THE COLIEGE OF AERONAUTICS

CRANFIELD

The Aerodynamic Derivatives with respect to Sideslip for a Delta Wing with Small Dihedral at

Supersonic Speeds
-by-
A. Robinson, M.Sc., A.F.R.Ae.S.,
and
Squadron Leader J.H. Hunter-Tod, M.A., A.F.R.Ae.S.

SUAMMRY

Expressions are derived for the sideslip derivatives on the assumptions of the linearised theory of flow for a delta wing with small dihedral flying at supersonic spoods. A discussion is included in the appendix on the relation between two methods that have beon ovolvod for the treatment of aerodynamic force problems of the delta wing lying within its apox Mach cone.

Whon the leading edges are within the Mach cone from the apex, tho prossuro distribution and tho rolling momont aro indopondont of Mach numbor but dopondont on aspect ratio. There is a leading edge suction, which is a function of incidence, aspect ratio and Nach number, that contributes as woll as the surfaco prossuro distribution to tho sidoforco and yawing momont.

When the leading edges are outside the apex Mach cone, the non-dimonsional rolling dorivativo is, in contrast to tho othor casc, dopendent on Mach numbor and indopondent of aspoct ratio: tho othor dorivativos and the prossure, howovor, aro dopondont on both variablos. There is no leading edge suction force in this case.

1. Introduction

Tho prosont papor, in which tho aorodynamic dorivativos with rospoct to sidoslip aro calculatod, is ono of a sorios donling with tho forco cooficionts acting on a dolta wing at supersonic speeds. The investigation will be confined to the case of small deviations of the wing from the noutral position, so that in particular it may be assumed that if the wing is initially wholly within the Mach cono omanating from its apex it will romain so in tho disturbod condition, and vico vorsa.

The problem divides into the two cases in which the wing protrudes through its apex Mach cone and in which it is entirely onclosod within it. In tho formor tho task simplifios to intograting a uniform distribution of suporsonic sourcos, sinco tho motion ahoad of tho trailing odgo abovo tho wing is indopondont of that bolow tho wing. In tho lattor caso rocourso is mado to a mothod basod on that introducod by Stowort (rof. I) in his solution of tho basic lift problom, oxcopt that tho oxprossion rolating tho prossuro distribution to tho boundary conditions is dorivod in 0 difforont mannor.

Robinson (rof.2) solvod tho lift problom by othor moons and c. comparison of tho two tochniquos omployod is mado in tho appondix to this papor.
2. Notation

$$
\begin{aligned}
& \overline{\mathrm{V}}=\text { Froo stroam volocity } \quad \gamma=\text { Semi vertex angle } \\
& \overline{\mathrm{v}}=\text { Sideslip velocity } \\
& \rho=\text { Air density } \\
& \mathrm{M}=\text { Mach number } \\
& B=\sqrt{N^{2}-1} \\
& \lambda=\beta \tan \gamma \\
& \mathrm{L}=\text { Rolling moment } \\
& \text { N = Yawing moment } \\
& \text { (referred to vertex) } \\
& \mathrm{Y}=\text { Side force } \\
& \delta=\text { Dihodral anglo } \\
& c=\operatorname{Max} \text {. chord } \\
& s=c^{2} \tan \gamma=\text { Wing area } \\
& \mathrm{s}=\operatorname{ctan} \gamma=\text { Semi span } \\
& I_{V}=\mathrm{L} / \rho \mathrm{FVSs}=\begin{array}{c}
\text { Non-dimensional } \\
\text { rolling derivativo }
\end{array} \\
& n_{\mathrm{V}}=\mathbb{N} / p \mathrm{VVSs}=\text { Non-dimonsional } \\
& \text { yawing dorivativo } \\
& \mathrm{y}_{\mathrm{v}}=\mathrm{Y} / \mathrm{\rho VVS} s=\begin{array}{l}
\text { Non-dimonsional } \\
\text { sidoslip dorivativo }
\end{array} \\
& \alpha=\text { Incidonco }
\end{aligned}
$$

3. Results

A thin flat delta wing of small dihedral is travelling at supersonic speed $\overline{\mathrm{V}}$ with sideslip $\overline{\mathrm{v}}$ with vertex into wind (See Fig.4a).

Tho forces due to sideslip are:-

The non-dimensional aorodynamic dorivativos with rospoct to sideslip are:-

	Inside Mach Cono $(\lambda<1)$	Outside Mach Como $(\lambda>1)$
I_{v}	$\frac{2}{3} \delta \tan \gamma$.	$\frac{2}{3} \frac{\delta}{\beta}$
n_{v}	$-\frac{4}{3}\left\{\frac{2}{\pi} \delta^{2}-\frac{1}{\mathbb{E}^{\prime}(\lambda)} \alpha \delta \sqrt{1-\lambda^{2}} \cot \gamma \operatorname{soc}^{2} \gamma\right\}$	$-\frac{8}{3 \pi} \delta^{2} \frac{\sec ^{-1} \lambda}{\sqrt{\lambda 2}-1}$
y_{v}	$\left.-2 \frac{\{2}{\pi} \delta^{2} \tan \gamma-\frac{1}{\mathbb{E}^{\prime}(\lambda)} \alpha \delta \sqrt{1-\lambda^{2}}\right\}$	$-\frac{4}{\pi} \delta^{2} \tan \gamma \frac{\operatorname{soc}^{-1} \lambda}{\sqrt{\lambda^{2}-1}}$

It will l bo noted that tho above quantitios are continuous on transition from ono case to tho other.
At Fig. 1 tho quantition $\beta I / \delta, n_{y} / \delta^{2}$ and $\beta y_{v} / \delta^{2}$
for o incidonco are plotted against tho paramotor λ.
At Fig. 2 tho quantitios $I_{v} / \delta, n_{v} / \delta^{2}$ and y_{v} / δ^{2} for zero incidonco are plottod against Mach number for difforont aspoct ratios. It will bo soon that tho values of $I_{v} / 5$ obtained for tho highor aspoct ratios, when the loading odes are within the Mach ono, are comparable with those obtained in incomprossiblo flow.

At Fig. 3 the contributions to $n_{v} / \alpha \delta$ and $y_{v} / \alpha \delta$ duo to incidence are plotted against Mach number for difforont aspect ratios. It will bo notod that tho parts of n_{v} and y_{v} duo to incidonco are of op onsite sign to the remainder ${ }^{v}$ and, for incidences comparable to the dihedral angle, are of the same order.

Tho suction force at the leading edge when lying within the

Mach cone is:-

$$
\frac{2}{E^{\prime}(\lambda)} \rho \overline{\bar{v}} \alpha \delta_{y} \sqrt{1-\lambda^{2}}
$$

The pressure distributions are:-
(a) Leading edges within the Mach cone:-

$$
\frac{2}{\pi} \rho \overline{\mathrm{v}} \bar{\delta} \frac{y \tan \gamma}{\sqrt{x^{2} \tan ^{2} \gamma-y^{2}}}
$$

(b) Leading edges outside the Mach cone:-
(i) At a point outside the Mach cone:-

$$
\rho \overline{\mathrm{v}} \overline{\mathrm{~V}} \delta \frac{\tan \gamma}{\sqrt{\lambda^{2}-1}}
$$

(ii) At a point inside the Mach cone:-

$$
\frac{2}{\pi} \rho \overline{\mathrm{v}} \overline{\mathrm{~V}} \delta \frac{\tan \gamma}{\sqrt{\lambda^{2}-1}} \tan ^{-1}\left\{y \cot \gamma \sqrt{\frac{\lambda^{2}-1}{x^{2}-\beta^{2} y^{2}}}\right\}
$$

4. Delta Wing Enclosed within the Apex Mach Cone

4. 1 Relating the Pressure Distribution to the Boundary Conditions

In the linearised supersonic theory excess pressure is proportional to the inducod velocity in tho frocstroam diroction. Since the angle of dihedral is small, the boundary conditions can be expressed by equating the velocity normal to the yawing plane to the component of the sideslip velocity along the normal to the aorofoil itsolf.

