
Bidirectional Branch and Bound for Controlled Variable Selection

Part II. Exact Local Method for Self-optimizing Control

Vinay Kariwala† and Yi Cao‡∗

† Division of Chemical & Biomolecular Engineering,

Nanyang Technological University, Singapore 637459

‡School of Engineering, Cranfield University, Cranfield, Bedford MK43 0AL, UK

This version: January 28, 2009

Abstract

The selection of controlled variables (CVs) from available measurements through enumeration of

all possible alternatives is computationally forbidding for large-dimensional problems. In Part I of

this work [5], we proposed a bidirectional branch and bound (BAB) approach for subset selection

problems and demonstrated its efficiency using the minimum singular value criterion. In this paper, the

BAB approach is extended for CV selection using the exact local method for self-optimizing control.

By redefining the loss expression, we show that the CV selection criterion for exact local method is

bidirectionally monotonic. A number of novel determinant based criteria are proposed for fast pruning

and branching purposes resulting in a computationally inexpensive BAB approach. We also establish a

link between the problems of selecting a subset and combinations of measurements as CVs and present

a partially bidirectional BAB method for selection of measurements, whose combinations can be used

as CVs. Numerical tests using randomly generated matrices and binary distillation column case study

demonstrate the computational efficiency of the proposed methods.

Keywords: Branch and bound, Control structure design, Controlled variables, Combinatorial opti-

mization, Self-optimizing control.

∗Corresponding Author: Tel: +44-1234-750111; Fax: +44-1234-754685; E-mail:y.cao@cranfield.ac.uk

1

e101466
Text Box
Computers & Chemical Engineering, Volume 33, Issue 8, 2009, Pages 1402-1412

Nomenclature

1p,q p× q matrix of ones

a column vector (lower case bold face letter)

A matrix (upper case bold face letter)

B best available lower bound on selection criterion

C candidate set of a node

Cn
m binomial coefficient of m choose n

F fixed set of a node

G̃ Defined as G̃ = GyJ−1
uu ; see equation (22)

G̃X sub-matrix of G̃ consisting of rows with indices in set X

H measurement selection or combination matrix

Ip p× p Identity matrix

J objective functional related to steady-state economics of process

L1 local loss when individual measurements are used as CVs

L2 local loss when measurement combinations are used as CVs

L2(X) lower bound on L2 for all n-element supersets of X

M(Xp) Defined as M(Xp) = R−T G̃XpG̃
T
Xp

R−1; see Equation 31

n number of measurements to be selected, whose combinations are used

as CVs

nu number of degrees of freedom or inputs

ny number of available measurements

N(Xp) Defined as N(Xp) = G̃T
Xp

(YXpY
T
Xp

)−1G̃Xp ; see Equation 32

R Cholesky factor

S union of the sets F and C, i.e. S = F ∪ C

S a two-tuple, S = (F,C) represents a node in the search tree

T selection criterion (to be minimized)

Tn(X) lower bound on T for all n-element subsets or supersets of X

Xt subscript t represents the size of the set X

Xi superscript i represents the index of the sub or super set obtained

from X

Y Defined as Y =
[

(Gy J−1
uu Jud −Gy

d) Wd We

]
; see equation (21)

α downwards pruning index

β upwards pruning index

2

λi ith largest eigenvalue of a square matrix

λ̄ maximum eigenvalue of a square matrix

λ least non-zero eigenvalue of a square matrix

σ̄ maximum singular value of a matrix

1 Introduction

A plant usually has many measurements available for monitoring and control purposes. Self-optimizing

control involves selection of a subset or combinations of available measurements as controlled variables

(CVs) such that when the selected CVs are maintained at constant setpoints using feedback controllers,

the overall plant operation is nearly optimal even in the presence of various disturbances [16]. Thus, the

concept of self-optimizing control provides a simple operational strategy, where the loss incurred due to the

use of suboptimal feedback based strategy in comparison with the use of an online optimizer is minimal.

The loss incurred by the feedback based strategy depends on the selected CVs. For appropriate selection

of CVs using the concept of self-optimizing control, various criteria have been proposed including the

minimum singular value (MSV) rule [17] and exact local methods with worst-case [9, 12] and average

loss minimization [3, 13]. Like other control structure selection problems, CV selection is a combinatorial

optimization problem; see e.g. [19]. To find the optimal CVs, the selection criteria need to be evaluated

for each possible alternative resulting in huge computational requirements, especially when the number of

available measurements and the number of CVs to be selected are large. For such large scale problems,

some heuristic rules may have to be applied to reduce the size of the search space. With the use of heuristic

rules, however, the global optimality of selected CVs cannot be guaranteed.

The combinatorial difficulty associated with the CV selection problem was recently addressed in Part I

of this work [5], where a novel bidirectional branch and bound (BAB) approach was proposed and its

efficiency for CV selection was demonstrated using the MSV rule. The MSV rule, however, is approximate

and can sometimes lead to non-optimal set of CVs [10]. In general, it is more appropriate to select CVs

using the exact local methods [3, 9, 13]. The objective of this paper is to extend the BAB approach for

CV selection using the exact local method with worst-case loss minimization.

The selection of CVs from available measurements can be seen as a subset selection problem, where the

number of CVs to be selected is the same as the number of available inputs or degrees of freedom. For

such problems, a bidirectional BAB method gains its efficiency by pruning both supersets and subsets

3

(measurement sets with the number of elements greater than and smaller than the number of inputs,

respectively), which cannot lead to the optimal solution. A difficulty in the use of BAB method for the

exact local method is that the loss expression for this method is restrictively defined for square systems,

i.e. where the number of selected measurements is equal to the number of inputs. On the other hand, a

BAB method requires evaluation of the selection criterion, when the number of selected variables differs

from the target subset size. In this paper, we re-define the loss expression for exact local method such

that it holds for non-square configurations. We subsequently show that the re-defined loss expression is

bidirectionally monotonic and thus is amenable to the use of bidirectional BAB approach.

In comparison with the traditional unidirectional BAB approaches, the use of bidirectional pruning, i.e.

simultaneous pruning of both supersets and subsets, provides significant improvement in computational

efficiency. The evaluation of (re-defined) loss expression for exact local method, however, is computa-

tionally expensive. We note that a BAB method spends most of its time in evaluation of non-optimal

nodes. Therefore, we develop several efficient determinant based conditions to replace the computation-

ally demanding calculation of exact local loss so as to quickly decide upon whether expansion of a node

can lead to the optimal solution. With these improvements, the proposed BAB method achieves similar

computational efficiencies as the BAB approach for CV selection using MSV rule [5].

A related problem involves selection of combinations of available measurements as CVs, which provides

lower losses than the use of a subset of available measurements as CVs [2, 9, 12, 13]. Halvorsen et al. [9]

proposed the use of nonlinear optimization based approach to design the combination matrix, which is

computationally expensive and may converge to local optima. Alstad and Skogestad [2] proposed the use

of computationally more efficient null space method to find measurement combinations, but this method

ignores implementation error and thus can only provide a suboptimal solution. Recently, explicit solutions

to the problem of finding locally optimal measurement combinations have been proposed [3, 12, 13], which

significantly simplify the design procedure. It is noted in [1, 10, 12, 13] that the use of combinations of

a few measurements as CVs often provides similar loss as compared to the case where combinations of

all available measurements are used. Though the former approach results in control structures with lower

complexity, it gives rise to another combinatorial optimization problem involving the identification of the

set of measurements, whose combinations can be used as CVs.

