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Abstract 

As part of the ongoing development of Flapping-Wing Mcro Air Vehicle (FMAV) 
prototypes at RMCS Shrivenham, a model of insect-like wing aerodynamics in hover 
has been developed, and implemented as MATLAB code. The model is intended to give 
better insight into the various aerodynamic effects on the wing, so is as close to purely 
analytical as possible. The model is modular, with the various effects treated separately. 
This modularity aids analysis and insight, and will allow future refinement of individual 
parts. However, it comes at the expense of considerable simplification, which requires 
empirical verifigation. The model starts from quasi-steady inviscid flow around a thin 
21) rigid flat wing section, accounting for viscosity with the Kutta. -Joukowski condi- 
tion, and the leading edge suction analogy of Polhamus. Wake effects are modelled 
using the models of Kfissner and Wagner on a prescribed wake shape, as initially used 
by Loewy. The model has been validated against experimental data of Dickinson's 
Robofly, and found to give acceptable accuracy. Some empirically inspired refinements 
of the Polhamus effect are outlined, but need further empirical validation. 

This thesis comprises of six main parts: Part I is introductory material, and defi- 
nitions, including an overview of what insect-like Rapping flight actually entails, and 
detailed definitions of the variables and terms used later. Part 2 describes the new theo- 
retical model, and a simple scaling analysis of the forces and moments predicted. Part 3 
deals with the MATLAB implementation of the above theory, and the considerations re- 
quired when adapting the theory for computational use. Part 4 shows and discusses the 
results of the above code, against experimental measurements on Dickinson's Robofly. 
Part 5 is the conclusions, including a comprehensive list of all assumptions made in the 
theory. Part 6, the appendices, contain useful mathematical identities, and a copy of the 
code that was developed. 
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Contributions 

A modular approach to modelling the forces and moments on a thin, flat plate under- 
going a flapping motion consisting of rotation about the root and rapid pitching up to 
1800. 

Wakeless solutions for quasi-steady and added mass forces for the flapping motion 
above, without assuming small angle of attack, formulated to avoid the use of angle 
of attack as a parameter. 

" An inviscid wake model for the effect of a highly curved wake filament, albeit with 
considerable simplifications. 

"A generalisation of the Polhamus leading edge suction analogy, to include the effect 
of rapid pitching at large pitch angles. 

"A method of calculating the force and moment of a wing, based on the kinematics of 
the tip, and a number of wing shape parameters. 

"A scaling analysis of the forces and moments on the wing, and merit criteria such as 
induced power per mass. 

" Adaptation of standard non-dimensional groups and parameters to the flapping motion 
above. Specifically, adaptation of CL and advance ratio. 

" An outline of how the above motion justifies the use of rotary chord, and a proposal 
for how this can be used in a "pseudo-chord analogy" (see Section 20). 

A code implementation of the above model. Due to the nature of the model, this 
code does not rely on successive approximation (as described in Section 13.2), so the 
runtime is dramatically lower than standard CFD codes. This comes at the expense of 
considerable simplification in forming the model above. The code, like the model, is 
modular so the individual effects can be examined independently, giving better insight 
into the results. 
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Part I 

Introduction 
This part provides an introduction to the concept of flapping wing flight, starting with the 
motivation for exploring flapping wing flight in Section 1. It is followed by a thesis overview 
-a section-by-section description of how this thesis is laid out, in Section 2. This is followed 
by an overview of the model that was developed in Section 3, along with a description of 
the context of the model, especially other work it was based on, in Section 4. Some of the 
main observations from the biological community on insect flight are summarised, along 
with how these may be useful for aerodynamic modelling in Section 5. Next, terminology 
is defined, along with some terms that have to be altered slightly to be of use in the model 
in Section 6. Finally, in Section 7 definitions are provided of the variables and coordinate 
systems that are used through the remainder of the thesis. 
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1 Motivation 
As recent field experience has proven, there is considerable potential for unmanned air ve- 
hicles (UAVs) in military applications. The ability to get real-time battlefield information 
from "over the next hill" without risking the lives of your troops is the dream of every com- 
mander. However, in tight environments such as urban or cave fighting, the size and lack of 
mobility of current UAVs makes them unsuitable. There thus exists a niche for small, highly 
maneuverable reconnaissance drones discretely to penetrate confined spaces, and manoeu- 
vre in them without the assistance of a human tele-pilot. Generally, these vehicles will be 
useful in civilian applications involving dull, dangerous or dirty (D3) environments, where 
direct or remote human assistance is not feasible (See [1]). 

The inspiration for the FMAV is the closest natural analogy - insects. Here is a whole 
school of vehicles at the appropriate scale that we know work. The greatest advantage of 
flapping-winged flight is that it can use thin, flexible wings that are a) extremely silent 
compared to rigid wings, and b) capable of withstanding accidental impact with walls and 
other obstructions, something that would be disastrous for a standard rotorcraft. Visual 
mimicry of insects for covert use is considered an appealing, but ultimately impractical 
idea. 

In a study undertaken at Cranfield University (RMCS Shrivenham), it was concluded that 
the advances needed for such vehicles in compact actuators, high-energy density batteries, 
smart wing materials and onboard logic will not be available for the next five to ten years. 
Therefore, this work is part of an ongoing concurrent design exercise - rather than waiting for 
the technology to be available, the design process is started early by creating functionally 
similar, but less compact physical models. As part of this design process, it is obviously 
desirable to be able to predict aerodynamic forces, both for flight performance, and for 
designing the airframe to cope with the loads experienced. This is the starting point for this 
project. 
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Thesis overview 
This thesis consists of six main parts: Part I (this part) is introductory material, and defini- 
tions. 

Section 3 is an overview of the theoretical model developed, and Section 4 is the theoret- 
ical background for the model. Section 5 contains an overview of what insect-like flapping 
flight actually entails, and how this is envisaged to be implemented in an FMAV. Because 
this is an unusual flight regime some additional terminology is needed. This is taken mainly 
from insect biology, and is outlined in Section 6. Also in this section are some considera- 
tions of how standard aerodynamic quantities and non-dimensional parameters need to be 
adapted for this application. Note especially that the angle of attack a has been abandoned 
as a usable parameter. This section leads directly into the detailed definitions of variables in 
Section 7, which deals with definitions of symbols and axis systems used. 

Part 2 is the description of the proposed theoretical model. Sections 8 to II deal with the 
development of the theoretical model; the model is outlined below, in Section 3. A simple 
scaling analysis is presented in Section 12, along with conclusions on how this scaling is 
expected to affect performance. 

Part 3 deals with the MATLAB implementation of the above theory, and the consider- 
ations required when adapting the theory for computational use. Note here that the code 
is not computational, in the sense of being a Computational Fluid Dynamics (CFD) model, 
merely a computer implementation of the analytical theory. This will be discussed further 
in Section 3. Note the focus on proofing the code against legacy, and modularity to allow 
improved modelling of individual effects. 

Part 4 shows the results of the above code, on two sample datasets, in Sections 16 to 
15. One dataset is from experimental measurements on Dickinson's Robofly [2], the other 
a predicted possible kinematics and wing geometry for an FMAV. These results, especially 
the comparison between the predicted forces and those actually measured, are discussed in 
Section 18. 

Part 5 is the conclusion. The main conclusions are outlined in Section 19, including a 
comprehensive list of all assumptions made in the theory, and finally, suggestions for further 
refinement of the model are outlined in Section 20. 

Part 6, the appendices, contain useful mathematical identities, which are utilised through- 
out the thesis, and a copy of the code used, with annotated explanation of how it functions. 

3 Model overview 
The aim of this model is to gain insight into the factors affecting aerodynamic performance 
of an FMAV wing. Although this could be done by computational fluid dynamic (CFD) 
methods, it was desired to have a model that was predominantly analytical, because this 
gives greater insight into the aerodynamic effects. Also, an analytical model can eventually 
be reduced to a state-space form, for simple implementation of flight control. For more on 
the state-space expression, see [3]. This critical difference between standard CFD methods 
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I non-circulatory lift Added Mass I 

Wing Kinematics 
Quasi Steady, -\ 

circulatory lift Total lift 
++ 10 

-\O & Wing Geometry 
LE Vortex 

induced velocity I Averaging 

Wake Effect I 
I wake-induce lift 

Figure 1: Overview of the modular method for modelling the aerodynamic effects. Note the 
lack of feedback loops in the above - the method is not iterative. 

and our computer-based implementation of analytical theory will be revisited in Section 
13.2. 

Therefore, the main motivation for this model has been the need for an analytically 
tractable representation of the complex aerodynamics involved (see (4]). Such a model is 
useful for the following reasons: 

1. Insight into the contributing factors to the overall lift effect. 

2. Speed and case of computation. 

3. Possibility of inclusion in a flight dynamic model of the whole vehicle. 

4. The possibility of modular refinement of the constituent parts of the model. 

5. The possibility of performing simple scaling analysis on the results of the model. 

All these considerations informed the choice of the approach adopted here. Wherever possi- 
ble, existing analytical formulae for similar aerodynamic problems were exploited, modified 
and combined. This creative synthesis often involved compromise between physical fidelity 
and analytical tractability, with the balance usually tipped in favour of the latter. Because of 
this, the result is a first-order model. 

This scheme is is shown diagrammatically in Figure 1. 
The model starts with the inviscid flow around a thin, flat wing section in 21), using 

the thin aerofoil theory (see [5, Chapter 4]). For this, a velocity potential approach can be 
adopted, using complex numbers to represent vector quantities such as position and velocity. 
The velocity potential is used to derive the quasi-steady forces in Section 8, and again for the 
added mass forces in Section 9. This uses the standard approach found in any good textbook 
on unsteady aerodynamics, but includes extra terms for the velocity due to rotation that most 
textbooks omit, since they can usually assume fast forward motion. 

The separated flow at the sharp leading edge is modelled using the leading edge suction 
analogy of Polhamus, in Section 10. Briefly, this assumes separated flow, and models the 
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effect of the attached vortex that is expected to occur on the upper side near the leading 
edge. The model assumes that any leading edge suction is rotated through 900, to become 
an additional normal force. Although this is not a theoretical model, it has received plenty 
of empirical validation, for example in the development of sharp-edged delta wings. Addi- 
tionally, it has the advantage of being extremely simple. 

Simple modelling of wake effects are the main thrust of this work, dealt with in Section 
11. Briefly, wake effects usually attenuate changes in forces, as the shed vorticity will 
oppose the creation of vorticity bound to the wing. The wake is treated as a thin filament 
of vorticity shed from the trailing edge, and the effect cannot be solved analytically for the 
general case. Instead, simplified models for cases that can be solved are used. First amongst 
these is the Wagner function, which deals with the effect of a 2D straight-line wake behind 
an arbitrarily pitching and accelerating airfoil. The Wagner function reduces to a function of 
the distance travelled since a given change in lift coefficient, which can be summed for all 
changes of lift coefficient since impulsive start. The Kilssner function deals with a similar 
case, but for a change in lift coefficient that is stationary in space (such as a gust), that the 
wing gradually enters as it moves. It, too, reduces to a function of the distance travelled 
and the change of lift coefficient. Since the analysis pertains to hovering flight, the wake 
will tend to move downwards from the vehicle over time. Loewy modelled the wake of a 
hovering rotorcraft by splitting the wake into straight-line elements: a primary wake behind 
the wing, and a series of straight-line secondary wakes below the wing. This model is 
adapted for use with flapping flight. 

The main simplifying assumptions made were: 

1. The wing is thin and flat. 

2. T'he flow is stationary for purposes of force calculations. 

3. The flow is entirely inviscid. 

4. The effect of the LEV is to rotate the leading edge suction force by 90*. 

5. The LEV dissipates immediately when shed. 

6. The flow leaves the trailing edge smoothly, satisfying the Kutta-Joukowski condition. 

7. The wake is treated as a thin, globally stationary filament of vorticity, which has no 
self-induced velocity cffects. 

8. The wake is split into single-stroke elements, each of which is assumed to be a straight 
line. 

9. The wake moves under constant downwash velocity ui, without deforming under its 
own induced velocity. 

Also, only the Polhamus model of the LEV accounts for flow separation. The rest of the 
model assumes it to be attached, despite high angle of attack, fast rotation, and so on. 
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4 Context of model 
In this section, the context of the proposed model is outlined, especially the earlier work it 
was based on. This will be described in more detail in Part II, but will be summarised here 
to give a better overview of the methods involved. The reader may wish to refer back to this 
section after having read Part H. 

There is a commonly held misconception that according to engineers, bumblebees can- 
not fly. This is true, up to a point. According to the classical steady-state theory of aerody- 
namics, insect wings simply do not generate enough lift. For example, Pringle [6] modelled 
the lift of insect wings, using the steady-state aerodynamic theory, which is based solely on 
the velocity of the wing and the angle of attack, and found a significant shortfall in the force 
predicted versus the force observed. The reason for this is obvious - insect flight is not even 
remotely steady. If the effect of pitching rate is included in the theory, the predicted lift is 
considerably higher. This is the quasi-steady theory of aerodynamics. For a good general 
overview of quasi-steady and unsteady thin-wing aerodynamics, and the potential model 
associated with them, the author recommends Katz & Plotkin [7], this book underlines the 
fundamental dependence of the aerodynamic forces on normal velocity, not angle of attack, 
and it explains the connection between potential and bound vorticity well. Helicopter aero- 
dynamics, and the modelling of the pitching and plunging rotors, are explained in Leishman 
[3). This work is recommended for a good explanation of the cffect of the unsteady wake on 
the rotor, and the Theodorsen and Loewy models of same. 

A good collection of experimental observations on wings at low Reynolds numbers, 
specifically aimed at MAV and FMAV applications can be found in Mueller [8], with partic- 
ular reference to the work of Ellington & Usherwood [9] and Hall & Hall (10]. The concept 
of added mass, and how this relates to the unsteady potential form of the Bernoulli equation, 
is explained in Newman [ 11 ]. The mathematics of this problem are covered more rigorously 
in Milne-Thomson [ 12] and S edov [ 13 ]. 

The LEV was first proposed as a vortex lift mechanism on delta wings by Polhamus 
14], and later refined by Bradley et al. [ 15] and Purvis [ 16], amongst others. A good review 

of the refinements to Polhamus's method can be found in Lamar [ 17]. The idea that LEVs 
could be a high-lift mechanism in insect flight was first suggested by Ellington, in [18] [19] 
[20] [21] [22] [23], and later observed experimentally on a scaled model of a Hawkmoth 
wing by van den Berg and Ellington [24] and Ellington et al. [25]. The same LEV was 
observed on a model of the much smaller fruit fly by Birch & Dickinson [26]. 

This is not the first model to attempt to separate the contributions of various aerodynamic 
effects, to create aa modular model. Ellington [22] proposed the pulsed actuator disc model 
of the wake, which simply models the wake as a series of vortex rings, shed once per stroke, 
and convected downwards by a constant downwash velocity. He then applied this effect as a 
correction to the average lift during a cycle. Although this is a good first-order model, in that 
it correctly identifies the general shape of the wake vorticity, it does not model the unsteady 
lift profile during the individual strokes. Therefore, it is necessary to use the Loewy model 
above to model the instantaneous effect of the secondary wakes. Note, however, that the 
secondary wake shape model of 2-D horizontal filaments of vorticity is structurally similar 
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to the pulsed actuator disc model. Walker [27] modelled the lift of the wing using the basic 
formula F=pU IP, where U is the forwards velocity of the wing. He then treated the 
bound vorticity of the wing r as a superposition of four circulation components, similarly 
to this method. However, he introduced empirical corrections to the vorticity, for example 
for the observed effect of the wake on the wing. The aim of this model was to similarly split 
the wing lift model into separate contributions, but to keep then fully theoretical. The flight 
regimes that are likely to be investigated differ very much from standard aerodynamics, and 
even other insect aerodynamic models, so the use of empirical correction cannot be justified. 
This serniernpirical approach of Walker's has the disadvantage of lumping together, in an 
unknown way, disparate aerodynamic effects by representing them through an amalgamated 
measurement. This is avoided in the model developed here, where each lift component is 
clearly identified and precisely derived. 

Our wake modelling was initially based on the method of Theodorsen [28], and the 
generalization of this by van der Wall and Leishman [29]. The method of modelling the 
quasi-steady wing lift used in this thesis is based on Theodorsen's, as mentioned in Section 
8. He modelled the potential function of the wing as a sum of contributions due to pitching, 
forward translation and plunging. He assumed the wing to be thin and flat, and that the 
angle of attack is low. He then assumed constant forward velocity, and sinusoidal variation 
of the plunging and pitching. For this case, the integral of the effect of the wake vorticity 
reduced to an analytical function (based on Bessel functions), which could be expressed as 
a function of the reduced frequency parameter k. van der Wall and Leishman further gen- 
eralized this to include the variation of forwards velocity, for the application to helicopter 
rotors. Although this model was initially extremely promising for modelling the wake ef- 
fects, in that Theodorsen's expressions for potential could readily have been generalised to 
the FMAV case of high pitching angle, there was a major problem: the wing reverses. The 
generalisation provided by [29] did not extend to cases where the wing horizontal velocity 
is 0 or reverses direction. This is unsurprising, as the model was derived for helicopters, 
where such a case will never occur. For this reason, indicial methods were deemed neces- 
sary and the Wagner [30] and KiIssner [31] theories were introduced, both of which have 
been described in Section 11. 

The effect of the secondary wakes, as modelled by Loewy, and how it was adapted for the 
FMAV application will be explained in detail in Section 11. Briefly, it uses Loewy's model 
of splitting the wake into a series of flat, horizontal lines that are convected downwards by a 
constant downwash velocity. As mentioned earlier in this section, this is a similar geometry 
to the pulsed actuator disc model of Ellington. 

The added mass effect is described in most textbooks on the potential theory of unsteady 
aerodynamics. The author recommends Katz & Plotkin [7] or Newman [I I] for a good 
overview of this. Briefly, using potential flow theory allows the added mass effects to be 
split into two parts: added mass due to the minimum-energy solution to flow around the 
wing (the irrotational Dirichlet solution), and a correction that satisfies the Kutta-Joukowski 
condition of the flow leaving the trailing edge smoothly (the Kutta-Joukowski correction). 
Most authors tend to express only the Dirichlet component, ignoring the effect of the Kutta- 
Joukowski correction. This is understandable, in that the Kutta-Joukowski component of 
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added mass is closely associated with wake vorticity, and the cross-coupled effect of the 
wake and the Kutta-Joukowski component of added mass is not readily modelled. This is 
discussed further in Section 9. In general, most research on added mass has been in the 
offshore industry, where the blunter bodies and denser fluid makes added mass a far more 
important effect than in aerodynamics. Works of interest in this field are Keugelan & Car- 
penter [32], who proposed a characteristic non-dimensional parameter for oscillating bod- 
ies, since called the Keugelan-Carpenter number, and the refinement of Huse (33], which 
described the viscous and added mass effects on oscillating plates by a simplified correction 
to the drag coefficients, as a function of the Keugelan-Carpenter number. The early models 
of added mass effect were based on the work of Huse, but since his model relics on cm- 
pirical force coefficients, it was considered to be of limited scope for this application, since 
empirical coefficients are not desirable. For further reading on this subject, and for future 
refinements that will occur after the time of publishing this work, the author recommends 
examining the proceedings of the Offshore Technology Conference (OTC), which is held in 
Houston, Texas, USA. 
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5 Insect-like flight 

5.1 Biomimetic extraction 
It is generally accepted that nature produces good designs. For any ecological niche, the 
combination of ruthless selection with billions of design iterations (generations), has left 
modem-day insects optimised for survival. However, although flying efficiency is impor- 
tant to survival, it is not the only merit criteria. Insects have to be able to find (possibly 
catch) food, mates and shelter all the while avoiding detection and capture by predators. 
All of these may influence wing design away from aerodynamically optimal. For example, 
butterflies rely on very erratic flight paths to avoid predators - less efficient, but better for 
survival. Similarly, the process of natural selection means that an insect need not only be 
the best adapted, but have the best-adapted ancestors. This may have caused some species 
to go down evolutionary dead ends, where they are finding local, rather than global, optima. 
Since the insect is an integrated organism, the wing design is also limited by other parts of 
the body, and naturally available materials. For example, during the late paleozoic (about 
250 million years ago) there was a period of high oxygen content in the air which lead to 
gigantism in most insects. This shows that breathing apparatus is a limiting factor on the 
scale of insects (see [34]). 

The conclusion of this is that insects are not highly-tuned machines, designed to operate 
at one condition, but have robustness to changing conditions and often have non-flying evo- 
lutionary pressures on their wing design. Thus, it is dangerous to use insects as a "blueprint" 
without understanding which features of their design are contributing to flight performance, 
and which are there for other reasons. 

This process of identifying the salient features of a natural design, and how they can be 
applied to the FMAV has been dubbed a Biomimetic Extraction. Biornimetic because we 
are mimicking a biological system, and extraction because we are extracting only the usable 
portions of the design. 

. 
5.2 Wing geometry and structure 
Insect wings are not streamlined aerofoils - in fact they are angular with rough surface 
textures, and seem decidedly non-aerodynamic at first glance (see Figure 2). 

Insect wings are thin and flexible, tending to have most of the mechanical strength to- 
wards the leading edge. In structure, they somewhat resemble a sail [3 6], with a thin, flexible 
membrane kept in shape by thick cuticle at the front of the wing (the equivalent of a mast), 
and veins in the wing that acts like the spars of a sail, retaining its form and camber despite 
aerodynamic and inertial loading. Insect wing shape is actively controlled by the wing base 
articulation, and passively deformed by internal, elastic and aerodynamic loads. All actu- 
ation happens at the root, which is a considerable simplification of the wing construction. 
The pattern of venation and stiffness in nonetheless very complex. 

The structural components of the wing, such as the veins, taper towards the tip, where 
the structural loads are lowest. This makes the insect wing flexible to tip impact. 
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Figure 2: An Eristalis wing, showing the thick cuticle of the leading edge and surface spars, 
and the thin wing membrane. Picture from [35]. 

The deformability of the wing causes it to twist along its length - this is in ef! 'ect similar 
to the washout of conventional airfoils, without which the angle of attack would increase 
towards the tip. 

Many insect wings bear the signs of deliberate lines of weakness across the wing, for the 
purpose of transverse bending. This is useful for avoiding damage in collisions, but has also 
been observed by Wootton [36], [37] as a likely mechanism of camber control. 

5.3 Wing kinematics 

Insect wing kinematics are fundamentally similar to helicopter rotor kinematics: they ro- 
tate about a fixed point (hinge), so airspeeds on the wing increase with distance from the 
hinge. The majority of the motion is in the horizontal plane, and is called the sweeping 
motion, where the wing moves cyclically forwards and backwards. Additionally, the wing 
undergoes vertical plunging and pitching (called rotation). Each wing cycle consists of a for- 

wards/downwards stroke, called the downstroke, and an upwardsibackwards stroke, called 
the upstroke. These motions are defined more rigorously in Section 7. 

A hovering insect typically flies with a near honizontal stroke plane (the mean line be- 
tween up- and downstroke), and antisymmetrical strokes in a figure-of-eight motion', as 
shown on Figure 3. Either end ofeach stroke has fast, locallsed rotation to keep the leading 

edge forwards in the direction of travel. As the insect moves to forward flight, the stroke 
plane will incline, and the strokes become asymmetric, with most of the lift generation being 

caused on the downstrokc. 

'The figure of eight has been chosen as an idealised form of the tip trace. Wing tip traces vary from insect 
to insect, and between flying regimes. See Ennos [38]. 
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Illustration of flapping flight 

Figure 3: A typical wing tip trace for the flapping motion of a wing 
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5.4 Lift generation 
As stated in Section 5.2, insect wings tend to be very unlike conventional aerofoils, having 
very angular shapes and rough surface textures. This is because they operate at low Reynolds 
number, where viscous effects are far more dominant than for typical aerofoils. In such a 
viscous regime, the reduced friction drag due to a smooth surface is small, so smooth surface 
structure is far less important than for conventional-scale aerofoils. The major obstacle 
insects have to overcome is due to the reversing stroke: the Wagner effect. 

5.4.1 The Wagner effect 

The lift of an aerofoil is linked to its bound vorticity - the net rotation of the flow around 
the chord is the source of the lift. From inviscid theory, every time the bound circulation 
increases, an equal and opposite vortex will be shed. This also holds for viscous flow, 
although viscosity will cause the shed vortex to decay. In insect flight, the effect of these 
shed vortices is considerable, because they remain close to the wing for some considerable 
time. This is partly because the wings are flapping back and forth (thus returning to the space 
where the vorticity was shed), and because of the low velocity of the wings. The effect of 
these shed vortices is to oppose the increase in lift, and is known as the Wagner effect. The 
Wagner effect will cause attenuation of changes in the lift over time, and therefore a net loss 
of lift just after an impulsive start. 

The above explanation of the effect will be examined in more detail during the wake 
modelling; for now, we simply observe that it happens, and consider some ways insects 
overcome it. 

5.4.2 Overcoming the Wagner effect 

The first method of overcoming the Wagner effect observed, was the so-called Weiss-Fogh 
mechanism [39], also known as the clap andfling, see Figure 4. With this mechanism, the 
insect avoids the Wagner effect by clapping the wings together, so the shed vortices from the 
two wings (which are of opposite sign) are brought together, and dissipate. Additionally, the 
wings are separated at the leading edge first, causing air to rush into the gap which causes 
the instant creation of a bound vortex. This effect is ftirther enhanced by the bound vortex 
of the opposite wing. Some insects also rely on the variants the Near clap, and the Clap and 
peel (see [21 ]). 

In the near clap, although the wings do not actually touch (or possibly only touch at their 
trailing edges), the shed vortex cancellation and bound vortex enhancement is still in effect, 
although not quite as pronounced as the full clap. This is often employed on the ventral 
(belly) side of the stroke, when the thorax obstructs clapping. 

The clap and peel is a high aspect ratio version of the clap and fling - when the wings 
have clapped together, instead of rotating apart, the leading edges are pulled apart, and the 
surfaces peel apart from the leading edge. The rush of air into the gap between the wings 
acts similarly to the clap and fling. 
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Figure 4: The Weiss-Fogh mechanism [39] for overcoming the Wagner effect. The wings 
are clapped together, then rotated apart leading edges first, so the flow of air into the gap 
between them "kickstarts" the LEV. 
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Separation Bubble 

I 

Figure 5: A flat wing with a separation bubble. 

5.43 The leading edge vortex 

This effect is worthy of special attention. Separation at the leading edge of a translating 
aerofoil will cause an attached separation bubble above the wing (see Figure 5). If instead 
of translating, the wing is rotating about a point, similar to a helicopter rotor, there will be a 
spanwise crossflow towards the tip, causing an outwardly spiralling helical flow. This will 
also occur if the leading edge is swept back, for example on a delta wing. This has been 
dubbed a Leading Edge Vortex (LEV) by Ellington, see [25), and can be seen in Figure 
6. The effect of the LEV is to reduce the pressure above the wing, or alternatively can be 
considered as an increase in the bound vorticity of the wing through vortical lift [40]. The 
LEV was observed experimentally by Ellington et al on a rotor rig [9] where it was noted that 
the rotor could maintain a stronger steady LEV than the separation bubble of a translating 
aerofoil, due to secondary radial flow that forces the growing LEV off the tip of the aerofoil 
before it bursts, and becomes a deep stall. They have deduced four likely mechanisms for 
this radial flow - induced velocity due to the conically shaped LEV, low pressure due to 
higher speeds at the tip, centrifugal force of the mass of air trapped in the LEV and the 
sweep of the leading edge. 

5.5 Types of insect flyer 
Insects with low aspect ratio wings, such as butterflies, rely heavily on unsteady mecha- 
nisms, and the various clap mechanisms, while high aspect ratio wings, such as those of 
dragonflies rely more on conventional aerodynamics and the LEV. As discussed earlier, sur- 
vival affects flight a great deal - thus, migratory insects such as locusts are built to move at 
high speed over long distances - they rely partly on forward airspeed for their lift, and cannot 
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5.6 Biondinclics 

Figure 6: An illustration of the LEV on a wing, from [411 

hover. Hovering insects tend to use horizontal stroke planes. They incline their stroke plane 
in forward flight, analogous to helicopters. 

5.6 Biomimetics 

Firstly, a disclaimer is due to the biological community: the above remarks on insect flight 

are general isations. For every statement above, a sharp-eyed biologist will be able to think 
of at least one species that is an exception. These gcneralisations have been made in order 
to arrive at a reference idealisation, representative of the problem. 

The lower limit of the FMAV size may well be set not by perfon-nance merit, but by 

what can realistically be built and tested, and the scale of secondary components like vi- 
sual sensors. Although MEMS technology has pushed the lower limit of scale downwards, 
Wootton has recently commented that work performed at Exeter University on fly wings has 

shown the wing membrane varies its properties continuously across the surface, by varying 
the structure on a molecular level. This is not a feat we can match. 

The FMAV builder will, however, have access to rotary bearings, stiffer and stronger 
materials, and the major advantage of spare parts. The ability to design for a limited lifetime 
of ccrtain high-stressed components that are simply replaced in not available in nature. 

Nature has relatively power-dcnse, but not particularly efficient motors, yielding up to 
200 W/kg at 10% efficiency. The effective energy density oftlicir fuel is high. Note again, 
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that this is a non-flying evolution - the "wasted" energy goes towards heating the insect, 
which is critical to its survival. 

FMAV builders will have access to the same power density of motors, but not the same 
effective energy density of fuel, especially if battery power is used. Since sensors and on- 
board logic will require electrical energy, battery power is seen at the most feasible option, 
as opposed to a split fuel/battery combination for a combustion engine and the onboard elec- 
tronics. Happily, the FMAV flight time is less of an issue - it will only need fuel for a single 
mission, plus a safety margin, and will never have to forage for its own supplies. Nonethe- 
less, overcoming the energy storage problem of a half to full hour flight is considered one of' 
the main challenges in FMAV design. 

5.7 Which mechanisms to use 
For the purpose of the present work, all of the above observations on insect wing shape and 
structure have to be set aside. The wing has to be treated as rigid for any sort of sensible 
first-order model to emerge. Restricting the analysis to hovering flight has been done for the 
same reason. 

All the clap mechanisms are considered unusable, due to the high mechanical wear. The 
near-clap is a possibility, but considered dangerous as poorly controlled stroke amplitude 
or wing rotation will bring the wings into contact. Also, these are highly unsteady effects, 
and therefore difficult to model. The analysis has been restricted to more readily solvable 
aerodynamics, with a view to improving the modelling later. 

The LEV is the most immediately promising mechanism, in that it has been show to 
work on full-scale aerofoils. 

5.8 Conclusions on insect flight 

" Insects use a number of high-lift mechanisms not available to conventional acrofoils, 
because insect wings reverse direction and pitch quickly. 

" The high-lift mechanisms used above are necessary because a flapping wing would 
otherwise spend a lot of time at aerodynamically ineffective statcs, such as rotating at 
low velocity, or trying to overcome the Wagner effect at the start of each stroke. 

" Many of the performance criteria scale unfavourably with size. This is revisited in 
section 12. The lower limit of the FMAV size is expected to be set by what can 
realistically be built, rather than by aerodynamic merit. 

Insect wings are not streamlined aerofoils: they more closely resemble sails. 

Insect wings are thin and deformable, with most of the mechanical strength towards 
the leading edge. 
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Insect wings are not highly tuned to optimal operation at a single flight condition, 
but have robustness to changing conditions and often have evolutionary pressures not 
related to flying efficiency. 

The LEV is seen as an exploitable mechanism, partly because it has been shown to 
work up to conventional aerodynamic scale and Reynolds number, albeit with some 
variation due to Re effects. 
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6 Terminology 

6.1 Flight regime terms 

6.1.1 Flapping flight 

Standard aerodynamics refer to a flapped aerofoil and an aerofoil with a flap: a part of 
the wing which is at an angle to the remainder, such as the aileron control surfaces on the 
trailing edge of the wing. This should not be confused with the termflapping aerofoil, which 
is simply an aerofoil undergoing a "flapping" motion. Flapping flight is where the wing 
translates in one direction, then comes to a halt while rotating (pitching), and translates in 
the opposite direction. The rotation at either end of the stroke means the leading edge is 
always ahead of the trailing edge in the direction of travel. 

6.1.2 Reversal 

Reversal is the term for when the direction of the wing's translation reverses-Le. it stops 
translating briefly, and returns the way it came. Note that the wing may still be pitching 
during this time. 

Specifically, reversal is defined for a point on a flapping aerofoil as the state where the 
horizontal velocity reverses sign. Note that since the wing may still be pitching, reversal 
does not occur simultaneously for all points on the wing. 

More generally, the concept of "reversal" is referred to as the fact that the wing is flap- 
ping back and forth in the same space, as opposed to constantly translating forwards. 

6.1.3 Cycles and strokes 

When the vehicle is not manoeuvering, the flapping motion of the wing is a repeated cycle 
of motion. Each cycle is defined as a single, closed path of motion. The cycle is made up 
of two strokes, that start and end at the extremes of motion (the reversal). The kinematics 
during the two strokes need not be similar. 

6.1.4 Stroke plane 

Since the wing motion during the two strokes of a cycle is not necessarily similar, the stroke 
plane is defined as the mean line between the tip motion during the two strokes. For both 
the cases considered here, the stroke plane is horizontal. 

6.1.5 Rotating and translating regime 

Because of the reversal above, the wing will be in either one of two identifiable regimes: The 
translating regime, in the middle of every stroke, where the translational velocities are high, 
and the rotational velocities are low, and the rotational regime at either end of the stroke, 
where the translational velocities will be low, and the rotational velocities high. These are 
not hard-delimited regimes, but lead gradually into each other. 
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6.1.6 Upper and lower surface 

Since the wing is capable of flipping entirely upside down, care has to be taken about which 
surface is being referred to. The upper surface is the surface that is upwards when the 
wing has its leading edge pointing forwards. This surface retains the name whatever the 
orientation of the wing. The other surface will be referred to throughout as the lower surface. 

6.2 Aerodynamic terms 
6.2.1 Angle of attack 

The angle of attack is defined as the angle between the mean chordline (the line from leading 
to trailing edge) and the free stream flow. It is not used in this investigation, because 1) Wing 

rotation causes a to vary along the chord 2) a is mainly used when set ; z:; 0, to express the 

normal velocity. 
Instead, the following calculations are performed as a function of the normal velocity 

directly, with no reference to a. The wing attitude is obtained from the pitching angle P, 

which is defined from geometry, and therefore independent of the free stream. For two 

examples of the relationship between a and the pitching and plunging motions, see Figures 
7 and 8. 

6.2.2 Advance ratio J 

This comes from helicopter aerodynamics [3], where it is typically denoted by IL. It is the 
ratio of forward airspeed to the tip velocity of the rotor. This parameter can be used, un- 
changed. However, care must be taken since J values for helicopters and FMAVs are not 
directly comparable. Specifically, since the two wings of an FMAV are moving in phase 
(both moving forwards at the same time), they are not restricted by an upper limit of J. 
Helicopters are typically restricted to J<0.4, because their wings are in antiphase: the for- 
ward velocity of the helicopter adds to the airspeed of the rotor on one side, but is subtracted 
from the airspeed on the other side, causing large rolling moments. Of more use to this 
application is the Hovering velocity ratio, which is the ratio between the average induced 
velocity and the r. m. s. velocity of the wing. A low hovering advance ratio means that the 
effect of the wake can be treated as stationary in time, since it changes slowly compared to 
the velocity of the wing. 

6.2.3 Reduced frequency k 

The reduced frequency is defined as frequency * characteristic length / velocity. It is 
typically used to relate the spatial variation of a property to the temporal variation, or express 
the degree of unsteadiness in a flow. For most typical applications, this uses the chord of the 
wing as the length parameter and the forward velocity to relate the frequency of a variation 
at the wing (e. g. in bound circulation) to the wavelength of that variation. In the context of 
insect-like flapping, this is not an applicable parameter, because it is not constant. Most uses 
of k are to map a sinusoidal variation in time to a sinusoidal variation in space. Since k is 
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Figure 7: Illustration of the effect of plunging velocity correction on a 
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Oncoming velocity U 

Hinge Point Wing 

(a) Actual Situation 

Figure 8: Pitching cffect on normal velocity, and hence a 

not constant, this mapping will not be to a sinusoid. Also, all points of a flapping wing will, 
at some point, have zero horizontal velocity-at these points k goes to infinity, so it is not 
even possible to place appropriate bounds on the values of k. 
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Definitions 

7.1 Position 
7.1.1 Rectangular coordinates 

A right-hand body-aligned coordinate system x, y, z in metres is defined, as shown in Figure 
9. The vertical z axis is always downwards, and the origin is fixed to the root of the right 
wing. 

7.1.2 Spherical coordinate system 

A spherical coordinate system is defined, based on the wing position angles 0, '0, and the 
radius r, which is normalised with respect to the tip radius. The radial position r is de- 
fined along the hinge line-the line from the root to the point on the wing furthest frorn 
the root. r is normalised with respect to the wing tip radius R. The chord line is defined 

normal to the hinge line. This is shown in Figure 9. Horizontal motion (increasing 0) is 

called sweeping motion, vertical motion (increasing V)) is called plunging motion, and wing 
pitching (increasing 0) is called pitching or rotating motion. 

7.1.3 Wing-fixed coordinate system 

A wing-fixed coordinate system is defined, at a section of wing with constant r. Here, we 
define the chordwise C coordinate and normal 71 coordinates, both normalised with respect 
to the local semichord b of the wing. 
The origin of C is at midchord, so it is -1 at the leading edge, and +1 at the trailing edge. 
The origin of 77 is the midchord of the wing, positive towards the "upwards"sidc of the wing, 
as shown in Figure 10. Note that 77 is 0 everywhere on the wing, and therefore rarely used. 

7.1.4 Wing sections 

The following analysis deals with the wing using 2D analysis on individual sections of the 
wing, and integrating across sections in a spanwise direction. A sample section is shown in 
Figure 11. 

7.1.5 Hinge line 

The wing rotates about a single point, at the root of the wing, and the origin of the rectangular 
x, y, z coordinate system. This point is called the hinge. The hinge line is the straight line 

connecting the root and the tip of the wing. This is the assumed pitching axis of the wing at 
all times. For any given spanwise section, the hinge location a is defined as the chordwise 
position of the hinge line at that section. The hinge location is normalised with respect to 
the local sernichord b, so has values from -1 at the leading edge to 1 at the trailing edge, as 
illustrated in Figure 10. 
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y 

z 
Axes origin at hinge point of wing 

Pitching (supination). Seen from right wingtip. Plunging, seen from -X (behind). 

y 

Figure 9: Coordinate system. 
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Pedersen 7.1 Position 

Figure 10: The wing-fixed coordinate system. 

Figure 11: A sample wing section. 

'S 

s) 
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Pedersen 7.2 Velocities 

7.2 Velocities 
Velocities are written in metres per second, as the velocity of the fluid relative to the wing, 
in the general form: UNIT 

The first subscript is the direction of the velocity: 
P is in the wing fixed system, parallel to the wing, towards the trailing edge. 
N is in the wing fixed system, normal to the wing, towards the "upwards" side. 
V is in the spherical coordinate system, upwards (i. e. the -0 direction. ) 
H is in the spherical coordinate system, backwards (i. e. the +0 direction. ) 
T is the total velocity, in either coordinate system. 
See Figure 12 and 13 for illustrations of these directions. 

The second subscript is the chordwise location of the velocity: 
1 is at the leading edge. 
t is as the trailing edge. 
m is at the midpoint. 
r is at 3/4 chord, called the rear neutralpoint. 
If this subscript is omitted, the velocity is assumed to be at the hinge point. 

The third subscript is the spanwise position of the velocity: 
T is at the tip of the wing, assumed on the hinge line. 
If this subscript is omitted, the velocity is assumed to be at a radial position r. 

Special case: 
The velocity ui is the average downward velocity induced by the lift of the wing, it is positive 
downwards, i. e. the +z direction. 

7.3 Forces 
Forces are written in Newtons, the general form: FNA TD W 

The first subscript is the direction of the force: 
P is in the wing fixed system, parallel to the wing, towards the leading edge. 
N is in the wing fixed system, normal to the wing, towards the "upwards" side. 
V is in the spherical coordinate system, upwards (i. e. the -? P direction. ) 
H is in the spherical coordinate system, forwards (i. e. the -0 direction. ) 
L is in the rectangular coordinate system, upwards (i. e. the -z direction. ) 
D is in the rectangular coordinate system, forwards (i. e. the +x direction. ) 
These direction are shown in Figures 14 and 15. 

The second subscript is the cause of the force: 
Q is quasi-steady. 
A is added mass. 
P is Polhamus effect. 
W is Wagner (primary wake). 
K is Kilssner (secondary wakes). 
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UV 

Figure 12: Direction of the horizontal velocity ul, and the vertical velocity uv, as seen fronj 
the root of the wing. These are defined as velocity of the fluid relative to the wing, in the 
spherical coordinate system. 
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UN 

Figure 13: Direction of the normal velocity UN and the parallel velocity up, as seen from 
the root of the wing. These are defined as velocity of the fluid relative to the wing in the 
wing-fixed coordinate system of Figure 10. 
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Fv 

F 
H 

Figure 14: Direction of the horizontal force Fff and the vertical force Fv, as seen from the 
root of the wing, in the spherical coordinate system. 

If this subscript is omitted, the force is assumed to be the sum of all the above contributions. 

The third subscript (one or two letters) is the component of the contribution, for the 
quasi-steady and added mass terms only. 
TD is the translational component of the Dirichlet solution. 
RD is the rotational component of the Dirichlet solution. 
TK is the translational component of the Kutta-Joukowski corrcction. 
RK is the rotational component of the Kutta-Joukowski correction. 
D is the total Dirichlet solution. 
K is the total Kutta-Joukowski correction. 
Typically, this subscript is omitted, in which case the force is assumed to be for the total 
contribution of all components. 

The fourth, optional, subscript denotes the area of integration: 
W means the force is integrated over the entire wing. If this subscript is omitted, the force 
is assumed to be per metre span. 
Note that in the following the shorthand "lift" is used for the vertical force Fv and 44drag1j. 
for the horizontal force FH. 
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F N 

Fp 

Figure IS: Direction of the normal force FN and the parallel force Fp, as seen from the root 
of the wing, in the wing-fixed coordinate system of Figure 10. 

7.4 Moments 

Moments are written in Newton-metres, in the general form: MVA TD W 
The subscripts are similar to those for forces above, except the first, where the only cases 
are: 
V Moment about the x axis, positive in the -0 direction (upwards). 
H Moment about the z axis, positive in the -0 direction (forwards). 
P Pitching moment about the hinge line, positive in the +0 (pitching up). 

Note that the descriptions of direction C'upwards", and so on) are local to the right-hand 
wing, which is the only one considered. 

7.5 Other definitions 

7.5.1 Downwash velocity uj 
Any lift generation causes a downwash velocity, as is readily apparent from simple momen- 
tum considerations. The Rankine-Froude theory for an actuator disc assumes a constant 
downwash velocity ui across the swept disc of a propeller. This is available in any good 
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Full Actuator Disc Partial Actuator Disc 

Resultant force 

i induced velocity 

induced velocity 

ui induced velocity 

2u- induced velocity 

Figure 16: Swept area used to determine induced velocityý based on momentum theory, after 
Ellington [22] 

textbook on aerodynamics, and gives: 

Ui = 
FTp-ýýAs 

(1) 

in hover, where P is the average lift force, and As is the swept area of the propeller - the area 
of the actuator disc. For the flapping case, where the wing does not perform full revolutions, 
it is more appropriate to calculate ui based on the area that is actually swept by the wing, 
rather than the full circle. See Figure 16 for an illustration of this. 

7.6 Basic identities 

On the basis of the above definitions, some basic identities are available: 

u, u = -R r (2) 

uv = Rrý (3) 
UN = UH Sß + UV Cß 
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UP UH Cß - UV Sßi 

see Figure 9 on page 23. Note the minus sign in the first equation-remember that velocity 
is defined in terms of the free stream velocity relative to the wing, so the velocities above 
are the opposite to those of the wing in still air. The last two equations are simply from 
resolving velocities in the spherical coordinate system to the wing-local system. 

