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Abstract 

This study describes the simulation and experimental investigation of a heptane pool 

fire, burning within a small compartment, in which interaction between a number of key 

physical processes is amplified. In particular, the configuration emphasises the coupling 

of buoyancy induced ventilation, smoke production and radiation heat transfer to the 

liquid fuel surface, from the luminous flame zone, from the smoke filled ceiling layer 

and from the confining walls. This study contrasts with those customarily performed for 

the purpose of model validation in compartment fires, which employ gas burners and so 

simplify much of the interaction. 

Initial experiments were carried out using a 0.23m diameter circular pan burning fixed 

amounts of heptane. Subsequently, a constant supply was used with a smaller circu- 
lar pan of 0.17m in diameter, in order to introduce experimental longevity under safe, 

controllable conditions whilst establishing a quasi steady-state system. Issues of non- 

stationarity in relation to heat-feedback to the fuel surface - an important pool fire mech- 

anism - are discussed. 

In addition to probe measurements of velocity and thermocouple temperature, the smoke 

yield was determined using a light extinction technique employing a 670nm wavelength 

diode laser and photo-diode detector, housed within a novel fully-traversible water- 

cooled probe. Data from these experiments illustrate the importance of accounting for 

room ventilation in terms of overall production of smoke and sound a cautionary note 

to the labelling of soot by a convenient marker such as temperature. 

Numerical simulation of the compartment fire is performed using the field model SOFIE, 
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incorporating a simple evaporation model, which relates the mass-loss-rate of fuel to the 

net heat flux to the fuel surface and heat of gasification. This relationship assumes that 

heat losses to the pan, re-radiation by the fuel surface and other enthalpy loss terms, are 

small. Simulations of compartment fire scenarios using this model to calculate the rate 

of heat release are reported. Further comparisons are made between the industry stan- 
dard 'Eddy-Breakup' combustion model and the 'Laminar Flamelet' model. In general 

both the eddy-breakup model and laminar flamelet model tend to underpredict the yields 

of CO, whilst the eddy-breakup model over-predicts temperature and thus soot. The 

laminar flamelet approach shows more promise and shows particularly good agreement 

with the experimental measurements reported here under well ventilated conditions. 

SORE, the predictive tool employed in this research, has proved invaluable in discern- 

ing the reason for apparent ambiguities in the experimental measurements of soot con- 

centration. The results suggest that an alternative simplified zone model approach would 

overpredict visibility in smoke in terms of concentration, but underpredict in terms of 

layer depth, due to its inability to capture the important shape of the hot upper layer, 

which varies significantly from the homogenous, laterally uniform distribution which 
is assumed. The incorporation of a simple evaporation model which relies on accu- 

rate prediction of heat transfer in ultimately determining the heat release rate has been 

shown to be in very good agreement with the experiments. Despite the irregularity in 

predicted distribution of mass loss rate across the fuel surface - caused mainly due to the 

'ray effect' of the radiation model - the main trend of lower heat transfer at the centre 

of the burner is demonstrated, in agreement with the experiments performed. This phe- 

nomenon is captured despite the lack of description of fuel vapour radiation blockage 

above the fuel surface, suggesting that this process may be disregarded. The heat flux 

distribution which is found here is in contrast to research conducted by other workers for 

similar sized pans in an open environment, which show a higher measured heat transfer 

at the centre of the burner. 

It has been shown that significant improvements could be made in experimental design 
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of compartment fire experiments if CFD prediction is considered for the determination 

of suitable measurement locations in regions with lower local spatial variations. 
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"For every problem, 

there is a solution that is 

simple, neat and wrong". 

(H. L Mencken) 
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Nomenclature 

A Arrhenius pre-exponential coefficient 

C,, Mean mixture specific heat 

C, Cr Model coefficients 

D Distance 

dp Soot Particle Diameter 

E Arrhenius activation energy 

e Rate of strain 

F(x) Velocity similarity function 

f� Soot volume fraction 

Fr Froude number 

G(x) Velocity similarity function 

G Gibbs free energy 

gi Species i specific free energy 

G Buoyancy turbulence generation term 

g Acceleration due to gravity 

H Specific enthalpy 
hi Species i specific enthalpy 

I Radiation intensity 

k Thermal conductivity 

k Turbulent kinetic energy 

ki Arrhenius reaction rate 

I Length 

Characteristic lengthscale 
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rh Species i mass diffusion flux 

Ni Number of moles of species i 

No Avogadros number 

Nu Nusselt number 

n Number of soot particles 

P Production term 

P Pressure 

Pr Prandtl number 

p Partial pressure 

P(O) Probability density function 

q Heat flux 

R, Ra Species mass fraction reaction rate term 

Re Reynolds number 
Rt Turbulence Reynolds number 

S Source term 

S Specific entropy 

s Stoichiometric mass ratio 

t Time 

T Temperature 

ui i direction velocity component 

V Species i diffusion velocity 

W; Species i molecular weight 

Xi Species i mole fraction 

Y Species i mass fraction 
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Greek 

a Soot model nucleation term (number density) 

/3 Soot model coagulation term 

y Soot model surface growth term 

r Soot model collisional frequency 

I'0 Effective scalar viscosity 
S Soot model nucleation term (soot mass) 

e Turbulence eddy dissipation rate 

Conserved diffusion flame property 

K� Radiation absorption coefficient 

µ Viscosity 

Mixture fraction 

i2 Mixture fraction variance 

p Density 

at Prandtl-Schmidt number 

a Stefan-Boltzman constant 

T Shear stress 

T Thermocouple time constant 

Tchem Chemical timescale 

¢ Equivalence ratio 

Scalar variable 

w Soot model oxidation term 

cri Species chemical production rate 

D Coefficient of mass diffusion 
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Subscripts 

bg Background signal 

c Corrected value 

f, fuel Fuel 

ref Reference signal or value 

Sig Measured signal 

g Gas 

k Kolmogorov scale 

mix Mixture mean value 

o Integral scale 

ox Oxidizer 

r, net Net radiation 

s Solid 

s Soot 

t Turbulence 

w Wall 

0 

Oxidizer stream 1 

Fuel stream 

Superscripts 

- Reynolds (time) averaged 
1 Reynolds (time) averaged ; fluctuating component 

Favre (density weighted) averaged 

ii Favre (density weighted) averaged; fluctuating component 
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Chapter 1 

Introduction 

1.1 Background 

1.1.1 Introduction 

"... Oh the miserable and calamitous spectacle! such as haply the world had not seen 

since the foundation of it, nor be outdone till the universal conflagration thereof. All 

the sky was of a fiery aspect, like the top of a burning oven, and the light seen above 40 

miles round for many nights. God grant mine eyes may never behold the like, who now 

saw above 10,000 houses all in one flame; the noise and cracking and thunder of people, 

the fall of towers, houses and churches, was like an hideos storm, and the air all about 

so hot and inflamed that at last one was not able to approach it, so that they were forced 

to stand still and let the flames burn on, which they did for near two miles in length and 

one in breadth. The clouds also of smoke were dismal and reached in computation near 
50 miles in length. Thus I left it this afternoon burning, a resemblance of Sodom, or the 

last day. It forcibly called to my mind that passage - non emim hic habemux stabilem 

civitatus: the ruins resembling the pictures of Troy. London was, but is no more! Thus 

I returned ... °'. 

Despite the lack of a fundamental appreciation of the special and complex relationships 
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created by the physical and chemical interaction between a fire and its environment', 

to say nothing of his dubious powers of distance estimation, John Evelyn, along with 

Samuel Pepys, provides us with our best glimpse into the social world of 17th century 

London and the 'Great Fire' of September 2,1666. This tragedy destroyed around 

four-fifths of the city, including roughly 13,200 houses, nearly 90 parish churches and 

50 livery company halls - in all an area more than 430 acres. Astonishingly, only 16 

lives were lost. 

Figure 1.1: Great Fire of London 1666 

The 'Great Fire of London' provided much impetus with respect to traditional building 

techniques in their application to fire safety. The case studies summarised below serve 

as a reminder that even today, over 300 years later, there is still much to he learned... 

1.1.2 UK Fire Statistics 

In 1993 it was estimated [2] that the gross cost of building fires from insurance claims 

amounted to some £424 million for commercial property and £224 million for domestic 

property. This figure however is not truly representative for domestic property as it was 

found by the British Crime Survey (BCS) [3] that one third of households were not 

insured against domestic fire loss. In the same survey details of the place of origin of 

fires and their spread to other parts of the building are also published. It was discovered 

that two thirds of all building fires in England and Wales originated in the kitchen, with 

the next most common room being the lounge/dining room. Table 1.1 illustrates the 
1 Indeed it was during this period that the hypothesis of phlogiston was propounded and was to remain 

unchallenged for a further 100 years. 
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BCS findings for years 1994-1996. Of additional importance is the fact that fires which 

originated in the kitchen rarely spread to other rooms in the building and only one tenth 

of fires originating elsewhere did so. Over half (58%) of household fires reported were 

caused by cooking accidents, of which the largest percentage (26%) involved fat or oil 

catching fire. 

Table 1.1: Origin of fire in domestic dwellings2,3 

1994 BCS % 1996 BCS % 

Kitchen 66 65 

Lounge/dining room 18 14 

Bedroom 6 7 

Bedsit - 1 

Other place in the house 4 3 

Garage 1 2 

Shed/greenhouse 2 1 

Garden 2 4 

Other outside the house 3 4 

Total 100 100 

The experiments conducted in this research and the associated modelling follow the 

main trend of these statistics in examining the phenomenon of fire by looking at the 

most common scenario in its application to single rooms, that is with no spread to other 

parts of the building. The data from these can nevertheless be extrapolated in terms 

of quantification of the products of combustion exiting the system, with potential for 

travelling remote from the fire source. Although their ability to do so is recognised, an 

analysis is beyond the scope of this thesis. Parameters relevant to human tenability in 

building fires are directly compared throughout with the extensive research of Jin [4,5] 

q. v. 
2Columns do not necessarily total 100% because of rounding. 
3Source 1994 and 1996 BCS (weighted data). Covers England and Wales. 
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Smoke produced in building fires hinders the escape of occupants by obscuring signs 

and egress routes and by impairing respiration and mobility. It thus represents the major 

life-threat in very many fire scenarios, and, along with CO inhalation, accounts for 

around 60% of all fire deaths. In response, numerical simulation of smoke movement in 

building fires, using field modelling techniques, has become an established component 

of the design process for complex building layouts and fire safety provision. Many 

important quantitative aspects of such simulations - for example, the rate of fire growth 

or the concentration of buoyantly transported smoke and toxic gases - are, however, 

simply prescribed or inferred from empirical correlation, rather than computed in the 

course of the simulation. However, it is desirable in the context of room fires, to be 

able to relate parameters such as the mass loss rate (MLR) of fuel and the ventilation 

provision to the amount of smoke produced. More comprehensive models of the fire 

source are therefore needed if accurate predictions of life-threat are to form part of 

these assessments. 

1.1.3 Recent Case Studies 

The following case studies exemplify where the presence of smoke on escape routes led 

to deaths of individuals. They also serve to illustrate the fast growth in fire development 

and the slowness of people to recognise the need to escape. 

King's Cross Underground Fire 

The tragedy on 18th November, 1987, at the King's Cross underground station, resulted 
in the loss of 31 lives including 1 fire-fighter. 

The station comprises a complex system of tunnels, passageways and escalators on five 

levels, serving the Picadilly, Victoria, Metropolitan, Northern and British Rail lines. The 
fire occurred at 7.30pm when the station was busy. A Public Enquiry was held with the 

main aim of discovering the fire origin, what led to a flashover and why the fire resulted 
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in such a large loss of life. The most probable cause of fire was ascertained from a 

matrix of forensic evidence, experimental scale models, computer simulations and eye 
witnesses. 

The enquiry concluded that the culprit was a discarded lit match which fell between the 

edge of the escalator tread and the skirting board onto the running board beneath - ignit- 

ing accumulated grease and dust. Once the fire was detected by passengers, one pressed 

the emergency stop button which stopped the escalator. The principal mechanism of 
fire growth up the escalator was explained by scientists at Harwell and the Health and 
Safety Executive (HSE) by the 'trench effect'. This is described as follows. Once the 

flames extended across the full width of the escalator they would only be able to en- 

train air from above or below. An upward inclined slope (in this case 30°) would cause 

the flames to lean towards the slope so that they lay down along and within the trench. 

Once the flame plume 'laid down' in the trench, fire spread accelerated dramatically. 

Also, the perceived hazard would be less and the fire would look relatively innocuous. 

Fifteen minutes after detection, the fire conditions dramatically changed as flashover 

occurred. The flames preheated the wood and extended rapidly, channelling up the es- 

calator trench. As the fire grew it involved fascia boards, advertisements, ceiling and 

ceiling paint in the escalator shaft. A jet of flame emerged from the top of the escalator, 
igniting materials in the ticket hall. The fatalities were due to smoke inhalation and/or 
flames. The enquiry's recommendations included the need to improve the fire precau- 

tions, communication and housekeeping, to develop emergency and emergency training 

procedures, to replace old escalators and to make the management of safety less diffuse. 

Gothenburg 

On October 28th, 1998, a fire occurred in a nightclub in Gothenburg, Sweden. It was 

estimated that there were around 400 people in attendance, whereas the dance hall was 

only licensed to hold a maximum of 150 people. 

The following significant factors were considered as to have contributed to the loss of 
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life and property. 

" Overcrowding 

" Lack of a fire alarm system 

" Ignition of combustible storage in a stairwell 

6 

There were no automatic fire sprinkler or fire alarm systems in the building, although 

there were lighted exit signs at each end of the hall. Shortly before midnight, the disc 

jockey opened a door leading to a stairwell. Smoke from the stairwell came into the hall. 

It is unknown whether the door was closed again after the fire was detected. The stair- 

way was impassable and was not used during the evacuation. Realising how crowded 

the hall was, the disc jockey after ringing the fire brigade, broke out a window and 

jumped from the building. As fire officers approached the building a large number of 

injured parties lay below windows after jumping from the second storey. As a result, 

fire-fighters were unable to place ground ladders up to the windows of the building. 

However, a fire-fighter was able to enter the dance hall through one of the windows and 

stated that the interior was "dark, smoky and hot, but that there was not any heavy fire 

involvement at this time". 

A total of 63 people died in the fire, mostly from smoke inhalation and a further one 
hundred and eighty people were injured. 

1.1.4 Introduction to Compartment Fire Experiments 

The standard room fire experiments which have been used for field model development 

and evaluation, such as those reported by Steckler et al [6] for example, generally em- 

ploy gas burners and weakly sooting fuels like methane. Whilst the computation of heat 

exchange is important to the fluid dynamic behaviour of fire plumes and ceiling layers, 

the sensitivity to detailed soot concentration levels is generally small and, in particular, 
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the fuel flow rate is entirely decoupled from the radiation field. Larger scale experiments 

involving liquid fuels often embrace both weakly and heavily sooting specimens, like 

methylated spirits and kerosine, but detailed measurements, most notably of spatially 

distributed properties such as smoke concentration, tend to be limited. 

The experiments in this study are therefore intended as a compromise between com- 

plexity in relation to the fuel source and its interaction with the confining walls of the 

compartment, realism as a simulation of practical relevance and accessibility to the de- 

tailed measurement necessary for field model validation. 

A feature inherent in the production of smoke and other stable gaseous species such as 

CO from which is derived much concern in the realms of fire safety, lies in their ability 

to be transported over great distances remote from the fire source. Whereas in the ma- 

jority of cases, as already mentioned, fires in buildings are contained in a single room 

[3], the majority of fire deaths occur remotely from the fire source. In addition, due to 

the relatively cool nature of soot at such distances, the indoor environment becomes a 

necessary feature to be considered - particularly in the case of heated, ventilated and air 

conditioned (HVAC) buildings where the smoke may become stratified - an issue of ob- 

vious importance regarding visibility in smoke. Other methods of active fire protection, 

such as the interaction of smoke with sprinkler spray, could exacerbate this effect by 

encouraging smoke logging [7]. Other factors, for instance building evacuation and fire 

rescue situations, can potentially have important influences on ventilation conditions as 

doors are opened and shut, or windows broken [8]. Of additional importance is adequate 

smoke detector response, which has been shown to be particularly sensitive to the rate of 

soot particle coagulation [9] inter alia. This is further discussed in the literature survey. 

The present work in essence seeks to contribute to the continuing effort to build more 

accurate models of this particular fire hazard, specifically directed towards compartment 

fires. 

Combustion is an exothermic reaction which is dependent upon the nature of the fuel, 

the oxidant and the ignition energy. The fuel must be in a gaseous form and, for liquid 
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fuels, the conversion to vapour form occurs due to evaporation. Evaporation can occur 

within a wide range of temperatures depending upon the equilibrium vapour pressure of 

the liquid. In the case of solid fuels, the vaporisation process is known as pyrolysis and 

involves the thermal decomposition of the solid into a gaseous form. The gaseous fuel 

must be in the presence of sufficient oxygen in order to produce a combustible mixture 

of fuel and oxidant. 

One of the physically characteristic features of a compartment fire is the development of 

a hot ceiling layer in which the combustion products accumulate. The formation of this 

layer is important in the early stages of fire growth and ultimately to the phenomenon 

of flashover. During the early stages of fire development, air is entrained into the rising 

plume, setting up rapid mixing of the combustion products which are usually well seg- 

regated in a well-stirred ceiling layer whose properties are roughly homogenous. As the 

layers are stably stratified, little mass crosses the interface. 

The transition to a fully developed fire is called a 'flashover'. A theoretical treatment 

of the flashover phenomenon effectively involving the fundamentals of classic explo- 

sion theory has been demonstrated by Thomas et al [10]. Further development of this 

approach has also been made by Bishop et al [11] with the application of modem non- 

linear dynamics. 

Visually, flashover has been reported as a discrete event in full-scale tests and by the 

fire service in actual fire incidents. Numerous variables can affect the transition of a 

compartment fire to flashover. Thermal influences where radiative and convective heat 

flux are assumed to be the driving forces are clearly important. Ventilation conditions, 

compartment volume and the chemistry of the hot gas layer can also influence the occur- 

rence of flashover. The rapid transition to flashover adds to the uncertainty of attempts 

to quantify its onset with laboratory measurements. 

The occurrence of flashover within a room is of considerable interest since it is perhaps 

the ultimate signal of untenable conditions within the room of fire origin and a sign of 

greatly increased risk to other rooms within the building. Many experimental studies 
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of full-scale fires have been performed that quantify the onset of flashover in terms of 

measurable physical properties. 

Research has shown, that the following values for the upper gas layer temperature and 

heat flux at the floor appear to be predictive of the onset of full-room involvement: upper 

gas layer temperature >600°C or heat flux to the floor >20kW/m2. 

Analytical models for predicting fire growth have been evolving since the 1960's. Dur- 

ing this time, the comprehensiveness of the models has grown. These models have pro- 

gressed to the point of providing predictions of fire behaviour with an accuracy suitable 

for engineering applications. The advent of CFD modelling has introduced a further 

dimension in which the boundaries of understanding the largely intractable eccentricity 

of compartment fires draw ever closer. These models, classically known as 'field mod- 

els', in reference to their solution of field equations, make fewer assumptions about the 

nature of the fire, or make them at a more microscopic level, and represent the physics 

and chemistry of the problems more fully than zone models. Recent advances with 

computer technology, in particular its capacity, have meant increasing accessibility of 

these 'field models'. 

For ease of classification, the following are those typically depicted as being the various 

stages of fire growth in a compartment fire. 

1. Ignition. The ignition of flammable mixture, i. e a mixture of fuel and oxidant 

which is above the lower flammability limit, requires sufficient energy to initiate 

the combustion reaction which is dependent upon the mixture. This energy can 

be in the form of a spark, or a surface or local air volume sufficiently high in 

temperature. 

2. Growth. Following ignition, fire grows at a rate dependent upon inter alia, the 

type of fuel, access to oxygen and the configuration of the compartment. Heat 

transfer to contiguous and nearby combustible surfaces can raise these to temper- 

atures at which they will begin to burn. The gaseous phase may be viewed as a 
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primary energy transmitter between the burning and virgin fuel. During this stage, 

hot gases produced by the fire rise due to buoyancy entraining the surrounding air 

and a fire plume is formed. Impingement of a fire plume on the ceiling of the 

compartment gives rise to formation of a hot smoke layer in the upper part of the 

room. 

3. Flashover. Flashover is a rapid transition from the growth period to a fully devel- 

oped fire, causing the remaining fuel to outgas, resulting in the total surface of the 

combustible material being involved in the fire. Flashover represents a thermal in- 

stability caused primarily by strong radiation from the smoke layer to combustible 

materials within the enclosure. 

4. Fully developed fire. At this stage, the rate of heat release reaches its maximum 

and the development of the fire is often limited by the availability of the oxygen. 

The average temperatures in the compartment are very high, in the range of 700- 

1200°C. 

5. Decay. During this stage, the energy release rate diminishes as the fuel is con- 

sumed or the supply of oxidant is exhausted. 

For ease of illustration, figure 1.2 depicts these stages graphically. The broken line 

represents depletion of fuel before flashover has occurred, or alternatively, indicates 

that the available oxygen has been consumed in a closed room environment. 

Elevated levels of soot and CO are produced under fuel rich conditions such as those 

found in a post flashover room when the fire is no longer controlled by the amount of 

fuel available, but by the amount of air entering the room. At this point, conditions in the 

room containing the fire source are untenable, but the danger has now been re-located 

by convecting these combustion products to other areas within the building. Depending 

upon the circumstances of ventilation provision, they are capable of travelling distances 

far removed from the origin [12]. This in turn exacerbates the level of soot and CO 

which is produced by promoting vitiation, in which air which has been contaminated 
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Figure 1.2: Stages of fire growth in a well ventilated compartment fire 
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is entrained into the fire plume causing a local reduction in ambient oxygen levels, and 

in so doing reduces the actual combustion temperature. This synergy then leads to the 

generation of more products of incomplete combustion. 

In the interest of safety, the experimental parameters of the research in this study are 

restricted to consideration of well-ventilated fires only. In these the effect of only partial 

vitiation is apparent. However, the interest in, and indeed the main objective of, the 

research lies in the requirement for a simple reproducible experiment on which to base 

and validate predictive models which can then be suitably extended to best serve actual 

real-life scenarios, in which building design and layout may be complex. 

Additionally, full-scale fire experiments are costly to perform, with many unknown pa- 

rameters which are difficult to probe in sufficient detail to minimize the risk of ambigu- 

ity. The half-scale room is a suitable compromise between scale and the improvement of 

accessibility to these unknowns. Advances in computer processing power has encour- 

aged the twin-track approach of experiment versus numerical simulation. Accordingly, 

numerical methods devoted to the area of combustion have been popularised. In the con- 

text of compartment fires this is in the area of heat transfer, buoyancy, soot formation, 

gas radiation and absorption, and low Reynolds number turbulence. 
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Following this introduction, Chapter 2 will review the existing literature and expand in 

detail on the necessary theory, background and methodology employed in the present 

work. Chapter 3 will describe the experiments carried out on compartment fires in 

various scenarios and present the results. Here the objective is to adequately map the 

distribution of soot and discover the effects of parameter variations in each compartment 

fire investigated. Chapter 4 makes a comparison of the enclosure fire experiments with 

an open pool fire configuration burning a number of fuels utilising identical burners. 

These open pool fires allow the investigation of several conditions which were difficult 

to demonstrate and reproduce physically within the confines of a compartment. Chapter 

5 will introduce the physical models employed in the finite volume CFD code SOFIE 

(Simulation of Fires in Enclosures), which is under continual development at Cranfield 

University. Chapter 6 continues by presenting the results of the compartment fire simu- 

lations, which are carried out under several different scenarios for each of which exists 

an equivalent experiment. The objective of this chapter is to investigate the underlying 

physics of the various stages in soot production, from soot inception to its oxidation, by 

verification of the models already implemented in SOFIE against measurements made 

in the compartment. In addition, recommendations are also made regarding the use of 

a simple evaporation model relating the mass loss rate of fuel to the net heat flux to 

the fuel surface and heat of vapourisation. A comparison is then made between the 

results of these simulations and those comprising the more common approach of pre- 

prescribing the heat release, but based upon real mass loss measurements as made in the 

compartment and an ideal heat of combustion. Chapter 7 will bring together the various 

components and compare the results finishing with a summary of the conclusions and 

recommendations for future work. 



Chapter 2 

Literature Review and Methodology 

2.1 Introduction 

This chapter contains a review of the published literature in the global context of com- 

partment fires, but more specifically geared towards the production of soot. 

During the mid-seventies, extensive research was carried out by Jin [5] into human ten- 

ability in building fires. The main focus of the research was the development of a model 

whereby the level of soot concentration could be directly related to visibility therein. Al- 

though the model correlations are of a simplistic nature, the research is still commonly 

cited and forms the basis of the validation of much more complex models. Prediction of 

smoke production and its properties in latter years has gained much ground, prompted 

in part by the number of deaths attributed to the inhalation of toxic gases and smoke 

[13]. 

There are great number of very good recent examples where adequate representation of 

smoke in a building fire could have saved many lives. One example which has already 

been mentioned is the fire at Kings Cross underground station, London which resulted 

in the loss of 31 lives. The majority of fatalities were attributed to a 'fireball' (flashover) 

which engulfed the main ticket hall and the accumulation of dense smoke in areas above 

13 
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the escalators which were the only means of escape [14]. Research conducted on small 

scale models at the Building Research Establishment, Watford concluded that the fire 

which started beneath wooden escalators built in the 1950's was enhanced by the trench 

effect in which the flames were directed at an angle of 30°. 