Using the cartesian axes indicated in Fig.4a we will establish for the class of problems to which our present one belongs that the induced velocity components u, v and w in the x, y and z-directions canmbe expressed as the roal parts of functions U, V and W of acomplex variable \mathcal{T} and that there exist relations of the form

$$
\frac{d U}{d \tau} \equiv f_{1}(\tau) \frac{d W}{d \tau} \text { and } \frac{d V}{d \tau}=f_{2}(\tau) \frac{d W}{d \tau}
$$

The problom therofore roduces to determining a suitablo transformation from the $x, y, z-s p a c o$ to the T-planc and a suitable function $\frac{d W}{d T}$, so that $w \equiv R(W)$ takos up tho known valyes at the boundarios. $\overline{d T}$ This is ossentially the method of Stewort (rof.1), but our derivation of the rolations between U, V and W will be somewhat difforont.

The flow at any point ahead of the trailing edg'e is uninfluenced by the trailing edge, so that if we replace the aerofoil by one of the same shape but of different size the flow at such a point will be unaltered. Hence the flow at any point along a ray through the vertex is the samo. The induced velocity is therefore of dogroo zoro in x, y, z; this typo of flow is called conical, a torm introducod by Busomann.

In the linearised supersonic theory the equation of continuity is the Prandtl-Glauert equation:-

$$
\begin{equation*}
-\beta^{2} \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 . \tag{1}
\end{equation*}
$$

For irrotational flow curl ($u, v, w)=0$ and there oxists a velocity potontial Φ.

It will theroforo bo soon that u, v, v and Φ satisfy tho oquation:-

$$
\begin{equation*}
-\beta^{2} \frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=0 \tag{2}
\end{equation*}
$$

Undor tho transformation $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=(x, i \beta y, i(\beta z)$ ovory solution of Laplace's equation in $\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}$, is a.lso a solution of equation (2) in x, y, z and vice versa.

It was established by Down in 1857 that the most general solution of Laplace's oquation of zero degreo in throo dimonsions is of tho form:-

$$
F_{1}\left(\frac{y^{\prime}+i z^{\prime}}{x^{\prime}+r}\right)+F_{2}\left(\frac{y^{\prime}-i z^{\prime}}{x^{\prime}+r}\right) \ldots \ldots \ldots \ldots \ldots . . .(3)
$$

whoro $r^{2}=x^{2}+y^{2}+z^{2}$.
Honco any analytic function of ω is a solution of equation (2) of degree zero, where

$$
\omega=\eta+i \zeta=\beta \frac{y+i z}{x+r} \text { and whore } r^{2}=x^{2}-B^{2} y^{2}-\beta^{2} z^{2} .
$$

Thereforo wo take u, v, w to bo tho roal parts of $U(\omega), V(\omega), W(\omega)$, satisfying both oquation (2) and Laplace's oquation in η, Ψ. It will bo notod that tho volocity potontial is not of dogroo zoro and cannot thoroforo bo put in this form.

It will bo soon that for conical flow tho inducod volocity potontial is of tho form $\bar{\phi}=r \psi(\eta, j)$, so that:-

$$
\left.\begin{array}{l}
u=\eta \frac{\partial \psi}{\partial \eta}+\frac{\rho}{\partial \zeta}-\frac{1+\eta^{2}+\zeta^{2}}{1-\eta^{2}-\zeta^{2}} \psi \cdot \\
v=-\frac{1}{2}\left[\left(1+\eta^{2}-\rho^{2}\right) \frac{\partial \psi}{\partial \eta}-\beta \eta^{\varphi} \frac{\partial \psi}{\partial \zeta}+\frac{2 \beta \eta}{1-\eta^{2}-\zeta^{2}} \psi \cdot\right. \tag{4}\\
v=-\beta \eta \zeta \frac{\partial \psi}{\partial \eta}-\frac{1}{2} \beta\left(1-\eta^{2}+\rho^{2}\right) \frac{\partial \psi}{\partial \zeta^{\varphi}}+\frac{2 \beta \zeta}{1-\eta^{2}-\zeta^{2}} \psi \cdot
\end{array}\right\} \cdot
$$

The oquation of continuity (1) bccomos:-

$$
\left\{1-\eta^{2}-\zeta^{2}\right\}^{2}\left\{\frac{\partial^{2} \psi}{\partial \eta^{2}}+\frac{\partial^{2} \psi}{\partial \zeta^{2}}\right\}-8 \psi=0 \ldots(5)
$$

Now since u is the real part of $U \equiv U(\omega)$ The CauchyRiemann equations give

$$
\frac{d U}{d \omega}=\frac{\partial u}{\partial \eta}-i \frac{\partial u}{\partial J}
$$

and similarly for V and W. Therefore:-

$$
\begin{aligned}
& \frac{d U}{d \omega}=\eta \frac{\partial^{2} \psi}{\partial \eta^{2}}-i \omega \frac{\partial^{2} \psi}{\partial \eta \partial}-i \int \frac{\partial^{2} \psi}{\partial \zeta^{2}} \\
& -2 \frac{\eta^{2}+\rho^{2}}{1-\eta^{2}-j^{2}}\left\{\frac{\partial \psi}{\partial \eta}-i \frac{\partial \psi}{\partial \zeta}\right\}-4 \frac{\eta-i j}{\left(1-\eta^{2}-\zeta^{2}\right)^{2}} \psi \\
& \frac{d V}{d \omega}=-\frac{1}{2} \beta\left(1+\eta^{2}-\zeta^{2}\right) \frac{\partial^{2} \psi}{\partial \eta^{2}}+\frac{1}{2} i \beta\left(1+\omega^{2}\right) \frac{\partial^{2} \psi}{\partial \eta \partial \zeta}+i \beta \eta \xi^{\zeta} \frac{\partial^{2} \psi}{\partial \zeta^{2}} \ldots \text { (7) } \\
& +\beta\left\{\frac{2 \eta}{1-\eta^{2}-\zeta^{2}}-\omega\right\}\left\{\frac{\partial \psi}{\partial \eta}-i \frac{\partial \psi}{\partial \zeta^{\varphi}}\right\}+2 \beta \frac{1+\overline{\eta-i j}^{2}}{\left(1-\eta^{2}-\zeta^{2}\right)^{2}}
\end{aligned}
$$

and $\left.\quad \frac{d w}{d \omega x}=-\beta \eta\right\} \frac{\partial^{2} \psi}{\partial \eta^{2}}-\frac{1}{2} \beta\left(1-\cos ^{2}\right) \frac{\partial^{2} \psi}{\partial \eta \partial}+\frac{1}{2} i\left(1-\eta^{2}-\zeta^{2}\right) \frac{\partial^{2} \psi}{\partial \xi^{2}}(8)$

$$
+\beta\left\{\frac{2 \psi}{1-\eta^{2}-\zeta^{2}}+i \omega\right\}\left\{\frac{\left.\partial \psi-i \frac{\partial \psi}{\partial \eta}\right\}-2 i \beta \frac{1-\eta-i \rho}{\left(1-\eta^{2}-\zeta^{2}\right)^{2}} \psi}{\partial \eta}\right.
$$

