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Due to the error-prone nature of RNA virus replication, each dengue virus (DV) exists 

as a quasispecies within the host.  To investigate the hypothesis that DV quasispecies 

populations affect disease severity, serum samples were obtained from dengue 

patients hospitalised in Ragama, Sri Lanka.  From the patient sera, DV envelope 

glycoprotein (E) genes were amplified by high-fidelity RT-PCR, cloned, and multiple 

clones per sample sequenced to identify mutations within the quasispecies population.  

A mean quasispecies diversity of 0.018% was observed, consistent with reported error 

rates for viral RNA polymerases (0.01%; Smith et al., 1997).  However, previous studies 

reported 8.9 to 21.1-fold greater mean diversities (0.16% to 0.38%; Craig et al., 2003; 

Lin et al., 2004; Wang et al., 2002a).  This discrepancy was shown to result from the 

lower fidelity of the RT-PCR enzymes used by these groups for viral RNA amplification.  

Previous studies should therefore be re-examined to account for the high number of 

mutations introduced by the amplification process.   

Nonsynonymous mutation locations were modelled to the crystal structure of DV E, 

identifying those with the potential to affect virulence due to their proximity to 

important structural features.  No correlation was observed between the extent of 

quasispecies variation and disease severity.  However, genome-defective quasispecies 

variants, and variants with surface accessible amino acid substitutions, or those 

proximal to the fusion peptide, proposed receptor binding sites, or other E oligomers, 

were observed predominantly in patients with severe dengue.  Recombinant virus-like 

particles were produced for nine quasispecies variants, and the effects of the 

mutations on protein function assessed.  Altered heparin binding abilities were 

demonstrated for four of the nine variants, indicative of differing cell attachment 

capabilities.  Further work is required to assess differences in antibody binding, 

replication efficiency, virion and oligomer assembly, low pH-induced conformational 

changes required for fusion, and transmissibility of variants. 
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1.1 Thesis overview 

This thesis describes the investigation of dengue virus (DV) quasispecies populations, 

specifically examining the envelope glycoprotein (E) gene, within individual patient 

samples from an outbreak in Sri Lanka in 2006.  Chapter 1 provides an introduction to 

dengue disease and the epidemiology and biology of the aetiological agents, the DVs.  

The diversity and variability of DVs are examined at the species, genotype and 

quasispecies level.  The effect of this variation on virus virulence and disease 

pathogenicity is also discussed, with particular attention to the effect of mutations in 

the E gene.  The hypothesis, aims and objectives of the project are stated at the end of 

Chapter 1.  The methods used throughout the course of the investigation are detailed 

in Chapter 2, and the amplification, cloning and sequencing of the quasispecies E genes 

from the patient samples is described in Chapter 3.  The extent of variation observed in 

the virus populations within the individual patients, and how the results from this 

study compare to previous studies is assessed.  The effect of the quasispecies 

mutations on E function is hypothesised based on the proximity of the mutations to 

important structural features within the E.  Chapter 4 describes the construction of 

recombinant E for several of the quasispecies variants in the form of virus-like particles 

(VLPs).  In Chapter 5, the host cell attachment functions of these recombinant VLPs are 

assessed, as is their utility as a source of antigen for the serodiagnosis of dengue.  A 

summary and discussion of the results of the investigation, and opportunities for 

future work are provided in Chapter 6, which details correlations between 

quasispecies variation, virus virulence and disease severity. 
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1.2 Dengue  

Dengue is the most common mosquito-borne viral disease, with 50 million human 

cases estimated to occur annually (World Health Organisation, 2009).  Dengue is of 

major global concern as 40% of the world population (2.5 billion people) are at risk of 

contracting the disease, and the morbidity and mortality associated with dengue 

constitute an enormous public health burden.  There are thought to be around 

500,000 cases of severe dengue requiring hospitalisation every year with at least a 

2.5% fatality rate (World Health Organisation, 1997b).   

1.2.1 Aetiology of dengue  

Dengue is caused by four distinct but closely related viruses; dengue virus (DV) types 1, 

2, 3 and 4 which are transmitted by female Aedes mosquitoes, predominantly Ae. 

aegyptii.  The occurrence of dengue has increased 30-fold in the last 50 years due to 

the failure of vector eradication programmes and the geographical spread of vector 

and virus populations (World Health Organisation, 2009).  Epidemics of severe disease 

were not recorded until the 1950s and since then have spread geographically from 

South East Asia to every continent except Europe and Antarctica (World Health 

Organisation, 1997b).  The four DVs are now endemic in more than 100 countries 

across Africa, the Americas, the Eastern Mediterranean, South East Asia and the 

Western Pacific (Figure 1.1), with more areas becoming hyperendemic for multiple DV 

types.  Severe disease epidemics that include a higher proportion of severe dengue 

cases and a greater number of fatalities are becoming more common (World Health 

Organisation, 2008).   

DVs belong to the genus flavivirus within the family Flaviviridae.  Within the flavivirus 

genus, the viruses can be classified in terms of their transmission vector as either 

mosquito-borne, tick-borne or vector unknown (Figure 1.2).  Other flaviviruses of 

global concern include yellow fever virus (YFV), Japanese encephalitis virus (JEV), West 

Nile virus (WNV) and tick-borne encephalitis virus (TBEV).   



Chapter 1: Introduction 

4 
 

Figure 1.1.  Areas at risk of dengue virus transmission in the Western hemisphere (A) and the 

Eastern hemisphere (B). 

The maps show areas at risk of DV transmission based on dengue fever cases reported in 2008 (Centers 

for Disease Control and Prevention, 2009). 
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Figure 1.2.  Flavivirus phylogenetic tree.   

This phylogenetic tree was constructed for this study. The red box encloses mosquito-borne flaviviruses 

and the blue box encloses mammalian tick-borne flaviviruses.  The evolutionary history was inferred 

from complete genome sequences using the Neighbour-Joining method. The percentage of replicate trees 

in which the associated taxa clustered together in the bootstrap test (1000 replicates) is shown next to the 
branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary 

distances used to infer the phylogenetic tree. The evolutionary distances were computed using the 

Maximum Composite Likelihood method and are in the units of the number of base substitutions per site. 

Phylogenetic analyses were conducted in MEGA4. Sequences were NCBI RefSeq numbers: NC002031 

(Yellow fever virus, YFV), NC001437 (Japanese encephalitis virus, JEV),  NC001672 (tick-borne 

encephalitis virus, TBEV),  NC001477 (DV type 1),  NC001474 (DV type 2), NC001475 (DV type 3),  

NC002640 (DV type 4),  NC000943 (Murray Valley encephalitis virus, MVEV), NC007580 (St Louis 

encephalitis virus, SLEV), NC009942 (West Nile virus, WNV), NC006551 (Usutu virus), NC005064 

(Kamiti river virus), NC005062 (Omsk haemorrhagic fever virus), NC004355 (Alkhurma virus), 

NC003687 (Powassan virus), NC003675 (Rio Bravo virus), NC003676 (Apoi virus), NC001809 

(Louping ill virus), NC008718 (Entebbe bat virus), NC006947 (Karshi virus), NC004119 (Montana 
myotis leukoencephalitis virus), NC003670 (Langat virus), NC003635 (Modoc virus), NC009027 (Iguape 

virus), NC009026 (Bussuquara virus), NC009028 (lheus virus), NC009029 (Kokobera virus), NC008719 

(Sepik virus) and NC005039 (Yokose virus).   
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1.2.2 Symptoms of dengue  

In infants and young children, dengue most commonly presents as a non-specific 

febrile illness with a rash.  In older children and adults there can be a mild febrile 

syndrome or classical disease with pain behind the eyes and a rash.  Severe disease 

occurs in about 1% of cases and symptoms can include high fever, haemorrhagic 

phenomena, enlarged liver, circulatory failure and hypovolemic shock.  Death can 

occur within 12-24 hours unless appropriate treatment is given (World Health 

Organisation, 2008).  There are no specific antiviral therapies available for dengue and 

there is no vaccine.  Treatment is intensive supportive care such as maintenance of 

circulating fluid volume and ventilatory support, but this is less widely available in 

developing countries. 

Most flavivirus infections are thought to be under-reported because the wide 

spectrum of disease severity and a lack of effective case definition make diagnosis 

difficult.  Symptoms common to all flavivirus infections include: fever, headache, chills, 

muscle aches, loss of appetite, nausea, and vomiting.  The most common presentation 

is of a mild febrile illness and flavivirus infections can sometimes even be 

asymptomatic.   However, severe complications occur in a significant proportion of 

infected individuals.  For infections caused by YFV, JEV, WNV and TBEV these severe 

complications tend to be neurological rather than the abnormalities of haemostasis 

and vascular permeability observed with severe dengue. 

1.2.3 Clinical and laboratory diagnosis of dengue 

During diagnosis, flavivirus infections must be differentiated from other viral infections 

with similar clinical presentation (for example Chikungunya virus, an alphavirus), 

bacterial infections (such as Salmonella typhi, which causes typhoid fever or Leptospira 

species which cause leptospirosis), or parasitic infections (for example the Plasmodium 

parasites that cause malaria).  The diagnosis may then be narrowed to a specific 

flavivirus infection, although according to the World Health Organisation (WHO) many 

laboratories only report a diagnosis of ‘acute flavivirus infection’, rather than 

identifying the precise virus using serological or molecular techniques (World Health 

Organisation, 1997c).  
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Cases of symptomatic dengue have historically been classified by severity according to 

WHO guidelines first published in 1975, which differentiate between cases of dengue 

fever (DF), dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS; World 

Health Organisation 1997a; Figure 1.3). However, dengue epidemiology has changed 

considerably since these guidelines were first published, leading to difficulties with the 

use of this classification system in a clinical setting (reviewed in Bandyopadhyay, Lum, 

and Kroeger, 2006; Deen et al., 2006).  Examples of severe dengue that do not meet 

the WHO criteria for DHF include: dengue with haemorrhage but without evidence of 

plasma leakage; dengue with shock but not fulfilling all four DHF criteria; and severe 

dengue with organ dysfunction but a low degree of plasma leakage (Bandyopadhyay, 

Lum, and Kroeger, 2006). 

Regional WHO publications since 1997 have acknowledged these difficulties by 

relaxing the criteria in some circumstances to aid clinical assessment of dengue cases.  

For example, in small hospitals in India, guidelines state that DHF is any probable case 

of dengue with haemorrhaging and any one (not all) of the DHF indications shown in 

Figure 1.3 (World Health Organisation, 1999).  Another example is in the treatment of 

children, where the term ‘severe dengue’ has been proposed to include any case of 

dengue fever with signs of vascular permeability resulting in plasma leakage (Deen, 

2005).  In the most recent WHO guidelines (World Health Organisation, 2009), a 

classification system has been proposed that distinguishes between patients with 

severe dengue, and those with non-severe dengue with or without warning signs 

(Figure 1.4).  This classification system has been tested in 18 countries by comparison 

with the existing WHO case classification and published results are expected soon. 
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Dengue fever

Acute febrile illness with two or more of the following:
headache
retro-orbital pain
myalgia
arthralgia
rash
haemorrhagic manifestations
leukopenia

and either supportive serology or proximity to laboratory confirmed cases.

Dengue haemorrhagic fever

The following indications must all be present:
fever or a history of fever
haemorrhagic tendencies evidenced by one or more of the following:

- a positive tourniquet test
- petechiae, ecchymoses or purpura
- bleeding from the mucosa, gastrointestinal tract, injection sites or other locations
- haematemesis or melaena

thrombocytopenia (100,000 cells per mm3 or less)
evidence of plasma leakage due to increased vascular permeability, manifested by at least one of 

the following:
- a rise in the haematocrit equal to or greater than 20% above average for age, sex and population
- a drop in the haematocrit following volume-replacement treatment equal to or greater than 20% 
of baseline
- signs of plasma leakage such as pleural effusion, ascites and hypoproteinaemia

Dengue shock syndrome

All four of the above DHF criteria must be present, plus evidence of circulatory failure manifested by 
either of the following:

rapid, weak pulse and narrow pulse pressure (<20mmHg)
hypotension for age (systolic pressure <80mmHg for those less than 5 years of age, or <90mmHg 

for those greater than or equal to 5 years of age) and cold, clammy skin and restlessness 

 

 

 

 

Figure 1.3.  World Health Organisation dengue case classification guidance.  

Adapted from World Health Organisation, 1997a.  Cases of dengue are classified as dengue fever (DF), 

dengue haemorrhagic fever (DHF) or dengue shock syndrome (DSS) according to the clinical 

observations described in the figure. 
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Figure 1.4.  2009 updated World Health Organisation dengue case classification guidance. 

Figure is from World Health Organisation, 2009. Cases of dengue are classified as dengue with or 
without warning signs, and severe dengue according to the clinical observations described in the figure. 

Abbreviations are: haematocrit (HCT), dengue shock syndrome (DSS), aspartate transaminase (AST), 

alanine transaminase (ALT), central nervous system (CNS). 

     
Diagnostic laboratory tests most commonly used for dengue include those that detect 

the DVs (isolation by tissue culture or reverse transcription-polymerase chain reaction, 

RT-PCR) and those that detect antibodies to the virus (enzyme-linked immunosorbent 

assay (ELISA), immunofluorescence (IF), haemagglutination inhibition (HI) and 

neutralisation tests).  The gold standard for the laboratory diagnosis of any flavivirus 

infection is isolation, culture and further characterisation of the virus (for example by 

antigen detection) from the patient sample which is time consuming, taking over a 

week to complete.  However, RT-PCR allows rapid diagnosis and could therefore 

improve patient care.  Both of these virus detection methodologies are more 

expensive than serology-based methods and require well-equipped laboratories.  They 

are also only of use within approximately seven days of the onset of symptoms as the 

virus is present in the sera typically for the duration of fever (World Health 

Organisation, 1997c).  After this time, antibodies to the virus can be identified using 

serological methods.  The antibodies neutralise the virus and therefore it is not 
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possible to detect or culture the virus once the immune response is significantly 

underway. 

There are several difficulties with serological diagnosis of flavivirus infections.  Many 

different flaviviruses circulate in the same regions and there is a large degree of 

antigenic cross-reactivity between them, so it can be difficult to identify which 

flavivirus is causing the current infection.  In addition, the presence of antibodies from 

previous flavivirus infections or vaccinations makes it difficult to diagnose the type of 

infection (primary or secondary; past, present or recent; Shu and Huang, 2004).  

Primary antibody responses occur in people who have not previously been infected (or 

immunised) and are characterised by the presence of immunoglobulin M (IgM) 

antibodies after several days of fever, or after the fever has passed.  Secondary 

responses occur as a result of a second flavivirus infection (for example sequential 

infection with different DV types) and it is the IgG response that is dominant (Shu and 

Huang, 2004).  IgG antibodies from secondary dengue infections can persist in the 

blood for more than 10 months (Gubler, 1996). Serological studies on dengue patients 

have shown that antibodies to the envelope glycoprotein (E) are more commonly 

detected than those raised against the capsid (C), pre-membrane (prM), membrane 

(M), nonstructural (NS) 1, NS3 or NS5 proteins in both primary and secondary 

infections (Valdes et al., 2000).  This shows that serology-based diagnostic tests should 

be directed towards E antigens or antibodies for them to stand the best chance of 

early detection. 

In the UK, travellers falling ill on returning home from flavivirus endemic areas require 

laboratory diagnosis of their diseases.  Currently at the Health Protection Agency (HPA) 

Centre for Emergency Preparedness and Response (CEPR) approximately 2500 clinical 

samples are tested for evidence of arboviruses each year, and this includes a flavivirus 

screen.  Samples are received from patients in the early stages of infection (in which 

antigen is present) and later after the immune response has occurred.  Screening for 

arbovirus infections is done by RT-PCR, IF, and IgM and IgG ELISA.  Cross-reactivity 

between antibodies to the different flaviviruses often complicates interpretation of the 
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serology results.  There is a need for improved reagents for serodiagnosis (flavivirus 

antibodies and antigens) that are species specific, and do not cross-react. 
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1.3 Dengue viruses  

1.3.1 Dengue virus structure and genome organisation 

DVs, like all flaviviruses, are single positive strand ribonucleic acid (RNA)-encoded 

viruses.  DV genomes are around 10,700 nucleotides in length, and act directly as 

messenger RNA (mRNA) for all viral proteins, which are synthesised in one long open 

reading frame as a polyprotein which is then proteolytically processed (Figure 1.5).  

The genome consists of non-coding (NC) regions at the 5’ and 3’ ends, with the genes 

encoding the three structural proteins (C, prM and E) followed by those encoding the 

seven NS proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b and NS5; Lindenbach and Rice, 

2001). The non-structural proteins are involved in replication and processing of the 

viral polyprotein (Ball, 2001), and inhibition of host interferon responses to infection 

(Ho et al., 2005; Munoz-Jordan et al., 2005).  Mature virions are spherical and around 

50nm in diameter, containing the three structural proteins (C, M and E).  M and E are 

embedded in a host-derived lipid bilayer forming the outer surface of the virion, 

surrounding the C proteins that encapsulate the viral RNA (Figure 1.6; Kaufmann and 

Rossmann, 2011). 

 

Figure 1.5.  Dengue virus genome organisation.   

Figure is from Petersen and Roehrig, 2001. The approximately 10.7kb genome has non-coding (NC) 

regions at the 5’ and 3’ ends, with the protein-coding genes in the order C, prM, E, NS1, NS2a, NS2b, 

NS3, NS4a, NS4b and NS5.  PrM is the membrane protein precursor which is cleaved by furin to produce 

the M protein.    
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Figure 1.6.  Structure of the flavivirus virion. 

Figure and legend are from Kaufmann and Rossmann, 2011. (A) Three-dimensional (3D) rendering of a 

cryoelectron microscopy density map of DV. The cut-out window allows the view inside the virion at the 

nucleocapsid core (magenta/orange) composed of the C protein and the RNA genome. The core is 

surrounded by a host-derived lipid envelope (green). The outer icosahedral shell of the virus (blue) is 

formed by two membrane-anchored glycoproteins, E and M. (B) Pre-fusion arrangement of E on the 

surface of the mature flavivirion, viewed down an icosahedral twofold axis. Domains I, II, and III of each 

E monomer are coloured red, yellow, and blue, respectively. The fusion loop is shown in green. A total of 

180 E monomers are associated in 30 rafts of three, nearly parallel E homodimers that form a distinct 

herringbone pattern. One icosahedral asymmetric unit (ASU), the smallest unit from which the particle 

can be generated by applying icosahedral symmetry, is outlined by a black triangle. The positions of the 

neighbouring icosahedral five-, three- and two-fold symmetry axes are marked with symbols (pentagons, 
triangles, and ovals, respectively). Each ASU contains the equivalent of three E monomers. (C) 

Arrangement of E and pr peptides on the surface of an immature, fusion-incompetent flavivirion, viewed 

down an icosahedral twofold axis. Domains I, II, and III of each E monomer and the fusion loop are 

coloured as in (A). The pr peptide is shown in magenta. One ASU is outlined by a black triangle and the 

positions of the symmetry axes are indicated. E are icosahedrally arranged in 60 trimeric spikes, 

composed of prM/E heterodimers. The pr peptide of prM covers the fusion peptide in domain II of E (on 

the tip of each spike) to prevent premature fusion. 

 

1.3.2 Dengue virus replication 

The host range of DVs includes humans, monkeys and mosquitoes, and virus 

replication is able to occur in diverse tissues within all of these organisms.  During 

infection (Figure 1.7), the virus attaches to host cell surface receptors via E (Chen, 

Maguire, and Marks, 1996) and enters the cell by receptor-mediated endocytosis.  The 

acidic pH within the endosome triggers conformational changes in the viral envelope 

that allow fusion of viral and cell membranes.  The viral RNA is released into the 

cytoplasm, and once delivered to cellular ribosomes, is translated to form the 

polyprotein precursor.  This undergoes proteolytic processing to release the structural 

and non-structural proteins.  The non-structural proteins catalyse replication via the 

production of anti-genomic RNA, which is itself replicated to produce more genomic 

RNA for translation.  Virus particles are assembled on the surface of the endoplasmic 
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reticulum (ER), in the form of immature virions containing prM.  These bud off from 

the ER and are transported through the trans-Golgi network (TGN).  The prM are then 

cleaved by the host cell’s furin protease, to yield M.  This exposes the E fusion peptide, 

which results in mature infectious virions that are fusion-competent and can be 

released to infect more host cells (Ball, 2001; Mukhopadhyay, Kuhn, and Rossmann, 

2005). 

 

Figure 1.7.  Flavivirus replication.   

The virus attaches to its target cell and gains access via receptor-mediated endocytosis.  Viral and cell 

membranes fuse, releasing the viral RNA (vRNA) genome into the cell. The genomic RNA is translated 

into a polyprotein which is then cleaved to release the structural and non-structural proteins.  Replication 

of the viral genome and new virus assembly takes place at the surface of the ER.  Immature virions are 

transported out of the cell via the TGN, and virus maturation occurs.  Diagram is from Ball, 2001. 

 
NC regions at the ends of the genome play an important role during replication and 

translation.  Long-range RNA-RNA interactions between the 5’ and 3’ non-coding 

regions are thought to circularise the genome, which prevents replication and 

translation of truncated or damaged mRNAs (Alvarez et al., 2005).  Both non-coding 
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regions are capable of recruiting translation-initiation factors.  The 5’ end of the viral 

RNA is capped but the 3’ end is not polyadenylated (poly(A)) unlike host cellular 

mRNAs.  However, the 3’ non-coding region plays roles in both regulation of 

translation and mRNA stability similar to that of the cellular mRNA poly(A) tail (Chiu, 

Kinney, and Dreher, 2005).  DVs (and therefore potentially other flaviviruses) are able 

to initiate viral protein synthesis using interacting 5’ and 3’ non-coding regions even 

under conditions where cap-dependent translation is inhibited (Edgil, Polacek, and 

Harris, 2006).   The start codon for translation initiation in dengue and other mosquito-

borne flaviviruses is an adenine-uracil-guanine (AUG) sequence at the start of the 

coding region for the capsid protein.  A hairpin loop in the RNA secondary structure 

near this site is thought to increase site recognition by the ribosome complex by 

stalling it over the start codon (Clyde and Harris, 2006). 

1.3.3 Dengue virus binding to target host cells 

Immature dendritic cells (DCs) in the skin are considered the initial site of DV 

replication in humans after inoculation by the mosquito vector (Ho et al., 2001; 

Palucka, 2000; Wu et al., 2000).  Migration of infected DCs to the lymph nodes permits 

antigen presentation leading to an immune response, infection and replication in 

lymphoid tissues and release of DV into the circulation.  Monocytes, macrophages, B 

and T lymphocytes and endothelial cells have also been shown to support DV infection 

in vitro (Bielefeldt-Ohmann et al., 2001; Halstead and O'Rourke, 1977; Lee et al., 2006; 

Miller et al., 2008) and different cellular receptors have been implicated in virus-cell 

attachment.  These receptors vary between cell-types, species of origin and DV type.  

Monocytes and macrophages can be infected by DV in an antibody-dependent manner 

via binding of non-neutralised virus-antibody complexes to immunoglobulin fcγ 

receptors on the cell surface (Halstead and O'Rourke, 1977).  However, primary 

infections, and infections of cells that do not have immunoglobulin fcγ receptors on 

the cell surface must occur via a different mechanism. 

Heparan sulphate expressed on the surface of target cells has been shown to bind the 

DV E (Chen et al., 1997).  Interactions between heparan sulphate and clusters of basic 

amino acids within E are thought to concentrate the virus on the cell surface, enabling 
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subsequent higher-affinity interactions with specific receptors.  Lectins such as  DC-

specific intracellular adhesion molecule-3 (ICAM-3) grabbing nonintegrin (DC-SIGN), 

DC-SIGN relatives (DC-SIGNR) and the mannose receptor have been proposed as 

dengue receptors on dendritic cells, endothelial cells and macrophages (Miller et al., 

2008; Navarro-Sanchez et al., 2003; Tassaneetrithep et al., 2003).  This is consistent 

with a role for the E glycans in infectivity and virus growth in mammalian cells (Bryant 

et al., 2007; Mondotte et al., 2007) as lectins such as DC-SIGN bind high-mannose 

glycans in the presence of calcium ions (Feinberg et al., 2001).  Cryoelectron 

microscopy of the DV/DC-SIGN complex has shown interaction of the lectin with the 

asparagine (N or Asn)-linked glycan at Asn-67 (Pokidysheva et al., 2006).   

One mechanism of virus neutralisation by antibodies is prevention of virus attachment 

to host cells, as the antibody obscures the receptor-binding site on the virion, making it 

unable to bind to the target host cell (Roehrig, 2003).  Viruses are able to escape 

neutralisation by antibodies if they contain gene mutations that lead to amino acid 

substitutions that prevent neutralising antibodies from binding.    
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1.4 Determinants of viral replication and disease pathogenesis 

The causes of dengue pathogenesis are poorly understood at present.  Work in this 

area has been hampered by the lack of appropriate animal models for severe disease.  

Mouse neurovirulence models are commonly used (Gualano et al., 1998; Holzmann et 

al., 1990; Kawano et al., 1993) even though dengue rarely causes encephalitis in 

human infections (Solomon et al., 2000).  Factors in addition to host genetics 

(reviewed in Coffey et al., 2009) that have been proposed as having an effect on 

pathogenicity include: the antibody-dependent enhancement (ADE) of infection by the 

presence of antibodies to previous infection with a different DV type, and the virulence 

of the infecting virus strain (Halstead, 1988; Rosen, 1977).  Consistent with both of 

these hypotheses is that increased disease severity has been correlated with high 

viraemia early in the course of illness (Libraty et al., 2002; Vaughn et al., 2000).  DVs 

isolated from patients with severe disease have been observed to replicate more 

rapidly and to higher titres in DCs than viruses isolated from patients with less severe 

disease (Takhampunya et al., 2009).   It has been observed that during the febrile 

stage, DHF patients display higher dengue viral loads than DF patients, and that during 

defervescence (when the symptoms of DHF/DSS occur) these high viral loads are 

maintained in the DHF patients but not the DF patients for up to six days (Wang et al., 

2003a).  This could be indicative of slower virus clearance as a result of ADE or 

increased efficiency of virus infection or replication by a more virulent strain. 

1.4.1 Antibody-dependent enhancement of dengue virus infection 

Recovery from infection by one DV type provides lifelong immunity to that virus type 

and transient immunity lasting just two to three months against the other DV types.  

There is an increased risk of severe disease after secondary infection with different DV 

types or in primary infection of infants born to dengue-immune mothers (Halstead, 

1988).  This is thought to be due to ADE of infection.  When there are existing 

antibodies to a previous infection with a different DV type, these antibodies are unable 

to neutralise the current infecting virus and there is enhanced uptake of non-

neutralised virus into leukocytes.  The production and secretion of chemokines and 

cytokines by the cell in response to the increased viral replication that follows is 
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thought to lead to the increase in vascular permeability that is the hallmark of severe 

dengue.  During a DV type 2 epidemic in Cuba in 1997, in which there were an 

estimated 5208 symptomatic (febrile) cases, 92% of the dengue fever cases and over 

98% of the 205 severe disease cases had serologically confirmed secondary infections 

(Guzmán et al., 2000).  Cuba had no other endemic flaviviruses at this time so the 

primary infections for the majority of these individuals were attributed to a DV type 1 

epidemic 20 years previously.  The explanation given for the high occurrence of 

secondary infections was that the infection rate may have been higher in those that 

had DV type 1 antibodies than in those that did not.   

This ADE hypothesis is the basis for the current emphasis on development of 

tetravalent dengue vaccines that are active against all four DV types.  However, severe 

cases of dengue also occur as a result of primary infections (Barnes and Rosen, 1974; 

Gubler et al., 1978; Thomas et al., 2008), and some ethnic groups appear to be 

‘immune’ to severe disease despite living in areas of hyperendemicity (Halstead et al., 

2001).  A study in Haiti found no recorded cases of DHF amongst the indigenous 

population (Halstead et al., 2001).  This was despite the presence of DV type 2 

genotype I viruses (which are associated with DHF in Southeast Asia and America) and 

antibodies to multiple DV types in 85% of the children tested, as well as annual 

transmission rates consistent with countries endemic for DHF.  This indicates that 

dengue pathogenesis is due to a combination of factors rather than just ADE. 

1.4.2 Dengue virus sequence variation and virulence 

The four DVs are thought to have evolved from a common ancestor of either African or 

Asian origin around 1000 years ago.  A predominantly sylvatic cycle was maintained 

with non-human primates as hosts until the establishment of endemic transmission to 

humans as recently as 100 to 320 years ago, coinciding with a large increase in 

population growth (reviewed in Holmes and Twiddy, 2003); Figure 1.8).  All four DV 

types have the potential to cause severe disease, and each DV type can be divided into 

genotypes based on the extent of sequence diversity between strains.  In some cases 

the genotypes correspond to particular geographical regions, with strains diverging 

from a founding strain after its introduction into a new area.   
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Figure 1.8.  Dengue virus genetic relationships and evolutionary history.   

Figure is from Holmes and Twiddy, 2003. Phylogenetic analyses were based on E gene comparisons 
between strains from all four DV types.  The approximate divergence times in years are shown above key 

nodes and the bootstrap values are shown below selected nodes.  

 
Differences in strain virulence within DV types and across genotypes have been 

attributed to the presence or absence of severe dengue cases during an outbreak 

(Gubler et al., 1978; Lanciotti et al., 1994; Rico-Hesse et al., 1997b).  There is evidence 

for both DV types 2 and 3 that some genotypes appear to cause only mild disease 
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whilst others have the potential to cause epidemics of DHF/DSS (Gubler et al., 1981; 

Messer et al., 2003a; Rico-Hesse et al., 1997b; Vitarana, Jayakuru, and Withane, 1997).  

Sylvatic DVs are not associated with epidemics in humans.  They are transmitted by 

sylvatic Aedes species with non-human primates as hosts.  There have been few 

reports of sylvatic DVs isolated from humans and for the most part they were 

asymptomatic or the clinical descriptions are not detailed enough to confirm 

symptomatic dengue (reviewed in Vasilakis, Weaver, and Maramorosch, 2008). 

Sequence variation between the five DV type 1 genotypes has been shown to be up to 

9%, using comparisons of nucleotide sequence data for a 240 nucleotide region across 

the E/NS1 junction (Figure 1.9; Rico-Hesse, 1990).  When the E gene sequences from 

147 strains of DV type 2 were compared, it was found that the five non-sylvatic 

genotypes differed by an average of 7.3% (Figure 1.10; Twiddy et al., 2002).  Severe 

dengue was not epidemic in the Americas until 1981 despite the co-circulation of 

several DV types and a high incidence of secondary infection within the population.  

The emergence of epidemic severe dengue coincided with the introduction of the 

more virulent Southeast Asian genotype of DV type 2, replacing the previous American 

genotype which was associated with non-severe disease (Rico-Hesse et al., 1997a).  

Subsequent investigations identified sequence differences between the two genotypes 

in the 5’ and 3’ NC regions that were predicted to change RNA secondary structures 

involved in translation initiation and virus replication, and in the E gene which led to an 

amino acid substitution in the host cell-binding region of E (Leitmeyer et al., 1999).  In 

comparison with Southeast Asian genotype DV type 2 strains, American genotype 

strains exhibit reduced virus output from human monocyte-derived macrophage 

(Cologna and Rico-Hesse, 2003; Pryor et al., 2001) and DC cultures but not mosquito 

cell cultures (Cologna and Rico-Hesse, 2003).  The main determinant of replication 

efficiency was shown by both groups to be the E amino acid substitution.    The 

American genotype strains have also been shown to replicate and disseminate less 

efficiently in Aedes aegypti mosquitoes when compared to Southeast Asian genotype 

strains (Armstrong and Rico-Hesse, 2001). 
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There are four genotypes of DV type 3 (Figure 1.11) with a maximum nucleotide 

sequence difference between them of around 10% and a protein sequence difference 

of less than 5% (Lanciotti et al., 1994).  Genotype III clusters into two distinct clades, 

IIIa and IIIb.  Those strains that comprise genotype IIIa are all from outbreaks during or 

prior to 1989 which were not associated with DHF epidemics.  Those that form 

genotype IIIb are all from 1989 or later and have been associated with epidemics of 

severe dengue (Lanciotti et al., 1994; Messer et al., 2003a).  Interestingly, genotype IV 

strains have never been associated with DHF, although the reason for this is not known 

(Lanciotti et al., 1994).  A comparison of 19 DV type 4 E gene sequences from viruses 

across several decades and geographical regions revealed two genotypes (Figure 1.12) 

with less than 8% nucleotide sequence diversity and 4% amino acid difference 

(Lanciotti, Gubler, and Trent, 1997). 
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Figure 1.9.  Phylogenetic tree showing dengue virus type 1 evolutionary relationships.   

Figure is from Goncalvez et al., 2002. Genotype I contains strains from Japan, Hawaii, Asia and Djibouti.  

Genotype II contains strains from Thailand.  Genotype III contains a Malaysian sylvatic strain.  Genotype 

IV contains strains from Australia, South East Asia and the South Pacific.  Genotype IV contains strains 

from Africa, the Americas and South East Asia.  
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Figure 1.10.  Phylogenetic tree showing dengue virus type 2 evolutionary relationships.  

Figure is from Twiddy et al., 2002. Of the five non-sylvatic DV type 2 genotypes, two contain strains 

solely from South East Asia, one contains strains from the Americas and older isolates from India and the 

Pacific Islands, one contains strains from Asia and the Americas and one genotype contains strains with 
an almost global distribution.   
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Figure 1.11.  Phylogenetic tree showing dengue virus type 3 evolutionary relationships.   

Figure is from Lanciotti et al., 1994. Genotype I strains are mostly from South East Asia.  Genotype II 

strains are all from Thailand.  Genotype III strains are from Sri Lanka, India, Samoa and Mozambique.  

Genotype IV strains are from Puerto Rico and Tahiti.   
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Figure 1.12.  Phylogenetic tree showing dengue virus type 4 evolutionary relationships.  

Figure is from Lanciotti, Gubler, and Trent, 1997. Genotype I comprises strains from Thailand, Sri Lanka 

and the Philippines.  Genotype II strains are from Indonesia, Tahiti, the Caribbean islands, and Central 

and South America.   

 

1.4.3 Dengue in Sri Lanka 

Prior to 1989 there was a low incidence of severe dengue in Sri Lanka despite it being a 

region of hyperendemicity for all four DV types, but since 1989 dengue epidemiology 

in the region has been characterised by severe disease epidemics (Figure 1.13; Messer 

et al., 2002).  No significant differences were found in the relative distribution of DV 

types, virus transmission rates or the proportion of secondary infections between data 

collected pre and post 1989 (Messer et al., 2002).  A genetic shift in DV type 3 

genotype III strains, favouring genotype IIIb strains over the previously dominant 
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genotype IIIa strains, has been proposed as an explanation for the emergence of 

epidemic severe disease in Sri Lanka since 1989 (Lanciotti et al., 1994).  A similar DV 

type 3 clade replacement has been suggested as the cause of a further increase in 

severe dengue in Sri Lanka since 2000 (Kanakaratne et al., 2009). 

 

Figure 1.13.  Dengue haemorrhagic fever in Sri Lanka between 1980 and 1998.   

Figure is from Messer et al., 2002. These data are based on cases reported to the Sri Lankan Ministry of 

Health Epidemiology Unit and samples tested at the Medical Research Institute in Colombo.  In this case, 

the case definition for DHF was at least fever, haemorrhagic symptoms and a platelet count less than 

100,000/mm3.  Serological confirmation was based on the HI test. 

 

1.4.4 Recombination in dengue viruses 

Phylogenetic analyses of DV genome sequences have demonstrated that DVs undergo 

recombination between genotypes within the same DV type (AbuBakar, Wong, and 

Chan, 2002; Holmes, Worobey, and Rambaut, 1999; Tolou et al., 2001; Worobey, 

Rambaut, and Holmes, 1999).  This may be as a result of the RNA polymerase changing 

templates mid-way through replication in a cell that contains more than one DV 

genotype, as has been suggested for polio virus recombination (Cooper et al., 1974).  

This is able to occur in areas of hyperendemicity where multiple DV types and several 

genotypes of the same DV type are endemic.  Evidence for co-infection with multiple 

DV types in humans is documented (Bharaj et al., 2008; Wang et al., 2003b; Wenming 
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et al., 2005), whereas the evidence for co-infection with multiple genotypes is scarce.  

This is because diagnostic tests are able to distinguish between DV types whilst not 

being able to discern the presence of multiple genotypes within a DV type.  The 

presence of multiple DV type 2 genotypes within a single mosquito, including a 

recombinant virus along with both parental strains has been documented (Craig et al., 

2003).  Similar findings were also reported from a human DV type 1 sample (Aaskov et 

al., 2007). 

These findings suggest the potential for emergence of recombinant DVs with altered 

pathogenicity compared to parental strains.  Whilst there is no evidence for 

recombination between DV types, there may also be implications for vaccine design 

and safety in relation to potential recombination of attenuated live vaccine strains, 

either with other strains within a multivalent vaccine or with non-vaccine strains 

(Worobey, Rambaut, and Holmes, 1999).  This could lead to the production of 

unattenuated recombinant viruses and vaccine-associated disease as has been 

observed with polio virus (Georgescu et al., 1994).   

1.4.5 Dengue virus as a quasispecies  

Within a single host, a RNA virus exists as a population of many variant forms due to 

the error-prone nature of RNA virus replication.  These populations are termed 

quasispecies and they contain enough phenotypic variants to be able to respond 

rapidly to new selection pressures (DeFilippis and Villarreal, 2001; Domingo, 1998).  

Rates of spontaneous mutation among RNA viruses have been estimated at 

approximately one mutation in every 10,000 nucleotides (1x10-4) during natural 

replication (Smith et al., 1997) which equates to around one nucleotide mutation per 

DV genome per replication (Drake, 1993).  These quasispecies populations must be 

regulated to maintain genetic and antigenic diversity in a stable manner.  The 

replication rate and mutation rate must remain within acceptable limits to ensure the 

survival of both virus and host whilst allowing the virus to avoid clearance by the host 

immune system. 
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Quasispecies populations have been well studied in viral infections such as human 

immunodeficiency virus (HIV; Garcia-Arriaza, Domingo, and Briones, 2007), hepatitis E 

(Grandadam et al., 2004), foot and mouth disease virus (FMDV; Domingo et al., 2002) 

and hepatitis C (Martell et al., 1992).  There are few publications of quasispecies 

investigations in flaviviruses.  DV quasispecies populations were first identified in 2002 

in DV type 3 populations from six human plasma samples (from an outbreak in Taiwan 

in 1998; Wang et al., 2002a).  The same group then compared DV type 3 populations 

from naturally infected mosquitoes collected during the 1998 outbreak with the viral 

populations found in the human samples.  Less quasispecies diversity was identified in 

the mosquito-derived viruses than in the human-derived viruses (Lin et al., 2004).  A 

study of DV type 2 populations also examined samples from both humans and 

mosquitoes (from samples collected in Myanmar between 1998 and 2000), and 

reported multiple genotypes as well as recombinant viruses within the same host 

(Craig et al., 2003).  These studies used RT-PCR, cloning and sequencing of partial (Lin 

et al., 2004; Wang et al., 2002a) or complete (Craig et al., 2003) E genes to study the 

extent of sequence diversity within the virus populations of individual hosts.   

During HIV-1 infection, the detection of minor quasispecies variants (between 0.1 and 

10% of the genome population) is becoming increasingly important in genotyping the 

virus and predicting the response to different anti-viral treatments throughout the 

course of the infection (Garcia-Arriaza, Domingo, and Briones, 2007).  Little progress 

has been made in linking elements of the flavivirus quasispecies population to disease 

pathogenesis, although a higher frequency of genome-defective virus with in-frame 

stop codons due to insertion or deletion mutations has been reported in patients with 

DHF compared to patients with DF (Wang et al., 2002a).  

The nature of the regulatory mechanisms that maintain population stability whilst 

allowing genetic and antigenic diversity is not well understood but it has been 

proposed that certain RNA viruses are able to autoregulate genetic mutation via 

interaction with the viral RNA polymerase itself (Sallie, 2005).  The theory is that in 

viruses capable of persistent infection the actions of the RNA polymerase are 
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influenced by the viral E gene.  Wild-type and variant E genes show different 

interactions with the polymerase in order to alter fidelity and processivity, and 

maintain a stable quasispecies population.  Accumulation of variant E genes inhibits 

processivity of the polymerase and improves its fidelity so that the genes that are 

produced are closer to the original wild-type sequence.  These wild-type E genes in 

turn interact with the RNA polymerase and encourage the production of more variants 

by increasing processivity and infidelity.  This mechanism for mediating stable viral 

replication and promoting antigenic diversity has been termed ‘replicative 

homeostasis’ (Sallie, 2005). 

Mosquito-borne flaviviruses are rarely capable of persistent infection in humans, 

(although it has been documented in neuronal tissues; reviewed in Burke and Monath, 

2001) but they do cause persistent non-cytolytic infections in their mosquito vectors 

(Lindenbach and Rice, 2001).  The observation of less DV sequence diversity in 

mosquitoes compared to human hosts (Lin et al., 2004) may be explained by 

regulatory mechanisms such as replicative homeostasis acting during the persistent 

infection to maintain evolutionary conservation of the virus.  Replicative homeostasis 

may also play a role in maintaining population stability during acute RNA-virus 

infections.  Arthropod-borne flaviviruses must be able to infect and replicate 

effectively in both the insect vector and vertebrate host cells, which imposes 

significant evolutionary constraints on viral genetic variation.  This is supported by the 

finding that high levels of intrahost (quasispecies) short-term variation are not 

maintained in the long-term at an interhost level (Holmes and Twiddy, 2003). 
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1.5 Flavivirus envelope proteins and their role in virulence 

The majority of the surface of flavivirus virions is composed of E, which are heavily 

involved in mediating attachment of the virus to the host cell and in membrane fusion.  

Mutations within the E gene that alter E antibody binding, cell-attachment or 

membrane fusion therefore have the potential to affect virulence or cell tropism, and 

consequently disease severity.     

1.5.1 Flavivirus envelope protein structure 

Much of the early knowledge about the antigenic structure of flavivirus E came from 

diagnostic serology experiments.  These experiments classified the flaviviruses into 

groups using techniques such as virus neutralisation, heamagglutination inhibition and 

complement fixation (reviewed in Roehrig, 2003).  MAbs were used in conjunction 

with denaturation, low pH, proteolysis and reduction of disulphide bridges to construct 

epitope maps (Heinz and Maramorosch, 1986; Mandl et al., 1989).  Flavivirus gene 

sequence data began to be reported from 1985 (Deubel, Kinney, and Trent, 1986; 

Mandl, Heinz, and Kunz, 1988; Mason et al., 1987; Rice et al., 1985; Zhao et al., 1986), 

which enabled the epitope maps to be linked to the sequence data.  The locations of 6 

disulphide bridges formed between the 12 cysteine residues in the WNV E were 

established (Nowak and Wengler, 1987) and were subsequently shown to be 

conserved in both mosquito and tick-borne flaviviruses (Rey et al., 1995). A model of 

the antigenic structure of flavivirus E was produced based on TBEV (Figure 1.14; Mandl 

et al., 1989).  The model proposed that flavivirus E have three antigenic domains; A, B 

and C containing 16 epitopes.  Domain A contains epitopes that are cross-reactive as 

well as those that are specific for tick-borne flaviviruses.  Domain B also contains 

epitopes that are specific for tick-borne flaviviruses, whereas domain C epitopes are 

mostly sub-type specific (Mandl et al., 1989). 

The first flavivirus E crystal structure was determined for TBEV in 1995 (Figure 1.15; 

Rey et al., 1995).  This revealed a molecular architecture very different from other 

viruses (e.g. influenza) known at the time, with E lying flat as homodimers along the 

outer surface of the virus lipid bilayer, rather than forming spike-like projections.  

Three structural domains were identified: I, II and III, corresponding to the previously  
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Figure 1.14.  Flavivirus envelope protein antigenic model.  

Figure and legend are from Mandl et al., 1989. Open circles represent hydrophilic amino acid residues 

(Arg, Lys, Asn, Asp, Gln, Glu, His), dotted circles show intermediate amino acid residues (Pro, Tyr, Ser, 

Trp, Thr, Gly), and solid circles show hydrophobic amino acid residues (Ile, Val, Leu, Phe, Cys, Met, 

Ala). Position numbers are shown every 50 amino acids. Cysteine residues forming disulphide bridges are 
connected by solid lines. Arrows depict cleavage sites that liberate immune-reactive fragments; IRF1 

(trypsin) and IRF3 (CNBr), respectively. Small arrows indicate potential cleavage sites within these 

fragments that are not utilized. Two solid lines stand for the lipid membrane that is spanned by two 

transmembrane regions of E. The polypeptide chain is folded to indicate the antigenic domains A, B, and 

C. Arrows together with the names of neutralizing monoclonal antibodies (mAbs) depict the locations of 

the mutations identified in the respective antigenic variants of TBEV by sequence analysis. A line of solid 

triangles indicates the almost perfectly conserved sequence within domain A. A line of open triangles 

marks the region of a potential T-cell determinant. A solid diamond represents a site of N-glycosylation 

common to TBEV, MVEV, SLEV, JEV and dengue (DEN) viruses. YFV and SLEV have an additional 

potential N-glycosylation site within domain B, DVs within domain A. 
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defined C, A and B antigenic domains respectively (Rey et al., 1995).  Domain I is an 

eight-stranded β-barrel with an additional short amino-terminal strand at one edge.  It 

has an N-linked glycosylation site at Asn-153 which is conserved amongst most 

flaviviruses and is central to the other two domains.  Domain II is an elongated 

dimerisation region consisting of twelve β-strands and two α-helices with the fusion 

peptide at its base.  The fusion peptide is within a region (amino acids 98-113) 

conserved amongst most flaviviruses.  Domain III is an immunoglobulin-like module 

with ten β-strands which form a barrel structure closed by an additional sheet.  It is 

thought to contain the flavivirus receptor-binding motif (Rey et al., 1995). 

 

Figure 1.15.  Tick-borne encephalitis virus envelope protein structure.   

Figure is from Rey et al., 1995. The two E polypeptide chains form a head-to-tail homodimer.  β-strands 

are represented by ribbons with arrowheads; alpha helices by coiled ribbons; connecting loops by thin 

tubes.  The disulphide bridges are shown by ball-and-stick representations of the cystine residues (green).  
The single glycan on each dimer, labelled CHO is also drawn as ball-and-stick.  Domains I (red), II 

(yellow) and III (blue) are shown. (a) The dimer viewed as if looking down on the outside surface of the 

virus particle. (b)  The dimer viewed from the side as if looking along the surface of the virus particle. 
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DV E crystal structures were not published until much later (Kuhn et al., 2002; Modis et 

al., 2003) but were shown to closely resemble the TBEV E so that determinants of host 

range, tropism or virulence map to the same locations in the DV and TBEV structures 

(Modis et al., 2003).  The major differences between the TBEV and DV E crystal 

structures are that DVs have an additional N-linked glycosylation site within domain II 

at Asn-67, and an additional four amino acids in domain III that form a surface-exposed 

loop implicated in receptor binding (Modis et al., 2003).  The DV N-glycosylation sites 

at Asn-67 and Asn-153 are involved in infection, propagation and secretion of the virus 

(Mondotte et al., 2007).  Mutations at these sites could therefore affect infectivity. 

1.5.2 Flavivirus envelope gene mutations and altered pathogenesis 

For many flaviviruses, single nucleotide mutations within the E gene have been shown 

to be associated with altered virulence or pathogenicity (Cecilia and Gould, 1991; 

Guirakhoo et al., 2004; Hahn et al., 1987; Hasegawa et al., 1992; Holzmann et al., 

1990; Jiang et al., 1993; Nitayaphan et al., 1990).  Mutations in the flavivirus E gene 

that alter the properties of the virus tend to cluster at three sites on E.  These sites are 

the distal face of domain III, the base of domain II, and the domain I/III interface with 

the domain II conserved region at residues 97-113 (Figure 1.16; Rey et al., 1995).  

Mutations causing residue substitutions at the base of domain II or at the domain I/III 

interface with the domain II conserved region at residues 98-113  are thought to affect 

virulence or antibody neutralisation of virus by impacting upon the conformational 

rearrangements triggered by fusion (Rey et al., 1995).  Some of these mutations have 

been shown to affect fusion by altering the pH required for the fusion-activating 

conformational change (Mandl et al., 1989; Modis et al., 2003; Rey et al., 1995).  Most 

of these mutations involve substitution of residues with side-chains that project into 

the ligand-binding pockets between the dimers, and it has been reported that lowering 

of the pH threshold for conformational change is due to the substitution of longer 

hydrophobic side chains for shorter ones (Modis et al., 2003).  During routine passage 

of a chimeric YFV/DV type 1 vaccine strain, a mutation became incorporated which 

substituted the lysine residue at E position E204 with an arginine residue (Guirakhoo et 

al., 2004).  This resulted in reduced neurovirulence and viraemia in suckling mice and 
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monkeys respectively.  Residue E204 resides within the ligand binding site involved in 

virus fusion with cell membranes, and the mutation may have attenuated the virus by 

interfering with this process (Guirakhoo et al., 2004).  Mutations resulting in 

substitutions on the distal face of domain III can affect virulence or cell tropism and it 

has been suggested that this is due to interference with cell attachment, as domain III 

is thought to contain the flavivirus receptor-binding motif (Crill and Roehrig, 2001).  

Neutralisation escape mutations have also been mapped to this part of DV type 2 E 

(Roehrig, Bolin, and Kelly, 1998), consistent with antibody neutralisation of virus by 

blocking cell attachment. 

 

Figure 1.16.  Clustering of mutations at envelope protein structural domain interfaces.   

Figure adapted from Rey et al., 1995. Domain I from each molecule of the dimer is in black, domain II is 

in grey, and domain III is in white.  Blue boxes highlight mutations clustering at the distal face of domain 
III.  Red boxes highlight the clustered mutations at the base of domain II.  Green boxes highlight 

mutations clustered at the domain I/III interface with the domain II conserved region at residues 97-113. 

Mutation positions are labelled according to the positions in TBEV Neudörfl strain.  Mutations are from 

JEV, MVEV, Louping ill, TBEV, DV and TBEV/DV chimera viruses.  Arrows mark sites where 

mutations influence the threshold pH for the fusion-activating conformational change.   

 
Various single amino acid substitutions at residue E390 of DV type 2 E have been 

implicated in phenotypic and virulence changes in the virus.  During plaque purification 

of a Mexican DV type 2 strain (Sanchez and Ruiz, 1996), differences in plaque size were 

observed between clones where the E390 aspartic acid (Asp) residue was substituted 

with either histidine (His) or asparagine (Asn).  The Asp to His change was associated 

with the production of large lytic plaques and the virus was highly virulent in suckling 

mice, whereas the Asp to Asn change was associated with the production of small lytic 
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plaques and the virus was less virulent in suckling mice.  In American genotype dengue 

type 2 viruses known only to cause mild disease in humans, the residue at E390 is Asp 

whereas in Southeast Asian genotype viruses associated with DHF epidemics the 

residue at E390 is Asn (Leitmeyer et al., 1999). Subsequent investigation of these two 

viruses has shown that infectious clones with Asp at E390 (American genotype) display 

reduced viral RNA output from infected cells compared to clones with Asn at E390 

(Southeast Asian genotype; Cologna and Rico-Hesse, 2003).  Substitutions at residue 

E390 of DV type 2 E are thought to affect the ability of the virus to bind to the host cell 

surface.  This residue occurs within one of two putative glycosaminoglycan binding 

motifs (E284 to 310 and E386 to 411) containing many basic amino acids (Chen et al., 

1997), and the change in charge of the substituted residue has the potential to alter 

attachment (Leitmeyer et al., 1999).  Amino acid substitutions in this position have also 

been identified in the YFV 17D strain, which is the attenuated vaccine strain derived 

from the virulent Asibi strain (Hahn et al., 1987), and in attenuated MVEV (Lobigs et 

al., 1990).  In JEV, MVEV and YFV 17D, this site forms part of an Arg-Gly-Asp (RGD) 

sequence implicated in virus-cell attachment.  In the case of both YFV 17D and the 

MVEV strains mentioned above, the E390 mutations were induced by adaptation to 

culture and resulted in virus attenuation in the original host, which is consistent with 

the role of the RGD sequence as a receptor-binding motif (Hahn et al., 1987; Lobigs et 

al., 1990).   

For DVs, E has been shown to contain a binding site (E306-314) for highly sulphated 

heparin sulphate (HSHS) molecules which are present on the surface of cells targeted 

by the virus and appear to mediate infectivity (Chen et al., 1997; Thullier et al., 2001).  

Neutralisation escape mutations that lead to reduced mouse neurovirulence with 

Louping ill virus have been located at E positions E308-311 (Jiang et al., 1993).  

Similarly, neutralisation escape mutations in the DV type 2 E have been described at E 

position E307 (Lin et al., 1994).  The presence of these neutralisation escape mutations 

within the HSHS binding site indicates a mechanism for virus neutralisation by antibody 

binding to the HSHS binding site and thereby preventing attachment of the virus to the 

host cell.   
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During adaptation of a human DV type 1 isolate to grow in suckling mouse brain, 

several amino acid differences were identified between a mouse-passaged variant that 

caused neurovirulence and the original isolate (Despres et al., 1998).  These 

differences were located within both E and NS3 (the NTPase/helicase).  Interestingly, 

all the substitutions in the neurovirulent strain mapped to the interfaces between the 

structural domains of E.  The virus titres were similar in both strains despite there 

being a reduced rate of production of viral proteins in vitro for the neurovirulent 

strain.  The authors suggested this was due to the E mutations (E196 and E405) 

positively affecting assembly of glycoprotein oligomers (Duarte dos Santos et al., 

2000).   

