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SUMMARY.  

IT IS SHON THAT FOR FINITE ASPECT RATIO THE LINL'ARI:;ED 

THEORY OF COMPRESSIBLE FLOW REMAINS THEORETICALLY CONSISTENT IN 

THE REGION OF TRANSONIC SP 'ADS, ALTHOUGH ITS PREDICTIONS MAY 

DEVIATE APPRECIABLY FROM EXPERIMENTAL RESULTS IN THAT REGION. 

THE VARIATION OF THE THEORETICAL LIFT cuir SLOPE` OF AN AFT,'OFOIL 

OF FINITE SPAN IS CONSIDERED AS THE MACH VOMBIT.R INCREASES FROM 

BELCF UNITY TO ABOVE UNITY, AND IT IS SH0.1\T THAT THE LIFT CURVE 

SLOPE REMAINS FINITE AND CONTINUOUS, 

INTRODUCTION. 

It is well known that on the basis of the linearised 
theory for subsonic speeds (i.e. the Prandtl-Glauert theory) the 
lift curve slope of an aerofoil in two dimensions becomes 
infinite as the speed of sound is approached. 	Similarly, the 
linearised theory for supersonic speeds (i.e. the Ack,*ret theory) 
shims the lift curve slope in tTo dimensions to become infinite 
as the speed of sound is approached from above. 	This has led to 
the belief that the linearised theory breaks dorm in the transonic 
region, 	However, a recent application of thP theory to Delta 
wings in supersonic flow (Ref' .l) shred that with the aspect 
ratio finite the lift curve slope terded to a determinate finite 
value as the Mach number tended to unity. 	Further R.T.Jones 
(Ref.2) has shown that for aerofoil* of vanishingly small asnect 
ratio the lift curve slope is independent of Mach number (and 
hence is continuous from subsonic to supersonic spePds). 

In this note it is sho7n that the lift curve slope of 
a -Ting of finite aspect ratio remains finite in subsonic flow as 
the Mach number of unity is approached from below. 	This is 
shorn to be true even on the very simple basis of lifting line 
theory. 	However, as the speed of sound is approached the 
pressure distribution on a 7ing of finita aspect ratio can he 
related to that on a Ting of vanishingly small asnect ratio in 
incompressible florr (see para.3). 	Hence -re must reject the 
quantitative results given by the lifting line theory and 6amine 
the results given by lifting surface theory. 	The 	latter 
results are &I• to agree at a Mach number of unity with the 
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results given by the analysis of Delta wings in supersonic 
flow mentioned above. 	It is concluded that the linearised 
theory gives bnth finite and continuous values of the lift 
curve slope of wings of finite aspect ratio as the Mach number 
passes through unity. 

This conclusion does not, of course, imply that the 
linearised theory 	necessarily give results in close 
agreement with experiment through the transonic region. The 
development of a shock stall in that region may be associated 
with disturbances -vhich are far too large for the linearised 
theory to remain applicable. 

2. NOTATION  

A - aspect ratio 	 u - longitudinal velocity 

2WL apex angle 	 U0  - free stream velocity 

CI,- lift coefficient 	 p - pressure 

ope. incidence (in radians) 	Po - free stream pressure 

M - Mach number 	 - free stream density 

- Mach angle 	 C - veloCity potential. 

The suffices i and c indicate incompressible, and compressible 
flow respectively. 

3, SUBSONIC FLOW, 

3.1. Linearised Theory - General.  

The linearised theory for subsonic steeds has been 
developed in some detail in Ref.3, r'here it is she 7n that if 

uox f (x, y, z) 

is the potential function for the flo7 round a body in a uniform 
incompressible floe-  of velocity U0  streaming in the direction 
of the x asis, then 

= U 
o 
7  4.1 f (x,gyolz) 

is the potentiP1 function for the flew-  round the same body in 
compres7ible flow, the .ietch number M being related to 0 by 
the equation 

M 	- 

Consider a flat plate of any plan form and of asnect 
ratio 1 set at a small angle of incidence. 	Suppose the x axis 
is along the main stream direction, and the y axis is in the 
plane of the plate. 	We note that, on the surface of the plate 
when z is small, in incompressible floe 

ui 	j>416i- 	m U0  A. fx  (x, y,o) 	- 	-(1) 
)74. 

to the order of accuracy of the theory, and, in compressible flow 
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Uc 	NAL  a U0 	fx (x,(y,o) 	-- 

ax 
Hence, in incomprPssible flow, the pressure coefficient on the 
surface is given by 

	

(p 	P0 )i = 

U 2  

	

2; 	o 	 U0 

and in compressible flow the•pressure coefficient is 

( p - po)c 
- 2fx (x,(3y,o) 	 (4) 

(3  U0  0 u02  

It follows that at any point on the plate the pressure coefficient 
in compressible flow is 1 tires the coefficient at the noirt 

) in incompressible flow with the lateral ordinate ,y of 
the plate reduced in. the ratio/3:1. 	Therefore the lift  
coefficient and lift curve  slope at  a Mach  number  M  of a flat  

plate of aspect ratio A  are 1 times the lift  coefficient and lift  

curve slope in incompressible  flow  of the  flat plate  with  its  

aspect  ratio reduced. to  A/3. 