Hence $\beta(1-\omega 2) \frac{d U}{d \omega}-2 i \omega \frac{d V}{d \omega}$

$$
\begin{aligned}
= & \beta \eta\left(1-\eta^{2}-\zeta^{2}\right)\left\{\frac{\partial^{2} \psi}{\partial \eta^{2}}+\frac{\partial^{2} \psi}{\partial\}^{2}}\right\}-\frac{8 \beta \eta}{1-\eta^{2}-\zeta^{2}} \psi \\
& \left(1-\omega^{2}\right) \frac{d V}{d \omega}+i\left(1+\omega^{2}\right) \frac{d w}{d \omega} \\
= & -\frac{1}{2} \beta\left(1-\eta^{2}+\zeta^{2}\right)\left\{\frac{\partial^{2} \psi}{\partial \eta^{2}}+\frac{\partial^{2} \psi}{\partial \rho^{2}}\right\}+4 \beta \frac{1+\eta^{2}+\int^{2}}{\left.1-\eta^{2}-\right\}^{2}} \psi
\end{aligned}
$$

and

so that by equation (5)
and

$$
\left.\begin{array}{l}
\frac{d U}{d \omega}=\frac{1}{\beta} \cdot \frac{2 i \omega}{1-\omega^{2}} \cdot \frac{d W}{d \omega} \tag{10}\\
\frac{d V}{d \omega}=-i \cdot \frac{1+\omega^{2}}{1-\omega^{2}} \cdot \frac{d W}{d \omega}
\end{array}\right\}
$$

On the Mach cone $r^{2}=x^{2}-\beta^{2}\left(y^{2}+z^{2}\right)=0$, so that $|\omega| 2=\frac{B^{2}\left(y^{2}+z^{2}\right)}{(r+x)^{2}}=1$. At the aerofoil $z=0$, so $S=0$, and at a leading edge $y= \pm x \tan \gamma$, so $\gamma=\frac{ \pm \beta \tan \gamma}{1+\sqrt{1-\beta^{2} \tan ^{2} \gamma} \gamma+\frac{ \pm k^{1}}{1+k}}$, where $k^{2}=1-k^{2}=1-\beta^{2} \tan ^{2} \gamma$.

The Mach cone and its interior aro, theroforo, roprosontod in tho ω-plano by tho unit circlo and its intorior, whilo tho aorofoil bocomos tho roal axis botwoon $\pm \mathrm{k}^{\prime} /(1+\mathrm{k})$. (Fig.4b rofors).

Consider tho transformation $\operatorname{cn}(T ; k)=\frac{2 i \omega}{1-\omega^{2}}$ whoro
on (τ, k) is tho Jacobian olliptic function of modulus k.
The intorior of tho unit circlo in tho w-plano is tracod on tho T-plano in tho roctanglo, vorticos $\pm 2 i K^{\prime}(k), K(k) \pm 2 i K^{\prime}(k)$. In Fig.4c tho imaginary axis $A A^{\prime}$ botwoon $T= \pm 2 i K^{\prime}$ roprosonts tho Mach cono, while tho aorofoil bocomos tho parallol lino $B B^{\prime}$ botwoon $T=\mathbb{K} \pm 2 i K^{\prime}$, such that $C Q$ is tho lowor surface, $z=-0 ; y<0$, $Q B$ tho uppor surfeco $z=+0, y<0, C Q$ tho lowor surfaco, $z=-0$, $y>0$ and $Q^{\prime} B^{\prime}$ tho uppor surface $z=+0, y>0$. Tho loading: edges become the points Q, Q^{t}. The point C corresponds to the wing axis on the lower surface and the points B, B^{\prime} both to the axis on tho uppor surface. Tho lino $O C$ roprosonts tho portion of tho $z x-p l a n c, y=0, z<0$, botwoon tho Mach cono and tho aorofoil, whilo $A B, A^{\prime}$ both corrospond to tho similar aoction abovo tho aorofoil: tho lino $P \hat{C}$ corrosponds to that part of tho $x y-p l a n o, y<0, z=0$ botwoon tho Mach cono and tho loading odgo, and tho lino $P^{\prime} G^{\prime}$ to tho similar part, $y>0, z \equiv 0$.

$$
\text { In thaT-plane } \begin{align*}
\frac{d U}{d T} & =\frac{1}{\beta} \text { cnT } \frac{d V}{d T} \tag{11}\\
\text { and } \frac{d V}{d T} & =-i \sin T \frac{d W}{d T}
\end{align*}
$$

4.2 Calculation of Derivatives with respect to Sideslip

As already indicated we assume that the kinomatic boundary conditions aro fulfillod at tho normal projoction of tho norofail on tho $x y$-plano rathor than at tho aorofoil itsolf. Tho boundary condition for a sidoslip volocity \bar{v} and dihedral δ reduces to $\mathrm{w}=\overline{\mathrm{v}} \delta$ for $\mathrm{y}>0$ and $\mathrm{w}=-\overline{\mathrm{v}} \delta$ for $\mathrm{y}<0$.

From the asymmetry of the configuration it follows that $\mathrm{w}=0$ at the zx plane. In addition $\mathrm{w} \equiv 0$ at the Mach cone.

From physical considerations $\frac{d U}{d T}, \frac{d V}{d T}$ and $\frac{d W}{d T}$
must be finite at the Mach cono. Furthormoro tho aorodynamic forcos must bo finito, so that any infinity of u at tho aorofoil must bo such that tho intogral of u with rospoct to aron is finito.

We have to choose $\frac{d W}{d T}$. so that $\frac{d U}{d T}, \frac{d V}{d T} u$, w fulfil these conditions and so that u, v, w aro singlo valuod.

In ordor that $\frac{d V}{d T}$ may bo finito on tho Mach cono and W zoro on tho Mo.ch cono and the zx-plano, $\frac{d V}{d T}$ must bo rogular and roal on $A A^{\prime}$ and bo imaginary on $O C, A B$ and $A^{\prime} B^{\prime}$ with no singularitios othor than polos; tho rosiduos of such polos must bo zoro or rool oxcopt at C, B and B^{\prime} whoro thoro aro discontinuitios in T. Sinco $\frac{d U}{d T}\left(=\frac{1}{3} \mathrm{cnT} \frac{d W}{d T}\right)$ and $\frac{d V}{d T}\left(=-i \operatorname{sn} T \frac{d W}{d T}\right)$ sro to bo also finito on tho Mach conc, $\frac{d V}{d T}$ must hovo at loast a simplo zoro at tho points P and $P^{\prime}\left(T= \pm i K^{\mathbf{t}}\right)$. Sinco W is to bo constant ovor tho tro halvos of tho aorofoil, $\frac{d V}{d T}$ must bo roal on BB^{\prime} and havo no singuloritios which contributo to W oxcopt, as boforo, at C, B and B^{\prime}. In intograting $\frac{d W}{d T}$ along $O C B \quad W$ must jump in valuo by on omount $+\bar{v} \delta$ at C and $\overline{\mathrm{V}} \bar{O}$ in intograting along CCB'. Clocrly, thoroforo $\frac{\mathrm{dV}}{\mathrm{d} T}$ must hovo a simplo polo at C of rosiduo of imaginary part
$\frac{2 \overline{\mathrm{~V}} 5}{\pi}$. Similarly $\frac{\mathrm{dw}}{\mathrm{dT}}$ must hovo simplo polos of rosiduo of imaginary part $-\frac{2 \mathrm{~V} \delta}{\pi}$ at B and B^{\prime}, so that F may roturn to zoro on $A B$ and $A^{\prime} B^{\prime}$. In ordor that u, v, W may bo singlo voluoc $\frac{d U}{d T}, \frac{d V}{d T} \frac{d W}{d T}$ must bo rogular within tho roct nglo. Functions satisfying thoso concitions and oquation (11)
aro:-

$$
\left.\begin{array}{l}
\frac{d W}{d T}=\frac{2 i \bar{v} \delta k^{\prime} 3}{\pi} \quad \text { scT } n n^{2} T \tag{12}\\
\frac{d V}{d T}=\frac{2 \bar{v} \delta k^{+3}}{\pi} s \dot{c}^{2} T n c T \\
\frac{d U}{d T}=\frac{2 i \bar{v} \delta k^{\prime} 3}{\pi \beta} s n T n d^{2} T
\end{array}\right\}
$$