In summary, mutations in the E gene that lead to residue substitutions in E can alter 

the properties of the virus if they occur: 

1. On the surface, in regions involved in antibody recognition, cell attachment or 

oligomer assembly 

2. At the interfaces between structural domains where they can affect the 

conformational changes required for fusion of virus and host cell membranes. 
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1.6 Hypothesis, aims and objectives 

1.6.1 Hypothesis 

DV quasispecies populations affect disease severity in individual patients.   

1.6.2 Aims and objectives 

The overall aim of this study was to provide in-depth characterisation of DV 

quasispecies populations in individual patients, in terms of both the extent of DV E 

gene variation, and the presence of specific variants.   This study also aimed to 

investigate whether there was a relationship between quasispecies variation and 

disease severity, by analysis of DV E gene sequences.  Recombinant E proteins would 

be produced to further investigate the effects of the quasispecies mutations on protein 

function.  Identification of DV quasispecies E variants that do not bind flavivirus cross-

reactive antibodies would lead to improved tools for serodiagnosis of DV infection.  

This work was subdivided into specific objectives which are described in sections 

1.6.2.1 to 1.6.2.5 below. 

1.6.2.1   Objective 1: To investigate the overall extent of dengue virus envelope 
gene quasispecies variation within individual clinical samples and correlations 
with disease severity. 
There have been few studies documenting the extent of variation in DV quasispecies 

populations in individual hosts (Craig et al., 2003; Lin et al., 2004; Wang et al., 2002a).  

These groups focused on the DV type 2 or 3 E genes and the methodologies used were 

not ideal as they permitted the introduction of mutations via the RT-PCR amplification 

process itself.  Both the number of patients (between 3 and 8) and the number of 

clones analysed per patient was low (between 10 and 21).  Only one group (Craig et al., 

2003) looked at the complete E gene sequence and used high-fidelity PCR for gene 

amplification.  Therefore, this study intended to use high-fidelity reverse transcription 

and PCR to look at E genes from all four DV types across a greater number of clinical 

samples from the same outbreak and a greater number of clones per sample.   This 

would determine whether the overall extent of DV E gene variation within a patient 

sample correlates with disease severity.  
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1.6.2.2   Objective 2: To investigate the relationship between the presence of 
specific dengue virus envelope gene variants and disease severity. 
Little progress has been made in linking specific variants within the DV quasispecies 

population to disease severity, although a higher frequency of defective genomes with 

in-frame stop codons have been reported in patients with DHF compared to those with 

DF (Wang et al., 2002a).  This study intended to detail the types of mutation found 

within the DV E gene variants and investigate correlations with disease severity.   

1.6.2.3   Objective 3: To identify the dengue virus genotypes present within the 
intra and inter-host populations and look for evidence of recombination. 
Virus genotype has a direct affect on DV transmission by mosquitoes and pathogenicity 

in humans (Armstrong and Rico-Hesse, 2001; Cologna and Rico-Hesse, 2003; Leitmeyer 

et al., 1999).  The presence of a recombinant DV and both parental DV type 2 strains 

(from different genotypes) within the same mosquito has been documented (Craig et 

al., 2003).  Similar findings were also reported from a human clinical DV type 1 sample 

(Aaskov et al., 2007).  Recombinant viruses could have reduced or increased virulence 

compared to either or both of the parental strains and thus could affect disease 

transmission and pathogenicity. This study would use phylogenetic analyses to 

genotype the DV E gene variants from the samples from the Sri Lankan outbreak, and 

to look for evidence of recombination. 

1.6.2.4   Objective 4: To identify dengue virus envelope gene variants with the 
potential to affect disease severity  
The few published studies of quasispecies populations in DV infections have all looked 

at the E gene sequence but have not progressed to the implications for the E sequence 

and the folded protein.  This study intended to map the locations of the amino acid 

substitutions resulting from nonsynonymous mutations found within the DV E gene 

quasispecies variants, using the linear and three-dimensional structural models of the 

flavivirus E.  This was to identify those amino acid substitutions located in regions of 

the protein involved in virion or oligomer assembly, antibody recognition or virus-cell 

interactions, with the potential to affect disease severity.  
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1.6.2.5   Objective 5: To construct recombinant dengue virus envelope 
glycoproteins (from those identified in the previous objective) that enable 
comparison of quasispecies consensus and variant proteins through binding 
studies. 
This study intended to compare recombinant DV quasispecies consensus and variant E 

by ELISA in terms of binding to cell surface molecules implicated in DV-cell binding 

(HSHS and DC-SIGN), and binding to antibodies (both commercially available and those 

provided by flavivirus-vaccinated individuals).  The antibody and cell surface molecule 

binding experiments would determine whether specific variants within the 

quasispecies population would exhibit altered virus-antibody or virus-cell binding 

affinities compared to the quasispecies consensus E.  The antibody binding 

experiments would aid in comparison of existing commercially available antibodies and 

could potentially identify DV E variants that did not bind flavivirus cross-reactive 

antibodies.  These proteins could be used as improved tools for serodiagnosis of DV 

infection as they would overcome the current difficulties with flavivirus cross-reactivity 

during serological testing.  The recombinant quasispecies consensus and variant DV E 

would also be assessed for differences in their ability to undergo the low pH-induced 

conformational changes required for fusion of virus and host cell membranes, as this 

could potentially affect virulence and disease severity. 
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CHAPTER 2. MATERIALS AND METHODS 
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2.1 General information 

This section provides general information on the chemicals, reagents, oligonucleotides, 

bacterial strains, insect cell lines and culture medium used throughout this thesis. 

2.1.1 Chemicals and reagents 

Unless otherwise stated, general chemicals and reagents were obtained from Sigma 

Chemicals Company Ltd. UK, SAFC Biosciences Ltd. UK, Invitrogen™ UK, Merck 

Chemicals Ltd. UK, Thermo Fisher Scientific Ltd. UK, Promega Ltd. UK and GE 

Healthcare Ltd. UK.  All solution concentrations were weight per volume (w/v) unless 

otherwise indicated as volume per volume (v/v) and where required solutions were 

sterilised by autoclave. Restriction endonucleases and modifying enzymes including 

the appropriate buffers were obtained from Promega Ltd. UK or New England Biolabs 

(NEB) Ltd. UK unless otherwise stated. PCR and RT-PCR kits were obtained from Qiagen 

Ltd. UK, Stratagene Ltd. UK, Applied Biosystems Ltd. UK or Roche Ltd. UK.  DNA ladders 

and loading dyes were obtained from Qiagen Ltd. UK.  Antibodies were obtained from 

Abcam Ltd. UK, eBioscience Ltd. UK or Thermo Fisher Scientific Ltd. UK. 

2.1.2 Oligonucleotides 

All oligonucleotides were custom synthesised by Sigma-Aldrich Ltd. UK and purified by 

desalt. 

2.1.3 Flavivirus RNA used as a positive control template for RT-PCR 

The flavivirus RNA used as positive control template for RT-PCR was obtained from 

HPA CEPR.  Virus strains were: YFV 17D strain, JEV Nakayama strain, TBEV Neudörfl 

strain, DV type 1 Hawaii A strain, DV type 2 New Guinea C strain, DV type 3 H87 strain 

and DV type 4 H241 strain.   

2.1.4 Dengue patient material 

Dengue patient material was kindly donated by Major Mark Bailey of the Royal Army 

Medical Corps (Royal Centre for Defence Medicine, Birmingham, UK).  Serum samples 

were taken from patients presenting with fever on admission to hospitals in and 

around Ragama, Sri Lanka.  Ethical considerations for the use of these samples and 

accompanying clinical data are presented in Appendix L. 
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2.1.5 Bacterial strains and culture media 

The modified Escherichia coli K12 JM109 strain (Promega) was used for cloning and 

plasmid propagation.  The genotype of the strain is endA1, recA1, gyrA96, thi-1, 

hsdR17 (rk
–, mk

+), relA1, supE44, Δ( lac-proAB), [F´ traD36, proAB, laqIqZΔM15].  

Bacterial culture media were obtained from Invitrogen™ UK or bioMérieux UK. 

2.1.5.1   Glossary of mutations 
endA1  This mutation results in improved plasmid yields through inactivation of an 

endonuclease that would otherwise co-purify with plasmids during purification.   

recA1  The recA gene is involved in recombination and DNA repair.  This mutation limits 
recombination of the plasmid with the E. coli genome, making the insert more stable. 

gyrA96  This mutation within the DNA gyrase gene confers resistance to nalidixic acid.  

thi-1  This mutation affects thiamine metabolism so there is a requirement for thiamine for 
growth in minimal media. 

hsdR17 (rk
–, mk

+) This mutation is within the K strain DNA restriction and methylation system.  Cleavage 
of transformed DNA by endogenous restriction endonucleases is prevented (rk

–) but 
methylation by endogenous methylases is permitted (mk

+). 

relA1  This mutation of ppGpp synthetase I enables RNA synthesis in the absence of protein 
synthesis. 

supE44  This mutation suppresses amber (UAG) mutations in termination codons.  

Δ lac  The β-galactosidase gene is deleted on the chromosome.  

proAB  The proAB mutations of proline metabolism confer a requirement for proline for 
growth in minimal media. 

F´  F’ strains are sensitive to infection by M13 phage. 

traD36  The traD36 transfer factor mutation prevents transfer of the F’ episome.    

laqIq  laqIq strains over-produce the lac repressor protein, inhibiting transcription from the 
lac promoter.   

lacZΔM15 The β-galactosidase gene is partially deleted, enabling restoration of β-galactosidase 
activity via an α-complementation sequence carried by some plasmid vectors and 
blue/white screening for positive transformants.   

2.1.6 Insect cell lines and culture medium 

Spodoptera frugiperda (Sf) 9 and Sf21 insect cell lines were obtained from Invitrogen™ 

(UK).  The Sf9 Easy-Titre (Sf9 E-T) insect cell line was kindly provided by Dr. Ralph 

Hopkins of the National Cancer Institute at Frederick, Maryland, USA.   Sf21 and Sf9 E-T 

cells were cultured in Sf900 II serum-free and HyClone SFX insect cell culture medium 
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respectively (Invitrogen™ UK).  Sf9 cells were cultured in Ex-cell 420 serum-free 

medium (SFM) with L-glutamine (AFC Biosciences Ltd. UK).  

2.1.7 Insect viruses and virus transfer vectors 

FlashBAC GOLD™ (Oxford Expression Technologies Ltd. UK) and the transfer vector 

pBAC-2cp (Merck Chemicals Ltd. UK) were used for the construction of recombinant 

baculoviruses (rBVs).    
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2.2 In silico techniques 

This section details the computer-based methodology used for the acquisition and 

analysis of sequence data for RT-PCR or PCR primer design, sequencing and protein 

structure modelling.  Also described is the rationale for primer design. 

2.2.1 Acquisition of published Flavivirus sequence data 

Published sequence data were obtained via the nucleotide or protein sequence 

databases of the National Centre for Biotechnology Information (NCBI) website 

(http://www.ncbi.nlm.nih.gov/) for DV types 1, 2, 3 and 4.  E gene positions were as 

defined in the NCBI Reference Sequences (RefSeqs) NC_001477 (type 1), NC_001474 

(type 2), NC_001475 (type 3) and NC_002640 (type 4).   

2.2.2 Sequence analysis for primer design 

Sequence analysis was performed using DNAStar (Lasergene 7 sequence analysis 

software, DNAStar Inc.).  To identify suitable primer sites, multiple sequence 

alignments were performed on E gene nucleotide or amino acid sequences and the 

flanking regions using the Clustal W algorithm within the alignment program Megalign.   

2.2.3 RT-PCR, PCR and sequencing PCR primer design 

Primers were designed to have a length between 18 and 30 nucleotides and a melting 

temperature (Tm) between 55°C and 80°C.  The 3’ end of each primer was finished with 

a guanine-cytosine (GC) clamp, and mismatches and runs of three or more consecutive 

G or C nucleotides were avoided.  Primers were checked using the Sigma-Aldrich DNA 

Oligo Design Tool (www.sigmaaldrich.com) to estimate their melting temperature and 

ensure they did not have any significant secondary structure or the ability to dimerise.  

They were also checked for specificity using the nucleotide database (blastn algorithm) 

within the NCBI Basic Local Alignment Search Tool (BLAST; 

http://blast.ncbi.nlm.nih.gov/Blast.cgi).   

DV species-specific primers for quasispecies analysis were designed up to 200 

nucleotides outside the E gene.  This was to allow the whole of the E gene to be 

sequenced in subsequent experiments.  Primers were located in conserved regions of 

the alignments to enable them to detect the greatest number of strains.   
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Sequencing primers internal to the DV E genes were designed based on the NCBI 

RefSeqs (section 2.2.1). 

DV species-specific primers for rBV production were designed to amplify only the 

intended gene target and not the flanking regions.  They also incorporated restriction 

endonuclease recognition sequences to facilitate cloning into the baculovirus transfer 

vector pBAC-2cp. 

2.2.4 Analysis of sequencing data 

Sequence chromatograms were viewed and contigs of sequencing reactions 

constructed using SeqMan (Lasergene 7 sequence analysis software, DNAStar Inc.).  

Each clone contig consisted of up to eight sequence reads (four primers in each 

direction) and consensus sequences for each clone were saved as EditSeq files.  

Multiple sequence alignments were performed for all of the clones from each patient 

sample. To minimise errors introduced by the sequencing process, any mismatches 

that were identified from the multiple sequence alignment consensus were compared 

to the contig chromatogram to ensure only definite nucleotide alterations (confirmed 

by multiple sequence reads) were counted.  EditSeq was used to convert nucleotide 

sequence into protein sequence and multiple sequence alignments were performed as 

described in Section 2.2.2.   

Phylogenetic and molecular evolutionary analyses were conducted using MEGA 

version 4 (Tamura et al., 2007), with the neighbour joining method and maximum 

composite likelihood model.  Bootstrapping analysis was conducted using 1000 

replicates and where possible the DV type 1 E gene sequence from the NCBI RefSeq 

NC_001477 was used to root the trees. 

2.2.5 Statistical analysis 

Statistical tests were applied using Minitab version 15 (Minitab, Coventry, UK). 

2.2.6 Protein modelling 

DeepView (Swiss-PdbViewer at http://spdbv.vital-it.ch/) was used to model consensus 

protein sequences onto the appropriate DV E structure and map the locations of the 
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nonsynonymous mutations found within the quasispecies population.  Homology 

modelling was performed by inputting the sample amino acid sequence and 

submitting that sequence to a protein data bank (pdb) to find structures with similar 

sequences.  The structure with the best homology match (1UZG for dengue virus type 

3 and 1OAN for dengue virus types 2 and 4) was downloaded and the sample amino 

acid sequence structure was inferred using the downloaded structure as a reference.  

Transmembrane domains were not included as they are not present in any of the pdb 

files.  To construct the oligomeric protein the sample sequence monomer was opened 

in two layers so that one of the monomers could be re-positioned as the second 

monomer of the dimer using the Matrix co-ordinates provided in the pdb text file from 

the downloaded structure.  The two layers were then merged and the dimer coloured 

according to the protein domains (stated in Rey et al., 1995).  Surface accessible 

residues and residues within 4Å of important structural features were identified. 
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2.3 Nucleic acid manipulations 

2.3.1 Amplification of nucleic acid sequences using the polymerase chain 
reaction 

PCR and RT-PCR amplifications were performed on a GeneAmp 9700 thermocycler 

(Applied Biosystems).  Amplified DNA was visualised using agarose gel electrophoresis 

(Section 2.5.1). 

2.3.1.1   Standard RT-PCR 
Standard RT-PCR reactions were performed using the OneStep RT-PCR Kit (Qiagen) 

according to the manufacturer’s one-step instructions for amplification of long RT-PCR 

products.  Reaction volumes of 25µL consisted of final concentrations of 1x reaction 

buffer (from 5x concentrate of Tris-HCl, KCl, (NH4)2SO4, 12.5mM MgCl2, dithiothreitol 

(DTT); pH 8.7), 1.6mM dNTP mix, 0.6µM each of forward and reverse primer (specific 

to template RNA), 1µL of enzyme mix (containing Omniscript and Sensiscript reverse 

transcriptases and HotStarTaq DNA Polymerase with 1mM DTT, 0.1mM EDTA, 0.5% 

Nonidet® P-40, 0.5% Tween® 20, 50% glycerol, stabilizer; pH 9.0) and 5µL of RNA 

template.  Cycling conditions are detailed in Table 2.1. 

Table 2.1.  Standard RT-PCR thermal cycling conditions 

 

 

 

 

 

2.3.1.2   AccuScript high-fidelity RT-PCR 
AccuScript high fidelity RT-PCR reactions were performed in duplicate for each sample 

in 50µL volumes using the AccuScript High-Fidelity RT-PCR System (Stratagene) 

according to the manufacturer’s two-step instructions for synthesising first-strand 

cDNA and amplifying the cDNA template.  First-strand cDNA synthesis reactions (10µL) 

consisted of a final concentration of 1x AccuScript RT buffer (from 10x concentrate of 

0.5M Tris-HCl (pH 8.3), 0.75M KCl, 0.03 M MgCl2), 4µM dNTP mix, 0.625µM reverse 

Stage Temperature (˚C) Time Cycles 

Reverse transcription 45 30 minutes  

Denaturing 95 15 minutes  

Amplification 

94 15 seconds 

36 cycles 60 1 minute 

68 2.5 minutes 

Extension 68 10 minutes  

Cooling 4 ∞  
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primer (specific to template RNA), 5µL of RNA template, 10mM DTT and 1µL of 

AccuScript reverse transcriptase (RT).  The RT buffer, dNTPs, reverse primer and RNA 

were incubated at 65˚C for five minutes and then allowed to cool at room temperature 

for a further five minutes to anneal the primer to the RNA.  The DTT and AccuScript RT 

were then added and the reaction incubated at 42˚C for 30 minutes to allow reverse 

transcription of the RNA template to cDNA. 

Amplification of cDNA was performed in a total reaction volume of 50µL with a final 

concentration of 1x PCR buffer (formulation not specified by manufacturer), 0.8µM 

dNTP mix, 0.2µM each of forward and reverse primer (specific to template DNA), 2.5 

units of PfuUltra high fidelity DNA polymerase and 5µL of cDNA template.  Thermal 

cycling conditions are detailed in Table 2.2. 

Table 2.2.  AccuScript thermal cycling conditions for PCR amplification of cDNA 

Stage Temperature (˚C) Time Cycles 

Denaturing 95 1 minute  

Amplification 
95 30 seconds 

36 cycles 
60 30 seconds 

68 6 minutes 

Extension 68 10 minutes  

Cooling 4 ∞  

 

2.3.1.3   Expand high-fidelity RT-PCR 
Expand high-fidelity RT-PCR reactions were performed using the Expand reverse 

transcriptase and Expand long template PCR system (Roche) according to the method 

published in (Craig et al., 2003).  First strand synthesis reactions consisted of 20µL total 

reaction volume with a final concentration of 1x Expand RT buffer (formulation not 

specified by manufacturer), 4µM dNTP mix, 0.625µM reverse primer (specific to 

template RNA), 5µL of RNA template, 10mM DTT and 1µL of Expand reverse 

transcriptase.  The reverse primer and RNA were incubated at 65˚C for five minutes 

and then allowed to cool at room temperature for a further five minutes to anneal the 

primers to the RNA.  The DTT and Expand RT were then added and the reaction 

incubated at 30˚C for 10 minutes, followed by 42˚C for 30 minutes to allow reverse 

transcription of the RNA template to cDNA.  
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Reactions for amplifying the cDNA template consisted of 50µL total reaction volumes 

with a final concentration of 1x PCR buffer 1 (formulation not specified by 

manufacturer), 0.8µM dNTP mix, 0.2µM each of forward and reverse primer (specific 

to template DNA), 3.5 units of Expand high fidelity enzyme mix (containing Taq and 

Tgo DNA polymerases) and 5µL of cDNA template.  Thermal cycling conditions are 

detailed in Table 2.3. 

Table2.3.  Expand thermal cycling conditions for PCR amplification of cDNA 

Stage Temperature (˚C) Time Cycles 

Denaturing 94 2 minutes  

Amplification 
94 10 seconds 

36 cycles 
60 30 seconds 

68 2.5 minutes 

Extension 68 10 minutes  

Cooling 4 ∞  

 

2.3.1.4   Standard PCR 
Standard PCR reactions were performed using the Taq PCR Core kit (Qiagen) according 

to the manufacturer’s instructions for PCR using Taq DNA polymerase.  Reaction 

volumes of 25µL consisted of final concentrations of 1x reaction buffer (from 10x 

concentrate of Tris-HCl, KCl, (NH4)2SO4, 15mM MgCl2; pH 8.7), 0.8mM dNTP mix, 

0.3µM each of forward and reverse primer (specific to template RNA), 0.13µL of 

enzyme mix (20mM Tris-HCl, 100mM KCl, 1mM DTT, 0.1mM EDTA, 0.5% Nonidet  P-40, 

0.5% Tween 20, 50% glycerol; pH 8.0) and 5µL of RNA template.  Cycling conditions 

were as detailed in Table 2.4. 

Table 2.4.  Taq PCR core kit thermal cycling conditions 

Stage Temperature (˚C) Time Cycles 

Denaturing 94 3 minutes  

Amplification 
94 15 seconds 

36 cycles 
60 1 minute 

68 2.5 minutes 

Extension 68 10 minutes  

Cooling 4 ∞  
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2.3.2 RNA extraction using commercial spin columns 

The RNA extraction methods in this section use lysis under denaturing conditions to 

inactivate virus and RNases and to ensure isolation of intact RNA.  Nucleic acids are 

then preferentially bound to the silica membrane within a spin column in the presence 

of a chaotropic salt such as guanidine chloride.  Impurities are washed away and RNA is 

subsequently eluted in a low salt concentration elution buffer. 

2.3.2.1   RNA extraction from dengue patient sera 
RNA extractions from dengue patient sera were performed using the QIAamp Viral 

RNA Mini Kit (Qiagen) according to the manufacturer’s protocol for purification of viral 

RNA (Spin protocol).  Samples were first lysed for 10 minutes at room temperature 

using 560µL of AVL buffer containing 5.6µg of carrier RNA.  560µL of 100% ethanol 

(v/v) was added and the sample was loaded onto the QIAamp Mini spin column and 

centrifuged (8000 revolutions per minute (rpm) for one minute; Biofuge Pico, 

Heraeus).  Contaminants were then washed away using 500µL of AW1 buffer and 

centrifugation (8000 rpm for one minute) followed by 500µL of AW2 buffer and 

centrifugation (13000 rpm for three minutes).  RNA was eluted by incubation for one 

minute in 60µL of RNase-free water and collected by centrifugation (8000 rpm for one 

minute). 

2.3.2.2   RNA extraction from pelleted insect cells 
RNA was extracted from pelleted Sf9 or Sf21 cells using an RNeasy Mini kit (Qiagen) 

and on-column DNase digestion using an RNase-Free DNase set (Qiagen) according to 

the manufacturer’s microcentrifuge protocol.  Samples were lysed with 600µL of RLT 

buffer containing 1% β-mercaptoethanol (14.3M stock solution) and homogenised by 

centrifugation through a QIAshredder spin column (2 minutes at 13000 rpm; Biofuge 

Pico, Heraeus).  Ethanol (600µL of 70% v/v) was added and the sample was loaded 

onto the QIAamp Mini spin column and centrifuged (10000 rpm for 15 seconds).  The 

column was washed with 350µL of RW1 buffer and centrifuged (10000 rpm for 15 

seconds) to remove contaminants.  DNase I incubation mix (80µL; 3.4 units of DNAse I 

in RDD buffer) was then added to the spin column and incubated at room temperature 

for 15 minutes.  RW1 buffer (80µL) was added to the spin column and centrifuged 
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(10000 rpm for 15 seconds), followed by 500µL of RPE buffer and centrifugation 

(10000 rpm for two minutes).  RNA was eluted by incubation for one minute in two 

30µL volumes of RNase-free water and collected each time by centrifugation (10000 

rpm for one minute). 

2.3.2.3   RNA purification and concentration from transcription reactions 
RNA was extracted from transcription reactions (section 2.3.10) using an RNeasy 

MinElute Clean-up kit (Qiagen) according to the manufacturer’s protocol for RNA 

cleanup and concentration.  DNase digestion of RNA was performed before RNA clean-

up using an RNase-Free DNase Set (Qiagen).   DNase I stock solution (6.75 units) and 

10µL of RDD buffer were added to each sample and made up to a volume of 100µL 

with nuclease-free water before incubation at room temperature for 10 minutes.  The 

samples were lysed using 350µL of RLT buffer containing 1% β-mercaptoethanol 

(14.3M stock solution).  Ethanol (500µL of 100% v/v) was added and the sample loaded 

onto the QIAamp Mini spin column and centrifuged (10000 rpm for 15 seconds; 

Biofuge Pico, Heraeus).  The column was washed with 500µL of RPE buffer and 

centrifuged (10000 rpm for 15 seconds) to remove contaminants, followed by 500µL of 

80% ethanol (v/v) and centrifugation (10000 rpm for two minutes).  Residual ethanol 

was removed by centrifugation (13000 rpm for five minutes with the spin column lids 

open).  RNA was eluted by incubation for one minute in 20µL of RNase-free water and 

collected by centrifugation (13000 rpm for one minute). 

2.3.3 DNA extraction using commercial spin columns  

The DNA extraction methods in this section use preferential binding of nucleic acid to 

the silica membrane within a spin column at pH less than 7.5 in the presence of a 

chaotropic salt such as guanidine hydrochloride.  Impurities are washed away and DNA 

is subsequently eluted in a low salt concentration pH 7.0 to pH 8.5 elution buffer. 

2.3.3.1   Extraction of DNA from agarose gels 
Amplified PCR products were visualised using a UV transilluminator (GIBCO BRL, TFX-

20M) set at 70% intensity to prevent degradation of DNA.  The required band was 

excised using a sharp sterile scalpel and the DNA extracted using the QIAquick Gel 

Extraction kit (Qiagen) according to the manufacturer’s microcentrifuge protocol.  All 
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centrifugation steps were performed at 13000 rpm for one minute using a Biofuge 

Pico, Heraeus.  To dissolve the agarose, 300µL of QG buffer was added to each 

extracted band and incubated at 50°C for 10 minutes.  The sample was loaded onto 

the QIAquick column and centrifuged.  The DNA from the sample was preferentially 

bound to the membrane during this centrifugation due to the high salt concentrations 

in the sample buffer.  The column was washed with 500µL of QG buffer and 

centrifuged to remove contaminants, followed by 750µL of PE buffer and 

centrifugation.  Residual ethanol was removed by centrifugation.  DNA was eluted by 

incubation for one minute in 50µL of RNase-free water and collected by centrifugation. 

2.3.3.2   Extraction of DNA from enzymatic reactions 
DNA was extracted from restriction digests and PCR reactions using the MinElute PCR 

purification kit (Qiagen) according to the manufacturer’s microcentrifuge protocol.  All 

centrifugation steps were performed at 13000 rpm for one minute using a Biofuge 

Pico, Heraeus.  Five volumes of PB buffer were added to one volume of sample before 

the sample was loaded onto the QIAquick column and centrifuged.  The DNA from the 

sample was preferentially bound to the membrane during this centrifugation due to 

high salt concentrations in the sample buffer.  The column was washed with 750µL of 

PE buffer and centrifuged to remove contaminants.  Residual ethanol was removed by 

centrifugation.  DNA was eluted by incubation for one minute in 50µL of RNase-free 

water and collected by centrifugation. 

2.3.3.3   Viral DNA extraction from insect cells  
Viral DNA was extracted from P2 amplified rBV-infected insect cell culture medium 

using a HighPure Viral Nucleic Acid Kit (Roche) according to the manufacturer’s 

instructions.  Clarified insect cell culture medium (200µL) was incubated for 10 minutes 

at 72°C with 200µL of carrier RNA-supplemented binding buffer and 50µL of proteinase 

K solution.  Binding buffer (100µL) was then added before applying the mixture to the 

HighPure filter tube and centrifugation (10000 rpm for one minute; Biofuge Pico, 

Heraeus).  Inhibitor removal buffer (500µL) was applied to the filter tube and 

centrifuged (10000 rpm for one minute), followed by two 450µL washes with wash 

buffer and further centrifugation (10000 rpm for one minute).   Residual wash buffer 
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was removed by centrifugation (13000 rpm for 10 seconds).  Nucleic acids were eluted 

in 50µL of elution buffer by centrifugation (10 minutes at 10000 rpm). 

2.3.4 Plasmid DNA extraction using commercial filter kits  

2.3.4.1   Plasmid DNA extraction for quasispecies analysis 
Deep 96-well culture plates containing E. coli overnight cultures (section 2.3.5.4) were 

centrifuged to pellet the bacterial cells (1500 xg for seven minutes; Legend RT Plus, 

Sorvall).  The cell culture medium was discarded and plasmid DNA extracted from the 

cells using the Montage Plasmid Miniprep 96 kit (Millipore) according to 

manufacturer’s instructions.  Cell pellets were resuspended in 100μl of Solution 1 and 

lysed in 100μl of Solution 2 with vigorous mixing.  The lysate was neutralised with 

100µL of Solution 3 and then drawn through the clearing plate into the plasmid plate 

by vacuum (8 millimetres of mercury (mmHg); using a Qiagen vacuum pump and 

manifold).  Plasmid DNA was adsorbed to the plasmid plate membrane when the 

clarified lysate was drawn through the plasmid plate by vacuum (24 mmHg).  Plasmid 

DNA was washed with 200μl of Solution 4 and a vacuum applied (24 mmHg).  Plasmid 

DNA was recovered by adding 85μl of Solution 5 (tris-EDTA) and incubating at room 

temperature for 30 minutes before removal to a 96-well storage plate. 

2.3.4.2   Plasmid DNA extraction for recombinant baculovirus production 
Plasmid DNA was extracted from a 200mL culture of E. coli transformed with pBAC-2cp 

(containing DV type 1 prM and patient sample quasispecies E genes; section 2.3.6.2) 

using a QIAfilter plasmid Maxi kit (Qiagen) according to manufacturer’s instructions.  

Briefly, the bacterial pellets were re-suspended in 10mL P1 buffer before alkaline lysis 

with 10mL P2 buffer for four minutes at room temperature.  P3 buffer (10mL) was 

added to the lysate before pouring the lysate into the QIAfilter cartridge and 

incubating at room temperature for 10 minutes.  The cell lysate was filtered into the 

QIAGEN-tips (previously equilibrated with 10mL of buffer QBT; containing an anion-

exchange resin to selectively bind supercoiled plasmid DNA at low salt concentrations) 

and allowed to empty by gravity flow.  The plasmid DNA was washed twice with 30mL 

QC buffer to remove contaminants.  DNA was eluted at high salt concentration with 

15mL QF buffer into 50mL polypropylene falcon tubes.  DNA was precipitated by 
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adding 10.5mL (0.7 volumes) isopropanol to the eluted DNA and centrifuging (5000 xg 

for 60 minutes at 4°C; Legend RT Plus, Sorvall).  Supernatants were carefully decanted 

and the DNA pellets washed with 5mL of 70% ethanol, before centrifugation (5000 xg 

for 60 minutes at 4°C) and careful removal of the supernatant.  Pellets were air-dried 

for 5–10 minutes and re-dissolved in 200µL of EB buffer (10mM Tris-HCl, pH 8.5). 

2.3.5 Cloning of dengue virus quasispecies envelope genes, transformations 
and amplification of positive clones for quasispecies analysis 

Cloning and transformations for DV quasispecies E gene analysis were performed using 

the pGEM®-T Easy Vector System II (Promega).  Confirmation that cloning was 

successful was achieved by a combination of plasmid DNA extraction (Sections 2.3.4.1 

and 2.3.4.2), restriction digest analysis (Section 2.3.8), RT-PCR or PCR (Section 2.3.1), 

sequencing (Section 2.4) and agarose gel electrophoresis (Section 2.5.1). 

2.3.5.1   Poly(A)-tailing of blunt-ended dengue virus envelope gene PCR 
amplicons  
Blunt-ended DNA fragments were generated because of the use of a proofreading DNA 

polymerase for high-fidelity PCR (sections 2.3.1.2 and 2.3.1.3).  These were A-tailed 

prior to cloning to allow them to ligate into the cloning vector (pGEM®-T Easy).  Blunt-

ended gel-extracted PCR products were A-tailed using five units of Taq DNA 

polymerase and 1x reaction buffer with MgCl2 (Taq PCR Core kit; Qiagen) and dATP 

(dNTP set, PCR grade; Qiagen) to a final concentration of 0.2mM.  A 10µL total reaction 

volume was made up by the addition of nuclease-free water (Promega).  Reactions 

were incubated at 70°C for 30 minutes.   

2.3.5.2   Ligation of poly(A)-tailed dengue virus envelope gene PCR amplicons 
into the cloning vector pGEM®-T Easy 
Ligation reactions consisted of Rapid Ligation Buffer at 1x final concentration, 50ng 

pGEM®-T Easy Vector, 2μl A-tailed PCR product (section 2.3.5.1), and three units of T4 

DNA Ligase.  Ligations were incubated at 4°C overnight to maximise the number of 

transformants. 
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2.3.5.3   Transformation of E. coli with the cloning vector pGEM®-T Easy 
containing dengue virus quasispecies envelope gene amplicons  
For transformation of E. coli (with the cloning vector pGEM®-T Easy containing DV E 

gene amplicons), 2μl of ligation reaction (section 2.3.5.2) was added to 50μl of JM109 

cells on ice and gently mixed before incubation on ice for 20 minutes.  The cells were 

heat-shocked at 42˚C for 45 seconds then placed on ice for two minutes.  Room 

temperature SOC medium (950μl; Invitrogen™) was added and the reaction incubated 

(37°C at 220 rpm for 1 hour 30 minutes; Minitron shaking incubator, Infors) for 1 hour 

30 minutes.  Cultures (100μl) were incubated on agar plates (37°C overnight).  To allow 

blue white screening of recombinants, culture plates were made using 200mL L-agar 

(Biomerieux), 100µg/mL ampicillin (Sigma, 100mg/mL), 80µg/mL X-gal (Promega, 

50mg/mL) and 0.5mM IPTG (Novagen, 100mM).   

2.3.5.4   Amplification of positive transformants for quasispecies analysis 
Transformed (white) colonies (section 2.3.5.3) were picked and inoculated into 96-well 

deep-well culture plates (Montage Plasmid Miniprep 96 kit; see Section 2.3.3.1) 

containing 1.5mL L-broth (Biomerieux) with 100µg/mL ampicillin (Sigma).  Cultures 

were then incubated (37°C at 220 rpm for 24 hours; Minitron shaking incubator, 

Infors).  For each patient sample, one 96-well plate consisting of an equal number of 

colonies from each of the duplicate high-fidelity RT-PCR reactions (section 2.3.1.2) was 

cultured. 

2.3.6 Cloning of dengue virus quasispecies envelope genes, transformations 
and amplification of positive clones for recombinant baculovirus 
production 

DV quasispecies E genes were amplified using primers containing specific restriction 

endonuclease sites (section 2.2.3).  Purified DV E gene PCR products (Section 2.3.3.1) 

and pBAC-2cp baculovirus transfer vector (Novagen, Merck) underwent restriction 

digestion (Section 2.3.8) to generate the appropriate termini for ligation. 

2.3.6.1   Ligation of dengue virus quasispecies envelope gene PCR amplicons 
into the baculovirus transfer vector pBAC-2cp   
Ligation reactions were incubated at 4˚C overnight and consisted of a 10µL reaction 

containing 0.1-1 unit of T4 ligase (Promega), T4 ligase buffer at 1x concentration (from 

10x stock of 300mM Tris-HCl; pH 7.8), 100mM MgCl2, 100mM DTT and 10mM ATP; 
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supplied with the enzyme), 2µL of DV prM gene NheI/EagI digest product, 4µL of DV E 

gene EagI/XmaI digest product and 1µL of pBAC-2cp NheI/XmaI digest product.  

Transformations were performed as stated in section 2.3.5.3. 

2.3.6.2   Amplification of positive transformants for recombinant baculovirus 
production 
Small-scale culture was performed as stated in Section 2.3.5.4.  Larger scale culture 

was performed once sequencing (section 2.4) had confirmed the presence and 

authenticity of the DV type 1 prM and quasispecies E gene inserts.  A single 

transformed colony for each sample was used to inoculate a starter culture of 5mL LB 

medium containing 100µg/mL ampicillin, and incubated (37˚C at 200 rpm for eight  

hours; Minitron shaking incubator, Infors).  The starter culture was diluted 1/500 into 

200mL LB medium containing 100µg/mL ampicillin and incubated (37°C for 16 h at 200 

rpm) in a 1L conical flask.  Bacterial cells were harvested by centrifugation (4100rpm 

for 15 minutes at 4°C; Legend RT Plus, Sorvall). 

2.3.7 Storage of transformed E. coli 

Glycerol stocks were made for all clones.  To 500µL of each transformed culture 

(section 2.3.5.4 and 2.3.6.2), 500µL of 30% glycerol (Sigma) was added and the 

bacterial suspension, mixed, and stored at -80°C. 

2.3.8 Restriction digestion of plasmid DNA 

Digest reactions were incubated (37°C for one to three hours; Minitron shaking 

incubator, Infors) and consisted of 5-10 units of enzyme, the appropriate buffer as 

recommended by the enzyme manufacturer at 1x final concentration, 100µg/mL BSA 

and 0.1-0.3µg of plasmid DNA.  Confirmation that DNA was digested appropriately was 

achieved by DNA agarose gel electrophoresis (Section 2.5.1). 

2.3.9 Quantification of nucleic acids 

Plasmid DNA was quantified using a ND1000 spectrophotometer (Nanodrop, Thermo 

Scientific).   
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2.3.10   In vitro transcription of plasmid DNA 

Linearised (section 2.3.8) DV type 3 E gene plasmid DNA (from section 2.3.5) was T7 

transcribed in vitro using a MEGAScript T7 High Yield Transcription kit (Ambion) 

according to manufacturer’s instructions.  The 20µL in vitro transcription reaction 

consisted of 7.5mM each of ATP, CTP, GTP, and UTP; 10x buffer at 1x final 

concentration and 2µL of T7 enzyme solution with between 0.1 and 0.3µg of plasmid 

DNA.  The reaction was incubated at 37˚C for two hours before the addition of two 

units of Turbo DNase and incubation for a further 15 minutes.  RNA transcript size and 

purity was assessed using an RNA denaturing gel (section 2.5.2), RT-PCR and PCR 

(section 2.3.1).  The transcription reaction was also performed in the presence or 

absence of 2µg of thioredoxin (Sigma), which is an accessory protein that improves the 

processivity and fidelity of T7 polymerase (Kunkel, Patel, and Johnson, 1994). 
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2.4 Sequencing  

2.4.1 Sequencing PCR 

Sequencing PCR reactions were performed using the BigDye Terminator v3.1 cycle 

sequencing kit (Applied Biosystems).  pGEM®-T Easy vector M13 forward (5’-

GTTTTCCCAGTCACGAC-3’) and reverse (5’-CAGGAAACAGCTATGAC-3’) primers, and DV 

sequence specific primers (Table 3.6) were used for sequencing.  BigDye PCR reaction 

mix consisted of 0.5μl of 2.5x Ready Reaction Premix, 3.75μl of 5x sequencing buffer, 

3.2pmol of primer, 5μl of plasmid DNA (or gel-extracted high-fidelity RT-PCR product 

when direct sequencing) and nuclease-free water to a final reaction volume of 20μl.  

Thermal cycling conditions are detailed in Table 2.5.    

Table 2.5.  Sequencing PCR thermal cycling conditions 

Stage Temperature (˚C) Time Cycles 

Denaturing 96 1 minute  

Amplification 
96 10 seconds 

25 cycles 
50 5 seconds 

60 4 minutes 

Cooling 4 ∞  

 

2.4.2 Sequencing PCR clean-up 

Clean-up of sequencing PCR reactions was performed using the Montage SEQ96 

Sequencing Reaction Cleanup kit (Millipore).  Briefly, BigDye PCR products were diluted 

with 20μl of injection solution and then added to a SEQ96 plate.  The SEQ96 plate was 

placed on top of a vacuum manifold and vacuum applied until the wells were empty.  

Excess liquid was blotted from the bottom of the SEQ96 plate before returning it to the 

vacuum manifold, adding a further 20μl of injection solution to each well and applying 

the vacuum as before.  20μl of injection solution was used to re-suspend the cleaned-

up sequencing reaction, which was then transferred to a sequencing plate (Greiner Bio 

One).   

2.4.3   Sequencing 

Sequencing was performed using an ABI PRISM 3700 DNA Analyzer (Applied 

Biosystems), and results were analysed as stated in Section 2.2.4 
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2.5 Electrophoretic techniques 

DNA and RNA electrophoresis was carried out using GNA100 gel tanks (Pharmacia 

Biotech).  Bands were visualised under UV light using a Gel Doc™ XR Gel 

Documentation System (Bio-Rad). 

2.5.1 DNA electrophoresis 

Agarose gels consisted of 1% agarose (Sigma) dissolved in 1x Tris-Borate-EDTA (TBE) 

running buffer (Sigma) with ethidium bromide solution (10mg/mL) at a final 

concentration of 9ng/mL (Sigma).  DNA ladders used were either 1kb (NEB) or 100bp 

(GelPilot 100bp Plus Ladder, Qiagen).  Samples were mixed with loading dye (GelPilot 

DNA Loading Dye, Qiagen) before addition to the wells of the gel.  Gels were run in 1x 

TBE running buffer, at 110 volts for 25-60 minutes.   

2.5.2 RNA electrophoresis 

RNA-denaturing gels consisted of 1.5% agarose-LE (Ambion) gel containing 1x 

NorthernMax denaturing gel buffer (Ambion).  2µL of transcript RNA was added to 6µL 

of formaldehyde loading dye (Ambion) and 25ng ethidium bromide (Sigma) and heated 

at 75˚C for 15 minutes.  Samples were run for 90 minutes at 35V in NorthernMax 1x 

denaturing gel running buffer (Ambion). 

2.5.3 Polyacrylamide gel electrophoresis  

Polyacrylamide gel electrophoresis (PAGE) was carried out using XCell SureLock™ Mini-

Cell gel tanks (Invitrogen™). 

2.5.3.1   Denaturing and reducing PAGE 
Samples (9.75µL) were added to NuPAGE 4x LDS Sample buffer and NuPAGE 10x 

Reducing Agent (Invitrogen™) to give a 1x final concentration in 15µL and incubated at 

70˚C for 10 minutes.  Samples were run on NuPAGE 4-12% Bis-Tris gels in 1x NuPAGE 

MOPS SDS running buffer with 500µL NuPAGE antioxidant (Invitrogen™) in the cathode 

buffer chamber at 200 volts for 55 minutes.  Gels were stained using 20mL SimplyBlue 

safe stain (Invitrogen™). 
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2.5.3.2   Native PAGE 
Samples were incubated in 1% triton X-100 (Sigma) for 1 hour at room temperature.  

Samples (9.75µL) were then added to NativePAGE 4x Sample buffer (Invitrogen™) and 

water (molecular biology grade; Promega) to give a 1x final concentration in 15µL.  

Samples were run on NativePAGE 3-12% Bis-Tris gels (Invitrogen™) with Light Blue 

Cathode buffer (1x NativePAGE running buffer with 1x NativePAGE Cathode buffer 

additive; Invitrogen™) in the inner chamber of the gel tank and anode buffer (1x 

NativePAGE running buffer) in the outer chamber of the gel tank.  Gels were run at 150 

volts for two hours.  Gels were fixed in 100mL of fixing solution (40% methanol and 

10% acetic acid) and microwaved for 45 seconds before incubating (room temperature 

and 22 rpm for 15 minutes).  Gels were de-stained in 100mL of 8% acetic acid and 

microwaved for 45 seconds before incubating (room temperature and 22 rpm) until 

the desired background was obtained.  
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2.6 Western blots and immunodetection 

A plate rocker (Mini gyro-rocker SSM3, Stuart) was used during the wash and block 

steps.  SDS-PAGE gels were washed in 1x Tris-Glycine Transfer buffer (Invitrogen™) 

with 20% methanol for 15 minutes.  Native-PAGE gels were washed in 1x Tris-Glycine 

Transfer buffer (no methanol) for five minutes. 0.2µm polyvinylidene fluoride (PVDF) 

transfer membranes (Invitrogen™) were immersed in 100% methanol for 15 seconds 

and then washed in the appropriate transfer buffer.  Two sponge pads and one filter 

paper sandwich (per gel) were immersed in transfer buffer.  Transfer apparatus was 

assembled according to manufacturer’s instructions (Mini Trans-Blot Electrophoretic 

Transfer Cell; Biorad) and wet transfer performed at 100 volts (constant) for two hours 

with ice packs and constant stirring.  After Native PAGE transfer, the PVDF membrane 

was fixed in 8% acetic acid for 15 minutes then rinsed with deionised water.  

Blotted PVDF membranes were blocked in block solution (phosphate buffered saline 

(PBS) with 0.05% Tween 20 and 5% skimmed milk) for one hour with agitation then 

stored overnight at 4˚C in block solution.  For immunodetection using all antibodies, 

membranes were incubated with primary antibody diluted in block solution for three 

hours with gentle agitation.  Membranes were washed three times for five minutes in 

PBS with 0.05% Tween 20 before incubation with HRP-conjugated secondary antibody 

diluted in block solution for two hours with gentle agitation.  Antibodies and 

concentrations used (based on manufacturer’s recommendations) are detailed in Table 

2.6.  Membranes were again washed three times for five minutes in PBS with 0.05% 

Tween 20 before detection using ECL Plus™ (Amersham Biosciences) according to 

manufacturer’s instructions.  Western blots were imaged using a BioRad ChemiDoc™ 

XRS Gel Documentation system. 
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Table 2.6.  Antibodies and dilutions used in immunodetection from Western blots 

Primary antibody Dilution Secondary antibody Dilution 

Mouse monoclonal antibody to 
polyHistidine [His-1] (Sigma, H1029) 

1:3000 Rabbit  polyclonal antibody to mouse 
IgG H&L, HRP conjugated (Abcam, 

Ab6728) 

1:1000 

Mouse monoclonal antibody to 

Flavivirus E [FE1](Abcam, Ab64059; 

Pierce, Thermo Fisher, MA1-71258) 

1:5 Rabbit  polyclonal antibody to mouse 

IgG H&L, HRP conjugated (Abcam, 

Ab6728) 

1:1000 

Rabbit  polyclonal antibody to DV 

types 1, 2, 3 and 4 (Abcam, Ab9202) 

1:1000 Goat  polyclonal antibody to rabbit IgG 

H&L, HRP conjugated (Abcam, 

Ab6721) 

1:3000 

Mouse monoclonal antibody to 

baculovirus envelope glycoprotein 

GP64 [AcV5] (eBioscience, 14-6995-

82) 

1:500 Rabbit  polyclonal antibody to mouse 

IgG H&L, HRP conjugated (Abcam, 

Ab6728) 

1:1000 

Mouse monoclonal antibody to DV 

types 1, 2, 3 and 4 [D1-11(3)] (Abcam, 

Ab9200) 

1:1000 Rabbit  polyclonal antibody to mouse 

IgG H&L, HRP conjugated (Abcam, 

Ab6728) 

1:1000 
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2.7 Baculovirus manipulations 

2.7.1 Insect cell culture 

Sf9, Sf9 E-T or Sf21 cells were grown in suspension culture (27˚C at 150 rpm, HT-Infors 

Labotron orbital shaker) in the appropriate serum-free media as detailed in section 

2.1.6.  Cell density was determined prior to use with a Neubauer haemocytometer.  

Cell viability was determined by trypan blue staining using an equal volume of cells to 

0.4% (w/v) trypan blue (Sigma).  Cells were maintained at a cell density of between 

0.5x106 and 6x106 cells/mL and passage number post recovery of cells from frozen 

stocks did not exceed 30. 

For long term storage, 2x107 cells at low passage number were frozen slowly in liquid 

nitrogen in the appropriate cell culture medium containing 10% dimethyl sulfoxide 

(DMSO) and 30% fetal bovine serum (FBS).  During recovery of cells from frozen stocks 

cells were rapidly thawed and placed in culture initiation medium containing equal 

proportions of conditioned and fresh culture medium appropriate to the cell line.  

Initiation cultures were incubated in suspension (27˚C at 150 rpm, HT-Infors Labotron 

orbital shaker). 

2.7.2 Production of recombinant baculoviruses 

Tissue culture dishes (35mm; Corning, Sigma) were seeded with 1x106 Sf9 cells. Cells 

were allowed to settle (for at least 30 minutes at room temperature) and form an even 

mono-layer. Dishes were observed under an inverted microscope (ID03, Zeiss) to 

confirm seeding density.  To produce rBV, co-transfection reactions containing 5µg of 

Lipofectin™ (Invitrogen™), 985µL of Ex-cell 420 SFM with L-glutamine, 500ng of 

transfer vector (section 2.3.6) and 100ng of FlashBAC GOLD™ (Oxford Expression 

Technologies; OET) were set up.  Reactions were incubated at room temperature for 40 

minutes.  Culture medium (2mL) was removed from the seeded 35mm tissue culture 

dishes and the co-transfection mix gently added.  Co-transfections were placed in a 

sandwich box with a moist tissue to humidify the atmosphere, and incubated at 27°C 

for 24 hours (MIR-253 incubator, Sanyo).  1mL pre-warmed fresh Ex-cell 420 SFM with 

L-glutamine was added before re-incubation at 27°C for a further four days.  Insect cells 

were observed under an inverted microscope (ID03, Zeiss) to confirm infection and 
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passage 0 (P0) recombinant virus stocks (clarified cell culture medium) were harvested 

by centrifugation (3000 rpm for 15 minutes at 4˚C, Sorvall Megafuge 11R centrifuge) 

and stored at 4°C.   

2.7.3 β-galactosidase assay 

After rBV P0 stocks were harvested from the tissue culture dishes (section 2.7.2), 1mL 

pre-warmed Ex-cell 420 SFM with L-glutamine and 0.3mg X-gal (Sigma) were added to 

rBV.lacZ-infected cells.  After re-incubation at 27°C for 24 hours (MIR-253 incubator, 

Sanyo), the culture was analysed for the presence of a blue precipitate.  

2.7.4 Amplification and titration of recombinant baculovirus stocks 

2.7.4.1   P1 amplification of P0 recombinant baculoviruses  
For each virus, a 250mL Erlenmeyer flask (Corning, Sigma) was seeded with 2x106 Sf9 

cells/mL in pre-warmed Ex-cell 420 SFM with L-glutamine.  P0 recombinant virus stock 

(1mL; section 2.7.2) was added to give a final culture volume of 50mL.  Cultures were 

incubated in the dark for five days (27˚C at 150 rpm, HT-Infors Labotron orbital shaker, 

MIR-253 incubator, Sanyo).  P1 recombinant virus stock (clarified medium) was 

harvested by centrifugation (3000 rpm for 15 minutes at 4˚C, Sorvall Megafuge 11R 

centrifuge). 

2.7.4.2   Titration of recombinant baculoviruses 
Recombinant baculoviruses were titred by end-point dilution using Sf9 E-T cells which 

produce enhanced green fluorescent protein (eGFP) when infected by baculoviruses 

(Hopkins and Esposito, 2009).  Starting at a dilution of 10-3, the rBVs were serially 

diluted eight times in HyClone SFX medium (Invitrogen™), in replicates of eight, to a 

final dilution of 10-11.  Sf9 E-T cells (7.5×104
 in 100μL HyClone SFX medium) were added 

to each well.  A negative control was also set up in the same way.  Plates were 

incubated at 27°C without shaking (MIR-253 incubator, Sanyo). At three days post-

infection, the plate was scored using a fluorescent microscope (Eclipse TE2000-S 

Progres C5, Nikon) by monitoring wells containing cells producing eGFP.  Wells were 

scored as positive if they contained foci of cells producing eGFP and negative if they 

contained either no cells producing eGFP, or only isolated single cells producing eGFP 

(indicative of replication deficient rBV).  All uninfected control wells were negative for 



Chapter 2: Materials and methods 

65 
 

eGFP.  Titres were calculated according to the Reed-Muench method (Dulbecco and 

Ginsberg, 1988) shown in Figure 2.1. 

 

Figure 2.1.  Example TCID
50

 calculation  

This figure shows the wells scored as positive on the 96-well plate and the resulting calculations to obtain 

virus titre in Pfu/mL 
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2.7.4.3   P2 amplification of P1 recombinant baculoviruses  
For each virus, a 500mL Erlenmeyer flask was seeded with 2x106 Sf9 cells/mL in pre-

warmed Ex-cell 420 SFM with L-glutamine.  P1 recombinant virus stock was added at 

an MOI of 0.1 to give a final culture volume of 160mL.  Cultures were incubated in the 

dark for five days (27˚C at 150 rpm, HT-Infors Labotron orbital shaker, MIR-253 

incubator, Sanyo).  P2 recombinant virus stock (clarified medium) was harvested by 

centrifugation (3000 rpm for 15 minutes at 4˚C, Sorvall Megafuge 11R centrifuge). 