Improvements to fire safety in underground stations were immediately effected. Wooden 

escalators in all London underground stations were removed and significant active and 

passive fire safety improvements were implemented. 

2.2 Compartment Fire Experiments 

A number of important issues still surround 'typical' enclosure fire experiments - partic- 

ularly in the validation of zone models which rely on the simplified assumption that the 

compartment may be segregated into two well separated homogenous layers. In well 

cited studies such as those of Satoh et al [15], Steckler et al [6], Markatos et al [16] and 

Simcox et al [17], the effect of environmental factors such as the thermal stratification 

of the ambient medium surrounding the opening or the thermal stratification generated 

within the enclosure did not receive much attention. However, a considerable amount 

of work has been done on external flows such as plumes and boundary layers in the 

presence of a stable, thermal ambient stratification. 

A fire within an enclosure interacts with its surroundings through the opening. The 

ambient medium may be thermally stratified by some earlier fire activity or by a fire in 

a different location. It is well known that, in such natural convection flows, the mean 

velocity levels are typically smaller and the disturbance levels much larger than those 

observed in forced flows. This disturbance or turbulence level is of interest, because 

it enhances mixing and thus promotes transport of both momentum and energy. As 

a result, a well-mixed region of essentially uniform temperature is generated in the 

compartment fire. The stratification level is also of particular importance because its 

influence is felt in two ways. At first, in an enclosure fire, it affects the location of 
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the interface between the hot combustion products and the cold inflow at the bottom 

(hot-cold interface) by inhibiting the rise of fire or thermal plume above the heat source. 

The knowledge of the location of this hot-cold interface is, therefore, very crucial to 

the detection and control of a fire. Secondly, when the thermal stratification is stable, 

it results in a decay of the turbulence and, hence, leads to a relaminarisation of the 

flow. This may alter the transport processes and distort the simplistic concept of two 

homogenous gas layers. 

2.2.1 Ventilation-controlled Burning 

The rate of burning and consequent heat release rate may be ventilation-controlled or 

fuel-controlled. 

In rooms with small or medium sized windows, post-flashover fires are ventilation con- 

trolled, so the rate of combustion depends on the size and shape of ventilation openings. 

It is usually assumed that all window glass (other than wired glass or fire resistant glass) 

will break and fall out at the time of flashover as a result of the rapid rise in temperature. 

If the glass does not fall out, the fire will still be ventilation controlled, but because of 

the smaller openings it will burn for a longer time at a lower rate of heat release. 

In a ventilation-controlled fire, the rate of combustion is limited by the volume of cool 

air that can enter and the volume of hot gases that can leave the room. There is insuf- 

ficient air flow for all the combustible gases to burn inside the room, so the flames ex- 

tend out of the windows and additional combustion takes place where the hot unburned 

gaseous fuel mixes with the outside air. For a room with a single opening, Kawagoe 

[ 181 used many experiments to show that the mass loss rate of burning wood fuel in the 

form of cribs rh can be approximated by: 

Tn = 0.092A� H�(k9/s) (2.1) 

where A� is the area of the ventilation opening (m2), and H� the height of the ventilation 
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opening (m). 

The dependence of burning rate on A� H� has been observed in many studies. This is 

often expressed in terms of an opening factor F� given by: 

(2.2) 

where Al is the total area of the bounding surfaces of the room (m2) excluding the area 

of the vent. 

Equation 2.1 is widely used, but not always found to be accurate. Even if the burning 

rate is known precisely, the calculation of heat release rate is not accurate because an 

unknown proportion of the pyrolysis products burn as flames outside the ventilation 

opening rather than inside the compartment. Other sources of uncertainty arise because 

some proportion of the fuel may not be available for combustion and the fire may change 

to fuel controlled after a period of time. 

Additional areas of concern are listed as follows: - 

1. The burning rate can only be predicted by this expression over a limited range 

[19]; 

2. The expression implies that the burning rate is only influenced by the ventilation 

rate, when the radiative contribution to the burning rate in a compartment is known 

to be significant since the radiative influence is a function of T4 [19]. 

3. The expression is based on wood cribs as the source of fuel. It could be envisaged 

that fuel in this form shield the fire from radiative effects, thereby reducing the 

burning rate from what would be experienced in a "real fire" scenario. 

4. The assumption is made that the fire is ventilation-controlled; whilst this is rele- 

vant to the experiments reported in this thesis, the burning rate is independent of 

the ventilation factor in fuel-controlled fires. 
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Drysdale [19] shows how equation 2.1 can be derived by considering the flows of air 

and combustion products through an opening. In a ventilation-controlled fire there are 

complex interactions between the radiant heat flux to the fuel, the rate of pyrolysis (or 

evaporation) of the fuel, the rate of combustion of the gaseous products, the inflow of 

air to support the combustion and the outflow of combustion gases and unburned fuel 

gases through opening. The interactions depend on the geometry of the fuel, the type of 

fuel (solid or liquid), the shape of the room and the ventilation openings. 

Some tests have shown departures from equation 2.1. Results from a large number of 

small-scale compartment fires with wood cribs reported by Thomas and Heseldon [20] 

and those of Law [21] proposed a slightly more refined equation for burning rate, finding 

that the burning rate is not directly proportional to A� H� but also depends on the floor 

shape of the compartment. Thomas and Bennetts also showed that the burning rate also 

depends heavily on the shape of the room and the width of the ventilation opening in 

proportion to the wall in which it is located [22]. If the width of the opening is less 

than the full width of the wall, the burning rate is seen to be much higher than predicted 

by equation 2.1 because of the increased turbulent flow at the edges of the opening. 

However, the burning rate in the compartment used in this research may be drawn from 

the correlation of Kawagoe due to its fortuitous relation to a vent area opening fraction 

and vent to enclosure size ratio almost identical to the ASTM room. Account must 

although be made of the differences in conditions under which wood cribs and other 

fuels burn. In reference [23] Babrauskas states that, unlike a pool fire which can burn in 

a room under highly fuel-rich conditions, a wood crib does not burn more than 30-40% 

fuel-rich. 

Equation 2.1 applies to a single ventilation opening in one wall of the compartment. If 

there is more than one opening, the same equation is often used, with A� being the total 

area of all the opening and H� weighted by the area of the openings. If the openings 

are on several walls, the use of equation 2.1 implies an assumption that the air flow is 

similar in all openings and that there is no cross-flow through the room. 
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Although equation 2.1 is not universally applicable, it is a useful approximation to typi- 

cal behaviour for an experiment and forms the basis of most empirically-based compu- 

tational studies of post flashover fires. 

2.2.2 Fuel-controlled Burning 

The burning rate in an enclosure may also be governed by the surface area of the fuel, 

especially in situations where large, well ventilated rooms containing fuel items which 

have a limited area of combustible surfaces are to be found. In this case, the rate of 

burning will be similar to that which would occur for the fuel item burning in the open 

air, with enhancement from radiant feedback from the hot upper layer of gases and 

confining walls of the compartment. Depending on the fuel location, most fires become 

fuel-controlled in the decay period when the exposed surface area of the fuel decreases 

and the thicker items of the fuel continue to burn. In fuel-controlled burning, all of the 

heat is released inside of the room, with no flames projecting out of ventilation openings. 

2.3 Production of Smoke 

From the outset it is important to define categorically the usage of the term 'smoke', 

a term which is classically, but nonetheless loosely used to describe only that which 

affects our visibility in building fires - carbonaceous soot. In fact, smoke constituents 

are much more complex and are a literal soup of ingredients. Although these can be 

physically separated into solid, liquid and gaseous components, their interdependencies 

cannot be so readily ascribed and thus decomposition into separate entities is perhaps 

only accepted as a necessary simplification. If this simplification is accepted, then re- 

search into the production of soot and its properties is probably one of the most historical 

and tremendously researched topics in the combustion community. Yet, still with this 

supposed simplification, along with the abundance of research papers already published, 

we are still undecided as to the fundamental chemical and physical processes which are 



CHAPTER 2. LITERATURE REVIEW AND METHODOLOGY 19 

actually involved. The Society of Fire Protection Engineers (SFPE) defines the term 

'smoke' as being "the smoke aerosol or condensed phase component of the products of 

combustion", whereas the American Society for Testing and Materials (ASTM) extends 

this definition to include the evolved gases. For the purposes of this research, which 

concentrates on the human visibility aspect, the first definition is the most pertinent, but 

in addition it is important to address other 'smoke' components in the global context of 

compartment fires and to endeavour to account for the association of solid soot with the 

production of the liquid and gaseous phases found in incomplete combustion systems. 

One problem in eliciting an explanation of the formation of soot from published litera- 

ture is the tremendous number of experimental scenarios under different conditions of 

operation that are considered by researchers in their studies. Data are published on pre- 

mixed and diffusion flames, laminar and turbulent flow, with further degrees of freedom 

born from differing pressures, temperatures and diluents to name but a few. Literally 

hundreds of different fuels are examined from the weakly sooting, such as methane, to 

heavy aromatic hydrocarbons. Shock-tube and flow reactors provide still more sources 

of data, each with its own experimental ideosyncrasities. Practical design systems, for 

instance diesel engines, are also used to subjectively provide published data pertain- 

ing to correlations between their operating parameters and the production of soot. In 

drawing inferences across the wide ranging experiments, allowances must be made for 

different time/temperature/concentration histories in each system and for steep gradients 

of concentration and temperature induced diffusive transport which can be greater than 

the mean convective process. The 'secrets' of soot formation may be already available, 

but it may require a perfect and persistent logician to extract them! 

Over the years, the theories and models of combustion and soot formation have become 

increasingly sophisticated. This is not a reflection of scientist quality, but of advances 

in technology. Lasers have become increasingly popular and commonplace in the mod- 

em laboratory after once being found only at wealthy institutions or in the world of 

medicine. Measurement of particles and radicals had been difficult or impossible before 
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the use of lasers became routine. The second major advance is in computers. Large 

kinetic models may now be integrated numerically in relatively short periods of time. 

Whereas early theories were often founded upon qualitative data, we can now further 

complex ideas to a point of quantification. 

2.3.1 Bench-scale Tests 

The traditional means of determining properties of fire or products of combustion is 

to carry out small scale tests on materials, in isolation from the scenario of interest. 

This inadequacy is further exacerbated by the inability of the majority of these tests to 

investigate more than a single property or to be able to combine properties. Moreover, 

there is often no attempt to correlate results with those of full-scale fires. 

Smoke obscuration measurement has been conventionally carried out in the NBS smoke 

chamber (ASTM 662). This instrument measures the obscuration inside a static 500L 

chamber, after a sample has been exposed vertically to a 25kW/m2 radiant (source) heat 

flux. There are many inadequacies with this procedure. Criticism includes the limited 

irradiance range, the absence of continuous specimen mass loss measurements and the 

small, fixed amount of oxygen available for combustion. Of utmost concern in the 

context of compartment fires is the lack of correlation with full-scale fires. However, 

it is often considered the definitive measurement and is referenced often for regulatory 

or specification purposes. The International Standards Organisation (ISO) Technical 

Committee TC92 (Fire Tests for Building Materials) initiated an irradiance range of 

10 to 50 kW/m2 and a specimen assembly which allows either a horizontal of vertical 

orientation. This development is now being continued in ISO/TC61/SC4 (Fire Tests for 

Plastics). The modified procedure has already been shown to be valuable in evaluating 

the smoke emission characteristics of thermoplastics, which are often underestimated 

when testing only in a vertical orientation due to melting. 

In addition, it is well known that the opacity and volume of smoke generated by mate- 

rials is significantly affected by their burning mode, especially non-flaming combustion 
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compared to flaming combustion. 

Where optical measurements are made during large-scale tests, the difficulty lies gener- 

ally with the vast quantity of smoke which is produced. As a result, dynamic measure- 

ments are made which may vary considerably due to the amount of dilution and mixing 

of the smoke stream which takes place before the point of measurement. 

Bench-scale methods, such as the cone calorimeter, have been used relatively success- 

fully as a basis for room fire prediction, in which the measurement of soot concentration 

- now accepted as commonplace - is performed in addition to the measurement of heat 

release by oxygen calorimetry, for which it was originally designed (see for example 

[24] and [25]). Cautionary notes by [26] and [27] amongst others have although been 

sounded concerning the use of the cone calorimeter for this purpose. 

2.3.2 Chronology of Soot Formation 

In one of the first systematic studies of the parameters of soot formation, Street and 

Thomas discuss some of the mechanisms which had been proposed at that time. The 

condensation of PAH was suggested because C2 is observed spectroscopically in flames. 

This theory was rejected by Street and Thomas on the grounds of insufficient concen- 

tration. Condensation of PAH was considered as a soot formation route because of 

the structure of the soot is graphite-like, similar to an infinite PAH, and also because 

aromatic fuels tend to promote soot. Wolfhard and Parker argued against this because 

they could not find evidence of intermediates spectroscopically. They instead proposed 

graphitization of droplets of polymers. 

Porter [28] promoted the idea of direct polymerization of C2H2 to carbon. His exper- 

iments involving the photolysis of C2H4, showed the conversion of substrate to C2H2 

and then to carbon with no hydrogen intermediates. The reaction C2H2 -* 2C + H2 

is thermally favoured by 54 kcal/mol. An argument on transition state theory shows 

the existence of a threshold temperature, above which polymerization of fuel to form 
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soot cannot occur. It is estimated that this threshold is at 1000°C. Porter recognised that 

oxidation is a process competitive to that of particulate formation and that oxidation can 

have an enhanced effect through initiation of chain reactions. The presence of oxygen, 

however, should not change the soot formation process. 

Palmer and Cullis [29] wrote the first comprehensive review paper in 1965. In it they 

observed that there is a great deal of similarity across different combustion conditions. 

"With diffusion flames and premixed flames, investigations have been 

made both of the properties of the carbon formed and of the extent of carbon 

formation under various experimental conditions. In general, however, the 

properties of the carbons formed in flames are remarkably little affected by 

the type of flame, the nature of fuel being burnt and the other conditions 

which are produced. Any complete and comprehensive theory of carbon 

formation must of course be able to account for this striking observation. " 

Bonne, Homann and Wagner [30) used a molecular beam/mass spectrometer apparatus 

to investigate a rich, premixed, low-pressure acetylene flame. In this pioneering study, 

the authors were able to take direct measurements of stable species and free radicals. 

Bonne et al concluded that polyacetylenes are important in soot nucleation due to their 

proliferation at the soot nucleation zone. 

The argument that the proliferation of PAHs is fundamental to soot formation has re- 

cently been criticised. The most important objections come from: 

1. D'Alessio and co-workers [31] who discovered that primary soot particles do not 

absorb light in the visible wavelengths and concluded that soot particles are not 

giant aggregates of large condensed PAHs and 

2. Tesner et al [32] who found that the pyrolysis of mixtures of Napthalene and 

acetylene produced about one-tenth of the number of particles produced in the 
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pyrolysis of pure Napthalene. Since the presence of acetylene is known to pro- 

mote the growth of PAHs, as shown by both kinetic schemes and experiment, this 

decrease in the number density of particles clearly rejects the idea of a dominating 

roles for PAHs in soot nucleation. 

In view of the disagreement between workers, Krestinin [33] examined in more detail 

the acetylene pathway of soot formation, first put forward by Berthelot [34]. Proponents 

of this hypothesis emphasize that the thermodynamic stability of acetylene (and the 

whole family of polyynes), grows at higher temperatures, whereas the stability of all 

other hydrocarbons decreases. 

The length of time occupied by research into the fundamental mechanism of soot forma- 

tion only serves to substantiate the view of the level of complex issues which surround 

the process. A certain degree of persistency along with the recognition of the signifi- 

cant practical importance of soot in combustion systems, still excites contemporary re- 

search into developing "a solution", such as is proposed with the recent announcement 

of NIST's `designer soot'. 

2.3.3 Fuel Effects 

Deliberation of the effects of fuel structure on the formation of soot may be considered 

one of the most demanding problems, judging by the controversy to be found in the 

literature. One of the main difficulties is the fact that different fuels have different 

flame temperatures. Several methods are available to quantify the tendency of a fuel to 

produce soot. One of the most common methods is to measure the height of a diffusion 

flame at which soot just starts to break through the top as the fuel flow rate is increased. 

ASTM has developed a simple method to test aviation turbine fuel (ASTM D 1322-85) 

which correlates the flame height at the point of smoke formation to sooting tendency 

of fuel. A marginally quantitative method is to measure the critical equivalence ratio' 
10 = (actual fuel/air ratio)/(stoichiometric fuel air ratio), 4> 1 for a rich system 
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(4k) at which soot just starts to be emitted in a flame, usually determined by the visible 

yellow emission from the flame (black body radiation from the soot particles). This is 

not however a robust technique because the flame type and burner have major effects. 

Kinetically, the critical equivalence ratio represents the point at which the rate of for- 

mation of soot pre-cursors is just balanced by the rate of their oxidation. It is important 

to keep in mind that (0, ) is not necessarily related to the soot yield in a richer system. 

The critical sooting tendencies in pre-mixed flames are in the order: 

aromatics > alkanes > alkenes > alkynes 

In diffusion flames the order is somewhat different: 

aromatics > alkynes > alkenes > alkanes 

The switch in position of alkynes for the two flames types is suggested by Glassman [35] 

to be due to temperature. Higher temperature flames induce a greater rate of pyrolytic 

growth of soot pre-cursors and an enhanced concentration of OH which destroys these 

pre-cursors. The temperature sensitivity is greater for OH production, so hotter flames 

produce less soot. This effect is not seen in a diffusion flame because the fuel pyrolysis 

occurs in an oxidant free environment. 

As a general consensus, it was considered that aromatic fuels produce more soot because 

growth can occur readily on intact ring structures. The work of Harris and Weiner [36] 

confounded this in an experiment in which toluene was added to an ethylene flame. Care 

was taken to maintain the same temperature and equivalence ratio between the doped 

and control flames. The result was perhaps surprising as no difference in the level of 

soot attained was apparent. This suggested that toluene was broken down to a point 

where it was no more effective than an non-aromatic in producing soot. 

2.3.4 Temperature Effects 

The general complexity of the temperature, species and flow field in a diffusion flame 

makes it difficult to identify and control the separate parameters which influence soot 
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formation. 

Kent and Wagner [37] investigated a number of fuels in terms of their sooting character- 
istics. Fundamentally, they observed that smoke is emitted when burnout ceases if the 

soot temperature drops below about 1300K, regardless of other conditions. 

2.3.5 Ventilation 

Both optical and soot mass fraction measurements may be expected to be a function 

of the available oxygen concentration. Tewarson [38] conducted studies showing that 

oxygen concentration has a profound effect on the smoke and sooting tendency for fuel- 

rich combustion, as would occur in the later stages of a fire or after flashover. For 

fuel-lean combustion, which is typical of the early fire stages, it was shown that the 

effect of oxygen levels on smoke and soot production is small-to-negligible. 

The effect of fire ventilation on combustion behaviour is generally expressed in terms 

of the ratio Yco/Yco2" The increase in the ratio is indicative of the increase in the in- 

completeness of combustion accompanied by higher amounts of CO and other products 

resulting possibly in an increase in the toxicity of the environment. 

2.3.6 Turbulent Versus Laminar Flame Sooting 

An overall measure of sooting tendency is the gaseous fuel flow rate, or flame length of 

a round laminar jet flame which just produces smoke emission (the smoke point). Fuels 

with a high sooting propensity produce smoke at low flow rates and short flame lengths 

whereas low sooting fuels require higher flow rates to produce smoke. 

Kent [37] concluded from tests conducted on a range of gaseous and pre-vapourized 
liquid fuels, that a characteristic soot volume fraction (as defined in appendix B) was 
found largely to be independent of residence time in the flame. In addition, the soot 

volume fraction was found to be related to its laminar flame counterpart and found to be 

predictable from the laminar flame smoke-point flow rate. 
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2.3.7 Smoke Control Methodology 

Smoke control in buildings is the method by which means of escape (and emergency 

services access) are maintained tenable and protected. This is specified in the relevant 

Codes of practice and Standards in order to satisfy the requirements of the Building Reg- 

ulations, the associated Approved Document (AD) and the Fire Precautions Act along 

with other legislative enactments in England and Wales. The present Building Regu- 

lations (reviewed in 1995) allow trade-offs between passive and active fire protection 

and a fire safety engineering approach to building design. As a result of the availability 

and possibility of alternative design advice apropos smoke control in buildings, much 

research has been conducted in this area over a number of years. 

Although a great simplification, for the purposes of smoke control, buildings can be con- 

sidered to be large undivided volumes in the case of covered shopping precincts, atria, 

industrial premises and warehouses and multi-compartmented buildings, in the case of 

offices, flats and maisonettes. The preferred method of smoke control is dependent 

upon the building type. Choices include: containment and ventilation for lobbies, pres- 

surisation/depressurisation and smoke clearance for multi-compartmented buildings and 

smoke ventilation and/or depressurisation for large undivided volumes - mainly large 

atria. 

The intention of a well designed smoke control system, is to keep smoke in the upper 

reaches of the building, leaving clear air near floor level to allow people to move freely. 

However, evacuation of a building can result in variations of smoke movement [39]. For 

example fire exit doors would be continuously opened and closed and windows on the 
fire floor may be broken by the heat of the fire or intentionally broken by the fire fighters 

to vent smoke and heat. These actions, which create large openings in the barriers of the 

compartments, can create avenues for the movement of smoke and negate the operation 

of smoke-control systems that are based on controlling pressure differences. 
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2.3.8 Soot Measurement Devices 

Many different measurement devices and techniques are available for the measurement 

of soot, including electron microscopy [40], laser induced incandescence [41], gravi- 

metric analysis [42], as well as the more classical light extinction and scattering tech- 

niques which are reviewed by Black et al [43]. A number of commercially available 

instruments for smoke characterization are listed in the SFPE Handbook [44]. More 

sophisticated techniques include Thermocouple Particle Densometry (TPD) first intro- 

duced by Mcenally [45], and multi-wavelength radiative emission [46]. However, even 

with miniaturisation of probes and the introduction of iso-kinetic sampling, intrusive 

techniques still suffer from unknown variations in the flow field at, or downstream of 

the sampling point. For this reason, non-intrusive based systems are therefore attractive, 

so long as the barrier of optical access is overcome. 

Since the early 1960s, the diode laser has evolved from being a tool of significance 

solely in the research laboratory environment, into a fundamental component of many 

household appliances - particularly with the advent of compact disc music digitalisation. 

Diode lasers themselves offer several major advantages over the more conventional solid 

and gas lasers systems. Advantages include their compactness and a high rate of effi- 

ciency (up to 90% internal power conversion), which allows output powers exceeding 

250mW for single chip ridge waveguide type lasers up to a few hundred Watts for con- 

tinuous wave (cw) power for stacked devices. In addition, mass production is easily 

achieved along with the flexibility in wavelength, which although is restricted by the 

material combination, can still provide for a variation of around 100nm. 

The majority of laser diodes are fabricated from compound semi-conductors consisting 

of group III elements such as Ga, Al and In, and group V elements such as P and As 

due to the direct bandgap transition in the near infra-red to visible wavelength range 

(0.5-1.6µm) that these materials exhibit. It would go too far to describe the complete 

laser mechanism for semi-conductor lasers here in detail. 

The adequate discernment of the levels of soot present is not solely reliant upon the 
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measurement method adopted, which may or may not be relatively accurate. The correct 

interpretation of the measurements is equally important. 

Even with a smokeless fire, thermal gradients in the hot zone cause density gradients 

which refract the laser beam into a random high-frequency pattern known as 'beam- 

steering' with the potential result of spurious measurements. 

2.3.9 Optical Properties of Soot 

The optical properties of smoke depends on the particle size distribution, concentration 

and refractive index of the particles. The particle size distribution and number concen- 

tration are a function of the type of fire and ageing processes, but the refractive index of 

the particles is dependent on their composition which is determined by the type of chem- 

ical reactions taking place and the initial material. Mullins and Williams [47] proposed 

a refractive index of 1.89-0.44i for n-Heptane soot which has been used throughout this 

research for the calculation of soot volume fraction. 

The presence of H2O in the fire atmosphere will have a direct effect on the light ab- 

sorbing and scattering characteristics of smoke and the relative humidity influences the 

growth of hygroscopic particles. In considering the equilibrium vapour pressure sur- 

rounding the particles, the surface growth mechanism may increase by a factor of around 

2 when the relative humidity is raised from 30% to 90%. As the water vapour saturation 

pressure is approached, the growth factor increases. This has important implications for 

fire extinguishment. 

2.3.10 Fractal Dimension of Soot Aggregates 

The first scaling feature of aggregates that received wide attention in the literature, and 

the one that remains of great interest to those attempting to characterise the structure of 

soot 'flocs', is the mass (or number) scaling. The equation which embodies the whole 

concept of the fractal structure of aggregates is very simple: 
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Ma RDI (2.3) 

where M is the mass of particles and R is a linear measure of size. 

Since the bulk of the literature on this subject is concerned with the structure of aggre- 

gates from monodisperse spherical particles, the distinction between mass and number 

is rarely made. It is quite usual for authors to write an equation such as 2.3 in terms of 

number of particles, N, and refer to the quantity Df as the mass fractal dimension. This 

point is rather semantic because the mass and number fractal dimensions are obviously 

the same thing when the particles are monodisperse. 