It will bo notod thet $\frac{d \mathrm{U}}{\mathrm{C} \tau}$ is puro imaginary along tho ronl axis ance rogular at $T \equiv K$, so that:-

$$
\begin{aligned}
u & =\frac{2 \bar{v} \delta k^{1} 3}{\pi \beta} \int_{0}^{\sigma} \operatorname{sn}(K+i s) n d^{2}(K+i s) d s, \tau=K+i \sigma^{\prime} \\
& =\frac{2 \bar{v} \delta k^{1}}{\pi / \beta} \int_{0}^{\sigma} \ln \left(s, k^{1}\right) n c^{2}\left(s, k^{\mathbf{1}}\right) d s \\
& =\frac{2}{\pi} \bar{v} \delta \tan \gamma \operatorname{sc}\left(\sigma, k^{1}\right)
\end{aligned}
$$

On the aerofoil $\omega=\frac{\beta y}{x+\sqrt{x^{2}-\beta^{2} y^{2}}}$ and $\tau=K+i \sigma$,
while on $=\frac{2 i \beta \omega}{{ }^{1}-\beta^{2} \omega^{2}}$, so that $k^{\prime} s d\left(\sigma, k^{+}\right)=\frac{\beta y}{\sqrt{x^{2}-\beta^{2} y^{2}}}$.
Hence $\operatorname{sc}^{2}\left(\sigma, k^{\prime}\right)=\frac{s d^{2}\left(\sigma, k^{\bullet}\right)}{1-k^{2} s d^{2}\left(\sigma, k^{+}\right)}=\frac{y^{2}}{x^{2} \tan ^{2} \gamma-y^{2}}$

$$
\text { Therefore } u=\frac{2}{\pi} \nabla \delta \tan \gamma \frac{y}{\sqrt{x^{2} \tan ^{2} \gamma-y^{2}}}
$$

In the linearised theory the pressure $p \equiv$ const. - $\rho u \bar{V}$ so that tho rolling moment duo to sideslip is:-

$$
\begin{aligned}
& L=+\iint 2 \rho \bar{v} u y d y d x, \text { where integration is over the whole } \\
& \text { wing } \\
&=+\frac{4}{\pi} \rho \bar{v} \bar{v} \delta \tan \gamma \iint_{y^{2} d y d x}^{\sqrt{x^{2} \tan ^{2} \gamma-y^{2}}}, \\
&=+\frac{8}{\pi} \rho \overline{v_{v}} \delta \tan ^{3} \gamma \int_{0}^{1} \int_{0}^{1} q^{2} \sqrt{1-t^{2}} \frac{d t}{t^{3}} d q, \\
&=+\frac{2}{3} \rho \bar{v} \delta_{c^{3} \tan ^{3} \gamma .} \quad y=q \tan \gamma \sqrt{1-t^{2}}
\end{aligned}
$$

Hone tho dorivativo $I_{V}=\frac{L}{\rho \overrightarrow{v V} S s}=\frac{2}{3} \delta \tan \gamma$.
Tho sideforco duo to tho prossuro distribution over tho
rosulting from a sideslip aorofoil rosulting from a sidoslip is:-

$$
(Y)_{\delta}=-\iint_{--4} 2 \rho \bar{\nabla} \delta l_{u} \|_{d y d x}
$$

$$
=-\frac{4}{\pi} \rho \bar{v} \bar{v} \delta^{2} \tan \gamma \iint \frac{11 d y d x}{\sqrt{x^{2} \tan ^{2} \gamma-y^{2}}},
$$

$$
=-\frac{8}{\pi} p \bar{v} \delta^{2} \tan ^{2} \gamma \int_{0}^{c t} \int_{0}^{1} \frac{q}{t^{2}} d t d q
$$

$$
=-\frac{4}{\pi} \rho \bar{v} \delta_{c}^{2} c^{2} \tan ^{2} \gamma
$$

$$
\left(y_{v}\right)_{\delta}=\frac{(Y)_{\delta}}{\rho v V S}=-\frac{4}{\pi} \delta^{2} \tan \gamma
$$

Tho corrosponding yawing moment is:-

$$
\begin{aligned}
(\mathbb{N})_{\delta} & =-\iint 2 \rho \overline{\mathrm{v}}|u| \delta \cdot x d y d x \\
& =-\frac{4}{\pi} \rho \overline{\mathrm{v}} \delta^{2} \tan \gamma \iint \frac{|y| x d y d x}{\sqrt{\mathrm{x}^{2} \tan ^{2} \gamma-\mathrm{y}^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{8}{\pi} \rho \overline{\mathrm{v}} \overline{\mathrm{~V}} \delta^{2} \tan ^{2} \gamma \int_{0}^{-10-} \int_{0}^{c t} \frac{q^{2}}{t^{3}} d t d q \\
& =-\frac{8}{3 \pi} \rho \overline{\mathrm{v}} \overline{\mathrm{v}} \delta^{2} c^{3} \tan ^{2} \gamma . \\
\left(n_{\mathrm{v}}\right)_{\delta} & =(\mathbb{N})_{\delta} / \rho \overline{\mathrm{v}} \overline{\mathrm{~V} S s}=-\frac{8}{3 \pi} \delta^{2} .
\end{aligned}
$$

In considering forces in the plane of the delta wing, in this case sideforce and yawing moment due to sideslip, it is necessary to take into account the contribution from the infinite suction at the loading odge as well as that from the prossuro distribution over the wing. At zero incidence tho suction forces duo to sideslip are of second order, but at a finite incidonco thor is a cross form of first order.

It will be shown that the induced velocity at the loading edge is perpendicular to tho loading odgo and that it con bo exprossod in tho form :-

$$
q=c \sqrt{\frac{1}{\xi}}+\text { boundod torms }
$$

where ξ is tho distance in from tho loading odgo.
Tho corresponding suction force was shown in Appendix IV to Ref. 2 to bo $\pi \rho C^{2} \cos \gamma \sqrt{1-\lambda^{2}}$ jor unit Iongth.

Considering first tho flow duo to tho sideslip alone, the induced velocity along a leading edge $(y=x \tan \gamma)$ is ($u \cos \gamma+v \sin \gamma$), which is the ronal part of $\frac{1}{8} \cos \gamma\left(U \beta+w^{\ell} V\right\}$. Now from equations (12) $\frac{d}{d \tau}\left\{U \beta+w^{\prime} V\right\}=\frac{2}{\pi} i \bar{\nabla} \delta k^{\prime} 3\left\{\operatorname{cn} T-i k^{\prime} \operatorname{sn} T\right\} \operatorname{scT}^{T}$ nd ${ }^{2} T$, which, roforring to Fig.4c, is real along $O P^{\prime}$ and pure imaginary along $P^{\prime} Q^{\prime}$: it is, furthormoro, rogular at ovary point along $O P^{\prime} Q^{\prime}$ including Q^{\prime}, which corrosponds to tho loading odgo $y=x \tan \gamma$. Hone tho component of induced volocity due to sideslip along a loading odgo is zero.