Amplified rBVs were titred (section 2.7.4.2) after each amplification and used for 

dengue virus-like particle (VLP) production if the titre was at least 108 Pfu/mL. 

2.7.5 Recombinant dengue virus-like particle production  

For optimization of recombinant dengue VLP production for each rBV, 250mL 

Erlenmeyer flasks were seeded with 2x106 Sf9 cells/mL in pre-warmed Ex-cell 420 SFM 

with L-glutamine.  P2 recombinant virus stock was added at MOIs of 2, 5 and 10 to give 

a final culture volume of 40mL.  Cultures were incubated in the dark for three days 

(27˚C at 150 rpm, HT-Infors Labotron orbital shaker, MIR-253 incubator, Sanyo).  At 48 

and 72 hours post infection, cells were monitored for signs of infection using an 

inverted microscope (ID03, Zeiss) and clarified medium and pelleted cells were 

harvested from 1mL of culture by centrifugation (3000 rpm for 15 minutes at 4˚C; 

Hettich Mikro 22R). 

Cell pellets from 1mL cultures were re-suspended in Buffer A (50mM tris, 0.5M NaCl, 

8mM imidazole) with 1x protease inhibitor (Calbiochem, Merck) in a total volume of 

333µL.  Samples were then lysed by the addition of 33.3µL Insect PopCulture 

(Novagen, Merck) and 10 units/mL of benzonase (Novagen, Merck) for 15 minutes at 

room temperature with occasional vigorous vortexing.  A 150µL sample of total 

supernatant (T) was removed from each sample before centrifugation (13,000 rpm for 

20 minutes at 4˚C, Hettich Mikro 22R) to pellet insoluble material.  A 150µL sample of 

the soluble fraction (S) was removed from each sample without disturbing the pellets, 

which were discarded.   
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Clarified insect cell culture medium from 1mL cultures (Mneat or Mn) were concentrated 

from 500µL to 50µL (Mconc or Mc) using Ultrafree-0.5 10 kDa centrifugal filter devices 

(Millipore). 

For purification of recombinant dengue VLPs 250mL or 1L Erlenmeyer flasks were 

seeded with 2x106 Sf9 cells/mL in pre-warmed Ex-cell 420 SFM with L-glutamine.  P2 

rBV stock was added at a MOI of 5 to give a final culture volume of 40mL or 200mL for 

larger scale culture.  Cultures were incubated in the dark for two days (27˚C at 150 

rpm, HT-Infors Labotron orbital shaker, MIR-253 incubator, Sanyo).  Cells were 

monitored for signs of infection using an inverted microscope (ID03, Zeiss).  Clarified 

medium was harvested from culture by centrifugation (3000 rpm for 15 minutes at 4˚C, 

Sorvall Megafuge 11R centrifuge).   

Recombinant dengue VLP production was analysed using SDS-PAGE and 

immunodetection from Western blots as described previously (sections 2.5.3 and 2.6). 
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2.8 Dengue virus-like particle concentration, purification and 
quantification 

2.8.1 Ultracentrifugation of recombinant dengue virus-like particles 

Recombinant dengue VLPs (section 2.7.5) were concentrated through a 20% sucrose 

cushion using ultracentrifugation.  Sucrose (6.3mL of 20% sucrose in PBS, Sigma) was 

added to 25x89mm Ultra-Clear open-top centrifuge tubes (Beckman).  Clarified 

medium (approximately 32mL) was gently layered on top of the sucrose cushion to the 

top of the tube.  Samples were centrifuged using a Beckman L7-55 Ultracentrifuge and 

SW32 Ti rotor at 32,000 rpm for two hours.  Pellets were re-suspended in 2mL PBS. 

2.8.2 His GraviTrap purification 

His GraviTrap affinity columns (GE Healthcare) were equilibrated with 10mL of binding 

buffer (for native purification 20mM sodium phosphate, 500mM NaCl and 20mM 

imidazole, pH 7.4; for denaturing purification 20mM Tris-HCl, 8M urea, 500mM NaCl, 

5mM imidazole and 1mM β-mercaptoethanol, pH 8.0).  Recombinant dengue VLPs 

(concentrated by ultracentrifugation, section 2.8.1) were diluted 1:8 using the 

appropriate binding buffer and added to the columns.  Columns were washed with 

10mL of the appropriate binding buffer.  Elution buffer (3mL; for native purification 

20mM sodium phosphate, 500mM NaCl and 500mM imidazole, pH 7.4; for denaturing 

purification 20mM Tris-HCl, 8M urea, 500mM NaCl, 500mM imidazole and 1mM β-

mercaptoethanol, pH 8.0) was applied to the columns and the eluate collected.  For 

the denaturing purification the elution step was performed twice.  

2.8.3 Protein G purification 

2.8.3.1   Crosslink protocol using denaturing or native buffers 
Recombinant dengue VLPs (concentrated by ultracentrifugation, section 2.8.1) were 

purified via immunoprecipitation using a mouse monoclonal antibody to flavivirus 

envelope glycoprotein (Pierce, Thermo Fisher; Table 2.6), Protein G mag sepharose and 

Protein A/G buffer kit (GE Healthcare).  The bead storage solution was removed from 

25µL of magnetic beady slurry (containing 5µL of magnetic beads) and the beads 

equilibrated with 500µL of binding buffer (50mM tris, 150mM NaCl, pH 7.5 (TBS), 

before removal of the liquid.  Antibody solution (diluted 1:5 in 200µL binding buffer) 



Chapter 2: Materials and methods 

69 
 

was added to the beads and incubated with slow end-over-end mixing for one hour 

before removal of the liquid.  Beads were washed with 500µL of binding buffer and the 

liquid removed.  Crosslink solution A (500µL of 200mM triethanolamine pH 8.9) was 

added to the beads, and the liquid removed.  Crosslink solution A with dimethyl 

pimelimidate dihydrochloride (DMP; 500µL of 200mM triethanolamine pH 8.9 with 

50mM DMP) was added to the beads and incubated with slow end-over-end mixing for 

one hour before removal of the liquid.  Beads were washed with 500µL of crosslink 

solution A and the liquid removed.  Beads were blocked with 500µL of crosslink 

solution B (1 M ethanolamine, pH 8.9) and incubated with slow end-over-end mixing 

for 15 minutes before removal of the liquid.  Non-bound antibody was removed using 

500µL of elution buffer (0.1M glycine-HCl with 2M urea, pH 2.9 for the denaturing 

protocol; 0.1M glycine-HCl, pH 2.9 for the native protocol) before removal of the liquid 

and two washes with 500µL of binding buffer.  Sample was diluted in binding buffer, 

added to the beads and incubated with slow end-over-end mixing for one hour before 

removal and collection of the non-bound fraction.  The beads were washed three times 

with 500µL of wash buffer (TBS with 2M urea, pH 7.5 for the denaturing protocol; TBS 

with 1% octylglucoside, pH 7.5 for the native protocol).  The liquid was removed and 

collected after each wash.  During the third wash the magnetic bead solution was 

transferred to a fresh tube to prevent potential elution of proteins bound non-

specifically to the plastic of the tube.  Proteins were eluted twice for five minutes in 

50µL of the appropriate elution buffer for the native or denaturing protocol.  Eluted 

proteins were pH neutralized using 5µL Tris pH 8.5. 

2.8.3.2   Classic protocol 
Baculovirus virions in the recombinant dengue VLP samples (concentrated by 

ultracentrifugation, section 2.8.1) were purified via immunoprecipitation using mouse 

monoclonal baculovirus envelope glycoprotein GP64 mAb (eBioscience, Table 2.6), 

Protein G mag sepharose and Protein A/G buffer kit (GE Healthcare).  The bead storage 

solution was removed from 25µL of magnetic beady slurry (containing 5µL of magnetic 

beads) and the beads equilibrated with 500µL of binding buffer (50mM tris, 150mM 

NaCl, pH 7.5; TBS), before removal of the liquid.  Antibody solution (diluted 1:5 in 
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200µL binding buffer) was added to the beads and incubated with slow end-over-end 

mixing for 15 minutes before removal of the liquid.  Beads were washed with 500µL of 

binding buffer and the liquid removed.  Sample was diluted in binding buffer, added to 

the beads and incubated with slow end-over-end mixing for one hour before removal 

and collection of the non-bound fraction (containing the dengue VLPs).  The beads 

were washed three times with 500µL of wash buffer (TBS with 1% octylglucoside, pH 

7.5).  The liquid was removed and collected after each wash.  During the third wash the 

magnetic bead solution was transferred to a fresh tube to prevent potential elution of 

proteins bound non-specifically to the plastic of the tube.  Baculovirus virions were 

eluted twice for five minutes in 50µL of elution buffer (0.1M glycine-HCl, pH 2.9).  

Eluted proteins were pH neutralized using 5µL Tris pH 8.5. 

2.8.4 Anion exchange column purification 

Recombinant DV proteins (concentrated by ultracentrifugation, section 2.8.1) were 

purified via ion exchange chromatography using HiTrap CaptoQ 1mL high capacity 

strong anion exchange columns (GE Healthcare).  Initial purifications were performed 

manually using syringes and later purifications were performed using an ÄKTAFPLC 

automated system.  The sample (1.5-2mL) was first dialysed into 20mM Tris-HCl at pH 

8.5 using a 0.5-3.0mL 10 kDa slide-a-lyzer dialysis cassette (Pierce, Thermo Scientific).  

CaptoQ columns were washed at a flow rate between 0.1 and 1mL/minute with five 

column volumes each of distilled water, start buffer (20mM Tris-HCl at pH 8.5), 100% 

elution buffer (20mM Tris-HCl with 1M NaCl at pH 8.5) and then start buffer again 

before addition of sample.  The sample was bound to the column and washed with five 

column volumes of start buffer before gradient elution using a stepped (manual 

purification) or linear (automated purification) ionic strength gradient of NaCl (5 

column volumes each of elution buffer at 10%, 20%, 30%, 40%, and 50% (v/v diluted in 

start buffer).  Any remaining ionically bound material was eluted using five column 

volumes of 100% elution buffer.  The column was re-equilibrated using five column 

volumes of start buffer and the flow-through from each stage was collected and 

analysed by SDS-PAGE and immunodetection from Western blots (sections 2.5.3 and 



Chapter 2: Materials and methods 

71 
 

2.6).  Columns were prepared for storage at room temperature using five column 

volumes each of distilled water followed by 20% ethanol (v/v). 

2.8.5 Quantification of total protein by Bradford assay 

Total protein content of recombinant DV protein samples (sections 2.7.5, 2.8.1, 2.8.2 

and 2.8.4) was quantified using the Coomassie Plus (Bradford) assay kit (Pierce, 

Thermo Fisher) according to manufacturer’s instructions.  Briefly, 10µL of sample or 

BSA protein standard was added to 300µL of Coomassie Plus reagent, and incubated at 

room temperature for 10 minutes.  Sample optical densities were read at 595nm using 

a ND1000 spectrophotometer (Nanodrop, Thermo Scientific).   
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2.9 Enzyme-linked immunosorbent assays (ELISAs) 

All ELISAs were performed using MaxiSorp® flat-bottom 96 well plates (Nunc) and read 

using a Multiskan EX microplate photometer (Thermo Scientific).  Cut-off points or 

thresholds, above which the samples were deemed positive, were calculated using the 

average background absorbance plus three standard deviations, as this accounts for 

99.7% of normally distributed data (Swinscow 1996). 

2.9.1 Dengue virus-like particle ELISAs 

ELISA plate wells were coated with antigen at 1µg/mL in 0.05M carbonate:bicarbonate 

buffer, using 100µL per well, and stored at 4°C overnight.  Wells were washed three 

times using PBS with 0.05% Tween 20 and blocked for 1 hour 30 minutes using 

blocking buffer (300µL per well; PBS with 0.05% Tween 20 and 5% skimmed milk unless 

otherwise stated).  Wells were incubated at 37°C with the appropriate primary 

antibody (100µL per well; Table 2.7) for two hours before washing three times using 

PBS with 0.05% Tween 20.  Wells were incubated at 37°C with the appropriate 

secondary antibody (100µL per well; Table 2.7) for two hours before washing three 

times using PBS with 0.05% Tween 20.  Equal volumes of ABTS™ HRP substrate 

solutions A and B (KPL) were mixed together and added to the wells (100µL per well), 

and incubated at 37°C in the dark for one hour.  ABTS™ stop solution was added 

(100µL per well), and the plate read immediately.   

Table 2.7.  Antibodies and dilutions used in ELISAs 

Primary antibody Dilution Secondary antibody Dilution 

Rabbit  polyclonal antibody to DV 

types 1, 2, 3 and 4 (Abcam, Ab9202) 1:1000 

Goat  polyclonal antibody to rabbit 

IgG H&L, HRP conjugated (Abcam, 

Ab6721) 
1:3000 

Mouse monoclonal antibody to DV 

types 1, 2, 3 and 4 [D1-11(3)] 
(Abcam, Ab9200) 

1:1000 to 
1:250 

Rabbit  polyclonal antibody to mouse 

IgG H&L, HRP conjugated (Abcam, 
Ab6728) 

1:2000 to 
1:500 

Human  polyclonal antibody to DV 

types 1, 2, 3 and 4.  WHO 

International Standard Reference 

Reagent (NIBSC, 02/186) 

1:8 

Goat  polyclonal antibody to human 

IgG, HRP conjugated (Abcam, 

Ab81202) 
1:1000 

Human serum negative for DV 

antibodies (NIBSC, 02/184) 1:8 

Goat  polyclonal antibody to human 

IgG, HRP conjugated (Abcam, 

Ab81202) 

1:1000 
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2.9.2 Heparin and DC-SIGN capture ELISAs 

ELISA plate wells were coated with recombinant DC-SIGN (recombinant human CD209, 

Fc chimera; Creative Biomart) at 1-100µg/mL or heparin sodium salt (Sigma) at 1-

100mg/mL in 0.05M carbonate:bicarbonate buffer, using 100µL per well, and stored at 

4°C overnight.  Wells were washed three times using PBS with 0.05% Tween 20 and 

blocked for 1 hour 30 minutes using blocking buffer (300µL per well; PBS with 0.05% 

Tween 20 and 5% skimmed milk unless otherwise stated).  Wells were incubated at 

37°C with the sample antigens at 1µg/mL in blocking buffer, for two hours before 

washing three times using PBS with 0.05% Tween 20.  Wells were incubated at 37°C 

with primary antibody (100µL per well; mouse monoclonal antibody to DV types 1, 2, 3 

and 4 at 1:1000 dilution) for two hours before washing three times using PBS with 

0.05% Tween 20.  Wells were incubated at 37°C with secondary antibody (100µL per 

well; rabbit  polyclonal antibody to mouse IgG H&L, HRP conjugated at 1:750 dilution) 

for two hours before washing three times using PBS with 0.05% Tween 20.  Equal 

volumes of ABTS™ HRP substrate solutions A and B (KPL) were mixed together and 

added to the wells (100µL per well), and incubated at 37°C in the dark for one hour.  

ABTS™ stop solution was added (100µL per well), and the plate read immediately. 
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2.10  Electron microscopy 

Transmission electron microscopy (TEM) analysis was conducted on the dengue VLP 

samples by Howard Tolley (HPA CEPR).  Briefly, a shallow meniscus (between 2 and 

3 L) of sample suspension was applied to a filmed TEM grid (400 mesh, old pattern, 

formvar/carbon coated copper grid) and left to adhere for approximately 30 seconds.  

Surplus sample suspension was removed by touching the edge of the grid with moist 

filter paper.  Distilled water (between 2 and 3 L) was applied to wash the grid and was 

removed after approximately 10 seconds with moist filter paper.  Negative stain 

(between 2 and 3 L of 2% uranyl acetate) was applied to the grid and removed after 1 

to 10 seconds using moist filter paper.  Grids were air dried prior to TEM examination 

using a CM100 TEM (Philips) operating at 80kV using a lanthanum hexaboride tip. 
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3.1 Introduction 

A wide spectrum of disease from subclinical to life-threatening is observed in dengue 

virus (DV) infected individuals.  The proposed causes of dengue pathogenicity is a 

subject of much debate and involves complex interactions between host genetics and 

immunity, as well as viral genetic factors.   

In Sri Lanka, the first severe dengue epidemics did not occur until after 1989 (Messer 

et al., 2002).  This was despite Sri Lanka being an area of hyperendemicity for all four 

DV types for many years, and exhibiting large numbers of secondary infections among 

the population.  This coincided with clade replacements in the circulating DV type 3 

genotype 3 strains (Lanciotti et al., 1994).  DV sequence variations at the genotype 

level and the emergence of strains into new areas have also been associated with 

changing patterns in the severity of disease in other parts of the world (Rico-Hesse et 

al., 1997a).   

Recombination of DVs within DV types has been documented in both humans and 

mosquitoes (Aaskov et al., 2007; Craig et al., 2003).  This predicts the possible 

emergence of recombinant strains that differ in pathogenic potential to the parent 

strains.  In addition, the low-fidelity of viral RNA polymerases leads to the 

incorporation of mutations into progeny RNA, and the production of a quasispecies 

population of virus variants within each infected host (DeFilippis and Villarreal, 2001; 

Domingo, 1998).  This intrahost viral sequence diversity suggests that some viral 

variants will be better adapted for survival in the host than others, and that this will be 

reflected in disease pathogenesis.  Quasispecies investigations with poliovirus have 

demonstrated a link between the extent of sequence diversity and pathogenicity; too 

many or too few virus variants within the population results in reduced viral fitness 

and attenuation (Crotty, Cameron, and Andino, 2001; Vignuzzi et al., 2006).  Important 

selective constraints acting on DVs in particular include the requirement for viral 

replication in both humans and mosquitoes, and the antibody dependent 

enhancement of infection by cross-reactive antibodies raised against a previous 

infection with a different DV type. 
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Quasispecies populations have been demonstrated for DV types 2 and 3 in clinical 

samples from patients in Taiwan and Myanmar and also in mosquitoes (Craig et al., 

2003; Lin et al., 2004; Wang et al., 2002a).  As a result of so few studies, little is known 

about how the quasispecies population dynamics vary between different individuals, 

host populations and infecting virus strains.  Previous investigations have focused on 

the DV envelope glycoprotein (E) gene as it encodes the E, which comprises the 

majority of the outer surface of the virion.  E is involved in antibody recognition, 

attachment to host cells and in membrane fusion.  Variations in E constitute potential 

mechanisms for alterations in virus virulence and pathogenicity.   

Studies of DV quasispecies population dynamics are essential for in-depth 

understanding of the biology, epidemiology and evolution of DV.  This has implications 

for disease pathogenesis, vaccine design and safety, and the development of novel 

therapeutic and diagnostic tools.  Improved understanding of dengue epidemiology 

and virus evolution in different regions will enable more effective control programmes 

to be implemented. 
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3.2 Chapter objectives 

The primary objective of this chapter was to investigate DV quasispecies populations 

(by E gene sequence analysis) both within individual patient samples and between 

samples from the same outbreak in Sri Lanka, in 2006.  Specifically, the correlation 

between disease severity and either the extent of quasispecies variation or the 

presence of specific variants was to be investigated.  Quasispecies variants with the 

potential to affect virus virulence or disease pathogenesis would be identified. 

Previous studies of DV quasispecies populations used RT-PCR, ligation independent 

cloning, and sequencing of partial or complete viral E genes; examining between 10 

and 21 clones per sample and reporting mutation rates of between 0.16% and 0.38% 

(Craig et al., 2003; Lin et al., 2004; Wang et al., 2002a).  For this study complete E 

genes would be amplified directly from patient serum without in-vitro passage of the 

virus to avoid the introduction of mutations (Chen, Wu, and Chiou, 2003) using DV 

type-specific primers and high-fidelity RT-PCR.  The use of high-fidelity RT-PCR was 

deemed essential to minimise the number of mutations introduced by the 

amplification process itself.  Amplification of complete rather than partial E genes 

would enable potential identification of recombinant viruses via phylogenetic 

comparison of different regions of the E genes.  The amplified E genes would be cloned 

and multiple clones per sample sequenced.  A greater number of samples would be 

analysed in this study than in previous studies, to provide more data for statistical 

analysis. Sequence data would be analysed to define E gene variants and to investigate 

potential relationships between quasispecies variation and disease severity.  

Using an estimated viral RNA polymerase error rate of 1x10-4 (or 0.01%; Smith et al., 

1997) and a flavivirus E gene length of 1485 nucleotides (correct for DV types 1, 2 and 

4; DV type 3 E gene length is 1479 nucleotides), one mutant clone was expected to be 

found for every 6.7 clones analysed.  From each sample, 96 clones would be studied, 

with the expectation that 15% of clones would contain mutations.  Mutations in up to 

70% of clones have been reported previously (Craig et al., 2003).   
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Phylogenetic analyses would be performed on the consensus and variant E gene clone 

sequences from each patient sample to investigate the variability of the DVs circulating 

during the Sri Lankan outbreak in 2006.  The DV genotypes present would be 

identified, and the variant E gene clone sequences assessed for evidence of 

recombination.  Protein sequence changes caused by the E gene mutations would be 

mapped to the DV E sequences and three-dimensional structures.  This was to identify 

mutations in locations with the potential to affect virulence or pathogenicity, through 

altering virus attachment to the host cell, fusion of viral and host cell membranes or 

antibody recognition and attachment to the virus.  These variant DV E genes would be 

used to construct recombinant DV E (Chapter 4) for use in studies to determine the 

effect of the mutations (Chapter 5).    
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3.3 Design and testing of primers for amplification of dengue virus 
envelope genes 

To enable the design of primers for DV E gene amplification, published sequences were 

obtained from the NCBI database and aligned for all four DV types (sections 2.2.1 and 

2.2.2).  To ensure detection of the greatest number of strains within each virus type, 

and to allow the entire E gene to be sequenced in subsequent experiments without 

introducing mutations into the E gene sequence via the primers, primers were 

designed up to 200 nucleotides outside of the E gene in conserved regions of the 

sequence alignments (section 2.2.3).  Primer sequences were uploaded to the Sigma-

Aldrich DNA Oligo Design Tool to estimate their melting temperature, secondary 

structure and ability to dimerise.  Primer specificity was predicted using BLAST (NCBI), 

and only primers with 100% correct matches to the appropriate DV type were tested 

further.    

Combinations of primers (Table 3.1) were tested for each DV type using RNA from the 

DV strains detailed in section 2.1.3.  RNA was transcribed to cDNA, and the cDNA 

amplified using standard RT-PCR (section 2.3.1.1); amplicons were analysed by DNA 

agarose gel electrophoresis (section 2.5.1).  Each primer set was optimised for primer 

concentration and annealing temperature before being tested for specificity by RT-PCR 

using RNA from YFV, JEV, TBEV and DV types 1, 2, 3 and 4 as template material (section 

2.1.3 details source and strain information).  As summarised in Table 3.1 (DNA gel 

electrophoresis images not shown), the first DV type 1 (Dengue 1 forward (F) 1 and 

reverse (R) 1) and 4 (Dengue 4 F1 and R1) primer sets tested produced amplicons of 

the expected size (1808 and 1799 nucleotides respectively).  However, the initial DV 

type 2 primer set (Dengue 2 F1 and R1) produced an amplicon of the expected size for 

both DV type 2 and type 3 RNA.  Due to the non-specific nature of this primer set, 

attempts were made to improve specificity by substituting the forward primer (Dengue 

2 F1) for an alternative forward primer (Dengue 2 F2).  The new primer set was 

specificity tested by RT-PCR as before, and only produced amplicons of the expected 

size (1730 nucleotides) using DV type 2 RNA.  The initial DV type 3 primer set (Dengue 

3 F1 and R1) failed to produce an amplicon of the expected size, although several 
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smaller amplicons were observed.  These primers were replaced and the new primer 

set (Dengue 3 F2 and R2) produced an amplicon of the expected size although multiple 

non-specific amplicons were also present.  Attempts to remove the additional non-

specific amplicons by annealing temperature optimisation were unsuccessful, so two 

new reverse primers (Dengue 3 R3 and R4) were designed and tested.  Both 

combinations of primers (Dengue 3 F2 and R3 or R4) were able to produce amplicons 

of the expected size (1801 and 1764 nucleotides respectively).  Specificity tests showed 

the primer set using the R3 primer produced multiple amplicons for all flavivirus RNA 

tested, with the exception of DV type 1; the primer set using the R4 primer was 

specific for DV type 3 RNA. 

Table 3.1.  Primers tested for RT-PCR amplification of dengue virus envelope genes for 

quasispecies analysis.  

Primer Sequence (5’ to 3’) Reason for replacement 

Dengue 1 F1 GGT CTA GAA ACA AGA ACC GAA ACG TGG Not replaced 

Dengue 1 R1 GAC AGT CTT TTT GGG GAG TCA G Not replaced 

Dengue 2 F1 GGA CTG GAG ACA CGA ACT GAA AC Cross-reactivity observed with DV type 

3 RNA 

Dengue 2 F2 TGA GAC ATC CAG GCT TTA CCA TAA TG Not replaced 

Dengue 2 R1 AGC TAG TTT TGA AGG GGA TTC TGG Not replaced 

Dengue 3 F1 CGC ACC CAA ACC TGG ATG TC Failed to produce an amplicon of the 

expected size 

Dengue 3 F2 TGG ATG TCG GCT GAA GGA GCT TGG AG Not replaced 

Dengue 3 R1 CCG AAT ATT ATT TGG TGC ACC ATT TTC CC  Failed to produce an amplicon of the 

expected size 

Dengue 3 R2 CCT ATT CCA ATT TTC ATT ATC CAA G Multiple bands present at all annealing 

temperatures and primer concentrations 

tested Dengue 3 R3 TCC AGG TGT GGA CCT CAT TAG Cross reactivity observed with all 

flavivirus RNA tested except DV type 1 

Dengue 3 R4 GGA GTC TGC TTG AAA TTT GTA TTG CTC Not replaced 

Dengue 4 F1 TCA GTA GCT TTA ACA CCA CAT TCA GG Not replaced 

Dengue 4 R1 TCT GTC CAA GTG TGC ACG TTG TC Not replaced 

 
Finalised primer sets are summarised in Table 3.2.  These primers were chosen to 

amplify DV E genes from clinical samples for quasispecies analysis on the basis of their 

specificity.  The alignment reports for these primer sets are presented in Appendix A.  

Figure 3.1 shows the DNA agarose gel electrophoresis images from the specificity test 

RT-PCRs.  No cross reactivity between flaviviruses was observed as each primer set 
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produced amplicons consistent in size with the DV E gene and flanking regions 

(between 1.5 and 2.0kb) for only its intended DV type. An annealing temperature of 

60°C was adopted for all primer sets to enable parallel amplification of the different DV 

types.  At this annealing temperature the DV type 1, 2 and 3 primer sets each 

produced two amplicons (Figure 3.1), but the complete E gene amplicon could be 

identified between 1.7 and 1.8kb (depending on the primers used).  For DV types 1 and 

2, these additional amplicons were the result of non-specific binding due to the 

presence of excess template RNA in the RT-PCR reaction.  They are not visible at lower 

template concentrations in the high-fidelity RT-PCR positive control reactions (Figure 

3.4 and Figure 3.5).  For DV type 3, reducing the concentration of template RNA 

eliminated some, but not all of the non-specific amplicons. 

Table 3.2.  RT-PCR primers used for amplification of dengue virus envelope genes from patient 

samples for quasispecies analysis. 

Primer Sequence (5’ to 3’) Amplicon size (bp) 

Dengue 1 F GGT CTA GAA ACA AGA ACC GAA ACG TGG 
1808 

Dengue 1 R GAC AGT CTT TTT GGG GAG TCA G 

Dengue 2 F TGA GAC ATC CAG GCT TTA CCA TAA TG 
1730 

Dengue 2 R AGC TAG TTT TGA AGG GGA TTC TGG 

Dengue 3 F TGG ATG TCG GCT GAA GGA GCT TGG AG 
1764 

Dengue 3 R GGA GTC TGC TTG AAA TTT GTA TTG CTC 

Dengue 4 F TCA GTA GCT TTA ACA CCA CAT TCA GG 
1799 

Dengue 4 R TCT GTC CAA GTG TGC ACG TTG TC 
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Figure 3.1.  Analysis of dengue virus envelope gene RT-PCR primer specificity.   

RT-PCRs were performed using the primers from Table 3.2, and RNA from several flaviviruses to assess 

primer specificity. Panels A to D show the DV types 1, 2, 3 and 4 RT-PCR primer sets respectively.  

Lanes 1 and 10 are 1kb DNA ladder, with the 1.5 and 2.0kb fragments highlighted. Lanes 2 to 8 are the 

RT-PCR amplicons generated using YFV, JEV, TBEV, DV type 1, DV type 2, DV type 3, and DV type 4 

RNA respectively as RT-PCR template. Lane 9 is a negative template control.    

 

For quasispecies analysis it was important that the number of mutations introduced 

into the E genes as part of the RT-PCR process itself was as low as possible.  The 

standard RT-PCR kit (section 2.3.1.1) used for the testing and optimisation of the DV E 
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gene primers contained Thermus aquaticus (Taq) polymerase which lacks 3’-5’ 

proofreading activity (Tindall and Kunkel, 1988).   The AccuScript high-fidelity RT-PCR 

kit (Stratagene; section 2.3.1.2) was used for this study because it includes a high-

fidelity reverse transcriptase as well as a high-fidelity polymerase (PfuUltra).  The 

reverse transcriptase combines Moloney murine leukaemia virus (MMLV) reverse 

transcriptase with the E. coli DNA polymerase III ε subunit to give an error rate of 1 

mutation per 62,200 nucleotides (Arezi and Hogrefe, 2007).  PfuUltra comprises 

Pyrococcus furiosus (Pfu) DNA polymerase and a Pfu dUTPase to improve yield 

(compared to Pfu DNA polymerase alone; Hogrefe et al., 2002) and gives an error rate 

of 1 mutation per 2,325,581 nucleotides (Arezi and Hogrefe, 2007).  Initial tests using 

the high-fidelity RT-PCR showed it to be less sensitive than the standard RT-PCR (Figure 

3.2 panels B and A respectively), as determined by visual assessment of comparative 

band intensity, but the DV E gene amplicon was clearly visible between the 1.5kb and 

2.0kb ladder fragments.  This decreased sensitivity would be expected due to the 

lower processivity of the high-fidelity enzymes. 

 

Figure 3.2. Comparison of dengue virus envelope gene reverse transcription and amplification 

using standard and high-fidelity RT-PCR.   

A 1kb DNA ladder is shown in lane 1, with the 1.5 and 2.0kb fragments highlighted. Positive RT-PCR 

reactions (lane 2) used DV type 3 RNA as template material. Negative reactions (lane 3) used molecular 

grade water instead of template RNA. The same DV type 3 RNA and number of PCR amplification 

cycles (36) was used for both methods.  
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3.4 Dengue patient samples used for amplification of dengue virus 
envelope genes and quasispecies analysis 

RNA used as template material for the high-fidelity RT-PCRs was extracted (section 

2.3.2.1) from serum samples obtained from dengue patients admitted to hospitals in 

and around Ragama, Sri Lanka, during a fever study conducted in 2006 by Major Mark 

Bailey (Royal Army Medical Corps, RAMC) and his colleagues Dr. Ranjan Premaratna 

and Prof. Janaka de Silva (Department of Medicine, University of Kelaniya, Sri Lanka).  

Samples were obtained on admission from 617 patients presenting with fever, or a 

history of fever, and sent to the Armed Forces Research Institute of Medical Sciences 

(AFRIMS) in Thailand and Health Protection Agency (HPA) Centre for Emergency 

Preparedness and Response (CEPR) for laboratory diagnosis.  A summary of the 

spectrum of disease diagnosed in these patients is shown in Figure 3.3. 

Of these patients, 143 were diagnosed with dengue by RT-PCRs or ELISAs performed 

previously by HPA CEPR and AFRIMS.  Of these 143, 31 were also diagnosed with 

chikungunya (virus RNA detected by RT-PCR), one also diagnosed with leptospirosis 

(Leptospira bacteria detected by culture and/or antibodies by IgM ELISA), one also 

diagnosed with an unidentified bacterial infection (detected by blood culture), and 

three also diagnosed with Q fever (Coxiella burnetii bacteria DNA detected by PCR 

and/or antibodies by ELISA).  For the purposes of this study, only samples from those 

patients whose records showed a positive result for DV RNA by RT-PCR were used, 

which amounted to 95 samples.  Patients with only positive dengue serology results 

were not included because their samples were less likely to still contain DV, as an 

immune response had already developed (clearing the virus and making E gene 

amplification less likely).  All four DV types were circulating in Sri Lanka at the time the 

fever study samples were collected.  Of the 95 samples positive for DV RNA, 67% were 

DV type 3 infections, 28% were DV type 2 infections and DV type 1 and 4 infections 

represented 2% and 3% of the patients respectively.  There were no occurrences of 

dual infection with multiple DV types. 
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Disease severity for each of the fever study patients was classified (with guidance from 

Major Mark Bailey, RAMC) as mild or severe based on the more relaxed WHO 

guidelines used in the treatment of children or in small hospitals in India, where the 

term ‘severe dengue’ includes any case of dengue displaying fever and one or more of 

theDHF or DSS indicators detailed in the 1997 WHO guidelines (section 1.2.3; World 

Health Organisation, 1997a). Table 3.3 summarises the clinical data for each sample, 

including the infecting DV type and patient’s serological status, the presence of 

haemorrhage, low platelet count or hypotension and the resulting disease severity 

classification.  Patient samples were designated as severe cases where the clinical 

history included haemorrhaging, thrombocytopenia (<100,000 platelets/µL) or 

hypotension.  Mild cases were those in which these symptoms were absent.  Of the 95 

DV RT-PCR positive clinical samples, 57 (60%) were classified as severe cases and 38 

(40%) as mild cases. 

Primary antibody responses occur in people who have not previously been infected (or 

immunised) and are characterised by the presence of IgM antibodies after several days 

of fever, or after the fever has passed.  Secondary responses occur as a result of a 

second flavivirus infection (e.g. sequential infection with different DV types) and it is 

the IgG response that is dominant (Shu and Huang, 2004).  IgG antibodies from 

secondary DV infections can persist in the blood for over 10 months (Gubler, 1996).  

Negative serology is indicative of an early-stage infection prior to immune response 

development.  None of these patients met the 1997 WHO criteria for distinguishing 

between dengue fever and dengue haemorrhagic fever or dengue shock syndrome 

(section 1.2.3; World Health Organisation, 1997a).  This can be attributed to 

incomplete testing or recording of observations such as pleural effusion, ascites or 

hypoproteinaemia and repeat hematocrit results by the hospital staff in Sri Lanka.  This 

information may have enabled four of the patients (R006, R014, R024 and R380) to 

meet the 1997 WHO criteria for DHF and DSS. 
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Table 3.3.  Classification of disease severity for dengue virus RT-PCR positive patient samples.   

Sample DV type Haemorrhage Platelets  

<100,000/µL 

Hypotension Severity  

classification 

R004 3 No No Yes Severe 

R006 3 Yes Yes Yes Severe 

R007 3 No Yes Yes Severe 

R008 3 Yes Yes No Severe 

R011 2 No No No Mild 

R012 3 No Yes No Severe 

R014 3 Yes Yes Yes Severe 

R016 3 No Yes No Severe 

R022 2 No No No Mild 

R024 3 Yes Yes Yes Severe 

R036 3 No No No Mild 

R038 3 No Yes No Severe 

R041 3 No No No Mild 

R054 3 Yes Yes No Severe 

R060 3 No Yes Yes Severe 

R062 2 No No No Mild 

R077 3 Yes Yes No Severe 

R080 3 Yes Yes No Severe 

R095 3 No No No Mild 

R097 3 No Yes No Severe 

R100 3 No Yes No Severe 

R103 2 No Yes No Severe 

R105 2 No No No Mild 

R107 2 Yes No Yes Severe 

R108 3 No No No Mild 

R109 3 No No Yes Severe 

R114 3 No Yes No Severe 

R120 3 No Yes No Severe 

R123 3 No No Yes Severe 

R126 2 No No No Mild 

R128 3 No No No Mild 

R146 2 No Yes Yes Severe 

R149 3 Yes Yes No Severe 

R153 4 No Yes No Severe 

R156 3 No Yes No Severe 

R157 3 No Yes No Severe 

R167 2 No Yes No Severe 

R170 2 No Yes Yes Severe 

R172 3 No Yes No Severe 

R178 2 No Yes No Severe 

R179 3 No Yes No Severe 

R191 2 No No No Mild 

R193 4 No No Yes Severe 

R197 3 No Yes No Severe 

R198 2/3 No Yes No Severe 

R203 3 No Yes No Severe 

R211 2 No Yes No Severe 

R216 3 No No No Mild 

R217 3 No No No Mild 

R221 3 No No No Mild 

R230 3 No No No Mild 
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Sample DV type Haemorrhage Platelets  

<100,000/µL 

Hypotension Severity  

classification 

R232 3 No No No Mild 

R254 3 No Yes No Severe 

R255 3 No No No Mild 

R259 2 Yes Yes No Severe 

R261 3 No No No Mild 

R265 1 No No No Mild 

R267 2 No Yes No Severe 

R282 4 No No No Mild 

R286 2 Yes Yes No Severe 

R290 3 No No No Mild 

R291 2 Yes Yes No Severe 

R299 3 Yes No No Severe 

R316 2 No No No Mild 

R325 3 Yes No No Severe 

R330 3 No Yes No Severe 

R334 3 No No No Mild 

R337 3 No Yes No Severe 

R342 3 No No No Mild 

R352 3 No No No Mild 

R355 2 No Yes No Severe 

R358 2 No Yes Yes Severe 

R363 3 No No No Mild 

R373 3 No No No Mild 

R380 3 Yes Yes Yes Severe 

R384 3 No No No Mild 

R388 3 No No Yes Severe 

R390 3 No No No Mild 

R394 2 No No No Mild 

R410 2 No Yes No Severe 

R421 2 No No No Mild 

R424 3 Yes Yes No Severe 

R433 2 No No No Mild 

R443 3 No No No Mild 

R447 3 No No No Mild 

R452 3 No Yes No Severe 

R478 3 Yes No No Severe 

R512 3 No Yes No Severe 

R513 1 No No No Mild 

R515 3 No Yes No Severe 

R516 2 No No No Mild 

R517 3 Yes Yes No Severe 

R592 3 No No No Mild 

R605 2 No No No Mild 

R617 3 No Yes No Severe 

Table 3.3 continued from page 88. 
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3.5 High-fidelity RT-PCR, cloning and sequencing of dengue virus 
quasispecies envelope genes from patient samples 

High-fidelity RT-PCR (section 2.3.1.2) was performed in duplicate on the 95 DV RNA 

positive samples using the appropriate DV RNA as a positive control (section 2.1.3); 

molecular biology grade water was used in place of template RNA as a negative 

control.  Previous testing of the clinical samples by RT-PCR (conducted by HPA CEPR 

and AFRIMS) identified the DV type for each sample (Table 3.3), which enabled the 

appropriate type-specific primers to be used for E gene amplification.  E gene 

amplification from sample R198A was attempted using both DV type 2 and DV type 3 

primer sets, as previous HPA and AFRIMS RT-PCRs had given conflicting results (data 

not shown).  Analysis of RT-PCR amplicons by DNA agarose gel electrophoresis yielded 

21 amplified DV E genes of between 1.5 and 2.0 kb (Figures 3.4 to 3.7).  All positive and 

negative control reactions yielded the expected results.  Two samples (R265A and 

R513A) were previously identified by diagnostic RT-PCR as containing DV type 1 RNA. 

DV E genes from these samples were unable to be amplified by high-fidelity RT-PCR 

using the DV type 1-specific primers (Figure 3.4).  Twenty-eight samples were 

previously identified by diagnostic RT-PCR as containing DV type 2 RNA. Of these, DV E 

genes from only 6 (R105A, R107A, R126A, R178A, R259A and R267A) were amplified by 

high-fidelity RT-PCR using the DV type 2-specific primers (Figure 3.5).  R105A, R126A, 

R178A and R267A produced very faint positive results which are not easily visible in 

Figure 3.5.  Sixty-five samples were previously identified by diagnostic RT-PCR as 

containing DV type 3 RNA. Of these, DV E genes from only 14 (R004A, R080A, R097A, 

R109A, R114A, R123A, R197A, R203A, R232A, R254A, R255A, R261A, R299A and 

R334A) were amplified by high-fidelity RT-PCR using the DV type 3-specific primers 

(Figure 3.6). R004A, R080A, R109A, R123A, and R254A produced very faint positive 

results which are not easily visible in this figure.  Three samples were previously 

identified by diagnostic RT-PCR as containing DV type 4 RNA. The DV E gene from only 

one of these (R282A) was amplified by high-fidelity RT-PCR using the DV type 4-specific 

primers (Figure 3.7).  Additional amplicons were present in some of the PCR products 

that were not the correct size for the DV E gene.  These are possibly the result of non-

specific amplification where excess RNA template was used.  DV E gene amplicons 
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from 12 of the 21 samples were considered strong positives as they appeared as high 

intensity bands on the gels (summarised in Table 3.4).  DNA amplicons were visualised 

briefly using low intensity UV light to limit any damage to the DNA, and the 

appropriate bands excised and the DNA purified for cloning (section 2.3.3.1).   

 

Figure 3.4.  Dengue virus type 1 patient sample high-fidelity RT-PCR product analysis.   

Positive control RNA (POS) was DV type 1 Hawaii A strain.  Negative (NEG) template control reactions 

showed no amplification.  
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Figure 3.5.  Dengue virus type 2 patient sample high-fidelity RT-PCR product analysis.   

Positive control RNA (POS) was DV type 2 New Guinea C strain.  Negative (NEG) template control 

reactions showed no amplification. The original (unprocessed) gel images used to construct this figure are 

included electronically in Appendix J. 
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Figure 3.6.  Dengue virus type 3 patient sample high-fidelity RT-PCR product analysis.   

Positive control RNA (POS) was DV type 3 H87 strain.  Negative (NEG) template control reactions 

showed no amplification. The original (unprocessed) gel images used to construct this figure are included 

electronically in Appendix J. 
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Figure 3.7.  Dengue virus type 4 patient sample high-fidelity RT-PCR product analysis. 

Positive control RNA (POS) was DV type 4 H241 strain.  Negative (NEG) template control reactions 

showed no amplification.  

 

Table 3.4.  Dengue virus envelope genes amplified from patient samples by high-fidelity RT-PCR 

for cloning.   

Sample number Dengue virus type Severity classification 

R004A 3 Severe 
R080A 3 Severe 
R097A 3* Severe 

R105A 2 Mild 
R107A 2* Severe 
R109A 3 Severe 

R114A 3* Severe 
R123A 3 Severe 
R126A 2 Mild 
R178A 2 Severe 

R197A 3* Severe 
R203A 3* Severe 
R232A 3* Mild 

R254A 3 Severe 
R255A 3* Mild 
R259A 2* Severe 
R261A 3* Mild 

R267A 2 Severe 
R282A 4* Mild 
R299A 3* Severe 

R334A 3* Mild 

From the 95 patient samples known to contain DV, only 21 DV E genes were amplified. Strong positives 

are marked with *, and disease severity classifications are shown. 

 
The DV E gene amplicons produced by the high-fidelity RT-PCRs were blunt-ended so 

were A-tailed (section 2.3.5.1) prior to cloning.  This enabled ligation into the cloning 

vector via the 3’-terminal thymidine overhangs at the insertion site. The A-tailed E 
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gene amplicons were ligated (section 2.3.5.2) into linearised pGEM®-T Easy vector 

(Promega) and transformed into JM109 competent cells (section 2.3.5.3).  The JM109 

strain was chosen for its high transformation efficiency (greater than 108 colony 

forming units per µg). 

JM109 cells transformed with pGEM®-T Easy containing the E gene inserts were 

cultured overnight on selective agar plates (section 2.3.5.3).  From the twenty-one 

high-fidelity RT-PCR-amplified E genes (Table 3.4), nine (R004A, R080A, R105A, R109A, 

R123A, R126A, R178A, R254A and R267A) produced less than ten positive 

transformants using blue/white screening of recombinants.  This could be attributed to 

the comparatively low yield of amplicon from the high-fidelity RT-PCRs performed on 

these samples (Table 3.4).  This resulted in a lower concentration of DNA being used 

for cloning, and consequently fewer transformants.  These samples did not produce 

enough transformants to allow assessment of quasispecies variation.   

Work was continued using the twelve cloned DV E gene samples that produced enough 

positive transformants to enable assessment of the quasispecies variation.  These 

twelve samples consisted of: one DV type 4 (R282A), two DV type 2 (R107A and R259A) 

and nine DV type 3 (R097A, R114A, R197A, R203A, R232A, R255A, R261A, R299A, and 

R334A) E genes (Table 3.4; denoted *).  The DV type 2 and 4 E gene amplicons were 

cloned successfully at the first attempt and a 96-well plate of transformants was 

obtained for each sample.  Cloning of the DV type 3 E gene amplicons proved difficult, 

with some cloning reactions yielding low numbers of positive transformants despite 

the DNA concentration appearing sufficient for cloning, and control reactions 

confirming that the problems were not due to faulty ligation, transformation or culture 

components.  Attempts were made to optimise cloning efficiency and increase the 

number of positive transformants; method optimisation included varying the 

vector:insert ratios, methods of transformation (chemical and electrical), and host cell 

types (ABLE C and K cells which reduce the cloning vector copy number to improve 

cloning of toxic genes; Agilent Technologies).  Incubation at a reduced incubation 
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temperature (28°C) was also attempted, but with little success.  E gene samples R114A 

and R197A, yielded only 64 colonies instead of the intended 96.   

Colonies were cultured for 24 hours in selective medium (section 2.3.5.4) before 

plasmid DNA was extracted (section 2.3.4.1).  The resulting plasmid DNA was used for 

quasispecies analysis.  In order to process the large number of clones generated for 

each sample, the presence of the DV E genes was verified by DNA agarose gel 

electrophoresis (section 2.5.1) of plasmid DNA from all clones, by monitoring 

differences in plasmid DNA migration.  This method of screening was validated by PCR.  

Thirty DV E gene clones from three different patient samples were amplified by PCR 

(section 2.3.1.4) from plasmid DNA using M13 primers (detailed in section 2.4.1).  

Undigested plasmid DNA and PCR products were compared by DNA gel electrophoresis 

(Figure 3.8, panels A and B respectively; results shown are from eight of the thirty 

clones tested).  The PCR products (Figure 3.8, panel B) showed amplicons of between 

1.5 and 2.0kb only for clones containing the DV E gene.  For each clone’s plasmid DNA 

(Figure 3.8, panel A), two bands were observed corresponding to nicked circular 

plasmid DNA (>10kb) and supercoiled plasmid DNA either with (4.8kb) or without (3kb) 

the E gene insert.  The plasmid DNA and PCR product DNA gel electrophoresis results 

correlated for all clones tested with no exceptions, confirming that DNA gel 

electrophoresis of the plasmid DNA was an acceptable method for screening clones for 

the presence of the DV E gene.   

The presence of the DV E gene in the rest of the clones was then verified by DNA 

agarose gel electrophoresis of plasmid DNA (Appendix B; summarised in Table 3.5).  In 

total, 1088 white colonies from 12 patient samples were screened for DV E genes by 

DNA gel electrophoresis of plasmid DNA (Appendix B).  DV E genes were confirmed in 

677 (62%) of these. For each patient sample, the percentage of white colonies found to 

contain the DV E gene ranged from 2% to 99%. For the DV type 2 and 4 clones, almost 

all of the white colonies picked (>95%) contained the DV E gene.  For the DV type 3 

clones, however, the number of white colonies containing the insert varied with each 



Chapter 3: Quasispecies analysis 

97 
 

patient sample from 2% to 99%.  These white colonies were ampicillin-resistant, so 

contained vector and an insert at some point during their growth.   

To provide sufficient DV E genes from each sample for quasispecies analysis, it was 

decided to proceed with the samples that had been successfully cloned with more 

than 50% of white colonies containing inserts of the expected size (Table 3.5).  Samples 

identified for sequencing of DV E gene quasispecies variants were R097A, R107A, 

R114A, R197A, R203A, R259A, R261A and R282A.  Sequencing was performed on clone 

plasmid DNA and directly from RT-PCR products (section 2.4).  The first sequencing 

reactions were performed using M13 primers, which flank the multiple cloning site 

(MCS) in the cloning vector.  To obtain sequence data covering the entire E gene 

(1.5kb) internal sequencing primers were designed based on the NCBI RefSeqs (section 

2.2.1) and used (Table 3.6).  The RT-PCR primers listed in Table 3.2 were also used for 

sequencing directly from the RT-PCR amplicons.  This was performed to measure the 

fidelity of the cloning procedure, and to investigate whether the differences in DV type 

3 sample cloning efficiency correlated with sequence differences between the 

infecting strains. 
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Figure 3.8.  M13 PCR validation of plasmid DNA electrophoresis method for verification of dengue 

virus envelope gene presence in cloned plasmid DNA.   

Panel A shows the DNA gel electrophoresis of undigested plasmid DNA for eight of the thirty clones 

analysed. Two bands are observed for each clone, corresponding to nicked circular plasmid DNA (>10 

kb) and supercoiled plasmid DNA either with (4.8 kb) or without (3 kb) the E gene insert. Panel B shows 

the plasmid DNA M13 PCR product analysis by DNA agarose gel electrophoresis for the same 8 clones 

shown in panel A. Bands of 1.5 kb or 0.5 kb are shown where the DV E gene insert is present or absent 

respectively. The original (unprocessed) gel images used to construct panel A of this figure are included 

electronically in Appendix J. 

 
Table 3.5.  Presence of dengue virus envelope gene inserts in picked colonies 

Sample number Dengue virus type No. of inserts/No. 

of white colonies 

% of white colonies 

containing inserts 

R107A 2 94/96 98% 
R259A 2 91/96 95% 

R097A 3 95/96 99% 
R114A 3 52/64 81% 
R197A 3 47/64 73% 

R203A 3 50/96 52% 
R232A 3 23/96 24% 
R255A 3 47/96 49% 
R261A 3 68/96 71% 

R299A 3 14/96 15% 
R334A 3 2/96 2% 
R282A 4 94/96 98% 
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Table 3.6.  Sequencing primers designed for dengue virus envelope gene quasispecies analysis. 

Primer Sequence (5’ to 3’) 

Dengue 2 seq F1 TTG GAA TAC ACC ATT GTG ATA AC 

Dengue 2 seq R1 GGT TGA CTG TAA TCA GGC GAC C 

Dengue 2 seq F2 AGG AAT GTC ATA CTC TAT GTG CAC 

Dengue 2 seq R2 AGC ACT CCA TCG TGA CAG TG 

Dengue 3 seq F1 AGT GGT GCA ACA TGA GAA CCT C 

Dengue 3 seq R1 GGA ATC TTG CAG GGT GCA TC 

Dengue 3 seq F2 TGA GCT ATG CAA TGT GCT TGA ATA C 

Dengue 3 seq R2 GCT TCA GCG GTT GAT GCC TG 

Dengue 4 seq F1 ATT GAG AAC CTT GAA TAC ACA GTG G 

Dengue 4 seq R1 CGA TGG TGA CCT GGG AGT TAT C 

Dengue 4 seq F2 AAT GTC ATA CAC GAT GTG CTC AGG 

Dengue 4 seq R2 CCT TGT TCA CAT CTC TTA TCT CTA TGG 

 

  

Figure 3.9.  Schematic of dengue virus envelope gene sequencing primer read positions.   

M13 (section 2.4.1), RT-PCR (Table 3.2) and sequencing (Table 3.6) primers were used to obtain 

sequence data covering the entire E gene. E gene sequence was flanked by DV prM and NS1 gene 

sequence, which contained the binding sites for the RT-PCR primers. M13 primer binding sites were 

specific to the plasmid and sequencing (seq) primers were internal to the E gene sequences. 

 
Sequence data obtained by sequencing (of both the dengue patient sample clones, and 

directly from the RT-PCR products) was verified as DV E gene sequence using BLAST 

(NCBI).  The following samples produced DV E gene sequence data for most of the 

insert-containing clones: R097A, R107A, R203A, R259A, R261A, and R282A.  This 

equates to one DV type 4, two DV type 2 and three DV type 3 samples.  These data 

were assembled into separate contigs (section 2.2.4) for each clone.  When sequencing 

the clones from samples R114A and R197A, the majority of the sample reads obtained 

were of insufficient length, which meant they were either too short to incorporate into 
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contigs, or the contigs assembled did not cover the entire E gene.  These two samples 

were thus not included in subsequent sequence analyses as the E gene sequence data 

were incomplete.  Direct sequencing of the RT-PCR products and contig assembly were 

successful for samples R004A, R097A, R107A, R114A, R197A, R203A, R232A, R254A, 

R255A, R259A, R261A, R299A, R282A and R334A.  Sequencing directly from the RT-PCR 

product was unsuccessful for samples R080A, R105A, R109A, R123A, R126A, R178A 

and R267A.  This could be attributed to the low DNA concentration of these samples. 
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3.6 Sequence analysis of dengue virus quasispecies envelope genes   

To compare the DV quasispecies E gene sequences from each patient sample, the 

contigs from each clone (section 3.5) were aligned as both nucleotide and amino acid 

sequences (section 2.2.4; see Appendices C and D for sequence alignments).   Tables in 

Appendix E detail the types and positions of mutations in each sample.  This 

information is summarised in Table 3.7.  In total, 299 E gene clones were analysed 

across the six patient samples, a total of 436,909 nucleotides (nt) were sequenced and 

64 nucleotide changes were observed. Overall mean diversity (number of mutations 

per nucleotide) was 0.013%, whereas mean diversity values for individual samples 

ranged from 0.0034% to 0.053% (average 0.018%).  For all 14 of the patient samples 

where direct sequencing of the RT-PCR products was successful, the sequences 

obtained were shown to match the consensus sequence of the clones for that sample 

(data not shown).  This confirmed that no major changes to any of the E gene 

sequences were introduced during the cloning process. 