In this paper, we extend the BAB method to find a subset of available measurements, whose combinations

can be used CVs. Unlike the selection of a subset of measurements as CVs, however, the selection

criterion for this problem is only downwards monotonic (gradually decreasing subset size). We show that

the advantages of bidirectional BAB method can still be realized to some extent, as a lower bound of the

4

selection criterion satisfies upwards monotonicity, when the number of selected measurements is greater

than a certain number. We propose partially bidirectional BAB method for this problem and demonstrate

the efficiency using the case study of a binary distillation column [15]. In addition to the extension

of the bidirectional BAB for CV selection using exact local method, a contribution of this work is the

demonstration of the fact that BAB methods can still be used when the selection criterion does not satisfy

monotonicity requirements.

The rest of the paper is organized as follows: Section 2 provides a tutorial overview of unidirectional

and bidirectional BAB methods for subset selection problems. The problems of selecting a subset or

combinations of available measurements as CVs using the concept of self-optimizing control are formulated

in Section 3. For these problems, efficient bidirectional BAB algorithms are developed in Section 4. The

developed algorithms are tested with several numerical examples in Section 5 and the work is concluded

in Section 6.

2 Branch and bound methods for subset selection

This section gives a brief overview of the principles of unidirectional (upward or downward) and bidirec-

tional BAB approaches for subset selection problems; see [5] for further details. The bidirectional BAB

approach is adapted for CV selection using the exact local method for self-optimizing control later in the

paper.

2.1 Subset selection problem

Assume that Xm is an m-element set of all the available elements. The subset selection problem involves

finding an n-element subset Xn ⊂ Xm such that the selection criterion T is minimized among all possible

Xn ⊂ Xm, i.e.

T (Xopt
n) = minT (Xn) ∀Xn ⊂ Xm (1)

which is a combinatorial optimization problem. For small m and n, the globally optimal subset Xopt
n

can be obtained through an exhaustive search. For large m and n, however, the number of available

alternatives Cn
m = m!/(m − n)!n! can be too large to carry out a brute-force search. BAB is one of the

efficient approaches, which are able to find the globally optimal subset without exhaustive evaluation.

5

2.2 Branch and bound approaches

The first BAB approach for subset selection problems was proposed by Narendra and Fukunaga [14], which

was further improved in [8, 18, 20]. The BAB method used in this paper differs from these approaches,

as it uses the concepts of fixed and candidate sets introduced in [6, 7] to facilitate the implementation of

bidirectional pruning and branching. The basic principle, however, remains the same, as discussed next.

Principle. The basic principle of BAB approach is to divide the original selection problem into smaller

sub-problems (branching). Then, if an estimated lower bound of T of a sub-problem is larger than an upper

bound of T (Xopt
n), then the sub-problem under consideration cannot lead to the optimal solution and hence

can be discarded without further evaluation (pruning). If a sub-problem cannot be discarded, it is further

divided into smaller sub-problems. This procedure is repeated until there are no more sub-problems left

to solve.

Fixed and candidate sets. To standardize notation, consider a sub-problem S = (Ff , Cc) with an

f -element fixed set Ff and a c-element candidate set Cc, where f ≤ n and n ≤ f + c ≤ m. Here, the

elements of Ff are included in all n-element subsets that can be obtained by solving S, while elements of

Cc can be freely chosen to append Ff . Then, a subset Xn belonging to S must satisfy the following two

relationships:

upwards relationship: Ff ⊂ Xn (2)

downwards relationship: Xn ⊂ (Ff ∪ Cc) (3)

Furthermore, S = (Ff , Cc) can be divided into 2c subproblems either by moving xj ∈ Cc to Ff or by

discarding xk ∈ Cc, where j, k = 1, 2, · · · , c. Each of the sub-problems Si = (F i
fi
, Ci

ci
), i = 1, 2, · · · , 2c,

satisfy

upwards fixed-set relationship: Ff ⊆ F i
fi

(4)

downwards candidate-set relationship: Cc ⊇ Ci
ci

(5)

downwards union relationship: (Ff ∪ Cc) ⊇ (F i
fi
∪ Ci

ci
) (6)

6

Bidirectional pruning using monotonicity. Let T (S) be a lower bound of T over all n-element

subsets that can be reached from S, i.e.

T (S) ≤ min
Xn⊃Ff

Xn⊂(Ff∪Cc)

T (Xn) (7)

Further, let B be an upper bound of T (Xopt
n), i.e. B ≥ T (Xopt

n). Then, S can be discarded, if T (S) > B.

The computation of T (S) can be considerably simplified, if the selection criterion is monotonic. Here, the

selection criterion T is said to be upwards monotonic, when

T (Xs) ≥ T (Xt) ifXs ⊃ Xt; t < s < n (8)

Similarly, T is said to be downwards monotonic, when

T (Xs) ≥ T (Xt) ifXs ⊂ Xt; t > s > n (9)

For upwards monotonic T , the lower bound of T on S = (Ff , Cc) can be estimated as

T (S) = T (Ff) (10)

In this case, an upward pruning operation to discard S can be conducted if T (Ff) > B. Similarly, for

downwards monotonic T , the lower bound of T on S = (Ff , Cc) can be estimated as

T (S) = T (Ff ∪ Cc) (11)

A downward pruning operation to discard S can be carried out if T (Ff ∪ Cc) > B. Furthermore, it is

shown in [5] that if T satisfies both upward (for subset size less than n) and downward (for subset size

larger than n) monotonicity, then pruning can be carried out bidirectionally so that efficiency can be

significantly improved.

In bidirectional BAB approach [5], pruning is carried out on the 2c sub-problems of S, instead of on S

directly. Assume that T (Ff) < B and T (Ff ∪ Cc) < B. For xi ∈ Cc, upward pruning is conducted by

discarding xi from Cc, if T (Ff ∪ xi) > B. Similarly, if T (Ff ∪ (Cc\xi)) > B, then downward pruning is

performed by moving xi from the candidate set to the fixed set. Finally, if both conditions are satisfied,

then bidirectional pruning discards all the 2c sub-problems and thus entire S. Here, an advantage of

performing pruning on sub-problems is that the bounds T (Ff ∪ xi) and T (Ff ∪ (Cc\xi)) can be computed

from T (Ff) and T (Ff ∪ Cc), respectively, for all xi ∈ Cc together resulting in computational efficiency.

7

2.3 Bidirectional branching

A BAB approach also gains its efficiency by an effective branching rule, i.e. the way in which a problem is

divided into several subproblems. The aim of an effective branching rule is to facilitate pruning of as many

non-optimal subproblems as possible. Based on the bidirectional BAB principle, a bidirectional branching

rule has been proposed in [5]. In this approach, when branching is required for S = (Ff , Cc), instead of

branching all 2c subproblems of S, only two branches are produced based on a decision element, xk ∈ Cc;

see Figure 3 for an example. Here, an upward branch corresponds to moving xk from the candidate set

Cc to the fixed set Ff and a downward branch corresponds to discarding xk from the candidate set Cc.

Between these two branches, the branch with fewer n-element subsets (terminal nodes) is evaluated first

so that the branch with more alternatives might be discarded at a later stage.

For a given problem S = (Ff , Cc), the upward and downward branches have Cn−f−1
c−1 and Cn−f

c−1 terminal

nodes, respectively. Thus, upward-first branching is conducted if Cn−f−1
c−1 ≤ Cn−f

c−1 or 2(n − f) ≤ c − 1

and downward-first branching otherwise. The decision element itself is chosen on a best-first basis. More

specifically, for upwards-first branching, the decision element xk is chosen to provide the minimum T (Ff ∪

xk) (best upward branch evaluated first) or the maximum T (Ff ∪ (Cc\xk)) (worst downward branch kept

for future pruning) among all xk ∈ Cc, whilst for downwards-first branching, xk is selected to give the

maximum T (Ff ∪ xk) (best downward branch evaluated first) or the minimum T (Ff ∪ (Cc\xk)) (worst

upward branch kept for future pruning) among all xk ∈ Cc.