From Ref. 2 we have that the induced velocity potential at tho aerofoil duo to an incidence α is -:

$$
\frac{\bar{v} \alpha}{E^{\prime}(\lambda)} \sqrt{x^{2} \tan ^{2} \gamma-y^{2}}
$$

whore $\mathbb{F}^{\prime}(\lambda)$ is tho comploto elliptic integral of the socond kind. It will be noted that the volocity component along tho loading odgo vanishos.

As tho contributions from both fields are zoro in tho direction of the loading odgo, tho total inducod volocity perpendicular to tho loading edge is cosec γ times the x-wise component, which we obtain from the above expression and our provious result (13), giving:-

$$
q=\frac{\sec \gamma}{\sqrt{x^{2} \tan ^{2} \gamma-y^{2}}}\left\{\frac{\bar{v} \alpha}{E^{\prime}(\lambda)} \times \tan \gamma+\frac{2}{\pi} \vec{v} \delta_{y}\right\}
$$

so that

$$
\text { Put } \mathrm{x}=\mathrm{x}_{0}+\xi \sin \gamma, \quad \mathrm{y}=\mathrm{x}_{0} \tan \gamma-\xi \cos \gamma
$$

$$
q=\left\{\frac{\bar{v}_{\alpha}}{\mathbb{F}^{1}(\lambda)}+\frac{2}{\pi} \overline{v^{\prime}} \delta\right) \frac{0}{\frac{x_{0} \tan \gamma \sec \gamma}{2 \xi}}
$$

+ bounded terms.

Hence the suction due to sideslip at incidence is

$$
\frac{2 \rho \overrightarrow{\mathrm{~V}} \overline{\mathrm{~V}} \alpha \delta}{\mathrm{E}^{\prime}(\lambda)} x_{0} \tan \gamma \sqrt{1-\lambda^{2}}
$$

The side force due to leading edge suction resulting from a sideslip at incidence is:-

$$
\begin{aligned}
(\mathrm{Y})_{\alpha \delta} & =\int_{0}^{\mathrm{c}} \frac{4 \rho \overline{\mathrm{~V}} \alpha \delta}{E^{\prime}(\lambda)} \tan \gamma \sqrt{1-\lambda^{2}} \mathrm{xdx} \\
& =\frac{2 \rho \overline{\mathrm{v}} \alpha \delta}{\Xi^{\prime}(\lambda)} c^{2} \tan \gamma \sqrt{1-\lambda^{2}} \\
\left(\mathrm{y}_{\mathrm{v}}\right)_{\alpha \delta} & =(\mathrm{Y})_{\alpha \delta} / \rho \overline{\mathrm{V}} s=\frac{2 \alpha \delta \sqrt{1-\lambda^{2}}}{\Xi^{\prime}(\lambda)}
\end{aligned}
$$

The corresponding yawing moment is:-

$$
\begin{aligned}
(\mathbb{N})_{\alpha \delta} & =\int_{0}^{c} \frac{4 \rho \overline{\mathrm{~V} V} \alpha \delta}{E^{\prime}(\lambda)} \tan \gamma \sqrt{1-\lambda^{2}} \cdot x^{2} \sec ^{2} \gamma d x \\
& =\frac{4 \overline{\mathrm{~V} V} \alpha \delta}{3 \mathbb{E}^{\prime}(\lambda)} c^{3} \sqrt{1-\lambda^{2}} \tan \gamma \cdot \sec ^{2} \gamma \\
\left(n_{V}\right)_{\alpha \delta} & =(\mathbb{N})_{\alpha \delta / \rho \overline{\mathrm{V}} \bar{V} S s}=\frac{4 \alpha \delta \sqrt{1-\lambda^{2}}}{3 \mathbb{E}^{\prime}(\lambda)} \cot \gamma \sec ^{2} \gamma
\end{aligned}
$$

Hence the total side force is

$$
Y=-2 \rho \overline{\bar{V} V c^{2} \tan \gamma}\left\{\frac{2 \delta^{2}}{\pi} \tan \gamma-\frac{\alpha \delta \sqrt{1-\lambda^{2}}}{E^{\prime}(\lambda)}\right\}
$$

and

$$
y_{v}=-2\left\{\frac{2}{\pi} \delta^{2} \tan \gamma-\frac{\alpha \delta \sqrt{1-\lambda^{2}}}{m(\lambda)}\right\}
$$

and the total yawing moment is -

$$
N=-\frac{4}{3} \rho \overline{v V c}^{3} \tan \gamma\left\{\frac{2}{\pi} \delta^{2} \tan \gamma-\frac{\alpha \delta}{E^{\prime}(\lambda)} \sqrt{1-\lambda^{2}} \sec ^{2} \gamma\right\}
$$

and

$$
n_{v} \equiv-\frac{4}{3}\left\{\frac{2}{\pi} \delta^{2}-\frac{\alpha \delta}{\mathbb{E}^{\prime}(\lambda)} \sqrt{1-\lambda^{2}} \cdot \cot \gamma \sec ^{2} \gamma\right\}
$$

5. Delta Wing with Leading Idgos Outside Mach Cone

The boundary condition at the aerofoil is $w=\overline{\mathrm{v}} \delta$ on one half and $\overrightarrow{-} \bar{\delta}$ on the other. When considering the upper surface, $y>0$, where $w=v \delta$ we may take $v=-\vec{v} \delta$ on the ourresponding lower surface, since the flow above tho aerofoil is indopondont of the flow below it in tho case under consideration. In this artificial condition thoro is a jump of $-2 \overline{\mathrm{v}} \delta$. in tho value of $\frac{\partial \Phi}{\partial n}$ at tho surface, so that tho surface can bo roplacod by a uniform supersonic source distribution of donsity $\frac{-\frac{76}{\pi} \text {; the other half }}{}$ of tho aorofoil, $y<0$, whore ${ }^{\square} \overline{\bar{v}} \delta^{\bar{v}} \mathcal{\delta}$, con bo likoriso roplncod by a sourco distribition of density $\frac{\overline{\mathrm{V}} \delta}{\pi}$.