The above can be used to find the velocities at local points of the wing. Subscript E 
is used for an arbitrary point on the wing. The local wing sernichord is b, and the hinge 
location in wing-fixed coordinates is a: 

UPE UP (6) 
UNE UN +b a) (7) 
UNI " ' UN+bý(-l-a) (8) 

UNM UN+b4(-a) (9) 

UNr UN+b4( 
1- 

a) 2 
(10) 

UNt UN+b4(1-a) 

Note the first equation: when using the wing-fixed coordinate system, the rotational velocity 
will manifest itself purely as a normal component. The last four equations are just special 
cases of Equation 7. Also, note that all velocities at the hinge will scale linearly with the 
radius, so: 

uýr UT 

for all velocities at the hinge. 
Some basic identities can be formed for forces by resolving between coordinate system. 

Fv = FN Cp + Fp S, 3 (13) 
FH = -FN So + FpCq (14) 

FN = Fv Cp - FH Sp (15) 
Fp = Fv Sp + FH Cp (16) 
FL = Fv Cp (17) 
FD 

= 
FH Cot (18) 

where all the above are found by resolving between coordinate systems. Note that the last 
two equations are the forces experienced by the body, in the rectangular coordinate system. 
Also the definition of "drag" makes it always positive forwards, and spanwise forces have 
been ignored completely. In the spherical coordinate system, the model used predicts no 
spanwise force (see the Polhamus model in Section 10). In the rectangular coordinate sys- 
tem, any spanwise force caused by one wing is assumed to be cancelled by the opposite 
wing. 
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Part 11 

Aerodynamic model 
In this part, the core of the thesis, a theoretical aerodynamical model for the forces and 
moments on the wing is derived, using 2D thin acrofoil potential theory. The derivatioll 
of the quasi-steady forces in Section 8, and the added mass forces in Section 9, is similar 
to the standard form of unsteady aerodynamics, but without the assumption of fast forward 
motion. This relaxation introduces extra terms into the expressions for aerodynamic forces. 

The flow around the sharp leading edge is modelled using the leading edge suction anal- 
ogy of Polhamus, in Section 10. Briefly, this models the effect of the separation, and the 
attached vortex that is expected to occur on the upper side near the leading edge. The model 
assumes that any leading edge suction force is rotated through 90* to become an additional 
normal force. 

The wake model of Section II treats the wake as a thin filament of vorticity shed fron, 
the trailing edge. In order to make this analytically tractable, some considerable simplify- 
ing assumptions are made, and a combination of simplified models for cases which can be 
solved is used. These simplified models are the Wagner and Kilssncr models of an arbitrarily 
accelerating and pitching aerofoil at low angle of attack, and the Loewy model for the down- 
washed wake under the wing. A refinement of the above method, based on the Polhamus 
correction firom, Section 10 is also described. 

UNCLASSIFIED Page 32 of 248 



Pedersen 

Figure 17: Model overview. Note that there is no iteration in the model above - the flow of 
information never forms a feedback loop. Effectively, it models a rigidly forced response - 
the kinematics of the wing are unaffected by the loading. 
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Pedersen 8 Quasi-steady effects 

8 Quasi-steady effects 
8.1 Potential theory 

A 2-D potential model of the inviscid flow around a thin, flat aerofbil is used to form a 
complex velocity potential ýD, which has the property of differentiating to the velocity of the 
flowfield: djD/d2 = UP - iUN. For the case of a thin, flat plate, the potential is purely real, 
as a function of the wing coordinate C only: 4)(C). 

. Some standard results of potential theory, from e. g. Katz & Plotkin [7] are: 

1. The potential due to a bound vorticity -y is such that &Dlax = y. 

2. The datum of 4) can be set arbitrarily. 

3. Individual, (D for several flowfields can be superimposed, to give their combined effect. 

Note also the following useful identity 

b-f (19) 

Throughout the rest of the thesis, the quantity Q= is used extensively. Identi- 
ties for integrals and differentials of Q can be found in Appendix A. 

8.2 Dirichlet solution 
The Dirichlet solution is the potential function needed to cancel out the component of the 
local free stream velocity normal to the surface of the wing, making the wing surface a 
streamline. It does this without contributing a net circulation to the flow. This is also the 
minimum energy solution to the problem, i. e. it is the solution that causes the least amount of 
kinetic energy to the fluid. This has been done in a variety of ways. von Y. ArmAn and Sears 
[42] directly wrote the bound y needed. Theodorsen [28] formed the potential function 
from a set of source-sink pairs on the upper and lower surface of a unit circle, then used 
Joukowski mapping to map the circle to a line, where the source-sink pairs become doublets 
aligned normally to the wing. Finally Katz & Plotkin [7] wrote the expression for the doublet 
strength needed directly, then showed that this could be differentiated to give the bound 
vorticity. 

Whichever method is used, the end result is a potential function split into two superpos- 
able parts: one for the translational motion, and one for the rotation about the hinge line 
(pitch axis). The potential on the upper surface is: 

4DT+D UNbQ (20) 

, Jý+ 2 
RD 4b ýQ 

- aQ (21) 
(2 

For this the ability to define the datum of D arbitrarily was used, so the potential on the 
upper and lower surface are exactly equal and opposite. 

UNCLASSIFIED Page 34 of 248 



Pedersen 8.3 Kutta-Joukowski condition 

(D+ can be differentiated to give the bound vorticity: 

IT+D = UNb-( (22) 
Q 

, YR+D = 
4b2 (2 + aC)/Q (23) 

Note here that the vorticity of the upper and lower surface are identical, not of opposite 
sign. 

There are two singularities, at the leading edge and trailing edge. At these points -Y and 
velocity becomes infinite, and ý5 is discontinuous unless zero. This is dealt with in the next 
section. 

8.3 Kutta-Joukowski condition 
Kutta and Joukowski independently observed that the discontinuity at the trailing edge is 
equivalent to the flow passing around the trailing edge, experiencing infinite acceleration as 
it does. In a real fluid, the flow will be unable to do this, and will instead separate at the 
trailing edge. Satisfying the Kutta-Joukowski condition involves superposing a net bound 
vorticity onto the Dirichlet solution, so the flow leaves smoothly at the trailing edge. The 
correction required to satisfy this condition is referred to in this work as the Kutta-Joukowski 
correction. It is an empirically-inspired correction to the potential flow model, to make the 
flow behave like a real, viscous fluid. This additional vorticity should not cause any net 
normal flow anywhere on the wing, so it remains a streamline. 

Again, this can be approached from the potential or vorticity perspective. von Kdrindn 
and Sears [42] write the expression for the vorticity needed to cancel the velocity at the 
trailing edge directly. Note, however, that their solution includes the vorticity of the shed 
wake, which will be dealt with as a separate effect in the model. Theodorsen [28] uses 
a uniform distribution of vorticity about a unit circle, of sufficient strength to cancel the 
Dirichlet potential at the trailing edge, then maps this to a line. Katz & Plotkin [7] write the 
vorticity needed directly. 

For the wake-free case, the latter two methods give expressions for potential and vortic- 
ity: 

TK UNb (asin(C) - 7r/2) (24) 
4)+ 21 

RK 
4b G- 

a) (asin(C) - 7r/2) (25) 

uNb/Q (26) 

+1- 7RK ý0 (ý 
a) IQ, (27) 

where the expressions have been split into a translational and rotational part, as above. 
The discontinuity at the leading edge still exists - this is dealt with later using leading 

edge suction, and the Polhamus leading edge suction analogy. 
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8.4 Unsteady form of Bernoulli equation 
The well known unsteady Bernoulli equation (see for example Katz & Plotkin [7]) is: 

otý 12 

P=P 
(POW 

+ 57t - ýUTEI (28) 

The 21 term is the added mass, which will be dealt with later (Section 9). The last terrn at becomes the quasi-steady pressure. The velocity of a fluid particle on the upper surface 
UTEf I 

is written as: 

UTEf """": 
(UP + UPy + iUNE)i (29) 

where up is the velocity of the undisturbed frcestream relative to the wing, up., is the addi- 
tional velocity relative to the wing, caused by the bound vorticity. As described earlier, this 
velocity is purely parallel to the wing surface, and equals &Ila( andy. The square of this 
velocity i! 2+ is obtained by substituting y for up.,: T 

2+ UTEf (UP + If + iUNE) (UP + If - iUNE) (30) 

U2 22 
P +Y + UNE + 2, y up (31) 

Consider the pressure difference across the wing Ap. The stagnation pressure po is the 
same above and below. The first three terms of the above are the velocity of the wing, which 
is the same above and below, so they cancel, leaving: 

APQ = -P 2up-y+ -p1 2upy- 
2 

= -2p upy+ (32) 

This gives the normal force for a unit spanwise element of the wing as- 

dFNQ = 2p up-y' dC 

=p up-y dC (33) 

This is, again, a standard result - that a uniform free stream flowing past a vortex will 
cause a force normal to the flow, of a magnitude proportional to the product of the velocity 
and the circulation. 

8.5 Leading edge suction correction 
The result of equation (33) is used to incorporate the effect of leading edge suction, by 
substituting the total velocity for the parallel velocity, so: 

dFNQ + idFpQ ýP fZTE 7 dCi (34) - 

where dF is the increment of force corresponding to the increment of chord length dC. The 
total force is normal to the total velocity. 
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8.6 Quasi-steady forces 
The quasi-steady forces on the wing are found for each of the -y components calculated 
above, using standard integrals of the parameter Q, which can be found in Appendix A. 
The values for -y employed here are twice those for y+ given earlier, as explained above. 
This calculation differs from the standard textbook case, in that the rotational component 
of normal velocity iýb(( - a), is not neglected here, since it is not small compared to the 
translational velocity. This is because this application has low translational velocity and high 
angle of attack. For clarity, the solution is split into four components: The cases of isolated 
translation (T) and rotation (R), for the Dirichlet (D) and Kutta-Joukowski (K) potentials: 

TD part: 
I 

FNQ + iFPQ =p fLTE WD d( 

= pf 2 UTE UN b d( 

I- -C = 2PbUN UTE V dC 

2p b UN (UP + iUN + i4 b a)) d( 

=2pb UN (0 +0- iý b 7r/2) 
27rpb2 (35) UN 

RD part: 

FjvQ + iFPQ =p fITEYRD dC 

= Pf flTE 2ý b2 C2 +a ()IQ dC 
2 

=2pb2 fLTE (2 + aC)/Q dC 

=2p 
b2 (UP + iUN + i4b(C - a)) 2 

(2 + aC) IQ dC 

= 2pb 2ý [up (7r/2 - 7r/2 + 0) + iUN (7r/2 - r/2 + 0) + i4b(r/2)] 

2UIV 27rpb (36) 

The total quasi-steady contribution of the Dirichlet part is zero, which is as expected - 
since there is no net vorticity, there can be no net force. 

TK part: 
1 

FNQ + iFpQ p iiTE WK dC 

fLTE 2 UN b dC p 
f'l 

UNCLASSIFIED Page 37 of 248 



Pedersen 8.7 Total quasi-steady force 

= 2pbuN fITE dC 

_1 

(up + iuN + i4b(C = 2pbUN a)) dC 

= 2pbuN [7rup + i7ruN + i7r4b(O - a)] 

=2r pb UN 
[up + iuN - i7r4ba] 

=2 7r pb UN flTm 

RK part: 
1 

FNQ + iFpQ =p UTE IfRK d( 

=p fITE 2ýb22_ a)/Q dC 

= 2pb2 I- 
a)4 

1 UTE/Q dC 2 
2 

= 2pb a) 
(UP + iUN+ i4 b (C - a))/Q dC 2 

21- 
= 2pb 4 a) 

[7UP 
+ i7rUN + i7r4b(O - a)] 

= 27r p 
b2 4 a) 

[UP 
+ iUN-i4ba] 

= 
27rpb 2 a)ftTm 

(37) 

(38) 

Note how the Kutta-Joukowski components produce net forces, because they have a net 
vorticity. 

8.7 Total quasi-steady force 

The total quasi-steady force is written as the sum of the four components given in equation 
35 to 38: 

1 
FNQ + iFpQ =2 7r pb 

(UN ilTm +b (- - a)UTrr%) (39) 
2 

=2 7r pb UNr UTrni (40) 

where the normal and parallel components are: 

FNQ = 27r pb UNr UP (41) 
FpQ = 27r pb UNr UNryt- (42)- 

The horizontal and vertical components of these forces are: 

FHQ : -- -FNQ Ss + FpQ Ca 
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= 21rp b UNr (-UP Sß + UNm Cß) 

= 27rp b UNr UVm (43) 

FvQ = FNQ Cß + FPQ Sß 

= 27r pb UNr (UP Cß + UNm SP) 

= 27r pb UNr UHm- (44) 

Mapping from spherical to rectangular coordinates, the force on the wing is: 

L= Fv Q Cp (45) 
D= FHQSo (46) 

Recall that drag is defined as force in the +x direction, not the direction opposing motion. 
Note that spanwise force is ignored. This is because of the assumption that the wing 

comes to a point at the tip, combined with the Polhamus correction for tip suction will make 
the spanwise force zero. This is explained more fully in Section 10. 

The standard results are recovered readily by making the same assumptions about fast 
forward motion at low angle of attack, i. e. that 0 is small, and 0, V) = 0. In this case, 
UP -- UH, and the lift force will be the normal force: 

L= 27rpbUNrUH (47) 

This is indeed the standard result for a pitching aerofoil at low 3, and can be found in any 
good textbook on aerodynamics. 

8.8 Wing integrals 
The above calculations are forces per unit span. This is now extended to the force for the 
entire wing by integrating along the span, using 2D strip theory, extended to arbitrary 3D 
geometry: 

I 
FNQw =R 

10 FNQ dr 

= RI pb UNr up dr 1 
0 0 

1 
= pR 

fo b UNr up dr 

= pR 
fo b up (UN +, 8 b a)) dr 

= pR 
1b 

up UN dr+pR b 2UPý(' 
_ a)) dr (48) Jo fo 

2 
Considering the first term, note that the velocities at the pitch axis scale directly with r, 

so can be written in terms of the tip velocities and r: 
J11 
0 

bupUNdr = 
fo br upT r UNT dr 

1 
= UPT UNT b r'dr (49) 

0 
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Also, the sernichord b can be expressed as a fraction of the maximum semichord B: 

UPT UNT fbr2 dr UPT UNT Bbr2 dr Jo 
B 

UPT UNT B bir2 (50) 
The term bjr2 is defined as the integral 1 -Ir2dr- the subscripts are the powers of b1B fO 

BI 

and r, respectively. Thus the integral is purely a function of the wing shape, not the wing 
scale. These so-called wing shapejactors are convenient in that they speed up calculatior, 
considerably, and give additional insight into how the wing shape affects the forces. 

Now consider the second term: 

b2 Up a) dr =4 upT B' a) (b )2 r dr 
0 

JO 
22 

= 
4upTB 21 b2r, - 

b2rla 
1 (51) 

[2 1 

where b2r, 1(A)Irdr and b2r,,, = 
1(. L)2 

ra dr. fO 
B9 

fO 
B 

Assuming a is constant along the span, equation 51 can be simplified to: 
b )2 fo b, up a) dr upT B' a) r dr 

2 upT B a) b2r, (52) 

The total force on the wing, assuming that a is constant along the span, is 
1 

FNQw =R0 FNQ dr 

I 
=R 27r pb UNr up dr 

0 

= 2rpRBupT UNTbjr2+ýB( 
1- 

a) b2r, (53) 2 

FpQw =R 
Jo FpQ dr 

1 
=R 27r pb UNr uN, dr 

0 

= 27rpR 10 b (uN 
+b a)) (UN 

-bý a) dr 

= 2rpR b 
(U2 

+ UN bý 2a) + b2 ý2 
a2 dr 10 

N 

2 +042 2 
= 2rpRB 

[UNT 
bir2 + UNT B 2a)b2r, a b3rol (54) 

8.9 Moments 
The vertical (MvQ) and horizontal moments (MHQ) are straightforward: 

MvQ =R FvQ 

(55) 
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MHQ =R FHQ r 
(56) 

The pitching moment about the hinge is formed by going back to the original integral of 
normal force along the chord, and multiplying by the offset from the hinge b(a - (). 

1 
M, qQ =P1y up b (a - () dC (57) 

Equation 57 is now applied to the components of y in Equations 22,23,26 and 27: 
TD part: 

1 
M, OQTD P 7TD up b (a - () d( 

P 2UN b : 1ý ub (a - dC 
QP 

2 rl -( 2pUNupb j (a - d( 

(2 - (a 
2pUNupb 2Q d( 

2rp UN up b2 (58) 

RD part: 

MPQRD P 7RD up b (a 
- () dC 

.1 _(2 
pf, 

1 
20 b22Q+ aC 

up b (a-() d( 

1 
(1 

-(2 + a() (a - () 
2pýupb 3 j-, 2Q d( 

1 (! 
a - a(2 +a 2( + (3 

- a(2 
2pýupb 3 j-, 2Q2 dC 

3111 27rp up b (2 
a-2a+0-0+0- ýa) 

27rp up b31a (59) 
H 

TK part: 

MflQTK PI 'YTK up b (a - () dC 
1 
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P 2UN b up b (a - C) dC 

2p UN UP b2 a-( dC f-, 
1Q 

27rp UN Up b2 (a) 

(60) 

RK part: - 

MPQRK =P 
rl 

yRKupb (a-() dC J-' 
I 
1 ! -a 

= pf'12ob22 Qý up b (a - () dC 

31 
la-a 2_ '(+a( 

= 2pýupb J-'l 2Q dC 

= 27rp 4 up b31a-a 2) (61)' 
(2 

M 
, 6Q MOQTD + MPQRD + MOQTK + MPQRK 

2UP G 
7rp b 

(UN 
- 0a + 2UNa + 2ýb ýa -a 

7rp b 2UP (UN (1 + 2a) + 4b (-a +a- a')) 

7rp b 2UP (UN (1 + 2a) - 
4ba 2) 

(62) 

Note that while the expressions for MvQ and MHQ bear considerable similarity to the 
force expressions from before, the pitching moment expression does not, due to the extra 
factor of C it introduces. 

Note also that these need not be mapped in any way for them to be the actual moments 
at the hinge, unlike the forces. This is because the forces Fv, FH in the spherical system are 
everywhere normal to the hinge. 

8.10 Wing moment integrals 

This proceeds exactly as Section 8.8 above: the wing integrals are written in terms of shape 
parameters, assuming the hinge location to be constant. 

MvQ =R FvQr 
1 

M VQW = R2 Jo FvQ r dr 

I 
= 27rp R2 fo b UNr ull, r dr 
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= 2rpR 21 br 
(UN+bý 1- 

a)) (uj-l + b4 a S, 3) dr 10 (2 

= 27rpR 21 br 
(UNUH 

+ UN bý a Sp + UHb 4 a) + b2 42 (la-a 2) S, 3) dr 10 
2 

2 
= 27rp RB UNT UHT bir3 

+27rp R2B2 UNTý a Sp b2r2 

+21rp R2B2 UHTý 
1- 

a) b2r2 (2 

+27rp R2 B 342 
1a-a 

2) Sp b3r, (63) (2 

MHQ =R FHQ r 
1 

MHQw =R2 
fo FVQ r dr 

I 
= 2rp R2 fo b UNr uv,,, r dr 

= 27rp R21br 
(UN 

+ bý 
(1 

- a)) (uv + bý a CO) dr fo 
2 

= 21rpR 21 br UNUV + UN bý a Cp + uvb ý1- a) +b 242 (la 
- cý) C. 6) dr 10 (2 

2 
27rp R2B UNT UVT bir3 

+2rp R2 B2 UNT a Cp b2r2 

21- +2rp R2 B UVT 
(ý 

a) b2r2 

+2rp R2B 342 a-a 2) Cp b3r, (64) 

M, cQ = 7rp Pup (UN (1 + 2a) - ýba 2) 

1 
M, oQw = 7rp R Jo 

upb 2 (UN (1 + 2a) - 
ýba 2) dr 

= 7rp RB2 UPT 
(UNT (1 + 2a) b2r2 - ýBa 2 b3r, ) (65) 

8.11 Summary of assumptions and results 
Standard potential theory has been used to derive the quasi-steady forces on a thin, flat wing. 
The calculations are as standard cases, except with the following two generalisations: 

8, a are not ; z: ý 0. This means the expressions had to be derived in terms of the parallel 
and normal velocities. Note especially that the bound vorticity is a function of the 
normal velocity only. 
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The wing is not in fast forward motion. This means that the rotational component of 
the velocity can be considerable compared to the translational component, and cannot 
be discounted. 

It is assumed that: 

1. The flow is entirely inviscid, and globally irrotational. 

2. The flow leaves the trailing edge smoothly, satisfying the Kutta-Joukowski condition. - 

3. The flow stays attached at the leading edge, despite it being sharp. 

4. There is no shed wake. 

5. The hinge point is constant (where wing shape factors are used). 

The fourth assumption is a direct violation of the Kelvin-Helmholtz theorem, which 
states that circulation must be preserved. However, this is only an interim stage, as the effect 
of wake circulation will be dealt with later, see Section 11. 

The third assumption is unrealistic, in that the flow passing round the leading edge will 
experience infinite acceleration (similarly to the basis for the Kutta-Joukowski condition). 
This will be corrected by the Polhamus leading edge suction analogy, see Section 10. 

The main results for this section are the vertical and horizontal quasi-steady forces on 
the wing: 

FHQ = 27rp b UNr UVm (66) 
FVQ = 27r pb UNr UHm (67) 

in the spherical coordinate system, and 

L= FvQ Cp (68) 
D= FHQSo (69) 

in the rectangular coordinate system, noting that drag D is defined as force in the +x direc- 
tion, not the direction opposing motion. 
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Pedersen 9 Added mass effects 

Added mass effects 

9.1 What is added mass? 
In 185 1, Stokes [43] showed experimentally that the force on a pendulum in a fluid depended 
not only on the speed of the pendulum, but also the acceleration. When a body is accelerated 
in a fluid, it will experience a retarding force, apart from the viscous drag. This is completely 
independent of the inertia of the body itself, and can be shown to occur even in a completely 
inviscid fluid for a massless object. This is called an irrotational or non-circulatory effect, 
because it does not rely on a net circulation in order to generate force. It is a purely potential 
effect. However, net circulatory components will also have an added mass effect, since 
adding them will modify the potential, see e. g. [28]. 

The concept of forces arising from an inviscid fluid is unusual, so there now follows an 
explanation of that effect, loosely based on that found in Massey [44]. Imagine an undis- 
turbed inviscid fluid with a body moving through it at a constant velocity U. In order to 
allow the body passage, the fluid has to move aside ahead of the body, and close up after 
it, thus the fluid acquires kinetic energy due to the passage of the body, even when the free 
stream is at rest. When U is constant, this kinetic energy is also constant, and there is no 
net force on the body, as expected. However, increasing the velocity of the body will also 
increase the kinetic energy of the flow, so the body has to do work on the fluid. 

If the body is not deforming or rotating, but accelerating in a single direction, the velocity 
field will be self-similar, in that it will scale linearly with the velocity of the body U, but the 
streamlines will have the same shape. Therefore, the kinetic energy of a point or of the fluid 
as a whole is W', where k is a constant based on the shape and alignment of the body. The 
rate at which the body is doing work on the fluid is dTIdt, and is equal to the force F the 
body is exerting in the direction of motion, times the velocity U, so that2 

F 
dT 
dt 
dkU2 

dt 

= k2U 
dU 
dt 

F= 2k 
dU 

(70) Tt 
Note the variables T, U and k are local to this section, and will not be used elsewhere. 
This shows the body will experience a force proportional to the acceleration - since this 

can be modelled as if the body had slightly more inertia, it is called an added mass effect. 
By definition, an added mass force is the dynamic force opposing acceleration of a body 
relative to a fluid. 

If the body is changing shape or alignment, the k term in the above will not be constant. 
'Newton's second law yields Tdt 

AQMU2) = FU, form 
,,, 

(mU) = F, so that U", (mU)U = FU, or (it dt 2 

constant. 
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Although it is often used as a simple explanation, added mass does not represent fluid 
that is rigidly bound to the wing by viscosity. It is an artefact of the fluid being given kinetic 
energy by the body. For that reason, since viscosity does affect the velocity of the fluid, 
it will affect the added mass, but is not necessary for the definition of added mass, see for 
example [11 ]. 

9.2 Potential form of added mass 
The informal example of Section 9.1 is now revisited rigorously, by referring to Milne--, 
Thomson [12, pp. 94-95]. Since the potential function ýD completely describes the inviscid 
flow, the kinetic energy and pressure can be expressed in terms of (D: 

T pjj2 dV (71) 
2vT 

(72) 

This simply states that the kinetic energy of a volume of fluid is the volumetric integral of 
the kinetic energy at every point, but fIT = V(D, so that: 

V 
(V(D)2 T pf dV (73) 

2 1, 

pf (D 
a-cp 

dS (74) 
s 2 's an 

where Green's theorem was used to relate the volume integral over V to the integral over the 
surface S of volume V, and n is a unit outward normal vector. 

For the case of a thin, flat 2D plate, the above reduces to the familiar unsteady Bernoulli 
equation, as already shown on page 36. This reduction can be found in, e. g. Sedov (13, pp. 
15-27] or Milne-Thomson [ 12, pp. 82-89]. 

12 
P=P 

(P-W 
+ ýUTEf (75) 

The third term is the quasi-steady pressure, as used in Section 8. The first two terms relate 
to the added mass. However, since po is constant, it can be ignored, so that the pressure due 
to added mass is: 

oqý 
Pa = PTt (76) 

The normal force for a single surface is obtained by integrating this along the chord: 

I 
FNA 

-b p. dC 

I &D 
-p b J'jTt dC 

-p b5t (D dC, 
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Pedersen 9.3 Total circulation 

where the last step can be taken because the variable of the differentiation, t, is independent 
of the variable of integration C, and ýD is continuously differentiable. 

For the force normal to the wing, the difference A(D = (D+ - q5- in potential across the 
wing is considered. This gives the force: 

a FNA 
---: -p b5t Aýý d( (77) 

WARNING 

The following step is important: because 4P has been defined in terms of the velocity of 
the fluid relative to the wing, but added mass is based on the velocity of the body relative to 
the fluid, the sign of ýD in Equation 77 has to be reversed: 

19 1 
FN A+pb ýt- 

I' A(D dC. (78) 

9.3 Total circulation 
Integration of the potential in Equation 78 is not straightforward, because (D is discontinuous 
at the leading edge. Instead, the standard method of thin acrofoil theory is employed, to form 
the total circulation along the upper surface of the wing from the leading edge to a point (: 

y+ dC, (79) 

remembering that r (- 1) = 0. 
Now consider the integral of ýD from the trailing edge: 

J, 
7+ dC 

IF+ (C) - ]P+ (1) 
1 (80) 

noting that (D(l) = 0. 
This means that the total circulation r= r+ + ip- = 2r+ can be substituted for A4) in 

Equation 78. This allows integration from the leading edge, since IP is 0 there, and therefore 
continuous. This method is similar to that of Katz & Plotkin [7, page 73]. This could also 
have been done by using AD and integrating from the trailing edge: this was the method 
adapted by Theodorsen [28], but is more cumbersome. 

In either case, it is important to remember that this is still a calculation based on potential. 
The potential is simply being expressed in terms of the bound vorticity of the wing, in 
accordance with the thin aerofoil theory. 
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Pedersen 9.4 Normal added mass forces 

For the four given components of the potential, the equivalent total vorticity r is found 
by integrating the vorticity -1, of Equations (22), (23) (26) and (27): 

IFTD = 2UNbQ 

rRD = 2ýb 2 
'Q 

-aQ (82) 
(2 

rTK = 2UNb (asin(C) +7r/2) (83) 
rRK = 2ýb 2 

1_ 

a) (asin(C) + -7r/2) (84) (2 

Note the similarity of these expressions to those of the potential of Equations 20,21,24 and 
25. The first two terms are identical, while the second two only differ by a constant 7r, to 
ensure that IP is zero at the leading edge, while -(D is zero at the trailing edge. 

9.4 Normal added mass forces 
Equation (78) is evaluated for the four components: 

TD part: 

FNA p b5t rTD dC 

p bj- 2uN b QdC 
t 

2p V (UN 1 Qd() -jt- 

2a 7rp b 5t- 
(UN 

7rp b2 ? ýN (85) 

RD part: 
01 

FNA p bjt- f-, 
1 

rRD dC 

19 12 
=P být- 24b 

ýQ 
- aQ dC f-, 

I(2 
3 19 4' (Q 

= 2pb y 
f, 

--aQdC t2 

= 7rp b'(-a)yt-0 

= 7rp b3 (-a)ý (86) 

The two Dirichlet components combine to give 

FNAD ; -- 702ýlNms (87) 
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where 7ýjv,,, is the normal acceleration of the midpoint of the wing. 
TK part: 

FNA pba rTK dC ýi 
j-, 

1 

= pb 
a 2UNb (asin(C) + pi/2) dC ýt- 

Ll 

2a 
= 2pb 

(UN 
asin(()+pi/2d( 

= 27rp b2 
a 

(UN) it- 

= 27rp b2iLN (88) 

RK part: 

FNA p b5t IPRK d( 

p b5t 
12ý0 

(2- 
a) (asin(C) + 7r/2) dC 

2p b3aa4j asin(C) + 7r/2 dC ) 
at( 

27rp b3_ a) 
0 
Yt 

27rp b3- a) (89) (2 

The two Kutta-Joukowski components combine to give: 
FNAK = 27POiWri (90) 

where iWr is the normal acceleration of the 3/4-chord of the wing, also called the rear 
neutralpoint. 

. 9.5 Accelerations 
In order to find the acceleration, UN is written in terms of the global velocities: 

UN UHS + UVC (91) 

UNm UHS + UVC ba (92) 
1 

UNm uHS + uvC +b a) (93) 

(94) 

This gives the accelerations: 
iLN = fitjS + iLvC +2ý up (95) 

fiNm = fiI-IS+iLvC+2ýup-ýba (96) 

iINr = itHS + fivC +2ý up +ýb a) (97) 
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Pedersen 9.5 Accelerations 

The reason for this substitution will be explained in Section 9.7. 

9.5.1 Parallel added mass forces 

FPAo the parallel added mass force, is formed by substituting normal acceleration compo- 
nents for parallel ones, similar to the way velocities were substituted to find FpQ in Sectiorl 
8.5. However, this cannot be done by simply substituting the parallel acceleration. Some of 
the terms above are the result of an increase in r with the normal velocity. Intuitively, it is 
obvious that the plate will have smaller added mass when accelerating along its length thax, 
when it is accelerating normal to the chord, simply because in the second case it is blocking' 
the flow. 

The actual values are taken from [131, page 27, equation 4.17. Sedov writes the added 
mass forces on the wing in the absence of wake circulation as: 

X= AYOV + Ayw W (98) 

y= -AY 
dV 

_ Ayw 
dQ 

1 (99) Tt Tt 
where X, Y are the parallel and normal forces at the leading edge the velocities are U, V, ' 
and the rotational velocity is 11. Ay and ky are added mass coefficients, tabulated on page 
29 of the same reference: Ay = p7rbl, Ay,, = p7rb3. 

The expression for X uses the same values of A as Y, so the expression for X can be 
formed by making the following substitutions into the expression for Y: 

dV 
--+ -f2v (100) Tt 

dQ 
Tt 

From equation (99), it can be seen that the expression for Y is similar to the expression for 
normal force. By analogy with the above substitution, the substitution: 

UN (102) 
_ý2 (103) 

is used in equations (87) and (90) to yield: 
FNAD '7rP b2 ýINTrt 

-7rp b2 (IýN b a) 

FPAD 7rp b' (-ý 
UN + 42 b a) (104) 

FNAK = 27rp b2 iWr 

2 
= 27rp b (iw 

+ýb a)) 

2 (_ý 
_ 

42 1- 
FPAK = 27rp b UN b(ý a)) (105) 
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Pedersen 9.6 Vertical and horizontal added mass forces 

9.6 Vertical and horizontal added mass forces 
The normal and parallel forces are resolved into horizontal and vertical components: 
FVAD FNADCO + FPADSP (106) 

7rpV 
[fLHSOCO 

+ 7ývC, 23 + 2ýupCp - ýabCp - 4UNSO +42 abSa] 0 
2+ itVC2 + +42 -7rpb 

[iLHSOCO 
# 

4(2upC, 
3 - UNSP) - ýabCp abS, 3] 

THAD -FNADSO + FPADCP (107) 
= 7rpb 

2 iW S2 
- iývSpCp - 24upSp + ýabSp - 

4UNCO + ý2 
abCO] P0 

FVAK = FNAKC, 3 + FPAKSC (108) 

= 2rpb2 HS'OC'a + iýVC2 + 24upCp - ýb(a -1 
)CO 4UNSO +42 (a - )bS, 3 

[it 
221 

FHAK = -FNAKSO + FPAKC, 6 (109) 

= 27rpO iW S2 
- iývS, 3Cp - 2ýupSp + ýb(a 

- 
)SC NNCO + 42 b(a - 

9.7 Frames of reference 
Equations 106 to 109 have several acceleration terms that come from a standard result of 
classical mechanics: That of an acceleration in a moving reference frame being mapped to 
an inertial reference frame. The local coordinate system on the wing is performing transla- 
tional acceleration, rotational acceleration and is rotating - each of these will disqualify it as 
an inertial frame. Considering a vector f from the origin of a local coordinate system, desig- 
nated R, to a point in space, the absolute acceleration of the point in a Newtonian reference 
frame is, from e. g. Marion & Thornton [45]: 

d2f dAD df 
t2+Txf +2DxT (110) ao+ T tt 

+iD x ((D x f), tt 

where the axes in both frames form right-handed sets, ao is the translational acceleration 
of the origin of R and (D is the rotational velocity of R. Note: these uses of f and R are 
employed only in this description, and will not be used in other sections. 

The first tenn and second terms are obvious enough: the acceleration of R (the first term) 
is added to the translational acceleration in R (the second term). 

The third term is the Euler effect. Imagine that f is fixed, but the frame has rotational 
acceleration - this obviously causes an acceleration, but it is invisible in R, because it it 
rotating - effectively "tracking" the point. 

The fourth term is the Coriolis effect. If an observer moves in R, the movement is 
compounded by the rotation of R. For example, imagine standing on a constantly rotating 
disc (such as an LP record), near the centre. Points fixther from the centre are moving faster, 
tangentially to the radius. Therefore, for every step the observer takes towards the rim of the 
disc, he gains some of this tangential velocity - effectively, being accelerated sideways. 

The fifth term is the centripetal effect, which should be familiar. If f is constant, and the 
observer is rotating about a point, he will be undergoing an acceleration towards the centre 
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of rotation, in order to maintain the rotational motion. To the observer, this is manifest as a 
sensation of outwards centrifugal force, but it is purely a kinematic effect. 

These terms manifest themselves in Equations (106) to (109) as follows: in FNAD, the 
term -ý ba is an Euler term for the normal acceleration of the midpoint of the wing: 
the midpoint has this extra acceleration relative to the hinge. Note that this term is purely 
normal, it does not appear in the parallel force expressions. Similarly, the term 41 ba in the 
expression for FPAD appears only in the parallel force expressions, because it is a centripetal 
term, and therefore points along the wing. The term 2 up in the expression for i1N is a 
Coriolis term. This is best explained with another example. Imagine an observer travelling 
at constant velocity, and the wing is oriented into the flow so the velocity is purely parallel. 
If the observer maintains the same direction of travel, but starts pitching the wing up, the 
parallel velocity gradually becomes a normal velocity - thus experiencing a positive norrnal 
and negative parallel acceleration of the flow relative to the wing. 

9.8 Moments 
The root moment of the wing is formed similarly to the quasi-steady case in Section 8: 

MvA = RFVAr (111) 

MHA = RFUA r (112) 

Similarly, the pitching moment about the hinge is formed by revisiting the normal force 
expressions in Equations 87 and 90, and multiplying by the backwards offset from the hinge 
b(a - (). Thus, the pitching moment becomes: 

01 
MPA pb ýýt- 

IIrb (a 

The contributions for the four components, as for the forces are: 
TD part: 

IPTD = 2UN bQ (114) 
MOATD =pb 

19 rTD b (a - 

= pb 
a 

2UNbQb(a-C) 

= 2p 0 UN Q (a - C) at 

= 2pb 3 ýIN 7r 
1a-0 (2 

= 7rp b3 ? ýN a (115) 

RD part: 
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TK part: 

rRD = 2ý 62Q 
1 

(-a (116) (2 

MPARD =pb 
IFRD b (a - t 

= pb 
0 

2ýb2Q(! (-a)b(a-() Yt 
1' 

12 
4 19 11 

= 2pb Q a) (a - t2 

= 2pOý Q (ýaC 
-a 

2_ 
1(2 

+ a() 
f-, 

2 

= 2pb 4 ý7r 0_1a 2_ 
1 

+0 
2 T6 

-7rp b 4ý (-a 2 

(117) 

rTK = 2UN b (asin(C) + 7r/2) 

,g M, 3ATK =pb 
rTK b (a - 

ig 1 
=pb ýý- 2UN b (asin(C) + r/2) b (a - t_ 

= 2p b3 19 UN 
(I (asin(C) + -7r/2) (a - Yt J-1 

23 pb ý)T UN 
f (a asin(C) + a7r/2 - Casin(C) - (7r/2) 

t 
3 

1-0) 

= 2pb ýIN7++a-ý 

-7rp b3 ilN 2a - 
1) (119) 
2 

RK part: 

rRK = 20 b2 a) (asin(C) + 7r/2) (120) (2 

, 6ATK =p by ]PjzK b (a - Mt 
a21 =pby 2ý b (- 

- a) (asin(C) + 7r/2) b (a - t2 
4- )ý 1 

= 2pb af, (a asin(C) + a7r/2 - Casin(C) - (7r/2) 
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= 2pb 41 
-a 

) ý7r (O+a- 
4 -0) 

7rpb 4 
-a) 

(a 
- -1) (121) 

4 

9.9 Comparison with standard results 
Although the added mass force and moment expressions contain acceleration terms, they 
do not reduce to the acceleration at a single point. This is because the calculation of added 
mass entails all of the normal acceleration, but only some of the parallel acceleration. 

If the Kutta-Joukowski term is removed, and 0=ý=ý=0, then: 

FNAD =-- FVAD 7rp V [iiv + 2ýup -ýb a] (122) 

7rp b 2iVm (123) 

This is the standard result of Jones, as outlined on pages 192-194 of Katz & Plotkin [7]. 
Another check is that for a closed cycle, FVA and FHA must sum to zero - they are 

closed functions. This does not apply to the forces FNA and FPA - they are defined in 
non-Newtonian axes, so closure is not guaranteed. 

9.10 Wing integrals 

The results above (which are forces per metre span) are converted to wing integrals, using 
the wing shape parameter method of Section 8.8. Again, it is assumed that the hinge is 
constant along the wing, which allows the use of a smaller set of wing shape parameters. 

FVAD = 7rpb 
2 itff SO Cq + iVC2 + 2ýupCp - 

ýabCp - 
4UNS, 

3 +42 abSp] Ia 

2 C2 FVADW = 7rpRB fiHTSOCO + itVT 
p) 

b2rl 

+rpRB 2 (24upC, 
3 - 

OUNSO) b2r, 

+7rpRB 
3 (-ýaCp +42 aSp) b3ro (124) 

FHAD = . 7rpb 
2 71H S2 

- iývSpC, 3 - 2ýupSo + ýabSo - NNCO + ý2 
abCO] P0 

FHADW = 7rpB 
2 (-7ýHSO 

- ýIVSOCO) b2r, 

+7rpB 2 (-2ýupSp 
- 

4UNC, 
6) b2r, 

+irpB 3 (+ýabSp +42 abCo) b3ro (125) 

2+ itVC2 
1+ ý2 1 

FVAK 
-,,: 27rpb 

litHSOCO 
+ 2ýupCo - 

ýb(a - 
)CP - 

NNSO (a - 
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FVAKW = 27rpB2 
Ojysacp + fiVC2 

0) 
b2r, 

+27rpB 2 (+24upCo 
- 

4UNS, 
3) b2r, 

+27rpB 3 (a - 
1) (_ýCo + 42 S, 3) b3ro (126) 
2 

FHAK 27rpb 2 iL H S2 
- iývS, 3Ca - 2ýupSp + ýb(a 

-1 
)SO 

- 
4UNCO +42 b(a -1 

FHAKW = 27rpB 2 HW S2 _ iVSOCP b2rl 

= 27rpB 2 (-24upSp - 
ýUNCP) b2r, 

2rpB 3 (a -1) 
(+ýbSp +42 bCO) b3rO 

2 

9.11 Summary of assumptions and results 
The added-mass forces on a thin, flat wing have been derived using thin aerofoil potential 
theory. The calculations are as standard cases, except with the following generalisation: 

3, a are not - 0. This means the expressions had to be derived in terms of the parallel 
and normal velocities. This means there is a parallel component of the velocities 

It is assumed that: 

1. The flow is entirely inviscid. 

2. The flow leaves the trailing edge smoothly, satisfying the Kutta-Joukowski condition. 

3. There is no shed wake. 

4. The hinge point is constant (where wing shape factors are used). 

The third assumption is a direct violation of the Kelvin-Helmholtz theorem for the Kutta- 
Joukowski terms, as they rely on a net change in total bound vorticity. This assumption also 
means that the effect of the wake on the added mass forces on the wing is discounted. Unlike 
the same assumption for the quasi-steady case, an appropriate model for the wake influence 
on added mass is not available. This is discussed more in Section 11.8. 

The main results of this section are the forces in the vertical V and horizontal H direc- 
tions, at an arbitrary wing section: 

(127) 

FVA = 7rpb 2 [, &jjSOCa + izvC, 26 + 24upCp - 
ýabCp 

- 
NNSP + ý2 abS, 3] 

2+ iýVC2 + ý2 + 2rpb 
[iZHSBCP 

+ 2pupCp -, 8b(a -2 
)CP -, 6UNS, 3 (a -2 )bS, 31 

FHA = 7rpb 
2 iIHS2 - izvSgCo - 2ýupSg + ýabSo - 

NNCO + 42abCo] 1- 
0 

+ 2rpb2 fiHS2 - fivSoCp - 24upSp + ýb(a 
- )SO - 

4UNCO + ý2b(a 
- q, 

I- 

-02 
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Assuming the hinge is at the same position for all cross sections, the total forces on the wing 
are: 

ÜHTSßCß + ÜVT C2 b2r, FVAW = rpRB 
2( 

Iß) 

+7rpRB 2 (2AupCß 
- 

AUNSß ) b2r, 

+7rpRB 3 (-ýaCß + A2 
aSß) b3ro 

2+ üVC2 +27rpB (ÜHSßCß 
ß) b2r, 

+27rpB 2 (+2AupCß 
- 

AUNSß) b2r1 

+21rpB 3 (a - 
1) (_ýCß + b2 Sß) b3ro 
2 

FHAW = 7rpB 2 (_iH S2 _ iVSOCO b2r, 

+7rpB 2 (-2ýupSo 
- 

ýUNCo) b2rl 

+7rpB 3 (+ýabSo +42 abCO) b3rO 

+27rpB 2 itff S2 _ itVS, 3C, 6) b2r, 

+27rpB 2 (-24upSo 
- 

4UNCO) b2r, 

31 +42 +27rpB (a - ý) 
(+ýbS, 

3 bCO) b3ro (128), 
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Pedersen 10 Polhamus leading edge and tip suction correction 

10 Polhamus leading edge and tip suction correction 
10.1 The leading edge vortex (LEV) 
As mentioned in Section 8, the Dirichlet solution for the flow past a flat plate at inci- 
dence causes infinite acceleration of the flow at the leading and trailing edges. The Kutta- 
Joukowski condition avoids the problem at the trailing edge, but the leading edge has not 
been dealt with yet. At the leading edge, the flow is expected to separate, leading either to 
a deep stall, or a stable attached vortex above the leading edge, similar to that observed by 
Ellington et al. [25] (see Section 5). According to subsequent work by Ellington et al. [9], 
this LEV can be sustained for indefinite periods when the wing is in constant rotation, and 
up to high angles of attack, so it is reasonable to expect this phenomenon to occur on an 
FMAV wing. To model the effect of the LEV, Polhamus's analogy is used as a correction to 
the quasi-steady force found earlier. 

10.2 Polhamus's analogy 
Polhamus [14] modelled the LEV by assuming that the separation at the leading edge is a 
"hard" separation, causing total loss of leading edge suction, while the LEV causes a normal 
force component of equal magnitude. Effectively, the leading edge suction force is rotated 
by 90* onto the low-pressure side of the wing, as illustrated in Figure 18. This is called the 
Polhamus Leading Edge Suction Analogy. Although this is a very simple model, it has been 
shown to give remarkably good results, for example in predicting the attached vortex lift of 
delta wings-see for example [17]. 