3 Exact Local Method for Self-optimizing Control

In this section, we introduce the exact local method for self-optimizing control. We also represent the

problems of selecting measurements, which can be either directly used or combined as CVs, as subset

selection problems.

3.1 Self-optimizing Control

The economically optimal operation of a process requires the use of an online optimizer to update the

operating point according to the changes in disturbances d ∈ Rnd . A simpler strategy is to update the

degrees of freedom or inputs u ∈ Rnu indirectly using feedback controllers such that some CVs are held

constant. The use of this simpler strategy is clearly sub-optimal. Self-optimizing control is said to occur,

8

when an acceptable loss is achieved by the feedback based operational strategy without the need to re-

optimize when disturbances occur [16]. Based on this concept, the appropriate CVs can be selected by

comparing the losses for different alternatives.

3.2 Local method

CV selection based on the general non-linear formulation of self-optimizing control can be time-consuming

and local methods are often used for pre-screening alternatives. To present the local methods, let the

economics of the plant be characterized by the scalar objective function J(u,d) and uopt(d∗) be the

optimal value of inputs minimizing J for the nominal disturbance d∗. Around the nominally optimal

operating point (uopt(d∗),d∗), let the linearized model of the process be

y = Gy u + Gy
d Wd d + We e (12)

where y ∈ Rny denotes the process measurements and e ∈ Rny denotes the implementation error, which

results due to measurement and control error. Here, the diagonal matrices Wd and We contain the mag-

nitudes of expected disturbances and implementation errors associated with the individual measurements,

respectively. The CVs c ∈ Rnu are given as

c = Hy = Gu + Gd Wd d + HWe e (13)

where

G = HGy and Gd = HGy
d (14)

It is assumed that G ∈ Rnu×nu is invertible. This assumption is necessary for integral control.

Assume that the feedback controller maintains c at c∗ and let uopt(d) denote the optimal value of u for

any allowable disturbance. Then for given d and e, the loss incurred due to controlling CVs at constant

set-point is defined as

L(H,d, e) = J(u,d, e)|c=c∗ − J(uopt(d),d) (15)

When d and e are constrained to satisfy∥∥∥[dT eT
]∥∥∥T

2
≤ 1 (16)

9

Halvorsen et al. [9] have shown that the worst-case loss over the set (16) is given as

L1(H) =
1
2
σ̄2 ([Md Me]) (17)

where

Md = J1/2
uu

(
J−1

uuJud −G−1 Gd

)
Wd (18)

Me = J1/2
uu G−1 HWe (19)

Here, Juu and Jud represent ∂2J
∂u2 and ∂2J

∂u ∂d , evaluated at the nominally optimal operating point, respectively.

3.3 Selection of controlled variables

Individual measurements. The loss in (17) depends on H and CVs are selected by minimizing loss

with respect to H. When individual measurements are selected as CVs, the elements of H are restricted

to be 0 or 1 and

HHT = I (20)

In words, selection of a subset of available measurements as CVs involves selecting nu among ny measure-

ments, where the number of available alternatives is Cnu
ny

. We note that, however, the expression for L1 in

(17) requires inversion of G and thus only holds, when G is a square matrix. On the other hand, BAB

methods require evaluation of loss, when the number of selected measurements differs from nu. Motivated

by this drawback, we present an alternate representation of L1 in the following discussion. For notational

simplicity, we define

Y =
[

(Gy J−1
uu Jud −Gy

d) Wd We

]
(21)

G̃ = GyJ−1/2
uu (22)

Now, L1 can be represented as

L1(H) =
1
2
σ̄2
(

(HG̃)−1HY
)

(23)

=
1
2
λ̄
(

(HG̃)−1HYYTHT (HG̃)−T
)

(24)

=
1
2
λ−1

(
(HG̃)T (HYYTHT)−1HG̃

)
(25)

where λ(·) denotes the least non-zero eigenvalue. We note that in practice, every measurement has non-

zero implementation error associated with it. Thus, based on (21), [We]ii 6= 0 and Y has full row rank.

10

These observations imply that the inverse of HYYTHT is well defined for all practical problems and the

expression for L1 in (25) holds for any number of measurements.

To represent L1 in (25) using index notation, let Xp be an p-element index set, p ≤ ny, consisting of

the indices of selected measurements and, G̃Xp and YXp consist of rows of G̃ and Y with indices in Xp,

respectively. Then,

L1(Xp) =
1
2
λ−1

(
G̃T

Xp
(YXpY

T
Xp

)−1G̃Xp

)
(26)

=
1
2
λ−1

(
R−T G̃XpG̃

T
Xp

R−1
)

(27)

where RTR = YXpY
T
Xp

(Cholesky factorization). As the expressions for L1 in (17) and (27) are same for

p = nu, the optimal set of CVs can be found by minimizing L1 in (27).

Measurement combinations. When individual measurements are used as CVs, the information con-

tained in only nu out of ny measurements is used for updating the inputs. Clearly, better self-optimizing

properties or lower loss can be obtained by using the information contained in other measurements as well.

This can be achieved by using combinations of all the available measurements as CVs. For example, for

the binary distillation column case study discussed in Section 5.2, the lowest achievable loss is 0.2809 with

the use of individual measurements as CVs. The loss for this process, however, decreases approximately 5

times to 0.0517, when combinations of all available measurements as CVs.

When measurement combinations are used CVs, the integer constraint on H ∈ Rnu×ny is relaxed, but the

condition rank(H) = nu is still imposed to ensure invertibility of HGy. The minimal worst-case loss over

the set (16) using measurements combinations as CVs is given as [12, 13]

L2 = min
H

L1 =
1
2
λ−1

nu

(
G̃T (Y YT)−1 G̃

)
(28)

Equation (28) can be used to calculate the minimum loss provided by the optimal combination of a given set

of measurements. It is noted in [1, 10, 12, 13], however, that use of all measurements is often unnecessary

and equivalent losses can be obtained by combining only a few of the available measurements. Then, the

combinatorial optimization problem involves finding the set of n among ny measurements (nu ≤ n ≤ ny)

that can provide minimal loss, where n is specified.

In index notation, for a given p-element index set Xp, L2 is denoted as

L2(Xp) =
1
2
λ−1

(
G̃T

Xp
(YXp YT

Xp
)−1 G̃Xp

)
(29)

=
1
2
λ−1

(
R−T G̃XpG̃

T
Xp

R−1
)

(30)

11

where nu ≤ p ≤ ny and RTR = YXpY
T
Xp

(Cholesky factorization). Now, the set of best n measurements,

whose combination can be used as CVs, can be selected by minimizing L2 in (30). Note that L2(Xp) =

L1(Xp) for nu ≤ p ≤ ny. This observation noted in this work is useful for development of efficient BAB

approaches, as discussed in the next section.

4 Bidirectional controlled variable selection

As shown in Section 3, the selection of CVs using exact local method can be seen as subset selection

problems. In this section, we present BAB methods for solving these problems efficiently. For simplicity

of notation, we define the p× p matrix M(Xp) as

M(Xp) = R−T G̃XpG̃
T
Xp

R−1 (31)

where R is the Cholesky factor of YXpY
T
Xp

. Moreover, we denote the nu × nu matrix N(Xp) as

N(Xp) = G̃T
Xp

(YXpY
T
Xp

)−1G̃Xp (32)

Note that λ(M(Xp)) = λ(N(Xp)).