$$
\begin{aligned}
& \text { Hence } \Phi(x, y, o)=-\frac{\overline{\mathrm{v} \delta}}{\pi} \iint \frac{a^{2} d x_{0} d y_{0}}{\sqrt{\left(x-x_{0}\right)^{2}-\beta^{2}\left(y-y_{0}\right)^{2}}} \\
& \text { whore } \sigma=+1, \text { when } y>0 \\
& \sigma=-1, \text { when } y<0 .
\end{aligned}
$$

so

$$
\Phi=-\frac{\bar{v} \delta}{\pi} \iint \rho d \rho d
$$

$$
\text { whore } x_{0}=x-\beta \rho \cosh \psi
$$

$$
y_{0}=y-\rho \sinh \psi
$$

In Fig. Ad P_{i} is tho point $(x, y), \mathrm{OL}_{1}$ and OL_{2} are tho
odgos, and PL_{1} and PL_{2} arb the boundarios whore $\left(\mathrm{x}-\mathrm{x}_{0}\right)^{2}$

$$
-\beta^{2}\left(y-y_{0}\right)^{2}=0 .
$$

Tho values of ρ, ψ vary as follows:-

$$
\begin{aligned}
& \text { whoa }\left(x_{0}, y_{0}\right) \text { is on } \\
& \begin{array}{ll}
\text { (i) } \mathrm{IL}_{1}, & \Psi=-\infty \\
\text { (ii) } \mathrm{PL}_{2}, & \Psi=+\infty
\end{array} \\
& \text { (iii) OP , } \quad \psi=\tanh ^{-1} \frac{\beta y}{x}=\epsilon \\
& \text { (iv) } \mathrm{OX}, \rho=\rho_{0}=\mathrm{y} \operatorname{cosech} \psi \\
& \text { (v) } 0 L_{1}, \quad \rho=\rho_{1}=\frac{x \tan \gamma-y}{\lambda \cosh \psi-\sinh \psi} \\
& \text { (vi) } 0 \mathrm{~L}_{2}, \rho=\rho_{2}=\frac{x \tan \gamma+y}{\lambda \cosh \psi+\sinh \psi}
\end{aligned}
$$

When P is inside the Mach cone from the apex, we have

$$
\Phi=-\frac{\overline{\mathrm{v}} \delta}{\pi}\left\{\int_{-\infty}^{\epsilon} p_{1} d \psi+\int_{\epsilon}^{\infty} p_{0} d \psi-\int_{\epsilon}^{\infty}\left(p_{2}-p_{0}\right) d \psi\right\}
$$

so that $u=\frac{\overline{\mathrm{v}} \delta}{\pi}\left\{\int_{-\infty}^{\epsilon} \frac{\partial \rho_{1}}{\partial x} d \psi-\int_{\epsilon}^{\infty} \frac{\partial \rho_{2}}{\partial x} d \psi\right\}$, since $\frac{\partial \rho_{0}}{\partial x} \overline{=} 0$ and $\rho_{0}=\rho_{1} \equiv \rho_{2}$, when $\psi \in$

$$
\begin{aligned}
u & =\frac{\bar{v} \delta}{\pi} \int_{-\infty}^{\epsilon} \frac{\tan \gamma d \psi}{\lambda \cosh \psi-\sinh \psi}-\frac{\bar{v} \delta}{\pi} \int_{e^{2} \cosh \psi+\sinh \psi}^{\infty} \frac{\tan \gamma d \psi}{\infty}-\frac{2 \nabla \delta}{\pi} \int_{-1}^{1} \frac{\tan \gamma d t}{\lambda\left(1+t^{2}\right)+2 t} \\
& =\frac{2 v \delta}{\pi} \int_{-1}^{\pi} \frac{\tan \gamma d t}{\lambda\left(1+t^{2}\right)-2 t} \\
& =\frac{2 v \delta \tan \gamma}{\pi \sqrt{\lambda^{2}-1}}\left\{\tan ^{-1} \frac{\lambda T-1}{\sqrt{\lambda^{2}-1}}+\tan ^{-1} \frac{\lambda \tau+1}{\sqrt{\lambda^{2}-1}}\right\} \\
& =\frac{2 v \delta \tan \gamma}{\pi \sqrt{\lambda^{2}-1}} \tan ^{-1}\left\{y \operatorname{cot\gamma } \sqrt{\frac{\lambda^{2}-1}{x^{2}-\beta^{2} y^{2}}}\right\}
\end{aligned}
$$

When P is outside tho apex Mach ono

$$
I=-\frac{v \delta}{\pi} \int_{-\infty}^{\infty} \rho_{1} d \psi, y>0
$$

so that $u=\frac{\bar{v} \delta \tan \gamma}{\sqrt{\lambda^{2}-1}}$, by putting $\epsilon a \infty$ in tho above.

When $y<0$, u changes sign.

Hence tho rolling moment duo to sideslip is:-

$$
\begin{aligned}
L= & +\iint_{0} 2 \rho \bar{V} u y d y d x \\
= & +\frac{4 \rho \overline{v V} \delta \tan \gamma}{\sqrt{\lambda^{2}-1}}\left\{\int_{0}^{\infty} \operatorname{soc} \theta \int_{\cot ^{-1} \beta}^{\gamma} r^{2} \sin \theta d \theta d r\right. \\
& \left.+\frac{2}{\pi} \int_{0}^{\frac{c}{\beta} \operatorname{soch} \psi} \int_{0}^{\infty} \tan ^{-1} \cdot\left[\frac{\sqrt{\lambda^{2}-1}}{\lambda} \sinh \psi\right] q^{2} \sinh \psi d \psi d q\right\}
\end{aligned}
$$

whore $x=r \cos \theta, y=r \sin \theta$ in tho 1st integral and $x=q \beta \cosh \psi, y=q \sinh \psi$ in tho and integral

$$
\text { Hence } I_{V} \frac{I}{\rho \overline{\bar{V} V S}}=+\frac{2 \delta}{3 \beta} \text {. }
$$

$$
\begin{aligned}
& =+\frac{4 \rho \bar{v} \bar{v} \delta c^{3} \tan \gamma}{3 \sqrt{\lambda^{2}-1}}\left\{\int_{\cot ^{-1} \beta}^{\boldsymbol{\gamma}} \tan \operatorname{soc}^{2} \theta \mathrm{~d} \theta+\frac{2}{\pi \beta^{2}} \int_{0}^{\left.\left.\cos -1 /\left[\frac{\lambda^{2}-1}{\lambda} \sinh \psi\right] \tanh \psi \operatorname{sach}^{2} \psi \psi\right\} \psi\right\}}\right\} \\
& =+\frac{2 \rho \overline{\mathrm{v} V} \delta c^{3} \tan \gamma}{3 \sqrt{\lambda^{2}-1}}\left\{\tan ^{2} \gamma-\frac{1}{\beta^{2}}+\frac{2}{\pi / \beta^{2}}\left[\frac{\pi}{2}-\int_{0}^{\infty} \frac{\lambda \sqrt{\lambda^{2}-1} \cosh \psi \tanh ^{2} \psi \mathrm{~d} \psi}{\lambda^{2}-1 \cdot \sinh ^{2} \psi+\lambda^{2}}\right]\right\} \\
& =+\frac{2 \rho \overline{\mathrm{v}} \hat{\delta}^{3} \tan \gamma}{3 \sqrt{\lambda^{2}-1}}\left\{\tan ^{2} \gamma-\frac{2}{\pi \beta^{2}} \int_{0}^{\infty} \frac{\lambda \sqrt{\lambda^{2}+1} t^{2} d t}{\left(1+t^{2}\right)\left(\overline{\lambda^{2}-1} t^{2}+\lambda^{2}\right)}\right\} \\
& =+\frac{2 \rho \bar{v} \delta c^{3} \tan \gamma}{3 \sqrt{\lambda^{2}-1}}\left\{\tan ^{2} \gamma+\frac{2 \lambda \sqrt{\lambda^{2}-1}}{\pi \beta^{2}}\left[\tan ^{-1} t-\frac{\lambda}{\sqrt{\lambda^{2}-1}} \tan ^{-1} \frac{t \sqrt{\lambda^{2}-1}}{\lambda}\right]_{0}^{\infty}\right\} \\
& =+\frac{2 \rho \vec{v} \bar{v} \delta c^{3} \tan ^{2} \tau}{3 / \beta}
\end{aligned}
$$