Equation 2.3 is often written as: 

N ks 
(Rro )Dr 

(2.4) 

where Rg is the radius of gyration of the aggregate, ro is the radius of the primary 

particles and k9 is known as the power law prefactor. The subscript g is added to the 

power law prefactor to clearly associate it with linear aggregate size defined in terms of 

the radius of gyration, which is the r. m. s distance of the mass elements from their centre 

of mass. 

One interesting feature of fractal aggregates is the dynamics of the processes by which 

they are formed. Not only are these aggregates fractal in terms of their physical struc- 

ture, but the kinetics of aggregation also exhibit (with time) the scale invariance asso- 

ciated with fractals. The Smoluchowski equation [48] describes kinetics of irreversible 

aggregation in terms of the reaction probability between clusters as a function of their 

masses i and j. The time evolution of the concentration Nh of the aggregates of a par- 

ticular size h is then given by: 

dNh 
_1 dt 2 

NiNjKij - Nh KhjNj (2.5) 
ij, i+j=h j 
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2.4 Visibility Studies 

To prevent unnecessary duplication of material, the reader is encouraged to consider the 

guidance in the form of ISO 5659, which has been adopted as a UK national standard. 

This recognises the clear relationship between optical density and visibility in smoke 

and highlights the research carried out in the late seventies by Jin [4] to whom this 

theory is credited. 

Optically dense smoke affects way-finding ability and the speed of movement of build- 

ing occupants. A smoke barrier may be subjectively perceived as being impenetrable, 

depending upon the concentration (optical density) of the smoke and its irritancy to the 

eyes and respiratory tract. In experiments where people were asked to walk through 

a smoke-logged corridor [5], Jin found that for non-irritant smoke, walking speed de- 

creased with smoke density and that at an optical density of 0.5 OD m-1 (extinction 

coefficient 1.15) walking-speed decreased from approximately 1.2 m s-1 under 'no- 

smoke' conditions to 0.3 m s-1. Under these conditions, people behaved as if they were 

in total darkness, feeling their way along the walls. When people were exposed to ir- 

ritant smoke, which was produced by burning wood chippings, movement speed was 

reduced to that of darkness at a much lower optical density of 0.2 OD m-1 (extinction 

coefficient of 0.5) and the subjective experience was found to be much more distressing. 

In addition to these effects upon movement speed, there is the problem of deciding 

whether or not people will move at all. In a number of studies of fires in buildings, a 

proportion of people (approximately 30%) were found to turn back rather than continue 

through smoke logged areas. The average density at which people turned back was at 

a 'visibility' distance of 3 metres (0.33 OD m-1) and women were more likely to turn 

back than men. A difficulty with this kind of statistic is that, in many fires in buildings 

there is a choice between passing through smoke to an exit, or turning back to take 

refuge in a place of relative safety such as a closed room. In some situations, people 

have moved through very dense smoke when the fire was behind them, while in other 

cases people have failed to move at all. 
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One major advantage to the direct correlation of optical density to visibility [49], [5] is 

that it is a gross property - unlike, for instance, toxicity, where the chemical nature of 

the individual constituents is paramount. 

Conventionally, the optical density of smoke may be determined by measuring the at- 

tenuation of light in accordance with Bouguers Law: 

I= Ioexp(-icCL) (2.6) 

where Io and I are the unattenuated and attenuated light intensity respectively, rc is the 

extinction coefficient, C is the mass concentration of smoke particles and L is the path 

length of the optical beam passing through the smoke. The optical density can then be 

inferred in terms of either natural logarithms [50]: 

De=-loge(j) =/cCL (2.7) 
o 

or common logarithms [49]: 

Dlo = -10loglo 
I= 10 

r£CL (2.8) Io 2.303 

The concentration of smoke therefore may be seen to be directly proportional to the 

optical density. The factor of 10 is introduced to be consistent with measurement of the 

attenuation of sound and electrical signals, in decibels or db. 

Visibility may also be expressed in terms of the extinction coefficient again derived 

from equation 2.6. The following simple equation is that which commonly describes 

the extinction coefficient determined from experimental measurements 

Kext= 
In (-IT) 

L (2.9) 

In which Io is the unattenuated signal and I is the attenuated signal over the optical 
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pathlength L. 

Figure 2.1 taken from [51] describes how visibility varies with the extinction coefficient 

from the experiments of Jin. Immediately apparent is the disparity between visibility 

achieved in smoke of the same density produced from flaming (black smoke) and that 

of smouldering (white smoke) combustion. 

Optical techniques are particularly attractive owing to their non-intrusive nature. The 

light extinction method is a popular and accurate way of measuring soot concentration 

due to its simplicity. An assumption is generally made that light is scattered elastically, 

which is the process whereby no energy exchange is carried out between the incident 

photons and the target particles. The scattered light therefore has the same frequency as 

that incident. Conventionally, the combined use of light extinction and scattering is used 

in deducing the soot particle size. Complete descriptions of light scattering from small 

particles are available in books written by Van de Hulst [52], Kerker [53] and Bohren 

and Huffman [54]. 
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Figure 2.1: Relationship between visibility of light-emitting signs at the obscuration 
threshold and the extinction coefficient 

The soot measurements referred to in this research are generally presented as a soot vol- 

ume fraction to enable direct comparison with the various detailed experimental con- 

ditions and techniques that have been published in the area of soot formation. The 
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calculation of soot volume fraction may be found in appendix B. Where appropriate, in 

presenting the findings regarding visibility in smoke, the measurements will be trans- 

lated directly from the extinction coefficient derived experimentally using equation 2.8 

to a visibility distance in metres. However, it must be noted that visibility is also a func- 

tion of contrast. Significant diffusion to the walls of the compartment occurs during 

the course of an experiment, resulting in decreasing contrast levels with experimental 

progress. Due to the difficulty in adequately defining this process and its neglect in 

published literature with which the experiments documented as part of this research are 

compared, it is not considered. 

2.5 Effects of Soot Aggregation on Radiative Heat Trans- 

fer 

Studies conducted relatively recently [55], [56] (and references cited within), concerning 

the effect of aggregation on soot containing combustion systems, have been restricted 

to fundamental optical cross sections at visible wavelengths due to their specific interest 

in developing tools for laser diagnostics in particle-laden media. In terms of validating 

the radiation component in compartment fire simulations in this research, it is more 

pertinent to look at the effects of soot aggregation across a broader wavelength spectrum. 

One such study is that of Farias and Koylu [56] who investigated computationally sev- 

eral spectral properties, including phase function, albedo, extinction coefficient and 

emissivity for fractal soot aggregates over UV IR wavelength range of 0.2µm to 6.2µm. 

In their approach they accounted for both multiple scattering and interactions among 

small particles. All radiative properties computed were normalised by the predictions 

based on the same formulation for primary (unaggregated) particles using the spectral 

refractive indices of Chang and Charalampopulous [57]. 

Reference [56] reports that the total computed emissivities of isothermal clouds of soot 

aggregates relative to that of unaggregated primary particles shows no significant influ- 
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ence of temperature in the range 1500-2000K and that the ratio of aggregated to non- 

aggregated soot is always between the range 1.00-1.13. These results therefore signify 

a difference of generally less than 13%, which implies that radiative properties of soot 

aggregates may be treated by considering only the unaggregated primary particles. Sig- 

nificant simplifications in the treatment of radiation modelling under these assumptions, 

is then possible. 

2.6 Spectral Emittance 

In addition to securing important information concerning the contribution of heat trans- 

fer from soot radiation, measurements of emittance may also be used to estimate the 

level of soot concentration in combustion systems. 

Radiative emittance of soot may be calculated approximately by Mie theory, if the soot 

concentration, flame thickness and temperature are known. The main alternatives are 

empirically based on the formulations of Hottel [58]. The discovery by Hottel, that 

the spectral absorption coefficient of soot is inversely proportional to the wavelength 

raised to a power allows simple relationships for the calculation of luminous flame tem- 

peratures from optical pyrometry data. This is achieved upon substitution into Wiens 

displacement formula, which is an approximation to Planck's black-body distribution. 

Svet [59] investigates extensively, the spectral reflectance and transmittance of soot lay- 

ers on transparent substrates at room temperature. From this set of experiments it was 

shown that the reflectance of soot is only 0.006 to 0.05. Conservation of energy de- 

mands that reflectance plus absorption must equal unity, which leads to the reasoning 

that due to negligible reflectance, the emittance of soot must increase with increasing 

deposition thickness. Work conducted at NASA by Liebert and Hibbard as early as 

1970 (see [59] for reference) concludes irrefutably that this is the case for soot layers 

of 0.14-1µm thickness and in the temperature range 300-670 degrees Kelvin, confirm- 

ing that the emittance of the soot layer did not vary with temperature but varied greatly 
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with thickness and wavelength. At all wavelengths at this temperature range, it was 

shown that emittance varies greatly with thickness. Thinner layers display strongly se- 

lective emittance at shorter wavelengths. Increasing the thickness of the layer produces 

a broadening of spectral emittance. 

2.7 Toxicological Effects 

The physiological effects of exposure to toxic smoke and heat in fires consists of varying 

degrees of incapacitation which may also lead to death or permanent injury [60]. These 

incapacitating effects include: 

1. Impaired vision resulting from the optical opacity of smoke and from the painful 

effects of irritant smoke products and heat on the eyes. 

2. Respiratory tract pain and breathing difficulties or even respiratory tract injury 

resulting from the inhalation of irritant smoke which may be very hot. In extreme 

cases, this can lead to collapse within a few minutes from asphyxia due to la- 

ryngeal spasm and/or bronchoconstriction. Lung inflammation may also occur, 

usually after a period of several hours, which can also lead to varying degrees of 

respiratory distress. 

3. Narcosis from the inhalation of asphyxiant gases resulting in confusion and loss 

of consciousness. 

4. Pain to exposed skin and the upper respiratory tract followed by burns, and hyper- 

thermia, due to the effects of heat, thus preventing escape and leading to collapse. 

All of the effects listed above can lead to permanent injury, and all except the first can 

be fatal if the degree of exposure is sufficient. 

Up to a certain level of severity, these hazards cause a partial incapacitation by reducing 

the efficiency and speed of escape. 
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In the majority of fires CO, CO2 and particulates are the dominant products present in 

smoke. CO is considered to be a contributing cause in the 60% of fire deaths based on 

data published by HMSO [13]. Carbon Monoxide binds with red blood cells to form car- 

boxyhaemoglobin (COHb), which interferes with oxygen transport in the body. COHb 

concentrations of 50 to 60% are generally accepted as fatal. CO2 on the other hand, 

is not toxic up to 5% but synergism with CO plays an important part due to its ability 

to stimulate breathing - at 3%, the volume of air breathed per minute is approximately 

doubled and at 5% is tripled [61]. 

Tables 2.1,2.2 and 2.3 provide Health and Safety Executive [62] (HSE) Short Term 

Exposure Limit (STEL), Occupational Exposure Limit (OEL) and World Health Or- 

ganisation [63] (WHO) mean limits for Carbon Monoxide and Carbon Dioxide. These 

limits are used to ascertain levels of tenability in the compartment fire experiments. 

Standard Concentration (ppm) 
HSE OEL 8 hour 30 

HSE OEL 15 minute STEL 200 

Table 2.1: HSE Standards and Guideline Levels for Exposure to Carbon Monoxide 

Standard Concentration (ppm) 
WHO 8 hour mean 9 
WHO 1 hour mean 26 

WHO 30 minute mean 52 
WHO 15 minute mean 85 

Table 2.2: WHO Standards and Guideline Levels for Exposure to Carbon Monoxide 

Standard Concentration (ppm) 
HSE OEL 8 hour 5000 

HSE OEL 15 minute STEL 15000 

Table 2.3: HSE Standards and Guideline Levels for Exposure to Carbon Dioxide 

All of these complexities obviously have a knock-on effect on soot formation modelling. 

Validation of these models forces reliance on adequate and detailed measurements of the 
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mechanisms involved. From a fundamental perspective, one could argue that a represen- 

tative percentage of soot could be physically mapped onto the domain and transported 

passively, thus negating the computing requirement of accompanying reactions that may 

take place. 

2.8 Heat Flux 

The hazard posed by large, fully turbulent hydrocarbon fires may be defined by the his- 

tory of the net heat flux from the fire to the system of interest, primarily associated with 

participating media radiative transport. Fires in this regime are characterised by high 

temperatures. (1000-1500K) as measured for example, by Gritzo and Moya [64] and 

relatively low velocities (5-15m s-1). As a consequence of the soot yield in heptane 

pool fires, in which radiative emission and absorption by the soot particles dominate, it 

is necessary to be able to calculate the temperature and radiative properties of the soot 

independently, without reliance solely on a measured thermocouple temperature. In ad- 

dition, due to the turbulent nature of these fires, it is necessary to include measurements 

that are capable of high temporal resolution. 

Under the weighted sum of gray gases (WSGG) approximation [65], the gases responsi- 

ble for radiation emission and absorption comprise only CO2 and H2O. This assumption 

ignores the presence of CO produced by incomplete combustion and any fuel vapours 

or pyrolysis gases. Further, although this type of homogenous gray model has achieved 

considerable success in spite of its simplifying assumptions, it is also recognised that 

the flame can be significantly non-uniform in temperature and species concentrations. 

This non-uniform radiative feedback to the fuel surface would then cause a non-uniform 

evaporation of the fuel with resulting complex motions set up in both the gas and liq- 

uid phases and consequently affect the flame shape. The importance of non-gray effects 

was presented by Buckius and Tien [66] who concluded that for sooty fuels, such as 

polystyrene, the radiant emission is dominated by the presence of soot and that gas 
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emissions are negligible. However, whilst this may be true for heavily sooting fuels, for 

mildly sooting fuels like heptane, neglecting gas emission may significantly underesti- 

mate the overall heat transfer to the surface. 

It is established that during the combustion process, a thin, fuel-rich core region exists 

just above the fuel surface. In large-scale fires, where radiation is the dominant mech- 

anism for energy feedback, the attenuation of the radiant flux by the core gases can 

significantly affect the mass vaporisation rate. Conversely, Orloff [67] found that the 

radiation blockage due to pyrolysis gases was not important for fires of size relevant to 

this study. It must be noted that Orloff reached this conclusion based on solid PMMA 

fires which has a much greater heat of gasification compared to that of heptane. 

Shinotake et al [68] conducted experiments during which, heptane was burnt in circular 

pans of varying size in the range 0.3-1.0m diameter. The internal radiative heat flux 

to the fuel surface was measured using Gardon-type heat-flux meters and comparisons 

were made with external flux data. Simultaneous light extinction measurements through 

the flame were conducted using a HeNe laser as the light source. They found that as the 

pan size increased and during the initial transient stage of the fire evolution, the internal 

heat-flux showed an initial overshoot followed by a considerable fall which had greater 

importance in the larger fires. When compared to the external heat flux during steady- 

state combustion, the ratio of intensities decreased with increased pool size. Both were 
interpreted as indications of a "radiation blockage" effect. 

2.9 Mass Loss Rate and Fire Spread 

Flame spread over condensed fuels in an oxidizing environment is an important topic 

in fire research. The process of flame spread is dependant on energy, momentum, and 

species transfer in the region surrounding the flame reaction zone. The problem is fur- 

ther complicated by the chemical processes involved. By understanding the significance 

of each of these processes, relevant problems in fire safety such as ignition, flame spread 
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rate, and extinction can be solved. 

The dominant mechanism of flame spread is the heat transfer from the flame's reaction 

zone to the unburnt fuel ahead of the flame. The possible modes of heat transfer are 

conduction through the solid, and convection, conduction and radiation through the gas. 
There are many parameters which determine the dominant mode of heat transfer and 

spread rate. Fuel type, fuel thickness, geometry, orientation with respect to the gravity 

vector, ambient conditions, flame scale, and strength of gravitational field are some 

parameters that have been studied. 

The four fuel orientations that have been frequently studied are vertical downward, ver- 

tical upward, horizontal topside and horizontal underside. For vertical downward and 

horizontal topside fires, the direction of flame propagation is opposite to the direction of 

the buoyancy induced gas flow. The forward heat conduction and radiation are balanced 

by the opposed convective heat transfer, creating a flame that spreads at a constant rate. 

For vertical upward and horizontal underside fires all modes of heat transfer are in the 

same direction, creating a rapidly accelerating flame. 

To better understand this complicated phenomenon of flame spread, it is best to try 

to fully understand its most simple cases. A vertical downward spreading flame over 

a thermally thick vertical slab of polymethylmethacrylate (PMMA) is a case that has 

been frequently studied (for example [69]). A thermally thick fuel is the limiting case 

where the flame characteristics become independent of the fuel thickness. PMMA is 

commonly used because it is a relatively clean burning fuel, behaves well - i. e does not 

char or melt and its physical and chemical properties are well known. 

Another situation that is commonly studied, is the downward flame spread over a ther- 

mally thin sheet of ashless filter paper. A thermally thin fuel is the limiting case where 

the temperature is constant across the thickness of the solid fuel. For this situation the 

flame spread rate is dependant on the thickness of the fuel. 

Experimental, analytical and numerical methods have been used to find the spread rates, 

temperature fields, and other flame properties for these two limiting cases. The domi- 
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nant mode of heat transfer can be deduced from this information. Since each of these 

methods of analysis introduces its own source of error, it is necessary to correlate the 

results as much as possible. 

Several reviews articles have been published in the area of flame spread. Wichman [70] 

for example summarized analytical, experimental and numerical works on opposed flow 

flame spread. 

Fernandez-Pello [71], [72] performed extensive studies on laminar flame spread over 

flat PMMA surfaces. In this work he presented results from thermocouple probing, 

photography, interferometry, radiometer measurements, gas sample chromatography, 

and particle-track photography. He concluded that the dominant mode of heat transfer 

was conduction through the solid. Other conclusions of the study included that the rate 

of flame spread velocity is dependent upon thickness of the sample. Where the sample 

thickness is greater than the thermal layer thickness, the rate of flame spread will be at 

its minimum. 

In 1983 Fernandez-Pello and Hirano [731 summarized recent experiments on flame 

spread over combustible solids. Results from thickness studies on downward and hor- 

izontal flame spread over PMMA showed the transition to the thermally thick limit. 

These results were shown in plots of spread rate and forward heat transfer versus thick- 

ness. Experiments on external effects on spread rate were also presented. Effects of 

surface temperature, external radiant heat flux, opposed flow velocity, and oxygen mass 

fraction, on spread rate were analyzed. Finally it was shown that these results could be 

condensed and represented in non- dimensional form. 

Downward flame spread experiments on thermally thick PMMA slabs were performed 

by Ito and Kashiwagi [74]. Temperature measurements were obtained by counting the 

interference fringes produced by a holographic image. It was concluded that 57% of the 

heat transfer to the unburnt fuel was through the gas phase. This result contradicts the 

previous result by Fernandez-Pello [71]. 

Fernandez-Pello, Ray and Glassman [75] performed experiments to determine the ef- 
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fect of opposed forced flow and ambient oxygen concentration on flame spread rate over 

thick and thin fuels. It was shown that for thick PMMA at high oxygen concentrations, 

flame spread rate increases as the opposed flow velocity is increased. However, for thin 

paper sheets at all oxygen concentrations, and thick PMMA at low oxygen concentra- 

tions, flame spread rate decreases as the opposed flow velocity increased. The results 

were also represented in a non- dimensional plot of flame spread rate versus Damkohler 

number, D. defined by Quintiere [76] as: - 

_ 
v9K Dn 

p9U2 00 
(2.10) 

where vg is the gas-phase kinematic viscosity, u2 oo 
is the velocity of the predominant 

flow, p9 is the gas phase density and ic is the rate of fuel consumption. 

Parker [77] investigated downward flame spread over thin cellulose index cards. A sur- 

face temperature profile was obtained using an embedded thermocouple. An artificial 

flame spread burner was built to emulate a cellulose downward spreading flame. The ex- 

perimentalists used natural gas to create a stationary flame with the same characteristics 

as a downward spreading flame. From this model it was concluded that the release of py- 

rolysis gases occurs underneath the flame rather than ahead of it. It was also concluded 

that the dominant mode of heat transfer to the unburnt fuel was conduction through the 

gas phase. 

Hirano et al. [78] also measured temperature and velocity profiles over thin paper at 

various positions. Particle tracing methods and fine wire thermocouples were used to 

collect data. It was concluded that 80% of the heat transfer to the unburnt fuel was in 

the gas phase within 1 mm of the flame front. 



Chapter 3 

Compartment Fire Experiments 

3.1 Introduction 

The majority of room fire experiments, for example the commonly cited eponymous 

Steckler room [6], employ a simple gas burner as the heat source, in which the fuel flow- 

rate and thus heat release is pre-determined and therefore inter-dependencies on room 

conditions such as the level of ventilation are not available. In addition, weakly sooting 

fuels such as methane have been chosen, with the result of artificially simplifying the 

complex interactions introduced by the production of soot and the associated radiative 

loss, which may significantly affect the flow-fields which are customarily measured in 

room fire scenarios, such as in door openings, and upon which simple empirical models 

commonly used in fire hazard assessment are based. 

Furthermore, room fire experiments in which alternative, more sooting fuels have been 

burnt, have either totally excluded the measurement of soot, or it has been merely repre- 

sented by performing single-point light intensity measurements across the exhaust duct, 

at which point the products of combustion are assumed to be well mixed. In the experi- 

ments reported here, the design and use of a novel fully traversable water-cooled probe, 

which houses a 670 nm diode-laser and photo-diode detector, enabling light extinction 

measurements to be made inside the compartment, provides us with a spatial resolution 

42 
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of soot concentration not previously achieved, a consideration of obvious importance 

when discerning the level of obscuration in a compartment fire scenario. Other impor- 

tant measurements carried out, which have been neglected in previous work, include 

heat-loss to the surroundings from the compartment - important when considering any 
boundary conditions imposed for numerical prediction - along with measurements made 

close to the burner source. 

In excess of 100 experiments have been performed as part of this research. Therefore, 

due to the vast quantity of data which has been amassed, reference should also be made 

to a separate report [79] designed to accompany this dissertation, which contains full 

data-sets from each experiment. 

Results from experimental measurements made in the compartment are compared with 

their numerical prediction in Chapter 6. 

3.2 Experimental Design 

3.2.1 Fuel Selection 

The choice of liquid heptane as the fuel in these experiments, is seen as a suitable 

alternative to gaseous fuel, based on its relatively well defined chemistry for which 

several empirically optimised reaction mechanisms are available (for example [80] and 
[81]) and for its suitable sooting propensity. The use of a liquid fuel also enables a means 

of establishing the important interactions specific to compartment fires which govern the 

mass loss rate of fuel, such as radiation from the hot smoky layer and confining walls. 

3.2.2 Room Geometry 

The American Standards for Testing and Measurement (ASTM) have established a stan- 
dard room size which is adopted by many experimentalists, for example [82]. Figure 
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3.1 shows a schematic of the basic experimental geometry. The fire compartment used 

in each of the experiments is an exact half-scale of the ASTM room, having specific 

dimensions of 1.2m in width and height and 1.8m in depth. Figure 3.2 is a photograph 

taken of the actual experimental room. The walls comprise insulating Supalux -a cal- 

cium silicate fibrous board of 12 mm thickness with a thermal conductivity rating of 

0.17 W m-1 K-1. A number of thermal and physical properties of Supalux are listed 

in table 3.1. Additional insulation is provided by an inner lining of Durablanket -a 
light-weight flexible blanket of 25 mm thickness, made from ceramic fibres of Si02 

and A1203, which is secured to the inner surface of the walls by silica based adhesive. 

Only one doorway exists in one of the shorter walls of the room. The ventilation rate 

can be varied by reducing the door-width from a maximum of 0.36 m, which is repre- 

sentative of a fully opened 'standard' door. The variability of door-width enables the 

study of ventilation/vitiation effects on the total amount of smoke produced. The possi- 
bility of changes in smoke particulate morphological and chemical characteristics under 

different conditions of ventilation is discussed in the literature review. 

thermal conductivity (W/m/K) 0.17 
density (kg/m') 880 
specific heat capacity (J/kg/K) 1000 
thermal interia (W/m /K. s 386.78 
thermal diffusivity (m /s) 1.93E-07 

Table 3.1: Thermal and Physical Properties of Supalux 

3.2.3 Parameter Investigations and Burner Design 

There were two main criteria considered when designing the burner. The first was to 

permit both transient and steady-state experiments. Initial scoping studies in which a 

simple natural gas burner as the source of heat release, showed that the thermal equi- 

librium of the compartment was such that an experimental duration in excess of eight 

minutes was needed in order to achieve steady-state. Given the difficulty in validating a 
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transient simulation of the compartment, the majority of experiments were conducted to 

steady-state conditions using a constant supply of fuel to a burner, whose diameter was 

of the size to minimise the risk of flashover in the compartment. 

For each experiment, a single pool tray of either 0.17 m or 0.23 m diameter was situated 

at the centre of the compartment. The smallest and simpler of the two burners engaged 

two fuel inlet ports at equidistant radial positions and an additional port to which was 

attached an external fuel level indicator situated remote from the fire source. Both 

transient and steady-state experiments were achieved either by burning fixed amounts 

of heptane or utilising a constant supply of fuel fed directly from a 250 litre capacity 

pressure vessel operating at 8 p. s. i via a Fischer Porter 
4 

inch tri-flat flow meter with a 

stainless steel float. 

The second criteria attached to the pan design was based on the fact that very minimal 

(if any) near-field measurements are carried out in typical room fire experiments (for ex- 

ample, ASTM guide to room fire experiments [83]). Because of the uncertainty apropos 

CFD modelling caused by the neglect of such measurements, conditions at the burner 

source were investigated in more detail in these series of experiments than is typical. 