4.1 Monotonicity

In this section, we show that the loss expressions in (27) and (30) or their lower bounds satisfy the mono-

tonicity requirement and thus are amenable to the application of BAB approach discussed in Section 2.

Individual measurements. To prove monotonicity for L1 in (27), we use the following property of

matrices:

Lemma 1 Let the matrix Â be defined as

Â =

 A b

bT a

 (33)

where A ∈ Rp×p is a Hermitian matrix, b ∈ Rp×1 and a ∈ R. Let the eigenvalues of A and Â be arranged

in descending order. Then [11, Th. 4.3.8]

λp+1(Â) ≤ λp(A) ≤ λp(Â) ≤ λp−1(A) ≤ · · · ≤ λ1(A) ≤ λ1(Â) (34)

12

Proposition 1 Consider a node S = (Ff , Cc) and index i ∈ Cc. For L1 defined in (27),

L1(Ff) ≤ L1(Ff ∪ i); f < nu (35)

L1((Ff ∪ Cc) \ i) ≥ L1(Ff ∪ Cc); f + c > nu (36)

Proof : Let G̃Ff∪i =
[
G̃T

Ff
G̃T

i

]T
and YFf∪i =

[
YT

Ff
YT

i

]T
. Further, let RTR = YFf

YT
Ff

and R̃T R̃ =

YFf∪iYT
Ff∪i (Cholesky factorization). Then, it follows that R and M(Ff) are principal submatrices of R̃

and M(Ff ∪ i), respectively, obtained by deleting the last row and column of the corresponding matrices.

Using (34), we have

λ−1
f (M(Ff)) ≤ λ−1

f+1(M(Ff ∪ i)); f < nu (37)

which implies (35).

To prove (36), let RTR = Y(Ff∪Cc)\iY
T
(Ff∪Cc)\i and R̃T R̃ = YFf∪CcY

T
Ff∪Cc

(Cholesky factorization). As

before, it can be shown that R and M((Ff ∪ Cc) \ i) are principal submatrices of R̃ and M(Ff ∪ Cc),

respectively. Based on (34), we have

λ−1
nu

(M((Ff ∪ Cc) \ i)) ≥ λ−1
nu

(M(Ff ∪ Cc)); f + c > nu (38)

Now the result follows by noting that λj(M((Ff ∪ Cc) \ i)) = λj(M(Ff ∪ Cc)) = 0 for j > nu and thus

λnu(M((Ff ∪ Cc) \ i)) and λnu(M(Ff ∪ Cc)) represent the least non-zero eigenvalues of M((Ff ∪ Cc) \ i)

and M(Ff ∪ Cc), respectively.

Based on Proposition 1, it follows that L1(Ff) and L1(Ff ∪ Cc) represent lower bounds on the loss seen

using any nu measurements as CVs, which can be obtained by appending measurement indices to Ff or

removing measurement indices from Ff ∪Cc, respectively. Let B represent the best available upper bound

on L1(Xopt
nu). Then repeated application of (35) implies that, if L1(Ff) > B, the optimal solution cannot

be a superset of Ff and hence all supersets of Ff need not be evaluated. Similarly, if L1(Ff ∪ Cc) > B,

repeated application of (36) implies that the optimal solution cannot be a subset of Ff ∪Cc and hence all

subsets of Ff ∪Cc need not be evaluated. Thus, upwards and downwards pruning can be conduced using

(35) and (36), respectively, and the optimal solution can be found without complete enumeration.

Measurements combinations. We note that the expression for L2 in (30) is the same as the expression

for L1 in (27). Thus, based on Proposition 1

L2((Ff ∪ Cc) \ i) ≥ L2(Ff ∪ Cc); f + c > n (39)

13

For selecting a subset of measurements, whose linear combinations can be used as CVs, the result in (39)

can be used for downwards pruning. Equation (36), however, also implies that when nu ≤ f < n, L2(Ff)

decreases as the size of the fixed set increases. Thus, unlike L1, L2 does not posses upwards monotonicity.

In the following proposition, we present a lower bound on L2, which shows upwards monotonicity, whenever

n− nu < f < n.

Proposition 2 For the node S = (Ff , Cc), let

L2(Ff) = 0.5λ−1
f+nu−n (M(Ff)) ; f > n− nu (40)

Then, L2(Ff) represents a lower bound on the loss corresponding to combinations of any n measurements

obtained by appending indices to Ff , i.e.

L2(Ff) ≤ min
Xn⊃Ff

Xn⊂(Ff∪Cc)

L2(Xn) (41)

where L2 is defined in (30). Furthermore, L2(Ff) satisfies upwards monotonicity, i.e. for any i ∈ Cc

L2(Ff) ≤ L2(Ff ∪ i); f < n (42)

Proof : Consider the index setXn ⊂ (Ff∪Cc). For j ∈ Xn with j /∈ Ff , similar to the proof of Proposition 1,

it can be shown that M(Xn \ j) is a principal submatrix of M(Xn). Based on the interlacing property of

eigenvalues in (34), we have that

λ−1
nu−1(M(Xn \ j)) ≤ λ−1

nu
(M(Xn)) (43)

Through repeated application of (34), for i ∈ Xn, i /∈ Ff and i 6= j

λ−1
nu−(n−f)(M(Ff)) ≤ λ−1

nu−(n−f−1)(M(Ff ∪ i)) ≤ · · · ≤ λ−1
nu−1(M(Xn \ j)) ≤ λ−1

nu
(M(Xn)) (44)

which implies (41) and (42).

Proposition 2 implies that the lower bound of L2 defined in (40) posses upwards monotonicity and thus

can be used for upwards pruning. In this case, upwards pruning can only be applied when the size of

fixed set of the node under consideration is greater than n−nu. Thus, the BAB algorithm based on L2 in

(40) is referred to as partial bidirectional BAB (PB3) algorithm. Development of fully bidirectional BAB

algorithm for selection of measurements, which can be combined to yield CVs, is an open problem.

14

Figure 1: Monotonicity of local loss functions for CV selection; for subset size i, the loss is calculated for

the measurement set {1, 2, · · · , i}

Example 1. To illustrate the findings of this section, we use a simple toy example, where

Gy =



15 4 −4

10 −1 6

3 7 6

−8 −18 10

−5 12 9

9 −1 12


, Gy

d =



−2 −4

−7 3

−6 8

−3 −10

12 −1

−15 1


,

Juu = I3, Jud = 13,2 (matrix of ones), Wd = I2 and Wn = I6. Figure 1 shows the variation of local loss

for different subset sizes. For selection of individual measurements as CVs, the local loss L1 (solid line in

Figure 1) monotonically increases with subset size i, when i ≤ 3 (nu) and monotonically decreases with

subset size i, when i ≥ 3, hence showing bidirectional monotonicity. The case with i > 3 corresponds to the

use of combinations of selected measurements as CVs and thus a lower loss is expected than seen using 3

individual measurements as CVs. The local loss decreases, even when the subset size i < 3. This happens

as the control of every CV can be seen as an equality constraint for the optimization problem describing

the optimal operation of the process. Thus, the increase in the number of such equality constraints results

in increased loss because it leads to more sub-optimal variation of the inputs as compared to the truly

optimal operation, which has no equality constraints.