The side force due to sideslip is:-

$$
\begin{aligned}
& Y=-\iint 2 \rho \bar{V} \text { bul } \delta d y d x \\
& =-\frac{4 \rho \bar{v} \bar{V} \delta^{2} \tan \gamma}{\sqrt{\lambda^{2}-1}}\left\{\int_{0}^{c} \int_{\cot ^{-1}}^{\sec \theta} r d r d \theta+\frac{2}{\pi} \int_{0}^{\frac{c}{\beta} \operatorname{soch} \psi} \int_{0}^{\infty} \beta \tan ^{-1}\left[\frac{\sqrt{\lambda^{2}-1}}{\lambda} \sinh \psi\right] q d \psi d q\right\} \\
& =-\frac{2 \rho \overline{\mathrm{v}} \delta^{2} c^{2} \tan \gamma}{\sqrt{\lambda^{2}-1}}\left\{\tan \gamma-\frac{1}{\beta}+\frac{2}{\pi \beta} \int_{0}^{\infty} \tan ^{-1}\left[\frac{\sqrt{\lambda^{2}-1}}{\lambda} \sinh \psi\right] \operatorname{soch}^{2} \psi \alpha \psi\right\} \\
& =-\frac{2 \rho \bar{v} \bar{v} \delta^{2} c^{2} \tan \gamma}{\sqrt{\lambda^{2}-1}}\left\{\tan \gamma-\frac{1}{\beta}+\frac{2}{\pi \beta}\left[\frac{\pi}{2}-\int_{0}^{\infty} \frac{\lambda \sqrt{\lambda^{2}-1} \cosh \psi \tanh \psi d \psi}{\lambda^{2}-1} \sinh ^{2} \psi+\lambda^{2}\right]\right\} \\
& =-\frac{2 \rho \bar{\nabla} \delta^{2} c^{2} \tan \gamma}{\sqrt{\lambda^{2}-1}}\left\{\tan \gamma-\frac{2}{\pi \beta} \int_{1}^{\infty} \frac{\lambda \sqrt{\lambda^{2}-1} d t \psi}{\lambda^{2}-1 t^{2}+1}\right\}, t=\cosh \gamma . \\
& =-\frac{4}{\pi} \rho \overline{\mathrm{~V}} \bar{\nabla} \delta^{2} c^{2} \tan ^{2} \gamma \frac{\sec ^{-1} \lambda}{\sqrt{\lambda^{2}-1}} \\
& y_{V}=\frac{Y}{\rho \overline{\mathrm{~V} V}}=-\frac{4}{\pi} \delta^{2} \tan \gamma \frac{\sec ^{-1} \lambda}{\sqrt{\lambda^{2}-1}}
\end{aligned}
$$

Tho yawing moment due to sidoslip is:-

$$
\begin{aligned}
& N=-\iint 2 p \overline{\mathrm{~V}}|u| x \delta d y d x \\
&=-\frac{4 \infty \bar{\nabla} \overline{\mathrm{~V}} \delta^{2} \tan \lambda}{\sqrt{\lambda^{2}-1}}\left\langle\int_{0}^{c} \int_{\cot ^{-1} / 3}^{\operatorname{soc} \theta} r^{2} \cos \theta \operatorname{drd} \theta+\frac{2}{\mu}\right. \\
&\left.\int_{0}^{\frac{c}{\beta} \operatorname{soch} \psi} \int_{0}^{\infty} \beta^{2} \tan ^{-1}\left[\frac{\lambda^{2}-1}{\lambda} \sinh \psi\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{4 \mu \bar{v} \bar{v} \delta^{2} c^{3} \tan \gamma}{3 \sqrt{\lambda^{2}-1}}\left\{\tan \gamma-\frac{1}{\beta}+\frac{2}{\pi / 3} \int_{0}^{\infty} \tan ^{-1}\left[\frac{\sqrt{\lambda^{2}-1}}{\lambda} \sinh \psi\right] \operatorname{sech}^{2} \psi d \psi\right\} \\
& =-\frac{8}{3 \pi} \rho \bar{v} \bar{v} \delta^{2} c^{3} \tan ^{2} \gamma \frac{\sec ^{-1} \lambda}{\sqrt{\lambda^{2}-1}} \\
n_{V} & =-\frac{N}{\rho-\bar{v} V s}=-\frac{8 \delta^{2}}{3 \pi} \cdot \frac{\sec ^{-1} \lambda}{\sqrt{\lambda^{2}-1}}
\end{aligned}
$$

REFERENCES

No.
Author
H.J. Stewart

The Lift of a Delta Wing at Supersonic Speeds. Quarterly 0 Applied Mathematics, October, 1946.

2
A. Robinson

Aerofoil Theory of a Flat Delta Wing at Supersonic Spoods. R.A.E. Report No. Aero 2151 (A.R.C. 10 с22), 1946.

APPEND IX

The Relation between Two Methods of Treating Aorodynamic Forco Probloms of a Dolta Wing at Suporsonic Spoods

1. Introduction

1.1 Solutions to the problem of the lift at supersonic spoeds of a flat delta wing lying within its apex Mach cone were obtained independently by Stewart (ref.1) and by Robinson (ref.2) by methods which at first sight appear very difforont. A transformation will bo dorivod that links tho two undor conditions of conicol flow.
1.2 Robinson's method of hyperboloido-conal coordinates is classical in its approach to the problem, for it reduces to the finding of a system of which the Mach cono and tho delta wing aro coordinato surfacos. Stowart's troatmont is spocial to a particular set of problems.
1.3 Despite the link betweon the methods they are different in scope. Stewart's method is suitable for problems involving a discontinuity in the boundary conditions, while the other is not: on the other hand hyperboloido-conal coordinates are not limited to solutions of degree zoro in x, y, z. Thus, for oxamplo, Stowart's mothod is suitablo for calculating tho aorodynamic dorivativos with rospoct to sidoslip and tho othor for pitching momont duo to pitching and rolling momont duo to rolling, but not vice versa.

2. Hyperboloido-Conal Coordinates

The coordinates developed in ref. 2 were a.s follows:-

$$
\text { Whore } \begin{aligned}
& k^{\prime 2}=1-k^{2}=\beta^{2} \tan ^{2} \gamma \\
& 0 \leqslant r<\infty \\
& 1 \leqslant \mu<\infty \\
& x \leqslant r<1
\end{aligned}
$$

The family of surfaces constituting the system are:-

$$
\left.\begin{array}{l}
x^{2}-\beta^{2}\left(y^{2}+z^{2}\right)=r^{2} \\
\frac{x^{2}}{\mu 2}-\frac{\beta^{2} y^{2}}{\mu^{2}-z^{2}}-\frac{\beta^{2} z^{2}}{\mu^{2}-1}=0 \tag{2}\\
\frac{x^{2}}{\nu^{2}}-\frac{\beta^{2} y^{2}}{\nu^{2}-k^{2}}-\frac{\beta^{2} z^{2}}{1-\nu^{2}}=0
\end{array}\right\}
$$

It will be observed that these coordinates are analogous to sphero-conal coordinates; in fact they correspond under the transformation $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=(x, i ß y, i \beta z)$.