This led to a more sophisticated design for the larger pan (see figure 3.3) which houses 

a number of 'sight-bosses' located at its base. These 'sight-bosses' act as locators for 

Gardon Type total heat flux meters [84] and a right-angled sight-tube containing a 45° 

mirror which reflects radiative emission to the fuel surface to a grating emission spec- 

trometer situated beneath the burner. Furthermore, the pan was attached to a separate 

fully rotatable rig base in order to vary the view factor of the instruments. In summary 

there were three phases to these experiments. 

1. Initial classification of the stages in fire growth relevant to the burner size and 

level of room ventilation as a function of thermal inertia of the compartment. 

2. Parameter investigation based on relevance to the already determined fire growth 

stages. 
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3. Main data gathering experiments using the determined parameters. 

The burner was piloted in each experiment until ignition by a simple natural gas torch 

operated manually. 

Figures 3.4 a, b, c and d clearly illustrate the means of ignition in addition to capturing 

the progress of flame spread as highlighted by the blue reaction zone, across the entire 

surface of the pool. The pictures were taken with a digital hand-held video camera at a 

frame speed circa 25 frames per second. 

3.2.4 Experimental Conditions 

Table 3.2 below indicates the number of different conditions which were imposed on 

the compartment in order to realise the robustness of the CFD model when applied to a 

number possible scenarios met in a typical compartment fire. 

Burner Diameter (m) Doorwidth (m) Steady-state? 
0.23 0.36 x 
0.17 0.36 
0.17 0.25 
0.17 0.15 x 
Table 3.2: Experimental Conditions 

As mentioned previously, varying the burner size and doorwidth enabled both transient 

and steady-state conditions to be achieved. From initial experiments it was shown that 

the thermal inertia of the compartment is such that a quasi steady-state is achievable for 

the full doorwidth case after around 8 minutes from ignition using the smaller diame- 

ter pan. This time-scale closely reflects the findings from the initial set of experiments 
burning natural gas. This time to steady-state correspondingly increases with the reduc- 

tion in ventilation in excess of 15 minutes with the 0.25 m door. Due to safety con- 

siderations, only a limited number of experiments were conducted for the smallest 0.15 

m doorwidth. In addition, the duration of each experiment was deliberately shortened 
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such that a steady-state was never achieved. As an illustration of the high temperatures 

achieved in this configuration, figure 3.5 shows a photograph taken of radiant soot seen 

exiting the doorway of the compartment shortly after ignition. 

3.3 Measurable Parameters 

3.3.1 Heat Release Rate 

The Heat Release Rate (HRR) was calculated based on actual fuel mass loss measure- 

ments as determined from rotameter readings, whilst ensuring the fuel level in in the 

pan remained constant. Mass air flow rates into and out of the compartment are also 

calculated base on the doorway temperature and velocity profile. Table 6.4 shows the 

heat release rates achieved for each set of experiments listed in table 3.2 along with 

predicted values and are presented for the 0.23m burner and 0.17m burner with all door- 

width configurations; the largest error is for the 0.23m diameter burner due to uncer- 

tainty introduced by measurements made in a transient experiment. 

3.3.2 Gas Sampling 

Many molecules will absorb infrared radiation and the wavelengths at which this occurs 
depends predominantly on the nature and disposition of atoms and functional groups 

within the molecule. Absorption of infrared radiation results in changes in the vibra- 

tional energy of molecules and this gives rise to an absorption spectrum which is char- 

acteristic of a compound. For a molecule to be infrared-active, there must be a change 
in its dipole moment during the course of the vibration. If one of the absorption bands 

for a particular compound is relatively removed in wavelength from bands of other com- 

pounds it is possible to use this particular band to quantify the compound in mixtures. 
Non-dispersive infrared analysers are designed to produce infrared radiation over a rel- 
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atively narrow band of wavelengths which are selected to provide maximum absorption 

of the wanted compound with minimum absorption of the unwanted compounds. 

The basic components of the analyser are an infrared radiation source, a cell containing 

the test specimen and a detector at the opposite end of the cell from the source. By vary- 
ing the path length, gas concentrations as low as a few parts per million are measured. 

These non-dispersive infrared analysers are commonly used for the quantification of 

oxides of carbon due to their high degree of selectivity towards these gases and their 

ability to give continuous measurements. A substance which exhibits paramagnetism is 

attracted into a magnetic field. Oxygen and Nitric Oxide are such compounds. All other 

common gases exhibit diamagnetism and as such are repelled by a magnetic field. In 

a paramagnetic substance, the individual atoms, ions or molecules possess a permanent 

magnetic dipole moment which lines up parallel to an external magnetic field giving a 

net contribution to the magnetic susceptibility. Paramagnetic analysers generally consist 

of a diamagnetic material suspended in a magnetic field to produce a turning moment. 

When a paramagnetic substance is placed between the magnetic field and the diamag- 

netic material, the influence of the field is reduced and the turning moment diminishes. 

This is measured as a rotation of the diamagnetic body and converted to a signal repre- 

sentative of the concentration of paramagnetic material present. Paramagnetic methods 

are commonly used for measuring oxygen due to its marked property of paramagnetism. 

Oxygen levels were measured in an on-line commercially produced paramagnetic mon- 
itor (Servomex Portable Oxygen Analyser, Model 572). The analyser has a measuring 

range of 0-100% with an accuracy of 0.3% oxygen. The oxygen concentration is de- 

tected by means of a dumb-bell suspended by a torsion fibre in a non-linear magnetic 

field. The dumb-bell consists of two hollow spheres filled with a diamagnetic gas, in 

this case Nitrogen, and the paramagnetic Oxygen in the surrounding test atmosphere 

causes it to deflect from its rest position. Around the dumb-bell is a coil of wire through 

which a current is passed to restore it to its original position. The restoring current is 

proportional to the concentration of Oxygen in the test atmosphere. 
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Carbon Dioxide was continuously monitored by a double beam Luft-type non-dispersive 

infrared gas analyser which is manufactured to a specification suitable for fire atmo- 

spheres by the Analytical Development Company. For C02, concentration ranges of 

0-0.2%, 0-2% and 0-20% were possible. However, the concentration of CO2 present in 

the compartment was such that it necessitated the use of the larger 0-20% range. The 

analyser consists of an infrared radiation source split into two identical beams, one of 

which passes through a sample tube, and the other through a reference tube filled with a 

non-infrared-absorbing gas (in this case Nitrogen). The detector, filled with a pure sam- 

ple of the gas being analysed, is divided into two cells by a pressure-sensitive diaphragm 

such that the 'reference' and 'sample' radiation beams are incident on either side. When 

the gas to be measured enters the analyser, it passes through the sample tube and ab- 

sorbs radiation in proportion to the concentration present, thus decreasing the level of 

energy reaching the sample side of the detector. The energy received by the detector is 

absorbed and the pure gas on each side of the diaphragm is heated, the sample side to 

a lesser degree than the reference side. The greater expansion of the gas in the refer- 

ence side of the detector causes a movement of the diaphragm, which is proportional to 

the concentration of gas in the sample tube. The principle of operation of the Carbon 

Monoxide gas analyser (ADC7000) follows that for Carbon Dioxide. During operation, 

the signal is periodically compared with reference gas (usually at zero) and automati- 

cally adjusted to achieve calibration. The standard resolution of the instrument is 0.1% 

over the gas range 0-10%. Manufacturers advise that reading interference is noticeable 

in the presence of 20mb of water vapour and 100mb of Carbon Dioxide. The analysers 

were calibrated using a gas of known composition; in this case 0.40% CO, 0.42 CO2 

and the balance made up from N2. A two point calibration was carried out using this 

calibration gas and N2 to establish a zero reading. For the Oxygen analyser, ambient air 

was used for the second point of 20.9%. An output signal voltage, corresponding to the 

concentration of the individual species was continuously monitored with the data acqui- 

sition system. Because only a limited pressure differential exists between the sampling 

probe and the compartment interior, the combustion product was continuously sampled 
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at a rate of 1.0 L min-' by means of a simple vacuum pump. 

Due to the inherent sooting propensity of heptane and the possibility of erroneous con- 

centration levels introduced by the presence of water vapour, a series of moisture and 

particulate traps comprising Calcium Chloride and glass wool were placed in series with 

the gas analysers. There are two main concerns regarding gas sampling in a soot-laden 

environment. The first is physical in terms of restricting the sample lines and the sec- 

ond is chemical arising from the risk of soot oxidation which artificially elevates the 

apparent level of CO. 

The signal voltage output from the gas analysers represents the concentration of CO, 

CO2 and 02 and provides a continuous analogue signal output the data-logger. 

Four cylindrical sample probes of simple design were inserted at around 300mm into 

the compartment at various heights half-way along one of the compartment side-walls. 

Care was taken to ensure the probe orifice was outside the flame boundary, thus better 

representing the main compartment environment. Reactions ideally should be quenched 

at the probe tip. The fall in pressure across the mouth of the probe will reduce the 

temperature and terminate most reactions. Additional cooling of the tip by pumping 

water around it would enhance this effect. However, given the levels of soot present in 

the compartment it was envisaged (in the light of previous experiments) that the benefit 

of this would be largely outweighed by the risk of soot deposition by thermophoresis 

[85]. 

The three separate gas analysers were aligned in series. The sample delay time had al- 

ready been investigated during calibration using a standard gas sample bag and external 

pump which had a specified pumping rate of 1.0 L min-'. The sample delay for the 

last analyser in series was around 50s and so the measurement period over which the 

concentration was monitored at each height was safely in excess of this at 2 minutes at 

each position. 

An area of some difficulty was the sample handling after the probe. The arrangement 

of components was changed on several occasions. The sample tube length was found 
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to have a significant effect upon species concentration initially, particularly for CO due 

to its relatively low production in the compartment. The sample length was shortened 

until no significant difference in apparent concentration was noticeable and as an added 

precaution, the CO analyser was placed first in series with the sample probe. The gas 

sample was filtered, dried and passed through meters in the order CO, CO2 and 02. 

The sample filters were out of necessity changed regularly, particularly in the case of 
IMS due to the high production of water vapour. After each filter change the analysers 

were re-calibrated for consistency with previous runs. Meter exhausts were discharged 

into a neighbouring corridor adjacent to the laboratory. Personal CO alarms were also 

used in the proximity of this experiment at all times. 

Emission rates for CO2 and CO and rates of consumption of 02, are calculated for each 
experiment based on non-linear regression using Newton-Raphson iterative techniques. 

Typical examples for the full doorwidth configuration using the smaller 0.17m diameter 

burner may be seen in figures 3.6,3.7 and 3.8. 

3.3.3 Temperature Measurement 

The majority of compartment fire experiments utilise thermocouple probing techniques 

to map the internal temperature distribution. In high temperature environments, Plat- 

inum/Rhodium thermocouples are commonly found. For the experiments in this study 
it is sufficient to use lower melting point type K Nickel/Chromium thermocouples. 

The thermocouple wire was 200 microns in diameter and housed in a protective fibre- 

glass sheath. All thermocouples used in the experiments were manufactured in-house. 
A typical junction bead diameter of 500 microns was established by spark discharge 

in an inert environment to mitigate the risk of oxidation. Metal-sheathed thermocou- 

pie compensating cable, housing wires comprising of the same physical properties as 

those of the thermocouple, are attached to the free ends of the thermocouple for direct 

connection to the individual data-logger analogue input channels. 
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Three thermocouple stacks (see figure 3.9 for visual location of thermocouple stacks) 

were situated in the compartment interior at windward and leeward positions and to one 

side of the burner. These thermocouple stacks are comprised of a simple stainless steel 

tube of 1.5 m length and 10 mm diameter, in which a series of 5 mm holes were drilled 

at 150 mm intervals. Individual thermocouple wires were fed into the tube and forced 

through a single hole thus exposing the bead to the compartment interior. 

Because of the formation of the hot smoky layer in the compartment ceiling, during the 

course of an experiment it is observed that a substantial amount of soot is deposited onto 

the thermocouple bead when located in this region - therefore altering both its emissivity 

and bead size. This phenomenon was mitigated as much as possible by the removal 

of any soot deposition from those thermocouples that were in accessible locations in 

between experiments, by systematic insertion of the bead into the oxidising region of the 

pilot flame. The effect of this has been investigated by NIST [86] in terms of effective 

bead size and emissivity and the effect on the apparent temperature of the thermocouple. 

Corrections to the apparent thermocouple temperature may be calculated from an energy 

balance between radiative and convective heat transfer to and from the thermocouple, 

the maximum expected error at a mean peak temperature measured in the compartment 

is around 40K based on a nominal bead size of 500 microns. This represents a worst case 

scenario because local gas temperatures are not known and therefore the assumption is 

made that the bead is radiating to ambient conditions. 

Because one of the main objectives to this research is to validate SOFIE against exper- 

imental measurements, it is important that corrected temperatures should be used when 

making a comparison. 

Digital data acquisition was used to determine the mean temperatures of the thermo- 

couple bead from the thermal emf at a sample rate of 40 Hz. However, the rate was 

ultimately instrumentally determined based on the number of channels in simultaneous 

operation. Analogue/digital conversion was through a 19 bit system (S13535 Scorpio 

Datalogger) supplied by Schlumberger Instruments. Zero drift of the thermocouple was 
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accounted for by cold junction compensating on the signal conditioning board, prior to 

analogueldigital conversion. Signal accuracy in the compartment temperature range is 

between 0.01 and 0.1°C with a total system accuracy of between 0.5 and 0.55°C after 

cold junction compensation. The data was post processed for the radiation correction. 

The nominal bead size of the thermocouples is such that taking into account the nominal 

time constant is rather superficial in its importance. In addition, due to the thermocouple 

positions in the compartment being largely outside the flame region, where the thermo- 

couple/flame physical interaction was impossible to discern, account of the effect of the 

thermocouple time constant would be extremely difficult. However, the time response 

of the flame has no bearing on the mean value and would only affect the mean variance 

of the thermocouple signal. 

Figures 3.10 and 3.11 present experimental doorway temperature profiles for each door- 

width. The average peak temperatures at steady-state are used to compare with SOFIE 

in Chapter 6. 

The thermocouples were attached to bi-directional velocity probes as described in sec- 

tion 3.3.5. 

3.3.4 Soot Measurement 

The fundamental objective of this work is the investigation of the spatial and temporal 

distribution of soot within the compartment. Due to the complex process of soot forma- 

tion and its strong temperature dependence, the parameters thought to be important in 

its formation were physically mapped in the same temporal environment. 

Optical techniques to characterize smoke particulates are especially attractive since they 

provide continuous measurements without disturbing the environment. Of the major- 

ity of compartment fire experiments reported in the literature, those that consider soot 

concentration usually make measurements across the exhaust duct under the assump- 

tion that the hot combustion products are well mixed. The advantage of this method 
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is that is utilises well established techniques to measure the extinction of light though 

the combustion products. Moreover, it is outside the region of elevated temperature and 

therefore no account need to be taken of its potential to physically influence the instru- 

ment operation. The main disadvantage, of course, is that mapping of the compartment 

is unavailable with results only pertinent to a mean production rate of smoke. Con- 

centrations within the compartment can only then be inferred using other convenient 

markers such as temperature whilst prescribing the initial soot concentration from the 

determined mean under the assumption of its passive transportation. 

In developing novel instrumentation to enable such measurement of internal soot load- 

ing using conventional light extinction techniques, several factors were considered im- 

portant. These are: - 

1. To maintain the temperature of the instrumentation below a given threshold to be 

determined. 

2. To provide a suitable measurement pathlength as a compromise between adequate 

resolution against signal to noise ratio. 

3. To ensure that no deposition occurs on the exposed surfaces of the instruments 

namely: - 

(a) laser lens 

(b) photo-diode 

4. To ensure that interference from radiation from the flame and other external sources 

is minimised 

5. To ensure that the `beam steering' effect from local density variations is min- 

imised or accounted for. 

Suitable housing of the instrumentation resulted in the development of a novel 'soot 

probe' - the physical dimension of which was largely dictated by the confines of the 



CHAPTER 3. COMPARTMENT FIRE EXPERIMENTS 55 

compartment and its disturbance on the local flow environment. Simulations using 

SOFIE were carried out in order to discern this level of disturbance which was found to 

be negligible. 

The resultant size of the 'soot probe' necessitated the use of a small 0.9 mW diode 

laser emitting at a wavelength of 670 nm as the source of light, accompanied by a 

large surface area (100mm2) Gallium Arsenide photo-diode. Figure 3.12 shows the 

final design of the probe used throughout each experiment. Water cooling of the soot 

probe was effected by a double spiral enabling water to flow throughout each cylindrical 

housing at a flow-rate of 2.5 L min-'. 

The pathlength necessary to provide a level of light extinction within a suitable range 

was provided from preliminary experiments, in which the instruments were mounted 

on a simple platform and submerged into a stratified layer in a small rectangular com- 

partment. The layer was formed from the controlled release of artificial smoke into 

the compartment, pre-heated to provide the necessary level of buoyancy to maintain the 

layer. 

Artificial smoke was used to discount influences of the high temperature environment 

and comprised a condensed mineral oil, refined with the majority of PAHs removed. 

The mineral oil is supplied by Concept Oil Ltd as standard and manufactured by Shell 

Ondina. The particles generated were of a known diameter (200 nm). 

A pathlength of 150 mm was determined to be suitable from these experiments, which 

equated to around 40% absorption. Following on from the other conditions attached 

to the design of the probe, it was necessary to purge the probe in order to prevent soot 

deposition on the optical surfaces. During the preliminary experiments with artificial 

smoke, a purge rate of 0.2-0.3 ms-lwas considered suitable, determined from its effect 

on the apparent level of smoke concentration. The purge level was reduced steadily 

until there was no discernible difference in the level of extinction whilst still being 

high enough to ensure no smoke ever reached the important exposed surfaces of the 

instruments. 
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Due to safety considerations, all compartment fire experiments were carried out in a 

well lit laboratory. Potential radiation sources from the laboratory lights and more im- 

portantly the flame were mitigated by the inclusion of a narrow band-pass filter, centred 

at 670 nm and positioned directly in front of the photo-diode detector. Because flame- 

emitted radiation at the same wavelength as that emitted by the diode laser would still 

reach the detector, the contribution to the background intensity by the flame was mea- 

sured with the signal photodiode whilst the laser was off. No effect of flame radiation 

on the photo-diode was observed with the 'soot probe' positioned at 500 mm inside the 

compartment. 

The effect of beam steering on the soot measurements was also an important considera- 

tion. This `beam steering' phenomenon is the result of turbulent and thermal gradients 

in the combustion medium which cause gradients in the local refractive index. Whilst 

ensuring the orifice in the probe was such that any slight deviation in the laser beam 

would still be captured by the photo-diode it was of equal importance to be confident 

in the uniformity of the detector surfaces - both of the photo-diode and band-pass fil- 

ter. Any distortion or deformity of these surfaces would obviously result in an apparent 

variation in soot concentration. 

Elevated temperatures would directly interfere with measurements of light extinction 

due to a typical emission wavelength change of 0.3 nm to 0.4 nm per degree centigrade, 

along with a decrease in power output for a fixed driving current. Clearly if a stable 

wavelength output is required, the temperature of the diode laser must be maintained at 

a constant level. 

The local gas temperature in the compartment where the 'soot probe' was located at any 

one time was in excess of 300 °C for a period not less than 6 minutes. Cooling of the 

soot probe to a temperature below that of the threshold value is therefore critical. Two 

thermocouples were sited inside the probe alongside the diode laser and photo-diode. 

These thermocouples were carefully monitored during the course of the experiment, 

which on average indicated an environment of 18.0°C for the diode laser and 17.4°C for 
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the photo-diode. 

An additional check for temperature effects on the operation of the soot probe was 

considered during the combustion of methanol in which no visible soot was emitted. 

The signal remained unattenuated despite the probe being exposed to temperatures in 

excess of 150 °C although it is recognised that the temperatures experienced by the soot 

probe in a methanol fire were much lower than those of heptane. 

One significant advantage with this current probe design is its ability to be fully tra- 

versed during the course of the experiment. As well as providing a resolution not pre- 

viously achieved within the context of compartment fires, this also means that errors 

introduced by experimental repetition in which conditions may have changed slightly 

can be discounted. Consequently, the number of experiments required for any sensitivity 

analysis is then immediately reduced. Given that over 100 experiments were performed, 

any factors which could reduce the experimental time-scale are of significant benefit. 

A tri-axial traverse of the probe enabled both translational and rotational movements to 

be carried out during the experiments. Rotation of the probe was however limited to less 

that 30° from horizontal due to its effect on the inability of the water at bore pressure 

to adequately maintain the same level of water cooling at greater angles. This is due to 

the cooling water inlets being separately located at the outer ends of both the laser and 

photo-diode housing. Positional accuracy using this system traverse was 0.1 mm. 

In order to investigate the transient formation of the hot smoke layer, single point mea- 

surements were made at a location equivalent to head-height in a full scale room. For 

the experiments which achieved steady-state, the soot probe was traversed to provide 

spatial distribution profiles of soot. Due to the time taken to reach steady-state for the 

0.25m doorwidth configuration, single traverses only of the soot probe were possible 

during the course of a single experiment, whereas multiple traverses were possible for 

the 0.36m doorwidth. 

Thermophoretic sampling of soot was undertaken in the plume exiting the doorway 

for investigation under a Scanning Electron Microscope. The results of the electron 
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microscopy work described here was not intended to be comprehensive, but only to 

provide cursory examination of the size of primary particles and indicate the level of 

polydispersivity. Figure 3.13 and 3.14 show a selection of soot images. Individual 

particles may be seen in the agglomerated structures. 

Figures 3.15 to 3.16 present single-point soot volume fraction at the equivalent of head 

height in a standard room. Also plotted is the corresponding distance for general visibil- 

ity in smoke according to equation 2.8. Due to RF interference on measurements made 

during the operation of the extract hood, results for the 0.15m doorwidth are shown over 

a period of only 3 minutes at the peak of the experiment when the extract was off. 

Figure 3.17 presents multiple point measurements made in the 0.36m doorwidth config- 

uration, where the probe was traversed into the compartment at various heights. 

3.3.5 Mass Air Flow Measurement 

One device that is suitable for the measure of low-velocity buoyancy-driven flows as- 

sociated with gaseous products of combustion is a bi-directional probe, developed by 

McCaffrey and Heskestad [87]. The rationale behind this choice of instrument is that 

it is robust, easily calibrated and does not require careful alignment - important con- 

siderations under harsh environmental conditions such as those experienced in a typical 

room fire. Figure 3.18 shows the actual arrangement of the velocity probes, which are 

positioned vertically at several heights. For greater accuracy, the vertical location of 

these probes varied slightly according to the anticipated neutral layer height, but taking 

the 0.23 m burner as an example, these heights were typically around 9.7 cm, 18.7 cm, 

32.5 cm, 42.5 cm, 50.0 cm, 61.5 cm, 71.5 cm, 82.0 cm and 94.0 cm assuming the floor 

to be set at 0.0 cm. All measurements were taken at the mid-line of the enclosure door. 

Despite its suitability and inherent simplicity of use, the bi-directional probe does present 

difficulties. The paper by McCaffrey and Heskestad recommend that the probes should 

be installed horizontally with the transducers located at the same height as the probe, in 
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order to mitigate buoyancy effects in the lead tubes. This was not considered practical 

for these experiments. 

The bi-directional probe is well described by McCaffrey and Heskestad and so will not 

be described in detail here. The probe and dimension used in the room fire experiments 

are shown schematically in figure 3.19. 

The probe's steel tubes are used to carry the pressure signal from the head of the probe 

and also allow mounting on a vertical column. The inlets of each probe were connected 

via lengths of twinned silicone rubber tubing to an electronic micromanometer. The 

micromanometer gives an analogue voltage output which is calibrated against a null- 

reading tilting U-tube micromanometer. The output signal is then fed directly to the 

data-logger. 

A ten point calibration for the micromanometer was carried out against the reference U- 

tube micromanometer, with a range of 0 to 30 mm wg. The calibration was performed 

in the ranges 0 to 10 mm wg, 0 to 1 mm wg and 0 to 0.1 mm wg assuming a linear rela- 

tionship between the applied (absolute) pressure against the electronic micromanometer 

reading. 

Calibration of the velocity probes was performed using a wind tunnel and suitable orifice 

plate to produce a flow velocity of similar range to that expected in the compartment 

doorway. The pressure difference across the wind tunnel orifice plate was measured 

using a calibrated electronic micromanometer. The air temperature was measured using 

a mercury in glass thermometer, at the beginning of each probe's calibration. This was 

repeated for all eight probes that were used in the experiments. 

Figures 3.20 to 3.21 show doorway velocity profiles resulting from all doorwidth exper- 

iments using using the velocity probe arrangement described. 

Repeatability of experiments is generally excellent. Figure 3.22 illustrates this with av- 

erage peak doorway temperatures achieved in three successive experiments for identical 

burner and doorwidth configurations. 
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From an observational point of view, with decreasing door-width there appeared an 

increasing tendency for the flame to 'blow-off' the burner. In some instances, the flame 

was seen to detach itself completely. A good illustration of this may be seen in figure 

3.23 for the 0.15m door width case. In addition, from freezing frames taken sequentially 

from digital recording, 'flame-pulsing' was observed to be associated with local vortex 
formation, similar to the influence of cross-flow on a turbulent jet. These vortex rings 

were seen to progress upwards from the base of the flame to its tip. These vortices can 
be clearly seen in figure 3.24. 