15

For selection of measurements, whose combinations can be used as CVs, the local loss L2 only satisfies

downwards monotonicity. For example, when n = 4, L2 = L1 increases when the subset size is decreased

from 5 to 4. In comparison the lower bound on local loss L2 (dashed line in Figure 1) satisfies upwards

monotonicity and can be used for application of bidirectional BAB method. Note that, however, the lower

bound L2 can be used only when the subset size is greater than n − nu, i.e. 4 − 3 = 1 for n = 4 and

5− 3 = 2 for n = 5.

4.2 Fast pruning algorithms

As the criterion for selection of CVs using the exact local method satisfy bidirectional monotonicity, the

non-optimal nodes can be pruned quickly. Thus, the optimal solution can be found with evaluation of

fewer nodes, but the solution time can still be large, as direct evaluation of L1 in (27) and L2 in (40) is

computationally expensive. We note that for pruning purposes, it suffices to know whether a sub- or super-

node obtained from the node under consideration can provide a better bound than the best available bound

B. With this observation, we present computationally efficient determinant-based pruning algorithms such

that the evaluation of L1 and L2 is avoided at non-terminal nodes.

Individual measurements. We first present fast pruning algorithms for selection of a subset of available

measurements as CVs through minimization of L1 in (26). The case, where combinations of available

measurements are used as CVs through minimization of L2 in (30) is dealt with later in this section.

Proposition 3 (Upwards pruning for L1) Consider a node S = (Ff , Cc) and index i ∈ Cc. For a

given positive scalar B, if L1(Ff) < B,

βi = dT
i di − dT

i DT (M(Ff)− (0.5/B)If)−1 Ddi < (0.5/B)⇔ L1(Ff ∪ i) > B (45)

where D = R−T G̃Ff
with R being the Cholesky factor of YFf

YT
Ff

, and dT
i = (G̃i − pT

i D)/δi with

pi = R−TYFf
YT

i and δi =
√

YiYT
i − pT

i pi.

Proof : Let Q be the Cholesky factor of YFf∪iYT
Ff∪i, i.e. QTQ = YFf∪iYT

Ff∪i. Through simple algebraic

manipulations, it can be shown that

Q =

R pi

0 δi

 ; Q−T G̃Ff∪i =

D

dT
i

 (46)

16

Since, L1(Ff) < B, λ(M(Ff)) > 0.5/B, which implies that det(M(Ff)− (0.5/B)If) > 0 [5]. Using Schur

complement Lemma [11],

det(M(Ff ∪ i)− (0.5/B)If+1) = (βi − 0.5/B) det(M(Ff)− (0.5/B)If) (47)

Thus, βi < 0.5/B ⇔ det(M(Ff ∪ i)− (0.5/B)If) < 0, as det(M(Ff)− (0.5/B)If) > 0. Now,

det(M(Ff ∪ i)− (0.5/B)If) = (λ(M(Ff ∪ i))− 0.5/B)
f∏

i=1

(λi(M(Ff ∪ i))− 0.5/B) (48)

Since λ(M(Ff)) > 0.5/B, (λk(M(Ff ∪ i)) − 0.5/B) > 0 for k = 1, 2, · · · f due to interlacing property of

eigenvalues. Finally, we have βi < 0.5/B ⇔ λ(M(Ff ∪ i)) < 0.5/B ⇔ L1(Ff ∪ i) > B.

For a node S = (Ff , Cc), if the condition (45) is satisfied, then candidate i can be discarded or the super-

node Si = (Ff ∪ i, Cc \ i) can be pruned. Therefore, this condition is referred to as upwards pruning

condition. Furthermore, the main computation load in condition (45) is the Cholesky factorization and

the matrix inversion, which needs to be calculated only once for all i ∈ C. Hence, this test is more efficient

than direct calculation of L1.

Proposition 4 (Downward pruning for L1) For a node S = (Ff , Cc), let Ss = Ff∪Cc, where s = f+c.

For a given positive scalar B, if L1(Ss) < B,

αi = 1− xT
i (N(Ss)− (0.5/B)Inu)−1xi/ηi < 0⇔ L1(Ss \ i) > B (49)

where xi = G̃T
Ss\i(YSs\iY

T
Ss\i)

−1YSs\iY
T
i − G̃T

i and ηi = Yi(I−YT
Ss\i(YSs\iY

T
Ss\i)

−1YSs\i)Y
T
i .

Proof : For simplicity of notation, define Q = YSs\iY
T
Ss\i. Then,

(YSsY
T
Ss

)−1 =

 Q YSs\iY
T
i

YiYT
Ss\i YiYT

i

−1

(50)

=

Q−1 + Q−1YSs\iY
T
i YiYT

Ss\iQ
−1/ηi −Q−1YSs\iY

T
i /ηi

−YiYT
Ss\iQ

−1/ηi 1/ηi

 (51)

=

Q−1 0

0 0

+ 1/ηi

Q−1YSs\iY
T
i

−1

[YiYT
Ss\iQ

−1 −1
]

(52)

where (51) is obtained using the matrix inversion formula for partitioned matrices [11]. Since G̃T
Ss

=[
G̃T

Ss\i G̃T
i

]
, we have

N(Ss) = G̃T
Ss

(YSsY
T
Ss

)−1G̃Ss = G̃T
Ss\iQ

−1G̃Ss\i + xixT
i /ηi = N(Ss \ i) + xixT

i /ηi (53)

17

which implies that

det(N(Ss \ i)− (0.5/B)Inu) = det(N(Ss)− (0.5/B)Inu − xixT
i /ηi) (54)

= det(N(Ss)− (0.5/B)Inu)αi (55)

As L1(Ss) < B, λ(N(Ss)) > 0.5/B, which implies that det(N(Ss)− (0.5/B)Inu) > 0 [5]. Thus αi < 0 ⇔

det(N(Ss \ i) − (0.5/B)Inu) < 0. Using similar arguments about the interlacing property of eigenvalues,

as used in the proof of Proposition 3, we have that αi < 0⇔ λ(N(Ss \ i) < 0.5/B ⇔ L1(Ss \ i) > B.

For a node S = (Ff , Cc), if the condition (49) is satisfied, candidate i can be fixed or the sub-node

Si = (Ff , Cc \ i) can be pruned. Therefore, this condition is referred to as downwards pruning condition.

To evaluate the computational efficiency of the condition (49), let the index set Ss = Ff ∪Cc be permuted

such that the index i is the last element of Ss. Now, based on (51), we note that 1/ηi is the (nu, nu)th

element of (YSsY
T
Ss

)−1 and xT
i /ηi is the last row of the matrix −(YSsY

T
Ss

)−1G̃Ss . Therefore, the use of

condition (49) requires inversion of two matrices, (YSsY
T
Ss

)−1 and (N(Ss) − (0.5/B)Inu)−1, which need

to be calculated only once for all i ∈ Cc. Hence, this test is more efficient than direct calculation of L1.

As L1 in (26) satisfies bidirectional monotonicity, both upwards and downwards pruning conditions in

Propositions 3 and 4, respectively, can be applied simultaneously reducing the solution time enormously.

Measurement combinations. As before, the downwards pruning condition presented in Proposition 4

can also be applied for selection of CVs as combinations of available measurements. In the next proposition,

we present algorithms for fast upwards pruning for measurement selection through minimization of L2.

Proposition 5 (Partially upwards pruning rules for L2) Consider a node S = (Ff , Cc) and index

i ∈ Cc. For a positive scalar B and f > n − nu, if L2(Ff) < B or λf+nu−n(M(Ff)) > 0.5/B and

λf+nu−n+1(M(Ff)) < 0.5/B,

βi < (0.5/B)⇔ L2(Ff ∪ i) > B (56)

where βi is defined in (45).