The Polhamus analogy is desirable for three reasons: 

1. It is simple to implement. 

2. It is compatible with inviscid potential flow theory. 

3. It is easy to extend to complex wing geometries (see next section). 

10.3 Correction for leading edge sweep 
The leading edge suction of a 2D wing section is called the leading edge thrust, since it is 
in the chordwise direction. For a swept wing, the leading edge suction force will actually 
be normal to the leading edge, but will still have the same forward thrust component. This 
means for a swept wing, the leading edge suction will be higher. It is the leading edge 
suction, not thrust that is rotated in the Polhamus approach. This is described in Bradley 
et al. [15], who outline a correction to the Polhamus analogy for leading edges that are 
swept. It relies on the original Polhamus analogy for swept, sharp-tipped wings, and the 
extension of this theory to rectangular wings by Lamar, which is outlined in [ 17]. The latter 
theory uses the Polhamus analogy on the tip suction force, causing an additional normal 
force component. The scheme of [15] uses these two theories to calculate the vortex lift for 
an arbitrary wing shape, as the summation of a series of trapezoidal wing sections. 
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Figure 18: Illustration of the Polhamus leading edge suction analogy. 
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Pedersen 10.4 Implementation 

For the FMAV case considered here, it is assumed the wing comes smoothly to a point 
at the tip. Because of this, there is no side edge to the wing, and therefore no tip suction, 
and no need for the Lamar extension described above. 

10.4 ImPlementation 
The method outlined in the previous section is used: at any given spanwise position, the 
leading edge thrust is expressed in terms of the quasi-steady force FpQ, given per unit span. 
Then the leading edge suction force FS, is found using the sweepback angle of the leading 
edge Z: 

Fs = FpQ1 cos(Z) (129) 

Note there is a numerical issue here, if very high resolution is used close to the leading 
edge, so that cos(Z) may become ; z:; 0. For this reason, and because it is easier to implement 
from x, y coordinates of the wing geometry, the rate of change of x, (the non-normalised 
chordwise coordinate of the leading edge, with respect to the non-normalised radius), W is 
used: 

Fs = FpQFI+ýi (130) 

This can be verified from simple trigonometry. 
Unlike the cases considered by other authors, there is a potential source of ambiguity: 

when the wing is translating slowly, and rotating fast, the normal flow is not necessarily to 
the same side along the entire chord, see for example Figure 8 on page 21. This is overcome 
by assuming that the direction the suction force rotates is governed by the normal velocity 
at the leading edge, since it is here the LEV is initially formed. This, however, gives the 
strange situation that the LEV magnitude can be influenced by a normal flow at the trailing 
edge, which is of the wrong sign. In order to alleviate this problem an empirically-inspired 
correction to this, called Polhamus effect scaling, has been devised. 

10.5 Refinement: Polhamus effect scaling 
An initial comparison of model predictions with the results of Sane and Dickinson [46] led 
to an empirically-inspired correction to the Polhamus analogy. It was observed that although 
the lift correction predicted by the Polhamus model seemed accurate enough, the loss of lift 
was being over-predicted considerably during the rotation phase at the end of either stroke. 
It is theorised that this is due to the problem outlined above, that part of the calculated 
Polhamus force is from normal velocity of the wrong sign. Therefore the Polhamus cffect 
was scaled by the fraction of the suction force that is being generated "correctly", i. e. on 
the fraction of the chord where the normal velocity is of the correct sign. Effectively, during 
rotation, only part of the tip suction is being manifest as a normal force, while the remainder 
is simply lost. 
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The Polhamus normal suction force is scaled by the fraction of chord where the normal 
velocity is of the same sign as at the leading edge, by finding Co, the point where the normal 
velocity is 0: 

UNE = uN+bý(C-a) 
0 : --- UN +bß (CO - a) (131) 

UN 
Co =a-- (132) 

_ bß 

If CO falls outside the region -1,1, the entirety of the wing has the- same sign of nortnal 
velocity; in these cases, CO = 1. Note this will happen if ý is 0, when the second term goes 
to infinity. The fraction of the chord represented by this is then the Polhamus scaling: 

sp = 
(0+ 1 

(133) 2 

A more accurate result (but considerably more long-winded) is to integrate the actual suctiorl, 
force from -1 to (0, rather than just taking a linear approximation. 

For the test cases considered (see Sections 14 to 17), fast rotation occurred while the 
wing was nearly vertical - at these points, the suction force is almost vertical, so wether it is 
rotated to become a normal Polhamus force, or simply lost, it won't manifest itself as a lift 
force. The effect on the horizontal force was small, and very brief, localised at the reversal 
points, giving downwards "spikes" at these points. This is because the velocities due to the 
rotation were small compared to the velocities due to translation. For this reason, Polharnus 
effect scaling was not used in the final implementation, but has been mentioned here for 
possible further refinement. 

10.6 Forces 
The forces that result from the Polhamus effect are as follows: 

Fpp = -27r pb UNr UNm (134) 
FNp = 2r pb UNr UNm 

ýl 
+ý SpTp (135) 

The parallel component Fpp is simply the opposite of the leading edge thrust, calculated 
in Section 8. The normal force is this thrust force, scaled by to become the leading 
edge suction, as explained in Section 10.3. The last two parameters Sp and Tp are the scaling 
and turn direction mentioned in Section 10.5 and 10.4. Tp is the sign of the normal velocity 
at the leading edge. 

10.7 Wing integral 

Similar to previous sections, the Polhamus forces on the entire wing are calculated by in- 
tegrating along the wing. There is, however, one complication: since the sernichord varies 
along the wing, the normal velocity at the leading edge will vary as well, and may reverse 
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sign. This is dealt with by assuming that the turn direction is governed by the normal ve- 
locity at the leading edge at the point where the chord is maximum. Thus, the force on the 
entire wing due to the Polharnus cffect is: 

Fpp = -27r pb UNr UNm 

2 
= -27r pb 

(UN 
+ UJb 2a) + 4'b2 (a' 

- a/2)) (136) 
2 

2 Fppw = -27r pBR UNT bir2 

-27r pB2R 
4UNT 1- 

2a b2r, (2 

-27r pB3R 
42 (a2 

- a/2) b3rj) (137) 

Ignoring the turn direction and scaling above, the normal force is formed, assuming that 
the entire suction force is an upward normal force. 

FNp = 27r pb UNr UNmýl + (P2 

2 +42 22 
= 21r pb ý[l + (p2 

(UN 
+ UN4b 2a b (a 

- a/2)) (138) 
2 FNpw = -2r pBR UNT b, 7'2P 

-2r pB2R ýUNT 2a b2rip 

-27r pB3R 
ý2 (a2 

- a/2) b3rOP, (139) 

where the wing shape parameters b2r, p are similar to the standard wing shape parameters, 
except they include the effect of leading edge sweep. For example: 

b b2r, -)2 rl dr (140) 
B 

2 
b2rlP 

(b) 
rl 

ýl + V2 dr (141) 

10.8 Summary of assumptions and results 
The Polhamus analogy has been used to derive the force corrections to the quasi-steady 
forces, due to the flow at the leading edge not being attached, but forming a leading edge 
vortex. The calculations are as standard cases, except with the following two generalisations: 

0, a are not ý- 0. This means the -expressions had to be derived in terms of the parallel 
and normal velocities. 

The wing is not in fast forward motion. This means that the rotational component of 
the velocity can be considerable compared to the translational component. 
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The first generalisation means that the Polhamus correction employed becomes an additional 
normal component, not necessarily an additional lift component as described by standard 
cases. The second generalisation means there is some ambiguity in how the Polhamus force 
should be scaled. 

It is assumed that: 

1. The flow is entirely inviscid. 

2. The flow separates sharply from the leading edge, causing total loss of leading edge 
suction. 

3. The flow always reattaches, and forms a leading edge vortex. 

4. The effect of the LEV is to rotate the leading edge suction force by 90'. 

5. The direction of the above rotation is in the direction of the normal velocity at tlýe 
leading edge. 

6. There is no effect of the leading edge separation on the wake. 

7. There is no effect of the leading edge separation on the added mass. 

The sixth item violates the Kelvin-Helmholtz theorem. There is no modelling of the effect 
of the Polhamus correction on the wake vorticity, because it cannot be modelled as a sirn- 
ple correction in bound vorticity. Remember that a change in bound vorticity will cause a 
change in the force normal to the incoming flow, which is not necessarily the direction of the 
Polhamus correction force. The third assumption means that the current model can only be 
used for kinematic regimes where stalling does not occur, as no prediction or simulation of 
stall in included. The final assumption means the flow at the leading edge is modelled dif- 
ferently in the added mass and Polhamus models: for added mass it is assumed that the flow 
stays attached, while for the Polhamus it is not. Also note that the contribution of Polhamus 
to pitching moment is ignored. This can be done by expressing the pressure difference due 
to Polhamus as a chordwise distribution, for example using the expression of Purvis [ 16]. 

The following assumptions apply to the integral over the span: 

" The hinge point is constant (where wing shape factors are used) 

" The direction of force rotation for the entire wing is based on conditions at the radial, 
position where the semichord is maximum. 

" The rotated suction force is scalcd with the fraction of the chord that is experiencing 
normal velocity of the same sign as the leading edge - the remainder is lost. 

" The wing tapers to a point at the tip, so no tip suction correction is needed. 
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The main results of this section are the correction to the quasi-steady forces, due to the 
LEV. 

Fpp = -27r pb UNr UNm (142) 
FNp = 27r pb UNr UNm 

ýl -+w2 
SpTp, (143) 

where the sign of FNp depends on the scheme employed to decide the direction of rotation, 
Tp - i. e. which side of the wing the LEV is expected to occur. 
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11 Wake effects 
11.1 Potential form of wake model 
The inviscid potential model of the wake is to treat it as a thin, continuous filament of 
vorticity being shed from the trailing edge of the wing, where any change in the bound 
circulation of the wing will cause an equal and opposite circulation to appear in the wake, 
to satisfy the Kelvin-Helmholtz theorem. In a real flow, the induced velocity due to the 
vorticity of the wing and wake will combine to cause motion and deformation of the wake 
filament. The presence of viscosity will introduce decaying effects into this process. 

Assuming that the only motion of the wake is due to the uniform induced velocity ui 
(the downwash), a wake shape similar to that of Figure 19 is obtained. Note, however, that 
in this model it is entirely possible for the wake to intersect with the wing, and for the wake 
to intersect itself. 

T'he wake is by far the most complex part of the flow - in order to simplify it enough to 
be able to isolate its effect in an analytically tractable, considerable simplifications had to 
be introduced. Thus, experimental verification is seen as absolutely vital, but has not been 
done rigorously in this thesis. 

This simplification process is set in context by considering first exact solutions to sim- 
plified 2D cases: the Wagner, Kiissner and Loewy models. 

11.2 Wagner's model 
Wagner [30] assumed the wing to be moving at a changeable forward velocity and angle of 
attack. The angle of attack was assumed small, and the velocity horizontal, so the wake fil- 
ament becomes a straight horizontal line behind the wing. He assumed this filament did not 
deform or move. Then he applied the quasi-steady force equations, similar to those of Sec- 
tion 8. However, the difference was that he integrated the effect of the entirety of the bound 
vorticity and the shed vorticity, under the same assumption that there is no flow penetration 
on the wing. This reduced to a different expression for the bound vorticity, and hence lift, 
which was the original quasi-steady (wakeless) result plus a correction based on the effect of 
the wake. This was expressed as a function of the distance travelled in semichords measured 
since a given change in either angle of attack or forward velocity. From superposition, the 
change due to a time series of such changes can be expressed by simply summing the effect 
of every single change (using Duhamel's theorem, see e. g. Leishman [3]). 

Although the change was expressed in terms of changes of either angle of attack or 
forward velocity, both of these are actually expressions of the product of the bound vorticity 
and the forward velocity. Therefore, they are expressed here in terms of changes of the lift 
coefficient CL. Remember from Section 7 that the lift coefficient is normalised by using the 
r. m. s. total velocity of the free stream. 

The Wagner function can be approximated by: 

-0.041s -0.39 0' (s) =1-0.165e - 0.335e (144) 
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Figure 19: An example ofthe Ný-ake shape bc]oNv a Ilapping kk'ing, aSSLIming uniform down- 
wash velocity. 
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Figure 20: The Wagner function. Note that it starts from 1/2. 

where s is the semichord distance travelled by the aerofoil. This function is plotted in Figure, 
20. It expresses the delay between a step increase in the quasi-steady CL, till the wake 
induced effects have decayed, and the full new lift coefficient is realised. It grows from j1 2* 
meaning only half the lift from a step change is realised at once, and goes asymptotically to 
I as s --+ oo. 

11.2.1 Duhamel expression 

Using Duhamel's theorem (see Appendix A. 2.2 or [3]), the effect of a series of step changes 
in CL is: 

st dCL(o, ) 
ýw (145 ) CLW (s) =£ du 
' (s - u) du, 

where CL is the wakeless lift coefficient, CLw is the wake-modified coefficient, a is a 
dummy variable for integration, and the motion goes from position so to si. It is assumed. 
that no changes in CL occurred before position so. 
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Pedersen 11.3 Kilssner's model 

11.2.2 Perturbation expression 

The perturbation Wagner function (V)w) is defined as a perturbation from the quasi-steady 
lift after the step change. This is simply the expression of Equation 144 minus 1. 

Ow (S) = V* (S) -1 (146) 

= -0.165e -0.0419 - 0.335e -0.3s (147) 

The perturbation form of the Wagner function in Equation (147) can serve as a correction to 
the wakeless quasi-steady result from Section 8. If the original Wagner function in Equation 
(144) were used, the quasi-steady component would be included twice - once in the quasi- 
steady calculation, and once in the non-perturbation form of the Wagner function. 

The Duhamel sum of a series of changes in quasi-steady CL, using the perturbation 
Wagner function is: 

pl dCL(u) 
ý CLw =, - ow(s - u) du (148) 

J 80 der 

This is the change in CL due to the effect of the wake only ignoring the step change in 
CL itself, which is already part of the quasi-steady solution. Again, it is assumed that no 
changes in CL occurred before so. 

11.2.3 Assumptions for Wagner model 

The Wagner function assumes the effects of individual step changes to be linearly super- 
posable, and that they are stationary in absolute space. Also, it assumes the wake to be a 
straight, stationary filament behind the wing. 

11.3 Ktissner"s model 
The Kiissner wake model was introduced by Kassner [3 1 ], but note that this reference con- 
tained a sip error, which was corrected in (42]. The KUssner model is very similar to the 
Wagner model, making the same assumptions about the wake being straight, horizontal and 
immobile in absolute space. However, instead of a change that applies to the entire wing at 
once, it considers a step increase in CL that is stationary in space. This could, for example 
be a vertical gust region. The increase in CL does not apply everywhere along the wing, but 
propagates along it as the wing moves into the increased CL region (see Figure 21). The 
KiIssner function is also an expression based on s, and can be approximated by 

I& (S) 
1 

e-0.13s e-8 (149) 
2 

(see Figure 22). As expected, it grows from 0, where the increased CL region is first encoun- 
tered at the leading edge, but has not yet affected any of the wing, and goes asymptotically 
to 1 as s --+ oo where the gust-disturbed flow is the new steady condition. Also note that the 
KiIssner model includes the added mass effect, which the Wagner model does not. 
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Figure 21: Sharp-edged gust penetration and the KiIssner effect 

11.3.1 Duhamel expression 

Using Duhamel's theorem (see Appendix A. 2.2 or [3]) the effect of a series of CL regiolls 
is: 

dCL(a) , CLK V)K (s - a) da (150) da -I 
where CL is the wakeless lift coefficient, CLK is the wake-modified coefficient, a is'a 
dummy variable for integration, and the motion goes from so to sj. It is assumed that 110 
changes in CL occurred before so. 

11.3.2 Perturbation expression 

The perturbation KiIssner function (IPK)is defined as a perturbation from the quasi-steady 
lift after the step change. This is simply the above expression minus 1. 

V)K(S) OKI(S) 
-1 

1 
e-0.13s e-8 (15 1) 22 

The perturbation expression of Equation (151) can serve as a correction to the wakeless 
quasi-steady result. If the original expression of Equation (149) were used, the quasi-steady 
component would be included twice. 
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Figure 22: The Kfissner function. The vertical line represents the point where the gust has 
fully propagated along the wing. Note that the Kfissner function starts from 0. 
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The Duhamel sum of a series of changes in CL, using the perturbation Kilssner functiorl, 
is: 

CLK = 
-1 dCL(a) 

IPK (S - a) da (152) J. 

0 da 

This is the change in CL due to the effect of the wake only ignoring the step change it, 
CL itself, which is already part of the quasi-steady solution. Again, it is assumed that nc) 
changes in CL occured before so. 

11.3.3 Assumptions for Kilssner model 

The KiIssner function assumes the effects of individual step changes to be linearly super- 
posable, and that they are stationary in absolute space. Also, it assumes the wake to be a 
straight, stationary filament behind the wing. The regions of increased CL are assumed t'D 
be stationary in absolute space, and propagate along the wing at the wing forward velocity. 

11.4 Comparison of Wagner and Kilssner functions 
Figure 23 shows the comparison between the Wagner and Kiissner functions after full gust 
penetration. In the Wagner case, this is instantaneous at s=0, while in the Kilssner cas'e 
it occurs at s=2. The Mssner function tends faster to 1 because of the more gradual 
introduction of vorticity into the wake, which has been happening for an entire chord length 
before s=0 on the graph. Note again that the Mssner function includes added mass effects, 
which the Wagner function does not. 

11.5 Loewy's model 
When a helicopter hovers, the wake trailed behind the rotor is convected downwards ("down- 
washed"). Since the rotor is rotating, when it returns to the same position in the rotation, 
it will pass over the wake it has shed earlier (see Figure 24). Loewy (47] modelled this 
inviscidly by treating the wake as a straight horizontal vortex filament, as for the Wagner 
and Missner models (see Figure 25, parts ab and c). He assumed that the vorticity of the 
wing was varying sinusoidally, with spatial wavelength A. He furthermore assumed that 
the helicopter had been in a steady hover for a long time, so the wake behind the rotor CX'- 
tended to infinity. This is the primary wake. The novelty of the Loewy approach was that' 
he then modelled the encounter of previous wakes by reproducing the primary wake below' 
the rotor, saying that during the cycle the wake would have moved downwards due to the 
uniform induced downwash ui. He therefore modelled the wake passage as an infinite series 
of copies of the primary wakes, each offset a constant distance down and advanced in phase' 
by a constant amount. 

It may be initially counter-intuitive that the same point of the wake is treated as beini 
in more than one place--occurring not just behind the wing, but also in successive wakes,, 
each time further down and further advanced in phase. This was done because it makes the 
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Figure 23: Comparison of the Wagner function (solid) versus the fully penetrated Missner 
function (dashed). The KiIssner function is offset to s=2, which is where full penetration 
occurs. 
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summation limits infinity in both horizontal and vertical extent, meaning they will reduce' to 
an algebraic form. The justification for this is: 

1. The sinusoidal wake element will tend to cancel out far from the wing, as the distance 
between them becomes small compared to the distance to the wing. 

2. The most pronounced effect of a wake clement is the point where it is closest to the 
wing-so the wake element a full revolution of travel behind the wing has little effect 
compared to the wake element immediately below the wing. This comes from the 
Biot-Savart law, see e. g. Leishman [3]. 

Loewy furthermore extended this theory to an arbitrary number of rotor blades, by divid- 
ing the offset distance and phase difference between wakes by the number of rotor blades, 
assuming the phase angle of all blades was identical at the same point in the rotation. 

11.6 Modified Loewy model 
An attempt was made to form an equivalent of the Loewy expression for the case of, a 
flapping wing, by splitting the wake into single-stroke parts, and offsetting each downwards 
by the amount determined by the downwash, as seen in Figure 25. However, the Loewy 
expressions assume the wake extends to infinity in the up- and downstream directions, in 
order to reduce the result to algebraic form. This assumption gives inaccurate results it, 
the FMAV case, because the filaments are of finite length, which is comparable with the 
wing chord length. The details of this derivation are shown below, for the purpose of future 
refinement. It has not, however, been used in this work. 

Although the algebraic expressions of Loewy have not been employed, his principle Of 
secondary wakes has been utilised-treating the previous wakes as constantly offset straight 
vortex filaments below the wing. The difference is that computation is performed as a direct 
sum over the secondary wakes, rather than as closed form expressions. The output of this 
model is the induced velocity at a point on the wing. Note that while Loewy's assumptioll 
that the distance between wakes is constant was justified in that the time between wakes i's 
constant, in the case of flapping flight, the extreme ends of the stroke should actually meet 
to form a continuous filament. This is another signifcant simplification that was deemed 
necessary. 

This Section outlines an adaptation of the Loewy approximation of helicopter wake ef- 
fects (47], to flapping flight with stroke reversal. 

Firstly, the nomenclature of Loewy is collected: 
n is the number of whole revolutions completed. 
Q is the total number of blades (an integer). 
q is the number of the current blade, starting from 0. 
, y,, is the bound (attached) vorticity -this is called yb in the following. 

, yoo is the wake vorticity in the primary wake (behind the wing). 
'Ynq is the wake vorticity in the secondary wakes (below the wing). 
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h is the vertical separation between full revolution blocks (from one n to the next. ) 
rb is the total bound vorticity. 

For the FMAV case, only one blade is considered, so Q=1 and q=0 everywhere. 
Although there is another wing, it never passes under the first, since the wings are not per- 
forming full revolutions. This simplifies Loewy's expression for induced velocity u. to: 

1 
Unw 

[ITE 
'y' d( + 'yoo dC + 

"0 00 'Yn0 (X 
dC (153) 
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This is simply an expression of the 2-D Biot-Savart law for all the vortical elements. The first 
term is the bound vorticity, the second term is the primary wake vorticity, and the summation 
of the final term is all of the secondary wakes. 

Next, Loewy used the reduced frequency to express the above spatial integrals in terms 
of time. As discussed in Section 7, this reduction cannot be used here, because the forward 

velocity is not constant. However, the spatial distribution of the wake vorticity, in terms of 
the length travelled s, can be found and represented as a sum of sinusoidal elements using 
the fast Fourier transform. The induced velocity, caused by each sinusoidal element, can be 

calculated, and the vector sum of velocities formed to produce the total effect. In this way, 
the finite extent of the secondary wakes is taken into account directly, while the essence of 
Loewy's approach is preserved through the Fourier decomposition of the wake's vorticity. 

11.7 Combined wake model 
The models of Sections 11.2,11.3 and 11.5 are combined to form a wake model of the 
actual, complex wake shape behind and below a flapping wing. Firstly, the wake is split into 
single-stroke segments, similarly to Loewy's model. The primary wake extends backwards 
in a horizontal line, to the start of the current stroke, and a number of secondary wakes, due 
to previous strokes, that are horizontal lines, each one offset by the distance ujT/2 below the 
later stroke, where ui is the average downwash velocity, and T is the period of a complete 
cycle, so T/2 is the period of a single stroke (see Figure 25). 

The analysis is restricted to 2D, assuming that the wing can be treated as a series of 
2D spanwise segments, that do not affect each other. Also, this assumes that there is no 
spanwise flow. 

The start and end of the stroke are governed by the position of the trailing edge, which 
is where the wake is being shed from. 

The primary wake is assumed to be a line, so the effect of the primary wake can be 
treated as a Wagner-type effect, by applying the Wagner function to the changes in quasi- 
steady lift coefficient since the start of the current stroke. It is assumed that the compounded 
effect of the Wagner contributions instantly disappear at the start of a new stroke. Special 
care needs to be taken at the start of the stroke. If it were treated as a purely impulsive start 
in a wake-free fluid, then whatever bound vorticity the wing has would result in an impulsive 
(and large) shed vortex. This is unrealistic, as it would be an artefact of arbitrarily dividing 
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Mom. 

Figure 24: Sample 3D wake under a constantly rotating wing, similar to Loewy's model. 
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(a) Simple wake behind wing 

(b) Infinitely long returned wakes 

(c) ne Loewy model 
Periodically repeated retumed wakes 

....... ... .... . ..... 
!1 

thit 

... . ..... 

(d) 7le modified Loewy model 
Periodical repetition is vertical only 

Figure 25: Illustration of the original and modified Loewy returning wake model 
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the wake into single-stroke segments. Instead, only the change in CL between strokes is, 
used - this is the step change in CL from the end of one stroke to the start of the next. 

The effect of the secondary wakes is incorporated by calculating the induced velocity at 
the leading edge, due to the vorticity of all the secondary wakes, in a Loewy type sum. These 
secondary wakes are assumed to be straight lines, and globally stationary, so the flow-field 
they cause is also globally stationary. The velocities induced by the secondary flowfield are 
treated as stationary gusts, and their effect on the wing is modelled as a Kilssner-type effect. 
This is done by calculating CL without and with the secondary wake-induced velocities, and' 
treating the difference in CL as a series of Kfissner perturbations. Again, the wake has beer, 
split into single-stroke segments, so this is not treated as an impulsive start in a wake-free 
fluid, but the starting value of CL is ignored. 

The effects of the primary and secondary wakes are treated as entirely separate, and 
superposable. 

11.8 Added mass and the wake 
Added mass does not affect the wake - it is irrotational. However, as the wake affects the 
velocity of the fluid around the wing, it will obviously have an effect on the added mass. 
This has not been modelled accurately, because no Wagner type function exists for this 
effect. The Kfissner function already includes the effect of added mass. 

11.9 Polhamus correction and the wake 
Unlike the added mass, it is expected that the LEV will cause a change in the bound vorticity, 
and therefore wake vorticity. For usual cases, where the incoming velocity is approximately 
parallel to the chord, the increased normal force due to the rotation of the leading edge suc- 
tion can be modelled by an increase in bound circulation of the wing. However, for flapping 
kinematics, the incoming velocity is not approximately parallel to the chord. Therefore, 
for our case we cannot use a vorticity model of the Polhamus correction, as mentioned in 
Section 10. 

For this reason, the effect of the LEV on the wake cannot be modelled accurately. A 
first-order correction for the effect of the LEV has been applied, by using the Polhamus- 
modified CL in the wake calculations. However, note that this is a first-ordcr model at best. 

Similarly, because the Wagner and Kilssner functions treat the wing and wake as hor- 
izontal, they predict the force that results to be purely normal to the wing, so no parallel 
component exists. This means they do not have an effect on the leading edge suction. It is 
technically possible to derive expressions similar to Wagner and Ktissncr's function, but for 
the leading edge suction. However, if this is applied to the Pothamus effect, it leads to an 
iterative model, where the results of an earlier function are affected by the results of a later 
one. 
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11.10 Summary of assumptions and results 
A new model has been proposed to account for the effect of an inviscid wake filament on the 
wing forces, using the Wagner, Kiissner and Loewy wake models. In order for the model to 
be transparent, several simplifying assumptions have been made: 

* The wake is treated as a thin, globally stationary filament of vorticity. 

The wake is split into single-stroke elements, each of which is assumed to be a straight 
line. 

Each wake segment is assumed to be behind the wing until reversal, where all previ- 
ous wakes jump downwards by a distance based on the average predicted downwash 
velocity. 

In using the Wagner function for the primary wake, it is assumed implicitly that the 
wake is flat and horizontal, and that the wing pitch angle is low. Therefore, the model 
predicts no parallel or horizontal velocities or forces due to the primary wake. 

In using the Loewy-like shape for the wake, it is assumed that the wake can be mod- 
elled by breaking it into single-stroke segments, and that the wake moves downwards 
in discrete jumps at the end of every stroke. The error due to this will be greatest at 
the start of every stroke. 

In using Kilssner for the effect of the secondary wake induced velocities, it is assumed 
that the velocity field is globally stationary, and the wing pitch angle is low. The error 
due to this is expected to be greatest at either end of the stroke, where the pitch angle 
is large. 

The main results of this Section are the perturbation forms of the Wagner and KUssner 
function, and the expression for the wake-induced velocity at a point: 

CLW =, 
dCL(u) 
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12 Scaling 

As mentioned in the introduction, the planned FMAV will be considerably larger and heavier 
than most insects. It would not be prudent geometrically to scale an insect's wing geometry 
and kinematics, and expect to get the same aerodynamic performance. One benefit of having 
derived the formulae of the preceding sections is that a simple scaling analysis of the forces 
and moments can be performed, and some merit criteria investigated. 

This scaling analysis is similar in nature to that undertaken by Ellington in [20], and 
indeed many of the results here match those found in that paper. The scaling parameters are 
chosen as: 

R is the wingtip radius 
R,,, is the mass scale MI/3 

f is the frequency 
A is the aspect ratio 
OT is the sweep amplitude 

It is assumed that the wing tip trace retains its shape in the spherical coordinate systeryl, 
so the plunge amplitude scales with OT as well. Note the mass scale R,,, - this is simply a way 
of comparing the mass of the FMAV to the scale R. Some authors perform this comparisor, 
by comparing R' and mass m. 

The scaling of some basic parameters is: 

b 0C RA wing sernichord 
0C 1 pitch angle 
(x f pitch rate 
C)c f2 pitch acceleration 

ýb 0C RfA 
u 0C Rf OT wing velocity 
iý 0C R f2 OT wing acceleration 

Note that i& is the complete derivative of u, i. e. including the Euler term ýu (see Sectior, 
9.7), from the above, it is clear that both the translational part of the acceleration (which is 
proportional to uf ) and the Euler acceleration (which is proportional to ýu) scale similarly. 

The last two lines are for all components of velocity u on the hinge line, for a give,, 
radial position, even the tip. 

Consider the Reynolds number, Re, which is based on a length scale 1, typically the wi, ng 
semichord: 

ul Re = - v 
oc ub 
oc RfOTb 

oc R2f OTA (15 7) 
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This is identical to that derived by Ellington [20]. If instead of the wing semichord, I is 
based on the wing tip radius, or even the square root of the wing surface or normal area, the 
scaling will be as above, but with different factors of A, depending on which length scale is 
chosen. 

Examining the quasi-steady force equations for parallel force FpQW, yields: 

FQ, = 27rp RB U2 bir2 NT 

oc RB (RfOT)2 

oc R3B f2 02T 

3 f2 02 oc R RA T 
C)c R4 f2 02 

TA (158) 

FQ2 = 27rp RB2 UNT 2a)b2r, 

oc RB2 (R f OT)f 

oc R2B2 f2 OT 

oc R2 (R A)2 f2 OT 

OC R4 f2 OT A2 (159) 
FQ3 = 27rpRB 342a2b3ro 

oc RB3f2 

oc R (RA)3 f2 

oc R4 f2 A3 (160) 

Note how all the above components scale with RI fl, with varying factors Of OT and A. The 
quasi-steady force resolved in all other directions will have terms similar to the above, and 
will therefore scale similarly. Also, since Polhamus is based on the leading edge suction, it 
will scale similarly to the above. 

Examining the added mass forces, the components are split as: 
2 C2 FVADW1 = 7rpRB 

(ýIHTSPCP 
+ iLVT 

p) 
b2r, 

oc RB 2 iL 

oc RB 2 Rf2 OT 

oc R2 B2 f2 OT 

oc R2 (RA)2 f2 OT 

OC R4 f2 OT A2 (161) 
FV. jDW2 = 7rpRB2 

(2ýUpCp 
-, 8UNSO) b2r, 

oc RB 2ý (U) 

oc RB 2f (fROT) 

oc R2 B2 f2 OT 

oc R2 (RA)2 f2 OT 
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OC RIf2 OT A2 (162) 
FVADW3 = 7rpRB 

3 (-ýaCp +42 aSo) b3ro 

oc RB3 

oc RB3 f2 

oc R (RA)3 f2 

OC 1? 4 f2 A3 (163) 

Again it is seen that all the above components scale with RIf 1, with varying factors of 0. 
and A. The added-mass force resolved in all other directions will have terms similar to the 
above, and therefore scale similarly. Thus, added-mass and quasi-steady forces will scale 
similarly. 

Since the focus here is only on the scaling, the translational moments (vertical, horizon'- 

tal, parallel and normal moments) can be found quickly from the above, by noting that they 

are simply a radius-dependent offset times the forces above: 

M Q, T CC R5 f202 
TA 

MTQ2 OC R5 f20T A2 

MTQ3 OC R5 f2 A3 

MTA1 (X R5 f20T A2 

MTA2 OC R5 f2 01, A2 
MTA3 (X R5 f2 A3 

The quasi-steady pitching moment scales as: 

MPQWJ = 7rp RB2 UPT UNT (1 + 2a)b2r2 

oc RB2 U2 

oc RB2 (R f ot)2 

oc 
3 2f202 RBt 

oc f2 02 2 R5 tA 
MPQW2 = 7rp RB2 UPT (-ýBa%rj) 

oc RB2 (u)ý B 

(X RB2 (R f OT)fB 

oc R2 B3 f2 OT 

oc R5 f2 OT A3 

(164) 
(165) 
(166) 
(167) 
(168) 
(169) 
(170) 

(171) 

(172) 

The pitching moments for added mass are R times the added mass pitching moments per 
metre span found in Section 9: 

m oc 7rp Rb3, a 
, OAWI 
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oc RB3 il 

oc RB3 Rf2 OT 

oc R5 f2 OT A3 (173) 
MOAW2 OC 7rp RV 

oc RB44 
oc R5 f2 A4 

(174) 

It can be seen that all the quasi-steady and added mass moments scale with R5f', with 
varying factors Of OT and A. 

Some other parameters are now considered: the lift coefficient needed CL, average in- 
duced downwash velocity ui, the induced mass flow r4 and the induced power Pj: 

CL - 1 
mg 

- U2 Aw 
3 R,, 

0C 
u2 R2 A 

3 
0C 

(Rf OT )2 R2 A 
3 Rm 

0C R4 f2 02 
TA 

Ui OC 
Fý 

OC 
/R3 

m -xs- 

cc 
F4-- V 7j2 OT 

0C 

FR-ý3 

V T2 OT 

cc R, ',, 5 R-10T 
12 

th = uip (AS) 

cc .52 Rl R-1 O; 
I(R20T) 

m 
cc 01.5 R, ',, 5 RT 

Pi = 
1 

ýp fn (ui2) 

cc Rl .5R 01,5 (R 1-5 R-1 0- 
12)2 

mTmT 

cc 45 R-1 ýOT 

Pi 
- 

Pi 
Specific induced power R3 m m 

(175) 

(176) 

(177) 

(178) 

(179) 
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oc Rl- 5 R-1 
Vo--T 

m 

Lm 
Aw ýi-w 

3 
oc 

Rm 
R2A 

Wing loading 

(180) 

(181) 

The merit criterion of force per unit root moment is now examined. This is a rnerit 
criterion because the lift force is what is needed to be able to stay airborne, while bendilla 
and twisting root moments are the hinge loadings to be designed against in order to obtair, 
the force. Using the moment and force results, and ignoring the OT and AR terms yields: - 

MTQW = R5 f2 (182) 
M PQW = R5 f2 (183) 

Rw Q = R4 f2 (184) 
MTAW = R" f2 (I 8s) 
MPAW = R5 f2 (186) 

FAW = R4 f2 (187) 

It can be seen that the force per moment scales with 11R. 

12.1 Summary of scaling results 
The main merit criterion for this section is the power per unit lift: 

AR4.5 R-1 \IFT 
T oc m R, 3,, 

oc R, 1,5 R-lVOT, 

where the scaling of L with respect to R, f was used, ignoring the variable factors of A, 0: 1,. 
If simple geometric scaling is used (where R, = R), it is seen that the induced power Per 
unit lift increases with size. 

Also, the force per moment goes as 11R. 
There are a number of other practical considerations that affect the scaling. Mostly, these 

will favour larger scale. For example the difficulty of manufacturing very small components 
and the efficiency of electric motors. Since electric motors rely on generating an electrical 
field, their efficiency (power output per unit input) and effectiveness (power output per urlit 
mass) decreases with smaller size. 

From this it is concluded that the lower limit of the FMAV size will be set not by the 
merit criteria found above (which tend to favour smaller size), but by the practical di fficulties 

of physical implementation. 
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Part III 

Code implementation 
This part describes the code implementation of the theory of Part II, and the considerations 
required when adapting the theory for computational use. Note here that the code is a nu- 
merical computer implementation of an analytical theory, not a CFD model. See Section 
13.2 for more on this difference. 

Briefly, the functions in the code are in a hierarchy, as seen in Figure 26, and split 
modularly, to match the modules of the theory developed in Part IL 

This part starts with a general overview of the code. Section 13.1 has a description 
of legacy, a commonly encountered problem in code development, and the steps taken to 
overcome it. Section 13.2 contrasts our code with the CFD approach, while Section 13.3 
describes the hierarchy of functions in greater detail. A number of runtime parameters were 
also defined, to allow the working of the code to be changed without editing the code. These 
are described in Section 13.9. 
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13 Code implementation 

The code was implemented in XIATLAB because it has a great deal of inbuilt functionality 
for handling vectors and matrices, which made code development easier, but more imp(: )r_ 
tantly makes the code far more compact and legible. 

The code was split into a number of functions. Because the theory devised is noll- 
iterative, it was possible to arrange them hierarchically by type, as shown in Figure 26. 
Briefly, the top level, run functions, are the command used to execute the entire code. Tbes, 
in turn call the master functions, which calculate the results for a given part of the model, 
e. g. the quasi-steady forces. They do this by calling calculation functions, that deal with 
a specific aspect of the calculation. At the lowest level, the data functions provide all the 
data needed by the other functions. The flow of information in the figure is almost entirely 
upwards. The exception is the quasi-steady results from the quasi-steady master functions. 
which are used by other master functions. At no point does information flow down the, 
hierarchy. As already stressed, the main thrust of the model was that is was non-iterative, 
the flow of information is unidirectional. 

13.1 Legacy 
When calculating forces in the code, the fluid density p is needed. Imagine if every force 
equation had this coded in as the value for air 1.225. If at any point forces for another fluid 
are wanted, every single value would have to be replaced. This is obviously time-consuming. 
but worse yet is that a single instance might be missed, meaning the results for part of the 
code are based on old values. This is Data legacy, and can be very time-consuming to track 
down and repair. Similarly, there is the concept of Method legacy: for example if a quasi- 
steady force is calculated in two places within the code, and the method of calculation is 
changed in one place but not in the other. 

Both of the above need not be the result of deliberate changes, either. For every extra 
time a given equation or variable has to be typed, there is a risk of mis-typing. 

The way to overcome these two problems is to centralise all the data and methods in spe- 
cific functions, and make sure all calls to that value or method happen through the designated 
function. 

Hence, the functions kine and georn provide all data on the kinematics and geometry of 
the wing. Also, the functions am, pol and qs handle all calculations related to added mass, 
Polhamus and quasi-steady forces, respectively. 

13.2 Iterative models (CFD) 

Most computational fluid dynamics (CFD) codes rely on successive approximation in sorne 
way, because an analytical expression cannot be found for the answer. 

These iterative methods have the advantage of being the only possible way of modelling 
most viscous effects, but the disadvantages are that they tend to take a long time to run and 
adapting numerical analysis to such problems has become an entire field in itself. More 
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Run Function 

Master Function Master Function 

Calculation Function 

Data Function 

Figure 26: Code overview: The hierarchy of functions. Note that the flow of information is 
always upwards, or horizontal, never down. 
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importantly, they do not provide good insight into why the answer is what it is-they do not 
provide an overview. 

For these reasons, the model developed and implemented in code was dcsired to be ana- 
lytical. Although a closed form expression for the forces due to the wake was not obtained, 
at least the solution has been reduced to a non-itcrative case: force components arc calcu- 
lated in order, and at no time need to refer to a later result to refiner an earlier one. All 
the simplifications made about the nature of the wake were introduced so that it would be 
possible to do this. Although the resulting model isn't as accurate as a fully iterative model, 
it gives acceptable results at a fraction of the runtime, and-above all-insight into what the 
contribution of the various force components is. 

13.3 Types of functions 
There are four levels of function: 

1. Data functions, that are called to return any aspect of the data. For example geoln is 
called to return the wing tip radius. 

2. Calculation functions, that are called and return a single result. For example qs i. S 
called to return the bound vorticity of the wing. 

3. Master functions, that perform all the calculations relevant to a single aspect of the 
model, by calling the relevant calculation functions. For example masterý_qs calcu- 
lates all the quasi-steady forces. 

4. Run functions, or Global Masterfiles. These are the functions that are called once. 
they then call all the master functions in order. 

Note that the master functions do not store data in memory after completion: their output, 
is saved to a path set in the run functions. This is done to reduce the memory footprint Of 
the code. 

There now follows an overview of what the various functions do. The XIATLAB conj- 
mand helpfoo will display the correct form and order for inputs for function foo, and calling 
any of the calculation or data functions with verb=] will display which parameter is being 
returned. 

13.4 Run functions 

The calculation method is split into two cases: analytical and numerical data. Analytical data 
can be written as expressions, whereas numerical data exists purely as a set of datapoints. 
Obviously more accurate results are obtained using analytical data, because numerical inte- 

gration is avoided. However, actual experimental data is almost always numerical. 
The run functions for these two methods are master and master_num. They do'no 

calculations of their own, but call the relevant calculation functions in the right order., The 

run functions create four runtime parameters, which are forwarded to the master files:, '- 
- 
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path is the path that the master files store their results in. No results are saved in 
memory between master files. 

9 verb is short for verbosity, a numerical value that tells the called function to display 
extra information during runtime. verb=1 will return information on the method being 
used. Higher values are used mainly for debugging, and display increasing amounts 
of runtime data, such as the current timestep or radial position. 

show is the amount of data to plot. show=] will plot the most important results, while 
higher values will cause the called function to provide more and more information. 
Like verb, show>] is used mainly for debugging. 

skip is the number of subroutines to skip in the master function. This is used when 
editing or debugging, to avoid re-running the time consuming parts of the code, but 
only run the parts changed. 

13.5 Master functions 
These calculate all results related to a single aspect of the code. 

" masterý_qsarn calculates all results for the quasi-steady and added mass models. The 
numerical equivalent is numericaLqsam 

" masterý_pol calculates all results for the Polhamus correction. The numerical function 
is numerical_polhamus. 

" master - wag calculates the effect of the primary wake, using the Wagner function. 
There is only a numerical form. 

" master - 
kus calculates the effect of the secondary wakes, using the Kfissner function. 

There is only a numerical form. 

13.6 Calculation functions 
The calculation functions calculate the forces and associated parameters of the forces from 
Sections 8 to 11. The specific mechanics of each function are detailed in Appendix 13 

" qs calculates the properties related to quasi-steady theory, from Section 8. 

" am calculates the properties related to added mass effect, from Section 9. 

" pol calculates the properties related to the Polhamus leading edge suction analogy, 
from Section 10. 

" wagner calculates the Wagner perturbation cffect of a time series of changes of CL, 
from Section 11. 

" kussner calculates the KiIssner perturbation cffect of a time series of changes of CL, 
from Section 11. 
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13.7 Data function 
The data functions provide the basic data on the kinematics and geometry of the wing. These 
two functions are hard-coded to a given dataset. Note that the kine function also returrIs 
certain runtime parameters, telling the code how to deal with a given method, for example 
the variable wakemethod, which determines how secondary wakes are created. Again, this is 
to avoid method legacy by ensuring all functions are using the same value for wakemethod. 

geom also returns the wing shape parameters discussed in sections 8 and 10. 

13.8 Other functions 

" der(x, t). calculates the numerical differential of x wrt 1, assuming x closes so we can' 
form the first value of dx from the difference between the last and the first value. 

" find 
- crossings(x) Finds the points where x crosses zero (i. e. changes sign), low-pass 

filtering the data to avoid multiple crossings in close succession for noisy data. 

" mess age(toc, s tring) Displays a string to the run window, along with the time elapsed, 
toc 

" rotator finds the actual location of the hinge line of the wing, based on the rotatioll 
vectors 0,7P, and the normalised radius r. 

13.9 Runtime parameters 
As mentioned above, the kine function returns some runtime parameters, which determirle 
the method the code uses. These are: 

" nwak (integer, value 1 to oo). The number of full cycles that will be used to create the 
secondary wakes. 

" firststep (single letter, ws or i). Deals with the wake effect at the first timestep, Ar, 
mentioned in Section 11. 

" datalength (single letter, f or o) tells the code whether the data represents a full. 'cycle 
(that closes) or not. 