Table 3.7.  Summary of dengue virus envelope gene sequence diversity observed in clinical samples. 

Sample Infection 

type 

No. of 

clones 

analysed 

No. of 

clones 

containing 

mismatches 

No. of nt 

substitutions 

No. of nt 

deletions 

or 

insertions 

Total No. 

of nt 

sequenced 

Mean 

diversity 

(mutations/

nt) 

R097A 
Dengue 3 

severe 
82 16 (20%) 15 3 119,864 0.015% 

R107A 
Dengue 2 

severe 
40 2 (5%) 1 1 59,400 0.0034% 

R203A 
Dengue 3 

severe 
25 6 (24%) 10 9 35,913 0.053% 

R259A 
Dengue 2 

severe 
45 6 (13%) 3 4 66,822 0.01% 

R261A 
Dengue 3 

mild 
47 13 (28%) 12 1 65,977 0.02% 

R282A 
Dengue 4 

mild 
60 5 (8%) 5 0 88,933 0.0056% 

 
Differences in mean diversity between the severe and the mild dengue cases were 

compared using the Mann-Whitney two-sample rank test (section 2.2.5).  This showed 

no statistically significant difference between the samples from each group (p=1.0). 

Of the 299 cloned DV E genes analysed, nine contained incomplete E gene sequences 

(Table 3.8 and Appendices C and D).  Sequence data from these clones showed 

pGEM®-T Easy vector sequence flanking the incomplete E gene sequence confirming 
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that the problem was not with the sequencing reaction.  These truncated E gene 

clones were considered artefacts of the cloning process rather than genome defective 

quasispecies variants.  All nine clones containing incomplete E gene sequences were 

from patients with DV type 3 infections.  Two common points of E gene truncation 

were observed at E gene positions E772-3 and E1128-32.  For these truncated clones, 

the portion of the E gene sequence up to the point of truncation was included in the 

clone alignments. 

Table 3.8.  Clones containing truncated envelope gene sequences. 

Sample Clone Point of truncation within the 

envelope gene 

R097A 
28 E1128 

93 E773 

R203A 
42 E773 

77 E1132 

R261A 

72 E772 
75 E772 

79 E772 

80 E772 

84 E772 

 
Of the 299 clones analysed, 48 contained at least one mutation, which amounts to 16% 

of the clones differing from their respective consensus sequences.  Substitution, 

insertion and deletion mutations were all observed, with substitutions accounting for 

72% of all nucleotide changes.  Deletion mutations were deletions of one or two 

nucleotides, and accounted for 16% of all nucleotide changes.  Substitution and 

insertion mutations were predominantly single nucleotide mutations, with the 

exception being one clone (R203A clone 54), which carried a mutation where a 

sequence of eight nucleotides were replaced with a different sequence of 14 

nucleotides (substitution of eight nucleotides and insertion of six nucleotides), 

resulting in a protein sequence change of three amino acids and an insertion of 

another two amino acids.  Three clones contained mutations at two separate sites 

(R203A clone 54, E605 and E1032-40; R097A clones 37 and 41, E291 and E736, and 

E163 and E229 respectively), and two clones contained deletions of two consecutive 

nucleotides (R203A clone 21 E914-5; R259A clone 54 E370-1).  For patient sample 

R261A, there were two sites where multiple clones carried the same mutation (E602 
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and E1146; 6 and 3 clones respectively).   These two groups of clones represent distinct 

DV lineages compared to the consensus, and their relative abundance within all of the 

clones analysed amounts to 13% and 6.5% respectively of the quasispecies population.  

In the larger group of clones the mutation causes an amino acid substitution in the 

protein sequence, whereas the mutation in the smaller group of clones does not affect 

the amino acid sequence. 

A transition mutation is one where a purine (A or G) is substituted with another purine, 

or a pyrimidine (C, T or U) with another pyrimidine.  In contrast, a transversion 

mutation is one in which a purine is substituted with a pyrimidine or vice versa.  

Nonsynonymous mutations lead to amino acid sequence changes, whereas 

synonymous mutations do not.  Of the nucleotide substitutions, 29% were 

transversion mutations, and 61% of all the mutations (46 substitutions, 8 insertions 

and 10 deletions) were nonsynonymous (Table 3.9).  Conservative amino acid changes 

occur when an amino acid is substituted for one with similar properties, but drastic 

protein changes occur when amino acids with different properties are substituted (for 

example, a polar amino acid such as threonine for a nonpolar amino acid such as 

leucine).  Of these nonsynonymous mutations, 67% were drastic rather than 

conservative, and 50% of these drastic mutations caused frameshifts by insertion or 

deletion of nucleotides (Table 3.9).  
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Table 3.9.  Summary of dengue virus envelope gene mutation types.  

Sample Infection 

type 

Transversion 

mutations / 

total  

substitution 

mutations 

Nonsynonymous 

mutations / total 

mutations 

Drastic 

mutations / 

Nonsynonymous 

mutations 

Frameshift 

mutations / 

Drastic 

mutations 

R097A 
Dengue 3 

severe 
5/15 9/18 9/9 3/9 

R107A 
Dengue 2 

severe 
1/1 2/2 1/2 1/1 

R203A 
Dengue 3 

severe 
0/2* 4/5 3/4 2/3 

R259A 
Dengue 2 

severe 
1/3 4/6 3/4 3/3 

R261A 
Dengue 3 

mild 
2/12 8/13 2/8 1/2 

R282A 
Dengue 4 

mild 
2/5 3/5 2/3 0/2 

Total  11/38 (29%) 30/49 (61%) 20/30 (67%) 10/20 (50%) 

* The multiple nucleotide substitution and insertion mutation observed in patient sample R203A clone 54 

was not included in the transversion/substitution mutations calculation as it was not clear which 

nucleotides were substituted and which were inserted. This mutation was counted as one mutation rather 

than per nucleotide in all of the subsequent calculations, as were two nucleotide deletion mutations. 
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3.7 Comparison of mutations introduced by the RT-PCR process 
between this study and published data 

Previous studies reported error frequencies for mutations introduced by the RT-PCR 

process of between 0.023 and 0.055% (Lin et al., 2004; Wang et al., 2002a).  These 

values were determined by RT-PCR, cloning and sequencing of DV E gene T7 transcript 

RNA.  To assess how much sequence variation was introduced using the high-fidelity 

RT-PCR amplification methodology used for this study, DV type 3 E gene plasmid DNA 

from a single colony of known sequence was transcribed in vitro using T7 polymerase 

(section 2.3.10).  The resulting transcript was subjected to high fidelity RT-PCR, cloning 

and sequencing using the same methods applied to the Sri Lankan patient samples in 

this study (AccuScript method; section 2.3.1.2).  To enable comparison of mutation 

frequencies between these results and those obtained previously by other groups, the 

same DV E gene RNA control transcript was also subjected to high fidelity RT-PCR, 

cloning and sequencing using published methods (Craig et al., 2003); Expand method; 

section 2.3.1.3).  Sequence contigs were assembled and the clones from each sample 

aligned as both nucleotide and amino acid sequences (section 2.2.4; see Appendices F 

and G for alignments).   Tables in Appendix H detail the types and positions of 

mutations in each sample.  These results are summarised in Table 3.10.  Analysis of the 

RNA transcript data obtained using the Expand and AccuScript RT-PCR methods 

showed that of the clones analysed, 55% and 33% respectively contained at least one 

mutation (Table 3.7).  These values are 3.4-fold (Expand method) and 2.1-fold 

(AccuScript method) higher than the 16% of clones containing mutations observed 

using the AccuScript method and dengue patient samples (Table 3.7).  Alignment 

consensus sequences from both methods using the RNA transcript were shown to be 

identical (data not shown).  The AccuScript method generated fewer mutations than 

the Expand method, but both methods that used the RNA transcript as RT-PCR 

template material produced a greater number of clones containing mutations, and a 

higher mean diversity than was found using the AccuScript method with the dengue 

patient samples as RT-PCR template material. 
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Substitution, insertion and deletion mutations were observed for the methods using 

the RNA transcript, with substitutions accounting for 68% (Expand method) and 46% 

(AccuScript method) of all nucleotide changes.  Deletion mutations were deletions of 

one or two nucleotides.  Substitution and insertion mutations generated using the 

Expand method were all single nucleotide mutations.  Substitution and insertion 

mutations generated using the AccuScript method were predominantly single 

nucleotide mutations, with the exceptions being clones 4, 21, 27 and 38 (Appendix H, 

Table 8).   

Table 3.10.  Summary of mutations generated by the Expand and AccuScript RT-PCR methods.  

Method No. of 

clones 

analysed 

No. of 

clones 

containing 

mismatches 

No. of nt 

substitutions 

No. of nt 

deletions 

or 

insertions 

Total No. 

of nt 

sequenced 

Mean 

diversity 

(mutations/nt) 

Expand 
RNA transcript 

55 30 (55%) 41 19 56,639 0.11% 

AccuScript 
RNA transcript 

55 18 (33%) 18 21 60,453 0.065% 

AccuScript 
Patient samples 

299 48 (16%) 38 18 436,909 0.013% 

 
Table 3.11.  Summary of mutation types generated by the Expand and AccuScript RT-PCR 

methods.   

Method Transversion 

mutations / total  

substitution mutations 

Nonsynonymous 

mutations / total 

mutations 

Drastic mutations 

/ Nonsynonymous 

mutations 

Frameshift 

mutations / 

Drastic mutations 

Expand 

RNA transcript 
5/41 (12%) 48/59 (81%) 37/48 (77%) 17/37 (46%) 

AccuScript 

RNA transcript 
6/8 (75%)* 26/26 (100%) 19/26 (73%) 16/19 (84%) 

AccuScript 

Patient samples 
11/38 (29%) 30/49 (61%) 20/30 (67%) 10/20 (50%) 

* The multiple nucleotide substitution and insertion mutation observed in clone 21 (AccuScript method) 

was not included in the transversion/substitution mutations calculation as it was not clear which 

nucleotides were substituted and which were inserted. This mutation was counted as one mutation rather 

than per nucleotide in all of the subsequent calculations, as were multiple nucleotide insertion or deletion 

mutations. 

Of the substitution mutations, 12% (Expand method) and 75% (AccuScript method) 

were transversion rather than transition mutations.  For both methods a high 

percentage of the mutations were nonsynonymous (Expand 81%; AccuScript 100%) 

and drastic (Expand 77%; AccuScript 73%), which is in accordance with the findings 

from the patient samples (see Tables 3.9 and 3.11).  The percentages of insertion or 

deletion mutations at homopolymeric runs of nucleotides were very similar between 
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the methods using the RNA transcript (Table 3.12).  For the AccuScript method using 

patient samples as RT-PCR template material, compared to the methods using the RNA 

transcript, the percentage of mutations at homopolymeric runs of nucleotides was up 

to 3-fold lower for insertion mutations and up to 1.66-fold higher for deletion 

mutations.  The proportion of these mutations (at homopolymeric runs of nucleotides) 

of the total insertion and deletion mutations was also lower for the patient samples 

than for the methods using RNA transcript. 

Table 3.12.  Comparison of insertion and deletion mutations generated at homopolymeric runs of 

nucleotides by the Expand and AccuScript RT-PCR methods.   

Method Insertion mutations at 

homopolymeric runs / 

total  insertion mutations 

Deletion mutations at 

homopolymeric runs / 

total deletion mutations 

Insertion and deletion 

mutations at homopolymeric 

runs / total insertion and 

deletion mutations 

Expand 

RNA transcript 
6/8 (75%) 3/10 (30%) 9/18 (50%) 

AccuScript 

RNA transcript 
12/18 (67%) 1/3 (33%) 13/21 (62%) 

AccuScript 

Patient samples 
2/8 (25%) 5/10 (50%) 7/18 (39%) 

    
For the patient samples, overall rates of insertion and deletion mutations were 

0.0041% compared to rates of 0.032% (Expand) and 0.035% (AccuScript) for the 

methods using RNA transcript as RT-PCR template material (Table 3.13).  Substitution 

mutation rates were 0.074%, 0.03% and 0.0087% for the Expand RNA transcript 

method, AccuScript RNA transcript method and patient samples respectively (Table 

3.13).  Therefore, although rates of insertion and deletion mutations, and rates of 

substitution mutations were consistently higher for the methods using RNA transcript 

than when the patient samples were used, it is the incorporation of substitution 

mutations rather than insertion and deletion mutations that makes the difference 

between the two RT-PCR methods using the RNA transcript.  The Expand method had a 

substitution mutation rate 2.47-fold greater than the AccuScript method. 

The difference between the mutation rates observed using RNA transcript versus 

patient samples indicated that the presence of such mutations might be attributed to 

the RNA transcript used rather than the high-fidelity RT-PCR, cloning and sequencing.  

Thioredoxin is an accessory protein that improves the processivity of T7 polymerase, 
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reducing substitution mutations by 3-fold, deletion mutations of one and two 

nucleotides by 27- and 9-fold respectively and insertion mutations at homopolymeric 

runs of nucleotides by 46-fold (Kunkel, Patel, and Johnson, 1994).   

Table 3.13.  Comparison of mutations generated by the Expand and AccuScript RT-PCR methods.   

Method Insertion/deletion 

mutation rates 

Substitution 

mutation rates 

Expand 

RNA transcript 
0.032% 0.074% 

AccuScript 

RNA transcript 
0.035% 0.030% 

AccuScript 

Patient samples 
0.0041% 0.0087% 

Substitution mutation rates were calculated by dividing the number of substitution mutations by the total 

number of nucleotides sequenced. 

    
To test whether the mutations in the RNA transcript could be attributed to the 

infidelity of the T7 polymerase during transcript generation, the in vitro transcription 

reaction was repeated using new reagents in the presence and absence of thioredoxin 

(TRX; section 2.3.10).  The resulting DV type 3 E gene transcripts (ETRX+ and ETRX-) were 

subjected to high fidelity RT-PCR, cloning and sequencing using the same methods 

applied to the Sri Lankan patient samples in this study (AccuScript method; section 

2.3.1.2).  Sequence contigs were assembled and the clones aligned as both nucleotide 

and amino acid sequences (section 2.2.4).  In total, 23 clones were analysed; 12 and 11 

clones generated using ETRX+ and ETRX- respectively.  There were no mutations in any of 

the clones generated; all of the clones matched the consensus sequence (data not 

shown).  This consensus sequence also matched those obtained during the AccuScript 

versus Expand method comparison.  Although there was no difference in the numbers 

of mutations between ETRX+ and ETRX-, no mutations were found in clones generated 

from either transcript.  It is hypothesised that the source of the high number of 

mutations observed during the AccuScript versus Expand method comparison was the 

RNA transcript as previously suggested, and that using new reagents for the in vitro 

transcription reaction resulted in the generation of a homogenous RNA transcript 

population.  An error frequency for mutations introduced by the AccuScript RT-PCR of 

less than 0.003% was calculated, based on 33,644 nucleotides sequenced and no 

mutations were found (1/33,645 = 0.003%). 
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3.8 Phylogenetic analysis of dengue virus quasispecies envelope gene 
and glycoprotein sequences 

To investigate sequence variation between the DVs from the dengue patient samples, 

multiple sequence alignments were constructed and phylogenetic analyses performed 

(section 2.2.4).  Alignments were constructed using published DV sequences of known 

genotype and sequences from Sri Lanka (Table 3.14) to identify the genotypes present 

within the DV types circulating in Sri Lanka at the time of the outbreak.  These 

sequences were obtained from NCBI (section 2.2.1).  Consensus E gene sequences for 

the dengue samples from this study were included in their respective multiple 

sequence alignments (separately by DV type) alongside E gene sequences for clones 

containing mutations.  This was to identify whether any of the mutations were present 

in the clones as a result of recombination with a co-infecting genotype.  Evidence of 

recombination would have been observed if any of the mutant clones displayed a 

vastly different percentage sequence identity, or a shift in phylogeny compared to 

their respective consensus sequences. 

The percentage sequence identity between each of the strains was calculated from the 

nucleotide sequence alignments (Appendix I).  The two DV type 2 patient sample 

(R107A and R259A) consensus sequences share 99.5% sequence identity and are 

identical in protein sequence.  The R107A and R259A clones containing mutations 

share 99.9% sequence identity with their respective consensus sequences.  Sequence 

identities between all of the DV type 2 samples used to construct the alignment were 

between 80.7 and 99.9%, with the lowest sequence identities observed with the 

sylvatic strains P8-1407 and Sen70-DAKHD10674.  Sequence identities between the DV 

type 2 sequences and the DV type 1 sequence included in the alignment were around 

66% as would be expected because they are different viruses.   

The DV type 4 patient sample (R282A) clones containing mutations share 99.9% 

sequence identity with the sample consensus sequence.  Sequence identities between 

all of the DV type 4 samples used to construct the alignment were between 91.7 and 

99.9%, with the lowest sequence identities observed with the genotype II strain El 

Salvador 1994.  Sequence identities between the DV type 4 sequences and the DV type   
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Table 3.14.  Published dengue virus envelope gene sequences used for phylogenetic analysis.   

NCBI accession no. Strain DV type 

 

Genotype Reference 

X54319 Tonga 1974 2 American (Twiddy et al., 2002) 
AF264054 Puerto Rico 1969 2 American " 

L10053 Trinidad 1953 2 American " 
L10047 Seychelles 1977 (Sey-42) 2 Cosmopolitan " 

AF10374 India 1994 (CAMR 10) 2 Cosmopolitan " 
AF410376 Far East 1998 (CAMR 13) 2 Cosmopolitan " 
M29095 New Guinea C 2 Asian 2 " 

AF410364 Vietnam 1998 (CTD211) 2 Asian 2 " 
AF295697 Philippines (DOH-005) 2 Asian 2 " 
AF295698 Philippines (DOH-034) 2 Asian 2 " 
AF195040 Thailand (D91-533) 2 American/Asian " 
AF163096 PTCOL96 2 American/Asian " 
AF410350 Vietnam 1997 (CTD20) 2 American/Asian " 
AF410367 Vietnam 1998 (CTD226) 2 American/Asian " 
AF022436 ThNH-52/93 2 Asian 1 " 
AF022434 ThNH-7/93 2 Asian 1 " 
AF022437 ThNH-p11/93 2 Asian 1 " 
AF264053 Thailand 1980 (PUO-312) 2 Asian 1 " 
AF231717 P8-1407 2 Sylvatic " 
AF231720 Sen70-DAKHD10674 2 Sylvatic " 
AF410372 Sri Lanka 1994 (CAMR 7) 2 Cosmopolitan " 
AB194883 Sri Lanka 2004 2 Unknown  
NC_001475 Sri Lanka 2000 3 Unknown  
AF547234 Sri Lanka 1993 3 IIIb (Messer et al., 2003a) 
AY099336 Sri Lanka 2000a 3 Unknown  
DQ518679 Sri Lanka 1999 3 Unknown  

L11438 Sri Lanka 1991 3 IIIb (Lanciotti et al., 1994) 
AF547230 Sri Lanka 1989 3 IIIb (Messer et al., 2003a) 
AF547242 Sri Lanka 1997 3 IIIb " 
AF547232 Sri Lanka 1989b 3 IIIb " 
AF547243 Sri Lanka 1998 3 IIIb " 
AF547235 Sri Lanka 1994 3 IIIb " 

L11429 Malaysia 1974 (1300) 3 I (Lanciotti et al., 1994) 
L11437 Sri Lanka 1989c 3 IIIa " 

AF547229 Sri Lanka 1984 3 IIIa (Messer et al., 2003a) 
AF547225 Sri Lanka 1983 3 IIIa " 
AF547226 Sri Lanka 1983a 3 IIIa " 
AF547228 Sri Lanka 1983c 3 IIIa " 
AF547241 Sri Lanka 1985 3 IIIa " 
AF547231 Sri Lanka 1989a 3 IIIa " 

L11436 Sri Lanka 1985a 3 IIIa (Lanciotti et al., 1994) 
AF547227 Sri Lanka 1983b 3 IIIa (Messer et al., 2003a) 

L11431 Sri Lanka 1981 3 IIIa (Lanciotti et al., 1994) 
L11434 Puerto Rico 1977 (1340) 3 IV " 
L11442 Thailand 1987 (MK315) 3 II " 
U18437 Sri Lanka 1978a 4 I (Lanciotti, Gubler, and 

Trent, 1997) 
" 

U18442 Thailand 1984 4 I 
AY550909 Sri Lanka 1978 4 Unknown  

U18441 Thailand 1978 4 I (Lanciotti, Gubler, and 

Trent, 1997) 
" 

U18433 Philippines 1956 4 I 
U18434 Philippines 1964 4 I " 
U18435 Philippines 1984 4 I " 
U18426 El Salvador 1983 4 II " 
U18432 New Caledonia 1984 4 II " 
U18431 Mexico 1984 4 II " 
U18425 Brazil 1982 4 II " 
U18436 Puerto Rico 1986 4 II " 
U18439 Tahiti 1985 4 II " 
U18438 Tahiti 1979 4 II " 
U18427 El Salvador 1994 4 II " 
U18429 Indonesia 1976 4 II " 
U18430 Indonesia 1977 4 II " 
U18428 Indonesia 1973 4 II " 
U18440 Thailand 1963 4 I " 

All sequences were obtained from NCBI (section 2.2.1). Genotype information was obtained from the 

publications listed. 
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1 sequence included in the alignment were around 63% as would be expected because 

they are different viruses. 

The three DV type 3 patient sample (R097A, R203A and R261A) consensus sequences 

share a sequence identity of 99.1 to 99.6%.  R097A and R203A each differ from the 

R261A sequence by one amino acid.  The R097A and R203A samples share greater 

sequence identity with each other than to the R261A sample.  The clones containing 

mutations share 99.9% sequence identity with their respective consensus sequences.  

R261A clones 4, 29, 34, 37 and 46 share 100% sequence identity, as do clones 49, 52 

and 60.  Sequence identities between all of the DV type 3 samples used to construct 

the alignment were between 92.6 and 100%, with the lowest sequence identities 

observed with the genotype IV strain Puerto Rico 1977.   

Sequence analysis of the RT-PCR amplicons from the DV type 3 patient samples that 

were not cloned (R004A, R114A, R197A, R232A, R254A, R255A, R299A and R334A) 

showed that most of these samples share 99% or more sequence identity with the 

samples that were cloned.  The exceptions to this were samples R197A and R254A, 

which had average sequence identities of 94 and 47% respectively.  These were lower 

because the DV E gene sequences for these samples were incomplete (Appendix C).  

Compensating for the missing portions of sequence (5% and 53% for R197A and R254A 

respectively) increases the sequence identities to over 99% for both samples.  Samples 

R299A and R114A share 99.9% sequence identity with the cloned sample R097A; with 

the R097A and R299A samples having an identical protein sequence and sample R114A 

differing by one amino acid.  All three of these samples were from severe dengue cases 

(Table 3.3).  Sample R004A shares 99.9% sequence identity with the cloned sample 

R203A and the protein sequences were identical.  Both of these samples were from 

severe dengue cases.  Samples R197A, R232A, R254A, R255A and R334A share the 

highest sequence identity with the cloned sample R261A (94.3, 99.5, 46.9, 99.4, and 

99.5% respectively), which was from a mild dengue case.  Samples R232A, R255A and 

R334A were also from mild dengue cases, but samples R197A and R254A were from 

severe dengue cases.  
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Phylogenetic trees were constructed based on the E gene sequence alignments 

(Figures 3.10 to 3.12; alignments not shown).  Bootstrapping statistical analyses of 

1000 replicates was used to assess the integrity of the phylogenetic trees.  Percentage 

values are shown at the major nodes of each tree and values of 70% and above are 

considered acceptable, because 70% of the 1000 generated trees contained that clade.  

Published sequence data from Sri Lankan DV type 2 strains has shown only strains from 

the Cosmopolitan genotype or Asian genotype 2 (Twiddy et al., 2002).  Both of the DV 

type 2 E gene samples, and all of the mutant clones from this study cluster together 

within the Cosmopolitan genotype (Figure 3.10).  The genotype of the Sri Lanka 2004 

strain was previously undetermined and the results of this study show that it also 

belongs to the Cosmopolitan genotype. This genotype contains other strains from Sri 

Lanka as well as strains from India, Southeast Asia, Africa, the Middle East and 

Australia.  Sri Lankan DV type 4 sequences published to date have shown only strains 

from genotype I (Lanciotti, Gubler, and Trent, 1997).  The DV type 4 E gene sample 

from this study, and all of the mutant clones cluster together within genotype I as 

expected (Figure 3.11).  The genotype of the Sri Lanka 1978 strain was previously 

undetermined and the results of this study show that it also belongs to genotype I, 

alongside other Sri Lankan strains, and strains from Thailand and the Philippines.. 

Previously published E gene sequences from Sri Lankan DV type 3 strains have shown 

no strains from genotypes I, II or IV, only genotype III (Messer et al., 2003a).  These 

genotype III strains cluster into two distinct groups: IIIa and IIIb.  Those strains that 

comprise genotype IIIa are all from outbreaks during or prior to 1989, which were not 

associated with epidemics of severe dengue.  Those that form genotype IIIb are all 

from 1989 or later, and have been associated with epidemics of severe dengue 

(Lanciotti et al., 1994; Messer et al., 2003a).  It has been suggested that this genetic 

shift may have increased the virulence of the Sri Lankan strains, and be responsible for 

the increase in cases of severe disease seen on the island after 1988 (Lanciotti et al., 

1994).  A similar DV type 3 genotype IIIb clade replacement has been suggested as the 

cause of a further increase in severe dengue in Sri Lanka since 1999 (Kanakaratne et 
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al., 2009).  The DV type 3 E gene samples from this study were identified as genotype 

IIIb strains, and cluster together with their respective mutant clones within the clade 

containing the more recent samples (since 1999), as expected (Figure 3.12).  The 

genotypes of the Sri Lanka 1999 and 2000 strains were previously undetermined and 

the results of this study show that they also belong to genotype IIIb. 

 

Figure 3.10.  Dengue virus type 2 complete envelope gene phylogenetic tree.   

Samples from this study are highlighted with a red box. The scale represents the evolutionary distance in 

units of the number of base substitutions per site.  
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Figure 3.11.  Dengue virus type 4 complete envelope gene phylogenetic tree.   

The sample from this study is highlighted with a red box. The scale represents the evolutionary distance 

in units of the number of base substitutions per site. 
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Figure 3.12.  Dengue virus type 3 complete envelope gene phylogenetic tree.   

Samples from this study are highlighted with a red box. The scale represents the evolutionary distance in 

units of the number of base substitutions per site. 

 
For the DV type 3 samples, a second tree (Figure 3.13) was constructed to incorporate 

an increased number of Sri Lankan DV sequences (from Messer et al., 2003a) using a 

207 nucleotide region from the 5’ end of the E gene.  In this tree the genotype IIIb 

strains cluster in two temporally distributed clades as with the complete E gene tree 

(Figure 3.12).  There is no indication from these E gene data that any of the mutant DV 

clones result from recombination events between co-infecting genotypes, as the 

samples and mutant clones from this study all cluster as expected within the clade 

containing the more recent samples.  If there had been recombinant E genes present, a 

difference in phylogeny would have been observed between the consensus and 

mutant sequences across the complete and partial E gene trees.  However, compared 

to the complete E gene tree, in this region of the sequence the R261A sample is less 

closely related to the R097A and R203A strains from this study as well as the Sri Lanka 

2000 and 2000a strains.  Also, in the DV type 3 complete E gene phylogram (Figure 

3.12), the genotype I strain Malaysia 1974 appeared most closely related to the 

genotype II strain Thailand 1987, but in the DV type 3 partial E gene phylogram (Figure 
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3.13) the genotype I strain appears more closely related to the genotype IIIb strains.  

The Sri Lanka 1989c strain also shifts phylogeny between the two phylogenetic trees.  

In the complete E gene tree (Figure 3.12) it clusters with Sri Lanka 1991 in genotype 

IIIb, whereas in the partial E gene tree (Figure 3.13) it appears more closely related to 

Sri Lanka 1984 in genotype IIIa.  A shift in phylogeny when different regions of a 

sequence are used for the analysis is indicative of recombination.  In the partial E gene 

tree (Figure 3.13), the presence of a DV strain from 1993 within the clade containing 

the more recent samples (since 1999) is a strong indication that the clade is likely 

derived from strains indigenous to Sri Lanka rather than being imported (Kanakaratne 

et al., 2009). 

The bootstrap values for all of the complete E gene phylogenetic trees were above 

70% at the major nodes, which provides statistical confirmation that the trees are 

accurate.  The bootstrap values for the DV type 3 partial E tree (Figure 3.13) are below 

70%, but this is not uncommon for trees based on shorter sequence lengths and would 

be expected given that DVs are known to undergo recombination within DV types.  

This does emphasise the importance of using larger regions of sequence for 

phylogenetic analyses as trees based on shorter sequence lengths are difficult to 

validate statistically.  Ideally, these analyses would be based on complete genome 

sequences, but that was not feasible for the present study; using the complete E gene 

sequences yielded an appropriate level of statistical confidence.    
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Figure 3.13.  Dengue virus type 3 partial (207 nucleotides at the 5’ end) envelope gene phylogenetic 

tree.   

Samples from this study are highlighted with red boxes. The scale represents the evolutionary distance in 

units of the number of base substitutions per site. 
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3.9 Linear and three-dimensional mapping of dengue virus 
quasispecies envelope glycoprotein amino acid substitutions 

All of the amino acid substitutions resulting from nonsynonymous E gene mutations 

(identified by sequence analysis in section 3.6; detailed in Appendices C to E) were 

mapped to the DV E linear and three-dimensional forms to identify those with the 

potential to affect pathogenicity.  This is, to the best of my knowledge, the first report 

where mapping of DV quasispecies mutations to the structure of E has been 

conducted.  A linear map of DV E was constructed using the flavivirus E antigenic 

structure based on TBEV (Figure 3.14, panel A; Mandl et al., 1989) and the crystal 

structures of TBEV and DV (Figure 3.14, panels B and C respectively; Modis et al., 2003; 

Rey et al., 1995).   The consensus protein sequence for each patient sample was 

applied to the crystal structure of the appropriate DV E using DeepView Swiss Pdb-

Viewer (section 2.2.6 Arnold et al., 2006) to construct a three-dimensional rendering of 

the protein, and the locations of the amino acid substitutions were highlighted (Figure 

3.15).  Substituted amino acids located on the surface of E, and therefore potentially 

involved in interactions with other oligomers, antibodies or host cell receptors were 

identified.  Amino acid substitutions that were within 4Å of the other E protein chain 

within the dimer were also highlighted, as these residues could be involved in oligomer 

assembly.  Similarly, substituted residues within 4Å of the putative highly-sulphated 

heparan sulphate (HSHS) binding site thought to be involved in virus-cell interactions 

(Chen et al., 1997; Thullier et al., 2001), or within 4Å of the fusion peptide, were also 

noted (Table 3.15). 

From a linear perspective, the quasispecies mutations cause amino acid substitutions 

that occur throughout DV E, from residue E29 through to E455 (Figure 3.15, panel D).  

Six quasispecies variant clones were identified with amino acid substitutions located in 

structural domain I, fifteen clones with amino acid substitutions in domain II, seven 

clones with amino acid substitutions in domain III and two clones with amino acid 

substitutions in the transmembrane domain.     
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Figure 3.14.  Linear schematic representation of the dengue virus envelope glycoprotein, detailing 

important structural features and the location of Sri Lankan patient sample quasispecies amino 

acid substitutions.  

(A) Antigenic structure of flavivirus E using TBEV as a model (Mandl et al., 1989). Three antigenic 

domains (A, B and C) and two transmembrane domains are shown. Regions conserved amongst most 

flaviviruses are shown in red. Hypervariable regions are shown in green. The location of a proposed T-

cell antigenic determinant is shown in blue. (B) TBEV E structural domains based on crystal structure 

determination (Rey et al., 1995). Three structural domains (I, II and III) are shown, corresponding to the 

previously identified antigenic domains A, C and B respectively (see panel A). A glycosylation site 

common to most flaviviruses is marked with a triangle. A region highly conserved in flaviviruses and 

implicated in membrane fusion is shown in red with black stripes. (C) DV (DenV) type 2 E structural 

domains based on crystal structure determination (Modis et al., 2003). Three structural domains (I, II and 

III) are shown, corresponding largely with those identified for TBEV (panel B). Two glycosylation sites 
are marked with triangles. One is common to most flaviviruses (Asn-153) and the other is specific to DVs 

(Asn-67). The highly conserved fusion peptide is shown in red with black stripes. A proposed DV 

receptor-binding loop not present in tick-borne flaviviruses is shown in yellow. The kl hairpin loop at the 

domain I/II interface (shown in dark blue) has been implicated in oligomer rearrangements during fusion. 

(D) DV (DenV) E showing the locations of the Sri Lankan patient sample amino acid substitutions 

(Appendix E). 
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Figure 3.15.  Three-dimensional structure of the dengue virus envelope glycoprotein detailing the 

locations of the Sri Lankan patient sample quasispecies amino acid substitutions.  

Panel A shows the three amino acid substitutions for the R282A DV type 4 patient sample (Appendix E, 

Table 6). Panel B shows the nine amino acid substitutions for the R097A DV type 3 patient sample 

(Appendix E, Table 1). Panel C shows the two amino acid substitutions for the R107A DV type 2 patient 

sample (Appendix E, Table 2). Panel D shows the four amino acid substitutions for the R203A DV type 3 
patient sample (Appendix E, Table 3). Panel E shows the four amino acid substitutions for the R259A DV 

type 2 patient sample (Appendix E, Table 4). Panel F shows the two amino acid substitutions for the 

R261A DV type 3 patient sample (Appendix E, Table 5). Images were constructed using DeepView 

Swiss PDB-viewer (section 2.2.6).  
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As expected, none of the amino acid substitutions were observed in positions occupied 

by the 12 conserved cysteine residues required for protein structure (Nowak and 

Wengler, 1987), or within the fusion peptide at residues 100-108 (Modis et al., 2003).  

None of the amino acid substitutions were located at the N-glycosylation sites at 

residues Asn-67 or Asn-153 (Mondotte et al., 2007).  However, one of the amino acid 

substitutions (R107A clone 22, position E113) occurs within the highly conserved 

region surrounding the fusion peptide (residues 98-113; Rey et al., 1995), and two of 

the amino acid substitutions (from patient samples R097A and R282A; positions E29 

and E34 respectively) occur within the conserved region at residues 1-42 (Mandl et al., 

1989). Two amino acid substitutions (R097A E452 and R261A E455) map to the 

transmembrane domain at E position E450 to E472, which functions as the membrane 

anchor for E (Allison et al., 1999).  This region is required for the incorporation of E into 

virus particles and stabilisation of interactions between prM and E in immature virus 

particles (Allison et al., 1999).  Three of the R097A amino acid substitutions (E29, E55 

and E77) and one of the R107A amino acid substitutions (E113) occur at computer-

predicted potential post-translational modification sites for protein kinase C 

phosphorylation, casein kinase II phosphorylation, or N-myristoylation; although the 

significance of these modifications is unknown (Amin et al., 2010).  Six E gene clones 

from patient sample R261A carry the same conservative amino acid substitution at 

residue E201 and patient sample R203A has one clone with a conservative amino acid 

substitution at residue E202.  These occur within a region of domain II (E200-215) that 

has been suggested to be hypervariable amongst flaviviruses (Mandl et al., 1989).  

Three-dimensional modelling identified the E201 amino acid substitution as surface 

accessible and the E202 amino acid substitution as within 4Å of the other E protein 

chain that makes up the dimer (Table 3.15).  Therefore, these amino acid substitutions 

may be of importance in oligomer assembly or oligomeric rearrangements during virus 

fusion with cell membranes.  One clone from patient sample R097A contains an amino 

acid substitution (E151) in another hypervariable region of domain I (E145-170; Mandl 

et al., 1989).  This amino acid substitution was also identified as being within 4Å of the 

other E protein chain that makes up the dimer. 
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Three-dimensional mapping of the amino acid substitutions identified seven of these 

(R097A, E77 and E280; R203A, E225 and E345; R261A, E201; R107A, E343; R259A, 

E345) to be situated on the surface of E (surface accessible, defined as 30% or more of 

the residue surface is accessible to solvent; Table 3.15).  These amino acid 

substitutions were from five different patient samples, across DV types 2 and 3, and 

may be involved in interactions with the DV prM or M protein, the other E protein 

chain that makes up the dimer, other E oligomers, antibodies or host cell receptors. 

Mutations leading to amino acid substitutions in the flavivirus E that alter the 

properties of the virus (e.g. virulence) tend to cluster at three sites:  the distal face of 

domain III, the base of domain II, and the domain I/III interface with the domain II 

conserved region at residues 98-113 (section 1.5.1; Rey et al., 1995).  Three-

dimensional mapping showed that several of the amino acid substitutions identified in 

the dengue patient sample quasispecies variants also map to these sites (Table 3.15).   

Mutations leading to amino acid substitutions at the base of domain II, or at the 

domain I/III interface with the domain II conserved region at residues 98-113 are 

thought to affect virulence by impacting upon the conformational rearrangements that 

lead to fusion of virus and host cell membranes (Rey et al., 1995).  Three amino acid 

substitutions from two patient samples (R097A E151 and E246; R107A E343) were 

identified by three-dimensional mapping as within 4Å of the fusion domain. 

One of the clones isolated from patient sample R097A (clone 43) has a mutation 

causing an amino acid substitution at DV E position E280, which is part of the kl hairpin 

loop at the domain I/II interface, which is implicated in conformational 

rearrangements during fusion (Modis et al., 2003).  Amino acid substitutions at DV E 

structural domain interfaces have also been proposed to affect oligomer assembly 

(Duarte dos Santos et al., 2000).  Amino acid substitutions on the distal face of domain 

III can affect virulence or cell tropism, and it has been suggested that this is due to 

interference with cell attachment as domain III is thought to contain the flavivirus 

receptor-binding motif (Crill and Roehrig, 2001).  One of the clones from patient 

sample R203A (clone 21) has a mutation leading to an amino acid substitution at DV E 
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position E306, which is suggested to form part of a binding site (E306-314) for HSHS 

molecules, which are present on the surface of cells targeted by the virus and appear 

to mediate infectivity (Chen et al., 1997; Thullier et al., 2001).  The amino acid 

substitution at E306 therefore has the potential to directly affect virus attachment to 

the host cell.  A clone from patient sample R097A (clone 13) has a mutation leading to 

an amino acid substitution at E position E320, which was determined by three-

dimensional mapping to be within 4Å of the HSHS binding site (Table 3.15).  It is 

possible that disruption of the binding site by this amino acid substitution could either 

enhance or attenuate virulence by altering virus infectivity.  

Table 3.15.  Summary of dengue virus envelope glycoprotein amino acid substitution locations 

identified through linear and three-dimensional modelling.   

 
E gene mutations leading to a shift in the reading frame are denoted with f. 
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3.10 Identification of dengue virus quasispecies envelope genes for 
recombinant protein production 

Quasispecies variants were chosen from the DV E gene clones for recombinant protein 

production based on the data obtained from the mapping of the mutations (Table 

3.15).  The main criteria for selecting clones for recombinant E production were that 

the clones contained nonsynonymous non-frameshift mutations leading to amino acid 

substitutions with the potential to alter the behaviour of the protein (Table 3.16).  

Clones representative of the DV quasispecies E gene consensus sequence for each 

sample were also selected for recombinant E production.  These would be used in 

future studies of E function, as a control for comparison to the quasispecies variant E.   

Table 3.16.  Summary of quasispecies variants chosen for recombinant protein production. 

Sample Clone Mutated E protein residue(s) 

R097A 

4 None.  Represents sample consensus. 

13 E320; drastic mutation; domain III; within 4Å of the HSHS site 

43 E280; drastic mutation; surface accessible at the base of domain II at the interface 

with domain I; within the kl hairpin 

R203A 

2 None.  Represents sample consensus. 

54 E202; conservative mutation; domain II; within 4Å of the other protein chain 

E345; drastic mutation; surface accessible on the distal face of domain III  

R261A 
1 None.  Represents sample consensus. 

4 E201: conservative mutation; domain II; surface accessible 

R107A 

1 None.  Represents sample consensus. 

22 E113; conservative mutation; domain II; within the conserved region surrounding 

the fusion peptide (E98-113) 

 
Clone 4 from DV type 3 sample R097A (R097A_4) represents the consensus E gene 

sequence for the R097A sample set.  Clone 13 (R097A_13) contains a drastic amino 

acid substitution at protein position E320, which was mapped to within 4Å of the 

residues of the putative HSHS binding site thought to be involved in virus-cell 

interactions.  This amino acid change involves the substitution of a nonpolar amino 

acid (isoleucine) with a large hydrophobic side chain, with a polar amino acid 

(threonine) (Appendix E; Table 1).  Isoleucine will usually orient itself to the interior of 

the folded protein and is important for the correct folding of the protein, whereas 

threonine tends to be located on the outer surface of the protein.  It is possible that 

this amino acid substitution could disrupt the HSHS binding site and impact on virus 

infectivity.  Clone 43 (R097A_43) contains a drastic amino acid substitution at position 
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E280, which is situated on the surface of the protein and therefore may be involved in 

antibody or cell binding.  This substituted residue also forms part of the kl hairpin loop 

at the interface between E structural domains I and III, which is implicated in 

conformational rearrangements during fusion (Modis et al., 2003).  Mutations leading 

to amino acid substitutions within the kl hairpin loop are known to cause virus 

attenuation (Lee, Weir, and Dalgarno, 1997; Monath et al., 2002), and amino acid 

substitutions at the domain I/III interface with the domain II fusion peptide on the 

other monomer are known to affect virulence, with some changing the pH required to 

trigger the conformational changes that lead to membrane fusion (Rey et al., 1995).  

Clone 2 from DV type 3 sample R203A (R203A_2) represents the consensus E gene 

sequence for the R203A sample set.  Clone 54 (R203A_54) contains two amino acid 

substitutions at E202 and E345 (Appendix E; Table 3).  The E202 conservatively 

substituted residue is within 4Å of the other protein chain that makes up the E dimer 

and involves the substitution of a basic amino acid (lysine) with a functionally similar 

basic amino acid (arginine).  The difference in side chains may be of importance in 

oligomer assembly or fusion, as this residue has been proposed to map to a putative 

hinge region between domains I and II, which may be important during fusion (Lee, 

Weir, and Dalgarno, 1997).   The substitution of lysine with arginine at E position E202 

has been shown to occur during routine serial passage of flaviviruses in mammalian 

cells, and therefore may represent an adaptation to growth in mammalian cells (Lee, 

Weir, and Dalgarno, 1997).  The E345 drastic amino acid substitution involves the 

substitution of three amino acids and the insertion of two amino acids (histidine-

asparagine-glycine becomes isoleucine-glutamine-isoleucine-serine-serine; Appendix 

E; Table 3).  Incorporating the two extra residues into the protein chain will impact on 

protein structure.  E345 is situated on the surface of the protein at the distal face of 

domain III.  This part of the domain is thought to contain the flavivirus receptor-

binding motif (Crill and Roehrig, 2001) and amino acid subtitutions in this part of the 

domain are known to affect virulence and cell tropism, presumably through 

interference with cell attachment.   
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Clone 1 from DV type 3 sample R261A (R261A_1) represents the consensus E gene 

sequence for the R261A sample set.  Clone 4 (R261A_4) contains a conservative amino 

acid substitution at E position E201 which is situated on the surface of the protein.  

This residue change involves the substitution of a polar amino acid with a long 

hydrophilic side chain (asparagine), with a polar amino acid (serine; Appendix E; Table 

5). 

Clone 1 from DV type 2 sample R107A_1 represents the consensus E gene sequence 

for the R107A sample set.  Clone 22 (R107A_22) contains a conservative amino acid 

substitution at E position E113, which is located in domain II within the conserved 

region (E98-113) surrounding the fusion peptide.  This residue change involves the 

substitution of a nonpolar amino acid with a large hydrophobic side chain (isoleucine), 

with a nonpolar amino acid with a side chain containing a sulphur atom (methionine; 

Appendix E; Table 2). 
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3.11 Discussion 

DV E gene quasispecies variation was determined by RT-PCR, cloning and sequencing 

of the DV E gene population in individual clinical samples as described in previous 

studies (Craig et al., 2003; Lin et al., 2004; Wang et al., 2002a).   

3.11.1   Patient samples used for dengue virus quasispecies envelope gene 
amplification 

Quasispecies populations were studied in clinical samples from dengue patients 

admitted to hospitals in and around Ragama in Sri Lanka, in 2006.  The detailed clinical 

histories linked to these samples enabled disease severity to be classified as mild or 

severe based on WHO guidelines.  These patient samples were limited to clinically-

apparent DV infections from hospitalised patients.  Samples from non-hospitalised 

dengue patients or asymptomatic patients are rarely studied and reported in the 

literature because it requires surveillance of a prospective cohort in the form of 

regular testing for DV. 

3.11.2   Amplification of dengue virus envelope genes by high-fidelity RT-PCR 

A relatively low number (21/95) of DV E genes were amplified from the patient 

samples by high-fidelity RT-PCR despite them having been confirmed previously by 

HPA CEPR and AFRIMS as DV RT-PCR positive.  For each DV type the RT-PCR primers 

were designed using an alignment of sequences from the NCBI database which 

included examples of each genotype (see Appendix A).  It was only possible to test the 

primers against reference strain RNA (section 2.1.3), as RNA from other strains was not 

available.  Every effort was made in silico to ensure that the primer sequences 

matched as many strains as possible, but it is possible that the samples that were not 

amplified contained strains that were not detected by the primers used in this 

experiment due to nucleotide mismatches between the primer and template 

sequences.  The samples had also been freeze-thawed for diagnostic use prior to this 

study, which may have degraded the viral RNA sufficiently to make low concentrations 

of virus undetectable by the RT-PCR used in this experiment.  High-fidelity RT-PCR is 

not used for diagnostic purposes because the stringency of the high-fidelity enzymes 

makes it less sensitive and more time-consuming than diagnostic methods.  The 
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diagnostic RT-PCR used by both HPA CEPR and AFRIMS was nested, with the first round 

of amplification used to amplify a 511bp amplicon from any DV type and the second 

round of amplification used to amplify type-specific amplicons of varying sizes (119-

482bp; Lanciotti et al., 1992).  The relatively large (up to 1.8kb) DV E gene target in this 

study requires more intact RNA for amplification, compared to the smaller amplicons 

in the AFRIMS and HPA CEPR diagnostic nested RT-PCR.  In support of this, HPA CEPR 

detected fewer DV RNA positive samples during diagnostic testing than had been 

detected previously by AFRIMS using the same method.  Real-time RT-PCRs (amplifying 

a 70bp amplicon) were also performed at HPA CEPR on the same samples, and DV RNA 

was detected in more samples using this method than using the nested RT-PCR.  These 

observations are consistent with sample degradation after repeated freeze-thaw 

cycles.    

3.11.3   Cloning of dengue virus quasispecies envelope genes 

To eliminate bias due to the preferential amplification of certain templates in a single 

PCR, DNA used for cloning was obtained from two separate PCR reactions per sample.  

Nine of the twenty-one DV E genes amplified by high-fidelity RT-PCR produced low 

numbers (less than 10) of positive transformants during cloning.  Assessment of 

quasispecies variation required 96 positive transformants per sample, which was not 

achievable from these nine high-fidelity RT-PCR-amplified E genes.  This was attributed 

to the comparatively low yield of amplicon from the high-fidelity RT-PCRs performed 

on these samples (Table 3.4), resulting in a lower concentration of DNA being used for 

cloning.  Quantification of high-fidelity RT-PCR-amplified E genes and standardisation 

of the amount of DNA used for cloning were not feasible due to the large numbers of 

samples being processed.  This problem of low amplicon yield may have been 

overcome with the design of primers for a second round of amplification (a nested 

PCR), but this would potentially have introduced more mutations into the E gene 

amplicons via the PCR method itself, so the results would not be comparable to those 

produced using the non-nested amplification method.  It was decided to continue 

using the 12 samples that were cloned and produced sufficient positive transformants 

to enable assessment of the DV quasispecies E gene variation. 
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Compared to the DV type 2 and 4 samples, the type 3 sample E gene amplicons proved 

more difficult to clone in terms of obtaining enough positive transformants to enable 

the assessment of quasispecies variation.  Some cloning reactions yielded low numbers 

of positive transformants despite the DNA concentration appearing sufficient for 

cloning, and control reactions confirming that the problems were not due to faulty 

ligation, transformation or culture components.  Attempts were made to optimise 

cloning efficiency and increase the number of positive transformants.  Cloning was 

attempted repeatedly using the same sample amplicons with varying results each 

time.  Attempts made to optimise cloning efficiency and increase the number of 

positive transformants were unsuccessful, so between 64 and 96 white colonies were 

able to be picked for each sample.  Each colony was cultured for 24 hours in selective 

medium before plasmid DNA extraction and verification of the presence of the E gene 

inserts.  Over 95% of the colonies picked from the DV types 2 and 4 samples contained 

the E gene insert.  However, for the DV type 3 clones, the number of white colonies 

containing the insert ranged from 2% to 99% (Table 3.5).  Flavivirus cDNA has been 

reported to be unstable in E. coli (Ward and Davidson, 2008) and differences between 

cloning of DV types 1 to 4 structural genes have been observed, with cloning of the 

type 3 genes being more problematic (Chen et al., 1995), which is in accordance with 

the findings of this study.  Plasmid instability can manifest with rearrangement or 

ejection of part or the entire insert, insertion of foreign sequences into the insert, or 

segregational instability (the production of plasmid-free cells when plasmid-containing 

cells replicate).  This could explain the absence of the DV E gene insert in some of the 

white colonies. It is thought that either the flavivirus cDNA itself is toxic to E. coli, or 

that spurious transcription occurring from cryptic bacterial promoters internal to the 

flavivirus structural gene sequences leads to the synthesis of viral proteins toxic to E. 

coli and destabilises the plasmid (Ward and Davidson, 2008; Yamshchikov, Mishin, and 

Cominelli, 2001).  Several putative prokaryotic promoter sequences have been 

demonstrated within the E gene of a DV type 2 strain (Pu et al., 2011).   
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3.11.4   Sequencing of dengue virus quasispecies envelope genes  

To provide enough DV E genes from each sample for quasispecies analysis, it was 

decided to proceed with sequencing the samples that had been successfully cloned 

with more than 50% of white colonies containing inserts (Table 3.5).  Problems were 

experienced when sequencing the clones from samples R114A and R197A, as many of 

the sample reads obtained were of insufficient length, which meant they were either 

too short to incorporate into contigs, or the contigs assembled did not cover the entire 

E gene.  This was due to an equipment failure, and sequencing could not be repeated 

as the fault was unable to be rectified.  These two samples were not included in 

subsequent sequence analyses as the E gene sequence data were incomplete.  

The reason why insufficient positive transformants were obtained from some of the 

DV type 3 patients samples remains unclear.  Direct sequencing of the RT-PCR 

amplicons from the DV type 3 patient samples that did not produce sufficient numbers 

of positive transformants for quasispecies analysis revealed that these samples shared 

a high level of sequence identity (greater than 99%) with the samples that were 

successfully cloned.  The failure to produce enough positive transformants from these 

samples therefore cannot be attributed to major sequence differences between the 

samples.   

Of the 299 dengue patient sample E gene clones successfully sequenced and analysed, 

nine clones contained truncated E gene sequences flanked by vector sequence.  These 

E gene clones were considered artefacts of the cloning process rather than genome 

defective quasispecies variants.  All nine clones containing incomplete E gene 

sequences were from patients with DV type 3 infections and two common points of E 

gene truncation were identified at E gene positions E772-3 and E1128-1132.  The full-

length E gene templates used for cloning were extracted from appropriately sized RT-

PCR amplicons, so it is unlikely that these truncated sequences originate from the 

cDNA insert.  It is likely that the portions of E gene sequence past the truncation point 

were originally present in the transformed E. coli, but were not tolerated by 

subsequent generations and were rejected due to plasmid instability.  A search for 

prokaryote promoter sites in the E gene sequences obtained from the dengue patient 
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samples using the Berkeley Drosophila Genome Project (BDGP) Neural Network 

Promoter Predictor (http://fruitfly.org/seq_tools/promoter.html) revealed several 

putative promoter sequences in the patient sample sequences (Table 3.17).  This 

suggests that spurious transcription occurring from these prokaryote promoter sites 

may induce the synthesis of part of E downstream of the promoter site.  If these 

proteins are not tolerated by the E. coli, for example if they are inherently toxic, the 

plasmid can be destabilised and part of it ejected, resulting in the E gene truncations 

observed.    

  

http://fruitfly.org/seq_tools/promoter.html
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Table 3.17.  Predicted prokaryote promoter sites within dengue virus envelope genes from patient 

samples. 