3.3.6 Thermal Stratification and Interface Height 

The height of the neutral layer is determined from the velocity profile in the doorway. 

Accurate measurement and prediction of the neutral plane is of paramount importance 

for the determination of visibility in smoke. Table 3.3 details the height of the neutral 

plane for each experimental configuration. The values in the table refer to steady-state 

averages. It can be clearly seen that the layer height and neutral plane lowers with a 

reduction in doorwidth. Oscillatory motion setup at the neutral plane interface is evident 

from the results of the nearest velocity probe (see the profile pertaining to a height of 46 

cm in figure 3.20(a) for example). 

Doorwidth (m) Neutral Layer Height (m) 
0.36 0.50 
0.25 0.46 
0.15 < 0.39 

Table 3.3: Neutral layer height as determined from doorway velocity profile 

The picture in figure 3.25 illustrates the influence of the compartment on the shape of 

the hot layer. The picture is taken from the centre of the compartment floor where 

previously the burner had presided. The zone-model assumption that the upper and 

lower layers are clearly defined with a consistent layer depth, does not appear to be so 

readily applicable at each corner of the compartment, due to the visibly concave nature 
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of the layer. This phenomenon is reproduced during the course of the compartment fire 

simulations in chapter 6. 

3.3.7 Total Heat Flux 

Two types of total heat flux gauges are commercially available. Figure 3.26 shows a 

schematic of the Gardon gauge type which is used in this research. Radial heat flow 

in a metallic foil, develops a temperature difference between the foil's centre - the hot 

junction, and the other peripheral junction at the outer water-cooled jacket. An assump- 

tion is made where, as a result of the calibration curves being remarkably linear, the 

electrical signal output is independent of body temperature and is simply proportional 

to the imposed heat flux. The calibration of the heat flux gauges were carried out under 

varying water-cooling temperatures and the results from this can be seen in figure 3.27. 

An in-line heater provided the elevated water temperature required to test the sensitivity 

of the cooling water to the apparent heat flux. The heater relies somewhat crudely on 

the correct water through-flow in order to control the temperature. It was found that 

very fine regulation using a needle valve, was required to govern the heater temperature 

by the regulated flow of water at the supply inlet. Further difficulty with regulating the 

correct water flow for the in-line heater was apparent in the open-pool fire experiments, 

where an elevated temperature was required in order to heat the gauges above that of the 

boiling point of water at standard pressure. In order to increase the pressure to achieve 

temperatures of around 130°C, the regulator valve was situated at the outlet end. Care 

was needed due to the enhanced time-lag between fine flow adjustment and supply to 

the heater. 

The desired black-body furnace temperature used to calibrate the heat flux gauges, is 

manually set by the user. An automatic control switch then maintains the furnace at 

this temperature. The control on-off switch relies on the measured temperature being 

outside of a given range, therefore it is difficult to ensure that the black-body furnace is 

at steady-state throughout. The inability to control this precisely is apparent in figure 
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3.27, which highlights the error involved when assuming that the furnace is at a steady- 

state throughout the calibration. However, the absolute accuracy is still within 2°C and 

given the difficulties associated with the in-line heater that have already been mentioned, 

it was deemed that the effect of this would be negligible. In fact the raising of the 

furnace temperature would only serve to compensate for the increase in water cooling 

temperature which is also clearly demonstrated in the figure. 

At the worst conditions to test the robustness of this assumption, where the cooling wa- 

ter was at an elevated temperature of around 130 °C, this represented a 5% reduction in 

output signal, when exposed to a radiant source. Sensitivity of measurements using Gar- 

don gauges below 15 kW M-2 were conducted by Robertson and Ohlemiller [88] who 

in addition to cautioning against assuming signal linearity with different cooling water 

temperatures, also introduced the concept that convective components may counteract 

the radiative heat flux due to cooling by ambient air. This is of particular concern in the 

context of compartment fires, where under ventilation controlled conditions, a strong 

element of convective heat transfer exists. A further error is the exchange of heat with 

its surroundings by both radiation and buoyant convection, which occurs if its surface 

temperature differs from that of the surroundings. 

Figures 3.28 to 3.29 show the level of total heat flux experienced by two heat flux 

transducers for each doorwidth. One gauge was positioned high in a compartment side- 

wall so that it would be immersed in the hot layer; the other was located on the floor of 

the compartment to one side of the burner. 

Two total heat flux transducers were also placed in the locating bosses housed in the 

base of the 0.23 m pan. To ensure consistency with the smaller burner, heat flux gauges 

were also located in the floor - outside the flaming region and in one of the side walls of 

the compartment, in order that it may be full engulfed by the hot smoky layer. 

Ideally, the position of the heat flux gauges in the burner, would be flush with the surface 

of the fuel to ensure identical view factors. However, this is impossible to achieve where 

significant boiling of the fuel occurs, unless the gauges are aspirated to prevent liquid 
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from splashing on to the important upper surface. Despite setting the gauges to around 

5mm higher than the fuel level in the burner, significant concerns still arose from the 

layer of condensed fuel vapour that formed on the upper surfaces of the mounted gauges. 

This generally remained throughout the experiments and either finally evaporated close 

to flame extinction or more commonly ignited to produce small independent flames. 

Although the layer of heptane is considered transparent to radiation is was necessary to 

discount that the apparent heat flux was merely a function of the thermal properties of 

the liquid and the evaporative cooling that would occur. 

Due to the constraints in access to the compartment, more detailed investigations of the 

behaviour of the heat flux gauges were restricted to separate sets of experiments in an 

open pool-fire configuration and are further explained in the next chapter. 

3.3.8 Compartment Heat Loss 

One common and major criticism of compartment fire experiments which are publi- 

cally well documented, is their neglect of heat loss from the enclosure boundaries. The 

assumption is generally made that where the compartment walls comprise of super- 

insulated materials, the enclosure may be considered adiabatic and as thus does not 

represent a significant threat to accuracy in the global context. However, the formation 

of soot is seen to be dependent on a fairly narrow range of conditions (see figures 5.2 to 

5.13), where temperature plays an important part. The importance of correct specifica- 

tion of wall boundary conditions for numerical modelling will be highlighted in chapter 

5, particularly in the simulation of soot production. 

In order to quantify the level of heat loss from the compartment, a series of 21 surface 

thermocouples were fixed to the external walls of the compartment using ceramic adhe- 

sive. The thermocouples were equally spaced along the width and length of the ceiling 

and at different heights along one of the compartment side walls (see figures 3.30 and 

3.31 for their exact locations). In addition, because the compartment has a multi-layered 

insulation structure, three thermocouples were installed, the first in the interior of the 
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room, the second between the inner insulating material (durablanket) and the Supalux 

and the third on the exterior of the room. Because the thermal conductivity is known for 

each of the materials concerned, it is possible to directly compare the calculated heat 

loss with those found experimentally. Figure 3.32 shows a typical time-temperature 

profile for the temperature reached between the outer surfaces of the durablanket and 

compartment exterior. 

Figure 3.33 depicts the time evolution of the compartment side wall external surface 

temperature. The sub-figure seen superimposed on the main chart shows the peak sur- 

face temperature averaged over the period 23.5 to 24.5 minutes. Although the wall 

appears to reach a quasi steady-state at just over 20 minutes, this is simply as a result of 

flame extinction occurring at around 18 minutes experimental duration. 

The calculation of surface heat flux from transient temperature histories measured in a 

heat conducting solid poses some difficulties, due to having to account for the energy 

absorbed by the compartment walls. Figure 3.34 illustrates the penetration depth of 

supalux achieved with time calculated using the properties in table 3.1. The thickness of 

this layer is 12mm, the time taken for this penetration depth to be achieved is just under 

600 seconds from the graph. Therefore, calculated heat loss from the compartment may 

be considerably simplified after this period of time in the compartment fire under the 

assumption of steady-state conditions and one-dimensional heat transfer. 

Figure 3.35 depicts the total convective heat loss from the compartment assuming steady- 

state conditions have already been reached. 

The magnitude of uncertainty in the thermo-physical properties of supalux were es- 

tablished by using THELMA, a finite element code designed specifically for solving 

two-dimensional thermal problems and developed at the Building Research Establish- 

ment. 

THELMA requires an input of properties such as thermal conductivity, for each layer in 

the structure of the compartment walls. In addition, a temperature-time curve for the ex- 

posed inner surface of the durablanket is required for input to the model based on exper- 
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imental measurements. Figure 3.36 illustrates very good agreement between THELMA 

predictions of external surface temperature compared with those found experimentally, 

giving credibility to the use of manufacturers values for material properties in the cal- 

culation of heat loss (under the assumptions of steady-state already highlighted). 

3.3.9 Burner Heat Loss 

The burner itself is manufactured from 3mm steel. No insulation is provided apart 

from the rim where it is in direct contact with the compartment floor. As such, enthalpy 

losses are considered to be mono-dimensional. A thermocouple was attached to a central 

location on the base of the pan in order to discern if these thermal losses are significant. 

As you can see from figure 3.37, if the experiment is conducted with an initial pan 

temperature equal to ambient, the maximum temperature attained is around 50°C which 

is around 50°C lower than the boiling point of heptane. Unsurprisingly after an initial 

plateau is reached, the temperature starts to steadily increase corresponding to a reduced 

fuel level in the burner. The temperature increases significantly towards the end of the 

experiment (see figure 3.38) as the fuel level in the pan drops, the flame shortens and 

sits below the rim of the pan close to the base of the burner. This'over-shoot' which 

is seen to occur at the end of each experiment, is common with other such experiments 

where an un-insulated pan is used. After the main flame has extinguished, there remains 

small flame structures due to fuel vapours being continually burnt at the fuel inlet ports 

until the level in these ports subside and the flame is quenched. 

3.3.10 Emission Spectroscopy 

Instantaneous spectrally resolved radiation intensity measurements were made at var- 

ious locations perpendicular to the pool fire surface and external to the compartment 

pointing though the door, using a Rees Instrument scanning monochromator. This sys- 

tem comprises a number of scanning monochromators which are connected to a control 
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unit and interfaced to an IBM compatible computer. Control of the instruments is via 

the appropriate software. The monochromators consist of a motor-driven, constantly 

spinning diffraction grating which rotates inside the monochromators at a frequency 

of 12Hz and a detector unit which sends an analogue signal to the main control unit. 

The magnitude of this signal is proportional to the incident radiative energy. Spectra 

were generally acquired at 20 second intervals and readings were averaged over ten 

data points for the full wavelength range. However, single wavelengths were also inves- 

tigated for a more detailed description of time dependency on the emission signal. Two 

detectors are available for this system, depending on the wavelength range of interest. 

The range 500-5000nm utilizes a cooled lead selenide detector. Although not utilized 

for these interim measurements, long pass filters should ideally be used in conjunc- 

tion with the detector in order to prevent mirroring of the spectra at twice their original 

wavelength. 

A right-angled sight-tube containing a mirror at 45°, was fitted to the end of the monochro- 

mator and mounted in position just above the fuel surface inside the burner. The design 

rationale for this sight-tube was to permit optical access looking vertically through the 

flame, to match the radiative flux as perceived by the fuel surface. In addition, droplets 

are simultaneously prevented from entering the system. The inner-wall of the sight-tube 

was blackened using a fuel-rich propane flame to minimise the risk of internal reflec- 

tions. The height of the sight-tube was adjusted to match that of the heat-flux gauges. 

The spectrometer was calibrated in the same way as the heat flux gauges, using a black- 

body furnace at a temperature of 850 °C. 

Figure 3.39 shows transient emission spectra over the range 1500-5000 nm for the 

0.23m burner burning in the 0.36m doorwidth compartment. Readings were averaged 

over 20s intervals. Integrated total heat flux for each 20s time step is 7.6kW m-2, 

25.0kW m2,14.2kW m-2,21.1kW m-2,15.2kW m'2 and 13.8kW m-2 for 20s, 40s, 

60s, 80s, 100s, and 120s respectively. At the beginning of the experiments signifi- 

cant variation between successive measurements can be seen. Obvious disparities could 
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be explained during the transient and steady-state stages, and the transition from free- 

burning to ventilation controlled conditions where the flame trajectory changes, thus al- 

tering the optical path-length. Further disagreement could be explained by a significant 

change in temperature. Although this line of enquiry was not pursued in this research, 

Choi [46] did utilise ionization gauges in conjunction with emission measurements. The 

current flow across the ionization probe was used as an indication of flame presence due 

to the flame generated ions. From these measurements it could be determined whether 

a reduction in emission was due to the flame being outside the optical path length or 

reduced temperature. 

A 3mm sapphire window was placed at the end of the sight-tube which protruded 

through the centre of the base of the burner. This was to prevent any liquid from 

travelling down and accumulating on the mirror at the right-angled bend, producing 

potentially spurious readings. 

Single crystal sapphire windows are ideal for demanding applications such as emission 

spectroscopy because of their extreme surface hardness, high thermal conductivity, high 

dielectric constant and resistance to common chemical acids and alkalis. Sapphire is 

the second hardest crystal next to diamond and, because of their structural strength, 

sapphire windows can be made much thinner than other common dielectric windows 

with improved transmittance. Chemically, sapphire is a single crystal aluminum oxide 

(A1203) and is ideal for the emission measurements carried out in the compartment fire 

due to its high transmittance in the range 150 to 5500nm. 

Care was taken to ensure that the end of the sight-tube remained flush with the top of 

the sight-boss. However, uncertainty remained as to whether the apparent significant 

drop in emission intensity at around 3.4µm was due to absorption by the fuel-rich layer 

above the surface of the heptane, or whether it was simply due to a condensed vapour 

sink in the small lmm recess where the sapphire window was seated. The sight-probe 

was uncooled, thus lessening the risk of liquid logging. However, occasionally it was 

found subsequent to an experiment, that a thin clear sticky residue would appear on the 
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centre of the window. 

At the end of each experiment the sapphire window was carefully cleaned to remove 

this residue and a deposit of soot which usually occurred at the end of the experiment 

due to the lapping of flames which accompanied flame-length shortening just prior to 

extinction. 

Due to the concerns as to the effect of a build up of a fuel-rich region of heptane, bench 

tests were carried out exposing the spectrometer to a radiant heat source and placing a 

small amount of liquid heptane onto the upper surface of the sapphire window. Figure 

3.40 illustrates the effect of this thin layer of heptane on the apparent level of emission 

over the range 1500-5000 nm. 

The first two sets of instantaneous spectra are taken without the layer of heptane to 

provide base-line data and to ensure consistency in time of the radiant source. The 

next spectra (3rd spectra) shows a dramatic fall in intensity over the full wavelength 

range, with a slight drop at around 2300 nm and a sharp drop at 3400-3500 nm. Each 

successive spectra then indicates a slight increase in intensity, more prominent over the 

entire range rather than at 3400-3500 nm, suggesting that this is due to evaporation of 

the heptane. 

A second test was carried out with the spectrometer exposed to the same radiant source 

without the sapphire window in place. A small drop of liquid heptane was placed just in- 

side the sight-tube which upon evaporation would demonstrate the effect of fuel vapour 

on the apparent radiant emission. The results in figure 3.41 again illustrate the first 

two sets of data without the heptane vapour, the latter sets are influenced by the vapour 

which demonstrate again the drop in intensity. 

3.3.11 Steady-State Time-Scales 

In addition to the thermal inertia of the compartment boundaries, the time taken to reach 

a steady-state is also seen in these experiments to be dependent upon the level of venti- 
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lation. Although pre-heating of the compartment and the burner does seem to influence 

the absolute time scale, in relative terms decreasing the doorwidth from 0.36m to 0.25m 

results in a two-fold increase in time taken to achieve steady-state before flashover oc- 

curs. As already explained due to safety considerations, the experimental duration for 

the 0.15m doorwidth case was much shorter than that needed to reach steady-state - if 

one was certain it could be achieved. Only a small number of experiments were con- 

ducted using the smallest doorwidth, due to the difficulty in replication with the CFD 

model. However, there is such a striking contrast in results that these experiments are 

still valuable in qualitatively demonstrating the effects of restricted ventilation provi- 

sion. 

One of the more interesting features of the measurements made was the apparent time 

difference between soot and other scalars in their approach to steady-state. 

Figure 3.42 depicts one of the most striking examples of observed differences between 

scalar variable time-scales. The measurement is taken at the centre of the door, in 

the full doorwidth configuration. The figure shows the approach to steady-state from 

soot volume fraction and thermocouple temperature time histories measured at the same 

vertical height. The large difference between soot and temperature implies differential 

transportiveness. 

Figure 3.43 illustrates independent results, again from an experiment in the full door- 

width configuration. Total heat flux measurements to the compartment floor and to the 

upper part of one of side-walls are plotted along with soot volume fraction as determined 

with the soot probe. For this set of parameters, it may be clearly seen that the progress 

level of soot closely follows that of the heat flux gauges. This result is anticipated due 

to the close coupling between radiation and soot particle concentration. 
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Figure 3.1: Half-scale ASTM experimental room schematic 

Figure 3.2: 1i2 scale AS TM experimental room picture 
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Figure 3.3: 0.23m diameter burner schematic 
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Figure 3.4: Successive still images captured by digital video recording illustrating flame 
front movement across the pool surface upon ignition 
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Figure 3.5: ASTM room showing radiant soot exiting 0.15m door 
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Figure 3.10: Doorway temperature profiles; 0.23m burner, 0.36m doorwidth and 0.17m 

burner, 0.36m doorwidth 



CHAPTER 3. COMPARTMENT FIRE EXPERIMENTS 77 

400 

350 

300 
Ü 

250 

iý 
(D 

-1 200 T 

150 i 
ýlý 

ýIt iº. i ", ýtýý', 1 

F- 100 

50 

p--- 
p5 10 15 20 25 

Time (mins) 

-0.06m -0.385m -0.78m 0.675m -0.90m 0.575m 

-0.46m -0.15m -0.285m 

(a) Doorway temperature profile; 0.17m burner; 0.25m doorwidth 

700 

600 

500 

2 400 

a) 300 
E 
a) 200 

100 

0 
p5 10 15 20 25 30 

Time (mins) 

0.06m 0.15m 0.285m 0.385m - 0.46m 0.575m 

- 0.675m 0.78m ----- 0.90m 

(b) Doorway temperature profile; 0.17m burner; 0.15m doorwidth 

Figure 3.11: Doorway temperature profiles; 0.17m burner; 0.25m doorwidth and 0.15m 
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Figure 3.12: Water-cooled soot probe 
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(a) SEM Micrograph I 

(h) SEM micrograph 2 

(c) SkM micrograph 3 

(ii) SLM micrograph 4 

Figure 3.13: First set of SEM micrographs of compartment fire soot 
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Figure 3.14: Second set of SEM micrographs of compartment fire soot 
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Figure 3.15: Doorway soot profiles; 0.23m burner, 0.36m doorwidth and 0.17m burner, 
0.36m doorwidth 
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Figure 3.16: Doorway soot profiles; 0.17m burner; 0.25m doorwidth and 0.15m door- 
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Figure 3.18. Fnclosurc door showing location of' velocity probes; water-cooled soot 
probe at the top of the doorway 
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Figure 3.19: Bi-directional velocity probe schematic 
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Figure 3.20: Doorway velocity profiles; 0.23m burner, 0.36m doorwidth and 0.17m 
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Figure 3.21: Doorway velocity profiles; 0.17m burner; 0.25m doorwidth and 0.15m 
doorwidth 
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Figure 3.24: Vortex formation in burner of O. 6m door enclosure lire 

Figure 3.25: Compartment interior showing convex profile of hot upper layer 
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Figure 3.26: Gardon type heat flux gauge schematic 
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Figure 3.28: Total heat flux to compartment side wall and floor; 0.23m burner, 0.36m 
doorwidth and 0.17m burner, 0.36m doorwidth 
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Figure 3.30: Compartment side wall external thermocouple locations 

" j200mm 

" 

" 200mm 

" 

" 

1.8m 

Figure 3.31: Compartment ceiling external thermocouple locations 
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Figure 3.32: Side wall layer temperature showing benefit of insulation on compartment 
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5 10 15 20 25 

Time (mins) 



CHAPTER 3. COMPARTMENT FIRE EXPERIMENTS 

165 

145 

v 125 
rn V v 

a) 5 105 

as 85 

65 

45 
05 10 15 20 25 

Time (mins) 

97 

Figure 3.38: Burner base surface thermocouple temperature during latter half of exper- 
iment as seen in figure 3.37; 0.17m diameter burner; 0.36m doorwidth 
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Figure 3.41: Radiative emission spectra displaying the effect of heptane vapour presence 
in the path between the radiant source and detector 
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Chapter 4 

Open Pool Fire Experiments 

4.1 Introduction 

Complementary open pool-fire experiments were carried out serving two main purposes. 

Firstly, this twin-track approach is seen as a natural partner for compartment fires for 

which many semi-empirical models based on unconfined fires have been extended and 

applied. If simplified models can be used with any level of confidence in their applica- 

tion to enclosure fires, then they must at least follow the main trends in fire development. 

Secondly, from a practical aspect, restrictions in access to the compartment also neces- 

sitated pursuit of a more finely resolved data-set, which simultaneously enabled further 

probing of other fire characteristics that were difficult to quantify in the compartment, 

such as the level of turbulent fluctuations and its intensity. 

Where relevant, measurements are compared with those made in the compartment and 

results are presented for both experimental scenarios. Results from this series of ex- 

periments have already been presented publically [89]. The three different liquid fuels 

namely IMS, Heptane and Kerosene have been chosen due to their significantly dif- 

ferent sooting propensities and generatation of fuel vapours with substantially different 

molecular weights (46,100,175 respectively). 

101 
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4.2 Experimental Design 

Figure 4.1 depicts the main geometry of the apparatus used in the open pool-fire ex- 

periments. The larger burner of 0.23m diameter, formerly used in the compartment fire 

experiments, is utilised throughout due to its provision for instrumental access at its base 

and to provide consistency. A conical shaped fire-resistant smoke hood was attached to 

the rim of a chimney extract directly above the burner, in order to provide the necessary 

means of natural ventilation extract, whilst importantly ensuring that this was arranged 

at a suitable distance to prevent any disruption on entrained air-flow. 

The measurements made in this configuration are identical to those made in the enclo- 

sure. However, additional instrumentation included that of a load cell with a resolution 

of 2g, which was mounted centrally to the base of the burner and an in-line heater to 

elevate the water cooling temperature for the heat flux gauges. The burner itself was ca- 

pable of being rotated through 360° by means of a bearing arrangement, which initially 

provided an indication as to flame symmetry. Once this was satisfactorily established, 

the burner then remained in a fixed position for the duration of each experiment. 

4.3 Experimental Measurements 

The following subsections briefly describe the measurements which are made in the 

experiments, followed by a description of the parameters related to the measurement 

concerned. 

4.3.1 Light extinction 

The identical light extinction measurement technique to that carried out in the enclosure 

fire experiments, was employed to determine the concentration of soot in the over-fire 

region of the pool-fire. Once again, the concentration of soot is expressed as a soot 
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volume fraction for ease of comparison with results of other workers, such as that of 

Koylu [55]. Measurements were made employing the water-cooled soot probe previ- 

ously described in section 3.3.4 (see figure 4.2). The same level of N2 purging was used 

to prevent soot deposition by thermophoresis onto the optical surfaces of the probe. 

In the case of the open pool-fires, two parameters could be discerned using this instru- 

ment. Firstly, the soot volume fraction time series may be established, in-line with the 

measurements made within the compartment and for which a comparison of time av- 

eraged steady-state absolute values is made. Secondly, intermittent fluctuations could 

be captured. The nature of these fluctuations may be split into two categories. Figure 

4.3 and 4.4 illustrate two phenomena which are quite distinct. Firstly, by correlating the 

local external soot probe thermocouple temperature profile, which is taken immediately 

adjacent to the laser-beam housing orifice, we can suggest that at these relatively low 

temperatures, the fluctuations in measured soot concentration is caused by the pulsing 

emission of relatively cool soot caused by thermal quenching at or below the measure- 

ment height. Figure 4.3 further substantiates this assumption due to the slow waveforms 

of soot that correspond almost exactly with the pool-fire pulsation frequency, as deter- 

mined by Fourier transformation of the vertical thermocouple rake signals. 

Secondly, at roughly half the frequency of these slow pulsations, a secondary superim- 

posed fluctuation is evident. The level of soot is roughly six times that of the lower 

frequency and lasting in duration for around an order of magnitude less. The expla- 

nation for this phenomenon is likely to be the intermittent instantaneous flame front 

elongation, extending into the line of sight of the laser-photo-diode arrangement of the 

soot probe. 

The time frequency of both patterns of soot fluctuations start to increase upon cessation 

of fuel inflow to the pan. Again, this seems to relate to the influence of conduction from 

an uninsulated pan on the observed overshoot of all measured parameters in both the 

open pool-fire and compartment fire configurations. 
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4.3.2 Flame temperature 

Six fine-wire Platinum-Platinum 87%/Rhodium 13% thermocouples (type R) were aligned 

vertically and attached to a traversable rake situated external to the burner (see figure 

4.5). Each thermocouple was manufactured in-house, with a typical bead diameter of 

250 microns, established by spark discharge in an inert environment. Figure 4.6 de- 

picts the main lineaments of the thermocouple construction. The thermocouple wire 

was housed in twin-bore ceramic tube of 400 mm in length to provide insulation for 

the thermocouple wires against the high temperatures to which they would otherwise 

be exposed. At one end of the ceramic tube, the wires are connected to a miniature 

type R thermocouple connector. At the opposite end, the thermocouple wire is splayed 

outwards to form a closed triangular shape, extending to approximately 25 mm from the 

end of the ceramic tube. The widest part of the triangle is approximately 40 mm across. 

