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SUPillARY 

Expressions are derived for the sidoslip 
derivatives on the assumptions of the linearised 
theory of flow for a delta wing with small dihedral 
flying at supersonic speeds. A discussion is 
included in the appendix on the relation between 
two methods that have boon evolved for the treatment 
of aerodynamic force problems of the delta wing 
lying within its apex Mach cone. 

When the.leading edges are within the Mach 
cone from the apex, the pressure distribution and 
the rolling moment aro independent of Mach number 
but dependent on aspect ratio. 	There is a leading 
edge suction, which is a function of incidence, 
aspect ratio and Mach number, that contributes 
as well as the surface pressure distribution to 
the sidoferee and yawing moment. 

When the leading edges are outside the 
apex Mach cone, the non-dimensional rolling 
derivative is, in contrast to the other case, 
dependent on Mach number and independent of 
aspect ratio: the other dorivativos and the 
pressure, however, are dependent on both variables. 
There is no leading edge suction force in this case. 

DISS 



-2- 

1. 	Introduction 

The present paper, in which the aerodynamic derivatives 
with respect to sideslip are calculated, is on of a series dealing 
with the force coefficients acting on a delta wing at supersonic 
speeds. 	The investigation will be confined to the case of small 
deviations of the wing from the neutral position, so that in particular 
it may be assumed that if the wing is initially wholly within the 
Mach cone - emanating from its apex it will remain so in the disturbed 
condition, and vice versa. 

The problem divides into the two cases in which the wing 
protrudes through its apex leach cone and in which it is entirely 
enclosed within it. 	In the former the task'simplifies to integrating 
a uniform distribution of supersonic sources, since tho motion ahead 
of the trailing edge above the wing is independent of that below the 
wing. In the latter case recourse is made to a method based on that 
introduced by Stewart (ref.1) in his solution of the basic lift problem, 
except that the oxprossion relating the pressure distribution to the 
boundary conditions is derived in c. different manner. 

Robinson (rof.2) solved the lift problem by other means 
and a comparison of the two techniques employed is made in the 
appendix to this paper. 

Notation 

V 

- 

= Free stream velocity 

v 

- 

= Sideslip velocity 

p = Air density 

M = Mach number 

7J=s -112 -1-  

ijtan'y 

L = Rolling moment 

N = Yawing moment 
(referred to vertex) 

Y = Side force 

6 = Dihedral angle 

Semi vertex angle 

c = Max. chord 

S = c2tan7 = Wing area 

s = ctanY= Semi span 

14/fivVSs = Non-dimensional 
rolling derivative 

nv 
= N/pvVSs = Non-dimensional 

yawing derivative 

y = Y/ivVSs = Non-dimensional 
sideslip derivative. 

= Incidence 

= 

/3. 	Results.... 



3. 	Results  

A thin flat delta wing of small dihedral is travelling at 
supersonic speed V with sideslip y with vertex into wind (See Fig.4a). 

The forces due to sideslip are:- 

Inside Mach Cone 	( jk 4, i) 'Outside 26.oli Cons 	( X -). 

L*  WeOtan3Y. 
3 P 

.- 	, 	')---, ar)--eAr at etan"--  T. 

N - -4-.-  plTrc3tanY 42tanY- .':-.< 	ETseel -n  1 	c3t an2  )soc-1)K 
3 	

E'(A) 
- 	7 
	

q(  k2  - 1 

Y .4 2 	 2t 	1' _ f...< s 	E:77 '1, FvVc2tanY _ "1 „,,7 s c 	.2 y 
	

sec"' A  
71 r- , i 

The non-dimensional aerodynamic derivatives with respect to 
sideslip are:- 

Inside Mach Cone 	( >:•< 1) - Outsidelihch Cone 	(>4) I) 

an Y. 2. ILI. 
3 	/3  

lii 	1  flt(i)(1-  A 2  eotYsec2 )( 
8 	2 	04-,'" 	x 

r' 	E} ( M 
.. 

3 i r 	?t 2 - 1  

Yv  - 	fqtanY- -----1 	0017-7 
4 e--2 	-1 

E l 	{:) -11-- 
 b tanY  

It will be noted that the abovo quantities are continuous on 
transition from one case to the other. 

e  2 
At Figsi the quantities 72 	g, njoi, 	.and fiyi& 

for zero incidence are plotted agains the parc:motor, ) ■ • 

1; 2 
and Yv/8 

2 

for zero incidence are plotted against Mach number for different aspect 
ratios. It will be'scon that the values of IVE obtained for the 
higher aspect ratios, when the loading edges are within the Mach cone, 
are comparable with those obtained in incompressible flow. 