Proof : Based on (47), we have

f+1∏
j=1

λj(M(Ff ∪ i)− (0.5/B)) = (βi − 0.5/B)
f∏

j=1

λj(M(Ff)− (0.5/B)) (57)

18

As M(Ff) is a principal submatrix of M(Ff ∪ i), the interlacing property of eigenvalues implies that

λf+nu−n+1(M(Ff)) ≤ λf+nu−n+1(M(Ff ∪ i)) ≤ λf+nu−n(M(Ff)) ≤ λf+nu−n(M(Ff ∪ i)) (58)

Since λf+nu−n(M(Ff)) > 0.5/B, (58) implies that λj(M(Ff)) > 0.5/B and λj(M(Ff ∪ i)) > 0.5/B for

j = 1, 2, · · · , f+nu−n. Similarly, since λf+nu−n+1(M(Ff)) < 0.5/B, (58) implies that λk(M(Ff)) < 0.5/B

and λk+1(M(Ff∪i)) < 0.5/B for k = f+nu−n+1, · · · , f . Since equal number of eigenvalues of M(Ff) and

M(Ff∪i) are greater than and less than 0.5/B, based on (57), the signs of (λf+nu−n+1(M(Ff∪i))−0.5/B)

and (βi − 0.5/B) are the same and the result follows.

The reader should note the similarities between Propositions 3 and 5, when n = nu. Note that Proposition 5

requires checking whether λf+nu−n+1(M(Ff)) < 0.5/B. When this condition is not satisfied, due to the

interlacing property of eigenvalues, λf+nu−n+1(M(Ff ∪ i)) > 0.5/B or L2(Ff ∪ i) < B for all i ∈ Cc. Thus,

any super-node of the node under consideration cannot be pruned.

4.3 Fast branching algorithms

The availability of fast pruning algorithms avoids the calculation of loss at non-terminal nodes for pruning

purposes. The efficiency of the bidirectional BAB method can be further improved using bidirectional

branching. As mentioned in Section 2.3, bidirectional branching involves selecting a decision element so

that the upward and downward branches can be formulated. Here, the decision element itself is chosen on

a best-first basis, i.e. the element that leads to the lowest loss among the members of the candidate set

is taken as the decision element. Thus, the loss still needs to be calculated at non-terminal nodes for the

selection of the decision element. In this section, we establish relationships between the pruning indices (α

and β) calculated for different nodes and the expected loss upon expansion of these nodes. These results

can be used to avoid the loss computation at non-terminal nodes entirely, hence greatly enhancing the

computational efficiency.

Proposition 6 (Loss bounds for fast branching) For a node S = (Ff , Cc), let Ss = Ff ∪ Cc, where

s = f + c. For a given positive scalar B and i ∈ Cc

L1(Ff ∪ i) ≥ 0.5/βi (59)

L−1
1 (Ss \ i)− 1/B
L−1

1 (Ss)− 1/B
≤ αi (60)

where βi and αi are given by (45) and (49), respectively.

19

Proof : To show that (59) holds, based on (47), we note that∏f+1
i=1 (λi(M(Ff ∪ i))− 0.5/B)∏f

i=1 (λi(M(Ff))− 0.5/B)
= βi − 0.5/B (61)

f∏
i=1

λi(M(Ff ∪ i))− 0.5/B
λi(M(Ff))− 0.5/B

(λ(M(Ff ∪ i))− 0.5/B) = βi − 0.5/B (62)

Since M(Ff) is a principal submatrix of M(Ff ∪ i), the interlacing property of eigenvalue implies that

λi(M(Ff ∪ i)) ≥ λi(M(Ff)), i = 1, 2, · · · , f . Thus,

f∏
i=1

λi(M(Ff ∪ i))− 0.5/B
λi(M(Ff))− 0.5/B

≥ 1 (63)

and we have λ(M(Ff ∪ i)) ≤ βi, which implies (59). That (60) holds can be shown to be true similarly

using (55), where

nu−1∏
i=1

λi(N(Ss \ i))− 0.5/B
λi(N(Ss))− 0.5/B

λ(N(Ss \ i))− 0.5/B
λ(N(Ss))− 0.5/B

= αi (64)

Due to the interlacing properties of eigenvalues,

nu−1∏
i=1

λi(N(Ss \ i))− 0.5/B
λi(N(Ss))− 0.5/B

≤ 1 (65)

Thus, we have

λ(N(Ss \ i))− 0.5/B
λ(N(Ss))− 0.5/B

≥ αi (66)

which implies (60).

According to Proposition 6, both α and β can be used to select the decision element for bidirectional

branching. More specifically, consider a selection problem S(Ff , Cc). Based on the discussion in Section 2.3,

upward branch is evaluated first, if 2(nu − f) ≤ c− 1, and downward branch otherwise. For upward-first

branching, the decision element is determined as the element with largest βi or smallest αi among all

i ∈ Cc. Similarly, for downward-first branching, the decision element is selected as the element with

smallest βi or largest αi among all i ∈ Cc.

We point out that the selection of decision element based on the loss relationships in (59) and (60) does

not necessary result in a sub or super-node with smallest loss among the different alternatives. Although

the sub-optimal choice of the decision element does not affect the optimality of the solution, it may lead

to evaluation of more nodes for finding the optimal solution. Bidirectional branching based on α and β

is still useful, as the computational load for calculating exact local loss at every node far outweighs the

computational cost for evaluating a few additional nodes. A flowchart for recursive implementation of the

20

S(Xf, Xc)

validity

check

upwards

pruning

downwards

pruning

pruned?

single

selection?

update bound

Return to

recursive call

bidirectional

branching

Return to

recursive call

No

Yes

Yes

No

No

Yes

Recursive Call

to Itself

Second branch
First branch

Figure 2: Flow chart of bidirectional branch and bound algorithm

bidirectional BAB (B3) algorithm, based on the principles of bidirectional pruning and branching using

the determinant based criteria developed in this paper, is shown in Figure 2.

For selection of n measurements, whose combinations can be used as CVs, the downward pruning index

α can be used for selecting the decision element as before. It is, however, difficult to establish a relation-

ship between the upwards pruning index β and expected loss L2, when the node under consideration is

expanded. For this reason, only the downward pruning index α is used to select the decision element for

both upward-first and downward-first branching in the partially bidirectional BAB (PB3) algorithm. The

PB3 algorithm can also be implemented using the flowchart shown in Figure 2, except that the upwards

pruning condition only needs to be checked when f > n− nu.

Example 1 continued. To illustrate the application of B3 algorithm, Example 1 is revisited. The

objective is to select 3 out of 6 measurements, which can be used as CVs. The bidirectional solution tree for

this example is shown in Figure 3. The algorithm is initialized with F = ∅, C = {1, 2, 3, 4, 5, 6} and B =∞.

As the current bound is infinite, no pruning is possible. For branching, only the upwards pruning indices

are calculated as β(0) =
[
0.3948 0.2178 0.1712 2.3689 0.8170 0.1424

]
. Since 2(nu−f) > (c−1) (i.e.

21

6 > 5), downward-first branching is desired. Hence, the decision element is chosen as the smallest element

of β(0), i.e. measurement 6. Two sub-problems are generated by removing element 6 from the candidate

set (sub-problem S1) and by moving element 6 from candidate to fixed set (sub-problem S2). As S1 is the

upward branch, it is evaluated first.