As $\mu \rightarrow 1$, the cones of the socond family of surfaces approximate to tho delta wing from both sides, and as $\mu \rightarrow \infty$ they tend to the Mach cone.

$$
\begin{equation*}
\text { The equation }-\beta^{2} \frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}+\frac{\partial^{2} \varphi}{\partial z^{2}}=0 \tag{3}
\end{equation*}
$$

now becomes:-

$$
\begin{align*}
& \sqrt{\left(\mu^{2}-k^{2}\right)\left(\mu^{2}-1\right)} \frac{\partial}{\partial \mu}\left\{(\mu ^ { 2 } - k ^ { 2 }) (\mu ^ { 2 } - 1) \frac { \partial \varphi } { \partial \mu } \left\{\sqrt{\left.\left(\nu^{2}-k^{2}\right)(1-)^{2}\right)} \frac{\partial}{\partial \nu}{ }^{\left.\left(\nu^{2}-k^{2}\right)\left(1-\nu^{2}\right) \frac{\partial \varphi}{\partial r}\right\}}\right.\right. \\
& -\left(\mu^{2}-\nu^{2}\right) \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \varphi}{\partial r}\right)=0 \ldots \ldots \ldots(4) \\
& \text { Writing } \bar{\rho}=\int_{\mu}^{\infty} \frac{d t}{\sqrt{\left(t^{2}-k^{2}\right)\left(t^{2}-1\right)}}, \bar{\sigma}=\int_{\nu}^{k} \frac{k}{\sqrt{\left(t^{2}-r^{2}\right)\left(1-t^{2}\right)}} \\
& \text { ide., } \left.\begin{array}{rl}
\mu & =n s(\bar{\rho}, k) \\
\gamma & =k n d\left(\bar{\sigma}, k^{\prime}\right)
\end{array}\right\} \tag{5}
\end{align*}
$$

we have $\frac{\partial^{2} \varphi}{\partial \bar{p}^{2}}+\frac{\partial^{2} \varphi}{\partial \tilde{\sigma}^{2}}-\left(\mu^{2}-\nu^{2}\right) \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \varphi}{\partial r}\right)=0$
velocity.
Hence for conical flow $\frac{\partial^{2} \varphi}{\partial \bar{p}^{2}}+\frac{\partial^{2} \varphi}{\partial \bar{\sigma}^{2}}=0$, where φ is a
As $\bar{\rho}$ varies from 0 to $K(k), \mu$ varies from ∞ to 1 .
As $\bar{\pi}$ varies from $-2 K^{\prime}(k)$ to $-K^{\prime}(k), \gamma$ varies from k to 1 and back to k as $\bar{\sigma}$ continues through to zero, repeating as $\bar{\sigma}$ increases to $2 \mathrm{~K}^{\prime}$.

Equations (1) and (5) give:-

$$
\left.\begin{array}{l}
x=\operatorname{rns}(\bar{\rho}, k) n d\left(\overline{\sigma^{\prime}}, k^{+}\right) \\
y=\frac{r}{\beta} d s(\bar{p}, k) \text { sd }\left(\bar{\sigma}, k^{\prime}\right) \\
z=\frac{r}{\beta} \text { cs }(\bar{\rho}, k) \operatorname{cd}\left(\bar{\sigma}, \bar{x}^{+}\right)
\end{array}\right\} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(7)
$$

To oach valuo of $\bar{\rho}, \vec{\sigma}$ in tho spocifiod intervals of variation there corresponds just one triplet x, y, z for constant r on the right hand sheet of the hyperboloid $x^{2}-\beta^{2} y^{2}\left(-\beta^{2} z^{2} r^{2}\right.$
Previously we traced the (x, y, z)-plane on tho ω-plane $\left(\omega=\eta+i \int_{-\infty} \frac{y^{2}+i z}{x+r}\right)$, so that ovidently thoro is a ono to ono corrospondenco botwoon tho points insido $|\omega|=1$ in tho ω-plano and tho points in tho \bar{T}-plano $(\bar{T}=\bar{\rho}+i \bar{\sigma})$ within the specified intervals of variation of $\bar{\rho}$ and $\bar{\sigma}$.

Equation (6) shows that a function ϕ which satisfies equation (3) and is of degree zoro in x, y, z satisfies Laplace's equation in $\bar{\rho}, \bar{\sigma}$, but any function which satisfies Laplace's equation in the w-plane is of zero degree in x, y, z and satisfies equation (3). Hence every potential function in the ω-plane is a potential function in the $\bar{\tau}-p l a n o$, providod the ω-plano is tracod on the latter by means of the transformations given by $\omega=\beta \frac{y+i z}{x+r}$ and equations (1) and (5). Thoreforo tho transformation is conformal.

By a transformation basod on Stowart's mothod wo proviously transformod a sot of points in tho ω-plano into tho roctangio, vorticos $T= \pm 2 i K^{\prime}, K \pm 2 i K^{\prime}$, but that sot of points corrosponds to tho points in tho (x, y, z)-plano which bocomo, by the transformation of tho provious paragraph, tho "samo" roctangle in tho τ-plano with tho vortices corrosponding. It thoroforo follows from tho gonoral thoory of conformal roprosontation that tho two transformations aro idontical.

Wo hovo shown that Stowart's τ-plano is connoctod to tho system of hyperboloido-conal coordinates by the simplo rolations of equations (5). Furthormoro we have given at equations (7) a direct coordinate transformation between (x, y, z) and (ρ, σ), by which Stewart's relation between U, V and W as functions of T could bo ostablishod in the samo mannor as the rolation botwoon thom as functions of tho intormodiato variablo ω was ostablishod.

3. Aerodynamic Derivatives Lp and Mí

In the first section of this appendix it was stated the rolling moment due to rolling, Lp, and tho pitching moment due to pitching, Mq, could be dorivod by tho mothod of hyporboloidomesnal coordinatos in tho quasi-subsonic caso. This will now be indicatod.

By the transformation $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) w(x, i \beta y, i \beta z)$ these coordinates become sphero-conal, whilo oquation (3) roducos to Laplaco's oquation.

Honco thoro oxist solutions for tho inducod potential Φ of the form $\Phi=I^{n} E_{n}(\nu) F_{n}(\mu)$ where \mathbb{E}_{n} and F_{n} are Lame functions of the same class, of degree n and of the first and socond kind rospoctivoly.

Such a solution satisfios tho boundary condition at tho
Mach cone, whore $\mu \rightarrow \infty$, since $F_{n}(\mu)$ is of order $\mu-n-1$ at infinity.

To find Lp wo choose tho dogroo and class of tho Lame
functions so that

$$
\Phi=\text { y } z \frac{F_{2}(\mu)}{E_{2}(\mu)} .
$$

Though at first sight $\frac{\partial \Phi}{\partial z}$ is proportional to y, and thoroforo of tho right form, at tho aorofoil where $z=0, \mu=1$, we require some reassurance on the point, for here

$$
\frac{F_{2}(\mu)}{E_{2}(\mu)}=\int_{\mu}^{\infty} \frac{d t}{\sqrt{\left(t^{2}-1\right)^{3}\left(t^{2}-k^{2}\right)^{3}}} \text {, which is of ordor }\left(\mu^{2}-1\right)^{-\frac{1}{2}}
$$

as μ bonds to unity; however it may bo shorm that $\frac{\partial}{\partial z}\left\{z \frac{F_{2}(\mu)}{E_{2}(\mu)}\right\}$
tongs to a limit that is indopondont of γ.

$$
\Phi=z \times \frac{F_{2}(\mu)}{\mathrm{E}_{2}(\mu)}=z \times \int_{\mu}^{\infty} \frac{d t}{t^{2} \sqrt{\left(t^{2}-1\right)^{3}\left(t^{2}-k^{2}\right)}} .
$$

Dotailod numorical results for those cases will be publishod shortly in tho Journal of tho Royal Aoronautical Socioty.

1.8							

FIG $4 C$.

