

Action:

Penalty=Penalty+Fine;

Revenue=Revenue+PricePerUse;

6. Trigger by: Timeout

Timeout: Input asset operating duration

Action:

Penalty=Penalty-Fine;