At Fig.3 the contributions to n of E and yi440( 
duo to incidence are plotted against Mach number for dif orent aspect 
ratios. 	It will be notod that the parts of n and yv  duo to 
incidence "_re of bpite sign 1:o the remaindervand, .. 7  or icidences 
comparable to the dihedral angle, are of the same order. 

Thu suction force at the leading edgo when lying within the 

/Mach ..... 

At Fig.2 the quantities 1 7/6 , 
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Mach cone is:- 

2 

 

pTrvo1.-6 

 

k) 

The pressure distributions are:- 

(a) Leading edges within the Mach cone:-

2 	 ytan -r 

Tr 
	

1e_2tanelr - y2  

(b) Leading edges outside the Mach cone: - 

(i) At a point outside the Mach cone: - 

f3 i;\;6 	tanir  

(A2 	 

(ii) At a point inside the Mach cone:- 

2 	 tan —ffvo 	tan-1  'Tr 	4/N2 
yoot:71  ›'2  

x 	Y 
2 n 2 2 

4. Delta Wing Enclosed within the Apex Mach Cone  

4.1 Relating the Pressure Distribution to the Boundary Conditions  

In the linearised supersonic theory excess pressure is 
proportional to the induced velocity in the froostream direction. 
Since the angle of dihedral is small, the boundary conditions can 
be expressed by equating the velocity normal to the yawing plane to 
the component of the sideslip velocity along the normal to the 
aerofoil itself. 

Using the cartesian axes indicated in Fig.4a we will establish 
for the class of problems to which our present one belongs that the 
induced velocity components u, v and w in the X, y and z- directions 
canebe expressed as the real parts of functions U, V and W of a complex 
variable 	and that there exist relations cif the 'form 

dU 
g f 1  (T) dVi and dV = f 	dW 

dl- 	 dT 	d lr 	 de- 

The problem therefore reduces to determining a suitable 
transformation. from the x, y, z space to the 'T. -plane and a suitable 

function 	, so that w R(W) takes up the known valyos at the 

boundaries. 	This is ossontially the method of Stewart (ref. 1, 
but our derivation of the relations between U, V and W will be 
somewhat different. 

The flow at any point ahead of the trailing edge is 
uninfluenced by the trailing edge, so that if we replace the aerofoil 
by one of the same shape but of different size the flew at such a 
point will be unaltered. 	Hone() the flow at any point along a ray 
through the vertex is the same. 	The induced velocity is therefore 
of degree zero in x, y, z; this type of flow is called conical, 
a term introduced by Busomann. 

/In 
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In the linearised supersonic theory the equation of 
continuity is the Prandtl-Glauert equation:- 

432 -Ju 4.  Iv -aw = 0 . 	  
lx 	?tz 

(1)  

For irrotational flow curl (u, v, w) = 0 and there 
exists a velocity potontial 

It will thoroforo be soon that u, v, w and 4! 
satisfy tho oquation:- 

"fi 	 0 	  (2)  
-"N• 	3 y` 	z2  

Under tho transformation (x', y', n') 	(x, ifly, i(3n) 
ovory solution of Laplace's equation in x', y', z', is also a 
solution of equation (2) in x, y, z and vice versa. 

It was established by DO - L_A in 1837 that the most general 
solution of Laplace's oquation of zero degree in three dimensions 
is of the form:- 

F (Y 1  	- 	1    (3) 
+ r 	xl + r 

2 	2 	2 	2 
whore r = x + y 	z . 

Hence any analytic function of (.41 is a solution of 
equation (2) of degree zero, where 

CA} = 	- 	 

	

Y
x

+iz 
 r 	 x 2 	2 	2 y  2 n 22 and whore r 1=- 	 -‘ n z  

Therefore we take u, v, w to be tho real parts of 
U(0)), 	, WCILL, satisfying both equation (2) and Laplaco l s equation 
in 'MS. 	It will be noted that the velocity potential is not of 
dogro zero and cannot therefore be put in this form. 

