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Abstract

Most of the available methods for selection of input-output pairings for decentralized control require evaluation of all alternatives
to find the optimal pairings. As the number of alternatives grows rapidly with process dimensions, pairing selection through
an exhaustive search can be computationally forbidding for large-scale processes. Furthermore, the different criteria can be
conflicting necessitating pairing selection in a multiobjective optimization framework. In this paper, an efficient branch and
bound (BAB) method for multiobjective pairing selection is proposed. The proposed BAB method is illustrated through
a biobjective pairing problem using selection criteria involving the relative gain array and the µ-interaction measure. The
computational efficiency of the proposed method is demonstrated by using randomly generated matrices and the large-scale
case study of cross-direction control.
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1 Introduction

Decentralized controllers are widely used in process in-
dustries. The selection of input-output pairings is a key
step in the design of decentralized controllers. In some
cases, pairings can be selected based on process knowl-
edge and heuristics. For interacting multivariable pro-
cesses often encountered in industries [1], however, sys-
tematic tools are needed to complement the engineering
insights. During the past few decades, a number of use-
ful tools have been developed for selection of appropriate
pairings [31,33]. Most of these tools require evaluation
of all alternatives to find the optimal pairings. The large
number of pairing alternatives (n! for an n× n process)
makes pairing selection through an exhaustive search
computationally forbidding for large-scale processes.

For efficiently selecting pairings based on a single cri-
terion, genetic algorithms [13] and mixed integer linear
programs (MILP) [18] have been used. Different crite-
ria, however, address different properties of the closed-
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loop system and are often conflicting in nature [5]. This
conflict necessitates pairing selection in a multiobjective
optimization framework such that the practicing engi-
neer can select the appropriate pairings from the Pareto-
optimal set by trading-off different criteria.

Multiobjective pairing selection has not been considered
in the literature earlier. Closely related multiobjective
problems like controllability analysis [9], combined vari-
able and pairing selection [23], and integrated design
and control [26] have been addressed using weighted sum
and ε-constraint approaches. A drawback of these ap-
proaches is that the choice of weights and constraint lim-
its is non-trivial [27]. Furthermore, the Pareto-optimal
set obtained using the weighted sum approach is not
necessarily complete [10]. Homotopy techniques [29] can
overcome the former limitation, but are only applica-
ble to biobjective problems. Recently, evolutionary al-
gorithms (EAs) [10] have been applied to solve vari-
ous multiobjective control system design problems, see
e.g. [12,30]. Although useful for obtaining practical so-
lutions, EAs do not guarantee global optimality.

Branch and bound (BAB) methods can provide glob-
ally optimal solutions for combinatorial problems [11].
Recently, the usefulness of BAB has been demonstrated
for solving various single-objective problems related to
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the selection [2,6,8,19–21] and analysis [17,34] of con-
trol structures. In the area of multiobjective combina-
torial optimization, BAB methods have been used for
solving MILPs [28] and subset selection problems [32].
Multiobjective permutation problems have only been
solved using BAB method by converting the problem
to a single-objective problem, e.g. using weighted sum
method [4,25]. The main contribution of this paper is
the development of a BAB framework to directly handle
the multiobjective nature of the permutation problem,
for which the pairing problem is a special case.

The proposed BAB framework is general and can handle
most of the available pairing selection criteria simulta-
neously. In this paper, we consider a biobjective problem
with selection criteria involving the relative gain array
(RGA) [3] and the µ-interaction measure (µ-IM) [14] to
illustrate the usefulness of the proposed approach. For
pruning, we derive a number of lower bounds on these
criteria. Furthermore, efficient pruning conditions are
proposed for the µ-IM to avoid the evaluation of the
expensive lower bound. This novel feature significantly
improves the computational efficiency of the BAB ap-
proach. We use random matrices as well as the large-scale
case study of cross-direction control [24] to demonstrate
the computational efficiency of the proposed method.

Notation: The unordered and ordered sets consisting of
elements a and b are denoted as {a, b} and (a, b), respec-
tively. We define Nn as the set of first n natural num-
bers, i.e. Nn = {1, 2, · · · , n}, where the subscript n de-
notes the size of the set. P(Xn) represents the ensemble
of all possible permutations of the elements of Xn. For
A ∈ Cn×n and Pn ∈ P(Nn), APn denotes the permuted
matrix obtained from A by indexing the columns with
Pn. G(s) denotes the transfer function matrix relating
the inputs u and outputs y of the process. G(s) evalu-
ated at the frequency ω and steady-state are represented
as G(jω) and G, respectively. For given Pn, the pairings
are selected on the diagonal elements of GPn

.