" wakemethod (single letter, f or g) determines number of secondary wakes: whether 
they are fully formed at the outset, or grow over time. 

'D usepolhamus (single letter, y or n) tells the code whether to correct for the forces due 
to Polhamus when calculating wake vorticity 

0 taiNag (single integer, 1 or 0). Whether to calculate stroke reversal and wake loc atiorl' 
on the basis of the trailing edge location (1) or the hinge location (0). 
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13.10 Runtime and resource usage 
Each execution of the code in the following section was completed in less than five minutes 
on a 1.8 GHz P4 with 512MB of memory. At this speed of execution, it was considered that 
any Ruffier reduction in runtime, at the expense of code legibility and ease of development 
was simply not worthwhile. Note that there is considerable wastage of processing time, for 
example in the data functions which calculate all the parameters they may be expected to 
return, then return the appropriate one. The advantage of this is that the datafunctions are 
clear and legible. 

For the sake of being able to use the parameter skip in the master functions, the entire 
results of each master function is saved at the end of every subroutine. This obviously 
increases the hard drive space needed to store the results by a factor of 4-5 (the number of 
subroutines per master function). The total size of the datafunctions for a typical run was 
40MB, so this is also not considered an issue. The data functions are overwritten with each 
code execution, so they do not grow in size with each run. 

The memory footprint of the code is not an issue on most modem systems. For this 
reason, all the variables calculated within a master function were stored until the end of that 
master function, even after they were no longer needed. Considerable reduction in memory 
footprint can be obtained by clearing unneeded variables at the end of every subroutine, 
for systems where memory becomes an issue. The drawback to this (and the reason it 
wasn't done) is that having all workings available is very useful for debugging and detailed 
examination of the results. 

No data is stored in memory between master functions. Instead, all the results of a 
master function are stored to the hard drive, then removed from memory. Calls to an earlier 
masterfile are actually performed by reading these results from the hard drive. 

The code was developed in MATLAB 6.0, and has been tested on MATLAB 5.2 and 
5.1. Earlier versions of TNIATLAB have not been tested. 

The code is intended for legibility and further development, not for minimal runtime or 
resource usage, since these are acceptably low. 
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Part IV 

Results 
In this part, the results of running the developed code are examined. This is done on two 
datasets. The first was kindly provided by Dickinson and Dickson, from their Robofly 
project. This was for a scaled-up version of a fruit fly wing, flapping slowly in mineral 
oil. The geometry and kinematics of this wing are described in Section 14, and their Mea- 
sured results are compared with our analytical prediction in Section IS. 

The second dataset, in Section 16, is for a theoretical FMAV design, the FMAV-50/2. 
This design has an overall bodyweight of 50g, and a wingspan in the order of 350mm, flap- 
ping at 20Hz. Since this is a theoretical design, there are no experimental data with which 
to compare the results of Section 17. It has been included for the sake of highlighting sonic 
effects of our model that are not apparent from the Robofly dataset. Only the results that arc 
of special interest will be shown for this dataset. 

The discussion of results in Section 18 is in two parts: Section 18.1 discusses the physical 
implications of the results, while Section 18.2 focusses mainly on the comparison betweell 
our predicted results for the Robofly, and the actual measured values. 
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Figure 27: Robofly wing geometry. The horizontal and vertical lines are the hinge line (from 
the root to the point furthest from the root), and the maximum chord line (the longest line 
normal to the hinge line), respectively. 

14 Dataset: Robofly 

The Dickinson Robofly is a mechanical device that mimics the kinematics of a hovering 
insect, by controlling the movement of a wing at the root with electric motors. The wing is 
a scaled-up version of a fruit fly wing, which is flapped in mineral oil at low frequency, to 
preserve dynamic similarity with the original fruit fly. The frequency was 0.168Hz, giving 
a period of about 6s for a full cycle. The equipment and procedures are explained in Sane 
& Dickinson [46], [2] and Dickinson (48]. The data provided were for the "advanced" case 
of [46], where the wing rotation leads the wing reversal. 

14.1 Geometry 

The wing geometry of Dickinson's Robofly is a scaled version of a Drosophila Melanogaster 
fruit fly wing. The tip radius is 250mm, but the inner 60mm of the wing is taken up with 
sensors, and is assumed not to contribute to the force. The shape is shown in Figure 27, 
where for the purpose of the plot the inner 60mm of the wing has been shown with straight 
trailing and leading edges. 
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Figure 28: Robofly wing kinematics: the first stroke starts forwards (negative sweep angle 
0) with the wing past the vertical. Angles are given in radians. 

14.2 Kinematics 

The Dickinson kinematics follow a simplified pattern, and do not mimic those of any par- 
ticular insect. The sweeping motion (change of 0) is approximately a triangular wave, witil 
near-constant sweeping velocity during midstroke. The sweeping amplitude is 80', so the 
wing completes almost half a revolution each stroke. The pitching is approximately a square 
wave, with very sharp rotation - note that this is Dickinson's data for advanced rotation, sa 
the rotation occurs before the hinge point comes to a stop at the end of a stroke. The plunge 
(change of 0) is everywhere 0- the tip trace and stroke plane are therefore the same hori- 
zontal line. See Figure 28,29 and 30. The frequency is ; ýi 1/6 Hz. There is no reduced 
frequency number, because this parameter is meaningless for flapping flight - see Sectioll 
6.2.3 for a discussion of this. An example of the shape of wake we can expect from these 
data is shown in Figure 3 1. 

14.3 Code parameters 
RADIAL POINTS: 32, inner point is at r=0, second is at 60mm (start of the wing 
proper), outer point is at r=1, with remaining points evenly distributed between tile 
start of the wing proper and the tip. 

lo TIME POINTS: 2356 evenly distributed across four cycles. 
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Figure 29: Robofly wingtip velocities: the velocities are of the fluid relative to the wing. 
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Figure 30: Robofly wing pitching: note that noise in the data was filtered to remove "spikes". 
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:, f-, -VISP4 

Figure 3 1: Sample 3D wake surface. The dark rectangle at the top is a thin, flat rectangular 
wing, undergoing horizontal sweeping with sharp reversal. The hinge of the wing is at 
the upper right comer in the figure (in line with the vertical dotted line at the bottom Of 
the figure. ) The 3D wake surface in the figure is the surface swept by the trailing edge, 
convected downwards at constant velocity. 
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" ROTATION: 90'. Wing is at 45" pitch during translation. 

" PERIOD ; zý 6s 

" RHO = 870 kg/M3. This is the fluid density (mineral oil). 

" DATALENGTH = other. The data do not represent a single closed cycle. 

" FIRSTSTEP = impulse. The first step is an impulsive start, with a strong starting 
vortex. 

" NWAK = 1. The wake is using just the cycles of the data. 

WAKEMETHOD = grow. The secondary wake is grown, meaning there is no sec- 
ondary wake during the first stroke, one secondary wake during the second stroke, 
and so on. 

USEPOLHAMUS = yes. CL for the Wagner and Kilssner effects are the effective CL, 

as modified by the Polhamus correction. 

9 TAILFLAG = 1. Reversal times are based on the trailing edge position. 
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15 Results for Robofly 

15.1 The "lift" force, Fv 
Referring to Figure 32 it can be seen that the data comprises of eight strokes, in four f-Ull 
cycles. The results are not exactly equal from one stroke to the next, most noticeably the 
first stroke has a very suppressed initial peak compared with the rest. This fits with the 
Wagner effect. The average lift (the chain line) is 0.40 N. These experimental data will be 
reproduced on the following plots as a dotted line, for comparison. 

Figures 48 and 49 show the predicted quasi-steady lift per metre span, for the first cycle 
only. Since translational velocities increase towards the tip, the force increases further from 
the root, up to the point where the wing semichord b starts to taper to a point. The radial 
position with the greatest forces is slightly outboard of the radius where the semichord is 
greatest. This holds generally for the forces due to other cffects. The surface and contour 
plots for the other effects have been included, but will not be discussed here. 

Referring to Figure 33, which shows the predicted quasi-steady lift on the entire wine 
versus the measured lift, it can be seen that lift is almost constant during the translation at 
the middle of each stroke, followed by a very sharp peak and trough at the rotation. These 
peaks are almost entirely due to suction forces, and are much lower in the measured data 
Also, the quasi-steady component alone ovcr-predicts lift by approximately a factor of 2 
Referring to Figures 34 and 35, it is seen that the suction peak is cffectively cancelled by 
the Polhamus effect. This is because the suction peak coincides with the wing being altnoSt 
vertical, at which point rotating the suction force by 90* turns it into a horizontal force. This 
fits the measured data better. Polhamus has very little effect on the lift during translation. 
The wing is at 45", so when the leading edge suction force is rotated by 90% its vertical 
component is almost the same. The fact that it changes at all is because of the scaling due to 
leading edge sweep. The overall shape of the lift based on quasi-steady and Polharnus only 
is similar to that measured, but ovcr-predicts lift by almost a factor of 2, and is missing sorne 
salient features of the shape. 

Adding the primary wake correction for lift, in Figures 36 and 37 reduces the lift con_ 
siderably, and illustrates the Wagner effect as opposing an increase in lift. Note that the lift 
is now increasing during the translation, matching the observation. The secondary wake lifl 
correction in Figures 38 and 39 acts mainly to reduce the lift at midstroke. It is 0 durirle 
the first stroke, because there is no secondary wake until the first reversal. After that, it 
starts out strongly asymmetric due to the strong starting vortex, and unbalanced secondary 
wakes, but tends to symmetric between strokes as time progresses, as the starting vortex is 
further from the wing, and the secondary wake tends to a long series of asymmetric wakes. 
Considering the plot of wake vorticity for a sample radial position in Figures 46 and 47, 
it can be seen that the wake vorticity tends to cluster at the rotation, and the end of every 
stroke. The exception is the bump which is due to the rotation leading the reversal. The 
net effect of this is similar to the first-order model of the wake, as a pair of strong vortices 
inducing a downward velocity, or as a vortex ring, similar to the pulsed actuator disc model 
of Ellington. These have already been discussed in Section 5. Ile cffect of this vortex pair 
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will be most noticeable at midstroke, because this is where the offset vector is both short 
and horizontal, and therefore causes the greatest vertical velocity component. 

However, one salient feature of the lift trace is not picked up - the upward "bump" at the 
start and end of each translation phase. This is a compound effect of a) ignoring added mass 
and b) the simplified secondary wake. Because the secondary wake has discrete 'Jumps"at 
the end of every stroke, the effect is to under-predict the secondary wake effect at the start 
of every stroke. 

More importantly, including the added mass results into the above results (see Figures 
40 and 41) highlights a major limitation of the model. With no wake correction of added 
mass, the Kutta-Joukowski term of the added mass equation becomes unrealistically large. 
Although the added mass does have the missing bumps, they are both far too large, and 
occur too soon to match those of the measured data. This is a direct effect of omitting the 
attenuating effect of the wake on the added mass, the effect of which would be to reduce, 
delay and smooth the added mass force. Remember that the added mass effect is the sum 
of two components: the irrotational Dirichlet solution, and the Kutta-Joukowski condition, 
see Equations (87) and (90). If only the Dirichlet component of the added mass is included 
(Figures 42 and 43) it is considerably better behaved, because it is not associated with vortex 
shedding, being irrotational. However, this, too, should be attenuated by the wake effect, 
even if it does not contribute to the vorticity of the wake. Compare the results of the total 
lift with full added mass effect in Figure 41 with the total lift where only half of the Kutta- 
Joukowski added mass is used, in Figure 45. This is a considerable improvement. There 
is no particular theoretical justification for choosing the factor 1, except that the Wagner 2 
effect predicts the loss of half the circulatory quasi-steady lift, so it seemed a valid guess 
for the loss of circulatory added mass lift, too. A similar approach has been suggested by 
DeLaurier [49]. Note how well the scaled added mass figure matches the measured result, 
picking up all the critical features of the force trace, although they manifest a little too soon, 
and with too much magnitude. This is especially true for the loss of lift at rotation, which 
is being heavily overprcdicted. Again, this is because the rotation is associated with strong 
vortex shedding, the effect of which on the added mass are n6t modelled. This underlines 
the conclusion that the model captures the unsteady aerodynamics rather well, but lacks a 
critical component in the modelling of the wake effect on the added mass. 

Figure 44 shows the result of Figure 43, without correcting the force coefficients for the 
effect of Polhamus i. e. setting the variable usepolhamus=no' in the code. It shows that 
without the Polhamus correction to lift coefficients, the model heavily under-predicts Fv 
during rotation, because it is compensating for suction lift that is not being realised. 

Added mass does not contribute a net force over a closed cycle-so although the model 
without added mass misses the "bumps" mentioned above, it does at least model the general 
shape of the lift trace, and will not affect the lift force. The average measured lift is 0.40N, 
and the average predicted lift from the model is 0.37N, only a 9% error. 
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Figure 32: Measured lift force from Dickinson Robofly experiment (solid line). Chain line 
represents average predicted lift force. 
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Figure 33: Predicted quasi-steady lift for the Robofly data (solid line) versus measured lift 
(dotted line). Chain line is average predicted force. 
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Figure 34: Polhamus correction to lift for the Robofly dataset (solid) versus measured lift 
(dotted). Chain line represents average predicted force. 
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Figure 35: Quasi-steady lift, modified by Polhamus correction, for Robofly data (solid), 
versus measured lift (dotted). Chain line represents average predicted force. 
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Figure 36: Wagner correction to lift for the Robofly dataset (solid line) versus measured lift 
(dotted line). Chain line represents average predicted force. 
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Figure 37: Quasi-steady lift, modified by Polhamus and primary wake (Wagner) correctioll, 
for Robofly data (solid line) versus measured lift (dotted line). Chain line represents average 
predicted force. 
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Figure 38: Secondary wake (Kiissner) correction to lift for Robofly (solid line) versus mea- 
sured lift (dotted line). Chain line represents average predicted force. 
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Figure 39: Quasi-steady + Polhamus + primary and secondary wake corrections to lift, for 
Robofly data (solid line), versus measured lift (dotted line). Chain line represents average 
predicted force. 
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Figure 40: Added mass correction to lift for the Robofly dataset (solid line) versus measured 
lift (dotted line). Chain line represents average predicted force. 
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Figure 41: Total lift, including added mass forces, for Robofly dataset (solid line). versus 
measured lift (dotted line). Chain line represents average predicted force. 
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Figure 42: Dirichlet component of the added mass correction to lift for Robofly dataset 
(solid line) versus measured lift (dotted line). Chain line represents average predicted force. 
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Figure 43: Total lift, including the Dirichlet component of added mass forces, for Robofly 
dataset (solid line) versus measured lift (dotted line). Chain line represents average predicted 
force. 
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TV* 

Figure 44: Robofly total lift with Dirichlet added mass correction, as in Figure 43, but with 
usepolhamus=no' (solid line) versus measured lift (dotted line). Note the loss of lift at 
reversal is much greater than in Figure 43, and the "bump" just before the reversal is lost. 
Chain line represents average predicted force. 
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Figure 45: Total Robofly lift, including Dirichlet added mass forces, and half of the Kutta- 
Joukowski added mass force (solid line) versus measured lift (dotted line). Chain line rep- 
resents average predicted force. Compare with Figure 41. 
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Figure 46: Calculated wake vorticity during first stroke for the Robofly dataset. The vertical 
scale depends on the size of the timesteps, and is unimportant. This figure is used only t'D 
illustrate the distribution of the vorticity. Note that the horizontal scale is now the horizontal 
position in the spherical coordinate system, not the time. Again, the units are unimportant. 
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Figure 47: Calculated wake vorticity during second stroke for the Robofly dataset. TIIC 
vertical scale depends on the size of the timesteps, and is unimportant. This figure is usecl 
only to illustrate the distribution of the vorticity. Note that the horizontal scale is now t1le 
horizontal position in the spherical coordinate system, not the time. Again, the units are 
unimportant. 
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Figure 48: Surface of predicted local quasi-steady lift (Fv) per rn span for Robofly data. 
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Figure 49: Contours of the predicted local quasi-steady per m span for Robofly data. 
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Figure 50: Surface of Polhamus correction to Tt- for the Robotly dataset. 
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Figure 5 1: Contours of Polharnus correction to Ft, for the Robotly dataset. 
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Figure 52: Surface plot of Wagner correction to Fv for the Robofly dataset. 

WAG lift surface 

012345 
time t (s) 

Figure 53: Contour plot of Wagner correction to Fv for the Robofly dataset. 
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Figure 54: Surface plot of secondary wake (Ussner) correction to Fv for Robofly. 
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Figure 55: Contour plot of secondary wake (Kilssner) correction to Fv for Robofly. 
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Figure 56: Surface plot of added mass correction to Ft,, for the Robofly dataset. 
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Figure 57: Contour plot of added mass correction to Fv for the Robofly dataset. 
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Figure 58: Radial distribution of force per metre span for Robofly, normalised with respect 
to the greatest value. The lines are the bounding values of the plots in Figures 48 to 57. 
Effectively, these are the surface plots seen from the side. The subplots are, in order from 
the top left: quasi-steady, added mass, Polhamus, Wagner and Kiissner components. 
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15.2 The "drag" force 

Dickinson defined drag in terms of the horizontal force in the direction opposing motion - 
therefore it was always positive. Our model defines horizontal force (FH) in the +0 direction. 
Therefore, to compare with Dickinson's data, value of the predicted drag was multiplied by 
the sign of the horizontal tip velocity UHT. The measured drag is shown in Figure 59. 
Considering Figure 60 it can be seen that there is almost no quasi-steady drag. This fits well 
with the theory, as there is very little vertical velocity of the midpoint. (There is no plunge 
anywhere, so the only vertical velocity is due to the rotation an d the hinge offset from the 
midpoint, and the hinge is almost at the midpoint). 

The Polhamus effect is considerable, as seen in Figure 61. Much like the quasi-steady 
lift force did, the Polhamus effect over-predicts the drag force by a factor of 2. This is 
because the Polhamus effect is a rotation of the quasi-steady suction force, and therefore 
scales with the suction force. However, the model predicts very little effect of the wake on 
drag - for the first component, because Wagner's function does not predict any effect due to 
the primary wake, and for the second part, because the secondary wake effect is small, just 
as it was for lift (see Figure 62). Therefore only the Polhamus correction is left, which is 
considerable. Polhamus did not affect lift during translation, but it has considerable effect 
on drag. Again, this is because when the leading edge suction (which is at 45') is rotated, 
its vertical component is almost unchanged, but the horizontal component changes sign. 

Considering the total drag for all components apart from added mass in Figure 63, it can 
be seen that the fit is poor: although the Polhamus effect correctly identifies the peak during 
each rotation, the magnitude of the force is over-predicted approximately by a factor of 2, 
just as for lift. The wake does not correct for this, because the Wagner effect does not affect 
drag in the model. Incorporating added mass (see Figures 64 and 65) correctly identifies the 
peaks at either end of the translation phase, but as with the vertical force, they are too large 
and too early, because the wake effects on the added mass forces are ignored. 

The horizontal force model is not acceptably accurate without some refinement. Scaling 
the Polhamus effect was attempted, using the methods described in Section 10.5, but due to 
the low rotation speeds, the scaling was 1 almost everywhere, with a few localised spikes of 
lower value at the rotations. 

Without an acceptable model for horizontal force, the overall force cannot be predicted 
accurately. 

The average measured drag force was 0.60N, the average predicted force was LOON, an 
error of 66%. 

15.2.1 Primary wake influence on drag 

As can be seen from Figures 36,38 and 62, the main effect of the wake is to reduce the 
predicted lift and drag forces at midstroke. 

It is postulated that the majority of the error between the measured and predicted drag in 
Figure 65 is due to the omission of primary wake (Wagner) effects on the drag. From Figure 
67 it can be seen that the Wagner effect on lift is almost exactly opposite half of the combined 
quasi-steady and Polhamus lift. Effectively, the Wagner effect is halving the quasi-steady 
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and Polhamus contributions to lift. Assuming a similar effect of -the primary wake on drag 
gives the result of Figure 68, which can be seen to be very close to the measured value. 
When using this correction, the average drag force was 0.4066N, an under-prediction of 
32%. This method of primary wake correction for drag is too tenuous to be relied on - note 
especially how it completely eliminates the first peak after reversal, because the primary 
wake effect should be delayed relative to the change in quasi-steady force. However, it does 
support the postulation that the majority of the error in predicted drag force is due to the 
omission of primary wake effects. 
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Figure 59: Measured drag for Robofly data. Chain line represents average measured force. 

OS drag 

ta 

z C 

LL 

1.5 

0.5 
'J : t. J JJ 'J j cJ : A) 

C- -''-'- -- -d'. --_. 

-1 

-1.51 

05 10 15 20 
'rime 

Figure 60: Quasi-steady drag (absolute value of FHQw) for Robofly data (solid line) versus 
measured drag (dotted line). Chain line is average predicted force. 
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Figure 61: Polhamus correction to drag, for Robofly data (solid line) versus measured drag 
(dotted line). Chain line is average predicted force. 
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Figure 62: Secondary wake (KiIssner) correction to drag for Robofly (solid line) versus 
measured drag (dotted line). Chain line is average predicted force. 
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Figure 63: Total drag without added mass for Robofly dataset (solid line) versus measured 
drag (dotted line). Chain line is average predicted force. 
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Figure 64: Added mass correction to drag for Robofly (solid line) versus measured drag 
(dotted line). Chain line is average predicted force. 
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Figure 65: Total drag with added mass for Robofly dataset (solid line) versus measured drag 
(dotted line). Chain line is average predicted force. 
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- Figure 66: Total drag with added mass for Robofly dataset, including Dirichlet added mass 
forces, and half of the Kutta-Joukowski added mass force (solid line) versus measured lift 
(dotted line). Chain line represents average predicted force. Compare with Figure 65. 
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Figure 67: Comparison of predicted Polharnus-corrected quasi-steady lift (solid line) with 
minus twice the Wagner primary wake lift effect (dotted line). Note the strong correlation. 
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Figure 68: Total Robofly drag, as in Figure 65, but minus half of quasi-steady and Polhamus 
contribution (solid line) versus measured drag (dotted line). Chain line represents average 
predicted force. 
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16 Dataset: FMAV 50/2 

The FMAV 50/2 is a theoretical design, based on an overall weight of 50g, with a wing 
length of 15cm, flapping at a cycle frequency of 20 Hz. The results of this run are included to 
highlight some effect of our model that are not apparent from the Robofly dataset alone. The 
full set of results for this run will not be shown, only the ones that are of special interest. The 
results of interest are the effect of plunging on the quasi-steady forces, the effect of treating 
the cycle as part of a repeating pattern, rather than an impulsive start, and illustrating that 
the added mass averages to 0 during a cycle. Also, this dataset is used as an illustration of a 
purely analytical dataset, with a prescribed wing shape, that can use wing shape parameters 
to form wing integrals of the forces, rather than numerical integration. 

16.1 Geometry 
The wing geometry is loosely based on that of the hoverfly, as shown in Figure 69. It is 
made up of four quarter ellipses, with the maximum chord at 75% of the tip radius. The 
hinge line is at 25% of chord. The tip radius is 150mm, and the maximum chord 50MM, 
giving an aspect ratio' of 12/7r. 

16.2 Kinematics 
The kinematics are based on a simple Lissajous curve, giving a figure-of-eight motion with a 
horizontal stroke plane, and two antisymmetric strokes. The sweeping and plunging motions 
are both sinusoidal, with the plunging motion being upwards at reversal, and downwards 
during midstroke. The sweep amplitude is 60", so the sweep covers a segment of 120". 
The plunging amplitude is 1/8 of this. The kinematics and resulting velocities are show in 
Figures 70 and 7 1. 

The pitching motion is based on the expression ! (sin (4 tt) +4 tt) + r/2, where tt is the 2 

phase angle 2r t1T. This was chosen because the velocity tends asymptotically to 0 at the 
interface between translational and rotational motion. This is shown in Figure 72. 

Code parameters 
RADIAL POINTS: 12, evenly distributed. Inner point at r=0, outer at r 

TIME POINTS: 2048 evenly distributed across a single cycle. 

ROTATION: 180". Wing is horizontal during translation. 

PERIOD = 1/20 

RHO = 1.225. This is the fluid density for air (kg/rn3) 

DATALENGTH = full cycle. The data represent a single, closed cycle. 

Using the definition that aspect ratio is R2 /A, where R is wingtip radius, and A is wing area 
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Figure 69: FMAV 50/2 wing shape: the root of the wing is located at the circle, the horizontal 

and vertical lines are the hinge line and maximum chord line, respectively. 
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Figure 70: FMAV 50/2 wing kinematics: the first stroke starts forwards (negative sweep 
angle 0) with the wing vertical. The vertical lines in the pitch angle plot are the delimiters 
between rotational and translational motion. The tip trace is in the 0, V) spherical coordinate 
system. Angles are given in radians. 
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Figure 7 1: FMAV 50/2 wingtip velocities: the velocities are of the fluid relative to the wing. 
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Figure 72: FMAV 50/2 wing pitching: note that the velocity asymptotes gradually to 0. The 
horizontal line on the pitch angle figure represents the vertical (7r/2). 

" FIRSTSTEP = wrap. Because the data represent a closed cycle, we wrap the first 
value of CL 

" NWAK = 4. The wake is formed using four full cycles. 

" WAKEMETHOD = full wake. We form the full wake based on the cycles given by 
NWAK at once, rather than growing it from the start. 

" USEPOLHAMUS = yes. CL for the Wagner and Kfissner effects are the effective CL, 
as modified by the Polhamus correction. 

" TAILFLAG = 1. Reversal times are based on the trailing edge position. 
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Figure 73: Sample 3D Lissajous wake surface. Compare with Figure 3 1. The dark rectangle 
at the top is a thin, flat rectangular wing, undergoing a figure-of-eight motion similar to the 
FMAV 50/2 kinematics given. The hinge of the wing is at the upper right corner in the 
figure. The 3D wake is the surface swept by the trailing edge, convected downwards at 
constant velocity. 
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17 Results for FMAV 50/2 

This study has been included for the sake of highlighting some effects of our model that are 
not apparent from the Robofly dataset. 

Considering the horizontal quasi-steady "drag" force in Figure 75, it can be seen that 
during the translation it is actually in the direction of motion, due to the wing plunging 
downwards. This is clearly an unrealistic result, but once the Polhamus correction has been 
added, as shown in Figures 76 and 77 the horizontal force ceases to be in the direction 
of motion. This is because the forwards horizontal force will be a suction force that the 
Polhamus effect rotates to become vertical. 

The vertical added mass force is shown in Figure 79. This is shown to illustrate that the 
mean added mass force for a cycle is in fact 0. For the Robofly dataset, the mean added mass 
force came to about 1-2% of the root-mean-square value, because of the use of sampled data. 

Finally, by setting firststep =wrap' the impulsive starting effect of the primary wake 
have been eliminated, assuming that the current stroke is just one in a long series of iden- 
tical strokes. Therefore, the primary wake effect in Figure 78 is also symmetrical between 
strokes. 

A sample wake shape for this type of motion can be seen in Figure 73. 
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Figure 74: FMAV 50/2 quasi-steady lift (FvQw) - solid line. Chain line is average predicted 
force. 
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Figure 75: FMAV 50/2 quasi-steady "drag". (FHQw) - solid line. Average predicted force 
is approximately 0. 
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Figure 76: FMAV 50/2 Polhamus correction to horizontal force. Average predicted force is 
approximately 0. 
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Figure 77: FMAV 50/2 horizontal force, corrected for Polhamus effect. Average predicted 
force is approximately 0. 
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Figure 78: FMAV 50/2 primary (Wagner) wake lift correction (solid line). Chain line is 
average predicted force. 
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Figure 79. FMAV 50/2 added mass lift. Average predicted force is approximately 0. 
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18 Discussion 

18.1 Discussion of results 
18.1.1 Result overview 

The Robofly data for both lift and drag show a similar form -a sharp trough near the reversal 
point, accompanied by peaks immediately before and after reversal. Between these two 
peaks (in the midstroke) the forces are lower, but increasing gradually towards the second 
peak. 

For the predicted forces, both the lift and drag show a similar form - the Polhamus 
corrected quasi-steady force over-predicts the measured force by a factor of 2, and has no 
first peak after reversal. The wake effect is to reduce these forces at midstroke. Finally, the 
added mass contribution has very little effect at midstroke, but causes a sharp reduction in 
forces at reversal, and an increase immediately after, reducing the predicted value at reversal 
to match the trough in the measured data, and introducing the first peak just after reversal, 
again to match the measured data. 

These observations cannot be assumed generally to apply to other kinematics - for ex- 
ample the FMAV 50/2 kinematics of Section 17 show a marked force peak at midstroke. 

18.1.2 Radial force distribution 

Consider the radial distribution of the lift forces in Figures 48 to 57. The radial position 
of the peaks is most apparent from the radial distribution plot of peak force in Figure 58. 
As mentioned in Section 15 the radial position with the greatest quasi-steady force per unit 
span is slightly outboard of the radius where the semichord is greatest. This is because 
translational velocities increase towards the tip, so the force per unit surface area increases 
further from the root. However, beyond the radius where peak chord occurs, the wing starts 
to taper to a point, reducing the surface area per span. Therefore, the radial position with the 
greatest quasi-steady force per unit span will be where the product rb is greatest. In Figures 
49 and 58 it can be seen that this occurs at about 80% of tip radius. 

This radial position will obviously be different for other wing shapes, but it will gen- 
erally hold that the quasi-steady force per metre span is highest slightly outboard of the 
maximum chord, for any reasonably smooth chord distribution. The radial distribution of 
the other four force components are broadly similar, with some notable variation: the mag- 
nitude of the Polhamus component is directly related to the suction part of the quasi-steady 
force. Therefore, unsurprisingly, the radial distribution of the Polhamus force component is 
almost identical to that of the quasi-steady force. For the Wagner and KtIssner components, 
it was expected that the radial distribution would be fuller towards the root. Although the 
shed vorticity increases towards the tip, so does the distance travelled in semichords, which 
governs how quickly these effects decay. The distance travelled in sernichords increases to- 
wards the tip partly because of the greater distance travelled, but also because the sernichord 
decreases towards the tip. Defining the maximum force radius (ý, the radial position where 
the forces have their greatest magnitude), it can be seen that the magnitudes of the two wake 
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components do, indeed, drop off much faster tipwards of f. However, surprisingly, values 
of f for the the wake force components are further tipwards than for the quasi-steady case, 
and the radial distribution of the wake forces rootwards of f is not notably Mer than the 
quasi-steady case. 

18.1.3 Rigid versus flexible wing surface 

The most rapid changes in force, and the peaks and troughs of the force occur near the 
reversal points, because of the high rotation velocities at those points. It is postulated that 
this is an effect of the wings being rigid, and this concentration will be less pronounced for 
wings with flexible surfaces. Because the wings are rigid, the normal velocities due to the 
rotation at reversal are high. This affects all the force components. Allowing the surface tc) 
deform introduces elasticity into the response of the wing to the kinematics, attenuating the 
effect of sharp rotation. 

This point is important because an eventual physical embodiment of an FMAV will al- 
most certainly need a flexible wing surface, partly for structural reasons and partly to reduce 
the peak loads during rotation. 

18.1.4 Viscosity 

The potential force modelling used in this thesis required the omission of viscous forces, 
especially in the form of skin friction and base (pressure) drag. There is no simple way ()f 
introducing corrections for these, apart from using empirical corrections. 

18.2 Evaluation of results 
This section deals with the accuracy and utility of the model. It is mainly restricted to the 
results for the Robofly dataset, since this is the only set with measured data to compare 
with. It is concluded that the added mass model is not very good, as it over-predicts the 
effect of added mass due to ignoring the effect of the primary wake on the added mass. 
The lift results are acceptable as a first-order model, in that they capture the general shape 
and overall scale of the lift force. Especially gratifying is the way they accurately capture 
the loss of lift due to the impulsive start. The drag results, however, are much less good, 
primarily because the drag effect of the primary wake on the wing is not modelled. - Using 
the Polhamus correction to force coefficient for the purpose of wake effect seems especially 
promising, but will require more validation, after the added mass model has been refined. '& 
simple model to correct for the primary wake effect on drag has been proposed in Section 
15.2. Although this is too weak theoretically to use when predicting forces, it is used to 
support the postulation that omitting primary wake effects is probably the most important 
source of error in the drag force prediction. 

Moment data were not available for the Robofly experiment. This is unfortunate, as it 
makes it impossible to validate the expressions for the moments. The added mass moment is 
especially a concern, as the added mass forces were modelled without the effect of the wake. 
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Similarly, the effect of omitting Polhamus corrections from the pitching moment cannot be 
evaluated. 

Nonetheless, it is gratifying that a purely inviscid model has managed to get as close at it 
did to the actual results, which are for a very viscous and unsteady flight regime. The model 
underpredicted the average lift by only 9%. Note also that the expected operating regime of 
the FMAV is considerably less viscous than that of Dickinson's experiment. Dickinson had a 
Reynolds number of order 101, while for the FMAV kinematics of Section 16 the Reynolds 
number is of the order 10'. This is calculated using the same expression as Dickinson. 
The result of this higher Reynolds number should be to reduce the effect of viscosity, and 
hopefully make the model more accurate when modelling the aerodynamics of the FMAV. 

4Using the expression for Reynolds number on page 2608 of (2], with our kinematic data from Section 16, 
and the kinematic viscosity equal to 1.5 x 10-57n2 Is. Note that these values are not directly comparable with 
standard translational aerofoil Reynolds numbers, since they use peak values of velocity and sernichord. 
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Part V 

Conclusion and further work 
In this part, the assumptions used when making the model are surnmarised in Section 19.1, 
and some conclusions drawn on the usability of the model and the code in Section 19.2. 
Ideas for future refinement are given in Section 20. 

UNCLASSIFIED Page 136 of 248 



Pedersen 19 Conclusions 

19 Conclusions 

First, the assumptions used while creating the model will be listed. 

19.1 Assumptions 
The wing root is stationary. 

o The wing is thin and flat. 

The hinge point is at the same point on the chord for all spanwise sections, when wing 
shape factors are used. 

@ The body does not affect the airflow, and is ignored. 

e The far-field free stream is stationary. 

e The flow is entirely inviscid. 

e The flow separates sharply from the leading edge, causing total loss of leading edge 
suction. 

9 The flow always reattaches, and forms a stable leading edge vortex. 

The effect of the LEV is to rotate the leading edge suction force by 90", to become a 
normal force component. 

The direction of the above rotation is in the direction of the nonnal velocity at the 
leading edge. 

The LEV dissipates immediately when shed. 

* T'he flow leaves the trailing edge smoothly, satisfying the Kutta-Joukowski condition. 

e Ile wake is treated as a thin, globally stationary filament of vorticityý 

I. * The wake does not decay or dissipate. 

The wake is split into single-stroke elements, each of which is assumed to be a straight 
line. 

The wake moves under constant downwash velocity ui, without deforming under its 
own induced velocity. 

e The above movement is discretised into a set of steps at each reversal. 

Each wake segment is assumed to be behind the wing until reversal, where all previ- 
ous wakes jump downwards by a distance based on the average predicted downwash 
velocity. 
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19.2 Theory conclusions 
A model has been developed for calculating highly unsteady lift of insect-like flapping 

wings, and embodied in MATLAB code. This model is simplified and modular, for the 
purpose of giving better insight into the various effects that act on the wing. However, this 
has come at the expense of considerable simplification, in order to enable the use of known 
solutions to standard unsteady problems. The greatest limitations of the model are: 1) no 
modelling of viscous forces (this was neccesary to obtain an analytical potential model), 
and 2) the effect of the wake on added mass is incomplete - although the Ussner function 
includes the effect of added mass, the Wagner function does not. 

The model was tested on two datasets: one for a prescribed geometry and kinematics of 
a proposed FMAV wing design, the other data from an experiment on Dickinson's Robofly. 
The second dataset was used for model validation, from which it was concluded that the av- 
erage circulatory lift predicted was within 9% of the measured. However, the non-circulatory 
lift (added mass effect) was a poor fit - so although added mass does not contribute a net 
force over a cycle, some features of the shape of the lift trace are lost, and the peak loads are 
being over-predicted. For drag, both the circulatory and non-circulatory component showed 
poor correlation. This is partly because of the above mentioned problems with added mass, 
and the fact that the wake model does not model primary wake drag. However, it is also 
suspected to be mainly due to the fact that viscous drag is omitted entirely - consider for 
example the odd result of Figure 75, where the drag force is in the direction of the motion. 

The main conclusion is that this model is a considerable simplification. This was done 
for the purpose of making it possible to embody the model in non-itcrative code, and to 
give quantitative insight into the meaning of the results. These assumptions mean the model 
does not predict forces accurately enough for peak loading or flight dynamics modelling. 
Hopefully, further refinement will allow this. However, the time evolution of lift has been 
captured well and it has been shown that only the added mass component is not modelled 
with the required accuracy. This indicates the soundness of the approach and shows the 
advantage of modularity. 

. 19.3 Code conclusions 
The code runs to about 160kb of MATLAB code, with a runtime less than five minutes 
on a reasonably modem system. Unlike standard CFD code, it does not rely on successive 
approximation by iterating the code. This means runtime is much lower, and allows us to 
use some "sloppy" code practice, that gives better code legibility at the expense of runtime. 

Considerable effort has been expended to make the code proof against data and method 
legacy, and to leave it open to further refinement by keeping it strictly modular: one module 
per aerodynamic effect, calculation or dataset. 
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Radial Chord (Rotation) Linear Chord (Translation) 

Figure 80: Radial chord example. 

20 Further work 

20.1 Theory refinement 
20.1.1 Radial chord 

Consider a wing sweeping horizontally in still air, at zero angle of attack, so the wing is also 
horizontal. As can be seen from Figure 80, the effective chord lines in this case are arcs 
centered on the hinge - these are points where the velocity due to the sweeping motion are 
the same. Similarly, consider the same wing sweeping horizontally at 90' angle of attack, 
so the wing is vertical - the effective chord lines are now straight. 

From the above, it can be seen that the effective chord of a rotating wing is not straight, 
but depends on the inflow angle of the wing. It is proposed that the effective chord distri- 
býtion can be expressed as the summation of two "pseudochords" - one purely radial, one 
purely linear. 

Development of this theory had to be abandoned because of time constraints. Briefly, it 
was assumed that the forces would scale with i12 , of which COS(C, 2) 

T would be along the wing 
(and thus radial chord), and sin(a2) would be across the wing (and thus linear chord). An 
analytical issue arose because the velocity due to wing pitching is always based on linear 
chord, so the radial chord calculation would have to be expressed as a mixture of radial and 
linear chord elements. Although this is not insurmountable, other parts of the model were 
felt to warrant more attention. 
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20.1.2 Wake shape 

The wake shape used in this model is obviously unrealistic, with large, discrete jumps in 
location, causing it to be discontinuous. Although this was initially chosen in order to at- 
tempt to form a Loewy-like analytical summation, this has not worked. One positive result 
of this is that more complex wake shapes can be used, since summation over the wake is 
performed directly, without ftirther simplifying assumptions made by Loewy. This author 
did experiment with wake shapes based on constant downwards velocity ui, trying to model 
the entirety of the wake as a Kiissner type effect. The drawback of this was that the Kuss- 
ner effect kicks in slowly, whereas the Wagner effect starts immediately - thus, the effects 
of impulsive starts are being under-predicted. If a continuous wake filament is used, more 
thought will have to go into how the Wagner and Kiissner functions can be combined. An 
example of this is the Miles gust model, which is described in [3]. 

20.1.3 Added mass and the wake 

As mentioned, a flaw in the model is that the effect of the wake on the added mass is not 
modelled. Doing this precisely would require an iterative CFD model. The same holds' 
for the effect of the wake on quasi-steady forces. Similarly to how the simplified case of 
Wagner was used for the quasi-steady forces, there may be some mileage in deriving similar 
expressions for the wake effect on added mass for simple cases. Note, however, that while 
the Wagner function reduces to a function of CL and distance travelled only, the equivalent 
expressions for primary wake effect on added mass will require the entire kinematics of the 
wing, and the distance travelled. 

The most immediate solution to this is from the Theodorsen function [28], where he 
treated the bound Kutta-Joukowski vorticity and wake vorticity as a single filament, and 
calculated the entirety of the forces caused by it. The Theodorsen function cannot be used 
in unmodified form, however, as he makes assumptions about constant forward velocity and 
cyclic pitching, in order to use the reduced frequency parameter, to reduce the solution to 
a single, analytical expression. However, the original integrals of Theodorsen can be used, 
and integrated numerically along the primary wake. 

20.1.4 Wing shape parameters 

The use of wing shape parameters to calculate the forces on the entire wing, has been demon- 
strated in Section 8.8. This method is appealing in that it allows greater insight into the effect 
of the wing shape on the various aerodynamic components, and allows fast and accurate cal- 
culation of wing forces without relying on numerical integration. However, the method used 
assumes that the hinge location a is constant for the entire span. This can be generalised 
to a varying hinge location by creating additional wing shape parameters that include the 
variation of a along the span. This is a trivial exercise in mathematics, but does require that 
a can be expressed analytically as a function of r. 
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20.2 Code refinement 
The code, as it stands, is not optimised for speed. This has been commented on in Section 13. 
When the model has reached a greater stage of refinement, it may be worth speeding up the 
code for the sake of being able to use it in automated iterative refinement of wing kinematics 
and shape. For now, however, it is felt that ease of development and bug-tracking outweighs 
runtime. 
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A Mathematical results 
A. 1 Identities 

A. 1.1 Differential identities 

f (g), =f, (g) g, (189) 
MY = f, (g) + g, (f (190) 

df (x, y, z-, 19X Of 19Y Of 19Z Of 
chain rule (191) 

dx Tx ý-x + Tx'ýýy- + ý7x Tz + 

df(d 
not for partial derivatives. (192) Tx TV 

A. 1.2 Trigonometric Identities 

SC 
1 

S2 (193) 
2 

C2 
1 
ý(l + C2) (194) 

A. 1.3 Coordinate transformations 

bSo = bv*fl- --x'2 (195) 

x= CO Assumes x normalised (196) 
dx 

= -so (197) TO 
ds 
TO = 27rr (198) 

(199) 

A. 1.4 Identities involving 

Note that the following uses the identity Q=-, /I --x2. All can be found in Gradshteyn and 
Ryzhik [50], abbreviated to GR in the following. The right arrow symbol --+ is followed by 
the reference to where the identity was obtained from. The left arrow symbol +- is followed 
by necessary conditions for the identity to be true. 

dx -1 x 
-asin(: 

Ix-) GR2.261 P99 +-c, D<0 (200) 
1 V41 
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-asin(-x) --+200 (201) 
dx 

-[asin(-x)]', 

-[(-7r/2) - (7r/2)] 

7r (202) 
(203) 

1 dx 
Q dx = 

ý, Q 
+1 GR2.262.1 P102 (204) 

22 

Q dx = 
[ýýQ]l + --+202 ý7r 

2 
ir 

= 0+- (205) 
2 

x dx Qb dx 
-2 7 GR2.264.2 plOO (206) 

c c 
x dx 

7- -Q-0 (207) ý 

- [Qll 
0 (208) 

*2 dx 3b Q+ 3b 2 

2 
( a dx )Q GR2.264.3 plOO 

Q 2c 4C C 
*2 dx If dx 

ý: 2 Q 2 
111 dx 

V _PQ) + 2 

-1 [xQ] +1f 
dx (209) 

22Q 
1 X2 dx 1-1 17r] [xQ]l I+ --+202 (210) 

7r 
0+ (211) 

x n+l n+l 

x asin(x) asin(x) - 
x-Q f+ GR2.831 p253 (212) 
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asin(x) = xasin(x) -x 212 ff 
ýý 

asin(x) = asin(l) + asin(-l) -x J'l 
-Q 

=0 (213) 

x asin(x) = 
x2 

asin(x) - 
X2 212 

x asin(x) 
X2 

asin(-l) - asin(l) - = 2Q 2 2 

x asin(x) 
1 7r 1 -7r x2 

= V 
22 22 Q 

x asin(x) 
7r x2 

= 
1 

2 
7r 7r 

--+211 2 
7r 

(214) 

A. 2 Other proofs 
A. 2.1 R. M. S. velocity 

When forming the denominator for lift coefficient jpd2 A we use the total velocity UT. 
2T 

which varies along the wing when there is a pitching velocity. Since this is an expression 
for the kinetic energy of the flow, we use the mean value of ii2 , integrated along the chord, T 
which becomes: 

ft 2= f12 42 b2 (1/3 +a 2) 
- 2UN4ba (215) TT+ 

This velocity is only zero at complete standstill, i. e. UT =4=0. 
At any given position on the wing, the local velocity of the (stationary) air relative to the 

wing is: 

IFT 2= U2 2 
Pe 

+ Une 

2 )2 
= Uý + (Un 

+ a) 
= UP2 + U2 + 42b2(ý 

- a)2 + 2Un4b(x -a) n 
2+ 42 b 2(C 

- a)2 + 2Un4b(x - a) (216) fLT 
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The mean of this is found from the integral along ý: 

d2wde TE 

, X+U2X+ 
(lX3 [U2 

+ a'x - ax') 
42 b2 + 2ujb 

(lX2 

- ax 
+1 

pn2 

=1 
(2uP2 

+ 2U2 +(2+ 2a 2_ 0) ý2b2 
+ 2Un4b(O - 2a) 

2n3 
fL 2+ ý2b2 

1+a 
2) 

- 2UJba (217) T 
(3 

I. for the case where a=-ý- 

tr 227 *2 2 ý2T + T2 fl b+ ujb (218) 

ITT2 IT 2 
Prove that is only 0 when stationary, by finding conditions for T=0. Find the 

2 
condition for ý that gives T=0. Do this by finding the solution so 0= A42 + B4 + C, 
where A= i12 

,B= -2u,, ba and C=b2 (1/3 +a 2) 
. This is a second order Polynomial T 

with solution: 

-B ± N/B--24AC 
2A 

2u,, ba ± V4U2b2a2 
- 

4(iI2 b2a2 2 b2 /3) nT+ 
fIT 

2 i2 IT 
222 2unba±2býUna -iATa -OT/3 
2 ii2 T 

2Unba ± 2býa2(U2 - &2 ii2 
nT T/3 (219) 

, a2 2T 

The only purely real solution to this is ýo =0 when ET = 0. All other conditions will cause 
the expression under the square root to be negative, so the result becomes complex. this is 
because u2< ii2 always, so a2 (U 2 i2 _, R2 nTn T) is always negative or 0. The second part T/3 
is also always negative or 0. 