It will bo soon that for conical flew the induced velocity 
potential is of tho form t= r 11(7S ), so that 

2 	2 

,),( 2 _52 

. . (4) 
-7 2  .4 2  

17 = /3 • 	
_1 2 4. 31 212.a.  +  2

-  
qt. 	 1 ?1I 	1-7r - S 

The equation of continuity (1) becomes:- 

1  + -a 2  "it  - 8 	. 0 	o) 2 	!,a1(- 	...„6 	-3. 	1p 	.... 
7' 	f ( 



The Cauo4- Now since u is the real part of U U(C4) 
Riemann equations give 

dU 
du, 

	

= 	

.S°  
and similarly for V and W. 	Therefore:- 

dU 
dta 

(6 ) 

- 

( 1 - 7  - 2 )' 

dV 213(41(-  ) 	-17 43( 	',' 21r 	5137? 1• 2 r..(7) )12 	-nor  

(9) 

and 

dw 

dV = -i • 
dW 

2 
1 	(10  	„ (IV/ 

W 2  do.) 

+ 2 __72_s 2)2 	

and 	dW 
du; 

/3 (1 -402) 	dU 

d w 
2 i4u J.71 

d too 
Hence 

= 13 ( 
Zrrt "g 2 . 

-4J2 ) (J.! 	+ (02  ) 
dirt 	 d6o 

	) 02a 
2 	

2 

+ 3  

so that by equation (5) 

and 

(.3 
TN 
dt..e 

1 	2 i ta.)  • 
- w2 
	  (10) 



On the Mach cone r 2  = x2 432 (y2 4. z2) = 0, so that 

• 	At the aerofoil z = 0, so 5 = 0, (r 	x)2 

Y and at a leading edge y = x tan', so 7/ 	
tan 	- k/  

	

41 1 62tan2-X 	k  
,2 	 '52J. 2-w  where .E 	 = 4 .( 4  Lan g • 

The Mach cone and its interior are, therefore, represented 
in the 04-plane by the unit circle and its interior, while the aerofoil 
becomes the real axis between + 10/(1 + k). (Fig.4b refers). 

25.4•) 
Consider the transformation on(/r,k) 	 where 0.)  2 

en(17,k) is the Jacobian elliptic function of modulus k. 

The interior of the unit circle in thecii-plane is traced 
on tho 7-plano in the rectangle, vortices t 21K 1 (k), K(k) * 2 iKt (k). 
In Fig.4c the imaginary axis AA' between 1-= + 2 iY1 represents the 
Mach cone, while the aerofoil becomes tho parallel lino BB' between 
I-  = It ± 2iKt, such that CQ is the lower surface, z = 0, y.4 0, ' 
QB the upper surface z = + 0, y4CO, NI' the lower surface, z -0, 
y> 0 and QtBt the upper surface z = + 0, y) O. 	The loading 
edges become the points Q, Qt. 	The point C corresponds to the 
wing axis on the lower surface and the points B,Bt both to the 
axis on the upper surface. 	The lino 00 represents the portion 
of the zx-plane, y = 0, z<0, between the Mach cone and the 
aerofoil, while AB, ABI both correspond to the similar section 
above the aerofoil: the line Iq corresponds to that part of the 
v-plano, y CO, z = 0 between the Mach -  cone and the loading edge, 
and the line 124  Q4  to the similar part, y > 0, z O. 

In tiler' -plane 
dl- 

 Ili=  (3 enr. a 	 (11) 
and dV '47 -i s nT* 

d`r 	dT.  

4■ 2 Calculation of Derivatives with respect to Sideslip, 

As already indicated we assume that the kinematic boundary 
conditions are fulfilled at the normal projection of the aerofoil 
on the xy-plano rather than at the aerofoil itself. 	The boundary 
condition for n sideslip velocity 7 and dihedral 6.  reduces to 
w = 	for y 0 and w=.-6 for y4;0. 

From the asymmetry of the configuration it follows that 
w = 0 at the zx plane. In addition v a 0 at the Mach cone. 

— From physical considerations -q2  , 	and dW air dq- 	dl- 

must bo finito'at the Mach cone. Furthermore the aerodynamic forces 
must be finite, so that any infinity of u at the aorofoil must be 
such that tho integral of u with respect to area is finite. 

2 	13 2 (y2 + z2 )  
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We have to choose dl's r  so that 14. , dV u, w fulfil 

	

dl- 	d-r di 
those conditions and so that u, v, w aro singlo valued. 