Dengue 

patient 

sample 

Start End Promoter sequence 

R097A 

R203A 

R004A* 

R114A* 

R232A* 

R255A* 

R299A* 

and 

R334A* 

312 357 TTGTGGTTTGTTTGGCAAAGGAAGCTTGGTAACATGTGCGAAATTTCAAT 

513 558 CATCTTGCCTGAATATGGAACCCTTGGGCTAGAATGCTCACCACGGACAG 

1131 1176 AATTGGAATTGGAGACAACGCCTTGAAAATCAACTGGTACAAGAAGGGGA 

1362 1407 AATTGGAATAGGTGTCCTCTTGACTTGGATAGGGTTGAATTCAAAGAACA 

1420 1465 TCATTTTCATGCATTGCGATAGGAATCATTACACTCTATCTGGGAGCTGT 

R107A 

and 

R259A 

352 397 ATGTTCACATGCAAAAAAAACATGGAAGGGAAAATTGTGCAACCAGAAAA 

413 458 CCATTGTGGTAACACCTCATTCAGGGGAAGAGAATGCAGTTGGAAATGAC 

575 620 ACTTCAATGAGATGGTGTTGCTGCAAATGGAAAATAAGGCTTGGCTGGTG 

917 962 TTAAAGTTGTAAAGGAAATAGCAGAAACACAACATGGAACAATAGTTGTT 

1201 1246 ATGTTCGAGACAACAATGAGAGGAGCGAAGAGAATGGCCATTTTAGGTGA 

R261A 

312 357 TTGTGGTTTGTTTGGCAAAGGAAGCTTGGTAACATGTGCGAAATTTCAAT 

513 558 CATCTTGCCTGAATATGGAACCCTTGGGCTAGAATGCTCACCACGGACAG 

1131 1176 AATTGGAATTGGAGATAACGCCTTGAAAATCAACTGGTACAAGAAGGGGA 

1307 1352 AAATATTTGGAAGTGCCTACACAGCCCTGTTTAGTGGAGTCTCTTGGGTG 

1362 1407 AATTGGAATAGGTGTCCTCTTGACTTGGATAGGATTGAATTCAAAGAACA 

R282A 

841 886 GGACATTTGAAGTGCAAAGTTCGCATGGAGAAATTGAGGATCAAGGGAAT 

1336 1381 ACTATGTTTGGAGGAGTCTCATGGATGGTTAGAATCCTAATCGGGTTCTT 

1359 1404 GATGGTTAGAATCCTAATCGGGTTCTTAGTATTGTGGATTGGCACGAGTT 

 312 357 TTGTGGTTTGTTTGGCAAAGGAAGCTTGGTAACATGTGCGAAATTTCAAT 

R197A* 513 558 CATCTTGCCTGAATATGGAACCCTTGGGCTAGAATGCTCACCACGGACAG 

 1034 1109 ATAGTAATTGGAATTGGAGATAACGCCTTGAAAATCAACTGGTACAA 

Prokaryote promoter sites were predicted from the DV E gene consensus sequence data from the patient 

samples using the Berkeley Drosophila Genome Project (BDGP) Neural Network Promoter Predictor 

(http://fruitfly.org/seq_tools/promoter.html). No prokaryote promoter sites were predicted for sample 

R254A. The transcription start sites are underlined in the promoter sequences. The start and end positions 
of the promoter sequence are shown; numbers refer to the DV E gene sequence for the respective patient 

samples. 

* denotes patient samples that were amplified by high-fidelity RT-PCR but were unable to be sufficiently 

cloned and sequenced to enable quasispecies analysis 

http://fruitfly.org/seq_tools/promoter.html
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3.11.5   Analysis of dengue virus envelope gene quasispecies variation 

To compare the DV quasispecies E gene sequences, the clones from each patient 

sample were aligned as both nucleotide and amino acid sequences, and types and 

positions of mutations were detailed.  Analysis of the clone sequences revealed less 

variation within the virus population of individual patients than was expected based on 

published data.  Nucleotide sequences differing from the consensus have been 

reported for more than 70% of the clones analysed (Craig et al., 2003), whilst this 

study found just 16% differed from the consensus.  Average values for the mean 

diversity of viral quasispecies variants of 0.38% (Lin et al., 2004; Wang et al., 2002a) 

and 0.16% (Craig et al., 2003) were previously reported compared to the  current 

findings of  0.018% (21.1- and 8.9-fold lower respectively; Table 3.10).  However, the 

results of this study, both in terms of the number of clones found to contain mutations 

and the average mean diversity values, are consistent with reported error rates for 

viral RNA polymerases during natural replication.  Mutation rates of 1/10,000 

nucleotides (Smith et al., 1997) give a mean diversity value of 0.01%, and for a 1500 

nucleotide E gene, one mutation will be present for every 6.7 clones analysed, 

corresponding to 15% of clones differing from the consensus. 

Further investigations are required to elucidate how viral quasispecies populations 

vary between the infecting DVs or in the infected human populations studied.  

Previous studies have looked at DV quasispecies populations in patients from Thailand 

(Lin et al., 2004; Wang et al., 2002a) and Myanmar, (Craig et al., 2003) who may have 

an entirely different history of exposure to DV types and genotypes than the Sri Lankan 

patient samples utilised for this study.   

Similar methodologies were used for both studies, although this study used high-

fidelity reverse transcriptase and polymerase enzymes in the RT-PCR.  The difference 

between the amounts of variation observed between this and previous studies could 

be due to the fidelity of the enzymes used for RT-PCR.  Previous studies (Lin et al., 

2004; Wang et al., 2002a) used nested PCR after the RT step (using a standard-fidelity 

RT enzyme), with two rounds of amplification for 30 cycles using Taq polymerase.  This 

produced an average mean diversity value that is 21.1 times greater than the results 
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obtained from this study.  The combination of low-fidelity enzymes and increased 

number of PCR amplification cycles could explain the increased variation observed 

compared to the present study.  Another group (Craig et al., 2003) used a blend of Taq 

and high-fidelity Tgo polymerase after the RT step (using a standard-fidelity RT 

enzyme), over 36 cycles of PCR amplification, and reported an average mean diversity 

value that is 8.9 times greater than this study.  A high fidelity RT-PCR kit (AccuScript) 

was used in this study to try and minimise the number of errors introduced to the DV E 

gene during amplification by RT-PCR.  This combination of high-fidelity reverse 

transcriptase and polymerase enzymes has been shown to produce up to an 8-fold 

reduction in mutation rate when compared to a Taq and high-fidelity DNA polymerase 

blend (Arezi and Hogrefe, 2007).  This is consistent with the 8.9-fold difference in 

average mean diversity between the two studies. 

In accordance with all the previous studies (Craig et al., 2003; Lin et al., 2004; Wang et 

al., 2002a) this study found that the extent of sequence diversity within the viral 

quasispecies population varies between patients.  It also concluded that there was no 

statistical difference (p=1.0) between the extent of sequence diversity in the mild 

compared to the severe dengue cases, which concurs with previous findings (Wang et 

al., 2002a). 

Previous reports stated that 5.8% of the clones analysed contained genome-defective 

DV E gene sequence with insertion or deletion mutations, or substitution mutations 

resulting in in-frame stop codons, and these were found at a higher frequency in 

samples from patients with more severe cases of the disease (Wang et al., 2002a).  

These results were based on data obtained from a 430 nucleotide region of the E gene, 

which codes for all of structural domain III and the hinge junction to domain II, 

whereas this study examined the entire E gene.  This study observed that 3.4% of the 

total number of clones analysed contained genome-defective virus gene sequence 

with insertion or deletion mutations (10/299 clones), and all but one of these were 

found in patients with severe disease.  In this study none of the substitution mutations 

in the patient samples resulted in in-frame stop codons.  Long-term and widespread 
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transmission of a genome defective DV type 1 strain containing a stop codon within E 

has been reported (Aaskov et al., 2006).  The likely mechanism of transmission of the 

defective lineage was proposed to be complementation of the defective virus by 

coinfection of cells with functional virus quasispecies variants.  The prevalence of the 

defective lineage increased in quasispecies populations from different patients in 

successive years in the region sampled and was observed in dengue patients 

thousands of miles away from the initial site.  The increased prevalence of the 

defective lineage was associated with a major reduction in the occurrence of DV type 1 

infections, indicating that the persistence of such deleterious mutations in a 

population has adverse effects on virus fitness (Aaskov et al., 2006).   

3.11.6   Measurement of mutations introduced via high-fidelity RT-PCR 
amplification and comparison of methods used in previous studies 

Previous studies estimated error frequencies for mutations introduced by the RT-PCR 

process of 0.023-0.055% (Lin et al., 2004; Wang et al., 2002a).  These were based on 

previously published error rates for reverse transcriptase and Taq polymerase 

enzymes, and 60 cycles of PCR amplification.  In contrast, the patient samples in this 

study were both reverse transcribed and amplified using high-fidelity enzymes, and 36 

cycles of PCR amplification were conducted, so error frequencies for mutations 

introduced by the RT-PCR process would be expected to be lower.  To determine the 

error frequencies for mutations introduced by this RT-PCR method, DV type 3 E gene 

plasmid DNA (from a single colony of known sequence) was transcribed in vitro using 

T7 polymerase.  The resulting transcripts were subjected to high-fidelity RT-PCR, 

cloning and sequencing as described previously.  High-fidelity RT-PCRs were conducted 

using both the AccuScript method applied to the Sri Lankan patient samples in this 

study and the high-fidelity Expand method used in previous publications (Craig et al., 

2003).  The standard fidelity method used by previous groups was not tested as there 

was not enough information in either of the publications (Lin et al., 2004; Wang et al., 

2002a) to identify the RT-PCR reagents used. 

The Expand method generated more mutations than the AccuScript method, with 1.7-

fold higher mean diversity and number of clones containing mutations.   Comparison 
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of insertion and deletion mutation rates between the AccuScript and Expand methods 

using the RNA transcript revealed them to be very similar (AccuScript 0.032%; Expand 

0.035%).  In contrast, Expand method substitution mutation rates were 2.47-fold 

greater than those generated using the AccuScript method.  These data support the 

hypothesis that differences in the amounts of variation observed between this and 

previous studies are due to the fidelity of the enzymes used for RT-PCR.  In light of 

these results, published data on DV quasipecies variation need to be re-examined to 

account more accurately for mutations introduced by the amplification process itself. 

Both methods using the RNA transcript showed a greater number of clones containing 

mutations (AccuScript 33%; Expand 55%) and a higher overall mean diversity 

(AccuScript 0.065%; Expand 0.11%) than was observed with the Sri Lankan patient 

samples (16% of clones analysed contained mutations; overall mean diversity 0.013%).  

The difference between these mutation rates observed using RNA transcript versus 

patient samples indicated that the presence of so many mutations might be attributed 

to the RNA transcript used rather than the high-fidelity RT-PCR, cloning and 

sequencing.   To test this hypothesis, the in vitro transcription reaction was repeated 

using new reagents in the presence and absence of thioredoxin (section 3.11.6).  The 

resulting transcripts were subjected to high-fidelity RT-PCR, cloning and sequencing 

using the AccuScript method applied to the Sri Lankan patient samples in this study.  In 

total, 23 clones were analysed: 12 and 11 clones from RNA transcript produced in the 

presence and absence of thioredoxin respectively.  All of these clones matched the 

consensus sequence as no mutations were identified.  This RNA transcript consensus 

sequence also matched those obtained during the AccuScript versus Expand method 

comparison.  Although no difference was observed between the RNA transcripts 

generated in the presence and absence of thioredoxin, the fact that no mutations were 

found in any of the clones this time indicated that the RNA transcript used for the 

AccuScript and Expand method comparisons was not a homogeneous population of E 

gene transcripts to begin with.  This explains the increased mutation rates observed 

initially using RNA transcript versus patient samples.  The comparison between the 

mutation rates generated by the AccuScript and Expand methods is still valid, despite 
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the heterogeneous RNA transcript population, as they were conducted at the same 

time using the same RNA transcript as template.  Presumably, using new reagents for 

the in vitro transcription reactions performed in the presence and absence of 

thioredoxin enabled the generation of a homogeneous transcript population.  A 

maximum error rate of 0.003% was determined for mutations introduced by the 

AccuScript RT-PCR.  A more accurate determination of the error rate would require 

sequencing of additional clones until a mutation was found.  All of the patient samples 

have mean diversity values greater than 0.003%, which exceeds the calculated 

maximum error rate for mutations introduced by the AccuScript RT-PCR.        

3.11.7   Phylogenetic analyses of dengue virus envelope gene quasispecies 
variation 

Phylogenetic analyses were conducted to investigate the variability of the DVs 

circulating during the Sri Lankan outbreak in 2006.  All four DV types were circulating 

at the time of the outbreak, but the genotypic composition of strains had not been 

identified.  Alignments and phylogenetic trees were constructed for each DV type 

using E gene sequences of known genotype (Lanciotti, Gubler, and Trent, 1997; 

Lanciotti et al., 1994; Messer et al., 2003b; Twiddy et al., 2002) alongside the 

quasispecies consensus and mutant clone sequences identified from the patient 

samples in this study.  Nucleotide sequence identities between DV strains from the Sri 

Lankan patient samples were shown to be over 99% within DV types.  The two DV type 

2 patient sample consensus sequences were identical in protein sequence, whilst the 

three DV type 3 patient sample consensus sequences each differed by one amino acid. 

It has been reported that intra-virus type recombination occurs in DVs and can 

produce viruses with different properties to the parental strains (AbuBakar, Wong, and 

Chan, 2002; Holmes, Worobey, and Rambaut, 1999; Tolou et al., 2001; Uzcategui et al., 

2001; Worobey, Rambaut, and Holmes, 1999).  The presence of multiple DV genotypes 

and recombinant viruses has been reported in individual mosquito and human hosts 

(Aaskov et al., 2007; Craig et al., 2003).  Evidence of recombination would have been 

observed if any of the mutant clones displayed a shift in phylogeny compared to their 

respective consensus sequences.  All of the patient samples for each DV type studied 
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were identified as the same genotype, and all of the mutant clone sequences were 

shown to cluster together with their respective consensus sequences within genotypes 

containing strains of a similar geographical origin to the samples.  There was no 

evidence of the presence of multiple genotypes in the circulating Sri Lankan strains, 

and there was no indication from these E gene data that any of the mutant dengue 

clones result from recombination events between co-infecting genotypes.  Within DV 

types, all of the samples from this study emerge from a common node on the tree, 

suggesting divergence from a common ancestor.  Therefore, Sri Lankan DVs appear to 

be restricted to single genotypes within a DV type, despite the abundance of different 

genotypes that are present on the mainland; recent introduction of strains from 

outside Sri Lanka is not apparrent from the phylogenetic analyses conducted for this 

study.  This limitation in the number of geneotypes per DV type present in Sri Lanka 

may explain why no evidence of recombination was found.  Given the similarity 

between the patient sample E gene sequences, there was no evidence to suggest that 

the severity of disease experienced by the patient was related to the infecting DV 

genotype. 

The first DV type 3 phylogram (Figure 3.12) was constructed using complete E gene 

sequences.  A second phylogram (Figure 3.13) was constructed using a 207 nucleotide 

region at the 5’ end of the gene to incorporate partial Sri Lankan DV sequences 

available from NCBI (Messer et al., 2003a).   No NCBI sequences were found for Sri 

Lankan strains that fell into genotypes I, II or IV, which concurs with previous findings 

(Messer et al., 2003a). As shown previously (Lanciotti et al., 1994; Messer et al., 

2003a), genotype III clusters into two distinct groups: IIIa and IIIb.  Those strains that 

comprise genotype IIIa are all from outbreaks during or prior to 1989, which were not 

associated with DHF epidemics.  Those that form genotype IIIb are all from 1989 or 

later and have been associated with epidemics of severe dengue (Lanciotti et al., 1994; 

Messer et al., 2003a).  It has been suggested that this genetic shift may have increased 

the virulence of the Sri Lankan strains, and be responsible for the increase in cases of 

severe disease seen on the island after 1988 (Lanciotti et al., 1994).  A similar DV type 
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3 genotype IIIb clade replacement has been suggested as the cause of a further 

increase in severe dengue in Sri Lanka since 1999 (Kanakaratne et al., 2009).   

In the first DV type 3 phylogram (Figure 3.12), the genotype I strain Malaysia 1974 

appeared most closely related to the genotype II strain Thailand 1987.  However, in the 

second DV type 3 phylogram (Figure 3.13) the genotype I strain appears between the 

genotype IIIa and b clades.  The Sri Lanka 1989c strain also shifts phylogeny between 

the two phylogenetic trees.  In the complete E gene tree (Figure 3.12) it clusters with 

Sri Lanka 1991 in genotype IIIb, whereas in the partial E gene tree (Figure 3.13) it 

appears more closely related to Sri Lanka 1984 in genotype IIIa.  A shift in phylogeny 

when different regions of a sequence are used for the analysis is indicative of 

recombination.  A recombination event may have occurred between a genotype IIIa 

strain and a genotype I strain to produce genotype IIIb strains with increased virulence 

compared to IIIa.  The Sri Lanka 1989c strain may represent an early example of this 

recombination as it shifts phylogeny between the genotype IIIa and b strains when 

different regions of the E gene are used for the analysis.  There is no evidence of 

genotype I strains in Sri Lanka so this recombinant must have been imported.   The 

bootstrap values are far from conclusive for the partial E gene phylogenetic tree, but 

further evidence to support this hypothesis could be obtained by comparison of the 

complete genome sequences from strains pre- and post-1989 in order to try and 

identify differences that could have resulted in this increase in virulence.  In addition, 

computational analyses could be performed in order to try and identify recombination 

break points within the post-1989 sequences.  This work is not possible at the present 

time due to a lack of available virus strains from before 1989. 

3.11.8   Linear and three-dimensional mapping of dengue virus quasispecies 
envelope glycoprotein amino acid substitutions 

The amino acid residue substitutions resulting from the nonsynonymous mutations in 

the patient samples were shown to be distributed throughout the DV E by mapping the 

substitutions to the linear protein sequence.  Six clones were identified with amino 

acid substitutions that map to structural domain I; fifteen clones with substitutions 

that map to domain II; seven clones with substitutions that map to domain III, and two 
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clones with substitutions that map to the transmembrane domain.  As expected, none 

of the residue substitutions were in positions occupied by the 12 conserved cysteine 

residues required for protein structure (Nowak and Wengler, 1987), or within the 

fusion peptide at residues E100-108 (Modis et al., 2003).  Mapping of the amino acid 

substitutions also confirmed that they did not occur at or proximal to the N-

glycosylation sites at amino acids Asn-67 or Asn-153 (Mondotte et al., 2007).   

Amino acid substitutions with the potential to affect virulence or cell tropism were 

identified on the basis of their proximity to important structural features within the 

three-dimensional structure of DV E.  Virulence or cell tropism can be affected through 

modulation of oligomer or virion assembly, cell attachment, fusion of virus and cell 

membranes, or antibody recognition.   

Two of the substituted residues (E306 and E320) were shown to be located on domain 

III, at or within 4Å of the binding site for HSHS molecules on the target cell surface 

which mediate infectivity (Chen et al., 1997; Thullier et al., 2001).  Neutralisation 

escape mutations in multiple flaviviruses map to this HSHS binding site (Jiang et al., 

1993; Lin et al., 1994), so whilst these substituted residues are not surface accessible 

they could potentially alter the protein structure enough to disrupt the HSHS-binding 

site and either enhance or attenuate virulence by altering virus infectivity.  Four of the 

substituted residues (E49, E55, E135 and E280) were located at the base of domain II 

at the interface with domain I, with one of these residues (E280) shown to be surface 

accessible and within the kl hairpin loop implicated in conformational rearrangements 

during fusion (Modis et al., 2003).  Attenuated viruses with single amino acid 

substitutions in the kl hairpin loop have been obtained by flavivirus passage in cell 

culture (Lee, Weir, and Dalgarno, 1997; Monath et al., 2002), and neutralising antibody 

epitopes have also been mapped to this region (Beasley and Aaskov, 2001).  A further 

three substituted residues (E151, E246, and E343) were located within 4Å of the fusion 

domain, with one of these located to domain I at the interface of domain III and the 

domain II conserved region on the other monomer at residues 98-113, which houses 

the fusion peptide (Modis et al., 2003; Rey et al., 1995).  One additional substituted 
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residue (E113) was found to be within this conserved region at residues 98-113.  

Mutations leading to amino acid substitutions at the base of domain II or at the 

domain I/III interface with the domain II conserved region at residues 98-113 are 

thought to affect virulence by impacting upon the conformational rearrangements that 

lead to fusion of virus and host cell membranes (Rey et al., 1995).  Some of these 

mutations have been shown to affect fusion by altering the pH required to induce the 

conformational changes (Mandl et al., 1989; Modis et al., 2003; Rey et al., 1995).  Most 

of these mutations involve residues with side-chains that project into the ligand-

binding pockets between the dimers and it has been reported that lowering of the pH 

threshold for fusion is due  to the substitution of longer hydrophobic side chains for 

shorter ones (Modis et al., 2003).   

Seven of the amino acid substitutions (at positions E77, E201, E225 E280, E343 and 

two at E345) from five different patient samples were situated on the surface of the 

protein and therefore may be involved in antibody or cell binding.  Amino acid 

substitutions in flavivirus E that affect the binding of neutralising mAbs have been 

shown to map to the surface of the dimer across all three structural domains (Rey et 

al., 1995).  Of these surface accessible residues, four (E331, E343 and two at E345) 

were on the distal face of domain III, which is reported to contain the flavivirus 

receptor-binding motif (Crill and Roehrig, 2001). The region between E residues E335 

and E351 has been reported to contain an epitope for the binding of neutralising 

antibodies for DV type 2 (Roehrig, Bolin, and Kelly, 1998), so the amino acid 

substitutions at E343 and E345 found in this study could affect virus neutralisation by 

antibodies.  Substitutions at the distal face of domain III have been shown to affect 

virulence or cell tropism via interference with cell attachment (Rey et al., 1995) and 

could also affect virus neutralisation by antibodies.   

In the DV type 3 sample from a patient with mild disease (R261A), three distinct 

lineages of DV were observed within the quasispecies population.  The consensus 

sequence was represented by 72% of clones, 13% of clones carried the same 

nonsynonymous mutation causing a conservative amino acid substitution at E position 
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E201, and 6.5% of clones carried the same synonymous mutation at E gene position 

E1146.  There were also 4 clones (8.5%) shown to contain unique mutations.  The 

relative abundance of the two lineages that differ from the consensus sequence within 

the quasispecies population suggests that either they were derived from virus with the 

consensus sequence, but replicate more efficiently than other variants within the 

population, or they were present in the DV quasispecies population in the mosquito 

along with the consensus sequence and were introduced together when the patient 

was bitten.   Mutations leading to amino acid substitutions at E position E202 

commonly occur during routine serial passage in mammalian cells and have been 

proposed to map to a putative hinge region between domains I and II, which may be 

important during fusion (Lee, Weir, and Dalgarno, 1997).  Taken together with the 

results of this study this suggests that the amino acid substitutions observed at E201 

may represent a beneficial adaptation of the virus to growth in mammalian cells, via a 

mechanism related to membrane fusion.  Quasispecies investigations with poliovirus 

have demonstrated a link between the extent of sequence diversity and pathogenicity; 

too many or too few virus variants within the population results in reduced viral fitness 

and attenuation (Crotty, Cameron, and Andino, 2001; Vignuzzi et al., 2006).  Whilst the 

mean diversity of the R261A sample is comparable to those of the other DV type 3 

samples, the presence of so many clones containing the same mutations means that 

this sample actually exhibits less quasispecies variation than samples where each of 

the variant clones contains different mutations.  This restricted quasispecies 

population could explain why patient R261A exhibited mild disease.   

Amino acid substitutions located at regions involved in cell attachment, membrane 

fusion or antibody recognition were scarce in the samples from patients exhibiting 

mild disease.  In the DV type 4 sample from a patient with mild disease (R282A), none 

of the mutations were surface accessible, or mapped to predicted virulence 

determinants.  With the DV type 3 sample from a patient with mild disease (R261A), 

the only mutation that was located in a region of potential importance for virulence 

was surface accessible, but resulted in a conservative rather than drastic amino acid 
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substitution in E.  This is consistent with a role for individual quasispecies variants in 

the pathogenesis of disease, but is by no means conclusive. 

Because the outer surfaces of mature flavivirus virions are covered with a dense 

network of E dimers, any conformational changes in E are likely to induce concerted 

reorganisation across the surface of the virion (Crill and Chang, 2004; Kuhn et al., 2002; 

Modis et al., 2003).   Three-dimensional mapping was limited in that the proximity of 

substituted residues to important sites was only established for pre-fusion E.  More 

amino acid substitutions with the potential to affect virulence or cell tropism may have 

been identified by three-dimensional mapping using post-fusion crystal structures.   

3.11.9   Identification of dengue virus quasispecies envelope genes for 
recombinant protein production 

Nine of the patient sample DV E gene clones were chosen for recombinant E 

production (Chapter 4) in preparation for binding studies to determine the effects of 

the mutations (Chapter 5).  These clones were from four different patient samples, 

three with severe and one with a mild case of disease, across DV types 2 and 3.  For 

each patient sample, a clone was identified that represents the consensus sequence 

for the quasispecies population for that patient.  These consensus clones would also be 

used to produce recombinant E as a comparison alongside clone variants with 

nonsynonymous, non-frameshift mutations in regions identified as determinants of DV 

pathogenicity. 
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3.12 Conclusions and summary 

The primary objective of the work presented in this chapter was to investigate DV 

quasispecies populations, both within individual patient samples and between samples 

from the same outbreak in Sri Lanka, in 2006.  Previous studies of DV quasispecies 

populations used RT-PCR, ligation independent cloning, and sequencing of partial or 

complete DV E genes obtained directly from patient serum or mosquitoes; examining 

between 10 and 21 clones per sample and reporting average mean diversities of 

between 0.16% and 0.38% (Craig et al., 2003; Lin et al., 2004; Wang et al., 2002a).  The 

work presented in this chapter differed from previously published work in that it was 

intended that more dengue patient samples, and a greater number of complete E gene 

clones per sample would be analysed than in previous studies, to provide more data 

for statistical analysis.  The use of high-fidelity reverse transcriptase and PCR enzymes 

was deemed essential to minimise the number of mutations introduced by the 

amplification process itself.  Potential relationships between quasispecies variation 

and disease severity were also investigated.  

From the 95 dengue patient samples where DV E gene amplification, cloning and 

quasispecies analysis was attempted, only six produced enough clones to permit 

quasispecies analysis.  Therefore the aim of this study to examine more patient 

samples than previous studies was not fulfilled.  This was due primarily to difficulties 

with RNA integrity, and plasmid instability during cloning.  However, from these six 

patient samples, 299 clones were analysed (range 25 to 82 clones per sample), so the 

intention to study a greater number of complete E gene clones per sample than 

previous studies was successful.  Across the six samples, an average mean diversity of 

0.018% (range 0.0034% to 0.053%) was obtained, and no statistically significant 

difference was observed between the extent of quasispecies variation and disease 

severity.  This is less variation than was expected based on previously reported average 

mean diversities of between 0.16% and 0.38% (Craig et al., 2003; Lin et al., 2004; Wang 

et al., 2002a).  However, the results presented in this chapter are more consistent with 

reported error rates for viral RNA polymerases during natural replication (0.01%, Smith 

et al., 1997).  The differences in the amounts of sequence variation between this study 
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and previous studies, were shown to be directly related to the fidelity of the enzymes 

used by each group for RT-PCR amplification of the viral RNA.  This emphasises the 

importance of using high-fidelity enzymes for quasispecies analysis.  In light of these 

results, previously reported levels of variation in DV quasispecies populations need to 

be re-examined to account more accurately for mutations introduced by the 

amplification process itself. 

Phylogenetic analyses were conducted to investigate the variability of the DVs 

circulating during the Sri Lankan outbreak in 2006.  Within each DV type studied, all of 

the DV strains from the Sri Lankan patient samples were identified as the same 

genotype, appropriate to their geographic origin, and with nucleotide sequence 

identities of greater than 99%.  There was no evidence of the presence of multiple 

genotypes in the circulating Sri Lankan strains, and there was no indication from these 

E gene data that any of the mutant dengue clones resulted from recombination of co-

infecting genotypes.  Therefore, no relationship was observed between the infecting 

DV genotype and disease severity. 

Nine of the ten clones observed to contain genome-defective DV E gene sequences 

(with insertion or deletion mutations; 10/299 clones) were found in patients with 

severe disease.  Linear and three-dimensional mapping of the amino acid substitutions 

within the DV quasispecies populations identified residues in locations with the 

potential to affect virulence or pathogenicity.  These were more prevalent in the 

samples from patients with severe disease.  These observations are consistent with a 

role for individual quasispecies variants in the pathogenesis of disease. 

Nine clones from four patient samples were chosen for recombinant E production on 

the basis that they contain a mutation with the potential to alter the behaviour of the 

protein, or represent the consensus sequence for that sample for comparison.  

Studying the effect of these mutations on protein function will provide further insight 

into potential links between quasispecies variation and disease severity. 
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CHAPTER 4. PRODUCTION AND 
PURIFICATION OF RECOMBINANT DENGUE 

VIRUS ENVELOPE GLYCOPROTEINS  
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4.1 Introduction 

Recombinant flavivirus envelope glycoproteins (E) have been transiently produced 

using various expression systems.  Bacterial, yeast, insect and mammalian cells have 

been employed as hosts for recombinant protein production from flavivirus E genes 

delivered by plasmid or viral vectors (Allison et al., 1995; AnandaRao et al., 2006; 

Bielefeldt-Ohmann et al., 1997; Bray et al., 1989; Chang et al., 2003; Delenda et al., 

1994; Liu et al., 2010).  Stable expression of flavivirus E genes using transformed cell 

lines has also been demonstrated, but production of mature, secreted protein is 

complicated in mammalian cells by the inherent toxicity of flavivirus E (Konishi and 

Fujii, 2002).  Similar problems have been reported with flavivirus protein production 

using genome-length infectious clones (Pu et al., 2011; Yamshchikov, Mishin, and 

Cominelli, 2001) which require the same level of biocontainment as live virus 

(Containment Level 3). 

It has been demonstrated that the production of secreted recombinant flavivirus E 

with the correct structural conformation requires either co-expression of the pre-

membrane glycoprotein (prM), or truncation of the E gene to remove the C-terminal 

membrane anchor (Allison et al., 1995).  This allows the protein complex to be 

trafficked through the acidic environment of the endoplasmic reticulum and secreted.  

Co-expression of flavivirus E with prM has been shown to produce a higher yield of 

secreted protein than C-terminal truncation of E (Allison et al., 1995), and results in the 

production of spherical virus-like particles (VLPs; Mason et al., 1991; Schalich et al., 

1996).  These VLPs are approximately 30nm in diameter, and are comparable to virions 

in terms of their antigenic and oligomeric structures, and their ability to undergo 

structural rearrangements at acidic pH (Schalich et al., 1996).  Recombinant VLPs or E 

secreted into cell culture medium are easier to purify and represent a more 

homogenous population than intracellularly, where proteins are at different stages of 

processing and maturation.  Secreted VLPs have an additional advantage over secreted 

E alone, as they are more resistant to proteolytic degradation (Sugrue et al., 1997). 

During natural flavivirus infections, in addition to infectious virions, non-infectious viral 

particles are produced.  These contain flavivirus membrane protein (M) and E but lack 
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the nucleocapsid (Russell, Brandt, and Dalrymple, 1980), and are therefore essentially 

the same as recombinant VLPs.   

The use of eukaryotic expression systems enables the appropriate post-translational 

modifications (such as disulphide bond formation, N-linked glycosylation and furin 

cleavage) for the production of secreted flavivirus E.  The level of post-translational 

modification achieved using insect or mammalian cells as hosts is more complex than 

can be achieved using yeast cells.  However, there are significant differences in the 

post-translational processing of glycoproteins by insects and higher eukaryotes, in 

particular with regards to N-linked glycosylation (reviewed in Jarvis, 2003).  In light of 

the fact that flaviviruses are able to infect and replicate naturally in both human and 

mosquito cells, using an insect or mammalian expression system provides the best 

chance of producing functional flavivirus E with the correct post-translational 

modifications.   

The baculovirus expression system produces increased protein yields and is less 

expensive compared to protein production using a mammalian system.  Flavivirus E 

produced using a baculovirus expression system have been shown to be antigenically 

indistinguishable from those produced by the flavivirus itself (Shiu et al., 1991), and 

are immunogenic in mice (Delenda et al. 1994; Despres et al. 1991; Yang et al. 2005).  

For these reasons, it was decided to use the baculovirus expression system for the 

work described in this chapter. 
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4.2 Chapter objectives 

The primary objectives of this chapter were to produce and purify recombinant 

dengue virus (DV) E, using the DV quasispecies E gene clones identified in Chapter 3.   

The recombinant DV quasispecies E would be produced as secreted VLPs to enable 

accurate antigenic presentation of E.  The VLPs produced would be used in cell surface 

receptor binding studies to determine the effect of the quasispecies mutations on 

protein function, and as a source of antigen in the serodiagnosis of DV infection 

(Chapter 5).  The dengue VLPs would also provide a model for studying the effects of 

the quasispecies E gene mutations on the low pH-induced oligomeric rearrangements 

required for fusion of virus and host cell membranes.  To the best of my knowledge 

this is the first report of recombinant flavivirus E or VLP production from quasispecies 

variants. 

DV quasispecies E gene clones identified in the previous chapter (section 3.10; Table 

3.16) would be amplified by high-fidelity PCR, before cloning with the DV type 1 prM 

gene into the baculovirus transfer vector, pBAC-2cp.  These modified transfer vectors 

would be used to construct recombinant baculoviruses (rBVs) containing the DV prM 

and E genes, which would enable secreted recombinant dengue VLP production upon 

infection of insect cells.  The recombinant dengue VLPs would be purified using His-

tags inserted at the C-terminal of E. 



 Chapter 4: Recombinant protein production  

151 
 

4.3 Cloning of dengue virus pre-membrane and quasispecies envelope 
genes into the baculovirus transfer vector, pBAC-2cp 

To produce recombinant proteins using the baculovirus expression system, the genes 

encoding the proteins of interest needed to be amplified and cloned into a transfer 

vector suitable for the production of rBVs.  pBAC-2cp is a 5411bp commercially-

available baculovirus transfer vector (Novagen; Figure 4.1).  This transfer vector 

contains the baculovirus polyhedrin (polh) promoter region and an ATG start codon 

upstream of the MCS, which is flanked by N-terminal His- and S-tag, and C-terminal 

His-tag coding sequences.  Cloning of the DV prM and quasispecies E genes into the 

MCS, and subsequent co-transfection of these plasmids with baculovirus DNA into 

insect cells, was expected to result in the production of rBVs which could then be used 

to produce secreted recombinant dengue VLPs.  The N-terminal His- and S-tags were 

predicted to be detached when prM was cleaved to produce M.  E were expected to 

retain the C-terminal His-tags to aid detection and purification.   

To ensure that any differences in function between the DV quasispecies VLPs could be 

attributed to variations in E, the source of the prM gene was kept consistent for all of 

the DV quasispecies E genes.  DV type 1 (Hawaii strain) prM gene was chosen for co-

expression with all of the DV quasispecies E genes.  PrM and E gene primers (Table 4.1) 

were designed (sections 2.2.2 and 2.2.3) to amplify only the gene of interest and not 

the flanking regions.  Unique endonuclease restriction sites were incorporated six 

bases from the ends of the primers to enable directional ligation-dependent cloning of 

the two genes into pBAC-2cp (Figure 4.2), mimicking the order they are presented in 

the flavivirus genome.  The DV type 1 prM gene forward primer contains a NheI 

restriction enzyme sequence for ligation into the pBAC-2cp MCS.  The reverse primer 

incorporates an EagI restriction enzyme sequence to enable ligation with the EagI 

restriction enzyme sequences within the E gene forward primers, ensuring the E gene 

is inserted downstream of the prM gene.  E gene reverse primers contain XmaI 

restriction enzyme sequences to ligate into the pBAC-2cp MCS downstream of the 

NheI site.  Restriction sites were chosen on the basis that they produced overhanging 

rather than blunt ends, and were unique in pBAC-2cp, but absent in the DV prM and E 
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gene sequences.  Due to the presence of the EagI restriction site, the codons for two 

amino acids (arginine and proline) were inserted between the prM and E genes.   

 

Figure 4.1.  pBAC-2cp baculovirus transfer vector circle map and MCS nucleotide sequence 

Unique restriction sites and sequence landmarks are indicated on the circle map with nucleotide sequence 
positions in brackets). The baculovirus polyhedrin (polh) promoter region (1177-1259) contains the polh 

transcription start (1210-1211) and wild type polh 5’UTR -1 position (1259).  His-tag (1271-1289 and 

1461-1478) and S-Tag (1320-1364) coding sequences are positioned flanking the MCS (SmaI to XhoI, 

1397-1460).  Diagram is from product insert (Novagen). 

 
Using the appropriate primers (Table 4.1), the DV type 1 prM gene was amplified from 

DV type 1 Hawaii strain RNA (section 2.1.3) by high-fidelity RT-PCR (section 2.3.1.2), 

and the DV quasispecies E genes were amplified from plasmid DNA (section 3.5) using 
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only the PCR step of the high-fidelity RT-PCR.  DNA from PCR amplicons of the correct 

size was gel extracted (section 2.3.3.1) before sequential restriction digestion with the 

appropriate restriction enzymes (NheI and EagI for the prM gene; EagI and XmaI for 

the E genes), DNA purification, and ligation into pBAC-2cp, which had undergone a 

double digest with NheI and XmaI (sections 2.3.8, 2.3.3.2 and 2.3.6.1). 

After transformation of each pBAC-2cp ligation reaction into JM109 cells and overnight 

culture on selective agar plates (section 2.3.5.3), standard PCR (section 2.3.1.4) was 

performed on the resulting colonies using the pBAC-2cp polh forward primer (Figure 

4.1) and the appropriate DV quasispecies E gene reverse primer for each patient 

sample (Table 4.1).  DNA agarose gel electrophoresis (section 2.5.1) of the PCR 

amplicons (Figure 4.3) showed an amplicon size of 2kb, confirming that the colonies 

contained the pBAC-2cp transfer vector with the prM (0.5kb) and E (1.5kb) genes in 

the correct order and orientation. 

 
Table 4.1.  Primers used for the amplification of the dengue virus type 1 pre-membrane and dengue 

virus quasispecies envelope genes for generation of rBVs.   

Primer Sequence (5’ to 3’) Product size (bp) 

DV type 1 prM NheI F CAC AGC GCT AGC TTC CAT CTG ACC AC 
528 

DV type 1 M EagI R CAC GCA CGG CCG GGC CAT GGA TG 

R097A E EagI F CGG GAA CGG CCG ATG AGA TGT GTG 
1500 

R097A E XmaI R TTC ACT CCC GGG ATA GCT TGT ACC ACA GC 

R203A/R261A E EagI F CCA TCC CGG CCG ATG AGA TGT GTG GGA G 
1503 

R203A/R261A E XmaI R  ACA CCC CCC GGG AGC TTG TAC CAC AGC 

R107A/R259A E EagI F CCT TCA CGG CCG ATG CGT TGT ATT GG 
1509 

R107A/R259A E XmaI R ACA ACC CCC GGG AGC CTG CAC CAT AAC 

R282A E EagI F CCA TCC CGG CCG ATG CGA TGC GTA G 
1509 

R282A E XmaI R ACA ACC CCC GGG TGC ATG AAC TGT G 

E gene primer sequences were derived from the quasispecies E gene sequencing data (section 3.6, 

Appendix C). DV type 1 prM gene primer sequences were derived from the DV type 1 RefSeq (NCBI; 

section 2.2.1). Primers are labelled according to the gene template source and whether they target prM or 

E genes.  Restriction sites within the primer sequence are highlighted and PCR amplicon product size is 

shown in nucleotide base pairs (bp).  Primers were also used for confirmatory PCRs and sequencing. 
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Figure 4.2.  Schematic representation of the rBV transfer vector pBAC-2cp containing dengue 

virus type 1 pre-membrane and dengue patient sample quasispecies envelope genes. 

Prior to ligation, pBAC-2cp (yellow) was digested with NheI and XmaI, the DV type 1 prM gene (red) 

with NheI and EagI, and the DV quasispecies E genes (blue) with EagI and XmaI.  Digest product sizes 
are shown in nucleotide base pairs (bp) in brackets.  

 

 

Figure 4.3.  Analysis of colonies by PCR for confirmation of the presence of the dengue virus type 1 

pre-membrane and patient sample quasispecies envelope gene inserts in pBAC-2cp 

PCR was performed using the polh forward primer (Figure 4.1) and the appropriate DV E gene reverse 

primer for each dengue patient sample (Table 4.1). Lanes are labelled according to the patient sample 

clone used to source the E gene (section 3.10). A 1kb DNA ladder is shown for comparison, with the 1.5 
and 2.0kb fragments highlighted. PCR amplicons of 2kb are consistent with the size of the prM (0.5kb) 

and E (1.5kb) genes. No amplicons were detected for any of the no template control (NTC) reactions.   
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Colonies with the correct insert underwent further culture and plasmid DNA extraction 

(sections 2.3.6.2 and 2.3.4.1 respectively).  To confirm the DV type 1 prM gene 

sequence, and the presence or absence of the respective quasispecies E gene 

mutations, the plasmid DNA was sequenced (section 2.4) using the Polh and 1629DWN 

primers (Figure 4.1), and primers internal to the E gene sequences (Table 3.6).  The 

sequence of the prM-E reading frame was verified to confirm that the genes were in-

frame with the pBAC-2cp start codon and His- and S-tags (data not shown).  Culture of 

the sequence verified clones  was then scaled-up (section 2.3.6.2) and plasmid DNA 

purified (section 2.3.4.2) for subsequent rBV production. 
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4.4 Production of recombinant baculoviruses containing dengue virus 
pre-membrane and envelope genes 

To maximise the yield of secreted dengue VLPs, FlashBAC GOLD™ (Oxford Expression 

Technologies, OET) was chosen as the source of parental baculovirus DNA for 

transfection.  FlashBAC GOLD™ is modified AcMNPV DNA lacking the polyhedrin gene, 

part of open reading frame (ORF) 1629 (which renders it non-infectious), and the non-

essential auxiliary genes chiA and v-cath, which would otherwise compete with the 

recombinant protein for cellular resources during gene expression.  Removal of the 

auxiliary genes improves the efficiency of the secretory pathway leading to a greater 

yield of secreted or membrane-targeted recombinant proteins (Hitchman et al., 2010).   

The transfer vectors containing the DV prM and E genes were co-transfected with 

FlashBAC GOLD™ baculovirus DNA into Sf9 cells to generate rBV (section 2.7.2).  A 

baculovirus transfer vector containing the lacZ gene was used as a positive control for 

the transfection reactions, as a β-galactosidase assay (section 2.7.3) could then be 

performed to determine the transfection reagents were working correctly.  The lacZ 

rBV-infected culture produces β-galactosidase (116 kDa for each of the four subunits) 

intracellularly under the control of the baculovirus polyhedrin promoter.  When 5-

bromo-4-chloro-3-indolyl- beta-D-galactopyranoside (X-gal) is added to the culture it is 

cleaved by β-galactosidase into galactose and 5-bromo-4-chloro-3-hydroxyindole, 

which is then oxidized to 5,5'-dibromo-4,4'-dichloro-indigo, an insoluble blue product.  

Recombinant baculoviruses were designated rBV.xxxxx according to either the patient 

sample clone yielding the quasispecies E gene, or the inserted gene in the case of the 

LacZ rBV (Table 4.2). 

Each dengue rBV underwent two successive amplifications (passages 1 and 2; P1 and 

P2) and was titred (sections 2.7.4.1 and 2.7.4.3).  Titration of rBVs was performed by 

end-point dilution using Sf9 Easy-Titre (E-T) cells (kindly provided by Dr. Ralph Hopkins, 

National Cancer Institute at Frederick, Maryland, USA; Hopkins and Esposito, 2009).  

This cell line consists of Sf9 cells stably transfected with the enhanced green 

fluorescent protein (eGFP) gene under the control of the baculovirus polyhedrin pro-

moter. Fluorescence can be detected from rBV-infected Sf9 E-T cells due to the 
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activation of the polyhedrin promoter/eGFP complex by baculovirus early gene 

products expressed during the infection.  To verify that the cells express eGFP when 

infected with rBV, the Sf9 E-T cells were infected with rBV.lacZ.  After a three day 

incubation at 27°C in the dark, cells were visualised using a fluorescent microscope and 

green cell foci were observed (Figure 4.4).  Confirmation of β-galactosidase production 

(and therefore rBV infection) was obtained by β-galactosidase assay (section 2.7.3).  

End-point dilution titrations were carried out according to the method detailed in 

section 2.7.4.2.  The results are shown in Table 4.3. 

Table 4.2.  rBVs generated for this study 

Inserted genes Recombinant baculovirus 

prM and R097A_4 E rBV.R097A_4 

prM and R097A_13 E rBV.R097A_13 

prM and R097A_43 E rBV.R097A_43 

prM and R203A_2 E rBV.R203A_2 

prM and R203A_54 E rBV.R203A_54 

prM and R261A_1 E rBV.R261A_1 

prM and R261A_4 E rBV.R261A_4 

prM and R107A_1 E rBV.R107A_1 

prM and R107A_22 E rBV.R107A_22 

lacZ rBV.lacZ 

 

 

Figure 4.4. Sf9 Easy-Titre cells express eGFP when infected with rBV 

Sf9 Easy-Titre cells infected by rBV.lacZ are shown under white light (panel A) and blue light 

(wavelength 488nm; panel B) using a fluorescent microscope. Green (wavelength 509nm) cell foci (panel 

B) are indicative of replication-competent rBV-infection.  
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Table 4.3.  Dengue rBV titres 

Recombinant baculovirus TCID
50

 (10
exp

) TCID
50

 pfu/mL 

rBV.R097A_4 8.8 6.81x10
8
 4.77x10

9
 

rBV.R097A_13 8.33 2.13x108 1.49x109 

rBV.R097A_43 7.6 3.99x107 2.79x108 

rBV.R203A_2 10.1 1.26x1010 8.81x1010 

rBV.R203A_54 8.71 5.12x108 3.59x109 

rBV.R261A_1 8.61 4.11x108 2.88x109 

rBV.R261A_4 7.34 2.17x107 1.52x108 

rBV.R107A_1 7.5 3.16x107 2.21x108 

rBV.R107A_22 10.12 1.32x1010 9.23x1010 

 
The presence of the DV prM and E genes in the rBVs was confirmed by PCR of DNA 

extracted from culture medium from insect cells infected with P2 amplified rBVs 

(Figure 4.5).  After DNA extraction (section 2.3.3.3), standard PCR (section 2.3.1.4) was 

performed using the polh forward primer (Figure 4.1) and the appropriate DV E gene 

reverse primer for each patient sample (Table 4.1).  DNA agarose gel electrophoresis 

(section 2.5.1) of the PCR amplicons (Figure 4.5) showed an amplicon size of 2kb, 

confirming that the rBVs contained the prM (0.5kb) and appropriate E (1.5kb) genes in 

the correct order and orientation. 

 

Figure 4.5.  Analysis of dengue rBVs by PCR to confirm the presence of dengue virus type 1 pre-

membrane and patient sample quasispecies envelope genes 

PCR was performed on P2 rBV-infected insect cell culture medium using the polh forward primer (Figure 

4.1) and the appropriate DV E gene reverse primer for each dengue patient sample (Table 4.1). Lanes are 

labelled according to the patient sample clone used to source the E gene (section 3.10). A 1kb DNA 

ladder is shown for comparison, with the 1.5 and 2.0kb fragments highlighted. PCR amplicons of 2kb are 

consistent with the size of the DV prM (0.5kb) and E (1.5kb) genes. No PCR products were detected for 

any of the no template control (NTC) reactions. The original (unprocessed) gel images used to construct 

this figure are included electronically in Appendix J. 
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4.5 Optimisation of dengue virus-like particle production 

Secreted DV E (C-terminally truncated) have been successfully produced using the 

baculovirus expression system with rBVs infecting Sf21 cells at a multiplicity of 

infection (MOI) greater than five, and proteins harvested from the culture supernatant 

at 48 hours post infection (Bielefeldt-Ohmann et al., 1997).  For this study, 

optimisation experiments were conducted to determine the optimal cell line, 

multiplicity of infection (MOI) and post infection interval before harvesting the dengue 

proteins as secreted VLPs (section 2.7.5).  Infections were set up using rBV.R097A_4 at 

three MOIs (2, 5 and 10) in both Sf9 and Sf21 cells.  Samples were taken at 48 and 72 

hours post infection and both the lysed cell pellet and clarified cell culture medium 

were analysed via SDS-PAGE for the presence of the DV 54 kDa E (section 2.5.3.1; 

Figure 4.6).  Proteins of approximately 64 kDa and 54 kDa were visible in the infected 

clarified cell culture medium samples, but not visible in the mock-infected control 

samples.  The 64 kDa protein was present at higher concentration than the 54 kDa 

protein (as judged by visual analysis of stained SDS-PAGE gels), and represented a 

secreted baculovirus or insect cell protein, as comparison of these results to similar in-

house experiments using rBVs containing genes for non-DV proteins (Ebola virus 

glycoprotein (rBV.EBOV-GP) and 40 kDa viral protein (rBV.EBOV-VP40), and Crimean-

Congo haemorrhagic fever virus nucleoprotein (rBV.CCHFV-NP) revealed that the 64 

kDa protein was consistently present (data not shown).  The 54 kDa protein was 

consistent with the size of DV E, and was not present in samples from cultures infected 

with rBV.EBOV-GP, rBV.EBOV-VP40 or rBV.CCHFV-NP.  For the 54 kDa protein, there 

was no observable difference in protein production between cell lines.  However, from 

visual analysis of protein band intensity, the 54 kDa protein production appeared 

greatest using a MOI of 5, and harvesting protein at 48 hours post infection.   
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Figure 4.6.  Analysis of optimisation of recombinant dengue virus envelope protein production 

Infections with rBV.R097A_4 were conducted in Sf9 and Sf21 cell lines, at MOIs of 2, 5 and 10, and 

proteins harvested at 48 and 72 hours post infection. Total cell lysate (T), the soluble fraction of the total 

cell lysate (S) and clarified insect cell culture medium, neat (Mn) or concentrated using a centrifugal filter 

device (Mc), were analysed by SDS-PAGE. The original (unprocessed) gel images used to construct this 

figure are included electronically in Appendix J. 

 
To confirm the presence of His-tagged DV E, denatured proteins from the SDS-PAGE 

gels were transferred onto a PVDF membrane by Western blot and immunodetection 

attempted using a monoclonal antibody (mAb) to the His-tag (section 2.6).  

Unexpectedly, His-tagged protein was not detected in any of the samples (data not 

shown).  Only the His-tagged control protein was detected, confirming that the 

Western blot and immunodetection antibodies were working.  This led to two 

hypotheses.  The first hypothesis was that the C-terminal His-tag on DV E was either 

not present or not accessible to the His-tag mAb, preventing the DV E from being 

detected using this antibody.  A different antibody was sourced to directly detect the 

DV E (flavivirus E mAb, Abcam) so as not to rely on the presence of the His-tag.  The 

second hypothesis was that R097A_4 E was either not being produced or only being 
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produced at very low levels, below the limit of detection using the His-tag mAb.  From 

previously published work it became apparent that concentration of the rBV-infected 

insect cell culture medium was required to detect E (Bielefeldt-Ohmann et al., 1997; 

Jaaskelainen et al., 2003).  It was decided that samples would be concentrated via 

ultracentrifugation through sucrose before attempting detection of DV E again, as this 

method had been used successfully previously to concentrate flavivirus VLPs from cell 

culture supernatant (Jaaskelainen et al., 2003; Schalich et al., 1996). 

As previously described (section 4.4, page 158, Figure 4.5), PCR performed on the rBV DNA had 

confirmed that the rBV genomes contained the DV prM and E genes.  To determine whether 

these genes were being transcribed in preparation for translation and protein production, total 

RNA (including mRNA) was isolated (section 2.3.2.2) from rBV.R097A_4-infected Sf9 cells 

harvested for the protein production optimisation experiment (Figure 4.6).  These samples 

were subjected to RT-PCR (section 2.3.1.1) using the R097A_4 E gene primers (Table 4.1).  PCR 

(section 2.3.1.4) was also performed using the same primers to ensure there was no DNA 

contamination of the RNA extract (so no baculovirus DNA containing the DV genes was 

present).  Analysis of the RT-PCR and PCR products by DNA gel electrophoresis (section 2.5.1) 

showed DV E mRNA (1.5kb) at all MOIs and time-points from infected, but not mock-infected 

cells (Figure 4.7).  No DNA contamination of the RNA extract was detected in the PCR products 

(data not shown).  
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Figure 4.7.  Analysis of dengue virus envelope gene mRNA transcripts produced in R097A_4 rBV-

infected Sf9 cells 

RT-PCR (section 2.3.1.1) was performed on total RNA extracted from rBV.R097A_4-infected Sf9 cells 
(section 2.3.2.2) using R097A_4 E gene primers (Table 4.1).  Amplicons of 1.5 kb are consistent with the 

DV E gene. The original (unprocessed) gel images used to construct this figure are included electronically 

in Appendix J. 
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4.6 Concentration of dengue virus-like particles  

A review of published literature revealed that previous studies concentrated rBV-

infected insect cell culture medium prior to detection of recombinant flavivirus E 

(Bielefeldt-Ohmann et al., 1997; Jaaskelainen et al., 2003).  Secreted flavivirus VLPs 

have been concentrated successfully from cell culture medium by ultracentrifugation 

through sucrose (Jaaskelainen et al., 2003; Schalich et al., 1996).  For this study, 

clarified medium from rBV.R097A_4-infected Sf9 cells was concentrated by 

ultracentrifugation through a 20% sucrose cushion (section 2.8.1).  Negative control 

samples were included from similarly concentrated clarified medium from mock-

infected Sf9 cells, and Sf9 cells infected with rBV.CCHFV-NP, rBV.EBOV-GP or 

rBV.EBOV-VP40.  This was to confirm that the antibodies used for immunodetection 

were specific for flavivirus E, and did not detect other viral proteins or components of 

the insect cell culture medium.  Samples were taken pre and post concentration and 

were analysed by SDS-PAGE and Western blot (sections 2.5.3.1 and 2.6).  