A. 2.2 Duhamel's integral 

The following is a generalised theory for the response of a system to an input. In our case the 
system is the aerofbil in unsteady motion, with the in- and output being the wing kinematics 
and wing lift-but for this section we will deal with it as an abstract "system' '. 

Consider the response y(t) of the system, modelled by (P(t), to a step change in input 
Ax(t) that occurs at time 0: 

Y(t) = Ax(o) (D(t) (220) 
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This assumes linearity, so the output scales with the input. From causality, 4)(< 0) = 0. 
Assuming time invariance, the above can be generalized to an input at time tj: 

Y(t) = AX(ti) -1)(t - ti). (221) 

Another effect of linearity is that the output due to several inputs can simply be super- 
posed linearly: 

Y(t) AX(tl) 'ýD(t - t1) + AX(t2) 4ý(t - t2) + --- 
(222) 

Ex (t,, ) -D (t - t,, ) (223) 
n 

which can be refined to infinitely small timesteps, so that in the limit 

y(t) 
dx(o, ) 

(D (t - a) da. (224) 

The variable a represents the delays tj, t21 .... and is of the same units and scope as t. This 
is sometime referred to as the dummy or integration variable. 

Now assuming zero input until t=0, we get 
t dx (a) 

Y (t) ýj-ýD(t - a) do- (225) 
0 fo a However, in order to include the effect of an impulsive input at t=0, we have to split this 

integral into two time regimes: 

Y 
0' dx (o) 

D (t - a) da + 
dx (a) 

4) (t ' a) da, (226) 10- 
do, da 

where 0- and 0+ are immediately before and after 0, respectively. The first term can then be 
integrated to give: 

Y(t) = X(O) ID (t) +t 
dx (a) 

4)(t - a) da (227) 
0 70-1 

This is Duhamel's equation. There is also a slightly generalized form for the case when the 
first input is not received at t=0, but at t= to: 

rt dx(a) 
x (to) -D (t - to) + -D (t - o, ) da (228) 

The three assumptions for this equation are: 
Time invariance: the system always responds identically to an input, irrespective of 
when the input is received. 

Linearity: the output scales with the input, and the output of several different inputs 
can be superposed (summed). 

e Causality: the system does not respond before the input is received. 
Note that for most of the expressions where we use Duhamel the variable of integration 

is not t, but s, the semichord distance travelled; this doesn't change the expression, but care 
must be taken to avoid confusing this with the Laplacian variable s=a+ iW, which is 
commonly used in control theory. 
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B Code listing 
The code is reproduced here only so the reader can refer to it and understand the method 
used. It is not necessary to copy the code from this listing - it is freely available by contacting 
the author. 

Firstly, a note on the displayed output. Because some of the lines in the code are longer 
than can be displayed on the page, they have been wrapped. Any line without a line number 
is actually a continuation of the line before. This is important because some of the lines, as 
printed, will not work in MATLAB if input with the extra carriage returns. 

Some elements are common to all the below files. The first line is the function definition, 
which describes which inputs the function expects, and what it will return. The commented 
lines immediately following that explains what the inputs mean, and what the function does. 
This is the information that is displayed when you type help foo. 

The first functional part of the code starts with switch nargin. This is simply a switch for 
the number of inputs that have been received - any values that are missing are given default 
values in the case commands immediately below. This is the input switch. 

Similarly, the output switch towards the end of the function starts with switch gimme, 
and simply decides which of the variables that have been calculated in the function to re- 
turn. This is the output switch. Although this part of the code can become rather large in' 
some functions, it is entirely trivial. For the sake of keeping the pagecount down, and to 
differentiate this part of the code from the important parts, the output switch part of the code 
is shown in a smaller font. 

Elements starting with for ri=]: nr and for ti=]: nt are radial and timewise stepping, 
respectively. In using these iterative models, we lose some runtime, especially because 
MATLAB is good at fast calculations for matrices. The advantage of this is that the code 
is a good deal clearer, and it is much easier to locate problems at certain positions. For 
example, the inner and outer radial position often need special treatment, to avoid divide by 
zero errors. For both the datasets, the inner position is at a standstill - thus, all velocities, 
forces and wake contributions there are set forcibly to 0. Similarly, at the tip, the wing 
sernichord is 0- therefore the forces and wake contributions there are set forcibly to 0. For 
the Robofly dataset, the inner 60mm of the wing are used for measuring equipment. This is 
accommodated by setting all force and wake contributions out to 60mm to 0. 

Some elements start with if verb or if show. These are checks to see if the user has 
requested extra information to be displayed via the variables verb and show. The code 
immediately following such statements is to display additional information at runtime, or 
plot the results to graphs. It doesn't affect the running of the code. 

Most of the code is commented, and should be fairly self-explanatory. The function mas- 
ter 

- wag and master_kus have warranted detailed explanation, because of their complexity. 
The reader may wish to refer directly to these on pages 2 10 and 220. 

Finally, a note on nomenclature: The "lift" referred to below is everywhere the force Fv. - 
Similarly, the "drag" is everywhere the force FH. 
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B. 1 Data Functions 

B. 1.1 geom 

This is the geometry datafile for the FMAV-50/2 dataset. It defines the wing geometry, and 
performs wing shape parameter calculations. 
Line 29 is a flag wether the alternative geometry in geom2 should be used instead. 
Line 65 creates the default vector of radial positions, used by all other functions. r is nor- 
malised w. r. t. tip radius. 
lines 109-113 creates the semichord b, which is not normalised. 
line 112 dledr is the slope of the leading edge - note this is not normalised, it is true geome- 
try. 
line 224 onwards calculates wing shape parameters. This is done symbolically. Note that 
one of the wing shape parameters can't be formed symbolically by MATLAB so is calcu- 
lated numerically instead. This costs 3040 seconds of runtime. 

ifu nction out = main (gimme, type ,r, verb , show) 
2%o uI= geom (gimme, 'I 'I 'r ', r, verb, show) 
3%datafile. All geometric data is obtained by calling this function 
4Yogimme is a string specifying which information to return 
s% 't 'I 'r ' is a string specifying rotary or translational chord 
6% r the normalised radius. This can be a vector. 
7% if r is a string , the calculation is performed for max values 
a% verb is a 011 flag if additional information should be shown 
9% show is a0 11 flag if data should be shown as a figure 
10 
11 
12 ? IoLast edited 7.11.02 by CBP 
13%This geometry datafile is for the 2-elipse wingshape 
14 last edited = '07. Nov. 03 
is last-run = date; 
16 

, 7Yqflag if we should be using dickinson data, instead 
isYoNote this is hardcoded. 
1 19 dickinson = 0; 
20 if dickinson 
21 switch nargin 
22 case 0 
23 disp([mfilename ' error : must have at least one input']); 
24 case 
25 type = 't'; r 'tip'; verb =O; show=O; 
26 case 2 
27 rtip verb 0; show = 0; 
28 case 3 
29 verb = 0; show 0; 
30 case 4 
31 show = 0; 
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32 case 5 
33 '16do nothing 
34 case 6 
35 disp('too many input arguments'); 
36 end 
37 out = geom2 (gimme, type ,r, verb , show) 
38 return 
39 warning( 'should not be here) 
40 end 
41 'laEnd of Dickinson part 
42 

43 switch nargin 
44 case 0 
45 disp ([mfilename ' error : must have at least one input 
46 case 1 
47 type = 't'; r 'tip'; verb =O; show=O; 
49 case 2 
49 rtip verb 0; show = 0; 
50 case 3 
51 verb = 0; show 0; 
52 case 4 
53 show = 0; 
54 case 5 
55 ? Iodo nothing 
56 case 6 
57 disp('too many input arguments'); 
58 end 
59 

60 

61 R=0.15; 
62 C= R/3; 
63 B= c/2; 
i4 C- default = linspace(-1,1,10); 
65 r_default = linspace (0 1 12) ; 
66 hinge= -1/2; %hinge at 114 chord 
67 

68 switch type 
69 case 't 
70 if verb>1 disp( 'translational chord'); end 
71 case 'r 
72 if verb>1 disp( 'rotational chord'); end 
73 otherwise 
74 dispQ 'georn function error - chord type must be r or t 

nurn2str ( type 
75 out 

76 return 
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77 end 

78 

79 9losymbolic expression for chord 
8o tipflag = 0; 

s, if isstr(r) %if r is a string (typically 'tip ') assume we are 
calculating tip values 

82 r=1; b=B; tipflag = 1; 
83 else 
84 ? Ioassume r is the normallsed r adius we want to calculate at 

possibly a vector 
85 if max(r)>1 disp([mfilename ' warning: received radius in 

excess of I, radius should be normalised ' ]) ; end 
86 if min(r)<O disp([mfilename warning: received radius below 

0, radiu s is normalised from the hinge ']) ; end 
97 end 
88 
sq rO = 0.75; ? Iopoint where we change elipses , also max chord 
go [err rOindex] = rnln(abs(rO-r)); 
91 

92%symbolic expressions for the wing shape 
93 1f length (gimme) ==2 & (gimme == 'bl gimme == 'b2') 

r sym( 'r ', 'real ') ; 
95 bl sqrt(l-(I-r/rO). ^2); 
% tempa =( r-rO ). ^2; tempb = (I - rO )A2 
97 b2 = sqrt(l-ternpa. /tempb); 
gs else 
99 b= sqrt(l-(I-r/rO) .A 2) 
100 FIND find (r>rO); 
101 tempa r-rO ). A2; te mpb = (I - rO 

)A2; 

102 b(FIND) sqrt(I -tempa (FIND). / tempb); 
103 b=B*b; 
104 end 
105 - 
106 

%if lipflag , all chords are maximum 
iv if tipflag b= ones( size (r)) ; end 
108 r 
jog %translational chord 
iio le = (+I+hinge) * b; ? Iofind leading 
in te = (-I+hinge) *. b; %trainling edge 
112 dledr = (0 diff(le). /diff(r)]/R; %leading edge slope 
mb= (le - te)/2; ? Iosemichord 
114 

,, 5 Ycshow wingshape 
,, 6 If show hold off; plot(r*R, le , 'b-' r*R, te , 'b-') ; hold on; axIs equal; 

end 
117 
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jig %convert to rotational chord, if requested 
ng if type == 'r' 
120 [r ,Ie 12rc (le r length (r) 0) 
121 [r , te 12rc (te r jength (r) 0) 
122 end 
123 

124 Wing shape identifier 
, used for calls to n1harm below 

125 shape = '2e'; 

128 %Output switch 
129 If listr(Simme) 
130 switch type 
131 cast ,I,: 
132 switch gimme 
133 case ( 'id 'ID 
134 out - 'Geometry: 2- @1 ipse plaftform , hinge nom2str(( hinge+l)/2) 1; 
135 case 'Area' 
136 out -2*BR ntharm (1 . 0. shape); 
137 case 'R' 
138 out - R; 
139 case B, 
140 out - c/2, 
141 case W 
142 out - b; 
143 came c, 
144 out - C; 
145 cast 'hinge 
146 out - hinge; 
147 case 'Shape' 
148 out - shape; 
149 case 'bl' 
150 out - bl; 
151 case 'b2' 
152 out - b2, 
153 case ('change', 'ro') 
154 out - To; 
155 case 'b]rO' 
156 out - ntharm (1 0) ; 
157 case 'blrl 
159 out - ntharm (I ,I 159 cast 'blr2' 
160 out - ntharm(1,2); 
161 case 'blr3 
162 out - atharm (1 3) 
163 case 'b2rl' 
164 out - ntherm(2, I); 
165 came 'b2r2' 
166 out - otharm(2,2); 
167 came 'b3rO 
168 out - ntharm (3 0) ; 
169 cast 'b3rl 
170 out - ntharm (3 1); 
171 case 'b4rO' 

, 
172 out - ntharm(4, O); 
173 case 'b4cl * 
174 out - ntharm (4 1 
17S cast 'bSrO, 
176 out - ntharm(5.0); 
177 case 'blrOP' 
179 out - utherm(l. 0, I); 
179 case 'bitIP' 
180 out - ntharm(I. I. 1); 
191 case 'blr2P' 
182 out ntharm(1,2, I); 
193 case *blt3P' 
194 out ntharm(1,3, I); 
185 cast 'b2rlP* 
196 out - ntherm(2,1,1); 
187 came 'b2r2P' 
188 out - ntharm(2,2.1); 
189 case 'b3rOP' 
190 out - ntharm(3,0,1); 
191 case 'b3rlP' 
192 out - ntharm(3.1.1). 
193 case 'b4rOP' 
194 out ntharm(4,0,1); 
195 case '10 
196 out Is; 
197 case 'to' 
198 out - to; 
1919 case 'dledr' 

UNCLASSIFIED Page 152 of 248 



Pedersen B. 1 Data Functions 

200 out - dledr 
201 case ' c_dcfault 
202 out - c_dcfault; 
203 case ' r_dcfault '; 
204 out - r_default; 
205 case 'tOindex' 
206 out - rOindox; 
207 case 'dr' 
208 dr - (0 dlff(gcom('r_default'))]; 
209 out - dr. 
210 otberwise 
211 disp(Imfilonsma ' error . unknown string passed: ' gimmel) 
212 out - -1; 
213 return 
214 end 
215 cast 'r*; 
216 disp('Warning - rotary chord requested not yet implemented') 
217 out - -1; 
218 return 
219 end 
220 ir verb disp(gimme); ead 
221 return 
222 end 

224 function out = ntharm(m, n, le shape verb); 
225%ntharm: calculates wing shape parameters 
226 %0 Ut= Wharm (m, n, le , b, r); 
227 9lowing parameter is b-mr-n 
22& Me =1 uses correction for leading edge slope (for Polhamus) 
229%this implemenatation is analytical 
230 

23i%Created by C. Pedersen 
232 ? IoLast edited 27.12.02 
233 

234 switch nargin 
235 case (0, I) 
236 disp([mfilename error, need at least 2 inputs']); return; 
237 case 2 
239 shape = default ; verb = 0; le = 0; 
239 case 3 
240 shape = default ; verb = 0; 
241 case 4 
2! 2 le = 0; 
243 case 5 
244 Yodo nothing 
245'o t he rwis e 

246 disp([mfilename ' error 
241 end 
248 

249 r sym('r', 'real'); %this is 
250 

251 

252 switch shape 
253 case 'default 
254 rO = geom('rO'); 
255 bI = geom('bl'); 
256 b2 = geom('b2'); 

too many input arguments ' ]) ; return ; 

normalised radius. 
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257 B= geom W) ; 
259 R= geom W) ; 
259 hinge = geom( 'hinge'); 

260 case '2e %2-elipse planform 
261 rO = 3/4; Yopoint where the functions change over 
262 bI = sqrt(l-(I-r/rO) .A 

2) ; 
263 tas (r- rO) A2; tbs = (I - rO )A2; 

264 b2 = sqrt(I-tas/tbs); 
265 B=0.025; 

266 R=0.15; 
267 hinge = -. 5; 
268 case 'r' %rectangular wing 
269 bI = 1; 
270 b2 = 1; 
271 rO = 0.5; 
272 B=0.025; 
273 R=0.15; 
274 hinge = -. 5; 
275 case ' triangle ' 
276 rO = 0; 

277 bI = 1; 
279 b2 =I- (r-rO)/(I-rO); 
279 B=0.025; 
280 R=0.15; 
281 hinge = -0.5; 
292 otherwise 
283 disp ([ mfilename ' error unknown type received num2str( 

shape)]) ; return 
284 end 
285 

286 If le 
297 symbolic = 1; 
i8s if symbolic 
289 warnstate = warning; warning off 
2" ? /OS 0me integrals are not properly symbolic but still work' 
291 dbI = dif f (bl , r) *(hinge+l)*B/R; 

db2 = diff (b2, r) *(hinge+ 1) *B/R; 
293 corrI = simple( sqrt(l+db JA 2)) ; 
294 corr2 = simple( sqrt(l+db2 A 2)); %leading edge correction 

factor 
295 outl= int(blAm * rAn * corrl, r, O, rO); 
2% out2= int(b2Am *rAn* corr2, r, rO, I); %cant integrate 

entire region 
297 out = abs(outl + out2); 
298 warning( warnstate ) 
299 else %numerical calculation 
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300 R= geom ( 'R') 
301 B= geom('B'); 
302 r=0 : 1/ 10000 1 

303 dr = [0 diff(r)]; 
304 le geom('Ie', 't', r); 
305 b geom('b', 't', r); 
306 dle = [0 diff(le). /diff(r)/R]; 
307 corrP = sqrt(l+dle. A2) ; 
309 out = sum(b AM r. An 

.* dr .* corrP); 
309 end 
310 else 
311 out= int(blArn * rAn, r, O, rO) + int(b2Am * rAn, r, rO, I); 
312 end 
313 

314 if verb 
315 if le 
316 disp Q arm b' num2str(m) 'r' num2str(n) ' with le 

correction 
317 else 
318 disp arm b' num2str(m) 'r' num2str(n)]) 
319 end 
320 end 
321 out = double(out); %converts the symbolic result to a number 
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B. 1.2 kine 

This is the kinematics datafile for the FMAV-50/2 dataset. It defines the wing kinematics, 
and runtime parameters. 
Line 21 is a flag wether the alternative kinematics in kine should be used instead. 
Line 58 sets the default number of timesteps nt=2048. This is rather high, for the purpose 
of smooth plots. Almost identical results are obtained using nt=512, with the greatest dif- 
ference being in the primary wake effect. nt should be a power of 4, for the sake of smooth 
transition from rotating to translating motion. 
lines 108-172 define the basic kinematics of the wing tip. Note the velocities and accel- 
erations are formed analytically at every timestep, not numerically differentiated, to avoid 
numerical noise. 

i function out = main (gimme, nt verb, show, show_typc) 
2%OUI = kin e (gimme, nt verb, show, show_type) 
3%datafile. All kinematic data is obtained by calling this function 
4 ? Iogimme is a string specifying which information to return 
j%nI is the number of timesteps 
6 %verbose is a Oil flag if additional information should be shown 

(typically for debugging) 
7% show is a Ol I flag if data should be shown as a figure 
8 
9 %Part of Project Mekado 

io %Called by: All 

ii %Calls: None 
12 

13YoLast edited 18.11.02 by CBP 
14 %contact pedersen@rmcs. cranfield. ac 
is %This kinematic datafile is for the 

outlined in document meki-jsOl 
16 last edited=' 18. Nov. 02 
17 last-run=date ; 

uk 
lissajous trajectory , as 

is 
ig %oflag if we should be using dickinson data , instead 

20VoNote this is hardcoded. 
21 dickinson = 0; 
22 if dickinson 

23 switch nargin 
24 case 0 
25 disp([mfilename ' error : needs at least I input']) 

26 case 1 

21 ? Iono timestep number given , use default 
28 cycle 0; %default timestep to use 
29 verb 0; 
30 show 0; 
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31 show_type = 'basic 
32 case 2 
33 show = 0; 
34 verb = 0; 
35 show_type = 'basic 
36 case 3 
37 show = 0; 
38 show_type = 'basic 
39 case 4 
40 show_type = 'basic 
41 case 5 
42 ? Iodo nothing 
43 otherwise 
44 disp Q mfilename ' error too many inputs 
45 end 
46 out = kine2 (gimme, cycle , verb , show, show_type); 
47 return 
48 disp( 'wrong place') 
49 end 
5o Yoend of dickinson part 
51 
s2 %Input switch 
53 switch nargin 
54 case 0 
55 disp([mfilename ' error : needs at least 1 input 
56 case 1 
57 ? Iono timestep number given . use default 
58 nt = 2048; %default number of timesteps 
59 verb = 0; 
60 show = 0; 
61 show_type = 'basic 
62 case 2 
63 show = 0; 
64 verb = 0; 
65 show_type = 'basic '; 
66 case 3 
67 show = 0; 
68 show_type = 'basic '; 
69 case 4 
70 show_type = 'basic'; 
71 case 5 
72 91odo nothing 
73 otherwise 
74 disp Q mfilename error too many inputs 
75 end 
76 
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77 

78 % define period and air density 
79 % 

8o period = 1/20; 
Bi f I/period; 
82 dt period / nt ; %timestep 
83 rho 1.225; ? 1ofluid density 
84 W=2* pi *f; %radian frequency 
Bs nwak=I; ? Ionumber of cycles in full wake 
86 firststep = 'w'; %vauels are (w)rap, (s)mooth or (i)mpulse. 
87%decides how to form the first step for wagner and kussner 
ss datalength = 'f'; %values are (f)ull or (o)ther: length of data 

full cycle or other. 
sq wakemethod = 'f '; %wether to form (f) ull secondary vortex sets or 

(g)row them from the start time 
go polmethod =' It '; Yowhich polhamus method to use 
91 usepolhamus = 'y' ; %wether to use polhamus to correct cl for wake 

calculations 
92 tailflag = 1; %wether to calculate wake location and reversal 

based on tailing edge, or hinge velocity 
93 tshow = [1 200 500]; %which timesteps to show 
94 rshow = 9; %which radial position to show 
95 % 
96 % 

97 

98 if verb 
disp(['Period ' num2str( period)]); 

100 disp(['Timesteps ' nurn2str(nt)]); 
101 disp(['Fluid Density ' num2str(rho)]); 
102 end 
103 

104 t O: dt: period-dt; 
fos tt W*t; 
106 dt period/nt * Der(t, t); 
107 

log 

tog%create pitch angle 
110 % 
III % 
112 nI = floor(nt/8); 
113 n2 = floor(3*nt/8); 
114 nmid = floor(nt/2); 

1[$ 0= floor(5*nt/8); 
116 n4 = floor(7*nt/8); 
117 

118 p= .5* (sin(4*tt) + tt*4) + pi/2; 
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119 p(nI : n2) = pi*ones( size (p(nl : n2))) ; 
120 p(n2+1: n3) = -p(n2+1: n3)+pi+p(n2+1); 
121 p(n3: n4) = 0* ones( size (p(nl : n2))) 
122 p(n4+1: nt) = p(n4+1: nt)-p(n4+1); 
123 

124 dp = 2*(cos(4*tt)+I) * w; 
125 dp(l: nl) = dp(l: nl); 
126 dp(nl: n2) = zeros( size(p(nl : n2))) 
127 dp(n2+1: n3) = -dp(n2+1: n3); 
129 dp(n3: n4) = zeros( size (p(nl : n2)) 
129 

130 ddp 8* WA2 * sin (4* tt 
131 ddp(nl: n2) = zeros( size (ddp(nl : n2))) ; 
132 ddp(n2: n3) =- ddp(n2: n3); 
133 ddp(n3: n4) = zeros( size (ddp(nl : n2))) ; 
134 

135 

136 

137 YO 
scale rotation 

138 dummy = 18 0; 
139 p dummy/180 (p-pi/2) + pi/2; 
140 dp dummy/ 18 0 dp; 
141 ddp dummy/180 ddp; 
142 

143 SP sin (p) 
144 CP COS (P) 

145 

146 % 

147 
% 

148 j? /Wj? /j? /WO 

149 

150 

create sweep angle (back positive) 
152 % 

153 YO 
, s4A = 120; %total angle swept; 
mA=A* pi 18 0/2; %amplitude swept 
156 phi = -A cos tt ); 
157 dphi Aw sin ( tt 
iss ddphi A WA 2* cos(tt 
159 % 

160 
% 

161 0 

162 

163 
, 64% create plunge angle (down positive) 

UNCLASSIFIED Page 159 of 248 



Pedersen B. 1 Data Functions 

165 % 

166 PSi -A/8 * sin (2* tt 
167 dpsi -A/4 *w* cos(2*tt); 
168 ddpsi= A/2 * w^2 * sin(2*tt); 
169 clear A; 
170 % 

171 % 

172 

173 

iuYoget variables needed 
175 R= geom( 'R' 

, 't 
176 B= geom( '13' , 't 
177 hinge = georn( 'hinge 't 
179 

179 %note these velocities are of the flow relative to the wing 
ISO uht = -R dphi; 

181 duht -R ddphi; 
182 

183 uvt R* dpsi 
184 duvt R* ddpsi; 

185 
186 unt uht SP + uvt. *CP; 
187 Upt uht CP - uvt. *SP; 
ISS 
189 dunt duht SP + duvt CP +2* dp upt; 
igo%careful: note coriolis term 
191 dupt = duht CP - duvt SP -2* dp unt; 
192 %careful of the coriolis term here too 
193 

194 Ut abs(uht + sqrt(-I)*uvt); 
195 ut2 abs(unt + sqrt(-I)*upt); 
196 

i97 

198% convert to x, y, z coordiantes 
199 % 

200 if girnme == 'x' I gimme == 'y' I girnme == 'z' 
201 tip_basic = [0 R 01; %rest position of lip 
202 for i=l: nt 
203 TIP-R = rotator (tip_basic phi(i) psi(i) 0); 
204 x(i) = TIP_R(I); 
205 y(i) = TIP_R(2); 
206 Z(i) = TIP_R(3); 
207 end 
208 end 
209 % 

210 % 
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211 

213 
214 %output switch 
215 If lisir(gimme) 
216 switcb gimme 
217 case ('id', 'ID') 
218 out -[ 'Kinematics: Lissajous 

, frequency ' num2str(f) 1; 
219 case nt, 
220 out - nt if verb disp ( 'Timesteps ') ; end 
221 came ' nrot ' 
222 out nrot; If verb disp('socand halfstroke start index'); ead 
223 case 'dt 
224 out dt Ir verb disp('Timestep length'); exd 
225 case 'rho' 
226 out -r ho If verb dIsp( 'Density '), end 
227 case Rt, 
228 out - nt If verb disp('Number of timesteps'); cod 
229 came 'T' 
230 out - period if verb disp( 'period ') ; end 
231 case 17, 
232 out - f; If verb dIsp( 'frequency') ; end 
233 Cale , ut , 
234 out - ut if verb disp('Iip total velocity '); end 
235 case 'ut2* 
236 out - at 2 If verb dIsp('1ip total velocity 2'); eod 
237 case uht, 
238 out -u ht If verb disp(*tip horizontal velocity'); end 
239 case uvt, 
240 out - uv t; If verb disp('tip vertical velocity'); ead 
241 else ut, 
242 out - ut If verb dIsp('tip total velocity '); elmd 
243 cast 'unt' 
244 out - unt If verb disp tip normal volocity'); eod 
245 case upt, 
246 out - upt If verb disp('tip parxielle velocity '); end 
247 case 'duht' 
249 out - duht; If verb disp ( 'tip horz acceleration ') ; end 
249 case 'duvt' 
250 out - duvt; if verb disp('tip vert acceleration '); end 
251 came 'dunt' 
252 out - dunt; If verb dIsp('tip norm acceleration of fluid *); end 
253 case dupt , 
254 out - dupt; If verb disp('Iip parl acceleration of fluid'); end 
255 case *dp' 
256 out - dp; If Verb disp('pitching velocity (rnd/s)'); end 
257 cast *ddp' 
258 out - ddp; If verb dlip('pitching acceleration (rad/02)'), eud 259 case 'Phi' 
260 out - phi; If verb disp('sweep angle'); ead 
261 ease 'dphi* 
262 out - dphl; If verb diep('sweep angular velocity'); end 
263 case 'ddphi' 
264 out - ddphi; If verb disp(*sweep angular acceleration') ; end 
265 Cale 'Psi' 
266 out - psi; If verb disp('plunge angle'); end 
267 ease *dpsi' 
269 out - dpsi; if verb disp('plunge anglular volocity); ead 
269 case 'ddpsi ' 
270 out - ddpsi If verb dIsp( 'plunge anglular acceleration ; end 
2: 71 case Sp, 
272 out - SP; if verb dIsp( ' sin(pitch ) ; end 
273 case Tp, 
274 out - Cp; If verb dImp( 'cos(pitch ) ; end 
275 Cale 'Pitch , 
276 out - P; If verb disp( 'pitch ') ; *ad 
277 Cale 't, 
278 out - t; If verb diop( 'time '); end 
279 case . It . 
280 out - it If verb disp('phase time'); encl 
281 Cale 
292 out - X; If verb disp(*x of hinge'); end 
283 case *Y, 
294 

1 out - Y; If verb disp('y of hinge'); eod 
285 case 'a' 
286 out - Z; If verb disp('z of hinge'); end 
287 case 'firstatep 
298 Out - firstotep If verb disp('method for first stop '); end 
289 come 'datelongth ' 
290 out - datalangt h; If verb disp('dati longth'); eod 
291 case 'usepolhamus' 
292 out - usepolhamus; If verb dlip('adjust wake for polhamus flag'); ead 
293 ease tailflag, 
294 out - tailflag ; If verb dIsp( 'tailing edge flag '); end 
295 cast 'wakemethod' 
296 out - wakernethod; If verb disp('wake mrthad'); eod 
2917 case *1show ' 
298 out - tshow; If verb disp('which timesteps to show'); cmd 
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299 came rshow, 
300 out - rshow; If verb disp('which radial position to show'); end 
301 cast *nwak' 
302 out a nwak; It verb disp('aumber of cycles in full wake'); eod 
303 case 'polmethod' 
304 out - polmethod; If verb disp('polhamus method to use'); emd 
305 otherwise 
3(% disp([mfiloname ' error: unknown string roceived: ' sum2str(gimmc)]) 
307 end 
308 end 
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B. 1.3 geom2 and kine2 

These are the alternative datafiles for the Robofly experiment. They are almost identical to 
the above, except: 
The wing shape parameters are calculated numerically. 
The velocity and acceleration terms are formed by numerical differentiation of the position. 
This gives some noise, which is corrected for manually. 
The data is read from a file, not formed analytically. 

geom2 

i function out = main(in type r verb show); 
2 %Out = geom(gimme, 't 'I 'r ', r, verb, show) 
3 %core datafile . All geometric data is obtained by calling this 

function 

4Yowhat is a string specifying which information to return 
5% 't 'I 'r ' is a string specifying wether you want rotary or 

translational chord 
6% r the normalised radius where you want the geometry for. This 

can be a vector 
7% if r is a string , the tip calculation is performed, for maximum 

radius and chord 
verb is a 011 flag if additional information should be shown 

typically for debugging) 

9% show is a0 11 flag if data should be shown as a figure 

io 
ii VoLast edited 13. May. 03 by CBP 

12%This geometry datafile is for the Dickinson wingshape. 
13 last_edited=' 13. may. 03 
14 last-run=date 
is 
16%Input switch 
11 switch nargin 
is case 0 
19 disp([mfilename ' error : must have at least 
20 case 1 
21 type = 't'; r= 'tip'; verb =O; show=O; 
22 case 2 
23 r= 'tip'; verb =O; show =0; 
24 case 3 
25 verb = 0; show 0; 
26 case 4 
27 show = 0; 
28 case 5 
29 Yodo nothing 

one input']); 
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30 case 6 
31 disp('too many input arguments'); 
32 end 
33 

34 data = 'rundata/dick_wing'; 
33 load (data) 
36 

37R = 0.25; 
3s B= max (b); 
39 c= 2*B; 
40%r_default loaded from file 
41 % hinge is not a constant ! 
42 [ err , rOindex min(abs (B-b)) ; Yopoint where chord is maximum 
43 

44 switch type 
45 case 't'; 
46 if verb>1 disp( 'translational chord'); end 
47 case 'r '; 
48 if verb>1 disp( 'rotational chord'); end 
49 otherwise 
50 disp Q 'geom function error - chord type must be r or t 

num2str (type) 
51 out =-1; 
52 return 
53 end 
54 

35 

56 tipflag = 0; 
57 %if r is a string (typically 'lip ') assume we are calculating 

using max values 
so if Isstr(r) 
59 r= ones( size (hinge)); b= ones( size (hinge) )*B; tipflag = 1; 

60 else 

61 Yoassume r is the normallsed radius we want to calculate at, 
possibly a vector 

62 if max(r)>l dispQrnfilename ' warning: received radius in 

excess of 1, radius should be normalised']); end 
63 if min(r)<O disp([mfilename ' warning: received radius below 

0, radius is normalised, from the hinge']); end 
64 end 
6S rO = r(rOindex); 
66 

67 %if tipflag, all chords are maximum 
69 If tipflag b= ones( size (r)) ; end 
69 

7D%translational chord 
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71 le = (+l+hinge) b; %leading edge 
72 te = (-l+hinge) b; %trailing edge 
73 

74 a= warning; 
75 warning off 
76 dledr = [0 diff(le). /diff(r)]/R; %leading edge slope 
77 warning (a) 
78 clear a; 
79 

so 'loshow wingshape 
81 if show hold off; plot (r*R, le 

, 'b- I r*R, te , 'b-') ; hold on; axis equal; 
end 

82 

83%convert to rotational chord, if requested 
84 if type == 'r' 

85 [r, le] = 12rc(le, r, length(r), O); 
86 [r , te ]= 12rc (te r, length (r) 0) 

87 end 
:: 

%Identifier , used for calls to ntharm below 
go shape = 'dick'; 

93 %Output owlick 
94 If Issir(in) 
95 switcb type 
96 came 't'; 
97 svvltcb in 
98 case (' id 'ID') 

out - 'Geometry: Dickinson wing']; 
100 case 'area' 
101 out 2aB*Ra goom('b[rO'); 
102 Cale R, 
103 out R; 
104 case T, 
105 out - 02; 
ID6 case 'b' 
107 out - b; 
108 Cale C, 
109 out - C; 
110 Cale 'bingo' 
III out - hinge; 
142 case 'shape' 
113 out - shape; 
114 case *bI ' 
its out - bl; 
116 case 'b2' 
117 out - b2; 
113 case ('change', 'ro') 
119 out - ro; 
120 case 'bOrO' 
121 out - atharm(O. 0); 
122 case 'blrO' 
123 out - titharm(1,0); 
124 case 'birl' 
125 out - ntharm(l, l); 
126 case 'blt2' 
127 out - atherm(1,2)-, 
129 case 'blr3' 
129 out - ntharm(1,3); 
130 came 'b2rl' 
131 out - ntharm(2, I); 
132 case *b2r2' 
133 out - ntbarm(2,2); 
134 case 'b3rO' 
135 out - ntharm(3, O); 
136 case 'b3rl' 
137 out - ntharm(3, I); 
138 cast 'b4rO' 
139 out - atharm(4, O); 
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came 'b4rl ' 
0 !t ? tharm (4 .1 

case b 
ý0 

a ut - utharm(1, O); 
case 

0'bI 
10'erharm 

(1 .01 
case 

u1bI 
rl P' 

ou t7 otharm (I ,II 
case *bl, 2P* 

out . ntharm(1,2,1); 
case 'blt3P' 

t- atharm(1,3.1); 
caI: 

u 
, IP, 

9utb! 
1, 

Gth@fm(2, I, l); 
case 'b2r2P' 

t" ntharm (2 2. I 
css: 

u'b3rOP 
' 

t, ; t. hATM (3 .0, I), 
case 

"Ort 

"VI- atharm (3 1. I 
case -b4rOP 

" ut utharm(4,0,1); 
case .1a 

" ut I@; 
cast t.. 

out 
case dl: dtre; 

0 ut - dledr; 
Cale c_d a fault '; 

out - c_default; 
came 'r_dcfault*; 

0 !t- r-default; 
case rOindox' 

O! 
dr' 

r0index; 
case 

%dr Is the spanwise length of each element (Nornalised) 
dr - 10 dIfr(geom(*r_default'))]; 
%set the second value of dr to 0 
%t h I, represents the inner 9 cm of the wing 
%where the measuring equipment Is 
91. so assume It generates no forces 
dr(2) - 0; 
out - dr; 

Oth c r*lt 
dimp(tinfilename ' error , unknown string passed: ' in)) 
Out - -1; 
re into 

end 
case 'r'; 

disp('WarninS -L rotary cbord requested not yet implemented') 
out - -1; 
return 

. ad 
If verb dIsp(in); end 
return 

. ad 

196 

197 function out = ntharm(rn, n, pol, b, r); 
I. gg Yontharm : calculates wing shape parameters 

, 99 %out = n1harm (m, n, le, b, r) ; 
200 %wing parameter is b-mr-n 

2oi %le=1 uses correction for leading edge slope (for Polhamus) 

202 %this implemenatation is numeric , not analytical 
203 

204 %Created by C. Pedersen 

20SVoLast edited 13. May. 03 
206 

207 switch nargin 
209 case (0, I) 

209 disp([mfilename error, need at least 2 inputs']); return; 

210 case 2 

211 pol. = 0; shape 'dick; verb = 0; 
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212 case 3 
213 shape 'dick' ; verb = 0; 
214 case 4 
21S verb 0; 
216 case 5 
217 ? Iodo nothing 
218 otherwise 
219 disp ([ mfilename error , too many input arguments return 
220 end 
221 

222 r= sym( 'r 'real %this is normalised radius. 
223 

224R= geom( 'R') 
22S B= geom( 'B') 
226 r= geom('r - 

default 
227 dr = geom( 'dr ', 't r) ; 
228 le = geom( 'le ', 't r) ; 
229 b= geom( 'b' , 't ', r) /B; 
230 dle = geom( 'dledr 't r) 
231 

232YoLeading edge correction (Polhamus) 
233 corrP = sqrt (I+ dle A2) A pol 

234 sum(b. Am .*r. 
An 

.* dr); 
235 out = sum(b. ^m r. An 

.* dr .* corrP); 
236 

237 

239 if verb 
239 if le 
240 disp arm b' num2str(m) 'r' num2str(n) with le 

correction 
241 else 
242 disp Q arm b' num2str(m) 'r' num2str(n)]) 
243 end 
244 end 
245 out = double(out); %converts the (possibly) symbolic result to a 

number 
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kine2 

i function out = main (gimme, cycle verb show, show_type); 
2 %Out = kin e (gimme, nt, verb, show, show 

- 
type) 

3%datafile. All kinematic data is obtained by calling this function 
4Yogimme is a string specifying which information to return 
s%nt is the number of timesteps 
6 %verbose is a Oll flag if additional information should be shown 

(typically for debugging) 
7% show is a0 11 flag if data should be shown as a figure 
8 
9 

io9loLast edited 13.5.03 by CBP 
ii %This kinematic datafile is 

robofly 
12%With rotation leading the 
13 

14 last 
- edited=' 13. May. 03 

is last-run = date; 
16 

i7%load data from file 
is load 'rundata/dick_kine' 
19 

20%Input switch 
21 switch nargin 
22 case 0 
23 disp([mfilename ' error 
24 return 
25 case 1 
26 cycle I 
27 verb 0; 
29 show 0; 
29 show_ type = 'basic 
30 case 2 
31 show = 0; 
32 verb = 0; 
33 show_ type = 'basic '; 
34 case 3 
35 show = 0; 
36 show_ type = 'basic '; 
37 case 4 
39 show type = 'basic 

for the triangular wave of dickinson 

reversal 

needs at least I input']) ; 

39 case 5 
40 Yodo nothing 
41 otherwise 
42 disp([mfilename ' error: too many inputs']) 
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43 end 

45 tailflag = 1; %calculate reversal based on tailing edge 
46 nrot = 'find; %automatically find reversal times 
47 firststep = 'i '; %values are (w)rap 

,( i) mpulsive or (s)mooth 
48 %decides how to form the first step for wagner and kussner 
49 datalength ='f %values are (f) ull , (o) ther 
so %length of data full cycle , or other. 
51 wakemethod 'g' %values are (g)row from start , or (f) ull 
52 polmethod 'It'; Yowhich polhamus method to use 
S3 usepolhamus = 'y' ; %adjust cl for polhamus when calculating wake 

y) es or (n) o 
54 rshow = 14; Yowhich radial position to plot 
55 tshow = [1 50 100 200 250]; %which time positions to plot 
56 nwak = 1; 
57 

s&%Choose which timesteps to use 
59 switch cycle 
60 case 0 
61 ti = 1: 2356; firststep 'i datalength 'o'; 

62 case 1 
63 ti = 2: 297; firststep 'i 
64 case 2 
65 ti = 298: 598; 
66 case 3 
67 ti = 599: 891; 
68 case 4 
69 ti = 892: 1185 

70 case 5 
71 ti = 1186: 1480; 
72 case 6 
73 ti = 1481: 1774; 
74 case 7 
75 - ti = 1774: 2068; 
76 case 8 
77 ti = 2069: 2356; 
79 case 9 

79 , ti = 2: 598; firststep 'i datalength got 
so otherwise 
31 disp([mfilename ' error cycle number must be 0-9, but is 

num2str( cycle)]) 
82 end 
33 

&4 Wont extract relevant cycle 'until last 
_step. ss Yoslower , 

but derivatives are more accurate 
86 nt = length(ti); 
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87 

88 

sq % define period and air density 
go % 
91 period = 3; 
92 f I/period; 
93 dt period / nt; 
94 rho 870; %mineral oil 
95 w= 2* pi*f; 

97 % 

98 

99 

100 

101 if verb 
102 disp ([ 'Period ' num2str(period) 
103 disp Q 'Timesteps ' num2str (nt) ]) 

104 disp (['Fluid Density ' num2str( rho)]); 
105 end 
106 

107Yophase time 
Jos tt=w*t 
t09 

no Yopitch angle 
in p rot / 180 * pi + pi/2; 
112 PP 

Wtt 

114 SP sin (p); 
115 CP Cos (P) ; 
116 

it7 Olopitching rate 

Ila dp = der(p, t); 
'119 dp(2) = 1.01; %manually 

120 dp(590) 1.06; 
121 dp(1179) 1.04; 
122 dp(1768) 1.035; 
123 

set first value to give a good fit 

124Yopitching acceleration 
125 ddp = der(dp, t); 
126 

127%There is some numerical noise, which is aggrevated by double- 
differentiating 

12891OWe manually smooth this: 
129 ddp(2) = -5-18; ddp(3) = -5.11; %manually set first two values 
Do ddp(590) -5.18; ddp(591) = -5.18; 
M ddp(1179) -5.18; ddp(1180) = -5.18; 
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132 ddp(1768) = -5.15; ddp(1769) -5.16; 
133 

134 ? Iosweep and plunge angles 
135 phi = -az '/180 * pi ; 
136 psi = -el '/180 * pl; 
137 

139 dphi = der(phi, t); 
139 dpsi = der( psi ,t 
140 

14t ddphi = der(dphi, t); 
142 ddpsi = der( dpsi ,t 
143 

, 44%manually adjust values to be smooth 
145 dphi(2) -0.25; 
146 ddphi(2) 5.2; ddphi(3)=5.25; 
147 

149 Ologet geometric variables needed 
149 R= georn( 'R' 
, so B= georn( 'B' 
151 hinge = georn( 'hinge 
152 

153%note these velocities are of the flow relative to the wing 
154 uht = -R dphi; 
155 duht -R ddphi; 
156 

157 uvt R dpsi; 
in duvt R ddpsi 
159 

160 unt uht SP + uvt. *CP; 
161 Upt uht CP - uvt. *SP; 
162 

163 dunt duht SP + duvt CP +2* dp Upt; 
1*64%careful: note the coriolis term 
165 dupt = duht .* CP - duvt .* SP -2* dp unt; 
m%careful of the coriolis term here, too 
167 

169 Ut= abs(uht + sqrt(-I)*uvt); 
169 ut2 = abs(unt + sqrt(-I)*upt); 
170 

171 Yoposition in x, y, z coordinate system 
, 72 1f girnme == 'x 'I girnme == 'y 'I gimme ==IzI 
173 tip_basic = [0 R 01; %rest position of tip 
174 

for i=ti 

175 TIP 
-R= rotator (tip_basic phi(i ), psi(i) 0); 

176 x(i) = TIP_R(I); 
177 y(i) = TIP_R(2); 
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179 z(i) = TIP_R(3); 
179 end 
, so end 

182 %output switch 
183 ir listr(Simme) 
184 switch Simme 
ISS case ( 'id'. 'ID*) 
186 out - ('Kinematics: Dickinson, frequency ' num2str(f) 1; 
187 Cale *at' 
188 out - nt If verb disp('Number of timestops'); emd 
189 case 'nrot' 
190 out - nrot If verb disp('second halfstroke start indes'); tmd 
191 case 'dt' 
192 out - dt If verb diop('Timestep langth'); exd 
193 Cale 'rho' 
194 out -, he II verb dlop ( 'Density *); cod 
195 case 'T' 
196 out - period if verb dl%p( 'period ') ; end 
197 came 'f' 
198 out - f; if verb dIsp( 'frequency') ; end 
M Cale 'ut, 
200 out - ut(ti); If verb d1sp('tip total volocity'); end 
201 case 'utV 
202 out - 1. U(ti); It verb ellip( 'tip total velocity 2 '); end 
203 case 'uht' 
2(M out -u bt(ti); If verb dlip('tip horizontal velocity '); end 
205 case 'uvt' 
2M out - ,, 1(ti); It verb d1sp('lip vertical velocity'). ead 
207 case 'ut, 
209 out - ut(ti); If verb disp('Iip total velocity'); eod 
209 eaa 'ant, 
210 out - unt(ti It verb dljp( 'tip normal velocity'); emd 
211 case 'upt, 
212 out - upt(li); If verb dlip(*tip paralelle velocity '); end 
213 case 'duht' 
214 out - duht(ti); If verb disp('tip borz accaleration'); ead 
215 case 'duvt' 
216 out - duvt(ti); If verb dlsp('11p vert acceleration '); end 
217 ease 'duat' 
219 out - dunt(ti)*. If verb disp('tip imam acceleration '): end 
219 case 'dupt' 
220 out - dupt(li); If verb dIsp('1ip parl seceloration'); *nd 
221 case 'dp' 
222 out - dp(ti); If verb d1sp('pitchinS velocity (rad/s)'); end 
223 case 'ddp' 
224 out - ddp(ti); ir verb disp(*pitching acceleration (red/s^2)'); end 
225 case 'phi' 
226 out - phi(ti); If verb disp('sweep angle'); ead 
227 case 'dPhi, 
228 out - dphi(ti); If verb disp('sweep angular velocity'); end 
229 case 'ddphi' 
230 out - ddphi(ti); If verb dlip(*swccp angular acceleration '); end 
231 test 'Pei, 
232 out - pti(ti); If verb d1sp('plunge angle'); end 
233 case 'dpsi' 
234 out - dpoi(ti); It verb disp('plange anglular volocity'); end 
235 coo@ 'ddpsi' 
236 out - ddpsi(ti); If verb d1sp('plunge anglater accelefetion'); eed 
137 case 'SP' 
238 out - SP(ti); If verb dlip( 'sin( pitch)') ; cod 
239 Cale TP, 
240 out - Cp(ti); If verb ellsp( 'cot( pitch) '); end 
241 cast 'pitch 
242 out P(ti); If verb d1sp( 'pitch ') ; end 
243 case 'I' 
244 out If verb dlsp('tiFne'); exd 
245 case 'tt, 
246 out - tt(tiý-tt(ti(l)); If verb disp('phase time end 
247 case 'a' 
248 out - x(ti); If verb d1sp('x. of hinge'); end 
249 case 'Y' 
250 out - Y(ti); If verb dlsp('y of hiikgo'); ead 
251 Cale 'a' 
252 out - Z(ti). If verb d1sp('z of binge'); end 
253 case * firststop 
254 out - fifststep If verb d1sp('mothod for first Btep'); end 
255 case 'datalength' 
256 out - datalongth If verb dimp('dats longth'); eod 
257 case 'tailflas* 
258 out - tailflag; If verb disp('tail flag'). eed 
259 case 'ti, 
260 out - ti; If verb d1sp('time 1ndexes'); end 
261 case 'wakemethod' 
262 out - wakemethod; If verb disp('wake method'); ead 
263 case 'usepolhamus' 
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264 out - usepolhamus; It verb disp('adjust wake for pollismus flag'); eod 
265 case 'rshow' 
266 out - rshow; If verb disp('which radial position to show'); eed 
267 case 'tshow ' 
268 out - Ishow; If verb disp('which radial position to show'); cud 
269 case 'nwak' 
270 out - nwak; If verb disp('number of times to repeat main cycle for full wake'); eud 
271 ease 'polmethod' 
272 out - polmothod; If verb dimp('pothamus method to use'); end 
273 Otberwile 
274 dlip(linfilename ' error: unknown string received: ' num2str(gimme)]) 
275 end 
276 ell* 
277 message( toe j mfiloname ' error: need a string for Simms: ' sum2str(Simme)]); 
278 cod 
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B. 2 Calculation Functions 
These functions perform the calculations of section 8 to 11. 