In order that SE may bo finite on tho Mach cone and 
di- 

w zero on the Mach cone and the zx-plano, 2E must be regular 
d"r".  

and real on AA' and bo imaginary on CC, AB and A'B' with no 

singularitios other than poles; the residues of such poles must 

be zero or real except at C, B and B' whore there aro discontinuities 

( in w. Sinco IL = ..1_ enerSIE end dV .= ....i m-rrIl arc to be also 
d'r 0 	d'or 	dl- 	di- 

finite on the Mach cone,c.E must hwo at least a simple zero at the 
d-T" 

	

points P and P' (1"= + i 1,-.'). 	Since 	is to be constant over 

the two helves of the aerofoil, si2 must be real on BB' and have no 
dT -  

singularities which contribute to w except ,as before, at C, B and Bl. 

In integrating -1.-c  along OCB w must jump in valuo by an amount +76 

at C and -76 in integrating along COB'. Clearly, therefore 
(TT 

must havo a simple polo at C of rosidue of imaginary part 

.S5.__ 	Similarly 212 must have simple poles of residue of 
'Tr •-r-' d •  

imaginary part - giS 	at B and B 1 , so that i7 may return to 

zero on AB and ATBT. In order that u, v, w may be single 

valued dU 
I 
dV M.  — — 	must ho regular within the roct ..uaglo. 

a 1..  Cr did  
Functions satisfying theao conditions and equation (11) 

aro:- 

era = 2iv6 k'3 	ocir 2-C. 2  T.  
d'r 

= 27 hi 3  sc-:. 2rnorr 

du _ 	2a.v 571'3  an i-nc.,2,r- 

17(3 

It will be noted that 11 is pure imaginary along the real 
&Fr 

axis and regular at "T*  K, so that:- 
0--  

u = 2v k' 3 	1 sn(K is) nd2 	 K ier 
17/3 

215
le 	d.(s,k') ne2 (a,k 1 )ds 

1T(3 

2 	5 tanYsc(r.,T; 
17 /On 	 

rcr 
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Y 

(t14: 1 ) Hence sc2(0-',k7) 	se -) 2 r  

I -1:`-sd 	t:5" 	x2tan2-ir-y2 

Therefore u = 
rr v 6 tanY 

  

(13) 

 

x'tan' 	y2 

 

	

In the linearised theory the pressure p const. 	folN 

so that the rolline moment clue 'to sideslip is:- 

L 

+F
4  
	i6t- vT 	2 	 

+J 2p -17 u y dy dx, where integration is over the whole 

ydydx  

x tan - "•-• y 
2 

	 wing 

ct 
+44 p -wStan313- 	2 r"--2 .L 

q 	t 	dq, 

whore x = q_/t 

y = Tian-4417-7  

+ 2- p 05 03  t 	„ 
3 

Hence tho derivative 1
v - 6 tan-Y. 

1Q7117 5.9 	3 

The sideforoo due to the pressure distribution over the 
aerofoil resultinc; from a sideslip is:- 

I( ' CY) = 	2i1 7151u idydx 

= 1p-VV6 2tan,-rif ,  tr. I cL(Icbc  	I 
. 4x2tan 2T- y2  

. _ 8 eicr.6.2tary- jet J1 
li 	 —9,. dtdq, 

t` 

(y ) = V 6' 
004 	_ A_ 62tczy.  

FIATS 

The corresponding yawing moment is:- 

(N)
6 

- 

-112r7flui 45. xdydx 

tyixd:rdx 
= - .4-1-(01175. 2tan X Tr , 	 42trzi2 y ... -) 

while cnrr = 2i Co  
so that k'sd( tr",.h ) = - 	/3 y  

.1‘.42,  jx2_ 1-3 2 y2 

On the aerofoil 4.) and 	K ier 
x+Ixd- '23,r 2  

❑ o 
4 	2 2 

..F3 771/1-1 c tc.n 
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8 	- 8 = - 	p TiV ' "tan4  ,". 

0 

t 2 
dtdq 

t3  

- -8 10 .77i78 2c3tan2  
31; 

	

nv  ). 	(N) 	- 1_6 2  

	

S 	6/" 

In considering forces in the plane of the delta wing, in this 
case sideforce and yawing moment due to sideslip, it is necessary to 
take into account the contribution from the infinite suction at the 
loading edge as well as that from the pressure distribution over the 
wing. At zero incidence the suction forces duo to sidoslip are of 
second order, but at a finite incidonco there is a cross term of 
first order. 