Figure 3: Bidirectional solution tree for the toy example

As the bound is still infinite, no pruning is possible and the calculation of downwards pruning index is

not required. Moreover, β(1) = β(0) (unchanged), as the fixed set F or the bound B has not changed as

compared to the previous iteration. For sub-problem S1, c = 5 and f = 0. Since, 2(nu − f) > c − 1 (i.e.

6 > 4), downward-first branching is conducted. Among the first 5 elements of β(1) (members of candidate

set C), element 3 has the smallest value and is thus taken as the decision element for branching purposes.

Again, two sub-problems are generated by removing element 3 from the candidate set (sub-problem S3)

and by moving element 3 from candidate to fixed set (sub-problem S4), where sub-problem S3 is evaluated

first.

For sub-problem S3, c = 4, i.e. only one element needs to be discarded. In this case, the use of downward

pruning index is better than the use of upward pruning index for selecting the decision element. There-

fore, it is calculated as α(3) =
[
0.0084 0.0086 ∗ 0.0018 0.0030 ∗

]
. A terminal node is obtained by

removing element 2, which has the highest value of α(3). The corresponding loss for this terminal node

is L1 = 3.9537 and the bound B is updated to be 3.9537. The other sub-problem S5 is obtained by

moving element 2 from the candidate to the fixed set. As the bound is updated, β and α are calculated as

β(5) =
[
1.9711 ∗ ∗ 191.6600 1.1601 ∗

]
and α(5) =

[
0.0076 ∗ ∗ 0.0014 0.0020 ∗

]
. Since every

element of β(5) is greater than 0.5/B and every element of α(5) is greater than zero, pruning is not possible.

A terminal node is obtained by removing the element with highest value of α(5), i.e. element 1. The loss

for this terminal node with elements {2, 4, 5} is L1 = 2.7704. As the loss for this node is less than best

22

available bound, B is updated to 2.7704. This gives 0.5/B = 0.1805, which is larger than both β0
3 = 0.1712

and β0
6 = 0.1424. Therefore, both elements 3 and 6 should be removed, i.e. both sub-problems S2, which

has F = {6}, and S4, which has F = {3}, can be pruned without further evaluation.

As there are no problems left for evaluation, the algorithm terminates. The optimal subset is {2, 4, 5},

which provides a loss of 2.7704. The B3 algorithm finds the optimal solution by evaluating 6 nodes, where

as complete enumeration requires evaluation of 20 nodes.

5 Numerical examples

To examine the efficiency of the proposed BAB algorithms, numerical tests are conducted using randomly

generated matrices and a binary distillation column case study. Programs used for loss minimization are

listed in Table 1 [4]. All tests are conducted on a Windows XP SP2 notebook with an Intelr CoreTM Duo

Processor T2500 (2.0 GHz, 2MB L2 Cache, 667 MHz FSB) using MATLABr R2008a.

Table 1: Branch and bound programs for loss minimization

program description

UP upwards pruning using determinant condition (45)

DOWN downwards pruning using determinant condition (49)

B3 bidirectional branch and bound algorithm by combining (45) and (49)

PB3 partially bidirectional branch and bound algorithm by combining (49) and (56)

5.1 Random tests

Four sets of random tests are conducted to evaluate the efficiency of the B3 algorithm for selection of a

subset of available measurements as CVs through minimization of L1. For each test, six random matrices

are generated: three full matrices, Gy ∈ Rny×nu , Gy
d ∈ Rny×nd and Jud ∈ Rnu×nd , and three diagonal

matrices, We ∈ Rny×ny , Wd ∈ Rnd×nd and Juu ∈ Rnu×nu . The elements of these matrices are normally

distributed with zero mean and unit variance. For all tests, we use nd = 5, while nu and ny are varied.

The first and second tests are designed to select nu = 5 and nu = ny − 5 out of ny measurements,

respectively. Each selection problem is tested for 100 sets of randomly generated matrices and the average

computation time and average number of nodes evaluated are summarized in Figure 4. It is seen that

upwards pruning based algorithm (UP) is more suitable for problems involving selection of a few variables

23

10
−2

10
0

10
2

cp
u

tim
e,

 s

(a)

10 100 200 300 400 500
10

0

10
4

10
8

10
12

n
y

ev
al

ua
tio

ns

(b)

10
−2

10
0

10
2

cp
u

tim
e,

 s

(c)

10 100 200 300 400 500
10

0

10
4

10
8

10
12

n
y

ev
al

ua
tio

ns

(d)

DOWN UP B3 BRUTE

Figure 4: Random test 1: selection of 5 out of ny measurements, (a) computation time against ny and (b)

number of nodes evaluated against ny; Random test 2: selection of ny − 5 out of ny measurements, (c)

computation time against ny and (d) number of nodes evaluated against ny.

24

from a large candidate set, whilst downwards pruning based algorithm (DOWN) is more efficient for

problems, where a few among many candidate variables need to be discarded to find the optimal solution.

The solution times for UP and DOWN algorithms increase only modestly with problem size, when nu <<

ny and nu ≈ ny, respectively. The solution times for the B3 algorithm is similar to the better of UP and

DOWN algorithms, however, its efficiency is insensitive to the kind of selection problem.

10
−2

10
0

10
2

cp
u

tim
e,

 s

(a)

5 10 15 20
10

0

10
4

10
8

10
12

n
u

ev
al

ua
tio

ns

(b)

10
−2

10
0

10
2

cp
u

tim
e,

 s

(c)

1 10 20 30 40
10

0

10
4

10
8

10
12

n
u

ev
al

ua
tio

ns

(d)

DOWN UP B3 BRUTE

Figure 5: Random test 3: selection of nu out of ny = 2nu measurements, (a) computation time against nu

and (b) number of nodes evaluated against nu; Random test 4: selection of nu out of 40 measurements,

(c) computation time against nu and (d) number of nodes evaluated against nu.

The third test consists of selecting nu out of ny = 2nu measurements with nu increasing from 5 to 20, while

the fourth test involves selecting nu out of ny = 40 variables with nu ranging from 1 to 39. For each nu,

100 sets of random matrices are generated and the average computation time and average number of nodes

evaluated are summarized in Figure 5. While the UP and DOWN problems show reasonable performance

for small nu, their performances degrade rapidly for the fourth test, when nu approaches ny/2. Within 300

seconds, both UP and DOWN algorithms can only handle problems with nu < 18. For all cases, however,

25

the B3 algorithm exhibits superior efficiency by combining upward and downward pruning and is able to

solve problems up to nu = 20 within 100 seconds.

In summary, for selection of individual measurements as CVs by minimizing L1, all the developed algo-

rithms (UP, DOWN and B3) show much superior performance than the currently used brute force method.

In comparison with the UP and DOWN algorithms, the B3 algorithm shows superior performance and

similar efficiency for different problem dimensions including problems with nu << ny, nu ≈ ny and

nu ≈ ny/2.

5.2 Distillation column case study

To demonstrate the efficiency of the developed PB3 algorithm, we consider self-optimizing control of a

binary distillation column [15]. The objective is to minimize the deviation of the distillate and bottoms

composition from their nominal steady-state values in presence of disturbances in feed flow rate, feed

composition and vapor fraction of feed. Two degrees of freedom (reflux and vapor boilup rates) are available

and thus two CVs are required for implementation of self-optimizing control strategy. It is considered that

the temperatures on 41 trays are measured with an accuracy of ±0.5o C. The combinatorial optimization

problem involves selection of n out of 41 candidate measurements, whose combinations can be used as

CVs. The reader is referred to [10] for further details of this case study.