B. 2.1 qs 

This performs the quasi-steady calculations of section 8. Remember that the lift and drag 
referred to are actually Fv and FH. 
Lines 110-125 form the normal and parallel components both as a function of the vertical 
and horizontal, and as direct functions of the velocity. This is done for the sake of cross- 
checking. 
Lines 129-131 form the bound vorticity of the wing. 

i function out = main (gimme, uh, uv, pitch dp, r, b, hinge verb show); 
2 %calculates the quasi-steady results. 
3%OUI = qs ('gimme ', uh, uv, pitch, do, r, b, hinge, verb show); 
4WOTE: full-wing values use lip values of uh, uv, R and maximum B, 

and geometry data from GEOM. M 

s%inputs must all be grids of values 
6 

7%Created 21.4.03 by CP 
a last_edited='21. Apr. 03 
9 last-run=date; 
10 
n Yoparse input , and preamble 
12 switch nargin 
13 case 0 
14 gimme = TW' ; uh = kine ( 'uht uv kine ('uvt') pitch kine 

( 'pitch ') ; dp = kine ( 'dp'); 

is r=1; b= geom( W) ; hinge = geom( 'hinge verb = 0; show 
= 0; 

. 
16 case 1 

17 uh kine( 'uht uv = kine( 'uvt') ; pitch kine(' pitch dp 
= kine('dp'); 

is rI; b= geom( W) ; hinge = geom( 'hinge verb = 0; show 
= 0; 

19 case 2 

20 uv kine 'uvt pitch = kine ( 'pitch dp kine ( 'dp 

21 rI; b geom( W) ; hinge = geom( 'hinge ') verb = 0; show 
= 0; 

22 case 3 

23 pitch = kine('pitch dp = kine( 'dp'); 

24 r=I; b= geom( 'B') hinge = geom( 'hinge verb = 0; show 
= 0; 

25 case 4 
26 dp = kine('dp'); 
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27 r=I; b= geom('B') ; hinge = geom( 'hinge ') ; verb = 0; show 
= 0; 

28 case 5 
29 rb= geom( 'B') ; hinge = geom( 'hinge verb = 0; show 

= 0; 

30 case 6 
31 b= geom( 'B') ; hinge = geom( 'hinge verb = 0; show = 0; 
32 case 
33 hinge geom( 'hinge'); 
34 case 8 
35 verb 0; show = 0; 
36 case 9 
37 show 0; 
39 case 10 
39 Yodo nothing 
40 otherwise 
41 disp([mfilename ' error 
42 return 
43 end 
44 

verb = 0; show = 

too many input arguments ' ]) 

45%calculate lift and drag forces 
46 SP = sin ( pitch ); CP = cos ( pitch 
47un = uh. *SP + uv. *CP; 
49 up = uh. *CP - uv. *SP; 
49 ut = abs(uh + sqrt(-I)*uv); 
50 

51 51anean square total velocity along chord 
52 ut2mean = ut. ^2 + dp. A2 .*b. A2 .* 

(1/3 + hinge A 2) -2* hinge 
un .*b .* 

dp; 
53 

54 

s5 rho = kine ( 'rho 
;6 YoNormal Force per meter span 
57 VEL = uh; ANG = SP; 

58 Ll = 2*pi*rho*b*(VEL .* un); 
59 L2 = 2* pl* rho *bl*%2*(dp. *ANG*(-hinge). *un); 
60 L3 = 2*pi*rho*dp*b A2*(. 5 -hinge). *VEL; 
61 L4 = 2*pi*rho*dp A2*bA3. *ANG*(hinge A2-hinge /2) 

62 L= Ll + L2 + L3 + L4; 
63 

64 YoDrag Force per meter span 
65 VEL = uv; ANG = CP; 

66 DI =2*p1* rho *b * (VEL un) 
67 D2 = 2*pi *rho *bA2*(dp. *ANG*(- hinge). ý un); 
6s D3 = 2*pi*rho*dp*b A2*(. 5 -h inge *VEL; 
69 D4 = 2*pi*rho*dp. A2*bA3. *ANG*(hinge A2- hinge /2)'; 
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7o D= DI + D2 + D3 + D4; 
71 

72 %Lift Coefficient 
73 if 

gimme(l) == T' 
74 den = rho *b ut2mean; 
75 VEL = uh; ANG SP; 
76 CLI = Ll. /den; 
77 CL2 = L2. /den; 
78 CL3 = U. /den; 
79 CL4 = U. /den; 
80 CL = CLI + CL2 + CL3 + CL4; 
81 
82 ? 1,, Drag Coefficient 
83 VEL = uv; ANG = CP; 
94 CDI = 2*pi*(VEL .* un). /ut2mean; 
85 CD2 -2* pl*b. *(dp. *ANG*(. 5+ hinge). * un). / ut2mean; 
86 CD3 2*pi*dp. *b. *(. 5 -hinge). *VEL. / ut2mean; 
87 CD4 2* pi*dp. 112. *b .A2. *ANG* hinge A 2. /ut2mean; 
88 CD CD I+ CD2 + CD3 + CD4; 
89 end 
90 

91 R= geom ( 'R) 
92 b3rO = geom ( 'b3rO t b2r I 

bIr21 It, ); 
93 %Lift force for entire wing 
94 YoNote 

, only works if received 
maximum values 

95 LWI =R* LI * bIr2; 

% LW2 =R* L2 * b2rl 
97 LW3 =R*U* b2rl 

98 LW4 =R* L4 * b3rO 

99 LW = LWI + LW2 + LW3 + LW4; 
i0o 
im YoDrag force for entire wing 
102 YoNole 

, only works if received 
maximum values 

103 DWI =R* DI * bIr2; 

m DW2 =R* D2 * b2rl ; 

, os DW3 =R* D3 * b2rl ; 
lo6 DW4 =R* D4 * b3rO; 

to DW = DWI + DW2 + DW3 + DW4; 

= geom( 'b2rl ', 't ') ; blr2 = geom( I 

velocities are lip values , r, b are 

velocities are tip values , r, b are 

tog 
, ogglWormal force for entire wing 
, to W=L. * CP -D* SP; 

,,, N=2* Pi * rho *b *(un+dp . *b*(1/2-hinge) up; 
112W= LW .* CP -DW .* SP; 
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113 

114 %Paralelle force (away from lip 
n5 PI = Ll SP + DI CP; 

116 P2 = L2 SP + D2 CP; 
117 P3 = L3 SP + D3 CP; 

ns P4 = L4 SP + D4 CP; 

ns, P 2* Pi * rho *b * (un + dp 
b .* (-hinge)); 

ie tip suction); 

*b* (1/2 - hinge)) .* (un + dp 

120 

121 PWI =R* PI * bIr2 ; %this is in-plane paralelle force 
, 22PW2 =R* P2 * b2rl; 
, 23 PW3 =R* P3 * b2ri; 
124 PW4 =R* P4 * b3rO; 
125 PW = PWI + PW2 + PW3 + PW4; 
126 

127%wi ng circulation per meter span 
, 2& B= geom ( 'B) ; 
129 Gammal =2* pi *b* un; %note this is 

total bound gamma 
DoGamma2=2* pi *b*b * dp *(. 5 hinge); %not just for the 

upper surface 
131 Gamma = Gammal + Gamma2; 
132 

133 if gimme(l) == 'M' 
134 %root moments on wing 
135 116moment in vertical (upwards) direction 
136 N1XI = LI r*R; Yomoment per meter span 
137 NM = L2 r*R; ? Iomoment per meter span 
139 MX3 ='L3 r*R; ? Iomoment per meter span 
139 MX4 = L4 r*R; Yomoment per meter span 
140 MX = N1XI + MX2 + MX3 + MX4; %t otal vertical moment per meter 

span 

142 bIr3 = geom( 'bIr3 b2r2 ý geom( 'b2r2 b3rI = geom( 'b3rl 
143 NOM =LI *R 

A 2*blr3 ; 916moment for entire wing 
I" NOM = L2*R A 2*b2r2; Yomoment for entire wing 
145 NOM = L3 *RA2*b2r2 ; ? Iornoment for entire wing 

NA 
146 MX 4= L4*R 2*b3rl ; Yomoment for entire wing 
147 NM = MXWI + MXM + MXW3 + NIXV4; %total vertical moment for 

entire wing 
148 

149 %root moments on wing 
ISO Yomome nt in horizontal (backwards) direction 

151 MY1 = DI r*R; Yomoment per meter- span 
152 MY2 = D2 r*R; Yomoment per meter span 
153 MY3 = D3 r*R; Yomoment per meter span 
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154 MY4 = D4 .*r*R; Olomoment per meter span 
Iss MY = MYI + MY2 + MY3 + MY4; %total vert ical moment per meter 

span 
156 

157 b1r3 = geom('blr3 b2r2 = geom( 'b2r2 b3rI = geom( 'b3rl 
Iss MYWI = DI*R^2*blr3 ; ? Iomoment for entire wing 
159 NTM = D2*RA2*b2r2 ; Yomoment for entire wing 
160 NWM = D3 *R A 2*b2r2 ; Yomoment for entire wing 
161 MYW4 = D4*RA2*b3rl ; Olomoment for entire wing 
162 MM = NfM + N4YM + NftV3 + MW4; %total vertical moment for 

entire wing 
163 

164 %opitching moments (this is total moment for lift& drag 
combined) 

165 b4rO geom('b4rO'); 
166 

167 zeros( size (Dl)); 
168 NT2 2* pi * rho * (hinge + 0.5) * bA2 * un uh CP; 
169 W3 zeros(size(D3)); 
170 NV4=2* pi * rho * dp. *(-hinge A 2) .*b. A3 up; 
171 NIP = NTI + MP2 + NP3 + NT4; %opitching moment per m span 
172 clear a; 
173 

174 ? Iof or these require max values , ie lip velocities and b=B. 

175 NTWI = NTI R* b2r2 
176 NTW2 = Mn R* b3rl 
177 NFM = NT3 R* b3rl 
178 NM4 = 1VT4 R* b4rO; 

179 IýM = NIPWI + NTM + NVM + NW4; Yopitching moment for entire 
wing 

ISO end 
182 %outpur switch 
183 switch gimme 
184 case 'N' 
185 out - N; If verb dimp(Imfilename returning Normal force per m spau'l); ead 
186 case 'p, 
187 out - F; If verb d1sp(Imfilenams returning suction force per as speall); eed 
188 Cole W, 
189 out -NW; If verb disp([mfilename returning Normal force for wing']); Ond 
190 came 'PW* 
191 out - PW; If verb disp([mfilename returning suction force for wins, l); Gud 
192 case ( *MYWI') 
193 out -MYWI; If verb dlip(Imfilengme returning hors moment for wing, part I'J); qMd 
194 case ( ? AM*) 
195 out - MYM; If verb disp (I mfilonams returning hors moment for wing, part 2*1); ood 
196 test ( 'MY%3') 
197 out - MYM; If verb disp (I mfiloname returning hors moment for wills . part 3' ]); end 
198 case ( 7,4YW4') 
199 out - MYW4; If verb 41sp (i mfiloname returning here moment for wins. part 4' ]). end 
200 case ( ?, IYW') 
201 out - W; If verb d1sp(frnfiloname returning hors moment for wing, j). ead 
202 Cole ( 'MYI') 
203 out a MYI; If verb d1sp([mfiloname returning hors moment per span. part 1 ']); end 
204 case ( 'MY2') 
205 out - MY2; If verb disp (I mr1loname returning hors moment per span, part 2*1)-. ond 
206 call ( 'kM*) 
207 out - MY3; If verb disp([mriloname returning hors moment per span, part 3*]); osd 
209 case ( 'MY4') 
209 out - MY4; If verb d1sp([mfilename returning hors moment per span, port 4'1); end 
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210 case I W) 
211 out - MY; If verb disig (I mfilename returning hors moment per ipan']) ; end 
212 case I 'MP2') 
213 out - MP2; It verb disp mfilesame returning pitching moment per span part 2 ; end 
214 case ( 'WI ,) 
215 out - 101 ;If verb disp mriloname returning pitching moment per span part I ; end 
216 case ( 'hil") 
217 out W; If verb disp([mriloname returning pitching moment per span']); eod 
218 cast ( *MPW2') 
219 out MPW2; If verb dimp (( mfiloname returning pitching moment for wing part 2 )); end 
220 CBIS ( 'NMI') 
221 out - &MI; If verb disp([mraloname returning pitching moment for wing part I ']); end 
222 case ( 74W) 
223 out - hfW; It verb disp((mriloname returning pitching moment for wing']) ; end 
224 case ( '1&I ,, WXV) 
225 out - MXI; If verb dimp (I mriloname returning upward root moment per span . part 1']); cmd 
226 case ( K2, '&M') 
227 out - =; If verb dispQrnfilaname returning upward root moment per span. part 2 'j); cnd 
228 case I 'MLY '&M*) 
229 out - WO; If verb disp([mfiloname returning upward foot moment per span, part 3 ')); end 
230 caa91 WLA' , '&M') 
231 out - MX4; If verb disp([mfiloname returning upward root moment per span. part 4 '1) emd 
232 cast I 'ML'. MX') 
233 out - MX; If verb disp (I mfilename returning upward root moment per span ; end 
234 case ( 'IVL%M ,, N"') 
235 out - NVCWI; If verb dimp(Imfilonams returning upward root moment an wing, part Vj); ced 
236 case ('IVLW2'.? AXM') 
237 out - WM; If verb disp(Imfiloname returning upward root moment on wing, part 2']); eod 
238 case I 'NLW3', *NCW3') 
239 out - WM; If verb disp([mrilename returning upward root moment on wing, part 3')); emd 
240 case ('NLW4*, 'WM'l 
241 out - wm; if verb d1sp(Imfilename returning upward root moment on wing, part 4'1); ead 
242 a as a( ? ALW' , ?, M') 
243 out -MXW; If verb disp([mraloname returning upward root moment on wing'J); ead 
244 
245 case ( 'gartuna' 'Gamms' . 'GB' 'circ 
246 out - Gamms; If verb disp([mfilaname ' returning bound circulation per meter span'j); eMd 
247 case Vul2l 
249 out - st2mean; If verb disp(Imfilaname * returning mean square total volocity']); emd 
249 came (TLP, TLTP, 'clI') 
250 , out - CLI, If verb disp(Imfilename returning lift coefficient component I'l); end 
251 case ('CL2'. 'CLT2'. 'c12') 
252 out - CI. 2; If verb disp([mriloname returning lift coefficient component 2'1); end 
253 'ease ('CL3'. 'CLRP, 'c13') 
254 out - CU; If verb disp([mriloname returning lift coefficient , component 3 '1) end 
255 case ('CL4'. 'CLR2', 'c14*) 
256 out - CL4; If verb disp((mfiloname returning lift coefficient , component 4 '1) ; end 
257 case ('CDI', 'CDTI', 'cdl') 
258 out - MI; If verb disp (I mfilename returning drag coefficient . component I ']); end 
259 case ('CD2'. 'CDTV. 'cd2') 
260 out - CD2; if verb disp((nifiloname returning drag coefficient , component 2'1); ead 
261 cage j'CD3', 'CDRP. 'cd3') 
262 out - CD3; If verb disp([mriloname returning drag coefficient , component 3 'j); ead 
263 case (*CD4', 'CDR2*. *cd4') 
264 out C134; If verb disp([mfilenamo returning drag coefficient , component 4 ']) ; end 
265 case ( *CD'. 'dragcooff') 
266 out CD; If verb disp([mriloname returning drag coefficient ']); end 
267 cost ('CL', 'hftcosrr, ) 
268 out CL; If verb disparnmename returning lift coefficient ')); end 
269 come 
270 out L; If verb disp([mfiloname returning lift per motor spart']); cod 
271 eat* I'Ll'. 'Iiftl ') 
272 out - LI, If verb dimp([mfilename returning lift per motor span, component Pj): ead 
273 cast (*L2'. 'Iift2, ) 
274 out - 1.2; If verb dispQrnfilename returning lift per meter span, component 2 ')); emd 
275 case I'L3'. 'Iift3 ') 
276 out - 1.3; If verb disp([mriloname returning lift per meter span, component 3']); eod 
277 case (*L4'. 'Iift4, ) 
278 out - 1.4; If verb disp([mriloname returning lift per meter span. component 4 ')); end 
279 case ('D', 'drsg') 
280 out - D; It verb dlip((mriloname returning drag per meter spos'j); ead 
281 came ('DV, 'drszI') 
282 out - DI; If verb disp mfilename returning drag per motor span , component I'l); eod 
283 case ( TV 'drag2') 
284 out - D2; If verb disp mfilaname returning drag per meter span . component 2 ']); end 
285 case ('D3'. 'drag3'j 
286 out - D3; If verb disp mfiloname returning drag per meter span , component 3 ']); *ad 
287 case ( 'DV . 'drag4 ') 
288 out - D4; If verb disp mfilename returning drag per meter span , component 4'1); end 
289 case ( TW' ,' Ii ftwing ') 
290 out - LW; If verb disp Q mfilanams returning lift for entire wing']); end 
291 sea* 'LWI* 
292 out -LWI; If verb disp(Imfilename returning lift for entire wing, component Pj); ead 
293 case 'LW2' 
294 out - LW2; It verb disp([mriloname returning lift for entire wing. component 2'1); ead 
295 case TWV 
296 out - LW3; If verb dimp([mfiloname returning lift for entire wing, component 3']); end 
297 case TW4' 
298 out - LW4; If verb dlsp(imraloname returning lift for entire wing. component 4'1). end 
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299 cast IN' 
300 out - Dw; if verb disp(Inifilename returning drag for entire -'nS'l). Ond 
301 case 'DWI* 
302 out - DWI; If verb disp(Imfilename returning drag for entire win&. component I'l); Gmd 
303 case 'DW2* 
304 out DW2; If verb diepQrnfilename retufaing drag for entire wing. component 2*1); ead 
305 case *DWY 
306 out D%V3; if verb dlip(lmrilename returning drag for entire wing. component 3'j); ead 
307 case 'IYW4* 
309 out - DW4; If verb disp([mralaname retaraing drag for entire wing, component 4'1); eod 
309 case 'Pl' 
310 out - PI; If verb disp([mrilentme returning tip suction per an span. component I ']); Bad 
311 cast TV 
312 out - P2; If verb disp((infilename returning tip suction per an span, component 2'j); esd 
313 ease 'P3' 
314 out - P3; if verb d1sp([nifilename returning tip suction per as span, component 3*1). emd 
315 came TV 
316 out - P4; If verb disp((mriloname returning tip suction per as span. component 4*]); oad 
317 cast TWP 
318 out PWI; if verb disp(lonflalaname returning tip suction for wing. component 1*1); tnd 
319 cast *FW2* 
320 out PW2, If verb dlip(jinfilename returning tip section for wing, component 2, J); end 
321 care TWV 
322 out PW3; If verb disp(Imfilaname returning tip section for wing, component 3'1); *Sd 
323 case *PW4' 
324 out PW4; If verb disp([mralename returning tip suction for wing. component 4'1); omd 
325 case TV 
326 out - Pw; if verb disp([mrilename returning tip suction for wing']); ead 
327 otherwise 
329 dispi(Imfilename '. m srror: unknown Simme ' nom2str(Simme)]) 
329 end 
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B. 2.2 am 

This performs the added-mass calculations of section 9. 

i function out =main (gimme, uh, duh, tiv, duv, pitch dp, ddp, r, b, hinge , 
verb show) ; 

2 %calculates the added mass forces. 
3 %out = am('gimme ', uh, duh, uv, duv, pitch , dp, ddp, r, b, hinge, verb , show); 
4WOTE: full -wing values use tip values of uh, uv, R and maximum B, 

and geometry data from GBOM. M 
s %inputs must all be grids of values 
6 

7 %returns added mass lift or drag 
: 

%Created 21.2.03 by CP 
io %last edited 24.5.03 by CP 
ii last 

- 
edited='24.05.03 by CBP'; 

12 last-run = date 
13 

14 Yoparse input 

is switch nargin 
16 case 0 

17 gimme = TA' ; uh = kine ( 'uht ') ; duh = kine ( 'duht') ; uv = kine ( 
1 uvt ') ; duv = kine 'duvt ') ; 

is pitch = kine ( 'pitch ') dp = kine ( 'dp') ; ddp kine ( 'ddp 
19 r=1; b= geom( W) ; hinge = geom( 'hinge') verb = 0; show 

=0; 

20 case 1 
21 uh = kine ( 'uht duh = kine ( 'duht uv = kine ( 'uvt duv 

kine ( 'duvt ') 
22 pitch kine ( 'pitch dp = kine ( 'dp') ; ddp kine ( 'ddp 
23 r=Ib= geom( 'B') hinge = geom( 'hinge ') verb = 0; show 

=0; 

24 case 2 
25 duh = kine ( 'duht uv = kine ( 'uvt duv = kine ('duvt 
26 pitch kine ( 'pitch dp = kine ( 'dp ddp kine ( 'ddp 
27 r=Ib= geom( W) hinge = geom( 'hinge verb = 0; show 

= 0; 

28 case 3 
29 uv = kine ( 'uvt duv kine ( 'duvt 
30 pitch kine (' pitch ') dp = kine ( 'dp ddp kine ( 'ddp 
31 r=Ib= geom( W) ; hinge = geom( 'hinge ') verb = 0; show 

= 0; 

32 case 4 
33 duv = kine(duvt'); 
34 pitch kine ( 'pitch dp kine ( 'dp ddp = kine ( 'ddp 
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35 r=1; b= geom( W) ; hinge = geom( 'hinge') ; verb = 0; show 
= 0; 

36 case 5 
37 pitch = kine ( 'pitch dp = kine ( 'dp ddp kine ( 'ddp 
38 r=1; b= geom( W) hinge = geom( 'hinge') verb = 0; show 

= 0; 

39 case 6 
40 dp kine 'dp ddp kine (' ddp'); 
41 r 1; b geom( W) hinge = geom( 'hinge verb = 0; show 

=0; 

42 case 7 
43 ddp kine('ddp'); 
44 r=b= geom( W) ; hinge = geom( 'hinge verb = 0; show 

= 0; 

45 case 8 
46 r=I; b= geom( W) ; hinge = geom( 'hinge verb = 0; show 

= 0; 
47 case 9 
48 b= geom('B'); hinge = geom(' hinge'); verb 0; show 0; 
49 case 10 
50 hinge geom('hinge'); verb = 0; show = 0; 
51 case II 
52 verb 0; show = 0; 
53 case 12 
54 show 0; 
55 case 13 
56 Yodo nothing 
57 othe rwise 
58 disp([mfilename error: too many input arguments]) 
59 nargin 
60 return 
61 end 
62 

63 

64 

65 %loa d basic kinematics from datafile 
66 SP = sin(pitch); CP = cos(pitch); 
67 ut = abs(uh + sqrt(-I)*uv); 
68 a hinge 
69 up = uh CP - uv SP; 
70 un = uh SP + uv CP; 
71 

72 rho = kine ( 'rho 
73 

74 %L ift and drag per M span 
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7s Ll = pi * rho * b^2 * (duh .* SP .* CP + duv .* CP. ^2) ; %dirichlet 
part one 

76 L2 =pi * rho *b^2*dp .* (2 .* up .* CP-un sp); %dirichlet 
part two 

77 D= pi * rho * b1`3 * (-ddp .*a .* CP + dp. ^2 a .* SP % 
dirichlet part three 

7s L4 =2* pi * rho *bA2*( duh SP CP + duv .* 
CP. A 2) %kutta 

part one 
79 LS =2* pi * rho *bA2* dp (2 up CP - un SP) %kutta 

part two 
so L6 =2* pi * rho * bA3 * (a-1/2). * (-ddp CP + dp. A2 .* SP); % 

kutta part three 
81 L Ll + L2 + L3 + L4 + L5 + L6; %total lift 
92 LD = Ll + L2 + U; %Dirichlet 
93 

84DI = p! * rho *bA2 duh SP. A2 - duv . *SP CP) ; %dirichlet 
part one 

25 D2 = pi * rho * bA2 dp 2 up SP - un CP) % 
dirichlet part two 

96 D3 = pi * rho *bA3* (a) (ddp SP + dp. A 2 CP %dirichlet 
part three 

97 D4 =2* P1 * rho *bA2 (-duh SP. A 2 duv SP CP); % 
kulta part one 

88 D5 =2* pi * rho *b A2 dp 2 up SP un CP) ;% 
kutta part two 

89 D6 =2* pi * rho * bA3 (a - 1/2) . ddp SP + dp. A2 .* CP); % 
kutta part three 

go D= DI + D2 + D3 + D4 + D5 + D6; %total drag 

91 DD = Ll + L2 + U; %Dirichlet 
92 

93%Wing Integrals 
94%only works if received velocities are tip values, and r, b are 

maximum values 
9s R= georn( 'R') ; 
96 b2rl georn( 'b2rl 't b3rO = georn( 'b3rO 't 
97LWI Ll *R* b2rl; 
9s LW2 L2 *R* b2rl; 
99 LW3 L3 *R* b3rO; 
ioo LW4 L4 *R* b2rl; 
ioi LW5 L5 *R* b2rl; 
102LW6 L6 *R* b3rO; 
103LW = LWI + LW2 + LW3 + LW4 + LW5 + LW6; 
104 

ios Yodrag force for entire wing 
io6%only works if received velocities are tip values , r, b are maximum 

values 
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107DWI = DI *R* b2rl; 
los DW2 = D2 *R* b2r I; 

log DW3 = D3 *R* b3rO; 
, io DW4 = D4 *R* b2rl; 
ii, DW5 = D5 *R* b2rl; 
112 DW6 = D6 *R* b3rO; 
113 DW = DW1 + DW2 + DW3 + DW4 + DW5 + DW6; 
114 

wN =L CP -D SP; 
116 P=L SP +D CP; 
117 NW = LW CP - DW SP; 

, is PW = LW SP + DW CP; 

120 Whoose output 
121 switcb gimme 
122 case 'N' 
123 out - N. If verb disp(linfilenome returning Normal force per in spoe'l); osid 
124 case 'p, 
125 out - P; If verb disp((mfilenams returning section force per in spao'j); ood 
126 case W, 
127 out -NN; ir verb illsp(linfiloname returning Normal force for winS'j); ead 
128 case TV 
129 out - PW; If verb d1spQrnfilename returning auction force for wing, j). end 
130 came J 'L'. 'Iift ') 
131 out - L; If verb disp(Imfilename returning lift per meter spau'l); ood' 
132 case ( 'LD') 
133 out - iD; ir verb disp (( infiloname returning dificblot lift per motor apsit'j); and 
134 case ('Ll'. 'liftl ') 
135 out - LI; If verb disp([mriloname returning lift per meter span, component I'l); eod 
136 case ('L2'. 'Iift2 ') 
137 out - 1.2; If verb disp(ImMename returning lift per Meter span, component 2'j); ood 
139 case ('L3'. 'Iif(3 ') 
139 out - 1.3; If verb disp (l mfilename returning lift per meter spas , component 3 *1) ; end 
140 case ( 'L4' .'Ii ft4 ') 
141 out - L4; If verb disp mraloname returning II rt per meter spas , component 4 ; sod 
142 case ('LS',, krts ') 
143 out - LS; If verb disp mralename returning II ft per motor spas component 5 ; 004 
144 case ('L6'. 'Iift6 ') 
145 out - L6; If verb dimp(linfiloname returning lift per meter spas component 6 end 
146 case ( 'D' , 'drug ') 
147 out - D; If verb dimp([mrilaname returning drag per motor spau'l); eod 
148 case ( 'DD' , 'drag 'I 
149 out - M; If verb d1sp infilename returning diricblot drag per meter span'l); emd 
150 case ('Dl'. 'dragl') 
151 out - DI; If verb dIsp mriloname returning drag per meter span . component I ; end 
152 case ( 'D2' , 'drag2 ') 
153 out - D2; If verb disp infiloname returning drag per meter spas , component 2 ; sod 
154 cast I TY . 'drag3 ') 
155 out - D3; If verb disp mrilaname returning drag per meter span, component )']), end 
156 case ( 'D4' , 'drag4 ') 
J57 out - D4; If verb d1sp nifilename returning drag per motor span, component 4 '1) ; end 
158 case ( TW' ,' Ii ftwing ') 
159 out - LW; If verb disp mfilename returning Ii rt for entire wing'j); ead 
160 case TW* 
161 out - DW; If verb disp Q infiloname returning drag for satire wiag']); ood 
162 Came 'Pl' 
163 out - PI; If verb d1sp infilaname returning tip suction per as spas component I ; sod 
164 case TV 
165 out - P2; If verb disp infilename returning tip suction per rn spas component 2 ; #ad 
166 came 'NI' 
167 out - NI; If verb disp infiloname returning normal force per to span , component I *ad 
168 case 'N2' 
169 out - N2; If verb disp nifilename returning normal force per as span. component 2 ; sod 
170 came TWI, 
171 out - PWI; If verb dIsp (I infiloname returning tip suction for Wing, component I ']). sod 
172 case 'PW2' 
173 out - M; If verb diop (I infilecame returning tip suction for wing. component 2, ]); *ad 
174 case 'NWI' 
175 out - NVA; If verb d1sp ([ mfilename returning normal force for wing. component I ; cod 
176 cage 'NW2' 
177 out- N%2; If verb illsp(linfiloname returning normal force for wing, component 2'1); esd 
178 case TWP 
179 out - LWI; It verb d1sp([ infilename returning II ft for wing , component I ; and 
190 case 'LW2' 
1111 out - LW2; If verb disp ([ nifilename returning lift for wing, component 2*1); ead 
182 came TWY 
183 out - M; If verb disp Q infilenamo returning Ii rt for wing . component 3 cad 
184 case TWV 
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185 out - LW4; if verb disp ([ infiloname returning lift for wing component 4 ; ead 
186 case TWP 
187 out - LWS; If verb disp Q infilename returning II ft fo r wing component $']); end 
188 case TWV 
189 out - LW6-, If verb disp (I infiloname returning lift for wing, component 6'1); eod 
190 case 'DWI' 
191 out - DWI; if verb d lip infilename returning drag for wing component I ']); end 
192 case 'DW2* 
193 out - DW2; If verb dlop infilename returning drag for wing component 2 ']). end 
194 toss 'DWY 
195 out - DW3; If verb disp mfilaname returning drag for wing, component 3 ']); end 
196 seen 'DW4' 
197 out - DW4; If verb disp mralename returning drag for wing . component 4 '1) ; end 
199 case 'DWS' 
199 out - DWS; If verb disp infilenams returning drag for wing . component 5 ']); end 
200 case TW6' 
201 out - DW6; It verb disp mfilename returning drag for wing . component 6 ']) ; end 
202 tale TV 
203 out - PW; If verb disp([mrilename returning tip suction for winj'j); end 
204 otherwise 
205 dispQrnfilename '. in error: unknown Simms ' ourn2str(Simme)]) 
206 and 
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B. 2.3 pol 

This performs the Polhamus lift correction of section 10, for a single spanwise location. 
Line 60 obtains the leading edge thrust from qs. 
line 61 then forms the leading edge suction, based on the sweep. 
lines 67-98 decide which way to turn the force. 
lines 10 1- 123 decides how much to scale the force by. 
Finally, lines 130-135 forms the Polhamus corrections, L_pol and D_pol. These should be 
added to the quasi-steady forces. 

i fun cti on out = main (gimme, uh, uv, pitch dp, r b, hinge corr verb show) 
2 %OUI = pol ('gimme ', uh, uv, pitch , dp, r, b, hinge, corr . verb . show) 
3%calculates the polhamus correction to lift 
4 

s%created 20.5.03 by C. B. Pedersen 
6 last 

- edited='20. May. 03 
7 last-run=date 
: 

%input switch 
io switch nargin 
n case 0 
12 gimme = TW' ; uh m kine ( 'uht uv = kine ( 'uvt) ; pitch = kine 

( 'pitch ') ; dp = kine ( 'dp'); 
13 r= I; b= geom( 'B') ; hinge = geom( ' hinge ') ; verb = 0; show 

= 0; 

14 case I 
is uh kine(' uht') ; uv = kine('uvt'); pitch kine('pi tch dp, 

= kine( 'dp'); 
16 r I; b= geom( W) ; hinge = geom( ' hinge verb = 0; show 

= 0; 

1-1 case 2 
Is uv kine ' uvt pitch = kine ( 'pitc h dp kine (' dp 
19 r I; b geom( W) ; hinge = geom( ' hinge ') verb = 0; show 

= 0; 

20 case 3 
21 pitch kin e pitch dp = kine ( 'dp ') 
22 r= Ib= geom( W) hinge = geom( ' hinge verb = 0; show 

= 0; 
23 case 4 
24 dp kine(' dp'); 
25 r ;b= geom( W) ; hinge = geom( ' hinge verb = 0; show 

= 0; 

26 case 5 
27 r b= geom( W) ; hinge = geom( ' hinge verb = 0; show 

= 0; 
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29 case 6 
29 b geom( W) ; hinge = geom( 'hinge verb 0; show 0; 
30 case 7 
31 hinge geom( 'hinge'); verb = 0; show 0; 
32 case 8 
33 corr I; rO = I; verb = 0; show = 0; 
34 case 9 
35 verb 0; show = 0; 
36 case 10 
31 show 0; 
38 case 11 
39 Yodo nothing 
40 otherwise 
41 disp([mfilename error: too many input arguments']) 
42 return 
43 end 
44 

45 

46 %CHOOSE AEMOD 
47 

48 method = kine('polmethod'); YoNote this is hard-coded 

49 Yof 1 rs t letter is : 
so %I rotate to the side un is at the le 

51 %M rotate to the mean un side 
52 %r 

rotate to the rear point un side 
53 %c 

always rotate clockwise (as seen from root) 
54 %u 

always rotate so upwards 
55 % 

56Yosecond letter is: 
57 %t 

rotate entire lip suction 
58 %f rotate only a fraction based on the amount of chord where un 

is the same sign as unle 
59 

60 P= qs( T' uh uv, pitch dp, r, b, hinge, 0,0); 
61 S=P corr %actual suction , corrected for leading edge sweep 
62 

63 ut2 = qs( 'ut2 uh, uv, pitch dp, r, b, hinge, 0,0); 
64B geom('B'); rO geom('rO'); 
65 

66 un uh .* sin(pitch) + uv .* cos(pitch); 
67 1fr ==O 

68 un = 0; 
69 else 
70 un un * rO /r ? Ioun at 'the characte'risit'c point here 

greatest-chord 
71 end 
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72 

73 unle un +B* dp * (-hinge-1); %unle = normal velocity at 
leading edge 

74 unme =un +B * dp *(-hinge); Younme = normal velocity at 
midpoint edge 

75 unre = un +B* dp * (-hinge +0.5) ; %unle = normal velocity at 
rear neutral point edge 

76 

77 turn = ones(size(uh)); 
79 switch method(l) 
79 case 'P 
so %rotate according to leading edge normal velocity 
81 %always rotate enture wing 
82 1= find(unle<O); turn(l) = -1; 
93 case W 
94 %rotate according to midpoint normal velocity 
85 1= find(unme<O); turn(l) = -1; 
86 case 'r' 
87 1= find(unre<O); turn(I) = -1; 
38 case 'c' 
89 %always clockwise 
90 Yodo nothing 
91 case 'u' 
92 %rotate so rotated vector is always upwards 
93 1= find(pitch > pl/2); Yofind where pitch>pil2 

turn(I) = -1; 
95 otherwise 
96 disp([mfilename '. m error: rotation method not recognised']) 
97 return 

98 end 

100 
-ioi% decide how much to scale the suction force hy 
102 

103 scale = ones( size (unle)) 
104 xo = ones( size (unle)) 

105 switch method(2) 
106 case 't 
107 if Verb>3 message( toc 'using total polhamus scaling'); end 
108 ? Iodo nothing 
109 case '10 

_. 
110 if verb>3 message (toc 'using linear polhamus scaling'); end 
III Yofind point where sing of normal flow reverses , xo 
112 1= find(dp*b); ? Iofind point where this is not zero 
113 %at points where it is zero, scaling is one, as already set 
114 xo(I) = hinge - un(I). /(dp(1)*b); 
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US xo = min(l xo); %if xo is off the 
trailing edge 

116 J= find(xo<-I); xo(J) = 1; %if xo 
. set at trailing edge 

117 scale(I) = (xo(l)+I)/2; 
Im case W 
119 disp('not yet implemented') 
120 otherwise 

trailing edge , set at 

falls off the leading edge 

121 disp([mfilename '. m error rotation method not recognized']) 
122 return 
123 end 
124 

12S %modify the forces 
126 

127 %oforce change due to the tip suction (note difference hetween P 
and S) 

128 

129 

130 SP ý sin(pitch); CP = cos(pitch); 
131 P_pol -P; %subtract the P suction force 
132 N_pol scale .* turn .*S; %but add the S suction force 
133 L_pol P_pol. *SP + N_pol. *CP; 
134 D_pol P_pol. *CP - N_pol. *SP; 

136 swItch Simms 
137 case 'P_pol' 
138 out - P-Pol II verb disp Q mfilename returning Polhamus suction force per m span ; end 
139 case 'N_pol' 
140 out - N_pol If verb dimp([mriloname returning Polhamus normal force per an spau'l); ead 
141 case 'L_pol' 
142 out - L_pol If verb disp(imfilename returning Polhamus lift force permspan']); end 
143 case 'D_pol ' 
144 out - D_pol If verb d1sp((mfilenamo returning Polhamus dr&S force per m span' I) ; end 
145 case 'turn' 
146 out - turn; If verb disp((mrilaname returning Polhamus turn direction'l); ead 
147 Cal* 'Scale' 
148 out - scale; If verb dimp([mfilename returning Polhamus scaling'j); ead 
149 elberwiso 
ISO d1sp(Imfilename '. m error: unknown gimme aom2str (Simms) 
III end 
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B. 2.4 wagner 

Calculates the effect of the primary wake, as described in section 11. It uses the numerical 
equivalent of the Duhamel integral, simply the summation of a number of discrete steps in 
the property. As will be shown later, the property in question in CL. Note that depending on 
the value of gimme, it will return either the perturbation, or the total result. 

i function out = main(DA, s, gimme, verb show); 
2 %Out = wagner(DA, s, 'gimme', verb, show) 
3 %returns the wanger effect on property A 

4 ýDA is the step change in property A at distances s 
s 016s is the distance from the wing DA occured. normalised wrt 

semichords 
6% NOTE SEMCHORDS, NOT CHORDS 

7% 'gimme ' governs what is returned 
8% 'corr ' is the change in A due to wagner effect . summed for all 

changes 
9% 'loca ' is as above, but for every DA individually (not summed) 
10 % 'tota ' is wagner correction 

_plus_ 
sum of steps DA. 