It will be shown that the induced velocity at the loading 
edge is perpendicular to tho loading odgo and that it can be 
exprossod in the form :- 

q = C 	bounded terms 

whore 12 is tho distance in from the loading edge. 

The corresRonding suction force was shown in Appendix IV 
to Ref.2 to be Trip C'cosY-1177.per unit length. 

Considering first the flow duo to the sidoslip alone, 
the indubed velocity - along a leading edge (y = x tan l) is 
(u cos Y`+ v sinli), which is the real part of I cosh" 	k' Vi . 

Now from equations (12) 	kIV = 2 	 k iv &k' 
dr 	

r 3 ( 

which, referring to Fig.4c, is real along OP' and puro imaginary 
along P'Q': it is, furthermore, regular at ovary point along OP'Q' 
including Qt, which corrosponds to the loading edge y = xtan 
Hence the component of induced velocity due to sidoslip along a 
loading edge is zoro. 

From Ref.2 we have that the induced velocity potential at 
the aorofoil duo to an incidonco 0( is -: 

V G4  h2tan2-1- ...  y2 

Et ( N ) 
whore Et (70 is the complete elliptic integral of the second kind. 
It will bo noted that the velocity component along the loading odgo 
vanishes. 

As the contributions from both fields are zero in the 
direction of the loading edge, the total induced velocity 
perpendicular to tho loading edge is cosec'rtimes the x-wise 
component, which we obtain from the above expression and our 
previous result (13), giving:- 

sec -r 
q 

x tan Y 

1 

Et  ( 
) xtan-Y + =  

"Tr 
/Pu t 	 



so that 

Put 	x = Xo  + S sin 'r 

q 4 741, 	+ 	v, 

1,E1( 	 ) 	Ti 

y
o 
tan /r 	g cos'' 

/ 

xr,tan-rsecY 
, .....1  

   

     

+ bounded torms. 

El ( 	) 

The side force duo to leading edge suction resulting from a 
sideslip at incidence is:- 

4 f: 	t 	 x dx Cy ) 6 = 

, 	(k' 
P v 	c2tanY1 2  

Cy ) 	(y) /-,--trvs 	 -;\ 2  
v.4.5 	4hti 	r 	 ( 	) 

The corresponding yawing moment is:- 

0 
4 p  (N) 	 tan-01 - 	x

2
sec2^r- dx 

1:6 	Et 	) 

-c=  4 vV Li
c3

/ 1 - 712  tanlr. sec2-r 
) 

446 ;1 	cot "Y sec2  = (Nlact5 //pvVSs 
( 	) 

Hence the total side force is 

} 1  25 2 	-y 	d% 6 i 1 '-' )4, 2  
Y = -2 (..-.)Tr"Vc 2tan'Y 	IT tan  " - 	• E' ( ', ) 

2 

2 	-v- 	cC 	- A `-  / 2 
-2 	tan 

t 	) 

Hence the suction due to sideslip at incidence is 

2 g= 77V. 6 x
otan-'1 	" 2 

(i 

and 

yv 

/and 	  



and 

N - 4 3 pv\,c tanY 
3 

2
tan 	 sect' 

2 - 

El PO ir 

-12-- 

and the total yawing moment is - 

4 2 8 2  
' - -5 IT 	

, ,,;(_4  11 - N 2. cotl/sec2 1/  I-Av 
	) 

5. Delta Willi; with Leading Edpos Oiltside Mach Cone  

The boundary condition at the aerofoil i3 w m'Cra 
on one half and ►:176 on the other. When considerinez  the upper 
surface, y 0, where w = vs we may take w -To' on the 
corresponding lower surface, since the flow above the aerofoil 
is indopondont of the flow belov it in the caso under consideration. 
In this artificial condition there is a jump of -2V6 in tho value of 
at thotho surface, so that the surface can be reElacod by a uniform 	U n 
supersonic source distribution of density 	; the other half 

of tho aerofoil, y4(0, whore w = e .-7-"v(S , can be likowiso replaced by 
a source distribition of donsity -Tr 	• 

.J 	xo ) 	(y 	yo ) 2  2 	e-,2 

so 	= 	dp 	, 
Si

'ii 

whore Cr = +1, when y > 0 

cr = -1, when y < 0. 

	

-y71ioro Xe  = X 	f cocht 

	

yo  = y 	fasinh • 

In Fig.4d P is the point (x,y), OL /  and OL2 aro the 2  
loading edges, and FL /  and 11,2  aro the boundaries whore (x - xo ) 

43 2 (Y - Y0) 2  =0. 