3.2. Lifting Line Theory. 

If we apply the above conclusion to the formula given 
by lifting line theory for the lift curve slope of a wing of 
elliptic plan form in incompressible flow, we find that in 
compressible flow 

▪ 2 fx  (x,y,o) 
	

(3) 

This formula has already been deduced in Ref,4.• 

7ie note that a fl M 0.4 1.0 and 0 -.4 0, 

(d  (6) 
d oc 

Hence (d OL 	remains finite for finite aspect ratio. However, 
d 04 1 

as M ,441.0 the eouivalent aspect ratio AA *4040, and hence we 

may expect the formula given by eouation (6) to become 
increasingly invalid as M 	1.0 is apnroached, 

We must therefore consider th results given by lifting 
surface theory. 
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3.3 	Lifting  surface Theory,  

The only available comorehensive results based on the 
linearised lifting surface theory for incompressible flow are 
those derived by Krienes (Ref.5) for elliptic flat plates, 
rhich include as a special case the result obtained by 'Firmer 
(Ref.6) for the circular flat plate. 	These results give us 

( 
values for deli) 	for aspect ratios of 0.837, 1.27, 2.55, and 

KZ./ i 
8.37, and these values are plotted against A in Fig.l. 

In addition, R. T. Jones (Ref,2) has shcrel that for 
flat plates of any plan form and of vanishingly small aspect 
ratio 

da. i 
given by the lifting surface theory for elliptical Plates. 
)e proceed to accept this curve, with Derhens less justification, 
as applicable to triangular plan forms (Delta -ings), 	In favour 
of this -e may note that -e are primarily interested in small 
aspect ratios when Jones' 2  argument -oeld lead us to expect a 
negligible effect due to plan form, and -e may el so note that 
in practice measured differences in lift curve slope as between 
one plan form and another are generally within the order of 
experimental accuracy. 

// 3 Using this curve, therefore, and the result developed 
in par a,41 above '7,e can estimate the lift curve slope of 
lifting surface of any aspect ratio at any Mach number up to 
1.0. 

Since re have accepted the re  cult that for 
incompressible flow 

CL 	„Ilk  IT A, as A 	o, 
dgX 	i 	2 

then for compressible flow 

(

d CL) 	17 A, as  M -.4 1,0 from bel3w. 
d o( 	c 	2 

This is exactly half the value given by the lifting line theory. 

( 

	

Whether the curve of d CL 	against Mach number is 
d0.4. 	o 

flat topped or cusped at M la 1,0 depends on whether the curve 

(

d 0L) _.* ''4 A , as  A ....„ 0.  

do4 i 	2 

It will be seen from Fig.l. that the smooth curve through 
Krienes t  and Kinner t s points is quite consistent with a tangent 
at the origin having a slope equal to 11 as given by Jones 

2 
theory. 	It is, therefore, reasonable to accent the curve of 

(

Fig.l as describing the variation of d 0L pith aspect ratio 



d A 
when iM -14 4 ) d CL 	„TA 

, 5 - 

( 

of d CL  against aspect ratio has a point of inflection at 

dol., i 
A 74 ■ fr not, and we have not as yet sufficient evidence on this 
point. 

4. 3UP7RSONIC FLO'T. 

The lift of a flat Delta wing moving at sunersonic 
speed is calculated in Ref.l. on the assumptions of linearised 
theory. 	The lift coefficient is given by 

CL 	4 oc. tan A-4. , .-Then/ac. y 

and by CL  = 21T01( tan b' 	when,PL> y 
El (oot/..A, tan?r) 

In these formulae ickis the Mach angle, 2 cy is the anex angle of 
the Delta ,Ting, and E' (u7 is the elliptic integral defined by 

E t  (U,.) 	 - 	- 	 eki 

Since A = 4 tank' for a Delta ring, and coVA-= 477:77 
equations (7) may he re-written 

 

d  CL  

d 
, when Nt M -1 — 

A 
-  

(e) 
and 

 

- 	 (7) 

For a given aspect ratio, %/M' - 1 rill ultimately 
become smaller than 4 , as M = 1 is annroached from above. so  

that the the second formula in (8) will apply. 	Now 7v(u) 	1 as 
u 	•, and so 

fd CL 	IL A , as M 	1.0 from above. 
1:3 6,4 1 	2 

Comparison with paragraph 3 shows that this is 
exactly the same value as obtained when M = 1 is annroached from 
'elor. 	It follows that the lift curve slope noes in fact 
vary continuously with M through M = 1 (Fig.?). 

It is of some interest to calculate the slope of the 

(

curve d CL\Irsm as M ---> 1 from above. 
d 
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We have 

rlE l(u)  = u 	(Kl(u) 	Ef(u) ) 
du 	T=U2  

where 	K'(u) 

0 	(1:7) sin ,z5 

Hence 	(.1 ( 	 E 	
-1 A) 	1(412-1 91 

dC lo _ ITIM - K 	4 

E' 	4 	, {16 -(M-- 1) A 

Now El(u)--}1, as u---1)-o, as mentioned above, while at the same 
time K l(u)--obvA0  as log 4 , i.e. (K' (u) - log 4  ) 	0, as 

u --! 0. (Ref.7, page 521). 	It follows that 
dM (717w,  

d  (dCL) tends 

to 	as M tends to 1 from above although the intensity of 
that infinity is "comparatively Teak'. 

The position is numerised in Fig.2 which shows the 
variation of dCL/d4X. with Mach number for both sub and 
supersonic speeds (including M 1.0) obtained for A = Cam= , 4.0 
2.3, and 1.07, i.e. for semi-apex angles 	= 9o0, 450, 300, and 
15° respectively. 
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