11 % show, verb return figures and verbose data if set to 1. 
12 

13 %created on 22.11.02 CBP 

14 %last edited 27.11.02 CBP 

15 %last edited 20.4.03 CBP - added check for negative s 
,6 last-editcd=' 20. Apr. 03 

17 last-run=date; 

is 
19 

20 ýýýo 

21 %check input 

22 switch nargin 

23 case (0, I) 

24 disp([mfilename error: need two inputs']) 

25 return 

26 case 2 

27 gimme = 'corr'; verb 0; show 0; 

28 case 3 

29 verb = 0; show = 0; 

30 case 4 

31 show = 0; 

32 case 5 

33 Yodo nothing 

34 otherwise 

3S disp([mfilename ' error: too many inputs received']) 

36 return 
37 end 
38 
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39 If min(s) <0 disp ([rnfilename ' warning -bad input: distance less 
than zero ' ]) ; end 

40%sorts the input by increasing distance s 
41 ? lo[s, Ij = sort(s); 

42 ýDA = DA (1) 
43 %clear 1; 
44 

45 

46 wag= - 0.165 * exp(-0.041 * s) - 0.335 * exp(-0.3 *s); %this is 
the wagner correction function , as approximated by jones 

47 wag_loca = wag .* DA; 
49 wag_corr = surn(wag_loca) ; 
49 wag_tota = wag_corr + surn(DA) 

switch simme 
case 'corr' 

out - wag_corf; 
If verb 

dlip([mriloname ' returning total wagnor corraction']); 
end 

cast 'loci' 
out - wag_loca; 
if verb 

diop(imfilename ' returning local wagner correction*]); 
end 

case 'tots' 
out - was-Iota; 
If verb 

disp([mriiename ' returning total change in property with wagnef correction']); 
end 

otherwise 
dlopamin..... ' error, bad input Simme: Simms]) 
reform 

end 

If show 
figure 
ssbplot(2,2, I) 
plet(s, *ko') 
tltle('distace in somichords') 
ilabel(Naden') 
ylabel( 'distance') 

subplot(2,2,2) 
plot(s, DA. 'ko') 
title('step changes in property') 
ilabel( 'distance in somichords') 
ylsbel('stop change') 

subpl*1(2.2,3) 
plot(s, was, 'W) 
tltlo('wagncr function at points') 
xlsbel( 'distance In semichords') 
ylabel('wagner correction function') 

subplot(2,2,4) 
plot (a wag_loca , 'it. 
title('wagnot correction at points') 
ilabel('distanco in somichords') 
ylabel('wagner correction') 

aid 
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B. 2.5 kussner 

Calculates the effect of the secondary wake, as described in section 11. It uses the numerical 
equivalent of the Duhamel integral, simply the summation of a number of discrete steps in 
the property. As will be shown later, the property in question in CL. Note that depending on 
the value of gimme, it will return either the perturbation, or the total result. 

i function out = main(DA, s girnme, verb show); 
2 %Calculation function. 
3 %Out = kussner (DA, s, Ogimme ', verb, show 
4 %returns the kussner effect on property A 

s MA is the step change in property A at distances s 
6 Vas is the distance from the wing DA occured, normalised wrt 

semichords 
7% NOTE SEMCHORDS, NOT CHORDS 

8% 'gimme ' governs what is returned 
9% 'corr ' is the change in A due to kussner effect , summed for all 

changes 
to% 'loca ' is as above, but for every DA individually (not summed) 
it % 'tota ' is kussner correction 

_plus_ sum of steps DA. 
12 % show, verb return figures and verbose data if set to 1. 
13 

14%created on 10.3.03 CBP 
is%last edited 10.3.03 CBP 
16 last edited=' 10. mar. 03 
,7 last-run=date 

ig %input switch 
20 switch nargin 
21 case (0,11 
22 disp([mfilename ' error: need two inputs']) 
23 return 
24 case 2 
25 gimme 'corr '; verb 0; show 0; 
26 case 3 
27 verb 0; show = 0; 
29 case 4 
29 show 0; 
30 case 5 
31 ? Iodo nothing 
32 otherwise 
33 disp([mfilename ' error: too many inputs received']) 
34 return 
35 end 
36 

37 kus 0.5 * exp(-0.13 * s) - 0.5 * exp(-s) ; %this is the kussner 

perturbation function 
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3s kus_Ioca = kus .* DA; 
39 kus 

- corr = sum(kus_Ioca); 
4o kus-tota ý kus_corr + sum(DA); 
41 

42 if min(s) <0 disp ([mfilename 'warning -bad input: distance less 
than zero ' ]) ; end 

44 Ywulput switch 
45 swilcb gimme 
46 case 'corr' 
47 out - kus_corr ; If verb disp([mfiloname returning total kossmor correction ']); end 
48 call , loco , 
49 out - lies 

- 
loco; ir verb disp([mriloname returning local kussner correction ')); end 

50 case tota, 
51 out - kus_tots; It verb di. p((milloname returning total chants In property with knottier correction']) ; end 
52 otherwise 
53 disp([mifloname ' error , bad input Simms: ' gimmel) 
54 return 
55 end 
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B. 3 Master Functions 

B. 3.1 masterý_qsam and numericaLqsam 

These use qs and am to calculate the quasi-steady and added-mass forces on the wing. mas- 
terý_qsam uses wing shape parameters to find the total lift for the wing. numericaLqsatn 
uses numerical summation across the radial stations. 

masterý_qsam 

Lines 60-63 are the vertical, horizontal, normal and parallel added mass forces, respectively. 

i function main(path verb show, fast) 
2 %calculates the forces and moments on the wing using wing shape 

parameters. 
3 %the kinematics and geometry are read from the functions geom. m 

and kine. m as needed 
4%all functions are documented by typing "help functionname" 

5 
6%created 10.6.02 by C. B. Pedersen 
7 %last edited 12.3.03 BY CBP. 

8 last edited=' 12. Mar. 03 

9 last-run=date; 

to 
11 
12 %oparse the input 

13 switch nargin 
14 case 0 
Is disp([mfilename 'error: the path for rundata must be specified 

11) 
16 return 
17 case I 

verb = 0; 
show = 0; 

20 fast = 0; 
21 case 2 
22 show = 0; 
23 fast = 0; 
24 case 3 
25 fast = 0; 
26 case 4 
27 Yodo nothing 
28 otherwise 
29 disp ([ mfilename ' error , too many input arguments 
3, ) end 
31 save temp verb show fast 
32 
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33 1f verb timegone = toc disp Q num2str (round ( timegone Quasi 
steady calculation end 

34 id = 'qs_l_quasi'; 
35 if fast 
36 load([path id]) 
37 load temp verb show fast; 
38 if verb disp('skipped, loading data from file'); end 
39 else 
40 LW = qs ( TW') ; %quasi steady vertical force 
41 DW = qs ( 'DW') ; %quasi steady horizontal force 
42 FW = LW + sqrt(-I)*DW; %total force (complex) 
43 

44 

45 save([path id]) 
46 end 
47 If verb timegone, = toe; disp Q num2str (round (timegone) Done']); 

disp(' '); end 
48 

49 

50 

51 % Added mass contribution 
52 
53 if verb timegone = toc ; disp Q num2str (round( timegone) Added 

mass']) ; end 
54 id = 'qs_2_addm'; 
SS if fast >1 
56 load([path id]) 
57 load temp verb show fast; 
58 if verb disp('skipped, loading data from file'); end 
59 else 
60 LA = arn(TW'); 
61 DA = am( TW' ); 
62 NA = am( 'NW' ); 
63 PA = am(PW'); 
64 

6S save([path id]) 
66 end 
67 if verb timegone = toc; disp ([ num2str (round( timegone) Done']); 

disp(' ' ); end 
68 

69 

70 % Moments 
71 

72 1f verb timegone = to c; disp ([ nurn2str (round (timegone) Moments' 
]) ; end 

73 id = 'qs-3_moments 
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74 If fast >2 
75 load([path id]) 

76 load temp verb show fast; 

77 if verb disp('skipped, loading data from file'); end 
78 else 
79 MX = qs ( 'NW') ; %vertical moment 
so MZ = qs ( 'NW') ; %horizontal moment 
81 MY = qs ( 'NM') ; Yopitch moment, am disabled 
82 

83 save([path id]) 
84 end 
ss if verb timegone = toc; disp ([ num2str (round (timegone) Done']); 

disp(' '); end 
86 

s7 if verb 

88 timegone = toc; 

89 disp ([ 'completed 

go end 
91 

92 id qs_final 
93 save([path id]) 
94 return 

in ' num2str(round (timegone) )' seconds ' ]) 
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numerical_qsam 

Lines 51-56 and 80-85 are the summation across the wing. 

t function main(path verb show, fast) 
2 %numerical_qsam (path, verb show, fast) 
3 %calculates the forces and moments on the wing using numerical 

integration 

4 %the kinematics and geometry are read from the functions geom. m 
and kine. m as needed 

3 
6%created 13. Apr. 03 by C. B. Pedersen 
7 last 

- edited=' I 3. Apr. 03 
s last-run=date; 
9 

ioYoparse the input 
ii switch nargin 
12 case 0 
13 disp mfilename 'error the path for rundata must be specified 

14 return 
is case 1 
16 verb = 0; 
17 show = 0; 
is fast = 0; 
19 case 2 
20 show = 0; 
21 fast = 0; 
22 case 3 
23 fast = 0; 
24 case 4 
25 Yodo nothing 
26 otherwise 
27 disp([mfilenarne ' error , too many input arguments']) 
28 end 
29 save temp verb show fast 
30 

31 if verb timegone = toc; disp nurn2str (round( timegone) Quasi 
steady calculation ; end 

32 id = 'qs_l_quasi'; 
33 If fast 
34 load([path id]) 
35 load temp verb show fast; 
36 if verb disp('skipped, loading data from file ; end 
37 else 
38 R= geom('R'); r= geom( 'r_de fault); hinge geom(' 

' 
hinge', 't' 

, r); ' dr = geom('dr'); nr = leng't h(r); 

UNCLASSIFIED Page 197 of 248 



Pedersen B. 3 Master Functions 

39 uht = kine( 'uht ') ; uvt kine( 'uvt ') ; pitch = kine( 'pitch); 
dp = kine ( 'dp ') ;b geom( 'b t r) 

40 t= kine ( 't ') ; nt length (t 
41 if length(hinge) 1 
42 hinge = ones (I nr)*hinge 
43 end 

45 for ri =1: nr; 
46 L(ri :)= qs('L', uht*r(ri) uvt*r(ri) pitch dp, r(ri), b(ri 

), hinge(ri) 0,0); %lift per span at each station 
47 D(ri :)= qs('D' uht*r(ri), uvt*r(ri) pitch dp, r(ri), b(ri 

), hinge(ri) 0,0); 
49 P(ri :)= qs('P', uht*r(ri), uvt*r(ri) pitch dp, r(ri), b(ri 

), hinge(ri) 0,0); 
49 N(ri :)= qs('N', uht*r(ri) uvt*r(ri) pitch dp, r(ri), b(ri, 

), hinge(ri) 0,0); 
so end 
51 for ti=l: nt 
52 LW(ti )= sum(L(: , ti ). *dr) *R; 
33 DW(ti) = sum(D(:, ti). *dr')*R; 
54 PW(ti) = sum(P(:, ti). *dr')*R; 
55 NW(ti) = sum(N(:, ti). *dr')*R; 
56 end 
57 

5g save([path id]) 
59 end 
60 if verb timegone = toc; disp ([ num2str (round( timegone) Done']); 

disp(' '); end 

62 

63%, 4dded mass contribution 
64 

6S If verb timegone = toc; disp ([ num2str (round (timegone)) Added 
mass']) ; end 

66 id = 'qs_2_addm'; 
67 If fast >1 
68 load([path id]) 
69 load temp verb show fast; 

70 if verb disp('skipped, loading data from file'); end 
71 else 
72 duht = kine ( 'duht') ; duvt = kine ( 'duvt') ; ddp - kine ( 'ddp') 

73 for ri=I: nr; Yoforce per m span 
74 LAL(ri :)= am( T' uht*r(ri) duht*r(ri) uvt*r(ri) duvt*r 

(ri) pitch dp, ddp, r(ri) b(ri) hinge(ri) 0,0); 

75 LALD(ri :)= am( 'LD' uht*r(ri) duht*r(ri) uvt*r(ri) duvt* 

r(ri) pitch dp, ddp, r(ri) b(ri) hinge(ri) 0,0) ; 
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76 PAL(ri :)= am( 'P' , uht *r ( ri ), duht*r ( ri ) uvt*r ri duvt* r 
(ri) pitch dp, ddp, r(ri ) b( ri ) hinge( ri 0,0) 

77 NAL(ri :)= am( 'N' , uht* r( ri ), duht* r( ri ) uvt* r ri duvt* r 
(ri) pitch dp, ddp r(ri) b( ri ) hinge(ri 0,0) 

78 DAL(ri :)= am('D' uht*r(ri) duht*r(ri) uvt*r(ri) duvt*r 
(ri), pitch dp, ddp, r(ri), b(ri) hinge(ri) 0,0); 

79 end 
so for ti =I: nt 
81 LA( ti )= sum (LAL(: , ti dr ') *R; 
82 LAD( ti sum(LALD(: , ti ). *dr ')*R; 
83 DA( ti) sum (DAL(: ,ti) dr *R; 
84 PA( ti) sum (PAL (: ,ti) dr *R; 
85 NA( ti ) sum(NAL(: , ti ). * dr *R; 
96 end 
B7 save([path id]) 
88 end 
89 If verb timegone = toc; disp Q num2str (round (timegone) Done']); 

d1sp(' ' ); end 
90 

91 

92% Moments 
93 

94 if verb timegone = toc; disp Q num2str (round (timegone) Moments' 
]) ; end 

95 id = 'qs 
-3- moments 

% If fast>2 
97 load([path id]) 
98 load temp verb show fast; 

If verb disp('skipped, loading data from file'); end 
100 else 
101 YoNote moments have been disabled for speed 
102 Yofor ri=]: nr 
103 MfQ](ri,: ) = qs('MYI', uht*r(ri) uvt*r(ri) pitch dp, r(ri) , b(ri), hinge(ri) 0,0); %pitching moment 
104 MfQ2(ri,: ) = qs('MY2', uht*r(ri) uvt*r(ri) pitch dp, r(ri), 

b (ri) , hinge (ri) , 0,0); %p itch ing moment 
105 VMQ3(ri,: ) = qs('MY3', uht*r(ri) uvt*r(ri) pitch dp, r(ri), 

b(ri), hinge(ri) 0,0); %pitching moment 
106 WQ4(ri,. ) = qs('MY4', uht*r(ri) , uvt*r(ri) pitch dp, r(ri) , b(ri), hinge (ri) 0,0); %pitching moment 
107 MV(ri :)= qs('MY', uht*r(ri), uvt*r(ri), pitch, dp, r(ri), b 

(ri) hinge (ri) , 0,0); %pitching moment 
108 
109 =am('Agl', upt*r(ri), dupt*r(ri), unt*r(ri), dunt* 

r(ri) pitch, dp, ddp, r(ri) b(ri) hinge (ri) 0,0) ; 
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112 

113 

114 

115 

116 

117 

its 

119 

120 

121 

122 

123 

124 

5YAM2(ri,: ) = am('AP2', upl*r(ri), dupt*r(ri), unt*r(ri), dunt* 
r(rl) pitch, dp, ddp, r(rl) b(ri), hinge (ri) 0.0) ; 

YaIM3(ri,: ) = am('AP3', upt*r(ri), dupt*r(ri), unt*r(ri), dunt* 

r(ri), pitch , 
dp, ddp, r(ri), b(ri), hinge (ri) 0,0); 

Y. AM4(ri,: ) = am('AP4', upt*r(ri), dupt*r(ri), unt*r(ri), dunt* 

r(ri) pitch, dp, ddp, r(ri) b(ri), hinge (ri) 0,0) ; 
YM5(ri,: ) = am('APS', upt*r(ri), dupt*r(ri), unt*r(ri), dunt* 

r(ri) pitch, dp, ddp, r(ri) b(ri), hinge (ri) 0,0) ; 
MM(ri,: ) = am('AP', upt*r(ri), dupt*r(ri), unt*r(ri), dunt*r 

(ri) pitch dp, ddp, r(ri) b(ri). hinge(ri) 0,0); 

Voend 
? 1M = AV, %+ M; added mass disabled Yopitch moment 

Yofor ti =I: nt 
% AQV(11) = sum(AV(:, ti). *dr)*R; 

ý"W(ti) = sum(M(:, ii). *dr)*R; 
%end 

WW = AAVV; %added mass disabled + MW; 

i2s saveQ path id]) 

126 end 

127 If verb timegone = toc ; disp Q num2str (round (timegone) Done' 
disp( ' '); end 

128 

129 

130 %PLOTTING 
131 

132 1f show 

133 figure 
134 plot ([kine( ' tt ') kine( ' tt ')+2*pi] JLW LW]) Yoplots I if t across 

to full strokes , to check for end effects 
'135 title (' lift across two full cycles , to check for end effects 
136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

figure Yoplots some sample locations and force 

vectors 
showme [1800 10 300 500 800 1023]; 
dummy show-kine('2d', showme, [DW(showme) ; LW(showme)]); 
title('some sample force vectors') 

figure 
subplot (2 2 1) 
plot( kine( ' tt ') LA) 
title ( 'added mass - vert 
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148 

149 subplot (2 2 2) 
150 plot ( kine (' tt ') DA) 
151 tItIe( 'added mass - horz 
152 

153 subplot (2 2 3) 
154 plot ( kine ('tt ') , abs (LA+sqrt (- 1)*DA) 
155 title ( 'added mass - total ') 
156 end 
157 

138 

159 

160 if verb 
161 timegone = toc; 
162 disp([ 'completed in ' num2str (round( timegone seconds']) 
163 end 
164 

i6s id qs_final 
166 save([path id]) 
, 67 return 
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B. 3.2 rnasterý_polharnus and numerical_pol 

These calculate the Polhamus correction, as described in section 10. masterý-Pol uses wing 
shape parameters to calculate the total force on the wing, while numerical_pol uses numer- 
ical summation. 

masterý_polhamus 

This is very similar to the calculation function pol. The functionality of pol is reproduced 
here, because it has been used for extensive testing of other means of calculating the Pol- 
hamus correction, which have not always lent themselves easily to a function call. 

i function main(path verb show, fast) 
2 %master_polhamus (path, verb, show, fast , method) 
3 %calculates the polhamus correction to lift 
4 ? Iopath is the path where data will be saved 
s %verb is verbosity level (0 = quiet) 
6Yoshow is amount of figures to plot (O=none, I- some, 2+ all) 
7? lofast skips part of the calculation by using data from previous 

runs 
8 
9%created 1.4.03 by C. B. Pedersen 

to %last edited 1.6.03 BY CBP. 

it last_edited=' I. Jun. 03'; 

12 last-run=date 
13 

14 91oparse the input 
is switch nargin 
16 case 0 
17 disp Q mfilename ' error the path for rundata must be 

specified 
is return 

. 19 case 1 
20 verb = 0; show 0; fast = 0; method 'unle'; 

21 case 2 
22 show = 0; fast = 0; 
23 case 3 
24 fast = 0; 
25 case 4 
26 01odo nothing 
27 otherwise 
29 disp([mfilename ' error , too many input arguments']) 

29 end 
30 save ternp verb show fast 
31 

32 

33 % CHOOSE A1=0D 
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34 

35 method = kine ('polmethod'); 
36 Yofirst letter is : 
37 %I 

rotate to the side un is at the le 
38 %M 

rotate to the mean un side 
39 %r 

rotate to the rear point un side 
40 %c 

always rotate clockwise (as seen from root) 
41 %u 

always rotate so upwards 
42 % 

43 Yosecond lette r is: 
44 

%t 
rotate entire tip suction 

45 
%f 

rotate only a fraction based on the amount of chord where un 
is the same sign as unle 

46 %d die during rotation. 
47 

48 

49 %QUASI-STEADY DATA 
so 
51 1f verb message ( toc , 'Quasi-steady data end 
52 %timegone = loc; disp ff num2s tr (round (tim ego ne)) ' Quasi-steady 

data 'j) ; end 
53 id = 'pol_l_qsdata'; 
54 if fast >0 
55 load([path id]) 
56 load temp verb show fast; 
S7 If verb disp('skipped, loading data from file'); end 
38 else 
59 VoLoad results from the quasi-steady calculation 
60 pitch = kine('pitch dp kine('dp'); 
61 r= geom( ' r_default b geom( 'b' , 't ', r) ;R= geom( 'R') 
62 hinge = geom( 'hinge'); dledr geom( 'dledr' , 't ' r); 
63 unt kine ( 'unt uht = kine 'uht uvt = kine ( 'uvt 
(A nr length( r) ; nt = length(pitch); 
65 %bsic geometric results - these can take some time 
66 if verb message( toc Geometric data (can take a while)'); end 
67 bIr2P = geom('blr2P'); bIr2 = geom('blr2 '); %note the 

difference in geom call 
68 b2rIP = geom('b2rlP') ; b2rl = geom('b2rl'); 
69 b3rOP = geom('b3rOP') ; b3rO = geom('b3rO'); 
70 b3rIP = geom('b3rOP') ; b3rl = geom('b3rl'); 
71 b4rOP = geom(b4rOP') ; b4rO = geom('b4rO'); 
72 if verb message (toc 'Geometric data got'); end 
73 

74 Yomax suction forces 
75 PI = qs('Pl'); 
76 P2 = qs('P2'); 
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77 

78 

79 

80 

91 

92 

83 

84 

85 

86 

87 

88 

89 

90 

91 

P3 = qs ( 'P3 ') ; 
P4 = qs('P4'); 

PWI =R* PI * blr2; 
PW2 =R* P2 * b2rl; 
PW3 =R* P3 * b2rl; 
PW4 =R* P4 * b3rO; 
PW = PWI + PW2 + PW3 + PW4; ? Ioparalelle force 

SW1 =R* PI * blr2P; 
SW2 =R* P2 * b2rlP; 
SW3 =R* P3 * b2rlP; 
SW4 =R* P4 * b3rOP; 
SW = SWI + SW2 + SW3 + SW4; %suction force (higher 

Le sweep) 
92 

93 

94 

95 

96 

97 

98 

99 

if show 
figure 
pIot (M) 
hold on 
pIot (SW2, 'k') 
plot (0,0 

, 'kx') 

because of 

end 
--I 

C-11 71 TAl T I- 

100 pui_iatiu - avy. iryyt- zoine amouni sweep increases suction oy 
101 
102 save test data 
103 save([path id]) 
104 end 
105 if verb message(toc 'Done') ; disp(' '); end 
106 

107 

-ios % decide which way to turn 
109 

110 if verb mcssage(toc , 'Choosing turn direction '); end 
M %timegone = toc; dispff num2sir (round (tim egone)) Quasi-steady 

data 'j) ; end 
112 id pol_2_turn_direction 
113 if fast >1 
114 load([path id]) 

115 load temp verb show fast; 
116 If verb disp('skipped, loading data from file'); end 
117 else 
118 turn = ones(l, nt); %all rotating clockwise initially 

119 %rotate all lift the same way. 
120 %use greatest chord point 
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121 rO = geom('rO B geom( 'B') ; %radius where chord is maximum 
122 un = unt rO 
123 unle = un +B* dp * (-hinge -1); %unle = normal velocity at 

leading edge 
124 unme =un +B * dp *(-hinge); Younme = normal velocity at 

midpoint edge 
125 unre = un +B* dp * (-hinge +0.5) ; %unle = normal velocity 

at rear neutral point edge 
126 

127 switch method(l) 
128 case 'I ' 
129 %rotate according to leading edge normal velocity 
130 %always rotate enture wing 
131 1= find(unle<O); turn(l) = -1; 
132 case W 

133 %rotate according to midpoint normal velocity 
134 1= find(unme<O); turn(l) -1; 
135 %if 2d mesh 
136 9lo[I, J] = find(unme<O); 
137 Yofor 1=1: length(I) 
138 % turn(I(i), J(i)) = -1; 
139 ? Ioe nd 
140 case 'r ' 

141 1= find(unre<O); turn(l) -1; 
142 %rotate according to rear neutral normal velocity 
143 ? lo[I, J] = find(unre<O); 

I" 916for i=]: Iength(I) 
145 % turn(I(i), J(i)) = -1; 
146 %end 
147 case 'c' 
149 %always clockwise 
149 Yodo nothing 
1; 0 case 'u' 

151 %rotate so rotated vector is always upwards 
152 1= find(pitch > pi/2) ; 916find where pitch>pil2 

153 turn(I) = -1; 
154 Yofor i=]: Iength(l) 

ISS % turn(:, I(i)) = -1; 
156 Voend 

157 otherwise 
M disp([mfilename '. m error: rotation method not recognised' 

1) 
159 return 
160 end 
161 save([path id]) 
162 end 
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163 
if verb message( toc , 'Done') ; disp, end 

164 

165 

, 66% decide how much to scale the suction force by 
167 

168 scale = ones( size (unle)) 
169 switch method(2) 
170 case 't, 
171 Yodo nothing 
172 case 'f ' 
173 disp('not yet implemented') 
174 case 'd' 
175 disp('not yet implemented) 
176 otherwise 
177 disp([mfilename '. rn error rotation method not recognized']) 
179 return 
179 end 
180 
181 
182 %modify the forces 
183 

184Yoforce change due to the lip suction (note difference between P 
and S) 

m Yohave to do radial stepping , or turn isn 't a consistent vecotur 
186 

187 

188 

189 SP = sin (pitch); CP = cos (pitch); 
190 P_pol -PW; %subtract the P suction force 

191 N_pol scale .* turn .* SW; %but add the S suction force 

192 L_pol P_pol. *SP + N_pol. *CP; 
193 D_pol P_pol. *CP - N_pol. *SP; 
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numerical_pol 

i function main(path verb show, fast) 
2 %numerical_polh am us (path, verb, show, fast, method) 
3 %calculates the polhamus correction to lift 

4 Yopath is the path where data will be saved 
3 %verb is verbosity level (0 = quiet) 
6Yashow is amount of figures to plot (O=none, I= some, 2+ all) 
7%fast skips part of the calculation by using data from previous 

runs 
a 
9 %created 1.4.03 by C. B. Pedersen 

io %last edited 1.4.03 BY CBP. 

* last 
- edited=' I. Apr. 03 

* last-run=date; 
13 

14%input switch 
,5 switch nargin 
16 case 0 
17 disp([mfilename ' error: the path for rundata must be 

specified 
is return 
19 case 1 
20 verb = 0; show 0; fast = 0; method 'unle 
21 case 2 
22 show = 0; fast = 0; 
23 case 3 
24 fast = 0; 
25 case 4 
26 Yodo nothing 
27 otherwise 
28 disp([mfilename ' error , too many input arguments']) 
29 end 
30 save temp verb show fast 
31 

32 

33 % CHOOSE A=OD 
34 

35 method = kine('polmethod'); 
36 Yof! rs I letter is : 
37 %I rotate to the side un is at the le 
38 %m rotate to the mean un side 
39 %r rotate to the rear point un side 
40 %c always rotate clockwise (as seen from root) 
41 %u always rotate so upwards 
42 % 
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43 Vosecond letter is: 
44 %t rotate entire tip suction 
45 %f rotate only a fraction based on the amount of chord where un 

is the same sign as unle 
46 

%d die during rotation. 
47 

48 

49 % QUASI-STEADY DATA 
50 

51 1f verb message ( toc , 'Quasi-steady data end 
52 %timegone = toc; dispff num2str (round (timegone)) Quasi-steady 

data ']) ; end 
53 id = 'pol_l_qsdata'; 
54 If fast>O 

55 load([path id]) 

56 load temp verb show fast; 

57 if verb message( toc 'skipped, loading data from file'); end 
58 else 
59 VaLoad results from the quasi-steady calculation 
60 pitch = kine('pitch dp = kine('dp'); 

61 r= geom( ' r_default dr = geom( 'dr b geom( 'b' t r) R 
geom (W 

62 hinge = geom( 'hinge'); dledr = geom( 'dledr 't ' r) 
63 unt = kine ( 'unt ') ; uht = kine ( 'uht ') ; uvt kine ( 'uvt 

64 nr = length( r) ; nt = length(pitch); 

65 upt = kine('upt'); dupt = kine('dupt'); unt = kine('unt'); 
dunt = kine('dunt'); 

66 if length(hinge) == 1 
67 hinge = ones(l, nr)*hinge; 
68 end 
69 

70 if verb message( toc , 'calculating suction force'); end 
'71 

72 %suction forces 
73 dledr = geom( 'dledr r) corr = sqrt (I+ dledr A 2) 
74 for ri =I: nr 
7S if verb >1 message(toc j radial position ' num2str( ri 

end 
76 L_pol(ri pol ( 'L_pol ' uht*r( ri ) uvt*r( ri ) pitch dp , r( 

ri ) b( ri ) hinge( ri) corr ( ri )0 0) 

77 D_pol(ri pol( 'D_pol ' uht*r( ri ) uvt*r( ri ) pitch dp , r( 
ri ) b( ri ) hinge( ri ) corr ( ri )0 0) ; 

79 N_pol(ri :)= pol ( 'N_pol ' uht*r( ri ) uvt*r( ri ) pitch dp , r( 
ri ) b( ri ) hinge( ri ) corr( ri )0 0) 

79 P_pol (ri pol( 'P_pol ' uht*r( ri ) uvt*r( ri ) pitch dp , r( 
ri ) b( ri ) hinge( ri ) corr ( ri )0 0) ; 
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so scale (ri :)= pol( ' scale ' uht*r(ri ) uvt*r(ri ), pitch dp, r( 
ri ) b( ri ), hinge( ri ) corr( ri )0 0) ; 

81 turn(ri :)= pol( 'turn' uht*r(ri) uvt*r(ri) pitch dp, r( 
ri ) b( ri) hinge( ri ) corr(ri) 0,0); 

92 end 
83 

84 for ti =I nt 
85 PW( ti = surn(P_pol ti ) dr ')*R; 

86 NW( ti = sum(N_pol ti ) dr ')*R; 

87 LW( ti = sum(L_pol ti ) dr ') *R; 
88 DW( ti = sum(D_pol ti ) dr ')*R; 

89 
90 end 
91 

92 -, pol-ratio abs(NW. /PW) %the amount le sweep increases 
suction by 

93 

94 save([path id]) 
95 

% end 
97 if verb message(toc 'Done') ; disp( ' '); end 
98 

99 save([path 'pol_final']) 
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B. 3.3 master_wag 

This masterfile calculates the effect of the primary wake, modelling it using the Wagner 
function. It divides into four main subroutines: 

" wag_l_init, which initializes data, mainly by reading it from kane and georn 

" wag_2jiftcoeff, which forms the lift coefficient 

" wagj_ýwagner - effect, which splits the wake into individual stroke segments, and 
applies the Wagner function to them 

" wag_. 4_correct-lift, which turns the Wagner-modified lift coefficients into full force 
values 

wag_l-init 

Here, the function loads the kinematic and geometric data. Note also that it loads a number 
of runtime parameters from kine. These will be explained when they are used in the code. 

wag_2jiftcoeff 

line 74 is the start of a radial stepping loop, that persists until line I 11. It performs the 
following calculations at each spanwise station: 
lines 75-78 simply check if r or b are 0- if so, there will be no lift or Wagner effect, and the 
results are forcibly set to 0, rather than calculated. This is done to avoid divide by 0 errors. 
line 81 calls qs to return ute2m, the mean square velocity at that spanwise station. This is 
put in an nr-by-nt matrix for later reference. 
line 82 calls qs again, this time to return CL, the vertical force coefficient. This is based 
on the vertical force FV divided by rho b ute2m. This is the "lift coeffience" that will 
be used throughout the following. It is placed in a nr-by-nt, as above. lines 83-95 deal 
with the Polhamus correction to the lift coefficient, firstly checking the runtime parameter 
usepolhamus to see if it should be used. If it should, it gets the Polhamus lift correction 
by calling pol, , forms the lift coefficient for this correction, and adds it to the original lift 
coefficient. lines 96-108 deals with Dcl, the step change in lift coefficient. This is formed 
by calling our function der, which is similar to the inbuilt function diff, except that is returns 
a full-length differential vector, by assuming the data can be wrapped around - so the first 
value of Dcl is the step increase from the last value of cl to the first. This is the case for 
when our data forms a full cycle. There are two exceptions to this case, which are checked 
by the variable firststep. If the data represents an impulsive start, the first step will be the 
first value of cl. Alternatively, if the data is supposed to close, but doesn't, we can force the 
first step to be smooth, by setting it equal to the second step. This can occur either because 

of measuring noise, or sampling rate mismatch with the flapping frequency, so the data isn't 
exactly a full cycle. 
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wagj_ýwagner_effect 

Again, we perform the calculations for each spanwise section separately - line 129 starts a 
spanwise stepping loop that persist until line 215. 
Lines 132-134 simply checks to see if the radius is 0, and forces the results to be 0 if it is. 
Lines 136-143 calculate Ddist the distance travelled for every timestep, and rev the vector 
of reversal points (zero everywhere apart from one point at the reversal). It uses the variable 
taiNag to decide wether to use the velocity of the trailing or hinge location for this. 
Line 146 creates nrev, which is simply the index of the points where reversal occurs. 
Lines 148-155 checks if the data is wrappable viafirststep, and if it is, shifts the data so the 
first reversal point is at the start of the vector. 
Lines 157-165 corrects nrev so it has a leading value of I and at tailing value of nt. This is 
done for splitting the data into strokes. 
Lines169-175 splits the data into single-stroke segments, counts through the strokes, and 
calculates dist, the distance travelled within the current stroke only. Note that it is absolute, 
and increases from 0 at the start of each stroke. 
Lines 182-214 then apply the Wagner function to each individual stroke. for this, we need 
to use timewise stepping (line 186) through all the timesteps of the current stroke. Line 
188 forms distw, which is the distance to each point in the current wake, previous to the 
current timestep. This is always positive, with the value for the current timestep being 0. 
(the distance to the wake element that has just been shed is 0). Lines 191-192 call wagner 
to return the Wagner perturbation correction, as a vector of all the contributions of points in 
the wake, and sums these for a total perturbation correction, wag. Note this could be done 
as a single call to wagner, with the gimme flag set to tota. However, in lines 194-210 we 
plot the contributions of each point in the wake, if desired. This is partly for error-checking, 
but also for additional insight, as seen in section 15. 

Note that although we split the data into single stroke segments, and treat the start of 
each stroke as an impulsive start, in that we remove all accumulated Wagner contributions 
for the previous wake, we treat the step change in lift coefficient as continuous (i. e. we do 
not set the value of Dcl at the start of every stroke to the value of cl at the start of the stroke, 
but rather use the change from the end of the last stroke). This is because doing so would 
introduce a large, discrete step change in life coefficient that does not match the reality we 
are modelling. Although we spilt the lift coefficient into strokes for calculation purposes, it 
is in fact continuous. 

Lines 225-233 checks to see if the data was shifted in lines 148-155, and if is was, shifts 
it back to the original timesteps. 
Lines 273-296 re-creates the full forces from the coefficients, by multiplying the coefficients 
by den. Note that unlike the calculation that created cl above, this uses the actual area of 
each segments to create the lift per segment, not lift per m span. These are then summed to 
create the full lift values for the wing. 
Finally, line 331 highlights an important limitation of the code: the predicted drag effect of 
the primary wake is 0. 
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i function main(path verb show, fast) 

2%master - wagner (path, verb, show, fast) 
3%caluclates the wagner effect 
4 

s%created 10.6.02 by C. B. Pedersen 
6%last edited 12.3.03 BY CBP. 
7%last edited 19.4.03 by CBP - changed Wagner to be faster. 
i %last edited 21.4.03 by CBP - now use qs_cl to get lift 

coefficient 
9 %last edited 15.5.03 by CBP - refine first DCLDS point 
io%last edited 16.5.03 by CBP - added chopping into multiple strokes 
n last 

- edited=' 16. May. 03 
12 last- run=date ; 
13 

14%input switch 
is switch nargin 
16 case 0 
17 disp([mfilename 'error : the path for rundata must be specified 

11) 
18 return 
19 case I 
20 verb = 0; 
21 show = 0; 
22 fast = 0; 
23 case 2 
24 show = 0; 
23 fast = 0; 
26 case 3 
27 fast = 0; 
28 case 4 
29 Yodo nothing 
30 otherwise 
31 disp([mfilename ' error , too many input arguments']) 
32 end 
33 save temp verb show fast 
34 

35 if verb timegone toe ; disp ([ num2str (round (timegone) Data 
initialisation ; end 

36 id = 'wag_l_init'; 
37 if fast 
39 load([path id]) 
39 load temp verb show fast; 
40 if verb disp('skipped, loading data from file'); end 
41 else 
42 tshow = kineUtshow); rshow = kine('rshow); 

43 tailflag = kine('tailflag'); %wether to calculate reversal 
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based on tail or hinge position 
44 datalength = kine (' datalength ') ; %wether the data is a full 

half or other part of a cycle 
45 firststep = kine('firststep '); Yomethod to use on the first dCL 

Idt step 
46 usepolhamus = kine('usepolhamus'); %wether to adjust cl for 

polhamus when calculating wake effect 
47 nt kine('nt'); r= geom('r_defauIt', t'); nr = length(r); tt 

= kine ( 'tt ') ; 
48 b geom('b', 't', r); rho kine('rho'); ut = kine('ut'); 
49 R geom( W) ; upt = kine 'upt unt = kine 'unt dp kine 

'dp') ; 
so hinge = geom( 'hinge'); 
51 if length(hinge) == 1 
52 hinge = ones(l, nr)*hinge; 
53 end 
54 

55 save([path id]) 
56 end 
57 if verb message(toc, ' Done'); disp(' '); end 
59 

59 

6o%Form lift coefficient 
61 

62 If verb message(toc, ' Lift coefficient '); end 
63 id = 'wag_2_liftcoeff'; 
64 if fast>l 
65 load([path id]) 

load temp verb show fast; 
67 if verb message (toc , 'skipped , loading data from file'); end 
69 else 
69 uht = kine 'uht 
70 uvt = kine 'uvt 
71 pitch = kine (' pitch 
72 dp = kine ( 'dp 
73 for ri=l: nr 
74 if b( ri ) ==O I r( ri ) == 0 
75 cl(ri, l: nt) = zeros(l, nt); 
76 Dcl(ri, l: nt) = zeros(l, nt); 
77 ute2m(ri = zeros(l, nt); 
78 else 
79 uh(ri uht r(ri); 
80 uv(ri uvt r(ri); 
81 ute2m(ri = qs('ut2', uh(ri :) uv(ri :) pitch dp, r(ri 

), b(ri), hinge(ri) 0,0); 
82 cl(ri :)= qs('CL', uh(ri :) uv(ri :) pitch dp, r(ri), b( 
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ri ), hinge( ri )0 0) ; 
83 switch usepolhamus 
84 case 'y' 
85 If verb & ri ==2 message (toc , 'using polhamus 

correction to cl'); end 
86 dledr = geom('dIedr', 't', r); corr = sqrt(l+dledr 

.A 2) ; 
87 L_pol(ri pol( 'L_pol ' uh(ri :) uv(ri :) pitch 

dp, r( ri) b( ri ) hinge(ri ) corr(ri )0 0) ; 
88 clp(ri L_pol(ri :) J(rho b(ri) .* ute2m(r, i 

89 cl(ri cl ( ri + cIp ( ri 
90 case 'n' 
91 Yodo nothing 
92 otherwise 
93 disp('bad value received for usepolhamus') 
94 return 
95 end 
96 Dcl(ri der(cl(ri :)I: nt); 
97 %need to change the first value based on what data we 

are using 
98 switch firststep 

case W 
too Yowrap data already calculated above 
101 case 'i' 
102 Dcl (ri , 1) cl (ri , 1) ; %impulsive start 
103 case 's' 
104 Dcl(ri I) Dcl(ri 2) ; 9losmooth by setting equal to 

second step 
105 otherwise 
106 message(toc j 'bad value for firststep firststep 

1); 
107 return 
log end 
109 end 
110 end 
III save([path id]) 
112 end 
113 If verb message(toc Done'); disp(' '); end 
114 

lis 

116 

1,7 Yowagner effe CI 

118 
119 

120 If verb message(toc Wagner effect '); end 
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121 id = 'wag_3_wagner_effect 
122 If fast>2 
123 load([path id]) 
124 load temp verb show fast; 
125 if verb message( toc 'skipped, loading data from file'); end 
126 else 
127 Yofind the distance travelled per timestep 
128 uht = kine('uht); dt = kine('dt); 
129 for ri=l: nr 
130 if verb>1 message(toc, [now at radial index ' nutn2str(ri) 

]) ; end 
131 1fr( ri ) ==O 

132 Ddist(ri = zeros(l, nt); 
133 rev(ri :) zeros(l, nt); 
134 shift(ri) = 0; 
135 else 
136 if tailflag %we ther to base reversals and distance 

travelled on hinge or trailing edge 
137 uhte(ri = uht*r(ri) + dp * b(ri) * (+I -hinge( 

ri )) sin ( pitch) ; %velocity at trailing edge 
138 Ddist ( ri = abs ( uhte ( ri :). * dt) ; 
139 rev ( ri find_crossings vector uhte ( ri 
140 else 
141 Ddist(ri abs(uht * r(ri)) .* dt; 
142 rev(ri find_crossings( 'vector' uht); 
143 end 
I" 
145 %create reversa l points for this radial position 
146 nrev = find(rev (ri 
147 

148 if firststep W; 
149 shift ( ri nrev (1) ; Yoamount to sh ift data by so 

first re versal is at index 1 
150 If verb >I message(toc ['shifting data by 

num2str( shift (ri )-I)]) ; end 
151 %shifts the data so the first reversal point is a 

index 1 
152 Ddist(ri shifter(Ddist(ri :) shift(ri)); 
153 Dcl(ri shifter(Dcl(ri :) shift(ri)); 
154 rev( ri shifter(rev(ri :) shift(ri)); 
155 end 
156 

157 if nrev(l) -I 
158 nrev nrev]; 
159 end 
160 

UNCLASSIFIED Page 215 of 248 



Pedersen B. 3 Master Functions 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

ISO 

end 

Irev = length(nrev); 
if nrev(lrev) -=nt; 

nrev - [nrev nt]; 
end 
clear Irev 

%split into strokes 

for stroke =1: length (nrev )-I 
tI = nrev( stroke); %start index of this stroke 
t2 = nrev( stroke +1) -1; Voend index of this stroke 
for ti=tl : t2 ; 

%distance travelled in this stroke 
dist ( ri , ti sum(Ddist( ri , tI : ti 

end 
end 

if b(ri)==O I r(ri) -0 
wag(ri I: nt) = zeros(l, nt); 

M else 
182 for stroke = I: length (nrev)-l 
183 tl = nrev(stroke); %start index of this stroke 
194 t2 = nrev(stroke+l)-I; Yoend index of this stroke 
185 VaDcl(ri, 11) = 0; 
186 for ti=tl: t2; 
187 %steps through time this stroke 
188 distw = dist(ri, ti)-dist(ri, tl: ti); %distance to points 

in wake, not distance travelled 
189 

190 If verb >2 & ti/100 == floor(ti/100) ; timegone = toc 
disp ([ num2str (round (timegone)) 'time step ' num2str( 
ti)]); end 

191 wag_loca = wagner(Dcl(ri, tl: ti), distw/b(ri), 'Ioca', O, O) 
; Yowagner correction for every point in the wake 

192 wag(ri , ti )= sum(wag_loca) ; %correction only , summation 
of all contributions for this stroke 

193 

194 if show & ti == tshow & ri == rshow 
195 figure 

1% subplot 221 
197 plot(Dcl(ri 1: ti)); 
198 title ('Delta(cl)') 

200 subplot 222 
20t plot(wag_loca) 
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202 title( 'wagner correftion per timestep 
203 

204 subplot 223 
205 plot(wag(ri 1: ti)) 
206 title (' total wagner correction 
207 x1abel date 
209 
209 subplot 224 
210 x1abel ([ 'Radial station num2str( ri 
211 end 
212 end 
213 end 
214 end 
215 end 
216 

217 save([path id]) 
218 end 
219 If verb message(toc, ' Done'); disp(' '); end 
220 