The values of p ,y vary as follows:- 

when (x0 , yo ) is on 	(i) IL /  , 

(ii) YL2 	 ra) 

(iii) OP 	 = tanh-1  / !  

, to= oo.
0 	

y conech 
I -   

p 

= 
P2 = xtan 

coshlt + s inh 

Alrhon 	 

Nonce 1(x, y, o) = - LS—f 	
edxodyo 

(iv) OX 

(v) 0L 1  

(vi) CL2  

xtan'T 	y 
► r..-311 - oinhlk 



t3- 

When P is inside the Mach cone from the apex, we have 

. 	co 

i c. 
13  i d  1 + P o d  ly 

7 --t- ,
Ibli d 

	

s o that u 	
TifS 
`Ir 	1 	

'  
7b 
x y r )  P 2  d ?   

and P o=  ri ii P2 ' when 'T il 6  
-.€. 

Tr E 	tanYd 11  

	

u 	=' 
11 ' 	.11 co slot - sinh'y 

e- i 

= 
rv- eS  1  tan-rdt  
li 

i
/ A  -,, , 	(1 + t 2 ) - 2-t, IT 

c.11 

A(1 + t2 ) + 2t 

tan'Irdy  
cosh'.() + sinh-111  

1  ,-- 2'7;7. 	tarp' idt 

tan" ` 	 tan-1  
Tr/ 12 _ 	 

where t r--- tanh -- ..lit fr 	tank -- ---c. E r  , 

:I 
tan  -1 	)vr - i 	 A"-f-- + 1  L 	 + tan-1 

4 )2 _ 	1 	 'LA` - 

I 
y oot-Y I 	  

2 716 tan'' 

Tr.,/ 	2  - 1 

1 .',.'hen P is outside the apex Mach cone 

Tr 
	d J 9 y 0 

so that u 
6tari ri  by putting e a co in the above. 

~../ A 

When y < 0, u changes sign. 

Hence the rollin,rj; moment duo to sideslip is 

2 pVuydydx 

4,c7V6. tan7 
= 

r 

0 

lice& 

cote 

r 2 3ine dO dr 

    

ditrco 
I 	t -t an 

Jo 

   

1 ',-, 
sinhy q-sinhyd11/6q 

I 

/where 	  



0 cot -1/3 

2/0-1-rTT 6 dtarir 
3 1 -x2 1  

tang  Zr 	 +  2  
(3 2 	(92 

4 F;TrV c3tan7 
3 	2 

rc°  
tan Gsoc 29 (3.9 + 2  tan .17/3 2 sinhy tanhlteoch2f 

dif 

whom x = r cos & , y = r sire I9 in tho 1st integral 

and x -= qpcoshfe, y = q sinht in the 2nd integral 

3 1 2  ^ 	

Tro 2 + 2,*5/803tanT  t an27- ... 2 
, co 

2t-.171:1 t 2  dt  

(1 + t2 ) (5777t2  4-) 2 ) 

0 

whore t = sinht 

= 2e-ikiaG3tan7  
31 "A 2 

2 pW5 c 3 tan2  = 
3/3 

t  	
- t t 	1 2 	-1  -i 	t 	

471  2 	
F 

	

nn fJ r (32 	 X 2.4 	 f1/4 

2 
Honco 1__ —v  

 = 	• 
pVTISS 	3/3 

/The 



r _iv-  A 	cosh rtanhirdyi 
7:7 sinh2  44A 

0 

Trp 
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The side force duo to aidoslip is :- 

Y = -F2FT/ 618 dydx 
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APPEND DC 

The Relation between Two Methods 

of Treating Aerodynamic Force Problems 

of a Delta Wing at Supersonic Spoods 

f. 	Introduction  

1.1 	Solutions to the problem of tho lift at supersonic speeds 
of a flat delta wing lying within its apex Mach cone were obtained 
independently by Stewart (ref.1) and by Robinson (ref.2) by methods 
which at first sight appear very different. A transformation will 
bo derived that links the two under conditions of conical flow. 

1.2 Robinson's method of hyperboloido-conal coordinates is 
classical in its approach to the problem, for it reduces to the 
finding of a system of which the Mach cone and tho delta wing arc 
coordinato surfaces. 	Stewart's troatInont is spocial to 1 
particular set of problems. 