The thermocouple bead is situated central to the base of the triangle. 

Figure 4.7 shows the average flame temperature with height above the burner, produced 

by burning heptane until a steady-state is reached. 

433 Convective velocity 

From the turbulent fluctuations inherent in pool fires of this diameter, the convective 

velocity of the fire plume may be discerned from time correlation techniques. 

The application of this technique is not a new concept, but it has been used successfully 

to determine turbulence parameters and plume velocities from the cross correlation of 

thermocouple signals, for example [90]. 

The cross correlation is described by the following function: - 

R(r, Txy) = x(t - 7-)y(t) (4.1) 

which describes the similarity of two random signals x(t) and y(t) a distance, r, apart 



CHAPTER 4. OPEN POOL FIRE EXPERIMENTS 105 

as a function of the time shift between them (T). This function will have a maximum 

value at r= Tmean, the mean transit time of the fluctuating property, x(t) and y(t) are 

the signals received at two measurement points through which the fluctuating pattern 

travels. 

A typical temperature-time profile for Heptane, from which the convective velocity is 

calculated may be seen in figure 4.8. This figure describes the evolution of temperature 

from ignition by means of a pilot flame. An average velocity is calculated based on 

closer inspection of the thermocouple signals over a period of 2 seconds upon reaching 

steady-state (see figure 4.9 for example). 

The availability of convective velocity component measurements also enables calcula- 
tion of estimated soot residence times, assuming it to be proportional to the ratio of a 

characteristic length scale, L and a characteristic velocity. 

The properties of highly buoyant turbulent diffusion flames are not strongly influenced 

by burner exit velocities and molecular transport properties, while the driving potential 

for buoyancy forces, Lp/poo, is essentially unity because densities within the flame are 

small in comparison to ambient densities. This implies that the characteristic velocity 
is a function of L and the ratio of volume flow rates of air and fuel for stoichiometric 

combustion. 

4.3.4 Turbulent radiative emission fluctuations 

Caution is required when using mean properties of for example, radiation heat trans- 

fer, to characterize turbulent fires, which inevitably can lead to significant differences 

between the predicted and measured fuel burning rates. 

Markstein [91] investigated spatial and temporal variations of the emission intensity for 

pool fires and suggested the importance of turbulent fluctuations of temperature and 

soot volume fractions on the heat transfer mechanism. To perform direct integration 

of radiative heat transfer to an open-pool fire, requires knowledge of time-varying tem- 
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perature and emissivity of the combustion gases and soot at the flame-fuel interface. 

To better understand the process governing this important mechanism required detailed 

measurements that are difficult to perform within the confines of a compartment, due 

to the inability to separate the flame itself from heat transfer originating from the hot 

smoky layer and wall radiation. 

To this end, the emission spectrometer was once more positioned beneath the burner, 

akin to the compartment fire configuration. Although the radial symmetry of the flame 

enables great simplification in establishing typical profiles of emission fluctuations, the 

measurements are still required to be performed within a relatively narrow window in 

time before fuel and pan heating effects become important, thus raising the question 

as to consistent measurement positions due to the flame lengthening and increased mo- 

mentum that results. 

Due to the use of two different data acquisition hardware and software for this set of 

experiments, the question arises as to the uncertainty in formulating correlations from 

instantaneous measurements in which the data are not necessarily acquired simultane- 

ously. 

In order to correlate different data sets taken non-simultaneously, a distinct pattern re- 

peated at regular intervals must be present, thus displaying self-correlation. Figure 4.10 

shows the radiative emission signal taken at 4000nm and 4405nm. It is clearly seen, that 

the fluctuations in emission are regular and appear identical to the pulsation frequency 

observed from the thermocouple and soot volume fraction data. This is in contradic- 

tion with other workers [46], who found that auto-correlating their emission data from a 

heptane pool fire showed a maximum at 0, suggesting that the low correlation values are 

indicative of no dominant pattern present that is repeated in time. Despite the inability 

to directly compare the data from this research with that of Choi [46], it was demon- 

strated in their experiments, that a difference of only 1% in the apparent emission was 

achieved using: - 

" zero time shift 
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. random time shift for every other data set and a 

. random time shift for each data set 

for 19 non-simultaneous measurements of temperature and soot volume fraction. 

4.3.5 Total heat flux and mass loss rate 
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As previously mentioned, the calculation of heat flux to the fuel surface requires a de- 

tailed description of temporal and spatial distributions for both temperature and soot 

volume fraction. 

Clearly, the trajectory of the flame under ventilation controlled conditions where the 

flame sits closer to the fuel surface, is different to that of an open environment. The 

influence of the compartment is immediately apparent when we compare figures 4.11 

to 4.12 where we can see that the level of heat flux to the fuel surface experienced in 

the compartment fire experiments is around twice that of the open pool fire. In addition, 

two total heat flux gauges were placed one at the centre, the other at a5 cm radius as 

an indication of the total heat flux distribution over the fuel surface. The results suggest 

that the heat flux is evenly distributed. Heat transfer to the gauge is initially high due 

to rapid evolution of fuel, with the flame sitting close to the liquid surface engulfing the 

sensor. This phenomenon is repeated just prior to ignition when the flame is observed 

to shorten and once again engulf the sensors. Figure 4.13 illustrates the fluctuations in 

heat flux for the open pool fire over a period of 60s at steady-state. 

Concerns were first raised in section 3.3.7 as to the effect of a condensed layer of heptane 

which formed on the upper surfaces of the Gardon gauges. As such an in-line heater 

was used to elevate the cooling water temperature of the sensors above the dew-point 

of heptane. The effect on the steady-state signal was to reduce the absolute steady-state 

heat flux by just under 5% for both the compartment and open pool-fire experiments. 

The mass loss rate of fuel was determined from load cell measurements at a resolution 

of 2g, from continuous mass loss profiles such as may be seen in figure 4.14. Towards 
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the end of the experiment, it can be seen that the mass loss rate of fuel is enhanced due 

to conduction from the burner when the level of fuel is low. 

The signal from load cells is notoriously noisy. The spectral range from 0.1 to 10Hz 

is dominated by electronic circuitry noise, the magnitude of which is inversely propor- 

tional to frequency. The range 10Hz to 1kHz is dominated by hum at the line frequency 

(60Hz) and harmonics of the line frequency, by electrostatic or magnetic coupling with 

external fields such as solenoids or electric motors, or by ground loop hum. The high- 

frequency end of the spectrum is white noise having a flat spectral density over the full 

bandwidth. This noise arises from thermal vibration of charged particles in solids and is 

often referred to as resistor of Johnson noise. It was found that significant fluctuations 

in the load cell signal occurred at around 50-60Hz due to mains interference. Therefore, 

noise of frequencies higher than the expected turbulent flow signal is filtered out with a 

low-pass filter card as supplied by IOTECH. The filter card was configured as a 3-pole 

active Butterworth type filter (optimized for gain flatness in the pass band, with an at- 

tenuation of -3db at the cutoff frequency). The cut-off frequency for the load cell data 

acquisition was conveniently chosen to be 10Hz. 

Table 4.1 compares the enthalpy required for gasification, rhI H9, with that implied by 

the measured heat flux under steady state conditions, assuming the flux to be uniform 

over the entire surface. In the case of kerosene, with the relatively dense vapour burning 

inside the burner and closer to the centre-line, the mismatch in effective area for the 

mass loss computation is particularly large. The influence of heat flux distribution and 

the variation with fuel type are clearly demonstrated. 

The comparable experiment in the compartment, fuelled by heptane, produces a differ- 

ent energy balance. Figure 4.12 shows that the total heat flux as measured by the Gardon 

gauge would lead to an overestimate of the fuel vapour generation rate. 
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IMS Heptane Kerosene Heptane 
[open] [open] [open] [compartment 

(0.36m door)] 

Mass generation rate rh 37 76 32 100 
(¬lmin) 
Gasification enthalpy 0.6 0.61 0.31 0.80 
flux rh/Hg 
(kW) 
Total incident heat flux 1.25 0.42 2.49 1.04 
QAburner 

(kW) 
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Table 4.1: Fuel vapour generation rate for the three fuels (0.23m diameter burner) 
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Spectrometer 

Figure 4.1: Schematic of open pool-fire experimental setup 

Figure 4.2: Soot probe showing laser beam scatter during open pool fire experiments 
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Figure 4.3: Soot volume fraction in over-fire region showing intermittent soot fluctua- 
tions; heptane; 0.23m diameter pan; open pool-fire 
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Figure 4.4: Soot volume fraction in over-fire region showing intermittent soot fluctua- 
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5-10cm 

Magnetic holder with locating screw 

Figure 4.5: Vertical rake thermocouple arrangment 
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Figure 4.6: Platinum/Platinum-Rhodiuml3 thermocouple schematic 
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Figure 4.7: Vertical thermocouple temperature; heptane; 0.23m diameter pan; open pool 
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Figure 4.8: Individual thermocouple temperature signals from ignition; heptane; 0.23m 
diameter pan; open pool-fire 
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Figure 4.9: Individual thermocouple temperature signals over 2s interval; heptane; 
0.23m diameter pan; open pool-fire 
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Figure 4.11: Transient profile of total heat flux to fuel surface; heptane; 0.23m diameter 

pan; open pool fire 
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Figure 4.12: Transient total heat flux to fuel surface at steady-state; heptane; 0.23m 
diameter pan; compartment fire 
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Figure 4.13: Total heat flux to fuel surface at steady-state; heptane; 0.23m diameter pan; 
open pool fire 

250 

200 

1so 

1o 

50 

0 0.5 1 1.5 2 2.5 3 

Time (mins) 

Figure 4.14: Continuous mass loss time history; heptane; 0.23m diameter pan; open 
pool fire 
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Figure 4.15: Total heat flux to fuel surface at steady-state; heptane; 0.23m diameter pan; 
open pool fire 
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Chapter 5 

Computational Fluid Dynamics 

5.1 Introduction 

This section will highlight topics such as combustion, radiative heat transfer and the 

formation of soot in its application to CFD in the context of fires. It is not intended as 

a general review of CFD; instead focus is directed at the finite volume code - SOFIE, 

which is used in all the compartment fire simulations throughout this research. A more 

detailed description of the governing equations may be found in appendix C. 

5.2 Numerical Radiative Heat Transfer Methods 

The computation of radiative exchange is central to any problem involving the simula- 

tion of fires. In order to capture radiation transfer, the local temperatures and soot con- 

centrations must be known. Secondly, a model must be employed which can calculate 

the emission, absorption and scatter of incident radiation throughout the domain. For 

the purposes of this research, the Radiation Transfer Equation (RTE) describes the trans- 

fer of radiation by absorption and emission only, based on the assumption of negligible 

scattering at incident wavelengths much larger than the particle size of participating gas 

118 
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molecules and soot. Integration of the RTE results in an expression for the conservation 

of radiant energy, which provides the radiant energy source term for the energy equa- 

tion. Discretization of the RTE is achieved using the Discrete Transfer Radiation Model 

(DTRM) in which radiation transfer is solved along rays selected apriori. Calculation 

of the radiative properties is then reliant on a suitable gas property model to evaluate the 

radiative emission and absorption. 

The popular Weighted Sum of Gray Gases (WSGG) (De Ris discusses when it is appro- 

priate to treat flames and smoke as gray [92]) model introduced by Hottel and Sarofim 

[58] was employed for the CFD simulations in this study, due to its widespread use in 

the combustion community. In addition, this approach has the advantage of being com- 

putationally efficient when compared to other methods, although it is acknowledged 

that alternative spectral methods, such as the narrow band method [93] offer improved 

predictions of radiative intensity [94]. The WSGG model requires a series of weighted 

absorption coefficients for a number of gray gases where "windows" in each spectrum 

is represented by a clear gas. Coefficients of Truelove [95] were used for each of the 

compartment fires simulations. 

5.3 Stages of soot formation 

The ability to encapsulate predictions of soot concentration is important, not solely in 

the context of "visibility in smoke". As previously suggested, enhancement of radiative 

transfer and flame spread is also effected by the presence of soot. The close coupling 

of radiative heat transfer for instance, with the evaporation model required in the de- 

termination of heat release, therefore places the distribution of soot as central to the 

simulations performed. 

The stages of formation of soot which are considered in this research can be classified 

by: nucleation, coagulation, surface growth and oxidation. Each of these stages are 
briefly described below for clarification. Further, more detailed descriptions of soot 
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formation may be found in the literature review. 

Nucleation 

In diffusion flames, particle inception occurs on the fuel rich side of the flame whereby 

the first condensed phase material arises from the fuel molecules via their oxidation 

and/or pyrolysis products [96]. Such products typically include various unsaturated 

hydrocarbons, particularly Acetylene and PAH's. Condensation reactions of gas phase 

species such as these lead to the appearance of the first recognisable soot particles, 

with diameters of the order 1 nm with a mass of around 1000 amu. Flame temperature 

also plays an important role in soot formation as the rates of fuel pyrolysis and PAH 

production depend crucially on temperature [97]. 

It has also been speculated that positively charged hydrocarbon ions act as nucleation 

sites that attract other hydrocarbons to form soot particles. Arguments for this are based 

on the appearance of ions prior to the appearance of soot. However, as a predictive tool, 

this mechanism has not been implemented in a soot model which has met with wide 

acceptance. 

Coagulation 

Coagulation is defined as growth of particles by collisions among particles. It is usually 

associated with dense, three-dimensional growth, in contrast to aggregation which leads 

to low dimension, branched structures. The process of coagulation is usually associated 

with sintering and coalescence of particles by Gibbs-Thompson maturing and through 

strong Van der Waals bonding of the particles. The result of coagulation is then usually 

considered to be a solid three-dimensional particle. Agglomeration of a particle is simi- 

lar in concept to coagulation, but does not usually consider coalescence of the particles, 

so that an agglomerate may be broken down into the units from which it made. Con- 

versely, a coagulated particle can not be broken down exactly into the sub-particles from 
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which it originated. The time rate of change of particle size distribution is of primary 

interest to soot and other gas phase growth. To generalise, we can consider two parti- 

cles, with volumes, vi and vj. The rate of collision between i and j particles is N3. For 

spherical particles, each diameter of particles has a unique volume. The collision of two 

particles leads immediately to the growth of a new particle with the summed volume of 

the two contributing particles. The concentration of particles "i" is n2 and that of "j" is 

ni. We can define the collision frequency function, #tj, by: - 

N3= /3zß (vi, vj, T, P, etc. )n=n3 (5.1) 

For one such collision, a new particle, "k", is formed of volume Vk = vi + vj . The rate 

of formation of "k" particles is therefore: - 

1 
2E Ni, (5.2) 

i+j=k 

The rate of loss of particles "k" due to collision with other particles is: - 

00 
Nik (5.3) 

resulting in: - 

dnk 
_1 Nij -E Nik = /-'(vi, vj)nin, j - nk 

E 
N\vi, ýJk)ni (5.4) 

00 
dt 2 

i+j=k i=1 
2 

i+j=k i=1 

Coagulation of soot is considered here in its simplest form by thermal coagulation of 

monodisperse spherical particles. The assumption is made that particles adhere at every 

collision and initially the particle size changes slowly. This theory is better known 

eponymously as "Smoluchowski Coagulation" [48] after the person who developed the 

original theory. 
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Surface Growth 

Once soot particles are formed through the inception process, they grow by collision 

coagulation and surface growth. Of greatest significance to the final soot mass is the 

surface growth mechanism. This is where deposition of hydrocarbon compounds occurs 

at the surface of the soot particle. 

Oxidation 

Soot oxidation takes place in the reaction zone, when the formation processes are largely 

complete. Oxidation of soot leads to to visible radiative emission from the incandescent 

particles. The most widely used model for soot oxidation is that of Nagle and Strickland 

[98]. However, criticisms of this approach include applicability - their investigations 

were concerned with pyrographite which differs in composition to soot, also with their 

neglect of oxidation via OH attack to which Fenimore and Jones concluded from their 

experiments as being the most important. 

5.4 Soot formation modelling 

Perhaps the simplest approach would be to incorporate an assumed conversion of fuel 

carbon to soot, for which the production rate of the soot mass concentration M, may be 

calculated from the one equation form: 

dM, 
= Arc (5.5) 

dt 

where rc is the rate of combustion and A is the prescribed conversion factor. 

This approach has the advantage of being relatively simple to implement, although the 

shortcomings are obvious due to the inability to infer dependencies on other processes 

which occur in a compartment fire. 
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The soot formation model used in this research is based on a two-equation model of soot 

production which is described by two parameters, namely the number density of soot 

particles and the soot volume fraction. This type of model has been developed by Moss 

and co-workers for both laminar and turbulent diffusion flames [99], (100], [10 1] et al. 

The general approach has been presented in [100]. The models consider the processes 

which occur during the formation of soot, that is particle nucleation, coagulation, sur- 

face growth and oxidation as described previously. The mean production rate of particle 

number density is described by: 

dt 
d (N) 

= CýPýXxc7'°. se= _ CßT°. 5 (N 12 
(5.6) 

AJ 

where NA is Avogadro's number, C,,,, and Cß are model constants, XHc is the mole 
fraction of a hydrocarbon pre-cursor - taken in this case to be Acetylene (see figure 

5.1 for state relationship plot), and Ta is the activation temperature of the nucleation 

reaction. The first term on the right hand side represents the creation of particles by 

nucleation and the second term the reduction in number density due to coagulation. 

The formation of additional soot mass is assumed to take place through heterogeneous 

surface growth processes. Soot nuclei are assigned an initial mass 144 kg kmol-1, 

corresponding to 12 atoms. The level is not dependent on this initial mass, but a non- 

negative number is required in order to initiate the process of nucleation. 

The balance equation for soot mass concentration is: - 

dt 
(PB0afv) = 144CQP2XHCT l'e + ClPXHcT'5e N (5.7) 

The first term on the right hand side of this expression represents the creation of particles 

due to nucleation, the second term represents the addition of mass due to the processes 

of surface growth. The soot particle diameter can then be estimated by: 
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I 

dp 
(Nir) 

(5.8) 

The particle diameter of soot allows a surface area dependent term for oxidation to be 

incorporated. The rate of destruction of soot mass is then given by: 

00t _- 
36ir (Pe fv) d) 
Psoot 

nä (P,. t. fv)I Wo, (5.9) 
J 

where w0 is the specific oxidation rate given by Fenimore and Jones [ 102]: 

=1.27 x 103FpoHT- ý (5.10) 

pox is the partial pressure of the OH radical and r is the collisional efficiency which is 

taken to be 0.2 in line with the value suggested in reference [103]. 

Figures 5.2 to 5.13 clearly show the sensitivity of each stage in the formation of soot to 

the parameters of mixture fraction, mixture fraction variance - and to temperature. 

5.5 Combustion 

Two combustion models are available in SOFIE, the popular "industrial standard" Eddy- 

Break-up (EBU) model, originating from the works of Spalding [104], [105] and subse- 

quently developed by Magnussen and Hjertager [106] and the relatively more detailed 

laminar flamelet combustion model, which views a turbulent flame as an ensemble of 

thin locally one-dimensional structures embedded within the turbulent flow-field. 

The Eddy break-up model assumes combustion is fast and therefore turbulent mixing 

is rate controlling, together with a one-step description of stoichiometric hydrocarbon 

combustion. 

A single transport equation for fuel mass fraction is solved with the source term taking 

the slowest rate of fuel, oxygen and product dissipation as the reaction rate of fuel, R1 :- 
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s Yo Yp 
ý X5.11) Rf = C, 1; 5 min(YI, s1 Cr21+8 

Where k is the turbulent kinetic energy and e is the rate of dissipation of k. The EBU 

constants C,. 1 and C,. 2 usually take the values of 4.0 and 0.5 respectively. Yf, Yo and Yp 

are mass fractions of fuel, oxygen and products respectively. 

One of the major disadvantages to the use of the eddy-breakup model is the inability 

to consider chemical reaction rates, which vary considerably with temperature through 

Arrhenius expressions. In addition, linear relationships are assumed between mixture 

fraction, mass fractions and temperature. This assumption may be adequate for methane 

which has a somewhat unique linear enthalpy relationship, but for other hydrocarbon 

fuels of interest to this study, this may lead to significant errors. 

From an experimental point of view, Bilger [107] investigated the applicability of us- 

ing this type of global mechanism to reproduce experimental data for both methane and 

heptane laminar diffusion flames. It was shown that the species composition measure- 

ments in the heptane flame were far from equilibrium, particularly on the rich side of 

the flame. 

One of the main obstacles in employing detailed chemical kinetics in the modelling 

and simulation of turbulent reacting flows is the additional difficulty and computational 

expense involved in solving the reacting species transport equations. In particular, the 

stiffness inherent in the chemical source terms and the uncertainties in the assumed 

chemical mechanism used, whether reduced or full, pose serious challenges. The lam- 

inar flamelet state relationship approach counteracts these difficulties with measure- 

ments of major gaseous species concentrations, albeit in a laminar flame, and the effects 

of turbulence are relegated to the determination of the instantaneous mixture fraction. 

Simplification is therefore introduced through reducing the problem to that of turbulent 

mixing. Experimental observations have shown that measurements of scalar properties 

in laminar diffusion flames result in universal correlations as a function of mixture frac- 

tion (which is a normalized fraction of the fuel to oxygen ratio), in regions remote from 
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flame extinction [108], [109]. The mixture fraction correlation for heptane being partic- 

ularly good for the major species of 02, C7H16 and CO2. These state relationships have 

been shown to be independent of local length scales and low flame stretch situations 
(of which fire is an example), even for non-equilibrium conditions. This then provides 

validity for the use of the alternative laminar flamelet combustion model, although it 

is recognized that some workers [110] have found prediction of both major and minor 

species to be poor using this model. 

The following chapter seeks to make a representation of the underlying chemical aspect 

of heptane combustion in a well/under ventilated compartment fire in reference to the 

flamelet library created specifically for this study. 

5.6 Time averaging, closure, and turbulence modelling 

Favre (density weighted) averaging is superior to Reynolds averaging in calculations 

involving variable density flows [111] and it is the prediction of Favre mixture fraction 

mean and variance that permits a presumed pdf to be computed via a beta function. 

P() = 
a-1(1- 

fo1Ca-1(1 -)ý-ld 

where the parameters a and ,ß are defined in terms of the mean mixture fraction and 

variance, 

a= 
l- 

�2-1) 

and 

e"z - 1) 
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The mean species composition (mi)' can therefore be evaluated as: 

my __ P1 M'(ý) p(C)d I 

P(O 

Among the principal difficulties in modelling the structure and dynamics of fluid turbu- 

lence is the wide range of length and time scales over which variations occur. This is 

the case in the velocity field as well as in the concentration fields of dynamically passive 

conserved scalar quantities mixed in the flow. Attempts to simplify the description of 

these turbulence fields on the basis of dynamical self-similarity assumptions date back 

as far as Kolmogorov [112], Taylor [113] and Richardson [114]. 

Because the distance between grid points in finite-volume approximation is generally 

not sufficient to resolve all the turbulent length scales and because of the steady-state 

assumption often used in flow simulations, auxiliary relationships are required to ac- 

count for the effects of turbulence on the transport processes. These relationships are 

developed by dividing the instantaneous properties in the conservation equations into 

mean and fluctuating components. 

Richardson [114] succinctly summarized the idea of an energy cascade in turbulent free 

shear flows: 

"Big whorls have little whorls, 

Which feed on their velocity; 

And little whorls have lesser whorls, 

And so on to viscosity" 

(in the molecular sense) 

The notion behind the above poetic licence is that large eddies are unstable and disin- 

tegrate, transferring their energy to somewhat smaller eddies. The process continues 

and the energy is transferred to successively smaller eddies until the Reynolds number 

Re(l) - "9 ! is sufficiently small that the eddy motion is stable and the molecular vis- 



CHAPTER 5. COMPUTATIONAL FLUID DYNAMICS 128 

cosity is effective in dissipating the kinetic energy. One of the main reasons that this 

hypothesis is important in the area of turbulence is that it places dissipation at the end 

of a sequence of processes. The rate of dissipation e is determined, therefore, by the 

first process in the sequence, which is the transfer of energy from the largest eddies. 

Kolmogorov furthered this theory and introduced the smallest scales of turbulence to 

which his name is ascribed. 

Turbulence is arguably one of the most difficult to replicate in non-linear physics. In 

turbulent combustion, the difficulties are further compounded by the complexities of 

chemical kinetics and the strong non-linear coupling of the turbulence and the chemistry. 

These turbulence-chemistry interactions arise from the fact that in most combustion 

systems, mixing is not fast compared with rates of chemical reaction, and large spatial 

and temporal variations in species composition and temperature are present. Chemical 

reaction rates cannot be evaluated from spatial or temporal mean values and are strongly 

coupled to molecular diffusion at the smallest scales of the turbulence. Furthermore, 

the heat release associated with combustion affects both the turbulent flow, by causing 

variations in the mean density field, and local expansion. 

5.7 CHEMKIN 

The laminar flamelet library used in the compartment fire simulations were computed 

using OPPDIF, which is part of the CHEMKIN package and computes the diffusion 

flame between two opposing nozzles (see figure 5.14). Assuming that the radial com- 

ponent of velocity is linear in radius, then the dependent variables become functions of 

the axial direction only. OPPDIF solves (amongst others) for temperature, and species 

mass fractions. The two-point boundary value problem for the steady-state form of 

the discretized equations are solved using a combination of Newtons method and time 

evolution to produce a converged solution. 