221 

222 

223 
%Shift back to original time 

224 

225 if shift 
226 if verb message( toc , 'un-shifting data'); end 
227 for ri=l: nr 
228 Ddist(ri = shifter(Ddist(ri : ), -shift(ri)); 
229 dist(ri = shifter(dist(ri : ), -shift (ri)); 

230 Dcl(ri shifter(Dcl(ri : ), -shift(ri)); 
231 wag(ri shifter(wag(ri : ), -shift( ri)) 
232 end 
233 end 
234 

235 ýOhow results 
236 1f show 
237 figure 
238 subplot 221 
239 surf(tt r, wag); 
240 shading interp 
241 axIsQO 2*pi 01 min(min(cl)) max(max(cl))]) 
242 title ( 'wagner correction coefficient 
243 %view ([0 0 1]) 
244 colorbar 
245 

246 subplot 222 
247 surf( tt 

,r, 
cl 
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248 axis([O 2*pi 01 min(min(cl)) max(max(cl))]) 
249 title('original quasi steady l ift coefficient') 
250 shading interp 
251 %view ([0 0 11) 
252 colorbar 
253 

254 subplot 223 
255 surf ( tt ,r, cl+wag) 
256 axis([O 2*pi 01 min(min(cl)) max(max(cl))]) 
257 title( 'wagner-compensatcd lift coefficient') 
258 shading interp 
259 %view ([0 0 1j) 
260 colorbar 
261 

262 subplot 224 
263 surf(tt r, cl+wag); 
264 axis([O 2*pI 01 min(min(cl)) max(max(cl))]) 
265 title( 'wagner-compensated lift coefficient 
266 all il U III LV. L P 
267 end 
268 

269 

270% Turn from coefficients into full values again 
271 

272 

273 if verb message(toc Correcting lift '); end 
274 id = 'wag_4_Correct_Lift'; 
275 if fast >3 
276 load([path id]) 
277 load temp verb show fast; 
278 if verb disp('skipped, loading data from file'); end 
279 else 

%turn from coefficients into full values 
281 dr = geom('dr'); 
282 da = dr .*R*2. *b; Yoarea of each spanwise segment; 
283 for ri=l: nr 
284 den(ri :)= .5* rho 
285 

286 

297 

288 

289 

290 

291 

292 

293 

* ute2m(ri :) .* da(ri); 
end 
Ids = cl. *den; %original lift 
Iw = wag. *den; Yowagner correction 
Iqw = (wag + cl). *den; Yowagner corrected lift 

for i=l: nt 
L(i) = sum(Ids i)) %total QS force on entire wing 
W(i) = sum(lw(: i)); %total IVAG force on entire wing 
LW(i) = sum(lqw (: 

, 
i)); %total QS + WAG force on entire 
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wing 
294 end 
295 save([path id]) 
296 end 

B. 3 Master Functions 

297 1f verb timegone = toc; disp ([ num2str (round (timegone) Done']); 
disp(' '); end 

298 

2" 

300 1f show 
301 ymax = max(max(max(lds)), max(max(lqw))); 
302 figure 
303 subplot 221 
304 surf(tt r, Ids) 
305 title (' original lift 
306 shading interp 
307 axis QO 2*pl 01 -ymax ymax]) 
308 

309 subplot 222 
310 surf( tt 

,r, 
lw) 

311 title ( 'wagner correction 
312 shading interp 
313 axis ([0 2*p! 0 1 -yrnax yrnax]) 
314 

315 subplot 223 
316 surf ( tt ,r, lqw) 
317 title ( 'wagner- corrected li ft 
318 shading interp 
319 axis ([0 2*pI 0 1 -ymax yrnax]) 
320 

321 subplot 224 
322 plot ( tt L, 'k') 
323 hold on 
324 plot(tt LW, 'b 
325 plot ([ min( tt ) max( tt [mean(L) mean(L) W) 
326 plot([min(tt) max(tt)], [mean(LW) mean(LW)], g') 
327 title('original qs lift (black) vs wagner corrected') 
329 end 
329 

330 L_wag = sum(lw) ; Yofor entire span 
331 D_wag = zeros ( size (L_wag) %Wagner does not create drag 
332 save([path 'wag_final']) 
333 return 
334 

335 

336 
% 

AFM OF AMIN 
337 
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B. 3.4 master_kus 
This masterfile calculates the effect of the secondary wakes, using the Kilssner function. it 
divides into six main subroutines: 

qp kus-I-init, which initializes data, mainly by reading it from kine and geom 

" kus-2_wakevect, which forms vectors of wake location and the vorticity at each 

" kus 
-3- 

influence 
- coefficients, which calculates the influence coefficients and induced 

velocity at each timestep 

" kus 
-4- 

CL, which uses the induced velocity to form a perturbation to the lift and force 
coefficients 

" kus 5 Kuessner_effect, which applies the Ktissner function to the perturbation of 
the Tifýand drag coefficients 

" kus_6_force_reconstruct, which forms the actual forces from the coefficients. 

kus-l-init 

The function loads the kinematic and geometric data. Note also that it loads a number of 
runtime parameters from kine. These will be explained when they are used in the code. 
Line 100 finds the bound vorticity GB of the wing, by calling qs. This is the vorticity per m 
span at every radial step. 
Line 102 finds the vorticity shed into the wake at every timestep DGIV, as the numerical 
differential of GB. Note that, like with the Wagner masterfanction, we use der, and assume 
the data wraps. 
Lines 105-114 deals with the case when data does not wrap, via the variablefirststep. This, 
like Wagner above, sets either an impulsive start, or smooths the first value of DGTV. 
Lines 119-128 calculates the downwash velocity ui and offset between cycles h. This uses 
the mean lift calculated from the quasi-steady calculation, and the equation of section 7.5.1. 

kus-2_wakevect 

We perform radial stepping, in a loop that start at line 145 and ends at line 226. 
Lines 146-152 forcibly set results for the root to 0, to avoid divide by 0 errors. 
Lines 154-169 form the distance travelled per timestep Ddist and the reversal points rev. It 
uses the runtime parameter tailflag to decided wether to base these calculations on velocities 
at the tail or the hinge. 
Lines 172-179 checksfirststep to see if the data is wrappable, and if it is, shifts the data so 
the first reversal is at the first index. 
Lines 181-187 ensure that the index of reversal points nrev has a first value of 1, and a last 
value of nt. This is done for the sake of splitting the wake into single-stroke elements. 
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Lines 190-201 finds the horizontal direction of the first stroke, which is used for calculating 
wake location 
Lines 204-223 steps through the strokes, forming xwak, which is the horizontal location of 
the wake shed at every timestep. Note that this location is in the spherical coordinate system. 
Lines 208-2 10 deal with a special case, the last stroke. For this we want the stroke to end at 
the last timestep, because we have forcibly set the last timestep as a reversal point, and the 
first timestep too. Ibis would cause and extra stroke of length I index between the last and 
first value of the time series (if we are wrapping), so we add I to the end index of the last 
stroke, and ignore the last reversal point at nt. 
Lines 211-223 creates dist, the distance travelled within the current stroke, direction, the 
direction of the current stroke, xwak as described above, GW, the vorticity in the wake (this 
was already expressed in DGW, but this line is used to modify the wake vorticity when 
running test cases), and wakenum, the count of the current stroke, starting from 0. wakenum 
leads directly to finding zwak, which is the wake number times the vertical offset between 
strokes. Note: the offset is between strokes, half that of the offset between cycles. Note also 
this is positive, and counts up with wakenum from 0. 
Lines 228-256 create a full wake, if requested via wakemethod= For this, rather than the 
wake growing from the first timestep, we create a fully-formed secondary wake, of length 
nwak times the original data. It assumes the data is a single, closed cycle, because otherwise 
we can't be wrapping it. Most of the variables are simply wrapped, with their original value 
appended to the end, with the exception of wakenum on line 246, which has the number of 
wakes in the first cycle added to it (so it is a continuous upward count, rather than suddenly 
starting from 0 again), and zwak on line 243, which is offset by the distance caused by the 
induced velocity during the first cycle. Again, this is so it keeps counting up, and doesn't 
suddenly reset to 0. 

kus-3_influence_coefficients 

We step radially, starting at line 273 up to line 348. 
Line 279 creates toff which is the offset to the index just before the last cycle in the sec- 
ondary wake. if nwak is I (i. e. we aren't using a fully formed wake), toff=O. 
Lines 280-291 creates nrev, exactly as above, except this time we use toff to find nrev for 
the last cycle, not the first. 
lines 293-345 step through the strokes in the last cycle, then steps through timestep within 
the current stroke in lines 300-344. At each timestep, it calculates the offset distance to each 
previous point in the wake (including earlier strokes). xoff is the horizontal offset distance 
(in the spherical coordinate system) from the leading edge of the wing to the point in the 
wing, noting that xwak(ri, ti) is the current horizontal position of the trailing edge. Similarly, 
zoff is the vertical offset distance. 
Lines 307-316 uses the offsets above to form the influence coefficients hinf, vinf of the 2-D 
Biot-Savart equation, and multiplies the influence coefficient for every point in the wake by 
the vorticity of that point in the wake, to find the vector of velocity induced by every point 
in the wake, hw, vw. These are then summed to give hwlvwl, the total induced velocity 
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due to the secondary wakes. Note that this has to be calculated for every timestep, so the 
calculation time goes with the number of timesteps squared. 

kus-4_CL 

Again, we use radial stepping, in a loop from line 374-423 This calculates the vertical and 
horizontal force coefficients, by calling qs. The coefficients are calculated twice: clcd be- 
fore adding the induced velocity of the wake, and cl2, cd2 after. 
As in master - wag, we use usepolhamus to decide wether to adjust the coefficients for Pol- 
hamus cffect, in lines 391-420. 
Finally, we form CL, CD, the perturbation of clcd due to the secondary wake induced ve- 
locity, in lines 425-426. These are the quantities we will be applying the KtIssncr effect 
to. 

kus-5-Kuessner_effect 

In this subroutine, we apply the Kilssner cffect to the perturbation of cdcl calculated above. 
We use radial stepping, in a loop from line 445-505. 
Lines 451-469 form DCLDCD, the step changes in CLCD. As before, they usefirststep to 
decide how to treat the first point in the series. 
Lines 471-483 finds nrev for the last cycle, as done in subroutine 3. 
Lines 484-504 step though strokes, while lines 491-503 step through timesteps within the 
current stroke. 
At each timestep, we calculate distw, which is the horizontal distance from the trailing edge 
to a point in the wake. Unlike the offset calculated in subroutine 3, distw is always positive, 
increasing from 0 at the current timcstep. WE then say this is the penetration distance of, 
the CDCL change, so call kussner in lines 495 and 498 to return the Kilssncr pcrturbation 
contribution, for every previous point in the wake. 
We call Kussner again in lines 500,501 to get the total perturbation contribution. This 
could also have been done by summing the local contributions, but during development this 
method was used to cross-check the results of Kussner. 

kus-6_force_reconstruct 

Finally, just like in master_wag, we convert the coefficients back into forces. Note that the 
resulting forces are the force per element, not per m span. These forces are then summed 
across all radial positions to form the total force on the wing due to the secondary wake. 
function main(path , verb show, fast 

2%m as ter_kus (verb , show, fa s t) 
3%calculates the induced velocity due to secondary wakes (using 

loewy approximations) 
4 %then applies this as a perturbation velocity using Kussner 's 

theory 
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s %verb is the verbosity: O= no feedback, I= some feedback, 2-4= 
detailed fedback 

6 ? Ioshow is th e amount of data to p lo t: 0= none I =some 2+ =a 11 
7 Yofast is a flag for how much of the code to skip , loading data 

from a previous run 
8 

9 

10 

ii % parsing input 
12 

13 

14 %Edited 3.5.03 by CP Purely numeric: removed spatial mapping 
is%Edited 1.5.02 by CP correcting induced velocity to be based on 3d 

blot-savart 
16%Edited 21.4.03 by CP correcting CL calcualtion 
i7Wow use velocity -corrected qs calcualtion 
is last 

- edited='3. May. 03 
ig last-run=date ; 
20 

21 %input switch 
22 switch nargin 
23 case 0 
24 disp([mfilename ' error , must specify a path for rundata']) 
25 return 
26 case 1 
27 verb = 0; 
28 show = 0; 
29 fast = 0; 
30 case 2 
31 show = 0; 
k fast = 0; 
33 case 3 
34 fast = 0; 
35 case 4 
36 ? Iodo nothing 
37 otherwise 
38 disp([mfilename ' error: too many input arguments']) 
39 return 
40 end 
41 

42 save temp verb show fast %saves passed information you don 't want 
overwritten 

43 

44 
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45% non-run inputs 
46 

47%special inputs that cause the program to display extended 
information , rather than run normally 

48 switch verb 
49 case -3 
so disp([mfilename ' has 6 runlevels , see help mfilename for 

more']) 
51 return 
52 case -2 
53 disp([mfilename ' runtime data path ' path]) 
54 return 
55 case -1 
56 disp([mfilename ' last edited last-edited and last run 

date 
57 return 
58 end 
59 

60 

61 %INITIAL VALUES 
62 

63 

64 If fast & verb disp('Skipping some calculations '); end 
65 

66 If verb message(toc, 's Initialising variables'); end 
67 id = 'kus I init 
68 if fast 
69 load([path id]) 
70 load temp verb show fast; 
71 if verb message (toc 'Loading from previous run); end 
72 else 
73 rshow = 14; tshow =2300; %which radial and time positions to 

show 
74 nwak = kine ('nwak) ; Yonumber of times to repeat the full cycle 

if form ing a full wake 
75 tailflag = kine( 'tailflag %wether to calculate reversal 

based on tail or hinge position 
76 datalength = kine ( 'datalength %wether the data is a full 

half or other part of a cycle 
77 firststep = kine('firststep '); Yomethod to use on the first dCL 

Idt step 
78 tailflag = kine('tailflag '); %wether to use the corrected 

location at te or just the hinge 
79 wakemethod kine('wakemethod'); %(f)ull or (g)row. 

so usepolhamus kine('usepolhamus'); %wether to adjust cl for 
polhamus when calculating wake effect 
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al 
82 

83 

84 

95 

86 

87 

88 

89 

90 

91 

92 

93 

nt kine 'nt '); 
t kine (t'); tt = kine tt dt = kine dt 
r geom( r_default 't nr length (r) 
dr geom( 'dr ') ; 
b= geom( 'b' , 't 'r0 0) ; hinge = geom( 'hinge ') ; 
phi kine ( 'phi phi = phi (I : nt) 
Dphi max(phi) min(phi); 
if length(hinge) == 1; 

hinge = ones (I nr)*hinge 
end 

Yofind bound vorticity GB, and DGW is step change in wake 
vorticity 

unt = kine ( 'unt dp kine ( 'dp') pitch = kine pitch 
uht = kine ( 'uht uvt kine ( 'uvt ;R= geom( 'R') ; 

94 

95 

97 

98 

99 

100 

for ri=l: nr 
un = unt * r(ri); 
%bound vorticity per meter span, at each radial step 
GB(ri :)= qs( 'gamma' uht*r(ri) uvt*r(ri) pitch dp, r(ri) b 

(ri) hinge( ri)); 
? Ioshed vorticity into the wake 
DGW(ri :)= -Der(GB(ri :)I: nt); 

101 
102 

103 

104 %need to change the first value based on what data we are 
using 

switch firststep 
case 'w' 

Vowrap data - already calculated above 
case 'i' 

DGW(ri l) -GB(ri l) %impulsive start 
case 's ' 

DGW(ri I) DGW(ri 2) Yosmooth by setting equal to 
second step 

otherwise 
message(toc [ 'bad value for firststep firststep 
return 

end 

kos 

106 

107 

los 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

end 

%calulate average induced vertical velocity 
load([ path , 'qs_final TW') 
LW 

- mean = mean(LW); 
R= geom( W) ; rho = kine ('rho'); 
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123 Phi-prime = Dphi/(2* pl) ; Yofraction of a full revolution 
convered 

124 As = pt *RA2* Phi_prime; 
125 ui = sqrt(LWýmeanl(rho * As)); 
126 T= kine ( 'T') ; 
127 h= ui * T; %vertical offset between wakes (between full 

strokes , not halfstrokes); 
128 clear LW; 
129 

130 save([path id]) 
131 end 
132 1f verb timegone = toc ; disp ([ num2str (round( timegone) ) 's Done' 

disp( ' '); end 
133 

134 9191WO 

135 %SECONDARY WAKE VECTORS 
136 

137 1f verb timegone = toc ; disp Q num2str(round ( timegone) 's 
Calculating wake ganuna]) ; end 

138 id = 'kus-2_wakevcct'; 
139 1f fast >1 
140 load([path id]) 
141 load tcmp verb show fast; 
142 If verb disp('Loading from previous run'); end 
143 else 
144 shift = zeros(l, nr); 
145 for ri =I: nr if verb >1 message(toc J'Radial position ' num2str( 

ri)]); end 
146 

if r( ri ) ==O 

147 Ddist (ri zeros (I, nt) 
148 rev ( ri : zeros (I, nt ); 
149 shift(ri) = 0; 
150 xwak(ri = zeros(l, nt); 
151 zwak(ri = zeros(l, nt); 
152 GW(ri zeros(l, nt); 
153 else 
154 If tailflag %wether to base reversals and distance 

travelled on hinge or trailing edge 
155 %velocity at trailing edge 
156 uhte(ri = uht*r(ri) + dp * b(ri) * (+I -hinge( 

ri)) sin(pitch); 
157 %Distance covered per timestep 
158 Ddist(ri abs(uhte(ri dt); 
t59 VoREversal points 
160 rev(ri find_crossings( 'vector' uhte(ri 
161 else 
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162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

Ddist(ri = abs(uht * r(ri)) .* dt; 
rev(ri :) find_crossings( 'vector' uht) 

175 

176 

177 

178 

179 

180 

191 

182 

183 

184 

iss 

186 

197 

lag 

189 

190 

191 

192 

1; 3 

194 

195 

1% 

197 

198 

199 

200 

201 

202 

203 

2(A 

205 

206 

end 

nrev = find(rev(ri 
if -sum(rev(ri 

nrev 
end 

If firststep == W; 
if verb & ri ==2 message(toc , 'wrapping data ') ; end 
%shifts the data so the first reversal point is at 

index I 
shift(ri) = nrev(1); 
Ddist(ri shifter(Ddist(ri :) shift(ri)); 
rev(ri :) shifter(rev(ri :) shift(ri)); 
nrev = find(rev(ri 

end 

If nrev(l) -I 
nrev nrev 

end 

If nrev (length (nrev) ) -=nt; 
nrev = [nrev nt]; 

end 

Yofind the -direction of the first stroke 
If tailflag 

uchar = uhte(ri,: ); 
else 

uchar = uht; 
end 
first 

- 
direction ( ri sign (uchar (I)) 

If first 
T 

direction(ri) 0 
first-direction(ri) sign(uchar(2)); 

end 
If first-direction == 0 

disp('error , inital velocity is 0 
end 

%step through strokes 
xwak(ri ,I: nt) = zeros (I , nt) 
for stroke =1: length (nrev)-I 

tI = nrev(stroke); %start index of this stroke 
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207 t2 = nrev(stroke+l)-I; Yoend index of this stroke 
209 If stroke =- length(nrev)-l 
209 t2 = t2 +1 
210 end 
211 wakenum(ri ,tI: Q stroke -1; 
212 direction( ri , t1 : t2 - -I*( -I) 

A 
wakenum(ri ,tI: t2 

first 
- 

direction (ri 
213 for ti=tl : t2 ; 
214 %distance travelled in this stroke 
215 dist (ri , ti sum(Ddist(ri , tl : ti 
216 end 
217 xwak(ri tl : t2) dist (ri , tl : t2) .* direction (ri , t1 

t2 ); 
218 

219 

220 

221 

222 

223 

224 

223 

226 

227 

228 

229 

If tl-=l 

end 
xwak(ri tl : t2) xwak(ri tl : t2)+xwak(ri tI-I); 

zwak(ri tl : t2) = ui T/2 * wakenum(ri tl : t2); 
GW(ri tl : t2) - DGW(ri tl : t2); 

end 
end 

end 

If wakemethod - 'f' 
%Turn the wake variables into nwak times their original 

length 
If verb message(toc 'using full wakemethod'); end 
If firststep -W 

disp Q mfilename ' warning , when using ful I wake model 
first step should be set to (w)rap 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

end 
xw xwak; %temporary variables 
zw zwak; 
gw Gw; 
dw dist; 
wn wakenurn; 
rw rev ; 

for ni =2: nwak 
xw = [xw xwak]; 
zw = [zw zwak + ni *T* ui 
dw = [dw dist]; 
gw = Igw GWI; 
wn = [wn ni+wakenum]; 
rw = [rw rev]; 

end 
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249 xwak 
250 zwak 
251 dist 
252 (VJ 

253 rcv 

254 clear 
255 clear 
256 end 
2S7 

= xw; 
= zw; 
= dw; 
9w; 

rw; 
xw; clear zw; clear gw; clear dw; 
rw; clear wn; clear rw; 

258 save([path id]) 
259 clear nrev; 
260 If verb message(toc, ' Done'); disp(' '); end 
261 end 
262 

263 

264 %INFLUENCE COEFFICIENTS and velocities 
265 

266 If verb timegone = toc; disp Q num2str (round( timegone) forming 
influence coefficients ']) ; end 

267 id = 'kus 
-3- 

influence_coefficients 
268 If fast >2 
269 load([path id]) 
270 load temp verb show fast; 
271 If verb disp('Loading from previous run'); end 
272 else 
273 for ri=l: nr 
274 If verb >1 message(toc j' Now at radial index ' num2str(ri) 

]) ; end 
275 If b(ri)==O r(ri) == 0 
276 vwl ( ri zeros (I nt *nwak) ; 
277 hwl ( ri zeros (I nt *nwak) ; 
278 else 
2ý9 toff nt*(nwak-1); %this is offset so we 

calculate for last cycle 
280 nrev = find(rev(ri toff+l: toff+nt))+toff; 
281 If -sum(rev(ri , toff+I: nt*nwak)) 
282 nrev = toff+l; 
283 end 
284 

285 If nrev(l) -=toff+l 
286 nrev = [toff+1 nrev]; 
297 end 
288 

289 If nrev (length( nrev)) -=nt*nwak; 
290 nrev = [nrev nt*nwak]; 
291 end 

UNCLASSIFIED Page 229 of 248 



Pedersen B3 Master Functions 

292 

293 for stroke I: length(nrev)-l If verb >1 mcssage(toc j 
'stroke nurn2str( stroke)]); end 
tI = nrev(stroke); %start Index of this stroke 
Q- nrev(strokc+l)-I; Yoend Index of this stroke 
If stroke - length(nrev)-l 

Q= t2 + I; Yofor the last stroke, we want 
the full length 

end 
%steps through time this stroke 
for ti-tI : t2; 

If verb >2& ti/100-- floor(ti/100); timegone 
= toc; d1sp Q nurn2str (round (timegone) 

t ime step ' nurn2str(ti)]); cnd 

294 

295 

2% 

297 

299 

299 

300 

301 

302 

303 

304 

%offset distance 
xoff - xwak(ri 1: t1 -1) -xwak(ri , ti )-cos(pitch( 

fi-toff))*2*b(ri); Yoonly the previous wakes 
zoff = -zwak(ri, l: tl-l) +zwak(ri ti)+Sln(Pitch 

(fi-toff))*2*b(ri); 
305 

306 

307 %influence coeficclents (vertical and 
horizontal) 

308 vinf - (1/2/pI)*xoff (abs(xoff. A2) + abs( 
zoff. A2) ); 

309 hinf = (1/2/pI)*zoff (abs( XOff. A 2) + abs( 
Zoff. A 2) ); 

310 %induced velocity contribution for every point 
in wake 

vw = GW(ri I: tl -1). *vinf; 
hw = GW(ri , 1: tl -1). * hinf; 

311 

312 

313 

'314 

315 

316 

317 

313 

319 

320 

321 

322 

323 

324 

325 

326 

327 

%total contribution for entire wake 
vwl(ri , ti )- sum(vw); 
hwl(ri , ti )- sum(hw); 

If show & ri-rshow & ti-tshow 
figure 
subplot 221 
plot(vinf) 
title ( 'vinf') 

subplot 222 
plot(hinf) 
title ( 'hinf') 
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328 subplot 223 
329 plot ( x0ff) 

330 title( 'xoff') 
331 

332 subplot 224 
333 plot ( z0ff) 

334 title(zoff') 
335 

336 figure 
331 plot3 (xoff 

, zoff vinf 
338 

339 figure 
340 plot( uhte (rshow 
341 ti 

342 Q 
343 bavc VLUb-UdtU 

3" end 
345 end 
346 end 
347 end 
348 end 
349 save([path id]) 

350 If verb message(toc, ' Done'); dIsp(' '); end 

351 end 
352 

353 

354 2 

355 % Resolve as normal and parallele 
356 

357 save test data 
359 for ri=l: length(r) 

359 [pwl(ri,: ), nwl(ri,: )] = cz_resolve(vwl(ri, toff+l: toff+nt), hwl( 

ri toff+l: toff+nt) pitch); 
360 end 
361 

362 

363% Lift Coefficients 
364 

365 If verb message(toc, 'Lift coefficients '); end 

366 id - 'kus_4_CL'; 
367 If fast >3 
368 load([path id]) 
369 load temp verb show fast; 
370 If verb message( toc 'Loading from previous run'); end 
371 else 

372 Yoform velocity matricies 
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373 %B geom ('B ') ; 
374 for ri=l: length(r) %radial stepping 
375 if verb>1 message(toc, [' radial position num2str(ri)]); 

end 
376 If b(ri)==O I r(ri) -- 0 

377 cl(ri I: nt) - zeros(l, nt); 
379 02 ( ri ,I: nt) = zeros (I , nt) 
379 cd(ri I: nt) - zeros(l, nt); 
380 cd2(ri I: nt) - zeros(l, nt); 
381 uh(ri I: nt) - uht(l: nt)*r(ri); 
382 uv(ri I: nt) - uvt(l: nt)*r(ri); 
383 else 
384 uh(ri uht * r( ri uv(ri uvt * r( ri 
385 %Lift coefficient before wake velocity correction 
396 cl(ri :)- qs('CL, uh(ri : ), uv(ri : ), pitch dp, r(ri), b( 

ri), hinge(ri)); 
387 %Lift coefficient after wake velocity correction 
389 c12(ri : )- qs('CL', uh(ri :)+ hwI(ri toff+l: toff+nt), 

uv(ri :) +vwl(ri toff+l: toff+nt) pitch dp, r(ri) b( 
ri), hinge(ri)); 

389 cd(ri :)= qs('CD', uh(ri : ), uv(ri : ), pitch dp, r(ri). b( 
ri ) hinge ( ri )); 

390 cd2(ri : )= qs('CD', uh(ri :)+ hwi(ri toff+l: toff+nt) 
uv(ri :) +vwl(ri , toff+l: toff+nt) pitch dp, r(ri) bj 
ri), hinge(ri)); 

391 switch usepolhamus 
392 case 'n' 
393 Yodo nothing 
394 case 'y' 
395 If verb & ri -2 message(toc , 'using polhamus 

correction to cl'); end 
3% Yomean square velocity before wake correction 

ut2 = qs('ut2', uh(ri :) uv(ri :) pitch dp, r(ri), b( 
ri), hinge(ri)); 

398 Vanean square velocity after wake correction 
3" ut2kus = qs('ut2', uh(ri :)+ hwl(ri toff+l: toff+nt 

), uv(ri :) +vwl(ri toff+l: toff+nt) pitch dp, r( 
ri), b(ri), hinge(ri)); 

4W %leading edge slope 
401 dledr = geom('d1edr', 't', r); corr - sqrt(l+dledr 

A2) 
402 

403 %Polhamus lift effects 
404 L_pol(ri :)= pol( 'L_pol ' uh(ri :) uv(ri :) pitch , dp, r(ri) b( ri ) hinge( ri ) corr( ri ) 0,0); 

UNCLASSIFIED Page 232 of 248 



Pedersen B. 3 Master Functions 

405 

406 

407 

408 

409 

410 

411 

412 

L_pol2(ri :)= pol( 'L_pol ' uh(ri : )+hwl(ri to ff+1: 
toff+nt), uv(ri,: ) + vwl(ri, toff+l: toff+nt), 
pitch dp, r(ri) b(ri) hinge(ri) corr(ri) 0 0) 

D_pol(ri :)= pol( 'D_pol' uh(ri :) uv(ri : ), pitch, 
dp, r(ri) b(ri) hinge( ri) corr( ri ) 0,0) ; 

D_pol2(ri , :)= pol( 'D_pol ' uh(ri : )+hwl(ri to ff+1: 
to ff+nt) uv(ri :)+ vwl(ri to ff +1: to ff+nt) , 
pitch dp, r(ri) b(ri) hinge(ri ) corr(ri) 0 0) 

clp(ri :)= L_pol(ri :) . /( rho .* 
clp2 (ri L_pol2(ri rho 

cdp(ri D_pol(ri rho 
cdp2(ri D_pol2(ri rho 

b(ri) .* ut2); 

.* b(ri) .* ut2kus 

b(ri) .* ut2); 
.* b(ri) .* ut2kus 

413 

414 cl(ri cl(ri + clp(ri 
415 02 ( ri 02 ( ri )+ clp2 ( ri 
416 cd (ri , cd ( ri :+ cdp ( ri :) 
417 cd2(ri,: ) cd2(ri,: ) + cdp2(ri,: ); 
418 

419 clear L_pol; clear L_pol2; clear D_pol; clear 
D_po12; 

420 clear ut2 ; clear ut2kus 
421 end 
422 end 
423 end 
424 

42S CL = 62-cl ; ? Iowake perturbation CL 
426CD = cd2-cd; Yowake perturbation CO 
427 

428%test data C= ones(size(Q); 
429 

430 save([path id]); 
431 If verb message(toc 'Done') ; dlsp( ' '); end 
432 end 
433 

434 

435% Kuessner effect 
436 

437 if verb message(toc , 'Kuessner effect '); end 
439 id = 'kus 

-5- 
Kuessner-effect 

439 If fast >4 
440 load([path id]) 
441 load temp verb show fast; 
442 if verb disp('Loading from previous run); end 

UNCLASSIFIED Page 233 of 248 



Pedersen B3 1%12ster Functions 

443 else 
4" kus-loca - zeros(nr, nt); 
445 for ri=l: nr %radial stepping 
"6 If verb>l message(toc, ['s radial ' num2str(ri)]); end 
"7 If b(ri)=-O I r(ri) -- 0 
448 kus_L(ri I: nt) = zeros(l, nt); 
449 kus_D(ri I: nt) = zeros(l, nt); 
450 else 
451 DCL( ri der (CL( ri I: nt) ; Vastep changes In C 
452 DCD(ri der (CD(ri 1: nt) ; Yostep changes In C 
453 %change first value depending on method 
454 switch firststep 
455 case 'w' 
456 Yono nothing - already calculated above 
457 case 'i ' 
458 DCL(ri I) = cl2(ri I); %impulsive start 
459 DCD(ri ,I)= cd2 (ri ,I %impulsive start 
460 case W 
461 DCL(ri I) = -DCL(ri I) ; Yofirst step Is opposite of last one 

in series 
462 DCD(ri I) = -DCD(ri I) ; Yofirst step Is opposite of last one 

in series 
463 case 's ' 
464 DCL(ri I) = DCL(ri 2) ; Vasmooth by selling equal to second 

step 
465 DCD(ri I) = DCD(ri 2) ; Vasmooth by selling equal to second 

step 
4" otherwise 
467 message(toc [ 'bad value for firststep firststep 
469 return 
469 end 
470 

'471 toff = (nwak-l)*nt; 
472 nrev = find (rev( ri , toff +1: toff+nt))+toff Vastep through the 

last values 
473 If -sum(rcv(ri toff+l: toff+nt)) 
474 nrev - toff+l; 
475 end 
476 

477 if nrev(l) -=toff+l 
478 nrev = (toff+l nrev]; 
479 end 
490 

481 If nrev (length (nrev)) -=nt*nwak; 
482 nrev = [nrev nt*nwak]; 
483 end 

UNCLASSIFIED Page 234 of 248 



Pedersen B. 3 Master Functions 

484 for stroke = I: length (nrev)-I 
485 tI = nrev(stroke); %start index of this stroke 
486 Q= nrev( stroke +1) - 1; Voend index of this stroke 
487 If stroke == length(nrev)-l 
489 t2 = t2 +1; Yofor the last stroke , we want the full 

length 
489 end 
490 

491 for ti=tl :Q; if verb >2 & ti /100 floor( ti /100) ; message 
(toc j 's time step ' num2str( ti ; end 

492 distw = dist(ri , ti)-dist(ri tl : ti) %distance to points in 
wake, not distance travelled 

493 If (show>O & ri==rshow & ti == tshow) 
494 %kussner correcto for every point in the wake 
495 kus-loca_L(ri tl-toff: ti-toff) = kussner(DCL(ri tI-toff: 

ti-toff) distw . /b(ri) , 'loca ' 0,1) 
496 else 
497 %kussner correcto for every point in the wake 
498 kus-loca_L(ri tl-toff: ti-toff) = kussner(DCL(ri tl-toff: 

ti-toff) distw . /b(ri) 'Ioca ' 0,0); 
4" end 
Soo kus_L(ri ti-toff) = kussner(DCL(ri tl-toff: ti-toff) distw 

. /b(ri) , 'tota ' 0,0) ; 
501 kus_D(ri ti-toff) = kussner(DCD(ri tI-toff: ti-toff) distw 

. /b( ri ), ' tota '0 0) ; 
502 end 
503 end 
504 end 
505 end 
506 save([path id]) 
507 If verb message(toc 'Done') ; disp(' '); end 
508 end 
5bg 
SIO 
511 % Reconstruction 
S12 YOgO from coefficients to actual forces 
513 

514 if verb message(toc , 'Reconstructing forces from coefficients ; end 
SIS id = 'kus 

-6- 
force_reconstruct 

316 If fast>5 
517 load([path id]) 
Sig load temp verb show fast; 
519 if verb message( toc Loading from previous run'); end 
$20 else 
521 for ri=l: nr 
322 Mean square velocity hefore and after wake effect 
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523 ut2(ri :)- qs('ut2 ' uh(ri :) uv(ri : ), pitch dp, r( ri) b( ri 
), hinge( ri )) ; 

524 ut2kus(ri - qs( 'ut2 ' uh(ri :)+ hwi(ri to ff+1: to ff+nt) 
, 

uv(ri +vwl(ri toff'+I: toff+nt) pitch dp, r(ri) b(ri) , hinge( ri 
525 

526 LQ(ri cl(ri ut2(ri rho * b(ri) R dr(ri 
); %original lift numerical sum 

527 LK(ri = kus_L(ri .* ut2kus(ri : )*tho*b(ri) R dr( 
ri Yoperturbation due to kuessner effect 

528 LT(ri - LK(ri + LQ(ri :); %total lift 
529 DQ(ri = cd(ri ut2(ri :)* rho * b(ri) R dr(ri 

); %original lift numerical sum 
530 DK(ri = kus_D(ri .* ut2kus(ri :) *rho*b( ri R dr( 

ri %perturbation due to kuessner effect 
531 DT(ri DK(ri + DQ(ri %total lift 
532 end 
533 save([path id]) 
534 end 
$35 

536 

537 

539 %Shift back to original time 
$39 

540 If shift 
541 If verb message( toc , 'un-shifting data'); end 
542 for ri=l: nr 
543 Ddist(ri = shifter(Ddist(ri : ), -shift( ri 
5" dist(ri = shifter(dist(ri : ), -shift( ri 
545 DCL(ri shifter(DCL(ri : ), -shift (ri)) ; 
546 wag(ri = shifter(wag(ri : ), -shift(ri)); 
547 LK(ri shifter(LK(ri : ), -shift( ri)); 
548 DK(ri shifter(DK(ri : ), -shift (ri 
549 end 
550 end 

551 
552 

553 

554% Total lift correction 

556 L- kus = sum(LK); Yosums corrections across span 
s57 D_kus = sum(DK); 
558 

559 save Q path ' kus_final 

560 return 
561 
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562 

563% Additional functions 
564 

565 

566 function [parl norm] = cz_resolve(vert horz angle); 
567%resolves velocities parallel and normal to wing 
568 

569 norm - vert .* cos(angle) + horz sin(angle); 
570 parl = vert . *-sin(angle) + horz cos(angle); 
571 

sn return 
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BA Run Functions 

There are two of these, and both are rather simple. They simply call the master functions 
in order, and tell them where to save the results. master performs an analytical evaluation 
(using wing shape parameters), while master_num uses numerical summation. 

Master 

i %master 
2 %note that no variables are created 
3 %they have to be loaded from the folder I rundata 
491oLast edited 12. Mar. 03 by CP 

5 
6 clear all ; close all 
7 tic 

I 

9 path = 'c : \data \math\ matlab \mekado\ current \ rundata 
10 verb = [1 12 2]; %verbosity level 
11 show = [0 00 8]; Yoshow level 
12 skip = [0 00 0]; Oloamount of subroutines to skip 
13 

14 if verb 
is disp (geom( 'id %displays the geometry being used 
16 dlsP (kine ( 'id %displays the kinematics being used 
17 end 
is 
19 disp('**** Quasi steady 
20 master_qsam (path, verb (1) show(l ) skip (1) 
21 disp ([ '******* Done 
22 disp(' 
23 

24 disp('***** Polhamus 
25 master_polhamus (path , verb (2) show(2) , skip (2) 
26 disp ([ '******* Done 
27 disp(' 
28 

29 disp Wagner 

30 master_wag (path, verb (3) show (3) skip (3) 

31 disp (C '******* Done 
32 disp(' 
33 

34 

35 disp('**** Secondary wake 
36 master_kus (path, verb (4) show(4) skip (4) 
37 disp Q Done 

is disp(' 

UNCLASSIFIED Page 238 or 248 



Pedersen BA Run Functions 

Master_num 

i Olomaster num 
2 %this is the numeric runfile. 
3 %it runs all the other files 

4 %note that no variables are created 
s %they have to be loaded from the folder I rundata 
6 %Last edited 21. May. 03 by CP 
7 

: 
clear all 

10 close all 
11 tic 
12 

13 path = 'rundata/'; 

14 verb - [I I1 1]; %verbosity level 

is show = [0 00 0]; Yoshow level 

16 skip = (0 00 0]; Yoamount of subroutines to skip 
17 
is If verb 
19 disp (geom('id')) %displays the geometry being used 
20 disp (kine ( 'id %displays the kinematics being used 
21 end 
22 

23 disp(**** Quasi steady 
24 numerical_qsam (path , verb (1) show(l) , skip (1) 
25 disp ([ '******* Done 
26 dIsp(' 
27 

23 disp Polharnus 
29 numerical_polhamus (path , verb (2) show(2) , skip (2) 
30 disp Done 
31 dIsp(' 
32 

33 disp (****** Wagner 
34 master_wag (path verb (3) show (3) skip (3) 
35 disp ([ '******* Done 
36 dlsp( 
37 

38 

39 disp Secondary wake 
40 master_kus (path , verb (4) show(4) , skip (4) 
41 disp Q Done 
42 disp ( 
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B. 5 Miscellaneous functions 

These are calculation-level functions, with a very limited scope, typically a single task. 

B. 5.1 der 

This calculates the numerical differential of a variable x wrt variable t. It assumes that x 
forms a closed path, so it can wrap the data around the last to first value. 

i function dx = Der(x, t); 
2Yo[dx, dy] = Der (x, 1) ; 
3 %returns the derivative of x wrt 1. The derlavilve Is of the same 

length as the original. 
4Yoassumes that x forms a closed paths. so the last value of x and 

A is the same as the first. 
s%requires time values O: dt: t-dt, not dt: dt: T 
6 dx = dif f (x) ; 
7 dt = diff(t); 

dx = [dx(length(dx)) dx]; Yoadds an extra value on the end so 
vectors are same length 

10 dt = [dt(length(dt)) dt]; 
11 
12 dx = dx dt; 
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B. 5.2 find_crossings 

This finds the points where a variable x crosses zero (changes sign), low-pass filtering the 
data to avoid multiple crossings in close succession, e. g. for noisy data. 

IfunctIon out = main (gimme , data , deadsp ace , verb , show) ; 
2%nrev = find_crossings (gimme, data, deadspace , verb , show); 
3Yofind the points where the sign of vector DATA changes 
4 IIVIIaE is either 'Index ' or 'vector ' 
s% 'index returns the indexes where sign changes 
6% #vector returns a full length vector of zeros , with ones at 

the crossing points 
7%for noisy data , we sometimes get multiple crossings in close 

succesion 
s %the input DEADSPACE governs the minimum number of points between 

crossings 
9 %if crossings are closer than this , the later ones are ignored. 
io %deadspace is by default 5% of the length of DATA 
ii YoVERB (verbose) is a flag wether additional information should be 

shown 
12 ? IMOW is a flag to plot the results of the function 
13 

14%created 16.5.03 by C. Pedersen 
is last 

- edited='16-May-2003' 
16 last-run = date 
17 

is %assign default values to missing inputs 
19 switch nargin 
20 case {0,1) 

21 warning( 'need at least two inputs 
22 return 
23 case 2 
24 deadspace = floor(length (data) /20) 
25 verb -O; show 0; 
26 case 3 
27 verb - 0; show 0; 
28 case 4 
29 show = 0; 
30 case S 
31 ? Wo nothing 
32 otherwise 
33 warning('too many inputs exiting') 
34 return 
35 end 
36 

37 nt = length(data); 
38 S= sign(data) ; 
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39 

4o nrev = find (S(2: nt)-S(I : nt-1)) 
41 

42Yoform vector 
43 rev = zeros(i, nt); 
44 rev(nrev) 
43 

46 for i=l: length (nrev) 
47 %index of points covered by the deadspace 
48 dead_index - nrev(i)+l: nrev(i)+l+deadspace; 
49 %sets all reversal points In deadspace to 0 
so rev(deadjndex) = zeros( size (deadjndex)) ; 
si end 
52 %nrev is values where rev 
53 ( error , nrev ]= find ( rev) ; 
54 %restores rev to original 

searching deadspace) 
5s rev = rev(l: nt); 
56 

s? %Output switch 
5s switch gimme 
59 case 'index' 

Is still not 0; 

length (can have got longer when 

60 out = nrev; If verb disp('index of reversal points'); end 
61 case 'vector ' 
62 out = rev; If verb disp('full length vector'); end 
63 otherwise 

disp([mfilename ' error: unknown input for gimme: ' gimmc]); 
65 return 
66 end 

67 

68 If verb 
69 disp(['found ' num2str( length (nrev)) ' reversal points']) 

disp(['in ' num2str(nt) ' datapoints']) 
71 end 
72 

73 YoDisplay functions 
74 1f show 
75 plot(data) 
76 hold on 
77 if exist('nrev') 
78 plot (nrev zeros( size (nrev)) go') 
79 plot([nrev(l) nrev (1)+I+deadspace ] Jdata (nrev (1) ) data( 

nrev(l))], 'k-') 

80 end 
81 title(' reversal points') 
82 end 
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B. 5.3 message 

Displays the time elapsed, along with a given string, to the run window. 

i fun ctl on message (time, me ssage_text) ; 

3 disp ([ num2str (round( time)) '' message_text]); 
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B. 5.4 rotator 

Rotates an arbitrary vector in 3-D, using the euler angles. In our code, this is used to find 
the x, y, z location of the tip. 

i function X= rotator(x, phi psi ang); 
2Yaxr = rotator (x, phi, psi , ang) 
3 %rotates by euler angles ang (pitch), phi (sweep) and psi (plunge) 

4%X is a matrix of 3xn 

sANG - [cos(ang) 0 -sin(ang) ;010; sin(ang) 0 cos(ang)] '; 
6 PSI =[100; 0 cos(psi) sin(psi) ;0- sin(psi) C03(pSi)] 
7 PHI =[ cos(phi) sin(phi) 0; -sin(phi) cos(phi) 0; 00 1] 
: 

X= (PHI * PSI *ANG* x')'; 
10 
nVoshow the final transformation matrix by the following commands 
12 %clear all 
13 YOSYMS ( 'X ', 'y ', 'z ', 'real ') 
14Yosyms ('phi ', 'psi ', 'ang ', 'real ') 
is ? /&Y = rotator ([x y z]. phi, psi , ang); 
I's OW , 
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