2 BAB for Multiobjective Permutation Prob-
lems

Multiobjective permutation problems like pairing selec-
tion, flowshop scheduling [25], data seriation [4] and
travelling salesman problem [15] involve solving

min
Pn∈P(Nn)

[
J1(Pn), J2(Pn), · · · , Jm(Pn)

]T
(1)

s.t. Li(Pn) ≤ 0; i = 1, 2, · · · , ` (2)

where J1, J2, · · · , Jm are the m selection criteria and
L1, L2, · · · , L` denote the ` constraints. The non-
dominated solutions of (1)-(2) construct the Pareto-
optimal set P, where every pair of P in, P

j
n ∈ P satisfy

∃s, t ∈ Nm : Js(P in) < Js(P jn), Jt(P in) > Jt(P jn) (3)

To solve the optimization problem in (1)-(2), BAB
branches the problem into several non-overlapping sub-
problems. A sub-problem is pruned, if all solutions of
the sub-problem are dominated by a member of P,
else the sub-problem is branched further. Whenever
an n-element solution is reached, which is also Pareto-
optimal, P is updated using (3). The pruning of non-
optimal subproblems allows BAB to gain efficiency in
comparison with exhaustive search. Next, we provide
further details of branching and pruning.

Fig. 1. Solution tree for n = 3

Branching. The implementation of BAB schemes re-
quires a solution tree containing all possible alternatives.
A node in the solution tree is denoted as as a 2-tuple,
i.e. S = (Ff , Cc). Here, the fixed set Ff is an ordered set
with f elements selected from Nn and denotes a partial
solution. The candidate setCc = Nn\Ff is an unordered
set, whose elements can be freely chosen to append Ff .
The solution tree is branched as follows:

Definition 1 For a node S = (Ff , Cc) with Cc = {ci},
the fixed and candidate sets of the ith sub-node
Si = (F if+1, C

i
c−1), i = 1, 2, · · · , c are defined as

F if+1 = (Ff , ci) and Cic−1 = Cc \ ci.

The solution tree branched based on Definition 1 has (n+
1) levels. The label of a node denotes the element being
moved from Cc to Ff . The n! terminal nodes (marked
by grey circles in Figure 1) represent different solutions
Pn ∈ P(Nn).

Proposition 2 Every terminal node of the solution tree
branched based on Definition 1 belongs to one and only
one branch.

Proposition 2 implies that the solution tree is complete
and non-redundant. The completeness of the solution
tree ensures global optimality of the solution, whilst non-
redundancy is important for efficiency of BAB.

Pruning. Let the ensemble of all n-element ordered sets,
obtained by expanding Ff of node S = (Ff , Cc), be

S = {(Ff , Pn−f )|Pn−f ∈ P(Cc)} (4)

Let J i(S) be a lower bound of Ji, calculated over all
the elements of S, i.e. J i(S) ≤ Ji(Pn) for all Pn ∈ S.
If ∃P jn ∈ P, where P is the current Pareto-optimal set,
such that J i(S) ≥ Ji(P jn) with strict inequality occur-
ring for at least one i ∈ Nm, then S cannot contain
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any Pareto solutions and hence can be pruned without
any evaluations. Pruning can be performed similarly if
Lk(S) > 0 for k ∈ N`, where Lk(S) < Lk(Pn) ∀Pn ∈ S.

3 A Biobjective Pairing Selection Problem

The proposed BAB framework can be applied to solve
the multiobjective pairing selection problem. In this
case, level i in the solution tree shown in Figure 1 rep-
resents output yi and the label of the node corresponds
to the input with which yi is paired. To illustrate the
proposed BAB method, we consider a biobjective pair-
ing problem with selection criteria involving the RGA
and the µ-IM. The BAB method can be easily extended
to handle other selection criteria; see [19] for details.

3.1 Relative Gain Array

For G(jω) ∈ Cn×n, the RGA is defined as [3,31]

Λ(jω) = G(jω) ◦G−H(jω) (5)

where ◦ represents the Hadamard product. For pairing
selection, the following rules are often used [31]:

(1) Avoid pairings on the negative elements of Λ(0).
(2) Prefer pairings such that ΛPn

(jωB) is close to the
identity matrix, where ωB is the (expected) band-
width frequency.