Immunodetection was conducted using antibodies to the His-tag or flavivirus E, using a 

recombinant His-tagged WNV E (Abcam) as a positive control.  Immunodetection using 

the His-tag mAb only showed the presence of the His-tagged WNV E positive control.  

As before, R097A_4 E was not detected in the pre-concentration sample.  It was also 

undetected in the concentrated sample (data not shown).  However, immunodetection 

using the flavivirus E mAb was successful, as a protein of between 50 and 60 kDa was 

detected in the concentrated R097A_4 sample (Figure 4.8).  The His-tagged WNV E 

positive control (50 kDa) was also detected using this mAb.  This flavivirus E mAb was 

shown to be specific for flavivirus E, as it did not detect any proteins in samples from 

mock-infected, rBV.CCHFV-NP, rBV.EBOV-GP or rBV.EBOV-VP40-infected Sf9 cells.  This 

confirmed that the rBV.R097A_4-infected Sf9 cells were producing DV E, and it was 

being secreted into the culture medium.  These results also indicated that the DV E C-

terminal His-tag was either not present or accessible to the His-tag mAb, even under 

the denaturing conditions used for SDS-PAGE and Western blot, suggesting that 

purification of the dengue VLPs using the E His-tags might not be possible. 
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At this point dengue VLPs were produced using the rest of the rBVs from section 4.4 

(Table 4.2).  Infections were performed using Sf9 cells infected at a MOI of 5, with 

proteins harvested from the culture medium 48 hours post infection, in accordance 

with the SDS-PAGE results in Figure 4.6.  Proteins were concentrated by 

ultracentrifugation through a 20% sucrose cushion, and detected using the flavivirus E 

mAb (Figure 4.9).  Immunodetection using the His-tag mAb was unsuccessful for all of 

the dengue VLP samples tested (data not shown).  Quasispecies E from samples 

R097A_4, R097A_13 and R261A_1 were detected using the original batch of flavivirus E 

mAb, which was obtained from Abcam.  However, Abcam removed this mAb from 

their catalogue so it had to be sourced from elsewhere.  Subsequent suppliers 

provided the same mAb, but titre and stability were reduced compared to the original 

mAb sourced from Abcam.  The mAb concentration used for immunodetection could 

not be increased to improve the sensitivity of detection as the dilution of mAb used for 

immunodetection was already 1:5.  DV E from samples R097A_43, R203A_2, 

R203A_54, R261A_4, R107A_1 and R107A_22 were detected, although only as low 

intensity chemiluminescence, which was attributed to reliability issues with the 

replacement flavivirus E mAb. 

 

Figure 4.8  Immunodetection of dengue virus envelope glycoprotein from clarified medium from 

rBV.R097A_4-infected cells after concentration by ultracentrifugation  

Immunodetection was performed using a flavivirus E mAb. Clarified medium from mock or rBV-infected 

(rBV.R097A_4, rBV.CCHFV-NP, or rBV.EBOV-GP and rBV.EBOV-VP40) Sf9 cells was analysed pre 

and post concentration by ultracentrifugation through a 20% sucrose cushion. The 50 and 60 kDa 

fragments of a molecular weight marker (MW) are shown for comparison, as is a 50kDa WNV E positive 

(+ve) control. The original (unprocessed) blot images used to construct this figure are included 
electronically in Appendix J.  
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Figure 4.9.  Immunodetection of dengue virus envelope glycoproteins from clarified medium from 

dengue rBV-infected cells after concentration by ultracentrifugation 

Immunodetection was performed using a flavivirus E mAb on proteins secreted from Sf9 cells infected 

with rBV.R097A_4, rBV.R097A_13, rBV.R097A_43, rBV.R203A_2, rBV.R203A_54, rBV.R261A_1, 

rBV.R261A_4, rBV.R107A_1 and rBV.R107A_22. Clarified medium from dengue rBV-infected Sf9 

cells was analysed post concentration by ultracentrifugation through a 20% sucrose cushion. The 50 and 

60 kDa fragments of a molecular weight marker (MW) are shown for comparison, as is a 50kDa WNV E 
positive (+ve) control. The original (unprocessed) blot images used to construct this figure are included 

electronically in Appendix J.  
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4.7 Purification of dengue virus-like particles  

The dengue VLPs were originally intended to be purified using immobilised metal 

affinity chromatography (IMAC) to bind the C-terminal His-tags on the DV E.  However, 

as the DV E were unable to be detected using the His-tag mAb (sections 4.5 and 4.6), it 

was likely that purification using this method would be unsuccessful.  To address this 

issue, it was decided to compare several protein purification methods to determine 

which method yielded the best results in terms of quantity and purity.  The methods 

chosen included IMAC, immunoprecipitation (via Protein G and flavivirus E mAb) and 

ion exchange chromatography (using CaptoQ resin).  Each method was evaluated using 

clarified medium from rBV.R097A_4-infected Sf9 cells which had been concentrated by 

ultracentrifugation through a 20% sucrose cushion (section 4.6).  Similarly 

concentrated clarified medium from mock-infected Sf9 cells was included as a negative 

control.  The R097A_4 sample was diluted to the limit of immunodetection using the 

flavivirus E mAb, and then purification was attempted using each of the methods.   

4.7.1 Immobilised metal affinity chromatography 

Purification by IMAC is dependent on the His-tags attached to the DV E binding to 

nickel ions in a sepharose gravity-flow column.  Purifications were performed under 

native and denaturing conditions (section 2.8.2) but neither method yielded purified 

DV E (data not shown).  This result was not unexpected given the inability to detect DV 

E from Western blots using the His-tag mAb (sections 4.5 and 4.6). 

4.7.2 Immunoprecipitation 

The immunoprecipitation method chosen relies on the binding of DV E to the flavivirus 

E mAb, which is bound to sepharose and protein G-coated magnetic beads.  Protein G 

was chosen over Protein A as a ligand because the flavivirus E mAb is raised in mouse 

and the Protein G ligand has a higher affinity for mouse IgG than Protein A.  

Purifications were performed under native and denaturing conditions (section 2.8.3.1) 

using a protocol that cross-linked the flavivirus E mAb to the Protein G ligand in an 

attempt to elute only the purified DV E or dengue VLPs (depending on whether the 

denaturing or native protocols were used respectively), and not the flavivirus E mAb. 
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Using the flavivirus E mAb for immunodetection, a protein of between 50 and 60 kDa, 

which is consistent in size with DV E (54 kDa) was detected in the R097A_4 sample pre-

purification (Figure 4.10).  A protein of lower molecular weight (50 kDa) was observed 

in the post-purification native and denaturing elution fractions.  This 50 kDa protein 

was also present in the post-purification native and denaturing elution fractions from 

the mock-infected negative control sample.  The 50 kDa protein was not consistent 

with the size of DV E.  To determine whether the flavivirus E mAb was being eluted and 

detected, it was analysed by SDS-PAGE, and Western blot, and was immunodetected 

as a 50 kDa protein (Figure 4.10; FV E mAb).  This indicated that despite cross-linking 

the flavivirus E mAb to the Protein G ligand, the antibody was in fact being eluted 

(using both the native and denaturing protocols), and was subsequently detected by 

the anti-mouse IgG secondary pAb (pAb) used for immunodetection. 

 

Figure 4.10.  Immunodetection of dengue virus envelope glycoprotein from concentrated clarified 

medium from rBV.R097A_4-infected cells after purification by immunoprecipitation.  

Immunodetection was performed using the flavivirus E mAb. Clarified medium from mock or 

rBV.R097A_4-infected Sf9 cells was concentrated by ultracentrifugation through a 20% sucrose cushion. 

Pre-purification samples (Pre) were diluted 1/20 (to the limit of R097A_4 E immunodetection using the 

flavivirus (FV) E mAb) and then immunoprecipitated (section 2.8.3.1). The 50 and 60 kDa fragments of a 

molecular weight marker (MW) are shown for comparison, as is a 50kDa WNV E positive (+ve) control. 

The original (unprocessed) blot images used to construct this figure are included electronically in 

Appendix J. 

 
Further investigation of the purification fractions revealed that the DV E in the 

R097A_4 sample was not binding to the flavivirus E mAb during the sample binding 

step, as it was observed in the non-bound fraction sampled after incubation of the 

sample with the Protein G-bound antibody (data not shown).  Increasing the 

incubation times during cross-linking and sample binding appeared to solve the 
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problem of flavivirus E mAb elution, but did not improve sample binding (data not 

shown).  With hindsight, it is probable that variability in the quality of the flavivirus E 

mAb was responsible for these observations (section 4.6, discussed further in sections 

4.7.3 and 4.9.5). 

4.7.3 Ion exchange chromatography      

The principle of purification by ion exchange chromatography is that the charged 

protein to be purified binds to the ion exchange media, contaminants are washed 

away, and the purified protein is eluted using an ionic strength gradient.  The 

isoelectric points and pH-dependent net charges of DV E were predicted based on the 

amino acid sequences using the EMBL WWW Gateway to Isoelectric Point Service 

(http://www3.embl.de/cgi/pi-wrapper.pl).  This determined that DV E have a net 

negative charge at pH 7.0 and above.  As a result, the CaptoQ strong anion exchange 

media was deemed to be the most suitable media for purification of the dengue VLPs.  

Initial purification attempts were performed manually using a syringe (section 2.8.4), 

and the purification fractions analysed by SDS-PAGE and Western blot.  Both flavivirus 

E mAb and baculovirus envelope glycoprotein (GP64) mAb were used for 

immunodetection to determine the success of the purification (Figure 4.11).  From the 

SDS-PAGE results it was clear that the anion exchange column purification removed 

many of the impurities that were in the pre-purification sample.  The greatest amount 

of purified protein was present in the fraction eluted using 20% sodium chloride (20% 

NaCl; Figure 4.11, panel A, lane 5) with decreasing amounts of protein also present in 

the 30 to 50% NaCl elution fractions.  Using the flavivirus E mAb, a protein of 50 to 60 

kDa was detected in the 20 to 50% NaCl elution fractions, and pre-purification sample 

(Figure 4.11, panel B).  Consistent with the SDS-PAGE image, the greatest amount of 

purified protein was present in the 20% NaCl elution fraction.     
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Figure 4.11.  Analysis of R097A_4 anion exchange column purification fractions by SDS-PAGE and 

immunodetection from Western blots. 

Immunodetection was performed using mAbs to flavivirus E or baculovirus GP64. Clarified medium 

from rBV.R097A_4-infected Sf9 cells was concentrated by ultracentrifugation through a 20% sucrose 

cushion. Pre-purification sample (lane 1) was diluted 1/20 (to the limit of R097A_4 immunodetection 
using the flavivirus E mAb) and then purified by anion exchange column chromatography (section 2.8.4). 

Lane 1 shows R097A_4 pre-purification sample; Lane 2 shows flow-through (non-bound) from the 

sample loading step; Lane 3 shows flow-through from the sample wash step; lanes 4 to 9 are the fractions 

eluted using 10, 20, 30, 40, 50 and 100% NaCl respectively; lane 10 is flow-through from the column re-

equilibration step. The original (unprocessed) gel and blot images used to construct this figure are 

included electronically in Appendix J.  
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Using the GP64 mAb, proteins consistent in size with GP64 (64 kDa) were detected in 

all fractions except the flow-through from the sample wash step (Figure 4.11, panel C, 

lane 3).  Interestingly, GP64 was even detected in lanes where it was not visible on the 

SDS-PAGE gel, indicating that the GP64 mAb is extremely sensitive.  As with the SDS-

PAGE and immunodetection results obtained using the flavivirus E mAb, the greatest 

amount of purified protein was present in the 20% elution fraction (Figure 4.11, lane 

5).  There were also decreasing amounts of protein present in the 30-50%, 10% and 

100% elution fractions and the flow-through fraction from the sample load step 

respectively.  The presence of GP64 in the flow-through from the sample load step 

indicates that not all of the baculovirus present in the sample was binding to the 

column. 

Despite using a new batch of flavivirus E mAb for immunodetection (Figure 4.11, panel 

B), the level of detection was poor compared to that achieved with the same pre-

purification sample previously (see Figure 4.8).  At this point it was decided to source a 

new antibody for the detection of the DV quasispecies E because this one had become 

so unreliable.  Several primary antibodies were tested (Table 4.4), and a pAb raised in 

rabbit against DV types 1, 2, 3 and 4 was chosen based on its superior detection 

sensitivity compared to the other antibodies tested (data not shown). 

Anion exchange column purification was chosen as the method that would be used to 

purify the dengue VLPs.  This was because despite being shown to co-purify GP64 and 

dengue VLPs, a reduction in other background proteins had been demonstrated by 

SDS-PAGE analysis (Figure 4.11).  It was intended that the dengue VLPs and baculovirus 

would be separated post anion exchange column purification, by immunoprecipitation. 
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Table 4.4.  Antibodies tested for dengue virus envelope glycoprotein immunodetection 

Antibody Source Immunogen 

Mouse monoclonal to flavivirus E 
[FE1]1 

Abcam (Ab64059) Flavivirus E 

Mouse monoclonal to flavivirus E 

[FE1]2 

Pierce (MA1-71258) Flavivirus E 

Dengue antibody positive human control 

serum 

Focus Diagnostics dengue IgG 

DxSelect ELISA kit (EL1500G) 

DV 

Mouse monoclonal to DV (pan) E 

[dengue 1-11(3)]* 

Acris Antibodies, GmbH 

(AM01108PU) 

DV types 1, 2, 3 and 4 

Mouse monoclonal to DV E [dengue 1-

11(3)]* 

Antibodies-online (ABIN180831) DV types 1, 2, 3 and 4 

Rabbit polyclonal to DV types 1, 2, 3 

and 43 

Abcam (Ab9200) DV types 1, 2, 3 and 4 

Mouse monoclonal to DV E  Abcam (Ab41349) Purified DV type 2 E 

Rabbit polyclonal to DV types 1, 2, 3 

and 4 

Abcam (Ab26837) DV types 1, 2, 3 and 4 

Mouse monoclonal to DV E [dengue 1-

11(3)]* 

Abcam (Ab9202) DV types 1, 2, 3 and 4 

After the original flavivirus E mAb1 used for this work was discontinued by the supplier, a new flavivirus 

E mAb2 was sourced to replace it. This antibody exhibited reduced detection sensitivity and stability 

compared to the original antibody. Commercially-available antibodies were tested until a replacement3 

was identified. 

*detects a DV E specific band of 61 kDa under reducing conditions from Western blots. A weak 

secondary band of 80 kDa may also be apparent. 

 

4.7.4 Removal of baculovirus from virus-like particle samples by 
immunoprecipitation 

To assess the feasibility of removing the contaminating baculovirus from the dengue 

VLP samples, a baculovirus-derived Ebola VLP preparation was subjected to 

immunoprecipitation using the baculovirus GP64 mAb bound to Protein G and 

sepharose-coated magnetic beads.  The Ebola VLP preparation was used in place of the 

dengue VLPs to avoid using valuable dengue VLP material whilst testing the 

immunoprecipitation method.  Purifications were performed using a classic, non-cross-

linking protocol (section 2.8.3.2) under native buffer conditions.  Immunodetection 

was performed using both Ebola virus (data not shown) and baculovirus GP64 mAbs 

(Figure 4.12).  The Ebola VLPs were detected in the non-bound and wash fractions 

from the sample binding step, but not the elution fractions (data not shown), 

confirming that they did not bind to the GP64 mAb.  Baculovirus GP64 was detected in 

the elution fractions, indicating that the purification was at least partly successful.  

However, comparatively more GP64 was present in the non-bound and wash fractions 
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from the sample binding step, suggesting that only a small proportion of the 

baculovirus contamination was removed from the VLP preparation using this method.  

Therefore this method was unsuitable for removing the contaminating baculovirus 

from the dengue VLP samples.  However, it was still hoped that the dengue VLPs and 

baculovirus could be separated post anion exchange column purification, by 

immunoprecipitation using a DV antibody.  

 

Figure 4.12.  Immunodetection of GP64 in a baculovirus-derived Ebola VLP sample pre and post 

purification by immunoprecipitation. 

Immunodetection was performed using a mAb to baculovirus GP64. Clarified medium from rBV.EBOV-

GP and rBV.EBOV-VP40-infected Sf9 cells was concentrated by ultracentrifugation through a 20% 

sucrose cushion, and purified by immunoprecipitation using the GP64 mAb (section 2.8.3.2). Proteins 
were eluted using a stepped ionic strength gradient of 10 to 100% NaCl. A molecular weight marker 

(MW) is shown for comparison.  Lane 1 shows pre-purification Ebola VLPs; Lane 2 shows flow-through 

(non-bound) from the sample loading step; lanes 3, 4 and 5 show flow-through from sample wash steps 1, 

2 and 3 respectively; lane 6 shows the elution fraction. The original (unprocessed) blot image used to 

construct this figure is included electronically in Appendix J.  
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4.8 Scaled-up production and purification of dengue virus-like 
particles 

Production of all of the dengue VLPs (section 4.6, Figure 4.9) was scaled up from 50mL 

to 200mL cultures using the same conditions described previously (section 2.7.5).  The 

clarified medium from rBV-infected insect cell culture was concentrated by 

ultracentrifugation through a 20% sucrose cushion prior to anion exchange column 

purification using an ÄKTAFPLC automated system (section 2.8.4).  The automated 

liquid chromatography system was advantageous for two reasons.  Firstly, using this 

system it was possible to reduce the sample flow-rate in an attempt to improve sample 

binding to the column.  Secondly, it was thought that using a linear ionic elution 

gradient (rather than a stepped gradient as had been used previously when purifying 

manually) might enable further separation of the dengue VLPs and baculovirus into 

different elution fractions. 

To determine whether reducing the sample flow-rate improved sample binding to the 

column, the concentrated R097A_4 sample was purified using sample flow rates of 

1mL per minute and 0.1mL per minute during the sample load and wash steps.  The 

purification fractions were analysed by SDS-PAGE and Western blot.  Using the rabbit 

pAb to DV types 1, 2, 3 and 4 for immunodetection, a large amount of protein was 

shown to be present in the flow-through from the sample load and wash steps when 

the sample flow-rate was 1mL per minute (Figure 4.13; Panel A).  Decreasing the 

sample flow-rate to 0.1mL per minute (Figure 4.13; Panel B) resulted in a reduction of 

protein in the flow-through from these steps, indicating that sample binding to the 

column had increased.  It also resulted in improved purification quality as judged by 

visual inspection of protein staining after SDS-PAGE. 
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Figure 4.13.  Analysis of R097A_4 anion exchange column purification fractions obtained using 

different sample flow-rates. 

Immunodetection was performed using a rabbit pAb to DV types 1, 2, 3 and 4. Clarified medium from 

rBV.R097A_4-infected Sf9 cells was concentrated by ultracentrifugation through a 20% sucrose cushion 

before anion exchange column purification. Proteins were eluted using a linear ionic strength gradient of 
10 to 100% NaCl. Two molecular weight markers (MW) are shown for comparison.  The purification in 

Panel A was performed using a sample flow-rate of 1.0mL per minute during the sample loading step; the 

purification in Panel B used a sample flow-rate of 0.1mL per minute.  Lane 1 shows R097A_4 pre-

purification; lanes 2 and 3 show flow-through from the sample loading and wash steps respectively; lanes 

4 to 9 show the fractions eluted using 0-10, 10-20, 20-30, 30-40, 40-50 and 50-100% NaCl respectively; 

lane 10 shows flow-through from the column re-equilibration step. The original (unprocessed) gel and 

blot images used to construct this figure are included electronically in Appendix J.  

 
To serve as a control sample representative of the background of baculovirus and 

insect cell-generated proteins present in the dengue VLP samples, the clarified 

medium from rBV.lacZ-infected Sf9 cells was concentrated by ultracentrifugation 

through a 20% sucrose cushion and purified by anion exchange column purification in 

the same way as the dengue VLPs.  This will be referred to from this point on as the 
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lacZ sample.  Purification fractions from the lacZ and R097A_4 samples showed similar 

profiles after analysis by immunodetection using the GP64 mAb.  This was to be 

expected, as they both contain baculovirus (Figure 4.14).  However, they also 

unexpectedly demonstrated a similar profile after immunodetection using the rabbit 

pAb to DV types 1, 2, 3 and 4 (Figure 4.15.), indicating that this antibody was not 

specifically detecting the DV proteins.  Clarified medium from mock-infected insect 

cells, concentrated by ultracentrifugation through a 20% sucrose cushion was not 

detected by this antibody (data not shown), suggesting that the source of the cross-

reactivity was a baculovirus protein. 

 

Figure 4.14.  Analysis of R097A_4 and lacZ sample anion exchange column purification fractions 

using the baculovirus GP64 mAb. 

Immunodetection was performed using a baculovirus GP64 mAb. Clarified medium from rBV.R097A_4 

and rBV.lacZ-infected Sf9 cells was concentrated by ultracentrifugation through a 20% sucrose cushion 

before anion exchange column purification (section 2.8.4). The sample flow-rate was 0.1mL per minute, 

and proteins were eluted using a linear ionic strength gradient of 10 to 100% NaCl. A molecular weight 

marker (MW) is shown for comparison.  Panel A shows the purification fractions from the R097A_4 

sample. Panel B shows the purification fractions from the lacZ sample. Lane 1 shows the pre-purification 

20% sucrose pellet concentrated sample; lanes 2 and 3 show flow-through from the sample loading and 
wash steps respectively; lanes 4 to 9 show the fractions eluted using 0-10, 10-20, 20-30, 30-40, 40-50 and 

50-100% NaCl respectively; lane 10 shows flow-through from the column re-equilibration step. The 

original (unprocessed) blot images used to construct this figure are included electronically in Appendix J.  
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Figure 4.15.  Analysis of R097A_4 and lacZ sample anion exchange column purification fractions 

using the rabbit pAb to dengue virus types 1, 2, 3 and 4. 

Immunodetection was performed using a rabbit pAb to DV types 1, 2, 3 and 4. Clarified medium from 

rBV.R097A_4 and rBV.lacZ-infected Sf9 cells was concentrated by ultracentrifugation through a 20% 

sucrose cushion before anion exchange column purification. The sample flow-rate was 0.1mL per minute, 
and proteins were eluted using a linear ionic strength gradient of 10 to 100% NaCl. A molecular weight 

marker (MW) is shown for comparison.  Panel A shows the purification fractions from the lacZ sample. 

Panel B shows the purification fractions from the R097A_4 sample. Lane 1 shows the pre-purification 

20% sucrose pellet concentrated sample; Lane 2 shows the 20% NaCl elution fraction; Lane 3 shows the 

30% NaCl elution fraction. The original (unprocessed) blot images used to construct this figure are 

included electronically in Appendix J.  

 
To determine whether the DV E could be reliably detected against the background of 

non-DV proteins, immunodetection was performed using three different commercially-

available antibodies (mouse mAbs to the flavivirus and DV E, and the rabbit pAb to DV 

types 1, 2, 3 and 4) and baculovirus-derived samples (concentrated clarified medium 

from rBV.R097A_4, rBV.lacZ, and rBV.EBOV-GP and rBV.EBOV-VP40-infected Sf9 cells).  

All three antibodies detected a 60 kDa protein in all of the samples tested (Figure 

4.16).  As this protein was present in all three samples it was concluded not to be a DV 

protein.  Additionally, using the flavivirus and DV E mAbs, a protein consistent in size 

with the predicted molecular weight of the DV E was detected in the R097A_4 sample 

but not the two non-dengue baculovirus-derived samples (lacZ and Ebola VLPs).  This 
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protein was not detected using the rabbit pAb to DV types 1, 2, 3 and 4.  From these 

results it was concluded that none of the antibodies tested were specific enough to 

unambiguously detect DV E from the denaturing Western blots used up to this point.  

It was hypothesised that the 60 kDa protein reacting non-specifically during 

immunodetection using the DV antibodies could be baculovirus GP64.  Purified GP64 

(kindly provided by Prof. Ian Jones, Reading University) was analysed using the mouse 

mAbs to the flavivirus and DV E, and the rabbit pAb to DV types 1, 2, 3 and 4.  

Baculovirus GP64 was identified as the source of antibody cross-reactivity (data not 

shown).   

 

Figure 4.16.  Analysis of baculovirus-derived R097A_4, lacZ and Ebola VLP samples using several 

different antibodies 

Immunodetection was performed using mouse mAbs to the flavivirus and DV E (Panel A and Panel C 

respectively), and a rabbit pAb to DV types 1, 2, 3 and 4 (Panel B). For each sample, clarified medium 

from rBV-infected Sf9 cells was concentrated by ultracentrifugation through a 20% sucrose cushion 

before analysis. A molecular weight marker (MW) is shown for comparison.  Lane 1 shows R097A_4; 

Lane 2 shows Ebola VLPs; Lane 3 shows lacZ. The original (unprocessed) blot images used to construct 

this figure are included electronically in Appendix J. 

 
To try to confirm the presence of DV E in the dengue VLP samples, other methods 

were attempted.  These included glycoprotein deglycosylation analysis to attempt to 

distinguish between baculovirus GP64 and DV E.  Endoglycosidase H cleaves only high 
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mannose N-linked glycans, whereas peptide:N-glycosidase F (PNGase F) is also able to 

cleave more complex glycans.  Concentrated clarified medium from rBV.R097A_4 and 

rBV.lacZ-infected Sf9 cells, was denatured and digested using either endoglycosidase H 

or PNGase F, and analysed using the rabbit pAb to DV types 1, 2, 3 and 4 (Figure 4.17).  

Proteins of around 64 kDa were detected in both the R097A_4 and lacZ undigested 

samples.  These proteins demonstrated increased mobility upon digestion with 

endoglycosidase H, and a further increase in mobility upon digestuib with PNGaseF.  

These findings are consistent with the size of baculovirus GP64 (64 kDa), which 

contains four N-linked glycans, at least one of which is endoglycosidase H resistant 

(Jarvis and Garcia, 1994).  Several lower molecular weight proteins between 45 and 55 

kDa were detected in the R097A_4 sample but were absent in the lacZ sample, one of 

which may represent DV E.  The DV E contains two N-linked glycans, one of which is 

endoglycosidase H sensitive and one is resistant (Hacker, White, and de Silva, 2009), 

consistent with the electrophoretic shifts observed in the digested sample using the 

different glycosidases. 

 

Figure 4.17.  Glycosylation analysis of R097A_4 and lacZ samples using endoglycosidase H and 

PNGase F. 

Immunodetection was performed using the rabbit pAb to DV types 1, 2, 3 and 4. For each sample, 

clarified medium from rBV-infected Sf9 cells was concentrated by ultracentrifugation through a 20% 
sucrose cushion before analysis. A molecular weight marker (MW) is shown for comparison. Panel A is 

the R097A_4 sample. Panel B is the lacZ sample. Lane 1 shows undigested (glycosylated) sample; Lane 2 

shows endoglycosidase H-digested sample; Lane 3 shows PNGase F-digested sample. The original 

(unprocessed) gel images used to construct this figure are included electronically in Appendix J. 
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To determine whether antibodies detecting conformational epitopes would exhibit 

less cross-reactivity with baculovirus GP64 than antibodies detecting linear epitopes, 

the R097A_4 and lacZ samples were analysed by native PAGE and Western blot 

(sections 2.5.3.2 and 2.6).  Several DV antibodies were tested, including pAbs, and 

mAbs known to bind to conformation-dependent epitopes.  Using the rabbit pAb to DV 

types 1, 2, 3 and 4 used previously, a protein was detected in the R097A_4 sample but 

not the lacZ sample, indicating that it is DV E (Figure 4.18).  This suggests that the 

baculovirus GP64 cross-reactivity observed previously with this antibody may be 

dependent on epitopes that are only accessible under denaturing conditions. 

The samples used for the native PAGE and Western blot analysis were first incubated 

with 1% triton X-100 for one hour to solubilise the lipid membranes.  Previous 

attempts to perform native PAGE and Western blot analysis on the R097A_4 sample 

without first incubating with 1% triton X-100 resulted in immunodetection of a high 

molecular weight protein (data not shown).  Taken together, these results support the 

presence of DV E in a lipid-enveloped form, consistent with VLPs.    

 

Figure 4.18.  Analysis of R097A_4 and lacZ samples in their native conformation. 

Immunodetection was performed using the rabbit pAb to DV types 1, 2, 3 and 4. For each sample, 

clarified medium from rBV-infected Sf9 cells was concentrated by ultracentrifugation through a 20% 

sucrose cushion before analysis. Samples were incubated in 1% triton X-100 for 1 hour to solubilise the 

lipid membranes, before native PAGE and immunodetection from a Western blot. Panel A shows the 

R097A_4 sample; Panel B shows the lacZ sample. The original (unprocessed) blot images used to 

construct this figure are included electronically in Appendix J. 

 

4.8.1 Detection of dengue virus-like particles using transmission electron 
microscopy 

To visualise the dengue VLPs, concentrated clarified medium from R097A_4 rBV-

infected Sf9 cells was sent to Howard Tolley (HPA CEPR) for analysis by transmission 
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electron microscopy (section 2.10; Figure 4.19, panels D and E).  Previous studies 

demonstrated that flavivirus virions are observed as spherical structures of 

approximately 50nm in diameter, whilst flavivirus VLPs range in diameter between 30 

and 55nm (Schalich 1996; Lin & Wu 2005).  Spherical structures consistent in size with 

published transmission electron micrographs of flavivirus VLPs (Figure 4.19, panels B 

and C) were observed in the dengue VLP sample (Figure 4.19, panels D and E).  Whilst 

similar structures were also observed in a baculovirus-derived Ebola VLP sample 

(Figure 4.19, panel F) included as a negative control, these were fewer in number and 

were smaller (less than 25nm) than those in the dengue VLP sample.   
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Figure 4.19.  Transmission electron micrographs of flavivirus virions and VLPs stained with uranyl 

acetate. 

All images are at the same magnification, and a 500nm scale bar is shown.  Panels A and B are purified 

TBEV virions and VLPs respectively (Schalich et al., 1996). Panel C is purified JEV VLPs (Lin and Wu, 

2005). Panels D and E are unpurified dengue VLPs from this study (clarified medium from 

rBV.R097A_4-infected Sf9 cells, concentrated by ultracentrifugation through a 20% sucrose cushion). 

Examples of dengue VLPs are marked with arrows, and the diameters shown.  Panel F is unpurified Ebola 

virus VLPs, included as a negative control (kindly provided by Dr. Kevin Richards, HPA CEPR). 



Chapter 4: Recombinant protein production 

182 
 

4.9 Discussion 

The objective for this chapter was to produce recombinant DV E from those 

quasispecies E genes containing mutations with the potential to affect virulence or 

pathogenicity, as identified in the previous chapter.  It was decided that the DV E 

would be produced in the form of secreted VLPs, consisting of DV type 1 membrane 

and quasispecies E.  This was to replicate as closely as possible the natural antigenic 

presentation of E within the dengue virion, as flavivirus VLPs have been shown to 

exhibit the same antigenic and oligomeric structure as virions (Schalich et al., 1996).  

Studies using recombinant vaccinia viruses encoding combinations of JEV prM, E and 

NS1 genes, demonstrated that the co-expression of prM and E genes induced the 

highest levels of neutralising antibody and protection in mice, and these antibody 

levels correlated with the ability of the recombinant viruses to induce the synthesis of 

extracellular VLPs in vitro (Konishi et al., 1991; Konishi et al., 1992).  DV E in the form of 

VLPs is more resistant to proteolytic degradation than secreted E alone (Sugrue et al., 

1997).  VLPs secreted into the insect cell culture medium represent a more 

homogenous VLP population than intracellular VLPs, which are at different stages of 

processing and maturation. The production of DV quasispecies E as VLPs also provides 

a model for studying the effects of the quasispecies E gene mutations on E 

conformational changes and membrane fusion in response to low pH.        

A eukaryotic expression system was required to enable the appropriate post-

translational modifications for the production of authentic secreted DV E.  The use of a 

yeast expression system was discounted because its level of post-translational 

modification is less than can be achieved using baculovirus or mammalian systems.  

Yeast cells have also been shown to accumulate dengue VLPs intracellularly as 

secretion is prevented (Sugrue et al., 1997).  Despite the differences in post-

translational processing between the baculovirus and mammalian expression systems, 

and since DV is able to infect and replicate naturally in both mosquito (insect) and 

human (mammalian) cells, the baculovirus expression system was chosen over a 

mammalian expression system based on its comparatively higher protein yields, ease 

of use and lesser expense. 
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4.9.1 Cloning of dengue virus pre-membrane and envelope genes into the 
baculovirus transfer vector 

The pBAC-2cp baculovirus transfer vector was used for the production of rBVs as it 

contains an ATG start codon and incorporated a His-tag sequence onto the C-terminal 

of the DV E genes inserted into the MCS, which was intended to be used for VLP 

purification.  Rather than using the corresponding prM genes from the patient 

samples, the same DV type 1 prM gene was ligated into the baculovirus transfer vector 

with each DV quasispecies E gene.  This was to ensure any differences between the 

dengue VLPs were not attributed to differences in prM.  Ligation-dependent cloning of 

DV prM and E genes with restriction enzyme-digested 5’ and 3’ ends enabled 

directional cloning of the genes into the MCS so that the genes were inserted in the 

correct order (prM followed by E as in the DV genome), and in-frame with the pBAC-

2cp start codon and C-terminal His-tag coding sequences.  This was confirmed for each 

of the clones by sequencing. 

4.9.2 Production of recombinant baculoviruses containing dengue virus 
pre-membrane and envelope genes 

Transfer vectors containing DV prM and quasispecies E genes were co-transfected with 

baculovirus DNA into insect cells to generate nine rBVs (rBV.R097A_4, rBV.R097A_13, 

rBV.R097A_43, rBV.R203A_2, rBV.R203A_54, rBV.R261A_1, rBV.R261A_4, 

rBV.R107A_1 and rBV.R107A_22), containing quasispecies consensus and variant E 

genes from four of the dengue patient samples.  To serve as a control for the 

transfection reactions and rBV titrations, rBV.lacZ was also generated.  In subsequent 

experiments, culture medium from rBV.lacZ-infected cells was used as a control to 

represent the background of non-DV proteins present in the dengue VLP preparations.  

After successive rBV amplifications and titrations, the presence of the DV prM and E 

genes in the rBVs was confirmed by PCR.   

4.9.3 Optimisation of dengue virus-like particle production 

Optimisation experiments were conducted to determine the optimal cell line, 

multiplicity of infection (MOI) and post infection interval before harvesting the dengue 

VLPs.  Sf9 and Sf21 cells were infected with rBV.R097A_4 at MOIs of 2, 5 and 10, and 
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samples of lysed cell pellet and clarified culture medium were analysed at 48 and 72 

hours post infection.  SDS-PAGE analysis revealed proteins of approximately 64 kDa 

and 54 kDa in the clarified medium from rBV-infected cells, but these were not visible 

in mock-infected samples.  Comparison of these results to similar in-house 

experiments using rBVs containing genes for non-DV proteins (rBV.EBOV-GP, 

rBV.EBOV-VP40 and rBV.CCHFV-NP) revealed that the 64 kDa protein was present in all 

of these samples, suggesting that this was a baculovirus protein rather than a DV 

protein.  The 54 kDa protein was not present in samples from the non-dengue rBVs, 

and was consistent with the size of DV E. 

To confirm the presence of the His-tagged DV E, immunodetection was performed 

using a mAb to the His-tag.  His-tagged protein was not detected in any of the samples.  

Only the His-tagged WNV E positive control protein was visible, confirming that the 

method and reagents used were working effectively.  To overcome this problem, a 

different mAb was sourced to directly detect the DV quasispecies E in case the His-tag 

was either not present or accessible.  The clarified medium from rBV-infected cells was 

also further concentrated by ultracentrifugation through a sucrose cushion before re-

analysing, in case production of only low quantities of dengue VLPs had made the His-

tags undetectable.  Ultracentrifugation through a sucrose cushion had been used 

previously to concentrate secreted flavivirus VLPs (Jaaskelainen et al., 2003; Schalich et 

al., 1996).   

As the recombinant dengue VLPs were not able to be detected using this His-tag mAb, 

the presence of mRNA for DV E was confirmed by RT-PCR in the rBV.R097A_4-infected 

insect cells at all MOIs and both post infection harvest intervals.  The presence of 

mRNA for the DV E was not confirmation of protein production but was a positive 

indication that the gene was transcribed, ready for protein synthesis.  

Optimal conditions for the production of dengue VLPs were determined based on the 

SDS-PAGE results, as immunodetection of DV E using the His-tag mAb had not been 

successful.  Subsequent production of dengue VLPs using rBV.R097A_4, rBV.R097A_13, 

rBV.R097A_43, rBV.R203A_2, rBV.R203A_54, rBV.R261A_1, rBV.R261A_4, 
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rBV.R107A_1 and rBV.R107A_22 was performed in Sf9 cells infected at a MOI of 5, and 

culture medium harvested at 48 hours post infection.  Although no difference in 

protein production was observed between the cell-lines used in the optimisation 

experiments, Sf9 cells were chosen due to their increased replication rate and ability to 

reach higher cell densities compared to the Sf21 cells they are derived from (Smith and 

Summers, 1987). 

4.9.4 Concentration of dengue virus-like particles 

Clarified medium from rBV.R097A_4-infected insect cell culture was concentrated by 

ultracentrifugation through a 20% sucrose cushion before immunodetection using 

either His-tag or flavivirus E mAbs.  DV E was not detected using the His-tag mAb, but 

was detected using the flavivirus E mAb.  At this stage of the work, the flavivirus E mAb 

was shown to be specific for DV E, as it did not detect any proteins in concentrated 

clarified medium from rBV.CCHFV-NP or rBV.EBOV-GP and rBV.EBOV-VP40-infected 

cells. 

These results indicated that the C-terminal His-tags on the R097A_4 DV E were either 

not present or not accessible to the His-tag mAb, even under the denaturing 

conditions used for SDS-PAGE.  This suggested that purification of the dengue VLPs 

using the DV E His-tags as originally intended might not be possible.  It has been 

proposed that the C-terminal of flavivirus E may contain a signal for retention of this 

protein in intracellular compartments (Allison et al., 1995).  Cleavage of this signal may 

be required for VLP assembly and/or secretion, which would explain the inability to 

detect the C-terminal His-tag in the secreted VLPs under denaturing conditions.  In 

support of this, C-terminal His-tags have been used previously to purify JEV E and prM 

produced separately from cell lysates, but failed in purification of these proteins from 

insect cell culture medium (Yang et al., 2005). 

At this point recombinant VLPs were concentrated and detected for the rest of the 

dengue VLPs (R097A_13, R097A_43, R203A_2, R203A_54, R261A_1, R261A_4, 

R097A_1 and R107A_22; Figure 4.9). 
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4.9.5 Purification of dengue virus-like particles 

Three methods of purification were compared using the R097A_4 dengue VLP sample 

and native conditions to preserve the structure of the dengue VLPs.  These were: 

immobilised metal affinity chromatography (IMAC), immunoprecipitation (Protein G-

bound flavivirus E mAb) and anion exchange chromatography (CaptoQ resin).  The 

IMAC purification method was unsuccessful.  This was expected because this 

purification method relies on the presence of the His-tag on the DV E, which had not 

been detected using the His-tag mAb.   

The immunoprecipitation purification method was also unsuccessful despite 

optimisation of antibody cross-linking to protein G and sample incubation durations.  

This was shown to be the result of poor sample binding to the flavivirus E mAb.  This 

was the first indication of problems with the replacement flavivirus E mAb.  This 

antibody had been originally sourced from Abcam, and was shown to be sensitive 

enough to detect DV E once samples had been concentrated by ultracentrifugation 

through a 20% sucrose cushion (Figure 4.8).  This antibody was also shown to be 

specific, with no cross-reactivity observed with samples from infections with rBVs 

containing genes for non-DV proteins (rBV.CCHFV-NP or rBV.EBOV-GP and rBV.EBOV-

VP40).  When this antibody was discontinued from the Abcam catalogue,  a 

replacement monoclonal antibody from the same hybridoma clone was subsequently 

sourced from Thermo Fisher (Pierce), but the antibody titre was much lower and 

antibody stability varied between lots compared to when sourced from Abcam.  It was 

intended that the immunoprecipitation method would be revisited once a new DV E 

antibody was sourced. 

Anion exchange column purification of the dengue VLPs was attempted, and 

performed manually initially using syringes and a stepped ionic elution gradient.  

Analysis of the SDS-PAGE results showed a reduction in the presence of background 

protein in the elution fractions compared to the pre-purification sample (Figure 4.11).  

Proteins of between 51 and 64 kDa were clearly visible and detected using the 

flavivirus E mAb.  However, immunodetection of the same samples using the 
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baculovirus GP64 mAb demonstrated co-purification of baculovirus in the same elution 

fractions as the dengue VLPs.   

The level of detection achieved using the replacement flavivirus E mAb was poor 

compared to that achieved previously using the original antibody and the same 

R097A_4 pre-purification sample (Figure 4.8 and Figure 4.11 respectively).  

Comparison of the SDS-PAGE results with those from previous experiments using the 

R097A_4 sample (data not shown), indicated that the loss of sensitivity during 

detection was not due to sample degradation, but was likely due to the flavivirus E 

mAb.  As a result of the declining quality of this antibody it was decided that a new 

antibody was required for the detection of DV E.  After testing several potential 

replacement antibodies, a pAb raised in rabbit against DV types 1, 2, 3 and 4 was 

chosen based on its superior detection sensitivity compared to the other antibodies 

tested (Table 4.4).   

Attempts to remove the baculovirus virions from baculovirus-derived VLP preparations 

by immunoprecipitation using a baculovirus GP64 mAb (bound to Protein G-coated 

magnetic beads) were unsuccessful, despite the high sensitivity of the antibody.  

Immunodetection from Western blots showed that although some of the baculovirus 

virions were immunoprecipitated, the vast majority did not bind to the antibody and 

remained with the VLPs in the un-bound fraction during sample loading (Figure 4.12).  

Some of the GP64 is present in the dengue VLP preparation in the form of baculovirus 

virions which might be able to be separated from the dengue VLPs by further 

purification, for example by size-exclusion, immunoprecipitation (once a suitable 

antibody is sourced) or further sucrose density gradient ultracentrifugation.  However, 

some of the GP64 could be present within the envelope of the dengue VLPs due to 

insertion into the lipid bilayer during VLP formation, so would be unable to be 

separated from the DV proteins without dissolving the dengue VLPs.   
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4.9.6 Scaled-up production, purification and detection of dengue virus-like 
particles 

To produce enough dengue VLPs for analysis, production of the dengue VLPs was 

scaled-up by increasing the volume of rBV-infected insect cell culture from 50mL to 

200mL.  To concentrate and purify the dengue VLPs, ultracentrifugation through a 20% 

sucrose cushion, and anion exchange column purification were used as described 

previously.  Unlike previous manual purifications, anion exchange column purification 

was this time performed using an ÄKTAFPLC automated system.  This was to enable 

further optimisation of the sample loading step, by reducing the sample flow-rate, 

thereby increasing sample binding to the column.  Also, it was hoped that by using a 

low sample flow-rate, and a linear rather than stepped ionic elution gradient, further 

separation of the dengue VLPs and baculovirus into different elution fractions might be 

possible.  As a control representative of the non-dengue proteins present in the 

baculovirus-derived samples, clarified medium from rBV.lacZ-infected cultures was 

concentrated and purified in the same way as described for the dengue VLP 

preparations.  Anion exchange column purified lacZ samples were analysed alongside 

corresponding dengue samples by immunodetection using the baculovirus GP64 mAb, 

and both were shown to have similar profiles.  This confirmed that the lacZ sample was 

an appropriate background control for the baculovirus proteins present in the dengue 

VLP samples.  Unexpectedly, comparison of the same lacZ and dengue samples using 

the rabbit pAb to DV types 1, 2, 3 and 4, also demonstrated similar immunodetection 

profiles for both samples.  This indicated that the rabbit pAb to DV types 1, 2, 3 and 4 

was cross-reacting with a non-DV protein of around 64 kDa.  This left the anion 

exchange column purification results from the scaled-up cultures (section 4.8) in 

question, as it was not clear what protein was being detected. 

Subsequent testing of the rabbit pAb to DV types 1, 2, 3 and 4, the flavivirus E mAb 

used previously, and another commercially available mAb to DV E, showed all three 

antibodies cross-reacted with a non-DV protein consistent in size with the known 

molecular weight of baculovirus GP64 (64 kDa).  However, the two mAbs tested were 

both able to detect an additional protein with a lower molecular weight in the 
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R097A_4 sample, but not the lacZ sample.  This protein was consistent in size with the 

known molecular weight of DV E (54 kDa).  Baculovirus GP64 was confirmed as the 

source of the antibody cross-reactivity by immunodetection of purified GP64 using the 

mouse mAbs to the flavivirus and DV E, and the rabbit pAb to DV types 1, 2, 3 and 4.  

To the best of my knowledge, cross-reactivity between flavivirus antibodies and GP64 

has not been previously reported, and further purification of VLP preparations may 

resolve the issue.  Antibody cross-reactivity with GP64 may have been expected had 

the antibodies been generated using baculovirus-derived antigen, but the antigens 

used to produce the antibodies used in this experiment were derived from live 

flaviviruses grown in mosquito cell lines.  It is feasible that there could be antibody 

cross-reactivity to insect cell-derived protein because of the use of mosquito cell lines 

to culture the flaviviruses used for antibody production.   

To assess whether the observed antibody cross-reactivity was due to sequence 

homology between DV E and baculovirus GP64, their respective amino acid sequences 

were aligned, which revealed a reasonable degree of sequence similarity between 

them (Figure 4.20).  This is not unexpected as they are both major viral envelope 

glycoproteins responsible for receptor-binding and membrane fusion, and both bind to 

insect cells.  A review of the literature has shown that a crystallographically-

determined structural model for pre-fusion GP64 has not been eluded to date, so a 

structural comparison was not able to be made with the DV E pre-fusion structure.  

Structural domain III of flavivirus E is known to contain an immunoglobulin C-like fold 

common to cell adhesion proteins that has also been identified on the outer surface of 

an insect virus, although this virus was non-enveloped (Rey et al., 1995).  

Analysis of protein glycosylation was performed using glycosidases to attempt to 

distinguish between baculovirus GP64 and DV E in the lacZ and R097A_4 samples.  The 

glycosylation profile produced by the 64 kDa protein in both samples was consistent 

with that of GP64, which contains four N-linked glycans, at least one of which is 

endoglycosidase H resistant (Jarvis and Garcia, 1994).  Several proteins with lower 

molecular weights of between 45 and 55 kDa were detected in the R097A_4 sample, 
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but were absent in the lacZ sample, one of which could represent DV E.  The DV E 

contains two N-linked glycans, one of which is endoglycosidase H sensitive and one is 

resistant (Hacker, White, and de Silva, 2009), consistent with the electrophoretic shifts 

observed in the digested sample using the different glycosidases.  

The lacZ and R097A_4 samples were also analysed by native PAGE and 

immunodetection from Western blots, using the rabbit pAb to DV types 1, 2, 3 and 4.  

A protein was detected in the R097A_4 sample but not the lacZ sample, indicating that 

it is DV E (Figure 4.18).  This suggested that the GP64 cross-reactivity observed 

previously with this antibody is dependent on epitopes that are only accessible under 

denaturing conditions, so there may be a better chance of conclusively detecting the 

dengue VLPs using methods that enable the proteins to remain in a native 

conformation, for example by ELISA or immunofluorescence. 
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Figure 4.20.  Amino acid sequence alignment of AcMNPV GP64 and the dengue virus envelope 

glycoprotein. 

Amino acid sequences were obtained from NCBI for baculovirus GP64 (AcMNPV; GenBank accession 

L22858) and DV type 3 E (GenBank accession NC_001475), and aligned using ClustalW (section 2.2.4).  

Amino acids are colour-coded according to physiochemical properties, with red representing nonpolar, 

green representing polar, pink representing basic, and blue representing acidic.  Aligned matching amino 
acids are marked *, and amino acids with similar properties are marked . or : depending on the degree of 

similarity (: indicating more similarity than .). 

 

4.9.7 Detection of dengue virus-like particles using transmission electron 
microscopy 

Transmission electron micrographs of the R097A_4 dengue VLP sample confirmed that 

spherical structures consistent in size with published transmission electron 

micrographs of flavivirus VLPs were present (Figure 4.19, panels D and E).  Whilst 

similar structures were also observed in a baculovirus-derived Ebola VLP sample 

(Figure 4.19, panel F) included as a negative control, these were fewer in number and 

smaller in diameter than those observed in the dengue VLP sample.  Confirmation that 
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the spherical structures seen in the dengue VLP sample were actually dengue VLPs 

could be obtained using immunogold labelling.  Provided a primary antibody could be 

sourced that was specific for the dengue VLPs, and did not cross-react with 

baculovirus, a gold-conjugated secondary antibody could then be added and the 

sample re-analysed by transmission electron microscopy.  Accumulation of gold 

particles on the spherical structures would confirm that the particles observed are in 

fact the dengue VLPs.  
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4.10 Conclusions and summary 

The intention for this part of the study was to generate rBVs containing the DV type 1 

prM gene and the quasispecies E genes identified in Chapter 3 (section 3.10; R097A_4, 

R097A_13, R097A_43, R203A_2, R203A_54, R261A_1, R261A_4, R107A_1 and 

R107A_22).  These would be used to produce dengue VLPs for each of the E gene 

variants, which could be purified in preparation for use in studies to determine the 

effect of the mutations on protein function, and assessment of their value as 

diagnostic tools.  

The DV quasispecies E genes identified in the previous chapter were each successfully 

cloned alongside the DV type 1 prM gene into the baculovirus transfer vector, pBAC-

2cp.  Co-transfection of pBAC-2cp containing the inserted genes with baculovirus DNA 

into insect cells resulted in the production of rBVs, which were subsequently amplified 

and titred.  Optimisation experiments were conducted to determine the optimal cell 

line, multiplicity of infection (MOI) and post infection interval before harvesting the 

dengue VLPs.  However, problems were encountered in detecting the dengue VLPs 

using the C-terminal His-tags on the DV E, which meant that optimised expression 

conditions could only be determined based on the SDS-PAGE results.    

Clarified medium from dengue rBV-infected cells (containing secreted dengue VLPs) 

was concentrated by ultracentrifugation and re-analysed by immunodetection.  Again, 

the DV E were not detected using the His-tag mAb, but proteins of 50 to 60 kDa, 

consistent with the known molecular weight of DV E (54 kDa) were detected for all of 

the dengue VLP samples using a mouse mAb demonstrated to be specific for flavivirus 

E.  

Purification of the dengue VLPs as originally intended using IMAC to bind the C-

terminal His-tags on the DV E was thought to be unlikely, given the failure to detect 

the DV E using the His-tag mAb.  As a result three methods of purification were 

attempted, namely IMAC, immunoprecipitation and anion exchange column 

chromatography.  Purification by IMAC proved to be unsuccessful as predicted.  

Purification by immunoprecipitation was hampered by problems with the quality of 
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the flavivirus E mAb used.  Preliminary anion exchange column purification results 

were promising, but the flavivirus E mAb was no longer sensitive and reliable enough 

for use as determined by repeat analysis of the same sample over time (data not 

shown), and co-purification of baculovirus was demonstrated.  A rabbit pAb to DV 

types 1, 2, 3 and 4 was sourced to analyse the anion exchange column purification 

fractions, but on closer examination, it was found to cross react with a non-DV protein 

in all of the baculovirus-derived samples tested.  The source of the cross-reactivity was 

determined to be baculovirus GP64.  Similar cross-reactivity was subsequently 

demonstrated using two other commercially available mouse mAbs (flavivirus and DV 

E antibodies), although an additional protein of lower molecular weight was also 

detected.  The size of this additional protein was consistent with the known molecular 

weight of DV E (54 kDa), and it was not evident in non-DV rBV-derived samples.  There 

are not many commercially available antibodies for DV proteins, and of those tested 

for this study, poor sensitivity and stability were commonly encountered.  These 

results identify a need for better quality DV-specific antibodies to be made available to 

the wider scientific community.  Other purification methods would need to be 

attempted to obtain dengue VLP preparations that do not contain baculovirus, which 

should solve the problem of antibody cross-reactivity.  Additionally, the use of virus-

free expression systems for protein production (using plasmid rather than viral gene-

delivery vectors) would remove the potential for virus-contamination of the dengue 

VLP preparations, thus simplifying purification.  