The semi-empirical reaction mechanism employed in this research for n-Heptane oxi- 
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H O OH H2 02 H2O HO2 
H202 CO CO2 CH HCO CH2 CH2O 
CH3 CH3O CH4 HCCO CH2CO CH3CO CH3HCO 
C2H C2H2 C2H3 C2H4 C2H5 C2H6 C3H3 

C2H3HCO C3H4 C3H5 C3H6 C4H6 C4H8 -1 C5H10 
C6H6 C6H10 C6H12 C7H16 N2 AR 

Table 5.1: Species contained in the Held reaction mechanism 

dation and pyrolysis is that of Held et al [80]. The rationale behind the use of this mech- 

anism is in its author's focus on quantitively capturing transient phenomena and, more 

importantly, intermediate species distributions. The mechanism involves 41 species (see 

table 5.1) and 274 reactions and although it has no direct relevance to the modelling ap- 

proach used in this research, it does mean that it is sufficiently compact to be used in 

combined fluid-mechanical/ chemical kinetic computational studies. Validation of the 

mechanism is by comparisons with literature stirred reactor data and for higher tem- 

perature regimes (> 1150K) with shock tube ignition delay and premixed laminar flame 

speed values. Its development is also supported by a series of variable-pressure flow 

reactor experiments. 

The transformation from physical space to mixture fraction space eliminates the con- 

vection terms in the balance equations under the conditions that the Lewis numbers of 

all species are unity. This assumption is valid for hydrocarbon flames. Furthermore, if 

the boundary conditions are independent of the velocity field, the scalar flame structure 

may be analysed in mixture fraction space independently of the specific flow configu- 

ration. A counter-flow diffusion flame can therefore be entirely mapped onto mixture 
fraction space. 

State relationships for species concentration of C7H16, CO2, CO, 02 and H2O (see 

figure 5.15 for state relationship plot - the adiabatic flamelet has been chosen, merely 

because the species mole fraction is independent of the radiative loss term), total en- 

thalpy, temperature, density and soot source terms are calculated using OPPDIF. These 

are then integrated directly in SOFIE - prior to the field model solution, to compute 
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look-up tables (collectively known as the flamelet library) of the integrand in terms of 

mean mixture fraction and variance. Favre averaging requires each parameter identified 

in the look-up tables to be divided by density, thus necessitating the inclusion of mixture 

density look-up values to aid consistency. 

Figure 5.16 is taken from Yang, Hamins and Kashiwagi [1], which shows the effect of 

scale on radiative heat loss and combustion efficiency. The figure shows that a radia- 

tive loss of between 30% and 40% is reasonable for the burner diameters used in this 

research. Therefore, in order to account for this radiative loss, a fraction of sensible 

enthalpy is subtracted from the total enthalpy to provide an equivalent radiative loss in 

the range from adiabatic to 40% loss in increments of 5%. 

Together, figures 5.17 and 5.18 and 5.19 show plots of flamelet temperature divided by 

density against mixture fraction and mixture fraction variance. The figures show that 

temperature peaks at a mixture fraction close to stoichiometric, although the absolute 

temperature value is somewhat lower than that predicted from equilibrium calculations. 

It can also be clearly seen that the temperature drops with an increase in variance as a 

result of a higher level of unmixedness. 

Figure 5.20 illustrates the effect of the introduction of the radiative loss constraint on 

enthalpy - each constituent part representing a particular radiative loss, which converges 

as the mixture fraction limit of 1 representing 'pure' fuel is approached. 

The pool-fire was fixed at its liquid boiling point (371K for C7H16) and therefore for 

the density to be consistent at the fuel inlet, it was necessary to incorporate a secondary 

flamelet library explicitly setting the initial mixture fraction of 1 to correspond with the 

enforced elevated temperature of 371 K. 

For each flamelet it would be possible to include an additional dimension, i. e that which 

is not necessarily confined only to the level of radiative loss. One approach could be the 

adoption of vitiation level as a second additional degree of freedom. However, this is an 

unnecessary elaboration in this research, as the compartment fires investigated through 

experimental and computational means pertain to well-ventilated fires only. That is, 
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with the exception of a very small number of experiments with a severely restricted 

doorwidth. 

5.8 Plug flow calculations 

Plug flow reactions were performed using the "PLUG" program from the Chemkin suite. 

PLUG simulates the non-dispersive one-dimensional flow of a chemically reacting ideal 

gas mixture in a conduit of essentially arbitrary geometry (a plug flow chemical reactor. ) 

The reaction mechanism used was identical to that used in the flamelet calculations us- 

ing SOFIE. The temperatures and species distributions for the plug flow calculations 

chosen were based on the relatively narrow sooting range for hydrocarbon fuels. There- 

fore, three initial temperatures of 1000K, 1178K and 1480K and the relevant species 

concentrations at that temperature were used as the initial conditions. These temper- 

atures are also representative of upper layer temperatures in compartment fires as re- 

ported in the literature. The temperature at 1480K corresponded to the maximum yield 

of C2H2 as determined in the laminar flamelet calculations and as such represents the 

worst case scenario. 

These simulations are representative of upper layer dynamics, where the flame plume is 

quenched upon entry to the upper layer, which is largely isothermal, and further reac- 

tion continues in a premixed mode, in the absence of additional mixing with oxidizer. 

Results for species mole fraction of C2H2 and OH are shown due to their integral role 

in the soot model used in the CFD prediction, shown over a time period typical of flame 

soot residence times. The summary of the results of these simulations can be seen in 

Figures 5.21-5.23. In addition, due to the close coupling of soot and CO formation, re- 

sults are also presented in figure 5.24 for mole fraction of CO at all three temperatures, 

demonstrating that the rate of CO production is enhanced at temperatures greater than 

1178K. 

It is interesting to note the differences in behaviour of the parameters that influence 
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the competing processes that occur in soot formation, namely nucleation and surface 

growth against oxidation, at the three given temperatures. These calculations once again 

highlight the sensitivity of soot production to temperature. 

Table 5.2 shows the peak species mole fraction of C2H2 and OH and the time taken to 

decrease to 50% of the peak concentration (T50). Here we can see that at 1000K there is 

a sharp fall off rate for OH, whereas C2H2 declines steadily reaching its T50 after 0.68s. 

At 1178K we can see a dramatic increase in the peak level of OH of order 15 times that 

of the level at 1000K. The time taken to decrease to 50% of the initial concentration has 

correspondingly increased and is greater than the time-scale considered here. The level 

of C2H2 at 1178K remains similar to that achieved at 1000K, although the T50 has also 
increased and once again is greater than the time-scale considered here. 

As anticipated, the largest impact of temperature on the levels of both C2H2 and OH 

occurs at 1480K. At this temperature the peak level of OH has increased by three orders 

of magnitude and is actually seen to increase with time. The peak mole fraction C2H2 

which is also seen to rise initially has increased by nearly 90% from the peak value at 

1000K. 

Temperature (K) Peak C2H2 T50 C2H2 (s) Peak OH T50 OH (s) 
1000 3.15E-02 0.68 1.12E-10 0.02 
1178 3.15E-02 > 1.83 1.69E-09 > 1.83 
1480 5.88E-02 > 1.83 3.77E-07 0.03 

Table 5.2: Peak Mole Fraction and T50 of C2H2 and OH from plug-flow calculations 
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Figure 5.5: Nucleation versus mixture fraction variance flamelet look-up 2d plot; 



CHAPTER 5. COMPUTATIONAL FLUID DYNAMICS 

x 1011 
3 

2.5 

2 

c 
0 
5 1.5 
m m 0 U 

0.5 

A 

138 

1/ 

//: 

%i 

v0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 5.6: Coagulation versus mixture fraction flamelet look-up 2d plot; 
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Figure 5.8: urfaceGiow h flamelet look-up 3-d surface plot; values integrated over mix- 
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Figure 5.11: Oxidation flamelet look-up 3-d surface plot; values integrated over mixture 
fraction and mixture fraction variance space. 
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Figure 5.21: Plug flow calculation of C2H2 and 0H species mole fraction; 1000K 
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Figure 5.23: Plug flow calculation of C, 2H2 and OH species mole fractions; l480K 
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Figure 5.24: Plug flow calculation of CO species mole fraction; 1000K, 1 178K, 1480K 



Chapter 6 

Compartment Fire Simulations 

6.1 Introduction 

Experience of compartment fire simulations at Cranfield has previously been restricted 

to simpler Steckler room type configurations [115,6], in which the heat release is de- 

termined apriori. The attraction of this methodology lies in the simple experimental 

geometry and ease to which the effects of the various models can be characterised dur- 

ing the simulation. Natural gas (predominantly methane) as the source of fuel in such 

experiments is almost ubiquitous. 

Though convenient, the choice of natural gas imposes severe restrictions with regard to 

its relevance to the fire safety community. Methane is wholly unsuitable as a fuel in 

these experiments due to its weak sooting propensity and in addition, pre-determination 

of the fuel flow rate prohibits investigation of the complex processes governing heat re- 

lease in a real fire scenario. Conversely, the use of liquid fuel provides us with an impor- 

tant basis for investigating the interaction of the compartment with the fire source, with 

the fuel flow rate and hence heat release being wholly determined by the 'real' processes 

occurring inside the compartment. Heptane provides a good level of sooting propensity 

apropos the newly developed 'soot probe', which, along with its well established chem- 

istry defines it as a suitable fuel. The half-scale ASTM experimental compartment used 

154 
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in this research is broadly similar to that of the Steckler room. However, additional 

parameters are examined in in this research, such as external wall temperature profiles, 

which are considered shortcomings of the Steckler experiment in forcing the imposition 

of 'best guessed' boundary conditions in the corresponding simulations. 

This chapter seeks to demonstrate the application of the models implemented in SOFIE 

to describe the experiments carried out in the half-scale ASTM room in order to validate 

the CFD code. 

6.2 ASTM room model setup 

6.2.1 Physical and Numerical Models 

The physical and numerical models used in the simulations using SOFIE are sum- 

marised in the following tables: - 

Combustion model EBU, Laminar flamelet 
Turbulence model High Reynolds number k-e model, with buoy- 

ancy corrections via the single gradient diffu- 
sion hypothesis 

Radiation model Discrete transfer, 20 x 8,0 rays, polar + 
original discretisation 

RTE solution method Discrete band weighted sum of grey gases 
(WSGG) 

WSGG model Truelove's methane + soot coefficient set, 
Truelove's oil+soot coefficient set 

Soot model Moss general soot model with coefficients 
for C2H4 

Flamelet options Multiple radiative loss flamelet, using 8 
heat loss fractions 

Heat Transfer Conjugate heat transfer to solid bound- 
aries 

Table 6.1: Physical parameters used in the SOFIE simulations 
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Numerical grid 

" 23 cells for room width including 5 
cells for 0.17m diameter burner 

" 28 cells for room height 

" 45 cells for room length 

" total number of cells in domain = 
23 x 28 x 45 = 28,980 cells 

Solid boundaries Light-weight ceramic walls of 12mm 
width, with each wall represented by two 
numerical grid cells 

Interpolation scheme Hybrid 
Solver Stone's implicit 3D (sip3d) 
Number of iterations 5000 

Table 6.2: Numerical parameters used in the SOFIE simulations 

In addition to tables 6.1 and 6.2, variations were also introduced into the models that 

were included in order to perform a sensitivity analysis. These variations are as follows 

and summarised in table 6.3: - 

. Eddy break-up combustion model. Fuel flow rate, thus HRR is pre-determined 

based on experimental results. 

. Laminar flamelet combustion model. Fuel flow rate is pre-determined based on 

experimental results. Fixed radiative loss flamelet (0% and 40% radiative loss) 

" Laminar flamelet combustion model. Fuel flow rate is pre-determined based on 

experimental results. Interpolated radiative loss flamelet. Calculated transported 

enthalpy is compared to flamelet enthalpy at adiabatic to determine appropriate 

level of flamelet radiative loss [ 116]. 

" Laminar flamelet combustion model. Fuel flow rate is driven by the mass-loss rate 

of fuel based on simple evaporation model. Multiple flamelet choice dependent 
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upon corresponding local transported enthalpy. 

Eddy break-up I Laminar flamelet Evaporation model 
Fixed fuel flow rate v x 

Multiple flamelet x x 
Multiple flamelet x V . _/ 

Fixed loss flamelet x v V 

Table 6.3: Summary of Combustion Models Used in SORE 

In line with the compartment fire experiments, the door-width of the compartment was 

correspondingly reduced in the simulations in order to capture the effects of under- 

ventilation. 

6.2.2 Numerical Mesh 

The room geometry is shown in Figure 6.1 and the mesh used is shown in Figure 6.2. 

The burner is in the centre of the room and the symmetry of the room has been exploited 

to minimise the number of nodes by using a mirror boundary on the computational 

mesh. The simulations are run transiently in 10s time-steps for 600s which corresponds 

to the time taken to reach steady-state using the smaller diameter burner with the largest 

doorwidth. 

Figure 6.3 depicts a steady-state simulation for the full doorwidth configuration. The 

flame trajectory can be clearly seen to bend away from the doorway under ventilation 

controlled conditions, ultimately forming a ceiling jet with sufficient heat release. This 

simulated profile is typical of that observed in a compartment fire. 

During the course of each computation, variables were monitored in the doorway and 

were found to remain stable. To aid computational expense, initially, a coarse grid was 

used. Because the mesh density was not high enough to ensure full grid independence, 

further simulations were run doubling the grid density in all dimensions throughout 

the compartment domain. What dependence there is, manifests itself at the interfaces 

between the two layers. The interfacial heights vary a little as do the local scalar profiles. 
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6.2.3 Boundary Conditions 

There are two alternative fluid boundary conditions attached to the burner in the com- 

partment; an inflow of fuel whose flow rate and therefore heat release rate is either 

pre-determined, or it is calculated during the course of the simulation by modification 

of the standard wall function to include transpiration from the surface of the pool-fire. 
The transpiring boundary approach is more commonly ascribed to the steady-state burn- 

ing of a solid. The simple evaporation model used here calculates the mass loss rate of 
fuel, which determines the heat release rate of the compartment fire, by assuming the 

following simple relationship between the net heat flux to the fuel surface and heat of 

gasification of heptane: 

m=g 
it 
net 

LH9 (6.1) 

where 4'et is the net total incident heat flux to the fuel surface and AH9 is the effective 
heat of gasification of heptane. The above equation assumes that all heat to the pool 

surface goes to vapourise the fuel, i. e heat losses for these relatively deep pools with 

a depth of N30mm, increases in the sensible heat of the liquid fuel and conduction 

through the burner walls are negligible. 

An ignition criteria was attached to the burner at 371K which is the boiling point of hep- 

tane. Although the fire-point temperature of heptane is much lower than this at 269K, 

the boiling point temperature is considered to be representative of the actual burning 

fuel surface temperature. The temperature of the solid face in the model was explicitly 

set to this temperature so that mass flux from the surface was immediate. However, 

despite this ready release of fuel, difficulty was still encountered with ignition. Vari- 

ous approaches were adopted, including artificially elevating the ambient temperature, 

forced flow injection at high temperatures and situating a radiant panel close to the up- 

per surface of the fuel. In the majority of cases, ignition was initially achieved but the 
flame extinguished rapidly. Previous experience at Cranfield held the ignitable solid in 
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a vertical configuration only. This posed a significant advantage unavailable in the first 

few minutes of a well-ventilated compartment fire with a burner in a horizontal orienta- 

tion, due to flame propagation being in the same direction as the buoyancy induced gas 
flow. 

The solution to the problem lay in an alternative approach whereby a pilot flame was 
ignited directly in front of the pool fire in the compartment, at a heat release rate of 
10kW. When the compartment became ventilation controlled the pilot flame directly 

impinged on the surface of the pool-fire causing it to ignite. The pilot flame remained 
ignited for a further 200s at which point the simulation was interrupted and the mixture 
fraction at the pilot flame inlet was re-set to zero, resulting in flame extinguishment. 

No 'memory effect' of the pilot flame on the main burner was apparent in subsequent 

time-steps. 

A constant pressure boundary some distance from the front of the compartment is cho- 

sen to represent a quiescent condition. For those simulations that require heat trans- 

fer calculations, active walls of light-weight ceramic are included, with conjugate heat 

transfer conditions on the fluid side of the wall and isothermal boundary conditions 

applied to the far side. 

6.3 ASTM room fire results 

The following sections make comparisons - where applicable - of numerical prediction 

using SOFIE, against experimental measurements made in the compartment. 

Where possible, the results are presented in such a way that comparisons may be made 

with experiments published in the literature and to aid consistency. A typical example 

would be the inclusion of doorway profiles, in which the results are presented on the 

line of room symmetry which passes through the centre of the doorway and burner. The 

principal scalars reported here are, soot volume fraction, visibility distance, temperature, 

air flow velocity and mass flow. 
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In light of somewhat controversial results in the literature, profiles across the doorway 

were also investigated. Figure 6.4 presents results for the 0.23m diameter burner and 

0.36m doorwidth configuration illustrating 'door edge effects' in which the velocity is 

seen to decrease locally adjacent to the door edges. Results from other workers in this 

area such as Kumar [ 117] for example, employed the CFD code JASMINE and predicted 

that higher velocities occur at the centre of the doorway which is in agreement with the 

trend found in this research, conversely, others (e. g [ 118] and [ 119]) have predicted 

complex flows dependent upon the level of mesh refinement in and around the whole of 

the door area. 

6.3.1 Heat Release Rate/Mass Loss Rate 

The evaporation model provides determination of the rate of heat release, for which 

the critical component needed to be modelled accurately is the net heat flux to the fuel 

surface. The correct prediction of heat release is of course of paramount importance 

due to the consequential effects on the remaining parameters being simulated in the 

compartment. A plot of the total net heat flux to the entire fuel surface in the 0.36m 

doorwidth and 0.17m diameter burner configuration is illustrated in figure 6.5, which 

is further split into components of radiative and convective fluxes in figures 6.6 and 

6.7 respectively. The results show that heat transfer to the fuel surface is dominated 

by radiation. The heat flux profile in figure 6.5 shows significant variation across the 

entire fuel surface; in particular a higher incident flux may be seen towards the rear of 

the burner, this is anticipated because here the flame front lies closer to the fuel surface. 

What is also noticeable is a pronounced peak towards the edge of the burner of order 

25kW. Increasing the number of rays in the radiation model to 32+1 does not improve 

the distribution, as we can see in figure 6.8. It should however be noted that the coarse 

grid used in these simulations obviates a detailed analysis of the fire source and its 

comparison with experimental measurements. The mean values of predicted heat flux 

over the entire fuel surface and the corresponding fuel mass release rate do however 
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closely match those found experimentally under steady-state conditions. 

Diameter Burner (m) Doorwidth (m) HRR based on MLR (kW) 
Expt SOFIE 

0.23 0.36 74.3 53.0 
0.17 0.36 30.7 31.6 
0.17 0.25 44.1 46.6 
0.17 0.15 74.3 64.1 

Table 6.4: Heat Release Rate Predicted using SOFIE 

Table 6.4 Heat release rates predicted using the simple fire-spread model implemented 

in SOFIE for all three doorwidth configurations in the compartment. 

6.3.2 Mass Air Flow Rate 

Mass flow into and out of the compartment are calculated based on the the peak steady- 

state average velocity and temperature profiles described in section 3.3.5. Results from 

which are presented in table 6.5. 

Diameter Burner (m) Doorwidth (m) Mass Air Flow in (kg/s) Mass Air Flow Out (kg/s) 
Expt SORE Expt SOME 

0.23 0.36 0.32 0.31 0.43 0.31 
0.17 0.36 0.19 0.15 0.20 0.16 
0.17 0.25 0.26 0.26 0.29 0.26 
0.17 0.15 0.42 0.39 0.54 0.4 

Table 6.5: Mass Air Flow Rate Predicted using SOFIE 

From continuity, the mass flow entering the compartment - including that of fuel, must 

equal that leaving the compartment. Differences between the predicted and experimen- 

tal results can be explained largely by the location of the bi-directional probes used the 

measure the local air flow velocity at the compartment door and would require a much 

greater density in order to improve the comparison. Setting the probes closer together 

would however introduce an undesirable influence on the flow. 
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6.3.3 Temperature 

Doorway temperatures are compared in figure 6.9 for the 0.25m doorwidth configura- 
tion using the smallest 0.17m diameter burner. This configuration represents the most 
demanding steady-state calculation for model validation. A comparison is made with 
both the Non-Adiabatic Flamelet (NAF) combustion model which extends the use of the 

multiple flamelet strategy first introduced by Young and Moss [ 120] for which the rele- 

vant flamelet, set is chosen based upon the transported enthalpy and the Eddy-Break-Up 

(EBU) model in which the fuel flow rate and hence heat release is established apriori. 
From the experiments conducted in the half-scale room, we expect the upper layer tem- 

perature to be in the region of 650K-670K for the 0.25m doorwidth configuration. It is 

shown that results eluding to the Eddy Break-up simulations that the temperature is over- 

predicted by around 50K. It must although be noted that the EBU model constants (see 

appendix A) are optimised for a buoyant jet flame. However, the temperature predicted 

using the NAF model is in good agreement with both the experimental measurements 

and that calculated based on transported enthalpy. 

The steep rise in temperature at 0.44 m height indicates the start of the hot layer. The 

EBU and NAF model predictions agree well with the height of the neutral layer in the 

experiment calculated from velocity measurements as previously described in Chapter 

3 and summarised in table 3.3. The experimental velocity profile is shown alongside for 

visualisation. 

6.3.4 Total Heat Flux 

As previously described in section 3.3.7, two total heat flux gauges were positioned 
in the floor adjacent to the burner and in one of the compartment side walls. Figures 

3.28 and 3.29 shows experimental transient heat flux experienced by the Gardon gauges 
located in the both the compartment floor and ceiling for all three doorwidths. To aid 

visualisation, the results are split into each of the three different door widths. Table 
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6.6 lists the steady-state values achieved comparing predicted levels against those found 

experimentally. It may be seen that SOFIE generally underpredicts the total heat flux 

at these locations. The error increases with reduction in doorwidth with rather poor 
results for the smallest 0.15m doorwidth. Due to the close coupling with soot loading 

and the tendency to underpredict soot volume fraction with decreasing doorwidth, this 

result is unsurprising. However, the latter smallest doorwidth case is rather semantic 
in its comparison with experimental values due to the occurrence of flashover in the 
experiment. 

Doorwidth Expt ceiling SOFIE ceiling Expt floor SOFIE floor 
(m) (kW/m2) (kW/m2) (kW/m2) (kW/m2) 
0.36 6.9 5.9 8.5 7.2 
0.25 12.1 8.7 20.9 15.6 
0.15 97 37 122 55 

Table 6.6: Total heat flux; experiment versus prediction; 0.17m diameter burner; 0.36m, 
0.25m and 0.15m doorwidth 

6.3.5 Gas Species 

The ability of SOFIE to predict species concentrations under well ventilated conditions 

may be seen in figures 6.10,6.11 and 6.12. These results relate to the 0.36m doorwidth 

case showing predicted versus experimental levels of 02, CO2 and CO respectively. 

Results for the 0.36m doorwidth underpredict the levels found experimentally by as 

much as a factor of 2 for the CO2 and CO levels. 

6.3.6 Soot 

Table 6.7 below presents a summary of both experimental and numerical results, in the 

context of visibility in smoke as described in Chapter 3. For each simulation, the abso- 
lute peak soot concentration is underpredicted. The time taken to reach 0.33 OD/m is 

also considered; this is the average optical density of smoke at which people would tend 
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to turn back rather than continue in terms of general visibility in smoke. This criteria 
has already been discussed in section 2.4. This limit was not reached experimentally 
for the 0.17m diameter burner at the full 0.36m doorwidth, even at steady-state. How- 

ever, upon reducing the doorway to 0.25m, this limit was reached at 80.2s. Based on 

the minimum visibility distance achieved for the 0.15m doorwidth we can say that the 
limit has been reached even though the experiment had not reached a steady-state, but 

unfortunately information regarding the time taken to reach this limit is unavailable. For 

the largest diameter burner, the criteria had not been reached. However, once again the 

experiment has not reached a steady state and was of a much shorter duration than the 

0.15m doorwidth case. 

Burner Door Peak Expt Steady- Min. Vis. Time Peak Door Soot Peak Door Soot Peak Door Soot 
(m) (m) Door Soot state? Dist. (m) to 0.33 fv NAP fv FF fv EBU 

fv OD/m (s) 

0.23 0.36 6.80E-07 No 3.8 limit not 2.68E-07 8.81E-08 9.2E-07 

reached 

0.17 0.36 1.40E-07 Yes 16.6 limit not 1.19E-07 2.23E-08 2.42E-07 

reached 

0.17 0.25 6.20E-07 Yes 3.70 80.2 2.44E-07 5.20E-08 8.84E-07 
0.17 0.15 2.28E-06 No 1.01 no data 5.20E-07 3.08E-07 3.00E-06 

Table 6.7: Predicted versus experimental single point peak soot volume fraction and 
visibility distance for each experimental configuration 

Graphs plotting temperature and soot volume fraction pertaining to the 0.36m and 0.25m 

doorwidth case from table 6.7 predicted using the laminar flamelet and eddy-break-up 

model may be seen in figures 6.13 and 6.14 respectively. 

The experimental soot volume fraction and visibility profiles for each case relating to 

the results shown in the table may be seen in figures 3.15 and 3.16. 