The first rule is a necessary condition for integrity of the
closed-loop system against loop failure [22]. The second
rule is based on interpreting the RGA as an interaction
measure. Pairings can be selected according to the sec-
ond rule by minimizing the RGA-number defined as [31]

RGA-number(ω) = ‖ΛPn(jω)− I‖sum (6)

where ‖ · ‖sum is the sum-norm [31].

3.2 µ-Interaction Measure

The decentralized controller K(s) is often designed us-
ing the independent design method [31]. In this method,
controller design can be viewed as being based on G̃(s),
which consists of the diagonal elements ofGPn(s). When
the µ-IM condition is satisfied, i.e. [14]

σ̄
(
T̃ (jω)

)
< µ−1

∆ (E(jω)) ∀ω ∈ R (7)

any K(s) stabilizing G̃(s) also stabilizes GPn
(s). In (7),

µ denotes the structured singular value [31] computed
with a diagonal ∆, T̃ (s) = G̃K(s)(I + G̃K(s))−1 and

E(s) =
(
GPn(s)− G̃(s)

)
G̃−1(s) (8)

It follows from (7) that if pairings are chosen such that
µ∆ (E(jω)) is small at all ω, the restrictions on design-
ing K(s) using independent design method is minimum.
µ∆ (E(jω)) is also a measure of generalized diagonal
dominance, where GPn(jω) is said to be generalized di-
agonally dominant if µ∆ (E(jω)) < 1 [31]. A pairing, for
which µ∆ (E(jω)) < 1, can be easily found using the it-
erative RGA [31]. In absence of existence of such a pair-
ing, a BAB method can be used to find the pairing for
which GPn

(jω) is closest to being diagonally dominant
in the sense that µ∆ (E(jω)) is as close to 1 as possi-
ble. As the exact computation of µ is computationally
intractable, we instead minimize the upper bound on µ
(denoted as µ̄) obtained through D-scaling method [31].

3.3 Lower Bounds on selection criteria

Without loss of generality, we consider pairing selection
by minimizing the RGA-number and µ̄∆ (E) evaluated
at steady-state, which requires solving

min
Pn∈P(Nn)

[
‖ΛPn

− I‖sum, µ̄∆

(
GPn

(I ◦GPn
)−1 − I

)]T
(9)

s.t. [ΛPn ]ii > 0; i = 1, 2, · · · , n (10)

For pruning, BAB method requires lower bounds on the
RGA-number and the µ−IM, calculated over S in (4),
which are presented next.

Proposition 3 For a node S = (Ff , Cc), let

M = |Λ− 1nn| − |Λ| =

[
M11 M12

M21 M22

]
(11)

where 1nn is an n × n matrix of 1’s and, M11 ∈ Rf×f
and M22 ∈ Rc×c, respectively. Then,

min
Pn∈S

‖ΛPn − I‖sum ≥ ‖Λ‖sum + trace(M11)

+ max

 c∑
i=1

min
j

[M22]ij ,
c∑
j=1

min
i

[M22]ij

 (12)

The bound in (12) is tight and becomes exact, if
minj [M22]ij occurs for different j for every i ∈ Nc or
mini[M22]ij occurs for different i for every j ∈ Nc.

Proposition 4 Consider a node S = (Ff , Cc). Let

E = GPn(I ◦GPn)−1 − I =

[
E11 E12

E21 E22

]
(13)

where E11 ∈ Rf×f and E22 ∈ Rc×c. Then

min
Pn∈S

µ̄∆ (E) ≥ µ̄∆1 (E11) ≥ max
D∈D

ρ(E11D) ≥ ρ (E11)(14)
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where ∆ = diag(∆1,∆2), ρ is the spectral radius and D
is the set of all diagonal matrices with elements ±1.

Although µ̄∆1 (E11) is tighter than other lower bounds
presented in (14), its computation is costly. As a BAB
method spends most of its time in evaluating non-
optimal nodes, the use of computationally cheaper
albeit weaker lower bound ρ (E11) provides a more ef-
ficient BAB method. We further note that for pruning
purposes, computing lower bound is not necessary and
it suffices to establish whether expansion of a node can
lead to the optimal solution. With this insight, we derive
computationally cheaper pruning conditions next.