1.3 Despite the link betwoon the methods they are different 
in scope. Stewart's method is suitable for problems involving 
a discontinuity in the boundary conditions, while the other is not: 
on the other hand hyperboloido-cowl coordinates are not limited to 
solutions of degree zero in x, y, z. 	Thus, for example, Stewart's 
method is suitable for calculating tho aerodynamic derivatives with 
respect to sideslip and the other for pitching moment duo to pitching 
and rolling moment duo to rolling, but not vice versa. 

2. Hyperboloido-Conal Coordinates  

The coordinates developed in ref.2 were as follows:- 

r 
x = 	 

k 

r  (2...k2 ) 	2-k2 ) 

Y 
kkl 

z - r 4(A4.!"-- 1) (1 -V )  

01;1' 

where kt == 1 ^ k2  =112tan27 

0 	r cos 

1 	At -c oo 

k 



The family of surfaces constituting the system are:- 

2 
x 	132 (Y2  + z2 ) = r2  

2
2 
 2 	/32 2 

F.) y 

k2 
 ,.

2-1 Vtle 	 I 

/ 2y2 
2 	

z
2 

0 

V 2 V
2 

- 
J 

It will be observed that these coordinates are analogous to 
sphero-canal coordinates; in fact they correspond under tho transformation 

	

(xi y', zt ) = ( x, 	y, 43 z). 

As " —) 1, the cones of the socond family of surfaces 
approximate to tho delta wing from both sides, and as )...--1C0 they 
tend to the Mach cone. 

-a40 

	

The equation -/3 2 __ 2 ± 	 = 0 	  (3) 

	

-a  x2 	-3  y2 	z2 

now becomes:- 

	

i(a.2_k2 ) (A.4.;2_1) --a 	j i.4. 2...k2 ) (p..2_ 1)  -a .1))  + j (v. 2.4j )  0 _1,2 )  --6 
at. ---at-k- 	, 	- a 7-1  

,): ,, c,_k2) (1 .... v 2) ___,g3  
-a 'Y' 

	

( 11.4., ._ . 3 1  2 )  ---Z 	e  2,) , 0 	 

	

r 	21  r 	
(4) 

k k CO 
dt 	 dt 

	

Writing p-  =    ,F - 

	

. 	frt 2 ' 

	

NI ( -k- ) (t 2--1) 	i(t2_k2) 
(1-t2) 

i.e., p- = n 0 (p , 

..), = knd (c1,1: 1 ) 

--a 2p  . —629  _ , ,,,..2 v2 )  —) Cr2 -OP) - 0 	  we have ...a (02  *t. 	..a._ 	
r 

. 	k 

r 

    

-0 

  

(2) 

  

(7) 

(6) 

velocity. 
Hence for conical flow = 0 , where (pis a -35.2 

--a  20 

 

As 10 varies from 0 to K(k), )•-J varies from (0 to 1. 
As a- varies from -2K' (k) to - IV(k), V varies from k to 1 and 
back to k as Cr continues through to zero, repeating as-ir increases 
to 2K'. 

/Equations 	 
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Equations (1) and (5) give:- 

rns (-f-,,k) nd 

y 	ds 	,k) sd ref 	) 	  
71 

z at 	cs ( 15 ,k) cd 	) 

To each value ofi5,41171  in the spocifiod intervals of 
variation there corresponds just one triplet x, y, z for constant  
r on the right hand sheet' of the hyperboloid x .43 2 y2 _112 z2 7 r

2 
 • 

Previously we traced the (x, y, z)-plane on tho 4J-plane (X)=/1+ 4-131Y-±) 1  
x + r 

so that ovidontly there is a one to one correspondence botwoon the points 
inside 10.01= I in the ov-plano and the points in the ;IP -piano (9? =f) + 	) 
within the specified intervals of variation of r) and Er . 

Equation (6) shows that a function 0 which satisfies 
equation (3) and is'of degree zero in x, y, z satisfies Laplace's 
equation in /5,Or , but any function which satisfies Laplace's 
equation in the (Jo-plane is of zero degree in x, y, z and satisfies 
equation (3). Hence every potential function in the ted-plano is a 
potential function in the r-plano, provided the W-piano is tracod 
on the latter by means of the transformations given by C1)=/3 3' lz 

x + r 
and equations (1) and (5). 	Therefore the transformation is conformal. 