DV E was detected in clarified insect cell culture medium from rBV-infected cultures 

concentrated by ultracentrifugation through a 20% sucrose cushion.  Detection of DV E 

in subsequent purified samples is ambiguous due to antibody cross-reactivity.  DV E 

was also detected in the R097A_4, but not lacZ samples analysed by native PAGE and 

Western blots.  These data also provided supportive evidence that the DV E are 

present in a lipid enveloped form consistent with VLPs.  This was further supported by 

transmission electron micrographs, which showed spherical structures consistent in 

size with published transmission electron micrographs of flavivirus VLPs.  Future 

detection of dengue VLPs may need to be undertaken by ELISA, as this may circumvent 
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the antibody cross-reactivity problem as it allows the proteins to remain in their native 

conformation. 



 

196 
 

CHAPTER 5. ANALYSIS OF DENGUE VIRUS-
LIKE PARTICLES TO DETERMINE THE 

EFFECTS OF THE QUASISPECIES ENVELOPE 
GENE MUTATIONS 
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5.1 Introduction 
Dengue virus (DV) infectivity is directly related to the ability of the DV envelope 

glycoprotein (E) to evade neutralisation by antibodies, attach to target cells within the 

host, undergo low pH-induced conformational change, and mediate fusion of virus and 

host cell membranes.  Mechanisms of DV neutralisation by host antibodies include 

preventing virus-cell attachment and inhibiting membrane fusion (Roehrig, 2003; 

Roehrig, Bolin, and Kelly, 1998).  Single nucleotide mutations within the E gene that 

cause amino acid substitutions in E have been shown to be associated with altered DV 

virulence and disease pathogenicity (Cecilia and Gould, 1991; Guirakhoo et al., 2004; 

Hahn et al., 1987; Hasegawa et al., 1992; Holzmann et al., 1990; Jiang et al., 1993; 

Nitayaphan et al., 1990).  The amino acid substitutions caused by these mutations 

cluster on the outer surface of the virion and at the interfaces between E structural 

domains (Rey et al., 1995).  They are thought to act either through altering accessibility 

to neutralising antibodies, or through direct modulation of the processes of 

attachment to host cells or membrane fusion (Rey et al., 1995).   

Although a definitive antibody-independent cellular receptor for DV has yet to be 

elucidated, dendritic cell-specific intercellular adhesion molecule-3-grabbing non-

integrin (DC-SIGN) and other lectins have been proposed as DV receptors on DCs, 

endothelial cells and macrophages (Miller et al., 2008; Navarro-Sanchez et al., 2003; 

Tassaneetrithep et al., 2003).  Cryoelectron microscopy of the DV E-DC-SIGN complex 

has shown interaction of the lectin with the N-linked glycan at Asn-67 (Pokidysheva et 

al., 2006).  The DV E glycans have been shown to play an important role in infectivity 

and virus growth in mammalian cells (Bryant et al., 2007; Mondotte et al., 2007).  

Highly sulphated heparan sulphate (HSHS), a glycosaminoglycan on the surface of 

target cells has also been shown to bind DV E (Chen et al., 1997), and is thought to 

concentrate the virus on the cell surface, enabling subsequent higher-affinity 

interactions with specific receptors (Martinez-Barragan and del Angel, 2001).  Two 

HSHS-binding sites have been proposed for DV E at positions E284 to 310, and E386 to 

411 (Chen et al., 1997).  The first of these is on the distal face of E domain III, where 
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gene mutations leading to amino acid substitutions in several flaviviruses have been 

shown to affect virus virulence (Rey et al., 1995). 

DV E is a class II fusion protein that exists as a dimer in the pre-fusion state.  Cleavage 

of the pre-membrane glycoprotein (prM) by furin is required to prime E for fusion.  In 

response to the acidic environment of the endosome, the E dimer undergoes an 

irreversible conformational change to a trimeric form that exposes the previously 

inaccessible fusion peptide, and enables fusion of virus and host cell membranes 

(Modis et al., 2004).  E gene mutations that cause amino acid substitutions at the 

interface of E structural domains I and II have been shown to affect fusion by altering 

the pH required for fusion-induced conformational change (Modis et al., 2003). 

In addition to their use in studying the effect of E gene mutations on protein function, 

the dengue virus-like particles (VLPs) produced in Chapter 4 may be a useful source of 

antigen for the serodiagnosis of DV infection.  The similarity between flavivirus Es leads 

to significant antibody cross-reactivity between different flaviviruses.  In addition, 

flaviviruses often co-circulate in the same regions, further complicating serodiagnosis if 

antibodies are present from a previous infection or vaccination against a different 

flavivirus to the current infection.  The use of recombinant proteins as antigen permits 

the introduction of gene mutations that lead to amino acid substitutions in the protein 

that may alleviate the antibody cross-reactivity observed using wild-type proteins.  It 

also avoids the need to culture and purify large quantities of DV, traditionally sourced 

from tissue culture or suckling mouse brain, which requires high-containment facilities 

(Containment Level 3).  A further advantage of recombinant dengue VLPs is that they 

closely resemble the native conformation of dengue virions, so antigen presentation is 

likely to be superior compared to using recombinant E alone.  Enzyme-linked 

immunosorbent assays (ELISAs) using flavivirus VLP antigens (St. Louis encephalitis 

virus, SLEV; West Nile virus, WNV; DV types 1 to 4 and Japanese encephalitis virus, JEV) 

have demonstrated similar or improved sensitivity and specificity compared to those 

that use suckling mouse brain-derived antigens (Chang et al., 2003; Holmes et al., 

2005; Hunt, Cropp, and Chang, 2001; Purdy, Noga, and Chang, 2004). 
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5.2 Chapter objectives 
The primary objective for this chapter was to use the recombinant dengue VLPs 

produced in Chapter 4 to investigate the effects of the DV quasispecies E gene 

mutations on protein function.  The specific functions examined would be dengue VLP 

attachment to host cell surface molecules (DC-SIGN and HSHS), and the low pH-

induced DV E oligomeric rearrangements required for virus and host cell membrane 

fusion.   

In Chapter 4, using immunodetection from Western blots, the denatured DV E were 

unable to be clearly distinguished from the baculovirus proteins present in the dengue 

VLP preparations, due to antibody cross-reactivity (discussed in section 4.9.6).  

However, using the same detection antibodies, immunodetection of native dengue 

VLPs from Western blots was successful in detecting only the DV proteins.  This 

indicated that the antibody cross-reactivity observed was restricted to denatured but 

not native dengue VLPs.  An ELISA would be developed and optimised to enable 

detection of the recombinant dengue VLPs in their native conformation.  The antibody 

cross-reactivity observed previously would be overcome during ELISA development 

and optimisation.  To enable differences in cell attachment capabilities between the 

quasispecies variant and consensus dengue VLPs to be identified, this ELISA was then 

to be performed with an additional capture step using recombinant DC-SIGN, or 

heparin (as a HSHS analogue). 

Dengue VLPs would also be subjected to low pH, and the oligomeric conformation 

assessed.  This was to compare the ability of the quasispecies consensus and variant 

VLPs to undergo low pH-induced E oligomeric rearrangements. 

One of the aims of this work from the beginning was to compare the quasispecies 

consensus and variant VLPs in terms of cross-reactivity with antibodies to other non-

dengue flaviviruses.  Initial ELISAs would be performed using the dengue VLPs as 

antigen, and human serum containing antibodies to DV.  This was to assess the affinity 

of the dengue VLPs for human DV antibodies and lead to subsequent examinations of 

sensitivity, specificity and cross-reactivity.  To our knowledge, such investigations using 
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quasispecies variants have not been reported.  However, since beginning this work, 

flavivirus VLPs constructed using SLEV, WNV and JEV prM and E genes with mutations 

in the fusion peptide, have been shown to exhibit dramatically reduced flavivirus 

antibody cross-reactivity, compared to wild-type VLPs using IgM capture ELISAs (Chiou 

et al., 2008; Roberson, Crill, and Chang, 2007).     
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5.3 Development and optimisation of an ELISA using recombinant 
dengue virus-like particles as antigen 

Previous attempts to detect the denatured dengue VLPs by immunodetection from 

Western blots had proved difficult, as the antibodies used for immunodetection were 

unexpectedly shown to cross-react with baculovirus proteins present in the VLP 

preparations (discussed in section 4.9.6).  By developing and optimising an indirect 

ELISA, using the dengue VLPs in their native conformation as antigen, it was thought 

that the cross-reactivity observed previously could be overcome.  Concentrated 

clarified medium from rBV.lacZ-infected Sf9 cells was used as a background control 

antigen (this protein sample is referred to as lacZ throughout the chapter), as it was 

previously shown to be representative of the non-DV proteins present in the dengue 

VLP preparations (section 4.8).  The dengue VLP samples had also been concentrated 

from clarified insect cell culture medium by ultracentrifugation through a sucrose 

cushion.  The total protein content of the dengue VLP and lacZ samples was quantified 

by Bradford assay (section 2.8.5), and ELISA plates were consistently coated with 

samples at a concentration of 1µg/mL (0.1µg/well), unless otherwise stated.  

5.3.1 Initial ELISA evaluation 

Three primary antibodies were used in the previous chapter.  These were: a mouse 

monoclonal antibody (mAb) to flavivirus E, a rabbit polyclonal antibody (pAb) to DV 

types 1, 2, 3 and 4, and a mouse mAb to DV E.  The mouse mAb to flavivirus E was not 

tested for use in the ELISA because it had proved to be unreliable previously (discussed 

in section 4.9.5).  The mouse mAb to DV E and rabbit pAb to DV types 1, 2, 3 and 4 

were compared in preliminary ELISAs (mAb and pAb ELISA; Figure 5.1 and Figure 5.2 

respectively) to determine which provided a better distinction between the dengue 

VLPs and baculovirus proteins present in the VLP preparations (section 2.9.1).  The 

secondary antibodies used were horse radish peroxidise (HRP)-conjugated rabbit anti-

mouse IgG and goat anti-rabbit IgG, respectively.  All samples were tested in triplicate 

and the bar charts display the average absorbance for each sample, with error bars 

representing one standard deviation.  A positive threshold value was calculated based 

on the average lacZ sample absorbance plus three standard deviations.  Absorbance 

readings above this threshold were considered positive and those below were negative 
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for dengue VLP detection.  For the mAb ELISA (Figure 5.1), this threshold was 0.228, 

and five of the dengue VLP samples (R203A_2, R261A_1, R261A_4, R107A_1 and 

R107A_22) displayed average absorbance values greater than this, so were considered 

positive for dengue VLPs.  For the pAb ELISA (Figure 5.2), the threshold was 0.728, and 

six of the dengue VLP samples (R097A_4, R203A_2, R203A_54, R261A_1, R107A_1 and 

R107A_22) displayed average absorbance values greater than this, so were considered 

positive for dengue VLPs.  

In addition to the lacZ sample background control, purified baculovirus GP64 and 

concentrated clarified medium from mock-infected cells were used as negative 

controls.  Both ELISAs showed similar absorbance readings for the lacZ and purified 

GP64 samples, providing further confirmation that GP64 is the source of the antibody 

cross-reactivity observed.  The mock-infected sample served to establish a background 

level of absorbance from the culture medium of uninfected insect cells.  For the mAb 

ELISA (Figure 5.1), this signal was below that of any of the other samples, as would be 

expected.  However, for the pAb ELISA (Figure 5.2), this signal was greater than all but 

one of the samples tested. 

In both ELISAs, uncoated wells lacking sample antigen were included as negative 

controls and no binding was observed (data not shown).  For each sample antigen, 

control wells lacking the primary antibodies were also included to measure any direct 

binding of the secondary antibodies to the samples (Figure 5.3).  For the mAb ELISA, 

the absorbance signals from lacZ sample and purified GP64-coated wells in which both 

primary and secondary antibodies were used were similar to dengue VLP, lacZ and 

purified GP64 sample-coated wells containing secondary antibody only.  This indicates 

that the antibody cross-reactivity observed for this mAb ELISA is baculovirus GP64-

specific, and due to the secondary rather than the primary antibody as was first 

thought.  For the pAb ELISA, the absorbance signals from wells containing secondary 

antibody only were similarly low for dengue VLP, lacZ and purified GP64 sample-

coated wells, indicating that the signal observed is background fluorescence and the 

secondary antibody does not bind significantly to them.  However, high absorbance 
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signals were observed for the pAb ELISA where both primary and secondary antibodies 

were used in wells coated with the dengue VLPs or any of the background or negative 

control samples (mock, lacZ and purified GP64).  This confirms that the primary 

antibody for the pAb ELISA is binding non-specifically to baculovirus GP64 and a 

component of the insect cell culture medium.  The similarity between the dengue VLP 

sample signals and the lacZ sample signals generated using only the mAb ELISA 

secondary antibody (non-specifically detecting background proteins rather than DV E) 

indicates that all of these samples contain a similar amount of background protein.   

Signal to noise ratios were calculated for each dengue VLP sample from the 

preliminary mAb and pAb ELISA data, by dividing the average absorbance signal from 

the dengue VLP sample replicates by the average signal from the lacZ background 

sample replicates (Table 5.1).  Using the mAb ELISA, all but one of the dengue VLP 

samples (R097A_13) had a signal to noise ratio greater than 1.0.  Using the pAb ELISA, 

all but two of the dengue VLP samples (R097A_43 and R261A_4) had a signal to noise 

ratio greater than 1.0.  In general, the mAb ELISA produced better signal to noise ratios 

than the pAb ELISA.  This difference was statistically significant using a paired t-test 

(p=0.026). 

The mAb ELISA was chosen to take forward for further optimisation.  This was because 

the positive threshold value for this ELISA was 3-fold lower than the pAb ELISA (0.228 

compared to 0.728), and the signal to noise ratios for each sample were better for the 

mAb ELISA.  The pAb ELISA also displayed a high level of reactivity to the mock-infected 

sample, which was not observed with the mAb ELISA.  Also, the antibody cross-

reactivity in the mAb ELISA was shown to result from the secondary detection antibody 

rather than the primary DV-specific antibody (which was not the case with the pAb 

ELISA), indicating that further optimisation of the ELISA might improve the signal to 

noise ratio. 
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Figure 5.3.  Comparison of dengue VLP mAb and pAb ELISAs using both primary and secondary 

antibodies, and secondary antibodies only. 

The primary and secondary antibodies were as detailed in Figure 5.1 and Figure 5.2 for the mAb and pAb 

ELISAs respectively. Error bars represent the standard deviation of the replicates for each sample. For the 

mock, lacZ and purified GP64 negative and background control samples three replicates were performed, 

whereas the dengue VLP error bars correspond to the standard deviation for all of the dengue VLP 

samples in triplicate. Where error bars are not shown (wells coated with negative and background control 

sample antigens and probed using the secondary antibody only), no replicate samples were tested.  
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Table 5.1.  Signal to noise ratios for the dengue VLP samples in the mAb and pAb ELISAs.  

Dengue VLP sample mAb ELISA 

S:N 

pAb ELISA  

S:N 

R097A_4 1.28 1.09 

R097A_13 0.85 1.02 

R097A_43 1.03 0.96 

R203A_2 1.53 1.14 

R203A_54 1.32 1.04 

R261A_1 1.57 1.04 

R261A_4 1.42 0.99 

R107A_1 2.76 1.18 

R107A_22 2.12 1.05 

 

5.3.2 Dengue virus-like particle mAb ELISA optimisation 

Optimisation experiments were conducted using the R097A_13 and R107A_1 dengue 

VLP samples because they displayed the lowest and highest signal to noise ratios 

respectively in the initial experiment (Table 5.1).  The lacZ sample was included as a 

background control as before.  Four different blocking buffers were tested to optimise 

the blocking step of the mAb ELISA (Figure 5.4).  These were 10% fetal calf serum (FCS) 

in phosphate buffered saline with 0.05% tween 20 (PBST), protein-free (Thermo 

Fisher), StartingBlock T20 (Thermo Fisher) and 5% skimmed milk in PBST.  Positive 

threshold values were 0.080 using both 10% FCS in PBST and 5% skimmed milk in PBST, 

0.099 using StartingBlock T20, and 0.193 using the protein-free blocking buffer.  The 

R097A_13 sample average absorbance signals were not greater than the positive 

threshold values for any of the blocking buffers tested, but the R107A_1 sample 

average absorbance signals were greater than the positive threshold values for all of 

the blocking buffers tested.  Signal to noise ratios were calculated for the two dengue 

VLP samples (Table 5.2), with the best ratio observed for the R107A_1 sample using 

the StartingBlock blocking buffer (1.97) and for the R097A_13 sample using the 

protein-free blocking buffer (1.27). 
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Table 5.2.  Signal to noise ratios for the dengue VLP samples using different blocking buffers in the 

mAb ELISA.   

Dengue VLP sample 10% FCS in 

PBST S:N 

Protein-free 

S:N 

StartingBlock 

S:N 

5% skimmed milk 

in PBST S:N 

R097A_13 1.00 1.27 1.08 0.91 

R107A_1 1.43 1.73 1.97 1.78 

 
Future mAb ELISAs were conducted using 5% skimmed milk in PBST as the blocking 

buffer.  This was chosen over the other blocking buffers primarily due to the low 

positive threshold value (0.080), which it shared with the 10% FCS in PBST blocking 

buffer.  The signal to noise ratio for the R107A_1 dengue VLP sample was greater using 

5% skimmed milk in PBST than for 10% FCS in PBST.  

The concentration of primary and secondary antibodies was optimised in the same 

experiment by checkerboard titration (Figure 5.5).  This was to attempt to improve 

signal to noise ratios by reducing the background detection of non-DV proteins, and 

consequently reducing the positive threshold value.  The lowest positive threshold 

value (0.189) was observed at primary and secondary antibody concentrations of 

1/500 and 1/2000, respectively.  Both the R097A_13 and R107A_1 average sample 

absorbance signals were greater than the positive threshold values at all but four of 

the antibody concentration combinations tested (the exceptions being primary and 

secondary antibody concentration combinations respectively of 1/1000 and 1/2000, 

1/1000 and 1/1000, 1/750 and 1/2000, and 1/750 and 1/1000).  Signal to noise ratios 

were calculated for each dengue VLP sample at all of the antibody concentrations used 

(Table 5.3).  The greatest signal to noise ratios were achieved for sample R107A_1 

(3.28) using primary and secondary antibody concentrations of 1/1000 and 1/750 

respectively, and for sample R097A_13 (2.12) using primary and secondary antibody 

concentrations of 1/750 and 1/500 respectively. 

 



Chapter 5: Recombinant dengue VLP analysis 

210 
 

 F
ig

u
re

 5
.5

. 
 O

p
ti

m
is

a
ti

o
n

 o
f 

d
e
n

g
u

e
 V

L
P

 m
A

b
 E

L
IS

A
 p

r
im

a
r
y
 a

n
d

 s
ec

o
n

d
a

ry
 a

n
ti

b
o

d
y

 c
o

n
ce

n
tr

a
ti

o
n

s 
u

si
n

g
 d

e
n

g
u

e
 V

L
P

 s
a
m

p
le

s 
R

0
9
7
A

_
1
3
 a

n
d

 R
1
0
7
A

_
1
. 

 

T
h

e 
p
ri

m
ar

y
 a

n
d
 s

ec
o
n
d
ar

y
 a

n
ti

b
o
d
ie

s 
w

er
e 

as
 d

et
ai

le
d
 i

n
 F

ig
u

re
 5

.1
, 

u
si

n
g

 t
h
e 

d
il

u
ti

o
n

s 
sh

o
w

n
 i

n
 t

h
e 

fi
g
u
re

. 
P

o
si

ti
v
e 

th
re

sh
o
ld

 v
al

u
es

 (
b
ro

k
en

 l
in

es
) 

w
er

e 
ca

lc
u
la

te
d
 

fo
r 

ea
ch

 c
o
m

b
in

at
io

n
 o

f 
an

ti
b
o
d
y
 c

o
n
ce

n
tr

at
io

n
s 

b
as

ed
 o

n
 t

h
e 

av
er

ag
e 

la
cZ

 s
am

p
le

 a
b

so
rb

an
ce

 p
lu

s 
th

re
e 

st
an

d
ar

d
 d

ev
ia

ti
o
n
s.

 E
rr

o
r 

b
ar

s 
re

p
re

se
n
t 

th
e 

st
an

d
ar

d
 

d
ev

ia
ti

o
n
 o

f 
th

e 
th

re
e 

re
p
li

ca
te

s 
fo

r 
ea

ch
 s

am
p

le
. 
 



Chapter 5: Recombinant dengue VLP analysis 

211 
 

Table 5.3.  Signal to noise ratios for the dengue VLP samples using different concentrations of 

primary and secondary antibody in the mAb ELISA. 

Dengue VLP 

sample 

Primary antibody 

concentration 

Secondary antibody concentration 

1/2000 1/1000 1/750 1/500 

R097A_13 

1/1000 1.10 1.37 1.72 1.59 

1/750 1.30 1.50 1.93 2.12 

1/500 1.48 1.76 1.87 1.92 

1/250 1.58 1.70 1.92 1.98 

R107A_1 

1/1000 2.13 2.19 3.28 2.05 

1/750 2.80 2.34 2.77 2.93 

1/500 2.83 2.91 2.74 2.87 

1/250 3.06 2.84 2.92 2.80 

 
It was decided to use a primary antibody concentration of 1/1000 and a secondary 

antibody concentration of 1/750 for future dengue VLP mAb ELISAs.  Although the 

positive threshold value at these antibody concentrations (0.338) was not as low as 

with other antibody concentrations, this combination of antibody concentrations had 

produced the greatest signal to noise ratio (3.28) for sample R107A_1.  This 

combination of antibody concentrations also enabled conservative use of the limited 

stocks of primary antibody that were available. 

5.3.3 Analysis of the dengue virus-like particle samples using the optimised 
mAb ELISA 

Following optimisation of the blocking buffer and antibody concentrations, the dengue 

VLP mAb ELISA was performed using all of the dengue VLP samples (Figure 5.6).  All 

nine of the dengue VLP samples were detected and distinguished as positive compared 

to the lacZ background control sample.  Signal to noise ratios were calculated (Table 

5.4), and ranged from 1.54 to 3.60.   
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Table 5.4.  Signal to noise ratios for the dengue VLP samples using the optimised mAb ELISA. 

Dengue VLP sample Signal to noise ratio 

R097A_4 3.60 
R097A_13 1.76 

R097A_43 1.79 

R203A_2 2.08 

R203A_54 2.31 

R261A_1 2.35 

R261A_4 2.40 

R107A_1 1.54 

R107A_22 3.31 

 
Comparing these results (Figure 5.6) to those obtained during the optimisation of 

antibody concentrations (Figure 5.4), the signal generated by the R107A_1 sample has 

decreased (from 0.569 to 0.181 after subtraction of the background signal), along with 

the signal to noise ratio (from 3.28 to 1.54).  In contrast, the signal from the R097A_13 

sample (0.190 and 0.257 after subtraction of the background signal) and signal to noise 

ratios (1.72 and 1.76) have increased slightly.  This is likely due to the freeze-thaw 

status of the samples as a fresh aliquot of sample R097A_13 was used for each 

experiment, whereas the R107A_1 sample had been freeze-thawed between 

experiments.  For future ELISAs, fresh sample aliquots were used for each experiment 

wherever possible, but most of the optimisation experiments were performed using 

freeze-thawed sample aliquots. 
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5.4 Comparison of dengue virus-like particle samples binding to DC-
SIGN via a capture ELISA 

To compare differences in DC-SIGN-binding capabilities between the variant and 

consensus dengue VLPs, an additional capture step was added to the dengue VLP mAb 

ELISA optimised in section 5.3 by coating the ELISA plate with DC-SIGN instead of the 

dengue VLP samples (Figure 5.7; section 2.9.2).  Plates were then blocked using 5% 

skimmed milk with PBST before addition of antigen (dengue VLP samples or lacZ 

background control sample).  Primary and secondary antibodies (mouse mAb to DV E 

and HRP-conjugated rabbit pAb to mouse IgG respectively) were used at 1/1000 and 

1/750 dilutions respectively, as these were previously determined as optimal.   

Because the dengue VLP sample antigens were unpurified, it was not clear what 

proportion of the total protein concentration measured by Bradford assay consisted of 

dengue VLPs and what proportion consisted of non-DV proteins.  However, the 

amount of non-DV proteins present that were able to bind non-specifically to the 

secondary antibody and cause background absorbance signals had been previously 

shown to be consistent across the dengue VLP and lacZ background control samples 

(Figure 5.3).  Initial ELISAs were performed on all of the dengue VLP samples using 

both the dengue VLP mAb ELISA and the DC-SIGN capture ELISA.  For the DC-SIGN 

capture ELISA, wells were initially coated with DC-SIGN at 1µg/mL (0.1µg/well).  The 

dengue VLP mAb ELISA was performed to provide a standard measurement of VLP 

detection by the antibodies.  This enabled comparisons to be made between the 

relative signals generated by the consensus and variant proteins for each patient 

sample.  The DC-SIGN capture ELISA results were compared to the dengue VLP mAb 

ELISA results to see if the relative signal intensities changed due to differences in the 

dengue VLPs binding to DC-SIGN (Figure 5.8).  Positive threshold values and signal to 

noise ratios (Table 5.5) were calculated for each ELISA as before.  All of the dengue VLP 

sample average absorbance signals from the dengue VLP mAb ELISA were greater than 

the calculated positive threshold value (0.180), and signal to noise ratios ranged from 

1.87 to 4.19.  However, for the DC-SIGN capture ELISA, none of the dengue VLP sample 

signals were greater than the calculated positive threshold value (0.212) and poor 
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signal to noise ratios (ranging from 0.92 to 1.18) were observed.  This indicated that 

the dengue VLP samples were not binding to the DC-SIGN-coated ELISA plates.   

 

Figure 5.7.  Schematic diagram showing the dengue VLP mAb ELISA and dengue VLP capture 

ELISA procedures. 

An additional capture step was added to the dengue VLP mAb ELISA to compare differences in DC-

SIGN-binding capabilities between the variant and consensus dengue VLPs (section 2.9.2). Wells were 

washed with PBST between each of steps 1 to 6. For the dengue VLP mAb ELISA, plates were coated 
overnight with dengue VLP sample antigens (Ag; step 1), before blocking with 5% skimmed milk in 

PBST (B; step 2), addition of primary and secondary antibodies (steps 4 and 5), substrate addition, 

stopping the reaction and reading the absorbance at 405nm (steps 6 and 7). For the capture ELISA, plates 

were coated overnight with DC-SIGN (step 1), before blocking with 5% skimmed milk in PBST (B; step 

2), and addition of the dengue VLP sample antigens (Ag; step 3).  Steps 4 to 7 were as described for the 

dengue VLP mAb ELISA. 



Chapter 5: Recombinant dengue VLP analysis 

216 
 

 

 

  

F
ig

u
re

 5
.8

. 
 D

e
n

g
u

e 
V

L
P

 m
A

b
 E

L
IS

A
 c

o
m

p
a
r
is

o
n

 w
it

h
 D

C
-S

IG
N

 c
a

p
tu

r
e 

E
L

IS
A

. 

E
L

IS
A

 p
la

te
 w

el
ls

 w
er

e 
co

at
ed

 u
si

n
g

 D
C

-S
IG

N
 o

r 
d

en
g

u
e 

V
L

P
 s

am
p

le
 a

n
ti

g
en

s 
at

 1
µ

g
/m

L
 (

0
.1

µ
g
/w

el
l)

. 
F

o
r 

th
e 

ca
p
tu

re
 E

L
IS

A
, 

d
en

g
u
e 

V
L

P
 s

am
p
le

 

an
ti

g
en

s 
w

er
e 

ad
d
ed

 
at

 
1
µ

g
/m

L
 
(0

.1
µ

g
/w

el
l)

. 
T

h
e 

p
ri

m
ar

y
 
an

d
 
se

co
n

d
ar

y
 a

n
ti

b
o

d
ie

s 
w

er
e 

as
 
d
et

ai
le

d
 i

n
 

F
ig

u
re

 
5
.1

, 
at

 
1
/1

0
0
0
 
an

d
 
1
/7

5
0
 d

il
u
ti

o
n
s 

re
sp

ec
ti

v
el

y
. 

T
h
e 

p
o
si

ti
v
e 

th
re

sh
o
ld

 v
al

u
es

 w
er

e 
ca

lc
u

la
te

d
 f

o
r 

th
e 

d
en

g
u

e 
V

L
P

 E
L

IS
A

 a
n

d
 t

h
e 

D
C

-S
IG

N
 c

ap
tu

re
 E

L
IS

A
 (

0
.1

8
0
 a

n
d
 0

.2
1
2
 r

es
p
ec

ti
v
el

y
) 

b
as

ed
 o

n
 t

h
e 

av
er

ag
e 

la
cZ

 s
am

p
le

 a
b

so
rb

an
ce

 p
lu

s 
th

re
e 

st
an

d
ar

d
 d

ev
ia

ti
o
n

s.
 E

rr
o

r 
b
ar

s 
re

p
re

se
n

t 
th

e 
st

an
d
ar

d
 d

ev
ia

ti
o
n
 o

f 
th

e 
th

re
e 

re
p
li

ca
te

s 
fo

r 
ea

ch
 

sa
m

p
le

. 
 



Chapter 5: Recombinant dengue VLP analysis 

217 
 

Table 5.5.  Signal to noise ratios for the dengue VLP samples using the dengue VLP mAb ELISA 

and the DC-SIGN capture ELISA. 

Dengue VLP sample Dengue VLP mAb ELISA 

S:N 

DC-SIGN capture ELISA 

S:N 

R097A_4 1.87 1.17 

R097A_13 1.87 1.18 

R097A_43 2.50 1.08 

R203A_2 3.42 1.11 

R203A_54 3.51 1.08 

R261A_1 4.19 0.98 

R261A_4 2.62 0.96 

R107A_1 3.67 0.94 

R107A_22 3.37 0.92 

 
To attempt to improve dengue VLP binding to DC-SIGN, the DC-SIGN capture ELISA was 

repeated using the R107A_1 dengue VLP and lacZ background control samples at DC-

SIGN coating concentrations of 1, 10, 50 and 100µg/mL (Figure 5.9).  Positive threshold 

values and signal to noise ratios (Table 5.6) were calculated for each DC-SIGN coating 

concentration as before.  As with the previous DC-SIGN capture ELISA, the dengue VLP 

sample average absorbance signals were not greater than the calculated positive 

threshold value at any of the DC-SIGN coating concentrations tested.  Average signals 

from both the R107A_1 dengue VLP and lacZ background control samples increased 

with increasing DC-SIGN coating concentration, and signal to noise ratios decreased.  

This showed that the dengue VLP samples were not binding to DC-SIGN at any of the 

DC-SIGN concentrations tested.  

For the DC-SIGN capture ELISA, uncoated wells lacking DC-SIGN were included as 

negative controls and no binding was observed (data not shown).  Control wells coated 

with DC-SIGN but lacking sample antigen were used to measure any direct binding of 

the antibodies to DC-SIGN (Figure 5.10).  The absorbance signals from these wells 

showed very little difference to those containing either dengue VLP or lacZ background 

control sample antigens.  In addition, similar absorbance signals were generated from 

wells in which both primary and secondary antibodies were used, compared to wells in 

which only secondary antibody was used.  This indicated that the signal was due to the 

secondary antibody binding directly to DC-SIGN, and as a result it was decided to move 

on to testing the dengue VLP samples using a heparin capture ELISA.   
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Figure 5.9.  Optimisation of DC-SIGN coating concentration for the DC-SIGN capture ELISA. 

ELISA plate wells were coated using DC-SIGN at 1, 10, 50 and 100µg/mL (0.1, 1, 5 and 10µg/well), and 

lacZ background control or dengue VLP (R107A_1) sample antigens added at 1µg/mL (0.1µg/well). The 
primary and secondary antibodies were as detailed in Figure 5.1, at 1/1000 and 1/750 dilutions 

respectively. Positive threshold values (broken lines) were calculated for each DC-SIGN-coating 

concentration based on the average lacZ sample absorbance plus three standard deviations. Error bars 

represent the standard deviation of the three sample replicates.  

 
Table 5.6.  Signal to noise ratios for the dengue VLP sample R107A_1 using different DC-SIGN 

coating concentrations for the DC-SIGN capture ELISA. 

DC-SIGN coating concentration Signal to noise ratio 

1µg/mL 1.36 

10µg/mL 1.15 

50µg/mL 1.18 

100µg/mL 1.04 
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Figure 5.10.  Comparison of absorbance signals generated by the DC-SIGN capture ELISA using 

both primary and secondary antibodies, and secondary antibodies only. 

ELISA plate wells were coated using DC-SIGN, and sample antigens added at 1µg/mL (0.1µg/well). The 

primary and secondary antibodies were as detailed in Figure 5.1, at 1/1000 and 1/750 dilutions 

respectively. Error bars represent the standard deviation of the three replicates for the lacZ and No sample 

antigen wells, whereas the dengue VLP error bars correspond to the standard deviation for all of the 

dengue VLP samples in triplicate.  
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5.5 Comparison of dengue virus-like particle samples binding to 
heparin via a capture ELISA 

To compare differences in HSHS-binding capabilities between the variant and 

consensus dengue VLPs, a heparin capture ELISA was performed in the same way as 

the DC-SIGN capture ELISA (Figure 5.7), except that ELISA plates were coated with 

heparin rather than DC-SIGN.   Initial ELISAs were performed on all of the dengue VLP 

samples using both the dengue VLP mAb ELISA and the heparin capture ELISA.  For the 

heparin capture ELISA, wells were initially coated with heparin at 1mg/mL (0.1mg per 

well). 

As before, the dengue VLP mAb ELISA was performed as a reference, and the heparin 

capture ELISA results were compared to the dengue VLP mAb ELISA results (Figure 

5.11).  This was to see if the relative signal intensities changed due to differences in the 

dengue VLPs binding to heparin.  Positive threshold values and signal to noise ratios 

(Table 5.7) were calculated for each ELISA as before.  All of the dengue VLP sample 

average absorbance signals from the dengue VLP mAb ELISA were greater than the 

calculated positive threshold value (0.180), and signal to noise ratios ranged from 1.87 

to 4.19.  For the heparin capture ELISA, only one of the dengue VLP sample signals 

(R107A_22) was greater than the calculated positive threshold value (0.109) and signal 

to noise ratios ranged from 1.15 to 1.41.   

To attempt to improve dengue VLP binding to heparin, the heparin capture ELISA was 

repeated using the R107A_1 dengue VLP and lacZ background control samples at 

heparin coating concentrations of 1, 10, 50 and 100mg/mL (Figure 5.12).  Positive 

threshold values and signal to noise ratios (Table 5.7) were calculated for each heparin 

coating concentration as before.  The dengue VLP sample average absorbance signals 

at the 1mg/mL and 10mg/mL heparin coating concentrations were not greater than 

the calculated positive threshold value for these coating concentrations (0.121 and 

0.150, respectively).  However, the dengue VLP sample signals at the 50mg/mL and 

100mg/mL heparin coating concentrations were greater than the calculated positive 

threshold value for these coating concentrations (0.144 and 0.151, respectively).   
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Table 5.7.  Signal to noise ratios for the dengue VLP samples using the dengue VLP mAb ELISA 

and the heparin capture ELISA. 

Dengue VLP sample Dengue VLP mAb ELISA 

S:N 

Heparin capture ELISA 

S:N 

R097A_4 1.87 1.32 

R097A_13 1.87 1.15 

R097A_43 2.50 1.19 

R203A_2 3.42 1.24 

R203A_54 3.51 1.18 

R261A_1 4.19 1.25 

R261A_4 2.62 1.24 

R107A_1 3.67 1.32 

R107A_22 3.37 1.41 

 
 

 

Figure 5.12.  Optimisation of heparin coating concentration for the heparin capture ELISA. 

ELISA plate wells were coated using heparin at 1, 10, 50 and 100mg/mL (0.1, 1, 5 and 10mg/well), and 

lacZ or dengue VLP (R107A_1) sample antigens added at 1µg/mL (0.1µg/well). The primary and 

secondary antibodies were as detailed in Figure 5.1, at 1/1000 and 1/750 dilutions respectively. Positive 

threshold values (broken lines) were calculated for each heparin-coating concentration based on the 

average lacZ sample absorbance plus three standard deviations. Error bars represent the standard 

deviation of the three sample replicates.  

In general, average absorbance signals from both the R107A_1 dengue VLP and lacZ 

background control samples increased with increasing heparin coating concentration; 

the exception being the lacZ sample signal from the 10mg/mL heparin coating 

concentration, which also exhibited greater standard deviation of sample replicates at 
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this heparin coating concentration compared to the other concentrations.  Signal to 

noise ratios (Table 5.8) also increased with increasing heparin coating concentration, 

ranging from 1.16 to 2.60.  This demonstrated that at the higher heparin coating 

concentrations (50 and 100 mg/mL), the dengue VLP sample was binding to the 

heparin with a greater binding affinity than the lacZ background control sample. 

Table 5.8.  Signal to noise ratios for the dengue VLP sample R107A_1 using different heparin 

coating concentrations for the heparin capture ELISA. 

Heparin coating concentration Signal to noise ratio 

1mg/mL 1.16 

10mg/mL 1.41 

50mg/mL 2.54 

100mg/mL 2.60 

 
The heparin capture ELISA was then performed in parallel with the dengue VLP mAb 

ELISA using new aliquots (not previously freeze-thawed) of all of the dengue VLP 

samples and the lacZ background control sample (Figure 5.13).  For the heparin 

capture ELISA, a heparin coating concentration of 100mg/mL was used because at this 

concentration the lacZ sample background was acceptably low (Figure 5.12; positive 

threshold value 0.151) and the signal to noise ratio using the R107A_1 dengue VLP 

sample was greatest (Table 5.8; signal to noise ratio 2.60).  Positive threshold values 

were calculated as before for both ELISAs.  All of the dengue VLP sample signals were 

greater than the calculated positive threshold (0.345) for the dengue VLP mAb ELISA, 

and all but one of the dengue VLP sample signals (the exception being sample 

R097A_13) were also greater than the calculated positive threshold value (0.237) for 

the heparin capture ELISA. 
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The amount of non-DV proteins present that were able to bind non-specifically to the 

secondary antibody and cause background absorbance signals had been previously 

shown to be consistent across the dengue VLP and lacZ background control samples 

(Figure 5.3).  All of the dengue VLP mAb ELISA results (obtained using both primary and 

secondary antibodies) show differences in the absorbance values between the dengue 

VLP samples, indicating that the amount of dengue VLPs present varies between 

samples.  To simplify analysis of the results from the dengue VLP mAb and heparin 

capture ELISAs (Figure 5.13), the data was first normalised to account for the 

background signal generated by the secondary antibody binding non-specifically to 

non-DV proteins (by subtracting the lacZ negative control signal from the dengue VLP 

signal; Table 5.9).  The normalised average dengue VLP absorbance values from the 

dengue VLP mAb ELISA were used as a measure of the amount of dengue VLPs 

available to bind to the heparin in the capture ELISA.  The normalised average dengue 

VLP absorbance values from the heparin capture ELISA were used as a measure of the 

amount of dengue VLPs actually bound to the heparin in the capture ELISA.  The 

proportion of available dengue VLPs bound to heparin was then calculated (Table 5.9).  

For each dengue VLP sample set, the consensus protein representative sample 

(R097A_4, R203A_2, R261A_1 and R107A_1) was used as a basis for comparison with 

the variant protein samples. 

For the R097A sample set, the consensus protein sample R097A_4 showed 97% of the 

available dengue VLPs bound to heparin, whereas for the variant protein samples 

R097A_13 and R097A_43, 0% and 20% respectively of the available dengue VLPs 

bound to the heparin.  For the R203A sample set, the consensus protein sample 

R203A_2 demonstrated 49% of the available dengue VLPs bound to heparin, whereas 

for the variant protein sample R203A_54, 78% of the available dengue VLPs bound to 

the heparin.  For the R261A sample set, the consensus protein sample R261A_1 

showed 51% of the available dengue VLPs bound to heparin whereas for the variant 

protein sample R261A_4, 64% of the available dengue VLPs bound to the heparin.  For 

the R107A sample set, the consensus protein sample R107A_1 demonstrated 57% of 

the available dengue VLPs bound to heparin whereas for the variant protein sample 
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R107A_22, 56% of the available dengue VLPs bound to the heparin.  When this 

experiment was repeated similar results were obtained (data not shown). 

 
Table 5.9.  Proportion of available dengue VLPs bound to heparin after normalisation of dengue 

VLP mAb and heparin capture ELISA data 

Dengue VLP 

sample 

Available dengue 

VLPs 

Heparin-bound 

dengue VLPs 

Proportion of available dengue 

VLPs bound to heparin 

R097A_4c 0.199 0.194 97% 

R097A_13 0.053 -0.023 0% 

R097A_43 0.219 0.043 20% 

R203A_2c 0.391 0.191 49% 

R203A_54 0.108 0.084 78% 

R261A_1c 0.245 0.125 51% 

R261A_4 0.250 0.159 64% 

R107A_1
c
 0.284 0.162 57% 

R107A_22 0.544 0.304 56% 
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5.6 Comparison of dengue virus-like particle samples oligomeric 
rearrangements in response to low pH 

It was intended as part of this chapter to determine whether the low pH-induced DV E 

oligomeric rearrangements (required for virus and host cell membrane fusion) were 

prevented in any of the dengue VLP quasispecies variant samples with residue 

substitutions in areas of E known to be important during conformational change.  

Initial experiments were intended to be performed as described previously (Allison et 

al., 1999) by subjecting the dengue VLPs to low pH (pH 6.0), before neutralising and 

cross-linking oligomers together using dimethyl pimelimidate.  The lipid bilayer would 

then be solubilised using 1% triton X-100 for 1 hour before SDS-PAGE, Western blot, 

and immunodetection of proteins.  It was expected from previously published 

experiments using TBEV VLPs, that low pH-treated VLPs would exhibit DV E in trimeric 

form, whereas without low pH-treatment, E would be predominantly in dimeric form, 

and no trimers would be evident (Figure 5.14; Allison et al., 1999). 

 

Figure 5.14.  Expected dengue virus envelope glycoprotein oligomeric state after low pH treatment 

and chemical cross-linking. 

Figure modified from Allison et al., 1999. Flavivirus (TBE) VLPs pretreated at pH 6.0 before cross-

linking and detergent solubilisation show E in three distinct oligomeric states: trimer, dimer and 
monomer. Without low pH pre-treatment (pH 8.0), only dimer and monomer form are visible. At pH 6.0, 

the dimer and monomer forms, and at pH 8.0, the monomer form are visible because cross-linking is 

incomplete. 

 
However, baculovirus was known to be present in the dengue VLP samples, as 

purification attempts had failed to separate the baculovirus from the dengue VLPs 

(Chapter 4).  Baculovirus GP64 is a class III fusion protein, which forms a trimeric 

structure in both the pre- and post-fusion states (Kadlec et al., 2008).  Baculovirus 
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GP64 and DV E are similar in size (64 kDa and 54 kDa respectively), and the antibodies 

used in Chapter 4 for immunodetection of DV E from Western blots were shown to 

cross-react with baculovirus GP64 (discussed in section 4.9.6).  It was therefore 

decided that it was unfeasible at this time to attempt analysis of low pH-induced DV E 

oligomeric rearrangements using this method, as clear distinction from baculovirus 

GP64 was not possible.  Once purification of the dengue VLPs is successful it is 

intended that this experiment will be re-visited. 
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5.7 Dengue virus-like particle ELISA using human serum 
To assess the suitability of the dengue VLPs as a source of diagnostic antigen, an ELISA 

was performed using human serum containing DV antibodies (Figure 5.15; section 

2.9.1).  DV antibody negative human serum was used as a negative control.  ELISA 

plates were coated with dengue VLP or lacZ samples at 1µg/mL (0.1µg/well), as with 

the dengue VLP mAb ELISAs performed previously (sections 5.3 to 5.5).  DV antibody 

positive and negative human sera were obtained from the National Institute for 

Biological Standards and Control (NIBSC) for use as the primary antibody.  The 

secondary antibody used was HRP-conjugated goat polyclonal anti-human IgG.  A 

positive threshold value (1.019) was calculated as with previous ELISAs based on the 

average lacZ sample absorbance plus three standard deviations.  This positive 

threshold value was far greater than any observed previously with the dengue VLP 

mAb ELISA as the average signal from the lacZ sample was so high, indicating non-

specific binding to a non-DV protein was occurring.  Only four of the dengue VLP 

samples (R097A_4, R097A_13, R097A_43 and R203A_2) enabled detection of the DV 

antibodies with average absorbance signals that were greater than this positive 

threshold value.  Whilst the DV antibody negative sera produced average signals for all 

of the dengue VLPs (range 0.521 to 0.892) that were less than the positive threshold 

value, the negative serum had not been expected to bind to the dengue VLP samples 

at all as it did not contain DV antibodies.  Signal to noise ratios (Table 5.10) were 

calculated as before, and were shown to be similar in range for both DV antibody 

positive (range 0.89 to 1.53) and negative (range 0.88 to 1.50) human serum.  

For each sample antigen, control wells lacking the DV antibody positive or negative 

human serum were also included to measure any direct binding of the secondary 

antibody to the sample antigens.  The absorbance values from these wells were the 

same as for non-coated wells (data not shown), confirming that the secondary 

antibody was not binding directly to the dengue VLP or lacZ sample antigens.  This 

indicated that the absorbance signals observed from the lacZ sample-coated wells 

were due to non-specific binding of the human serum to non-DV proteins in the 

samples.   



Chapter 5: Recombinant dengue VLP analysis 

230 
 

 
 
 
 
 

 

 

 
  

F
ig

u
re

 5
.1

5
. 
 D

e
n

g
u

e 
V

L
P

 E
L

IS
A

 u
si

n
g

 h
u

m
a

n
 s

er
u

m
. 

T
h

e 
p
ri

m
ar

y
 a

n
ti

b
o
d
ie

s 
w

er
e 

D
V

 a
n
ti

b
o

d
y

 p
o

si
ti

v
e 

an
d

 n
eg

at
iv

e 
h

u
m

an
 s

er
u
m

, 
an

d
 t

h
e 

se
co

n
d

ar
y

 a
n

ti
b
o
d
y
 w

as
 H

R
P

-c
o
n
ju

g
at

ed
 g

o
at

 p
A

b
 t

o
 h

u
m

an
 I

g
G

. 
T

h
e 

p
o

si
ti

v
e 

th
re

sh
o
ld

 v
al

u
e 

(1
.0

1
9
) 

w
as

 c
al

cu
la

te
d

 b
as

ed
 o

n
 t

h
e 

av
er

ag
e 

la
cZ

 s
am

p
le

 a
b

so
rb

an
ce

 p
lu

s 
th

re
e 

st
an

d
ar

d
 d

ev
ia

ti
o
n
s.

 E
rr

o
r 

b
ar

s 
re

p
re

se
n
t 

th
e 

st
an

d
ar

d
 

d
ev

ia
ti

o
n
 o

f 
th

e 
th

re
e 

re
p
li

ca
te

s 
fo

r 
ea

ch
 s

am
p

le
. 

 



Chapter 5: Recombinant dengue VLP analysis 

231 
 

Table 5.10.  Signal to noise ratios for the dengue VLP samples using human serum as primary 

antibody in the dengue VLP ELISA. 

Dengue VLP 

sample 

DV antibody positive 

human serum 

S:N 

DV antibody negative 

human serum 

S:N 

R097A_4 1.27 1.11 

R097A_13 1.53 1.50 

R097A_43 1.09 0.93 

R203A_2 1.12 1.15 

R203A_54 1.01 0.95 

R261A_1 0.97 1.06 

R261A_4 0.93 1.06 

R107A_1 0.92 0.94 

R107A_22 0.89 0.88 

 
Optimisation of the human serum concentration may have reduced the observed 

cross-reactivity and improved signal to noise ratios between the dengue VLP and lacZ 

samples.  However, it was decided not to proceed until the dengue VLPs samples had 

been further purified to reduce the potential for cross reactivity. 
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5.8 Discussion 
The first objective for this chapter was to develop and optimise a dengue VLP ELISA 

using the recombinant dengue VLPs produced in Chapter 4 as antigen.  This was to 

enable detection of the dengue VLPs over the non-DV background proteins present in 

the dengue VLP samples.  The optimised ELISA was then intended to be used as the 

basis for capture ELISAs using recombinant DC-SIGN and heparin, as DC-SIGN and HSHS 

(a heparin analogue) are implicated in DV attachment to host cells.  These capture 

ELISAs would allow comparison of the host cell attachment capabilities of the DV 

quasispecies consensus and variant VLPs within each patient sample set.  To compare 

the ability of the quasispecies consensus and variant VLPs to undergo low pH-induced 

E oligomeric rearrangements, dengue VLPs were intended to be subjected to low pH 

and the oligomeric conformation assessed.  The dengue VLPs were also to be tested by 

ELISA using human serum containing DV antibodies, to assess their suitability as source 

of antigen for diagnostic ELISAs. 

5.8.1 Development and optimisation of an ELISA using recombinant dengue 
virus-like particles as antigen 

Initially two ELISAs were tested to compare dengue VLP and non-DV protein 

background detection using either a mouse mAb to DV E (mAb ELISA; Figure 5.1) or a 

rabbit pAb to DV types 1, 2, 3 and 4 (pAb ELISA; Figure 5.2) as the primary antibody.  

The lacZ sample (concentrated clarified medium from rBV.lacZ-infected cells) was used 

as a background control, representative of the non-DV proteins present in the dengue 

VLP samples.  A statistical positive threshold value was calculated for each ELISA based 

on the average lacZ sample absorbance (from three replicates) plus three standard 

deviations, as this encompasses 99.7% of normally distributed data (Swinscow, 1996).  

The mAb ELISA proved superior to the pAb ELISA both in terms of a lower positive 

threshold value and greater signal to noise ratios (Table 5.1) for all but one (R097A_13) 

of the dengue VLP samples tested.  However, both ELISAs still displayed significant 

antibody cross-reactivity with the lacZ background control sample. 

Baculovirus GP64 was confirmed as the source of the antibody cross-reactivity 

observed using purified GP64 as antigen (Figures 5.1 to 5.3).  For the pAb ELISA, results 

indicated that it was the primary antibody (rabbit pAb to DV types 1, 2, 3 and 4) that 
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was binding non-specifically to baculovirus GP64 (Figure 5.3).  For the mAb ELISA, the 

secondary antibody (HRP-conjugated rabbit pAb to mouse IgG) was identified as the 

source of the non-specific binding (Figure 5.3).  Reactivity to baculovirus GP64 was not 

observed when the pAb ELISA secondary antibody (HRP-conjugated goat pAb to mouse 

IgG) was used alone.  Taken together, these results suggest that a component of rabbit 

serum is able to bind to baculovirus GP64, and that sourcing antibodies raised in a 

species other than rabbit might alleviate the cross-reactivity.  No polyclonal DV 

antibodies raised in mouse or goat were able to be sourced commercially, so the pAb 

ELISA was not tested further.  Non-specific antibody reactivity to non-DV proteins in 

the samples was shown to be consistent across all of the dengue VLP samples and the 

lacZ background control sample, based on the absorbance values generated by the 

mAb ELISA using only the secondary antibody (Figure 5.3).  This confirmed that the lacZ 

sample was an appropriate background control for these ELISAs.  Even without 

substituting the secondary antibody for the mAb ELISA, after optimisation of blocking 

conditions, and primary and secondary antibody concentrations, all nine of the dengue 

VLP samples were able to be detected over the non-DV protein background signal.   

5.8.2 Comparison of dengue virus-like particle samples binding to DC-SIGN 
via a capture ELISA 

DC-SIGN and other similar lectins have been proposed as DV receptors both at the 

initial site of infection (DCs; Tassaneetrithep et al., 2003) and also at secondary sites 

(endothelial cells and macrophages; Miller et al., 2008; Navarro-Sanchez et al., 2003).   

The ability of the dengue VLP samples to bind to recombinant DC-SIGN was assessed 

using the dengue VLP mAb ELISA with an additional DC-SIGN capture step.  The dengue 

VLP mAb ELISA was performed in parallel to the capture ELISA using the same samples, 

so the relative absorbance signals could be directly compared between the two ELISAs.  

Lectins such as DC-SIGN bind high-mannose glycans in the presence of calcium ions 

(Feinberg et al., 2001).  To the best of my knowledge, binding of baculovirus GP64 to 

DC-SIGN has not been shown, but was a possibility due to GP64s glycosylated status.   

The initial DC-SIGN capture ELISA (Figure 5.8) was performed using all of the dengue 

VLP samples, and ELISA plates coated with DC-SIGN at 1 µg/mL.  The dengue VLP 
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samples displayed a similarly low affinity for DC-SIGN as the lacZ sample, so the ELISA 

was repeated (Figure 5.9) using just the R107A_1 dengue VLP and lacZ samples, and 

ELISA plates coated with DC-SIGN at increasing concentrations (1 µg/mL to 100 µg/mL).  

The dengue VLP sample average absorbance signal was not greater than the calculated 

positive threshold value at any of the DC-SIGN coating concentrations tested.  

Although the average signals increased, the signal to noise ratios (Table 5.6) decreased 

with increasing DC-SIGN coating concentration.  The absorbance signals generated 

were shown to result from the secondary antibody (HRP-conjugated rabbit pAb to 

mouse IgG) binding directly to DC-SIGN.  The recombinant DC-SIGN used for the 

capture ELISA was a chimeric fusion protein, with the extracellular domain of human 

DC-SIGN fused to the Fc region of human IgG1.  It may be that the secondary antibody 

was binding directly to the human IgG1 Fc region of the chimeric protein rather than 

the DC-SIGN region.   