Predicted versus experimental results for a vertical traverse in the doorway of the com- 

partment may be seen in figure 6.15 for the 0.25m doorwidth. Two experiments are 

compared which are found to be in close agreement regarding their peak soot volume 
fraction at the top of the doorway. The first experimental traverse was initiated just prior 
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to reaching steady-state and does not reach the plateau which is achieved in the second 

experiment when the compartment has reached steady-state. 

Figure 6.16 shows a soot volume fraction iso-surface. Visualising a 'single-value' soot 

volume fraction in this way helps demonstrate the complex flow-field within the com- 

partment and highlights the existence of significant soot concentration gradients. 

6.4 Convergence 

Global residual values were typically 1x 10-4 for the solved variables, and 1x 10-3 for 

the mass error. However, for each simulation described in this chapter, a corresponding 

set of error residuals is also presented in table 6.8 as indicators of the level of conver- 

gene achieved. It can be seen that using the evaporation model to calculate the heat 

release during the course of computation results in a compromise regarding the accepted 

residual values, which in general represents a factor of almost two difference in absolute 

values compared to the use of a steady-state prescriptive rate of heat release with fixed 

fuel inlet conditions. Difficulty was encountered in setting the minimum residual below 

1E-02, even with the aid of relaxation factors. The minimum error was found to be 

between 1% and 2% for each case compared with 0.01% for all other simulations. The 

time to convergence was in excess of 5000 iterations. 

Simulation Type MassErr Ploin Flout QfloErr QbndErr Enth 

NAF, 371 K flamelet, FS, 0.36m door 2.486E-02 1.520E-01 1.604E-01 5.019E-01 1.051E-03 3.023E-03 

NAF, 371K flamelet, FS, 0.25m door 2.717E-02 2.613E-01 2.63E-01 2.437E-02 6.845E-04 1.848E-03 

NAF, 371K flamelet, FS, 0.15m door 2.571E-02 3.906E-01 4.007E-01 2.121E-02 2.804E-04 2.220E-03 

NAF, 300K flamelet, 0.36m door 1.815E-02 3.90E-01 4.002E-01 3.028E-02 9.993E-06 4.033E-04 

NAF, 371 K flamelet, FS, 32 rays, 0.36m door 3.189E-02 3.283E-01 3.286E-01 7.742E-01 1.108E-03 3.89E-03 

FF(40%), 300K flamelet, FS, 0.36m door 2.336E-02 2.749E-01 2.752E-01 1.181E+00 2.219E-02 8.938E-04 

FF(adiabatic), 300K flamelet, FS, 0.36m door 1.778E-02 3.339E-01 3.338E-01 1.685E+00 6.062E-04 1.019E-03 

Table 6.8: Error residuals for each SOFIE simulation 

The overall convergence criteria for each solution was chosen to be dependent on the 

mass error residual (MassErr), which represents the average mass error over the whole 
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of the solution domain, normalised by the total mass flow into the domain. The mass 

residual parameter is typically used in calculations of the type carried out in this re- 

search. 

Apart from the mass error, SOFIE also computes residual values for all solved variables 

which are relevant to the particular problem. Of particular interest in simulations in 

which heat transfer plays an important part, is that of the enthalpy residual - Enth. 

This value pertains to the average enthalpy error, normalised by the total energy input. 

Floin and Flout are the total mass flows coming into and going out from the domain. 

Continuity requires that the values for these parameters should be nearly equal. QfloErr 

and QbndErr values provide a further check on convergence for enthalpy and radiation 

since the enthalpy residual relates only to the accuracy of its transport equation. QfloErr 

is the ratio of the heat flux imbalance to the total energy input in the fluid, whereas 

QbndErr represents a global imbalance in enthalpy flow, combustion energy and any 

other specified enthalpy sources. 

6.5 Discussion 

Significant advantage is made in the ability to perform room fire simulations simulta- 

neously with the experiments. In general, the simulations of the compartment proved 

to be in broad agreement with the experiments. Grid independent solutions have shown 

that representation of global mechanisms are sufficient to predict macroscopic quanti- 

ties in the compartment and that a high level of burner source detail is unnecessary for 

the parameters which are sought here. Varying the models included during the simula- 

tions allowed a sensitivity analysis to be undertaken. Model comparisons of doorway 

profiles indicate that the eddy break up description overpredicted the level of soot. This 

can be largely explained by the relatively high temperatures when compared to those 

predicted with the flamelet combustion model. The sensitivity of soot concentration to 

temperature has been emphasised throughout this work through both experimental and 
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numerical simulation; see section 5.8 for example. 

The flamelet set which is chosen based upon the local calculation of enthalpy appears 

to be preferable in performing compartment fire simulations. Prediction of soot in the 

full doorwidth scenario shows good agreement, with the peak doorway soot volume 

fraction being underpredicted by around 15%. However, reduction of the doorwidth 

causes divergence between the numerical and experimental results for soot. Although, 

significant advantages in computational expense could be gained by using a fixed loss 

flamelet, the large underprediction of soot proves this approach pointless in the given 

exercise to produce adequate representation of visibility in smoke which is generally an 

order of magnitude or less than that found experimentally. 
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Figure 6.1: ASTM half-scale room geometry 
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Figure 6.2: Mesh used for ASTM room; mirror boundary condition used on z-y plane 
through door centerline; burner at the center of the room highlighted by NAF temper- 
ature distribution; corridor at the end of the room; 21,252 nodes in the room; 44,505 

nodes in total 
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Figure 6.3: Results of multiple flamelet; ASTM room simulation; steady state; ambient 
temperature 300K; temperature distribution (K); streamlines; full doorwidth 
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Figure 6.4: Horizontal velocity; 0.992rn height; 0.23m diameter burner; 0.36m door- 
width 
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Figure 6.5: Total heat flux to the fuel surface at 8 minutes after ignition; 0.17m diameter 
burner; 0.36m doorwidth 
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Figure 6.6: Net radiative heat flux to the fuel surface at 8 minutes after ignition; 0.17m 
diameter burner; 0.36m doorwidth 
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Figure 6.7: Convective heat flux to the fuel surface at 8 minutes after ignition; 0.17m 
diameter burner; 0.36tn doorwidth 
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Figure 6.8: Two dimensional plot of total heat flux to the fuel surface at 8 minutes after 
ignition; 32+1 rays; 0.17m diameter burner; 0.36m doorwidth 
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Figure 6.9: Doorway Temperature Profile; 0.17m diameter burner; 0.25m doorwidth. 
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Figure 6.10: 02 species concentration; 0.17m diameter burner; 0.36m doorwidth 
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Figure 6.12: CO species concentration; 0.17m diameter burner; 0.36m doorwidth 
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Figure 6.13: Temperature Versus Soot Volume Fraction; 0.17m diameter burner; 0.36m 
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Figure 6.14: Temperature versus soot volume fraction; 0.17m diameter burner 0.25m 
door 
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Figure 6.15: Predicted versus experimental soot volume fraction in compartment door 
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Figure 6.17: Mass loss rate distribution to the fuel surface; flush burner; 0. l7m diameter 
burner; 0.36m doorwidth 
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Figure 6.18: Convective heat flux to the fuel surface at 8 minutes after ignition; 32+1 
rays; 0.36m doorwidth 
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Figure 6.19: Net radiative heat flux to the fuel surface at 8 minutes after ignition; 32+1 
rays; 0.36m doorwidth 



Chapter 7 

Discussion and Conclusions 

7.1 Introduction 

Although a number of published materials exist for compartment fire experiments, these 

are conventionally restricted to natural gas as the fuel, with near-field measurements 

largely ignored. Addressing these shortcomings necessitated an in-depth study in which 

the influences of the compartment could be investigated on the 'real' processes that 

occur in room fire, provided by burning a liquid fuel, in this case n-Heptane. 

Chapter 1 introduced the thesis. Focus was directed at defining compartment fires, the 

various stages of fire growth and recent case studies in which a large number of casu- 

alties resulted either directly or indirectly from exposure to smoke. Fire statistics were 

also presented, including the location in which the fire first occurred and the likelihood 

of the fire spreading to other parts of the building. 

Chapter 2 contained a literature review of compartment fires in general terms. A number 

of techniques were also highlighted that are available to measure the concentration of 

smoke. As far as the author is aware, previous to this research, no experimental data- 

set provided results representing the variation in soot concentration within the confines 

of a compartment fire; with reliance on observations made at bench-scale in an open 

183 
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environment, or at points far removed from the fire source, where the products of com- 

bustion are well mixed and significant cooling has already occurred. Current techniques 

used to measure soot concentration were discussed. 

7.2 Compartment fire and open pool fire experiments 

Chapter 3 presented findings from a half-scale room in which liquid heptane was burnt 

as the fuel. The measurements made were designed to validate the CFD code SOFIE. 

To a large extent, the methodological approach to the design of the enclosure fire ex- 

periments has closely followed those typically found in the literature. However, due to 

the need to validate the SOFIE CFD model predictions, the measurements made were 

extended to include a more rigorous investigation of the boundary conditions, which are 

not normally accounted for - e. g., the heat loss from the compartment walls. 

Improved representation of soot was achieved by the design of a novel water-cooled 

probe, introduced in this chapter and capable of monitoring the concentration of soot 

immediately after ignition inside the compartment. The measurements made pertain to 

a pathlength of 150 mm, which is deemed an acceptable compromise between spatial 

resolution and signal to noise ratio. One important characteristic of the probe is its abil- 

ity to be fully traversed during the course of the experiment, with the result of capturing 

soot profiles at multiple measurement points upon reaching steady-state without having 

to repeat experiments. Ultimately, the main motivation behind this work was to uniquely 

map soot distribution at a relatively high resolution. However, because no single depen- 

dant variable exists, a number of additional parameters were also investigated. 

Somewhat transgressional behaviour of soot was observed in the compartment. The 

production of smoke was shown to be extremely sensitive to small changes in environ- 

mental conditions and as a result, large variations in the data may be seen in repeated 

experiments under supposedly identical conditions, as highlighted in section 3.3.11 and 

figures referenced within. At the design stage, one of the main additional advantages of 
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the soot-probe was seen to lie in its ability to traverse during the course of the experi- 

ment. By doing this it was able to mitigate the uncertainties introduced from these subtle 

changes in conditions in repeated experiments. In addition, the timing for the traverse of 

the soot probe itself proved rather critical due to the use of other convenient, more con- 

ventional markers as an indication of steady-state whereupon the probe was traversed. 

Initial results were poor showing in some instances that soot concentration actually de- 

creased with increased layer height. By looking at the correlations between temperature, 

gas species concentration and the level of soot it appeared that two distinct processes 

were occurring in the compartment resulting in a mismatch between steady-state time 

scales for the soot compared with the other measurable quantities. The previous poorly 

described levels of soot concentration were indicative of a traverse made before the soot 

had reached its steady-state. 

This phenomenon was particularly prevalent in regions displaying high levels of local 

spatial instability, such as close to the compartment door. As the probe was inserted 

deeper into the compartment or positioned higher in the hot upper layer where flow 

re-laminarisation may occur, the steady-state time-scales became more evenly matched. 

This research suggests that beyond the near-field region of the burner (in which one 

would anticipate a high degree of correlation between mixture fraction, temperature 

and soot), these mechanisms become de-coupled. 

The location of a surface mounted thermocouple to the base of the burner was intended 

to establish the effects of fuel pre-heating on the level of smoke produced, but proved 

inconclusive. This is mainly due to the inability to separate the effects of room and 

burner pre-heating. It would also be expected that pre-heating of this nature would 

reduce the time for the compartment to reach thermal equilibrium. Future enclosure 

experiments would be best served by using an insulated burner in order to eradicate this 

influence, particularly if it is neglected in the CFD modelling. 

In essence, the subtleties attached to the preferential transportation of soot highlights the 

importance of representing an accurate description of the flow-field, rather than simple 
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prescription by a temperature isotherm to mark its movement, as would be found in 

conventional empirically driven models. Instrument location is therefore critical. CFD 

techniques can provide information on the most suitable locations for making measure- 

ments using in-situ probing techniques outside the regions of large instabilities where 

steep scalar gradients occur. 

The compartment fire experiments also revealed certain trends which were difficult to 

quantify within the confines of the compartment. As a result, open pool fire experiments 

were conducted in order to examine characteristics of the fire in more detail. 

Two burners were used in the compartment fire experiments, the larger 0.23m diameter 

burner was employed in open pool fire experiments due to the requirement for instru- 

mental access. 

7.3 Field modelling 

The simulations performed using SOFIE appear to capture at least the fundamental gov- 

erning processes which occur in a compartment fire. The use of the simple evaporation 

model to predict the compartment fire heat release rate is in excellent agreement based 

on the measured mass loss rate in the compartment and the assumption of ideal com- 

bustion efficiency. The inclusion of this model and the coupling of gas and fuel phases 

is obviously more demanding of the CFD code SOFIE, than is realised using an alter- 

native, more typical approach employing a prescriptive rate of heat release. However, 

localised sharp increases in radiation heat transfer to the fuel surface (endemic of the 

`ray effect' in the radiation model) resulted in unequal mass flow release rates across 

the surface of the fuel. Increasing the number of rays did not increase the accuracy to 

a significant extent. However, the mean rate of fuel release rate did closely match that 

of the experiments and as such the overall heat release rate was found to be in excellent 

agreement. It must be also emphasised that the coarseness of the grid does not warrant 

detailed examination of the burner source - particularly if it is not the intention to cap- 
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ture finely resolved heat transfer mechanisms, such as the enthalpy losses from the pan 

which are neglected in this work. Doorway profiles of temperature and velocity profiles 

in the enclosure door, far removed from the source of heat release also showed good 

agreement using the non-adiabatic flamelet approach. 

The spatial soot distribution trends appear to match that of the experiment, marked 

by complex flow fields which may be seen in figure 6.16 for example, although the 

absolute concentration level of soot is significantly under-predicted with the exception 

of the well-ventilated full-doorwidth case. These figures demonstrate the importance of 

correct siting of optical instruments for measuring soot concentration due to the large 

instantaneous variability over relatively short pathlengths. The effect of this is somewhat 

damped in other more conventional measurements, such as the integrated total heat 

flux, which would be expected to provide complementary measurements to that of soot 

concentration. As previously highlighted in section 5.4, the soot model constants are 

optimised for ethylene in the absence of data for heptane. Further work should include 

laminar flame measurements using heptane as the fuel to calibrate the soot model. 
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Appendix A 

Model Constants 

A. 1 k-E turbulence model 

Cl, = 1.44 

C2E = 1.92 

Cgg =1 

Cl, = 0.09 

Qk=1 

orf=1.3 

A. 2 Mixture fraction variance 

C91 = 2.8 

C92 = 1.25 
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A. 3 Eddy Break Up 

crt = 4.0 

cro = 4.0 

crp = 2.0 

cr, = 6.0 

cr0 = 6.0 
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Appendix B 

Soot Volume Fraction Determination 

B. 1 Extinction Measurements 

The smoke properties of primary interest to the fire community are light extinction, 

visibility and detection. The most widely measured smoke property is the light extinc- 

tion coefficient. The physical basis for light extinction measurements is Bouguer's law, 

which relates the intensity of the incident monochromatic light and the intensity of the 

light transmitted through the pathlength of the smoke by the following equation: 

I 

=- exp ! (l)dl (B. 1) 
Io 

1 

Where ic is the light extinction coefficient. 

Visibility depends on many factors, including the scattering and the absorption coeffi- 

cient of the smoke by the presence of particulates (soot), the illumination of the room, 

whether the sign is light-emitting or light-reflecting and the wavelength of the light. 

Utilization of Bouguer's law for extinction estimates assumes that other certain sim- 

plifying assumptions are met. For example, it is assumed that the scattered light will 

have the same wavelength as the incident light. Although this is not precisely the case, 
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wavelength changes are so small that they can be neglected. A second assumption is 

that the particles act as independent scatterers, that is, the scattering of light by one par- 

ticle does not influence the scattering by another. The third assumption is that of single 

scattering, which is another way of saying that a maximum of one scatter per photon 

is allowed. This assumption implies that Bouguer's law is valid only for thin clouds or 

low concentrations. 

In these experiments a diode laser of A= 670 x 10-9m was used. The size criteria is 

cited as being (21r r/A« 1). Here r is the mean particle diameter and in this case 

gives an upper limit on the particle size of 105nm. 

Under the assumption that soot particles are spherical then the following relationship 

may be assumed: - 

00 
r, =J N7rr2QAbedr (B. 2) 

0 

Another fundamental factor required for consideration of the optical properties of smoke 

aerosols is the particle refractive index, m. The refractive index of a material is defined 

as the ratio of the speed of light in the material to the speed of light in a vacuum. For 

aerosol particles where there is appreciable absorption of radiation as well as scattering 

it is necessary to express the refractive index of a material as a complex number of 

the form m=n -kj. For this research, the complex refractive index was chosen to be 

m=1.89 - 0.44j put forward by Mullins as being relevant to heptane soot [47]. 

Using the Lorentz-Mie theory, the absorption efficiency (QAbs) may be expressed by: - 

48irnkr Qaes - A(4n2k2 + (n2 - k2 + 2)2) 
(B. 3) 

In light of the aforesaid assumptions, equation B. 2 can then be re-arranged: - 
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() _ 
367rnk co 43 

l 
A(4n2k2 + (n2 - k2 + 2)2) 

1 
N3ýrr dr, 

367rnk f v, A(4n2k2 + (n2 - k2 + 2)2) 

=In 
Ill) 

(B. 4) 

Where fv is the soot volume fraction. By using equation B. 4, light extinction measure- 

ments are able to discern soot volume fraction due to the relationship to the measurable 

light intensity ratio. 



Appendix C 

Governing Equations 

The three basic conservation equations to be considered are: 

" Conservation of momentum (Newton's second law) 

9 Conservation of mass (continuity) 

" Conservation of energy (first law of thermodynamics) 

Adding equations of state will allow solution of temperature, T, pressure, P, density, p, 

and the velocity vector u2+vj+wk. For the reacting flows involved with fire, equations 

for the conservation of species are also necessary, as are relations for the transport prop- 

erties such as viscosity, p, for momentum diffusion, and thermal conductivity, K, for 

energy diffusion. 

In the Reynolds Averaged Navier Stokes (RANS) type field models, the basic Navier- 

Stokes equations are averaged in order to obtain values for time-mean flow. The gov- 

erning equations were derived for isothermal incompressible flow, which is not appli- 

cable for flows with large variations in density, such as in the presence of combustion. 

Reynolds averaging therefore when applied to variable density flows introduces a num- 

ber of further averaged correlations which includes the density fluctuation terms. These 
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additional correlations also require modelling leading to a far more complex solution 

procedure. A more convenient description which avoids this complexity is achieved via 

Favre (density weighted) averaging. 

The problem of closure for the averaged equations implies that some model has to be 

introduced for the Reynolds stress tensor and the turbulent scalar fluxes. The most 

commonly-adopted and wide-spread models are based on the eddy viscosity hypothesis 

and the two equation k-e turbulence models which involves two additional partial 

differential equations for the turbulent kinetic energy, k, and the energy dissipation rate 

E. 

C. 1 Conservation of Momentum 

Newton's second law relates the acceleration, a, of a body to the Force, F, acting on it. 

Thus for a particle of mass, m, 

F=ma (C. 1) 

A restatement of the same principle, suitable to applications in fluid mechanics, is the 

momentum principle, which states that the force is equal as a vector to the time-rate of 

change of linear momentum, mu 

F=d-mu (C. 2) 

The above equation for a finite control volume (CV) fixed in space with surfaces (CS) 

can be written as [121]: 

dl' 
pudv =F-J upudA (C. 3) 

cs 



APPENDIX C. GOVERNING EQUATIONS 208 

where dv is a volume element and dA = dAn is the orientated surface with area dA 

and the unit normal vector n perpendicular to the surface and pointing outwards from 

the element. The quantity pudA is the mass flux through an element dA. If udA is 

positive, one has an outflow, whereas, if udA is negative, one has an inflow. 

In conservation form, the equation of motion can be described by the following equa- 

tion: 

a(Pýi) aýPuiu7) 
- 

(ýP /f +--- Tip + Pui uý j+ 5'i (C. 4) 
öt öxj axi äx; 

The first term on the left hand side is the rate of change (increase) of momentum with 

time in the control volume and the second term represents the convective momentum 

loss per unit volume through the surface of the control volume. On the right hand side, 

the penultimate term accounts for the surface forces (normal and shear forces resulting 

from the flow field) on a per unit volume basis and includes the normal and shear stress 

tensor, r. Momentum sources (sinks) conclude the equation which include the body 

forces which act through the entire control volume. For the purposes of this work, 

gravity is the only body force that is considered. 

The components of the combined stress tensor, Qty are: 

Tii Tij Tik 

aij - 

(Tui 

Tjj Tjk (C. 5) 

Tki Tkj Tkk 

where each stress term is located in a plane perpendicular to the direction specified by 

the first subscript and acts in a direction indicated by the second subscript. The diagonal 

terms with the repeated indices are thus normal stresses, while the six remaining off- 
diagonal terms represent the shear stresses. Since the stress tensor is symmetric: T; j = 

Tji, Tjk = Tkj and Tik = Tki, only six independent terms result. 

Symmetry is required to prevent the angular acceleration for a fluid parcel from going 
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to infinity as the volume approaches zero. 
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Pressure and stresses act upon the surface of the control volume resulting in a micro- 

scopic momentum flux across the surface. Assuming that a linear dependence between 

stress and rate of strain provides a path for relating the stress terms in Equation C. 5 to 

the flow field for the molecular rate of transport of momentum: 

O"sj = -P6ij +µ äx; + axiý + bi,,, a9uk xe (C. 6) 

where µ is the coefficient of viscosity, At is the second coefficient of viscosity and 8aß 

takes a value of 1 along the diagonal(i=j) and a value of 0 for off diagonal terms (ij). 

The advantage of using a momentum equation in conservation form is that global mo- 

mentum conservation (no artificial sources or sinks created) can be satisfied. 

It is an unnecessary duplication to provide a derivation of the Navier-Stokes equations 

here, which can be found in many text books (e. g Schlichting [1.22]. 

C. 2 Conservation of Mass 

The continuity equation in conservation form for an infinitesimally small fluid element 

fixed in space is: 

ap a(pu) a(pv) a(pw) 
-0 at + ax + ay + az - (C. 7) 

which describes the rate at which density in the element increases plus the mass flux 

through the surface of the element must equal zero (assuming no sources or sinks). 

Using index notation, Equation C. 7 for cartesian coordinates is: 

N+ 
aý `j) 

=0 (C. 8) 
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The Favre-averaged form of the governing equation is: 
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a(T) + auj) 
=0 (C. 9) äx 

The restriction introduced by Boussinesq assumes that density variations may be ne- 

glected, that is held constant, with the exception of buoyancy (gravity terms). This 

assumption requires that the density be much larger than the local differences. In addi- 

tion, a linear relationship between temperature and density is assumed for the evaluation 

of the buoyancy term. 

C. 3 Conservation of Energy 

Applying the first law of thermodynamics representing the change in internal energy, E, 

and work, W, done by the addition of heat, Q, to a control volume 

dQ 
=-+- 

dE dW 
(C. 10) dt dt dt 

to an infinitesimal element provides the starting point for the energy equation based on 

enthalpy 

a (ph) + a(pujh) 
= 

ap 
- 

aqj + PUjf. 9 +a (ý`iorzj) + SE (C. 11) at a xi (fit a (9xj 

The two terms on the left hand side of equation C. 11 represent the rate of increase in 

enthalpy per unit volume and the enthalpy per unit volume transferred by convection 

through the control surface. On the right hand side, this equals the sum of the rate of 

change of static pressure, heat transfer through the surface by temperature and concen- 

tration gradients, work done by body and surface forces and finally energy sources such 

as energy generation and radiation absorption-emission. Potential and kinetic energies 
for fires will be considered small (zero) when compared to the enthalpy of the fluid. 
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The d(uý ") term is a dissipation function which represents the conversion of mechan- 

ical energy into heat as a result of viscous surface losses due to fluid motion. Since 

fire velocities are generally low, viscous dissipation can be dismissed as very small. 

Simplifying equation C. 11 yields: 

a (ph) + a(puj h) 
= 

ap 
- 

aqj + SE (C. 12) axj at (97xj 

Turning to the gradient term, it represents the transfer of energy through the surface by 

conduction and molecular diffusion of species with different enthalpies: 

aqj 
__ 

a4co,,, di + 
agdzff,, 

(C. 13) äxß äxß Öxi 

Fourier's law is used for the heat conduction formulation: 

qcond = -k 
OT (C. 14) 

Energy exchange due to concentration gradients between n different species (Dufour 

effect), although small, is given for species a by: 

n aYa 
qdiff =-r,, ha 

ax (C. 15) 
a 

Where r is the molecular diffusion coefficient. Ya is the species mass fraction and ha 

is the enthalpy of species. Substituting into equation C. 12 yields: 

a (ph) d (pu2h) 
_ 

Op a aT n t9 at + ax; -& axj -käx, - rah, ax; + SE (C. 16) 
a 

This version of the energy conservation relation is coupled to the conservation of species 

through both the conduction and concentration gradient terms. Radiation is included as 

a source. 
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The conservation equations outlined above are formulated for a continuous domain. The 

first step in solving the set of non-linear PDEs is to replace the continuous formulations 

with algebraic approximations (differences) to the derivatives which are evaluated at a 
discrete number of locations (grid nodes). 