By a transformation based on Stewart's method we previously 
transformed a sot of points in the GU-plano into the rectangle, vortioos 
i= ± 2iK', K ± 2iK', but that sot of points corresponds to the points 
in the (x, y, z)-plane which become, by the transformation of the 
previous paragraph, tho'hamou rectangle in the 1r -piano with the 
vortices corresponding. It therefore follows from the gonoral thoory 
of conformal roprosontation that tho two transformations are identical. 

We have shorn that Stewart's T--piano is connectod to the 
system of hyperboloido-tonal coordinates by the simple relations 
of equations (5). Furthermore we have given at equations (7) a direct 
coordinate transformation between (x, y, z) and (1)0), by which 
Stewart's relation between U, V and W as functiohs oflr could be 
established in the samo manner as the rolation botwoon them as 
functions of the intermediate variable u),,  osfablishod. 

3. Aerodynamic Derivatives Lp and Mg  

In the first section of this appendix it was stated the 
rolling moment duo to rolling, Lp, and the pitching moment duo to 
pitching, Mq, could be derived by the method of hyporboloido-canal 
coordinatos in the quasi-subsonic case. This will now be indicated. 

By the transformation (x', y', z') = (x, ifs y, if3z) 
these coordinates become ophero-conal, while equation (3) reduces to 
Laplacots equation. 

Hence there exist solutions for the induced potential 	of 
the for4= rilEn (1, ) Fn(AL) where En  and Fn  are Lame" functions 
of the same class, of degree n and of the first and second kind 
respectively. 

Such 	 
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Such a solution satisfies tho boundary condition at the 
Mach cone, whore /4.4. -4)0o, since F

n (,k) is of order ht. -  n - I at 
infinity. 

To find Lp we choose the doroo and class of the Lark' 
functions so that 	

F2(it)  y z 
E2  (A.) 

. Though at first sight -- 	is proportional to y, and therefore 

of the right form, at the aerofoil where z = 0,)1A-B 1, we require 
some reassurance on the point, for here 

F2 (AA ) 
00 

dt , which is of order (p. 2 
- 1 ) 

as ipLtonds to unity; however it may be shown that ---- z 
EAm.) 

1) 	Fo 

tondo to a limit that 3 a independent of -e. 

We find Mq in a similar fashion by taking 
00 

zx 1,2(-1-)  _ zx 	dt  
1. 	E2 (Ak) 	tq(t"- 	1)-5  2 

- 
k2) 

/"" 

Detailed numerical results for those cases will be 
published shortly in tho Journal of the Royal Aeronautical Society. 

----o0o--- 

fE2() 	Nitt2- - 1) 3 (t2  - k2 ) 5  /•-4- 



I 8 

1 ' G 

'- P V/8
2 

1 . 4 

1 • ? 

1 0 ..1 
• 

0 8 -... 

0. G 

4-  @ iv/CS.  

I 

0 4 

0 
a y 

 

A_-_-_tar.i)s 

VARIATION 

AT 
w I TI-1 

OF OCR 

ZERO 	IN 

THE PARAMETER 

IVATiVE 

CI 0 ENCE 

eV, T1V, iv . 

 A  FIG  1 





—■------------- 

b
-3

 u
 n  N

 

z/, 1: N 	r0 't 	In 
----------------------. 

t9 

H
O

V
NI 

= 

it 
<- < 	

N I{ 	IF 
< 	< 

—11 
< 

b
 fr 9

 – 

7R
.11

3A
JT

I O
N

 
V
E

S
 6

 V
,  1

 
M

A
C
H

 N
O

  

2:13% 8V+ 1(11 .4 

------------- ----:------------- 

H
O

VIN 

= 

zA
 I = 

Tr  --- 

V
=
V

 

c Lil 
IJ 
< 

-
1 

D
  = V

- 
I 

Z 

L 	
 

Y57  1  °A
  

g
 

or 



THE 	P LAN E THE  AE.ROFOIL. FOR N,  

FIG 4d FIG 4C 

THE AEROFOIL IN THE 

, z) FIELD . 

G 40. 

THE LA) - PLANE. 

FIG 4b 

w 

°{ 

/2i K'  

I('  

0 

1-() 

A 	Lt.o, z 
K+2; 	-■ 

I K' 

rn 

0 

P 	4<0,  z=0 

0 	Lt-ca <o 	C 
S 

- P‘ 	4>az=o 

ki=o Zo 

K 

K- 2i 

0 - Rtr) 

Bt 