Both the dengue VLP and lacZ samples showed no affinity for DC-SIGN at any of the 

concentrations tested.  This was unexpected for the dengue VLP samples and may 

indicate that the recombinant DV E glycans were not sufficiently processed by the 

insect cells, affecting binding of the dengue VLPs to DC-SIGN.  It may be that further 

increasing the DC-SIGN coating concentration would enable the dengue VLPs to bind to 

the DC-SIGN.  However, as an alternative recombinant DC-SIGN protein (not fused to 

the human IgG1 Fc region) would be required to overcome the problem of the 

secondary antibody binding to the recombinant DC-SIGN, it was decided to move on to 

testing the dengue VLP samples using a heparin capture ELISA. 

5.8.3 Comparison of dengue virus-like particle samples binding to heparin 
via a capture ELISA 

HSHS expressed on the surface of target cells has been shown to bind DV E (Chen et 

al., 1997), and is thought to concentrate the virus on the cell surface, enabling 

subsequent higher-affinity interactions with specific receptors.  Heparin is also highly 

sulphated, with close structural homology to heparan sulphate.  As such, heparin is an 

acceptable surrogate for HSHS in binding studies, and has been previously used in 

investigations of DV E binding to host cells (Chen et al., 1997; Marks et al., 2001; 
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Thullier et al., 2001).  The ability of the dengue VLP samples to bind to heparin was 

assessed using the dengue VLP mAb ELISA with an additional heparin capture step.  

The dengue VLP mAb ELISA was performed in parallel to the capture ELISA using the 

same samples, and the lacZ sample was used as a background control. 

The initial heparin capture ELISA (Figure 5.11) was performed using ELISA plates coated 

with heparin at 1 mg/mL.  As the dengue VLP samples displayed a similarly low affinity 

for heparin as the lacZ sample, the ELISA was repeated (Figure 5.12) using just the 

R107A_1 dengue VLP and lacZ samples, with ELISA plates coated with increasing 

concentrations of heparin (1 mg/mL to 100 mg/mL.  The dengue VLP sample average 

absorbance signal was greater than the calculated positive threshold at the highest 

heparin coating concentrations (50 and 100 mg/mL).  The signal to noise ratios (Table 

5.8) also increased with increasing heparin coating concentration, so that at the 50 and 

100mg/mL heparin coating concentrations, the signal from the dengue VLP sample was 

clearly distinguishable from the background signal measured using the lacZ sample.   

The heparin capture ELISA was then performed on all of the dengue VLP samples using 

ELISA plates coated with heparin at 100mg/mL, which had been shown to produce an 

optimal signal to noise ratio, and a low positive threshold value (Figure 5.12).  The 

dengue VLP mAb ELISA was performed in parallel to the capture ELISA using the same 

samples so the absorbance signals could be directly compared between the two ELISAs 

(Figure 5.13).  A measure of the dengue VLPs for each sample that were available to 

bind to the heparin was obtained using the dengue VLP mAb ELISA, and the proportion 

of these actually bound to heparin was calculated from the heparin capture ELISA 

results (Table 5.9).  The R097A sample set showed the greatest discrepancy between 

the amount of available dengue VLPs and those able to bind to the heparin.  The 

contrast between the quasispecies consensus and variant VLP samples was also more 

extreme for the R097A sample set than was seen with any of the other sample sets.  

For the consensus protein sample R097A_4, 97% of the available dengue VLPs bound 

to heparin, whilst for the variant protein samples R097A_13 and R097A_43, 0% and 

20% respectively of the available dengue VLPs bound to heparin.  The R203A and 
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R261A sample sets both exhibited an increase in the proportion of available dengue 

VLPs bound to heparin in the variant (R203A_54, 78%; R261A_4, 64%) compared to 

consensus protein samples (R203A_2, 49%; R261A_1, 51%).  The R107A sample set 

showed almost no difference in heparin binding between consensus (R107A_1, 57%) 

and variant (R107A_22, 56%) protein samples. 

The R097A_13 quasispecies variant VLP sample contains a single residue substitution 

in E compared to the R097A_4 quasispecies consensus VLP sample.  This residue 

substitution is at position E320, and involves the substitution of a nonpolar amino acid 

with a large aliphatic hydrophobic side chain (isoleucine) with a polar amino acid 

(threonine).  DV E position E320 was demonstrated by three-dimensional modelling 

(section 3.9) to be within 4Å of a proposed HSHS binding site implicated in DV binding 

to host cells (Chen et al., 1997; Thullier et al., 2001).  Neutralisation escape mutations 

in multiple flaviviruses map to this HSHS binding site (Jiang et al., 1993; Lin et al., 

1994).  Isoleucine is often important for the correct folding of protein, so it may be 

that the substitution of isoleucine for threonine is sufficient to disrupt the protein 

structure around the HSHS binding site so that binding to heparin is prevented.  This 

would be consistent with the heparin capture ELISA results, which showed no heparin 

binding for this dengue VLP sample. 

The R097A_43 quasispecies variant VLP sample also contains a single residue 

substitution in E compared to the R097A_4 quasispecies consensus VLP sample.  This 

residue substitution is at position E280 and involves the substitution of a basic amino 

acid with an imidazole ring (histidine) for a nonpolar amino acid with a large aliphatic 

hydrophobic side chain (leucine).  DV E position E280 was demonstrated by three-

dimensional modelling (section 3.9) to be surface accessible, and located within the kl 

hairpin loop at the domain I/II interface, which is implicated in conformational 

rearrangements during fusion (Modis et al., 2003).  Removal of the histidine residue at 

this location was predicted to impact on the protein’s response to acidic environments, 

not cell attachment.  However, although E position E280 is distant from the HSHS 

binding site, it does reside at the interface between structural domains I and II. 
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Flavivirus E amino acid substitutions that affect virulence have been shown to cluster 

at the interfaces between E structural domains (Rey et al., 1995); Figure 1.16).  In this 

case, the substituted amino acid leucine will tend to orient to the interior of the folded 

protein due to its hydrophobic nature, which may impact upon protein folding.  

Changes in structure at protein domain interfaces could have magnified consequences 

for other domains within the protein as the interfaces between domains often act as 

hinge regions during conformational change.  This residue substitution at such an 

important location may alter the relative orientations of the other protein domains 

such that the HSHS binding site is less accessible (relative to the quasispecies 

consensus VLP sample R097A_4).  This would be consistent with the heparin capture 

ELISA results for this sample, which showed only 20% of the available dengue VLPs 

bound to heparin. 

Decreased ability to bind HSHS might be expected to confer a selective disadvantage 

for the DV quasispecies variant, as the cell attachment process would be less efficient.  

This would lead to decreased infectivity compared to variants demonstrating a higher 

affinity for HSHS.  However, quasispecies variants with lower HSHS affinity would still 

be able to enter cells in an antibody-dependent manner by forming a complex with 

non-neutralising antibodies from a previous DV infection.  Such quasispecies variants 

would then enter leukocytes via fc receptor-mediated endocytosis, but remain in a 

non-neutralised state and be able to replicate and disseminate more virus.  The 

production and secretion of chemokines and cytokines by the cell in response to the 

subsequent increase in viral replication is thought to lead to the increase in vascular 

permeability that is the hallmark of severe dengue (Halstead, 1988).  The R097A 

sample was obtained from a patient with severe dengue, which was later confirmed to 

be a secondary infection.  Therefore, this patient had pre-existing antibodies to a 

previous DV infection, which would have enabled uptake of quasispecies variants with 

low heparin binding affinity into the host cells.  

The R203A_54 and R261A_4 quasispecies variant VLPs each contain amino acid 

substitutions within E compared to their respective quasispecies consensus VLPs 
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(R203A_2 and R261A_1).  For R203A_54 there are amino acid substitutions at two 

locations.  One of these is at position E202, and involves a conservative amino acid 

change where a basic amino acid (lysine) is replaced with a functionally similar basic 

amino acid (arginine).  Three-dimensional modelling (Table 3.15) demonstrated DV E 

position E202 to be within 4Å of the other protein chain that makes up the dimer.  

Mutations leading to amino acid substitutions at E position E202 commonly occur 

during routine serial passage in mammalian cells (Lee, Weir and Dalgarno 1997).  

Therefore, as suggested in Chapter 3, this mutation may represent a beneficial 

adaptation of the virus to growth in mammalian cells.  The other amino acid change in 

R203A_54 is at position E345, and involves a drastic amino acid substitution where 

three amino acids (histidine-asparagine-glycine) are replaced with five amino acids 

(isoleucine-glutamine-isoleucine-serine-serine).  Incorporating the two extra residues 

into the protein chain was predicted to impact on protein structure (section 3.10).  

Three-dimensional modelling (section 3.9) demonstrated DV E position E345 to be 

situated on the surface of the protein at the distal face of domain III.  This part of the 

domain is thought to contain the flavivirus receptor-binding motif (Crill and Roehrig, 

2001) and amino acid subtitutions in this part of the domain are known to affect 

virulence and cell tropism, presumably through interference with cell attachment.  This 

is consistent with the heparin capture ELISA results for this sample, which showed 

increased ability to bind heparin compared to the quasispecies consensus dengue VLP 

for this sample set (R203A_2). 

The R261A_4 amino acid substitution is at position E201 and involves a conservative 

amino acid change where a polar amino acid with a long hydrophilic side chain 

(asparagine) is replaced with a polar amino acid (serine).  Three-dimensional modelling 

(Table 3.15) demonstrated DV E position E201 to be surface accessible, and located 

within the same hinge region at the domain I/II interface as the R097A_43 drastic 

amino acid substitution and the R203A_54 conservative substitutions.  This 

conservative protein change at this location may alter the relative orientations of the 

other protein domains, such that the HSHS binding site is more accessible (relative to 

the quasispecies consensus VLP sample R261A_1).  This would be consistent with the 
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heparin capture ELISA results, which showed increased ability to bind heparin for the 

R261A_4 dengue VLP sample compared to the quasispecies consensus VLP for this 

sample set (R261A_1).   

Increased ability to bind HSHS could be predicted to confer a selective advantage for 

the DV quasispecies variant, as the cell attachment process would be more efficient.  

This could lead to increased infectivity compared to variants demonstrating a lower 

affinity for HSHS, which would be reflected in the quasispecies population, as variants 

with high affinity for HSHS would be expected to replicate faster and comprise a higher 

proportion of the population.  In support of this, the residue substitution at E position 

E201 was identified in six (13%) of the clones from the DV quasispecies population 

from patient R261A.  In Chapter 3 it was proposed that the relative abundance of this 

lineage within the quasispecies population for this sample could be due to increased 

replication efficiency.  However, routine passage of a DV type 4 vaccine candidate in 

fetal rhesus lung cells yielded a virus variant with increased HSHS binding affinity, 

which predominated over other quasipecies variants within three passages, but 

exhibited reduced infectivity and immunogenicity in rhesus monkeys (Anez et al., 

2009).  This virus variant became less dominant within the quasispecies population 

when the virus population was transferred from mammalian cell culture into a 

mosquito cell line (C6/36); selection of the parental wild-type virus was favoured in the 

mosquito cells.  Rapid clearance from the bloodstream and reduced ability to cause 

disseminated infection were proposed as the explanation for virus attenuation despite 

increased HSHS binding affinity (Anez et al., 2009).  HSHS is a component of 

extracellular matrices so it is conceivable that increased heparin binding ability could 

result in the virus becoming trapped extracellularly and therefore being cleared more 

rapidly from the host. 

The R203A sample was obtained from a patient with severe dengue, which was later 

confirmed to be a secondary infection.  The R261A sample was obtained from a patient 

with mild dengue, but follow-up samples after discharge from hospital were not taken, 

so serological confirmation of the type of infection (primary or secondary) could not be 
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obtained.  If patient R261 had a primary infection, and therefore no pre-existing DV 

antibodies, this could explain the difference in disease severity between patient R261 

and patient R203 (who had a secondary infection), despite the increased heparin 

binding ability of the quasispecies variants.   

5.8.4 Comparison of dengue virus-like particle samples oligomeric 
rearrangements in response to low pH  

It had been intended to compare the quasispecies consensus and variant dengue VLPs 

in terms of their ability to undergo conformational rearrangements in response to low 

pH.  These conformational rearrangements are required during DV infection to enable 

fusion of virus and cell membranes and subsequent replication of the virus genome by 

the host cell.  However, given the similarities between DV E and baculovirus GP64, it 

was decided that it would be too difficult to distinguish between them using this 

method.  This experiment was therefore put on hold until the dengue VLPs and 

baculovirus had been separated by further purification. 

5.8.5 Dengue virus-like particle ELISA using human serum 
To assess the suitability of the dengue VLPs as source of antigen for diagnostic ELISAs, 

a dengue VLP ELISA was performed using human serum containing antibodies to all 

four DV types (Figure 5.15).  High levels of binding were observed between the human 

serum and the lacZ background control sample, indicating that the human serum was 

binding non-specifically to non-DV proteins within the sample.  The same problem had 

been observed previously in the dengue VLP pAb ELISA, which used rabbit polyclonal 

serum containing DV antibodies as the primary antibody, and to a lesser extent in the 

dengue VLP mAb ELISA, which used rabbit pAb to mouse IgG as the secondary 

detection antibody.  In both of these cases, baculovirus GP64 was shown to be the 

source of the cross-reactivity, using purified GP64, so it is likely that is also the case 

with the human serum. 

It was therefore demonstrated that these dengue VLP samples were unsuitable for use 

as antigen in diagnostic ELISAs due to the cross-reactivity observed.   Although this 

cross-reactivity may have been reduced by optimisation of the human serum 
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concentration, it was decided not to proceed with this until the dengue VLP samples 

had been further purified to remove the contaminating baculovirus.   
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5.9 Conclusions and summary 
As set out in the objectives for this chapter, an ELISA was developed and optimised 

that enabled detection of all of the recombinant dengue VLPs produced in Chapter 4.  

With this ELISA it was demonstrated that similar levels of background (non-DV) protein 

were present in the dengue VLP and lacZ background control samples, confirming the 

suitability of the lacZ sample as a background control using this ELISA method.  

Baculovirus GP64 was indicated as the primary cause of the antibody cross-reactivity 

using purified GP64. 

To assess the cell-attachment capabilities of the dengue VLPs, and perform 

comparisons between the quasispecies consensus and variant VLPs from each sample 

set, DC-SIGN and heparin capture ELISAs were performed.  The DC-SIGN capture ELISA 

was unsuccessful as no dengue VLP binding to DC-SIGN was detected over that 

observed from the lacZ background control.  The absorbance signals generated were 

shown to result from the secondary antibody binding directly to the recombinant DC-

SIGN.  It was decided not to proceed with the DC-SIGN capture ELISA until an 

alternative source of either recombinant DC-SIGN or secondary antibody that 

overcame these problems could be acquired.   

The heparin capture ELISA was developed and optimised, and showed differences in 

heparin binding ability of four of the variant VLP samples compared to their respective 

consensus VLPs.  Reductions in heparin binding ability were observed for both of the 

variant VLP samples (R097A_13 and R097A_43) from the R097A sample set.  The 

R097A_13 sample contained a drastic residue substitution within 4Å of the proposed 

HSHS binding site, so alterations in heparin binding had been predicted previously 

(Table 3.15) for this sample.  The R097A_43 sample contained a drastic residue 

substitution at the interface of DV E structural domains I and II, which had been 

predicted to impact upon low pH-induced conformational change and fusion rather 

than cell attachment.  Improvements in heparin binding ability were observed for the 

variant VLP samples (R203A_54 and R261A_4) from both the R203A and R261A sample 

sets.  The R203A_54 VLP sample contained amino acid substitutions in two locations.  

One of these was a drastic residue substitution on the distal face of domain III, which 
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had been predicted to potentially alter cell attachment.  The other amino acid 

substitution in the R203A_54 sample was a conservative residue substitutions at E201.  

A similar conservative amino acid change was observed in the R261A_4 VLP sample at 

E202, within the interface between structural domains I and II, as described for the 

R097A_43 VLP sample.  It is proposed that, as the interfaces between DV structural 

domains function as hinge regions during conformational changes, residue 

substitutions in these positions may alter the relative orientation of other domains 

within the protein.  This could be either detrimental (as in the case of the R097A_43 

drastic residue substitution) or beneficial (as in the case of the R203A_54 and R261A_4 

conservative residue substitutions) to heparin binding affinity, by altering the 

accessibility of the HSHS binding site.  Further support could be lent to these 

conclusions by computational modelling of the effects of these residue substitutions 

on the structure of DV E.  These results are a preliminary indication of differences in 

infectivity possessed by DV variants within the quasispecies population.  Linking these 

observations to disease severity is complex, as quasispecies variants with low heparin 

binding affinity can still enter cells in an antibody-dependent manner and 

subsequently replicate, provided pre-existing antibodies to a previous DV infection are 

present.  Secondary DV infections were confirmed in patients R097 and R203, who 

both experienced severe disease.  However, for patient R261, who experienced mild 

disease, but also exhibited an abundance of quasispecies variants with increased 

heparin binding affinity, serological confirmation of the type of infection (primary or 

secondary) could not be obtained. 

To assess the suitability of the dengue VLPs as source of antigen for diagnostic ELISAs, 

assays were performed using human serum containing antibodies to DV as the primary 

antibody.  These ELISAs were unsuccessful as it was found that human serum (both 

positive and negative for DV antibodies) bound to the lacZ background control sample 

similarly to the dengue VLP samples.  Similar cross-reactivity was observed previously 

using rabbit serum in the initial dengue VLP mAb and pAb ELISAs, and baculovirus 

GP64 identified as the likely cause using purified GP64.  Further analysis was deemed 
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unfeasible until the dengue VLPs had been effectively purified to remove the 

contaminating baculovirus. 

It was also intended as part of this chapter to investigate the ability of the dengue VLPs 

to undergo low pH-induced oligomeric rearrangements required for membrane fusion.  

However, due to the similarities between DV E and baculovirus GP64, this experiment 

was postponed until the dengue VLPs could be further purified. 
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CHAPTER 6. FINAL DISCUSSION, 
CONCLUSIONS AND FUTURE WORK 
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The work presented in this thesis was undertaken to improve the available knowledge 

surrounding dengue virus (DV) quasispecies populations and to investigate links with 

disease severity.  The hypothesis was that DV quasispecies populations affect disease 

severity in individual patients.  Work previous to this thesis demonstrated that DVs 

exist as quasispecies populations within individual mosquito and human hosts (Chao et 

al., 2005; Craig et al., 2003; Lin et al., 2004; Wang et al., 2002a; Wang et al., 2002b).  

Initial studies looked at DVs from patients or mosquitoes in Taiwan (Lin et al., 2004; 

Wang et al., 2002a) and Myanmar (Craig et al., 2003), and focused on the DV envelope 

glycoprotein (E) gene, as it encodes E, which comprises the majority of the outer 

surface of the virion.  Subsequent work has shown that the DV E gene region exhibits 

greater heterogeneity than any other region of the genome (Chao et al., 2005; Wang 

et al., 2002b).  As a result of so few studies, little is known about how DV quasispecies 

population dynamics vary between different individuals, host populations and 

infecting virus strains.  Expanding the knowledge in this area is essential for in-depth 

understanding of the biology, epidemiology and evolution of DV.  This has implications 

for disease pathogenesis, vaccine design and safety, the implementation of effective 

control and treatment programs, and the development of novel therapeutic and 

diagnostic tools.   

The primary aim of the work presented in this thesis was to investigate DV 

quasispecies populations, both within individual patient samples and between samples 

from the same outbreak in Sri Lanka, in 2006.  Relationships between quasispecies 

variation and disease severity were also examined.  Across the six dengue patient 

samples successfully analysed, an average mean diversity of 0.018% (range 0.0034% to 

0.053%) was obtained for the intrahost quasispecies populations, which is consistent 

with reported error rates for viral RNA polymerases during natural replication (0.01%; 

Smith et al., 1997).  No statistically significant correlations were observed between the 

extent of quasispecies variation and disease severity.  Compared to previously 

reported mean diversities of between 0.22% and 0.47% (Craig et al., 2003; Lin et al., 

2004; Wang et al., 2002a), the results from this study show considerably less 

quasispecies variation in all of the patient samples analysed.  This difference in the 
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extent of quasispecies sequence variation was shown to be directly related to the 

fidelity of the enzymes used by each group for RT-PCR amplification of the DV RNA.  

These results have demonstrated clearly that future work of this kind must be 

conducted using high-fidelity enzymes for both reverse transcription and amplification 

of cDNA by PCR.  In light of the results from this study, previously reported DV 

quasispecies mean diversities need to be re-examined to account more accurately for 

mutations introduced by the amplification process itself.   

Consistent with previous reports (Wang et al., 2002a), genome-defective quasispecies 

variants with insertion or deletion mutations were observed predominantly in samples 

from patients with severe cases of dengue.  These observations are consistent with a 

role for specific quasispecies variants in the pathogenesis of disease; however, further 

work would be required to determine their contribution to disease pathogenesis.  It 

has been suggested previously that the transmission of defective quasispecies variants 

may be selectively advantageous for co-infecting non-defective variants by ensuring 

the presence of viruses differentially adapted to human or mosquito cells, modulating 

host immune responses, or allowing the production of extra C and prM (Aaskov et al., 

2006).  Longer-term studies of DV quasispecies populations from humans and 

mosquitoes in Sri Lanka would be required to determine whether the genome-

defective quasispecies variants identified in this study were stably transmitted, and 

were present after the 2006 dengue season.  

Given the technological advances that have occurred since beginning this work, in 

particular with regards to next-generation sequencing, it is likely that studies like this 

will be conducted very differently in future.  Massively parallel ultra-deep 

pyrosequencing has been used for the detailed analysis of human immunodeficiency 

virus (HIV) quasispecies populations from individual patients (Rozera et al., 2009).  PCR 

products were clonally amplified on capture beads in water-in-oil emulsion micro-

reactors, abolishing the need for cloning into E. coli.  The quantity of data generated 

(13,456 reads per sample) was several orders of magnitude higher than any previously 

obtained using conventional approaches based on cloning of PCR products or limiting 
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dilution PCR.  Similarly, next-generation sequencing has been used to examine 

quasispecies populations of foot and mouth disease virus (Wright et al., 2011) and the 

2009 pandemic influenza A virus (Kuroda et al., 2010).  The current limitations to this 

approach include the requirement for large quantities of DNA (µg) as starting material, 

short sequence read lengths, high intrinsic error frequency, high cost, and difficulties 

with computational analysis of such large data sets.  These are likely to be improved as 

development of the technology progresses. 

To investigate relationships between the infecting DV genotype and disease severity, 

phylogenetic analyses of the intrahost quasispecies populations were conducted for 

the six dengue patient samples using the quasispecies E gene sequences.  Within each 

DV type, strains (quasispecies consensus sequences) from different patients were 

identified as having greater than 99% sequence homology, and were shown to be the 

same genotype, appropriate to the geographic origin of the samples.  No relationship 

was observed between the infecting DV genotype and disease severity, because within 

DV types, all of the quasispecies consensus and variant E gene sequences were 

identified as the same genotype, regardless of the severity of disease experienced by 

the patient.  Consistent with this observation, there was no evidence of intra-DV type 

(inter-genotype) recombination in the quasispecies populations from any of the 

patient samples. However, sequencing the rest of the genome for the DV quasispecies 

populations from these patient samples could yield further differences between them 

that could account for the differences in disease severity, and would enable 

identification of recombination events outside of the E gene.  Mutations in the 5’ and 

3’ non-coding regions and the non-structural-5 (NS5) gene of DVs have been shown to 

be associated with changes in viral replication efficiency (Leitmeyer et al., 1999; Tajima 

et al., 2007; Zhao et al., 2010).  Increased viral replication efficiency has been linked to 

high viral loads in blood, and severe disease presentation (Wang et al., 2006).    

The locations of amino acid substitutions encoded by the DV quasispecies E gene 

mutations were mapped to the three-dimensional structure of DV E.  This was to 

identify those mutations with the potential to affect virulence or cell tropism on the 
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basis of their proximity to important structural features.  Amino acid substitutions that 

were surface accessible, or proximal to the fusion peptide, proposed HSHS binding site 

or the other protein chain within the E dimer, were highlighted.  Amino acid 

substitutions were less frequently observed at these locations in the samples from 

patients with mild disease than in those from patients with severe disease, which is 

also consistent with a role for specific quasispecies variants in the pathogenesis of 

disease.  Using this method, nine E gene clones were identified for recombinant 

protein production to further investigate the effects of the mutations on protein 

function.  These nine variants were from four different patient samples, and were 

chosen because they either represented the quasispecies consensus E gene sequence 

for that patient sample, or they contained a nonsynonymous non-frameshift mutation 

with the potential to affect virulence or cell tropism.   

Recombinant baculoviruses (rBVs) were produced containing the DV type 1 pre-

membrane glycoprotein (prM) gene, and each of the quasispecies variant E genes.  

Upon infection of insect cells with the rBVs, secreted dengue virus-like particles (VLPs) 

were produced, comprising DV type 1 membrane (M) and quasispecies E.  The source 

of the prM gene was kept consistent so that any differences in protein function 

between the VLPs could be attributed to variations in E.  Attempts to purify the dengue 

VLPs were unsuccessful, and there were problems with immunodetection of the 

dengue VLPs from Western blots due to antibody cross-reactivity with baculovirus 

GP64.  Production of dengue VLPs in a plasmid vector based expression system would 

provide a cleaner VLP preparation in that there would not be baculovirus, or other viral 

vectors present.  This would overcome the problems observed with antibody cross-

reactivity with baculovirus GP64, thus enabling efficient purification by 

immunoprecipitation and also improving immunodetection.   

The use of recombinant proteins as antigen avoids the need to culture and purify large 

quantities of DV, traditionally sourced from tissue culture or suckling mouse brain, 

which requires high-containment facilities (Containment Level 3).  It also permits the 

introduction of gene mutations that lead to amino acid substitutions in the protein 
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that may alleviate the flavivirus antibody cross-reactivity observed using wild-type 

proteins.  To assess the suitability of the dengue VLPs as a source of antigen for 

diagnostic ELISAs, assays were performed using human serum containing antibodies to 

DV.  Unexpectedly the human serum was shown to bind non-specifically to a non-DV 

component of the clarified culture medium from rBV-infected insect cells.  This cross-

reactivity prevented assessment of the dengue VLPs for sensitivity and specificity in 

diagnostic ELISAs using human serum.  Similar cross-reactivity was observed previously 

using rabbit serum, and baculovirus GP64 was identified as the cause.  Further 

purification of the dengue VLPs to remove the contaminating baculovirus would 

enable these assays to be repeated, and for the dengue VLPs to be tested against 

serum collected from individuals vaccinated against non-DV flaviviruses.  Quasispecies 

variants demonstrating reduced flavivirus cross-reactivity could then be used to 

develop improved assays for the diagnosis of DV infection, as was intended during this 

study.  To the best of my knowledge, quasispecies variants have not been previously 

assessed in this way.  However, during the course of this work it was reported that 

flavivirus VLPs constructed using SLEV, WNV and JEV prM and E genes with mutations 

in the fusion peptide exhibit dramatically reduced flavivirus antibody cross-reactivity 

compared to wild-type VLPs using IgM capture ELISAs (Chiou et al., 2008; Roberson, 

Crill, and Chang, 2007).  The work presented in this study also identified a need for 

more DV-specific antibodies to be made available to the wider scientific community, as 

many of the commercially available antibodies tested for this work were found to be 

not sensitive, specific or reliable enough for use.  Purified quasispecies variant dengue 

VLPs demonstrating reduced flavivirus cross-reactivity could also be used as 

immunogen to produce more effective DV-specific antibodies. 

This study demonstrated alterations in heparin binding ability in four of the 

quasispecies variant VLP samples (R097A_13, R097A_43, R203A_54 and R261A_4) 

compared to their respective consensus VLPs (R097A_4, R203A_2 and R261A_1).  Both 

samples displaying reductions in heparin binding ability were from the same patient 

(R097A), who exhibited severe disease.  The two samples that showed increased 

heparin binding ability were from different patients, one of which had mild disease 
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(R261A), and one had severe disease (R203A).  The R097A_13 and R203A_54 dengue 

VLP samples contained nonsynonymous E gene mutations in close proximity to the 

putative highly-sulphated heparan sulphate (HSHS) binding region of E.  The R097A_43 

and R261A_4 dengue VLP samples contained nonsynonymous E gene mutations at the 

interface of E structural domains I and II, which is thought to act as a hinge region 

during low pH-induced conformational changes that lead to fusion of virus and host 

cell membranes.  It is hypothesised that residue substitutions in these positions may 

alter the relative orientation of other domains within the protein, thus altering the 

accessibility of the HSHS binding site.  Given the status of HSHS as a putative receptor 

for DV, it is tempting to predict that increased heparin binding ability would lead to 

increased viral replication and correlate with severe disease.  However, quasispecies 

variants with low heparin binding affinity can still enter cells in an antibody-dependent 

manner and subsequently replicate, provided pre-existing antibodies to a previous DV 

infection are present.  Also, HSHS is a constituent of extracellular matrices, as well as 

being present on the surface of cells targeted by DVs.  Therefore, increased heparin 

binding affinity could result in the virus becoming trapped extracellularly.  This may aid 

the formation of immune complexes containing DV, but whether this would result in a 

more rapid clearance of the virus from the system, or whether the increased heparin 

binding affinity would slow down the process of virus clearance remains to be 

determined.  During defervescence, slower rates of clearance of DV and immune 

complexes have been associated with subsequent immune activation and progression 

to severe disease (Wang et al., 2006).  Further work is required to determine whether 

the differences in heparin binding ability observed during this study result in altered 

cell attachment capabilities and subsequent changes in the efficiency of viral 

replication.  Potential future work includes using surface plasmon resonance (SPR) to 

monitor the interactions between the quasispecies dengue VLPs and heparin in real-

time and obtain more data regarding the binding affinity and kinetics.  Cells expressing 

HSHS on their surface could also be used in place of heparin, to provide a better 

measure of the cell attachment capabilities of the quasispecies variant dengue VLPs.  

This method could also be used to investigate potential anti-viral compounds that act 
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by inhibiting virus attachment to host cells, as has been recently shown for 

noroviruses, using VLPs (Rademacher et al., 2011).   

For this study, a limited number of the identified quasispecies variants were produced 

as recombinant DV E in the form of dengue VLPs, to study the effects of the E gene 

mutations on E function.  An alternative methodology would have been to use the 

quasispecies E gene variants to construct genome-length infectious clones.  Positive 

strand RNA virus (e.g. flavivirus) genomes are infectious, as RNA acts directly as mRNA 

for protein synthesis.  Therefore, when flavivirus cDNA is transfected into susceptible 

eukaryotic cells, it undergoes nuclear transcription to RNA, which is then replicated 

and viral protein synthesis is initiated.  Flavivirus genome-length infectious clones 

require the same level of bio-containment (Containment Level 3) as wild-type 

flaviviruses, and are difficult to produce, as flavivirus cDNA is unstable in E. coli (Ward 

and Davidson, 2008).  To circumvent the problem of instability, infectious clones have 

been produced in vitro by ligation or long-template high-fidelity PCR (Campbell and 

Pletnev, 2000; Sumiyoshi, Hoke, and Trent, 1992), or in E. coli with the addition of 

short introns to prevent spurious expression (Yamshchikov, Mishin, and Cominelli, 

2001).  The use of genome-length infectious clones incorporating the quasispecies 

variant E genes would enable the cell-attachment capabilities of E to be tested using 

live virus.  It had been intended as part of this study to subject the quasispecies 

dengue VLPs to low pH and assess their ability to form E trimers; however, due to the 

problems experienced with dengue VLP purification and immunodetection, this was 

not possible.  This methodology would have yielded limited results as it would only 

have identified dengue VLP quasispecies variants where trimerisation was either 

permitted or prohibited due to the mutations present.  Using genome-length 

infectious clones, E oligomer and virion assembly, and the ability of E to undergo low 

pH-induced oligomeric rearrangements required for membrane fusion could be 

studied.  The use of genome-length infectious clones and cell-based fusion assays 

would permit more in-depth analysis of the pH required, and time taken for each of 

the quasispecies variant E to undergo the low pH-induced oligomeric rearrangements 
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required for membrane fusion.  The subsequent fusion, replication and virus 

dissemination processes could also be examined by monitoring the cells. 

Quasispecies variants that escape neutralisation by pre-existing heterotypic antibodies 

will be able to replicate, and therefore when inoculated into a new host, they will 

comprise a greater proportion of the quasispecies population.  This could potentially 

lead to increased disease severity and case fatality rates as an epidemic progresses 

(Guzmán et al., 2000).  Genome-length infectious clones incorporating the 

quasispecies variant E genes could be used in neutralisation assays to assess 

neutralisation of the specific variants within the quasispecies population using serum 

from the Sri Lankan patients.  This would identify quasispecies variants with 

neutralisation escape mutations, and enable assessment of potential links between the 

presence of such variants and disease severity in the patient.  Differences in replication 

efficiency between quasispecies consensus and variant viruses could also be 

determined using these genome-length infectious clones and primary human and 

mosquito cells.  To determine transmissibility of different variants within the 

quasispecies population, genome-length infectious clones representing different 

quasispecies variants could be co-infected into live mosquitoes and used to determine 

the susceptibility of the mosquito population to infection with the different 

quasispecies variants.  When this method was used to compare the replication 

efficiency and dissemination of South East Asian and American genotype DV type 2 

strains, the more virulent South East Asian genotype strains were shown to replicate to 

higher titres in the midgut and disseminate to the salivary glands (and therefore be 

available to transmit to humans) up to seven days faster than the less virulent 

American genotype strains, which do not cause epidemics of severe disease (Anderson 

and Rico-Hesse, 2006).  This increase in vectorial capacity for the more virulent strains 

was proposed as a mechanism by which the less virulent American genotype strains 

have been displaced by the South East Asian genotype strains causing severe disease 

(Anderson and Rico-Hesse, 2006).  It would be interesting to investigate whether the 

same was true for the quasispecies variants compared to their respective consensus 

viruses.  Restricted quasispecies populations have been reported for naturally infected 
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mosquitoes compared to those found in patient samples during the same outbreak 

(Lin et al., 2004).  This suggests that the quasispecies variants observed in the patient 

samples will experience selection pressure when transmitted to the mosquito vector, 

as some will be better adapted to survival in the mosquito cells than others.  
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6.1 Conclusions 

In conclusion, the hypothesis that DV quasispecies populations affect disease severity 

in individual patients was neither proven nor disproven.  No correlation was observed 

between the overall extent of quasispecies variation and disease severity.  However, 

genome-defective quasispecies variants, and variants with mutations leading to amino 

acid substitutions that were surface accessible, or proximal to the fusion peptide, 

proposed HSHS binding site, or the other protein chain within the E dimer, were 

observed predominantly in samples from patients with severe cases of dengue.  For 

four of these quasispecies variants, the mutations in the E gene were shown to cause 

alterations in the heparin binding ability of the recombinant E.  Further work will be 

required to confirm that these differences represent varying cell attachment 

capabilities of the quasispecies variants compared to their respective consensus VLPs.  

It is important to remember that for this study, recombinant dengue VLPs were only 

able to be produced for a very small subset of the DV quasispecies populations, so it is 

difficult to link these observations with disease severity, as the net effect of the entire 

population needs to be taken into account.  The production of dengue VLPs, or 

genome-length infectious clones for more of the quasispecies variants identified in this 

study would subsequently provide more data for analysis.   

It is extremely difficult to correlate in vitro observations of DV behaviour to disease 

pathogenesis and epidemiology.  This is predominantly because dengue pathogenicity 

results from the complex interactions of both viral and host factors, and there is a lack 

of suitable animal models for dengue, as DVs only cause symptomatic disease in 

humans.  The majority of the available information regarding DVs has been obtained 

from patients with clinically apparent illness, and there are very few samples available 

from asymptomatic human infections.  For these reasons, the natural spectrum of DV 

variation, and the relative virulence and transmissibility of strains, let alone 

quasispecies variants are difficult to determine with any confidence.  The mechanisms 

of dengue pathogenesis are therefore likely to remain controversial until appropriate 

in vivo models representing the entire spectrum of disease have been developed. 
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Appendix A.  Dengue RT-PCR primer alignments 

These alignments are included as an electronic version only. 

Nucleotide sequence alignments for the regions flanking the dengue virus envelope genes 

are included, with the NCBI accession number for each sequence shown at the start of each 

row.  These alignments were used to design forward and reverse primers for envelope gene 

amplification.  For each alignment, nucleotides matching the consensus sequence are shown 

as dots, with mismatches shown in full.  The final primer sequences used for dengue virus 

envelope gene amplification from patient samples are highlighted in the consensus 

(Majority) sequence.     



Appendix B 
 

c 
 

Appendix B.  Gel electrophoresis images of plasmid DNA for each 
dengue virus quasispecies envelope gene clone.  

 

Figure 1.  Dengue virus envelope gene clone plasmid DNA gel electrophoresis images. 

For each patient sample (R097A, R107A, R114A, R197A, R203A, R232A, R255A, R259A, R261A, 

R282A, R299A, R334A), each lane consists of eight clones with a 1kb ladder at one end.  Ladder band 

sizes from the bottom upwards are 0.5kb, 1.0kb, 1.5kb, 2.0kb, 3.0kb (brightest band), 4.0kb, 5.0kb, 

6.0kb, 8.0kb and 10.0kb.  For each clone two bands were observed corresponding to nicked circular 

plasmid DNA (>10 kb) and supercoiled plasmid DNA either with (4.8 kb; example shown in a green 

box) or without (3 kb; example shown in a red box) the envelope gene insert. 
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Appendix C.  Quasispecies envelope gene nucleotide sequence 
alignments 

These alignments are included as an electronic version only. 

Nucleotide sequence alignments for the cloned dengue virus quasispecies envelope genes 

are included below for each patient sample (R097A, R107A, R203A, R259A, R261A, R282A).  

The clone number for each sequence is shown at the start of each row.  These alignments 

were used to identify mutations within the quasispecies populations.  For each alignment, 

nucleotides matching the consensus sequence are shown as dots, with mismatches shown in 

full.  The quasispecies consensus (Majority) sequence is shown along the top of each 

alignment.  Mutations are summarized in Appendix E, tables 1 to 6.   
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Appendix D.  Quasispecies envelope glycoprotein amino acid 
sequence alignments 

These alignments are included as an electronic version only. 

Amino acid sequence alignments for the cloned dengue virus quasispecies envelope genes 

are included below for each patient sample (R097A, R107A, R203A, R259A, R261A, R282A).  

The clone number for each sequence is shown at the start of each row.  These alignments 

were used to identify amino acid sequence changes resulting from the envelope gene 

mutations within the dengue virus quasispecies populations that were identified in the 

alignments in Appendix 3.  For each alignment, amino acids matching the consensus 

sequence are shown as dots, with mismatches shown in full; stop codons are represented 

with a slash (/).  The quasispecies consensus (Majority) sequence is shown along the top of 

each alignment.  Protein sequence changes are summarized in Appendix E, tables 1 to 6.                                                                                                          
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Appendix E.  Summary of dengue virus quasispecies envelope gene 
mutations 

The dengue virus quasispecies envelope gene mutations and amino acid sequence changes 

identified from the sequence alignments shown in Appendices C and D are summarised for 

each dengue patient sample (R097A, R107A, R203A, R259A, R261A, R282A).  A transition 

mutation is one where a purine (A or G) is substituted with another purine, or a pyrimidine 

(C, T or U) with another pyrimidine.  In contrast, a transversion mutation is one in which a 

purine is substituted with a pyrimidine or vice versa.  Nonsynonymous mutations lead to 

protein sequence changes whereas synonymous mutations do not.  Conservative protein 

changes occur when an amino acid is substituted for one with similar properties, but drastic 

protein changes occur when amino acids with different properties are substituted (for 

example, a polar amino acid such as glycine for a nonpolar amino acid such as leucine).
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Appendix F.  AccuScript versus Expand method comparison: dengue 
virus type 3 clone envelope gene nucleotide sequence alignments 

These alignments are included as an electronic version only. 

Nucleotide sequence alignments for the cloned dengue virus type 3 envelope genes are 

included below for each RT-PCR amplification method tested (AccuScript or Expand).  The 

clone number for each sequence is shown at the start of each row.  These alignments were 

used to identify differences in the numbers of mutations generated using the two 

methodologies.  For each alignment, nucleotides matching the consensus sequence are 

shown as dots, with mismatches shown in full.  The consensus (Majority) sequence is shown 

along the top of each alignment.  Mutations are summarized in Appendix 9, tables 7 and 8. 
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Appendix G.  AccuScript versus Expand method comparison: dengue 
virus type 3 clone envelope glycoprotein amino acid sequence 
alignments 

These alignments are included as an electronic version only. 

Amino acid sequence alignments for the cloned dengue virus type 3 envelope genes are 

included below for each RT-PCR amplification method tested (AccuScript or Expand).  The 

clone number for each sequence is shown at the start of each row.  These alignments were 

used to identify amino acid sequence changes resulting from the envelope gene mutations  

identified in the alignments shown in Appendix 7.  For each alignment, amino acids matching 

the consensus sequence are shown as dots, with mismatches shown in full; stop codons are 

represented with a slash (/).  The consensus (Majority) sequence is shown along the top of 

each alignment.  Protein sequence changes are summarized in Appendix 9, tables 1 and 2. 
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Appendix H.  Expand versus AccuScript method comparison: 
summary of dengue virus type 3 envelope gene mutations 

The dengue virus type 3 envelope gene mutations and amino acid sequence changes 

identified from the sequence alignments shown in Appendices F and G are summarised for 

each RT-PCR amplification method (Expand or AccuScript).  A transition mutation is one 

where a purine (A or G) is substituted with another purine, or a pyrimidine (C, T or U) with 

another pyrimidine.  In contrast, a transversion mutation is one in which a purine is 

substituted with a pyrimidine or vice versa.  Nonsynonymous mutations lead to protein 

sequence changes whereas synonymous mutations do not.  Conservative protein changes 

occur when an amino acid is substituted for one with similar properties, but drastic protein 

changes occur when amino acids with different properties are substituted (for example, a 

polar amino acid such as glycine for a nonpolar amino acid such as leucine). 

Table 7.  Expand method mutations  

Clone 

No. 

Mutation 

position 
(nt) 

Nt change Transition / 

Transversion 

Synonymous / 

Nonsynonymous 

Mutation 

position 
(protein) 

Protein 

change 

Conservative 

/ drastic 

5 E7 

E231 

E531 

E1365 

T→C 

A→G 

A→G 

T→C 

Transition 

Transition 

Transition 

Transition 

Nonsynonymous 

Synonymous 

Synonymous 

Synonymous 

E3 

E77 

E177 

E455 

C→R 

None 

None 

None 

Conservative 

91 E27 A→G Transition Synonymous E9 None  

32 E37 

E245 

E1037 

G→A 

T deletion 

A→G 

Transition 

N/A 

Transition 

Nonsynonymous 

Nonsynonymous 

Synonymous 

E13 

E82 

E346 

E→K 

Frameshift 

N/A 

Drastic 

Drastic 

92 E131 

E248 

E964 

E1069 

A→G 

C deletion 

G→T 

A→G 

Transition 

N/A 

Transversion 

Transition 

Nonsynonymous 

Nonsynonymous 

Nonsynonymous 

Nonsynonymous 

 

E44 

E83 

E322 

E357 

E→G 

Frameshift 

N/A 

N/A 

Drastic 

Drastic 

 

52 E139 A→G Transition Nonsynonymous 

 

E47 K→E Drastic 

3 E222 

E734 

E1051 

T→C 

A deletion 

A→G 

Transition 

N/A 

Transition 

Synonymous 

Nonsynonymous 

Nonsynonymous 

 

E74 

E245 

E351 

None 

Frameshift 

H→R 

 

Drastic 

Conservative 

31 E304-305 

E357 

E374 

E735 

GG deletion 

T→C 

T→A 

A insertion 

N/A 

Transition 

Transversion 

N/A 

Nonsynonymous 

Nonsynonymous 

Nonsynonymous 

Nonsynonymous 

 

E102 

E119 

E125 

E246 

Frameshift 

N/A  

N/A  

N/A 

Drastic 

 

49 E277 A→G Transition Nonsynonymous 

 

E93 K→E Drastic 

25 E319 T→C Transition Synonymous E107 None  

24 E324 

E438 

E1410 

T insertion 

A→G 

A insertion 

N/A 

Transition 

N/A 

Nonsynonymous 

Nonsynonymous 

Nonsynonymous 

 

E109 

E146 

E470 

Frameshift 

N/A 

N/A 

Drastic 

 

30 E355 

E735  

T→C 

A insertion 

Transition 

N/A 

Nonsynonymous 

Nonsynonymous 

 

E119 

E246 

F→L 

Frameshift 

Conservative 

Drastic 

59 E329 

E1114 

A→G 

T insertion 

Transition 

N/A 

Nonsynonymous 

Nonsynonymous 

 

E110 

E372 

K→R 

Frameshift 

Conservative 

Drastic 

93 E319 T→C Transition Synonymous E107 None  

1 E426 

E651 

A→G 

A→G 

Transition 

Transition 

Synonymous 

Synonymous 

E142 

E217 

None 

None 

Drastic 

16 E407 A→T Transversion Nonsynonymous 

 

E136 K→I Drastic 

83 E407 

E530 

A→G 

G deletion 

Transition 

N/A 

Nonsynonymous 

Nonsynonymous 

 

E136 

E177 

K→R 

Frameshift 

Conservative 

Drastic 

19 E489 A→G Transition Synonymous E163 None  

65 E500 C→T Transition Nonsynonymous 

 

E167 S→L Drastic 
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Clone 

No. 

Mutation 

position 

(nt) 

Nt change Transition / 

Transversion 

Synonymous / 

Nonsynonymous 

Mutation 

position 

(protein) 

Protein 

change 

Conservative 

/ drastic 

48 E550 

E774 

E1410 

T→C 

G→A 

A insertion 

Transition 

Transition 

N/A 

Nonsynonymous 

Nonsynonymous 

Nonsynonymous 

 

E184 

E258 

E470 

S→P 

M→I 

Frameshift 

Drastic 

Conservative 

Drastic 

12 E734 

E1242 

A deletion 

A deletion 

N/A 

N/A 

Nonsynonymous 

Nonsynonymous 

 

E245 

E414 

Frameshift 

Frameshift 

Drastic 

Drastic 

20 E695 

E1009 

A→G 

A→G 

Transition 

Transition 

Nonsynonymous 

Nonsynonymous 

 

E232 

E337 

K→R 

T→A 

Conservative 

Drastic 

50 E667 

E1009 

A→T 

A→G 

Transversion 

Transition 

Nonsynonymous 

Nonsynonymous 

 

E223 

E337 

T→S 

T→A 

Conservative 

Drastic 

71 E715 

E750 

E936 

A→T 

C→T 

A→G 

Transversion 

Transition 

Transition 

Nonsynonymous 

Nonsynonymous 

Nonsynonymous 

 

E239 

E521 

E313 

K→Stop 

N/A 

N/A 

Drastic 

 

72 E697 

E720 

G→A 

A insertion 

Transition 

N/A 

Nonsynonymous 

Nonsynonymous 

 

E233 

E240 

E→K 

Frameshift 

Drastic 

Drastic 

94 E735 

E1295 

A insertion 

A→G 

N/A 

Transition 

Nonsynonymous 

Nonsynonymous 

 

E246 

E432 

Frameshift 

N/A 

Drastic 

 

14 E766 G→A Transition Nonsynonymous 

 

E256 G→R Drastic 

33 E812 T deletion N/A Nonsynonymous 

 

E272 

 

Frameshift Drastic 

41 E774 G→A Transition Nonsynonymous E258 M→I Conservative 

11 E964 

E998 

G deletion 

C insertion 

N/A 

N/A 

Nonsynonymous 

Nonsynonymous 

 

E322 

E334 

Frameshift 

Frameshift 

Drastic 

Drastic 

42 E1062 A→G Transition Synonymous 

 

E354 None  

Table 7 continued from page p 

 

Table 8.  AccuScript method mutations  

Clone 
No. 

Mutation 
position 

(nt) 

Nt change Transition / 
Transversion 

Synonymous / 
Nonsynonymous 

Mutation 
position 

(protein) 

Protein 
change 

Conservative 
/ drastic 

15 E95 C→G Transversion Nonsynonymous 

 

E32 T→S  Conservative 

84 E79 

E1410 

C→A 

A insertion 

Transversion 

N/A 

Nonsynonymous 

Nonsynonymous 

 

E27 

E470 

H→N 

Frameshift 

Drastic 

Drastic 

71 E539 

E1427 

T insertion 

T insertion 

N/A 

N/A 

Nonsynonymous 

Nonsynonymous 

 

E180 

E476 

Frameshift 

Frameshift 

Drastic 

Drastic 

89 E573 T insertion N/A Nonsynonymous E191 Frameshift Drastic 

4 E677 AA insertion N/A Nonsynonymous 

 

E226 Frameshift Drastic 

91 E673 G→A Transition Nonsynonymous 

 

E225 E→K Drastic 

35 E767 G deletion N/A Nonsynonymous 

 

E256 Frameshift Drastic 

73 E847 A insertion N/A Nonsynonymous 

 

E282 Frameshift Drastic 

31 E1005 T insertion N/A Nonsynonymous 

 

E335 Frameshift Drastic 

37 E1005 T insertion N/A Nonsynonymous 

 

E335 Frameshift Drastic 

21 E1038-1039 TG→ATTTCAA N/A Nonsynonymous 

 

E346 Frameshift Drastic 

52 E1166 G→A Transition Nonsynonymous 

 

E389 W→Stop Drastic 

27 E1349 

E1352 

E1355 

E1359-62 

C→G 

G→T 

T deletion 

GAAA→TTGT 

Transversion 

Transversion 

N/A 

Both 

Nonsynonymous 

Nonsynonymous 

Nonsynonymous 

Nonsynonymous 

 

 

E450 

E451 

E452 

E453-4 

S→C 

W→L 

Frameshift 

M→F 

Conservative 

Conservative 

Drastic 

Conservative 

38 E1349 

E1352 

E1355 

E1359-62 

C→G 

G→T 

T deletion 

GAAA→TTGT 

Transversion 

Transversion 

N/A 

Both 

Nonsynonymous 

Nonsynonymous 

Nonsynonymous 

Nonsynonymous 

 

E450 

E451 

E452 

E453-4 

S→C 

W→L 

Frameshift 

M→F 

Conservative 

Conservative 

Drastic 

Conservative 

50 E1410 A insertion N/A Nonsynonymous 

 

E470 Frameshift Drastic 

51 E1410 A insertion N/A Nonsynonymous 

 

E470 Frameshift Drastic 

53 E1410 A insertion N/A Nonsynonymous 

 

E470 Frameshift Drastic 

65 E1410 A insertion N/A Nonsynonymous 

 

E470 Frameshift Drastic 
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Appendix I.  Percentage sequence identities calculated from dengue 
virus nucleotide sequence alignments for phylogenetic analysis   
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Appendix J.  Original images 

 

These images are included as an electronic version only. 

 

The original (unprocessed) gel and blot images used to construct figures 3.5, 3.6, 3.8a, 4.3, 

and 4.5 to 4.18 are included in the file labelled Appendix J on the disc included with this 

thesis. 
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Appendix K.  List of presentations 

 

Flaviviruses. 

Oral presentation to the Novel and Dangerous Pathogens group at HPA CEPR on November 
15th 2007. 

 

Investigation of envelope gene variation in clinical samples from patients with dengue virus 
infections. 

Oral presentation to the Novel and Dangerous Pathogens group at HPA CEPR on February 
26th 2009. 

 

Investigation of dengue virus envelope gene variation in clinical samples from Sri Lanka. 

Hannah Love, Dr Jane Burton, Dr Daniel Bailey, Prof. David Cullen.  Conference poster 
presentation for FEMS (Federation of European Microbiological Societies) 3rd congress of 
European microbiologists.   Gothenburg, Sweden; June 28th – July 2nd 2009. 
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Appendix L.  Ethical considerations relating to the Sri Lankan patient 
samples and clinical data 

 

Copies of letters confirming that ethical approval was obtained from both the University of 

Kelaniya in Sri Lanka and the Liverpool School of Tropical Medicine in the UK, and the 

corresponding summaries of the Sri Lanka Fever Study protocol are provided as an electronic 

version only, in the file labelled Appendix L on the disc included with this thesis. 

Briefly, ethical approval was obtained for extra blood samples to be taken from consenting 

adults with fever, or fever history who were admitted to hospitals in Ragama, Sri Lanka.  The 

aim of the study was to identify the specific infections that cause febrile illnesses in Sri 

Lanka. This would assist in making clinical diagnoses of febrile illnesses, provide useful 

microbiological surveillance data and indicate which infections require local laboratory 

confirmation in the future. It would also enable various serological tests to be calibrated for 

use in local populations.  Approval was granted for the anonymised samples and clinical data 

to be sent to collaborating institutions, including HPA CEPR in the UK, for testing for 

arboviruses including dengue virus, and for these anonymised electronic records and 

biomedical samples to be kept permanently by the laboratories involved for possible non-

commercial use in the future. 

For the work presented in this thesis, therefore, further ethical approval was not required 

for the following reasons: 

1. The samples and clinical data were anonymised. 

2. The work was restricted to amplification of the dengue viruses already known to be 

present in the samples, and the clinical data pertaining to the dengue virus infection.   

The work would lead to diagnostic service improvement at HPA CEPR. 

 