The PB3 algorithm is used to select the 10 best measurement combinations for every n, where n ranges

from 2 to 41. The trade-off between the losses corresponding to the 10 best selections and n is shown

in Figure 6(a). It can be seen that when combinations of more than 14 measurements are used as CVs,

the loss is less than 0.075, which is close to the minimum loss (0.0517) seen using combinations of all

41 measurements. Furthermore, the reduction in loss is negligible, when combinations of more than 25

measurements are used. Figure 6(a) also shows that the 10 best selections have similar self-optimizing

capabilities particularly when combinations of more than 5 measurements are used. Then, the designer

can choose the subset of measurements among these 10 best alternatives based on some other important

criteria, such as dynamic controllability.

Figure 6(b) and (c) show the computation time and number of node evaluations for PB3 and DOWN

algorithms. To facilitate the comparison further, the ratios of number of node evaluations and computation

times are also shown in Figure 6(d). The PB3 algorithm is able to reduce the number of node evaluations

and hence computation time up to a factor of 20 for selection problems involving selection of a few

measurements from a large candidate set. It is expected that a fully upwards pruning rule would improve

26

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

Lo
ss

(a)

5 10 15 20 25 30 35 40
0

100

200

300

C
P

U
 ti

m
e,

 s

(b)

PB3

DOWN

5 10 15 20 25 30 35 40
10

0

10
5

10
10

N
um

be
r

of
 e

va
lu

at
io

ns

(c)

PB3

DOWN
BRUTE

5 10 15 20 25 30 35 40

5

10

15

20

25

Number of measurments seleted

D
O

W
N

 :
P

B
3

(d)

time ratio
evaluation number ratio

Figure 6: (a) Losses of 10-best measurement combinations against the number of measurements, (b)

Comparison of computation time between PB3 and DOWN algorithms, (c) Comparison of number of node

evaluations between PB3 and DOWN algorithms, and (d) Ratios of computation time and number of node

evaluations required by PB3 and DOWN algorithms
27

the efficiency even further, but the derivation of such a rule is currently an open problem.

Overall, both algorithms are very efficient and are able to reduce the number of node evaluations by

5 to 6 orders of magnitude, as compared to the brute force search method. For example, to select 20

measurements from 41 candidates, evaluation of a single alternative requires about 0.15 ms on the specified

notebook computer. Thus, a brute force search methods would take more than one year to evaluate all

possible alternatives. However, the proposed PB3 and DOWN algorithms are able to solve this problem

within 4 and 12 seconds, respectively. Therefore, the generation of the trade-off curve shown in Figure 6(a)

would be practically impossible without the algorithms developed in the work.

6 Conclusions

In this paper, the concept of bidirectional branch and bound (BAB) proposed in Part I of this work [5] has

been further developed for selection of controlled variables (CVs) using the exact local method for self-

optimizing control. The numerical tests using randomly generated matrices and binary distillation column

case study show that the number of evaluations for proposed algorithms is 5 to 6 orders of magnitude

lower than the current practice of CV selection using brute force search.

The computationally efficiency of the algorithms developed in this paper based on bidirectional pruning

and branching principles using novel determinant based criteria is similar to the BAB approach for CV

selection based on minimum singular value (MSV) rule [5]. Despite the availability of the exact local

criterion, one of the apparent reasons for continued use of the approximate MSV rule is its computational

efficiency. This work makes CV selection using the exact local criterion computationally tractable so that

it can be adopted as a standard tool for selection of CVs based on the concept of self-optimizing control.

While the algorithm for selection of individual measurements as CVs is fully bidirectional, the algorithm for

selection of subset of measurements, whose combinations can be used as CVs, is only partially bidirectional.

It is expected that the development of a fully bidirectional BAB algorithm for the latter problem would

improve the computational efficiency further. This challenging problem is currently open and is an issue

for future research. Furthermore, an extension of the bidirectional BAB algorithm to select CVs based on

the minimization of local average loss for self-optimizing control [13] is currently under consideration.

28

Acknowledgements

The first author gratefully acknowledges the financial support from Office of Finance, Nanyang Techno-

logical University, Singapore through grant no. R42/06.

References

[1] V. Alstad. Studies on Selection of Controlled Variables. PhD thesis, Norwegian University of Science

and Technology, Trondheim, Norway, 2005. Available at http://www.nt.ntnu.no/users/skoge/

publications/thesis/2005_alstad/.

[2] V. Alstad and S. Skogestad. Null space method for selecting optimal measurement combinations as

controlled variables. Ind. Eng. Chem. Res., 46(3):846–853, 2007.

[3] V. Alstad, S. Skogestad, and E. S. Hori. Optimal measurement combinations as controlled variables.

J. Proc. Control, 19(1):138–148, 2009.

[4] Y. Cao and V. Kariwala. B3WC. MATLAB File Exchange, January 2009. Available at http:

//www.mathworks.com/matlabcentral/fileexchange/22632.

[5] Y. Cao and V. Kariwala. Bidirectional branch and bound for controlled variable selection: Part I.

Principles and minimum singular value criterion. Comput. Chem. Engng., 32(10):2306–2319, 2008.

[6] Y. Cao and P. Saha. Improved branch and bound method for control structure screening. Chem.

Engg. Sci., 60(6):1555–1564, 2005.

[7] Y. Cao, D. Rossiter, and D. H. Owens. Globally optimal control structure selection using branch and

bound method. In Proc. 5th International Symposium on DYCOPS, pages 183–188, Corfu, Greece,

1998.

[8] X.-W. Chen. An improved branch and bound algorithm for feature selection. Pattern Recognition

Letters, 24:1925–1933, 2003.

[9] I. J. Halvorsen, S. Skogestad, J. C. Morud, and V. Alstad. Optimal selection of controlled variables.

Ind. Eng. Chem. Res., 42(14):3273–3284, 2003.

[10] E. S. Hori and S. Skogestad. Selection of controlled variables: Maximum gain rule and combination

of measurements. Ind. Eng. Chem. Res., 47(23):9465–9471, 2008.

29

[11] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, UK, 1985.

[12] V. Kariwala. Optimal measurement combination for local self-optimizing control. Ind. Eng. Chem.

Res., 46(11):3629–3634, 2007.

[13] V. Kariwala, Y. Cao, and S. Janardhanan. Local self-optimizing control with average loss minimiza-

tion. Ind. Eng. Chem. Res., 47(4):1150–1158, 2008.

[14] P. Narendra and K. Fukunaga. A branch and bound algorithm for feature subset selection. IEEE

Trans. Comput., C-26:917–922, 1977.

[15] S. Skogestad. Dynamics and control of distillation columns - A tutorial introduction. Trans. IChemE

Part A, 75:539–562, 1997.

[16] S. Skogestad. Plantwide control: The search for the self-optimizing control structure. J. Proc. Control,

10(5):487–507, 2000.

[17] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and Design. John Wiley

& sons, Chichester, UK, 1st edition, 1996.

[18] P. Somol, P. Pudil, F. Ferri, and J. Kittler. Fast branch and bound algorithm in feature selection.

In B. Sanchez, J. Pineda, J. Wolfmann, Z. Bellahsense, and F. Ferri, editors, Proceedings of World

Multiconference on Systemics, Cybernetics and Informatics, volume VII, pages 1646–651, Orlando,

Florida, USA, 2000.

[19] M. Van de Wal and B. de Jager. A review of methods for input/output selection. Automatica, 37(4):

487–510, 2001.

[20] B. Yu and B. Yuan. A more efficient branch and bound algorithm for feature selection. Pattern

Recognition, 26:883–889, 1993.

30