Lemma 5 For a matrix A ∈ Rn×n and scalar B > 0,

det(BI −A) ≤ 0⇒ ρ(A) ≥ B (15)
det(BI +A) ≤ 0⇒ ρ(A) ≥ B (16)

Proposition 6 Let Si, i = 1, 2, · · · , c, be the sub-nodes
of the node S = (Ff , Cc) and

Ei11 =

[
E11 E

i
12

E21 0

]
(17)

where E11 ∈ Rf×f , Ei12 ∈ Rf×1 and E21 ∈ R1×f are
defined based on the definition of E in (8). For B > 0,

|E21(BI − E11)−1Ei12| ≥ B ⇒ µ̄∆1

(
Ei11

)
≥ B (18)

|E21(BI + E11)−1Ei12| ≥ B ⇒ µ̄∆1

(
Ei11

)
≥ B (19)

The main computational load in using (18) and (19) is
evaluation of (BI − E11)−1 and (BI + E11)−1, respec-
tively, which needs to be carried out only once for all
c sub-nodes. Thus, in comparison with computation of
ρ (E11), the use of these conditions is more efficient, es-
pecially when c is large. These conditions, however, are
derived considering the µ-IM as the only selection cri-
terion. The next proposition allows embedding of these
pruning conditions into the biobjective BAB algorithm.

Proposition 7 Let the vectors BΛ and Bµ contain the
RGA-number and µ-IM values of the current Pareto-set
P, respectively. For the node S = (Ff , Cc), let bΛ be the
lower bound of the RGA-number calculated using (12).
For the subset of P defined as P̃ = {Pn ∈ P|BΛ(Pn) ≤
bΛ}, let B = maxPn∈P̃ Bµ(Pn). Then, if µ∆(E11) ≥ B,
all n-element solutions of S are dominated by at least one
member of P and hence can be pruned.

Proposition 7 implies that pruning can be carried out us-
ing (18) and (19) with B = maxPn∈P̃ Bµ(Pn). The con-
straints in (10) provide additional conditions for prun-
ing nodes. These constraints only need to be checked for
the element being moved from Cc to Ff during node ex-
pansion using the branching rule given in Definition 1.

4 Numerical Tests

The efficiency of the BAB method is demonstrated
through numerical studies, which are carried out on a
notebook with Intelr CoreTM Duo Processor T2400
(1.83 GHz, 2MB RAM) using MATLABr 2007b [7].

4.1 Random matrices

The efficiency of the BAB approach is first examined us-
ing 1000 n×n random matrices for every n between 3 and
15. Elements of these matrices are normally distributed
with zero mean and unit variance. The average compu-
tation times and number of node evaluations required
by BAB algorithm are shown in Figure 2. For compar-
ison, the computational time of a brute force search is
estimated by multiplying n! with the time required for
evaluating the RGA-number and µ-IM of an n× n ma-
trix. Figure 2 shows that the BAB approach can easily
handle matrix sizes as large as n = 15 within 3 minutes,
whilst the brute-force search can only deal with n up to
8 within the same time. For n = 15, the average number
of nodes evaluated and average solution time required by
the BAB approach are 7 orders of magnitude lower than
brute-force search showing computational efficiency.
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Fig. 2. Random tests for pairing n× n systems: (a) compu-
tation time and; (b) number of nodes evaluated

For 3 ≤ n ≤ 15, the following empirical relationship
estimates the variation of average computation time (t)
of the BAB method reasonably well

ln(t) = −6.5 + 0.2n+ 0.037n2 (20)

The exponential complexity indicates that the BAB al-
gorithm is not able to overcome the NP-hard nature of
the problem. For the randomly generated matrices, how-
ever, the worst-case computation times and number of
node evaluations differ only by factors of 5 – 15 from
their average values; see Figure 2. This observation high-
lights that the proposed BAB method can be used for ef-
ficiently solving most problems of practical interest. Fur-
thermore, due to the sparsity of the models of industrial
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Fig. 3. Pareto-optimal set for CD control

processes, the efficiency attained by the BAB method
is significantly better than seen for random matrices, as
demonstrated next.

4.2 Cross-direction control problem

CD control is important in paper manufacturing to
maintain paper quality, and to reduce raw material and
energy consumptions [24,35]. The large dimension and
presence of strong interactions makes the selection of
the best pairings difficult for decentralized CD control.

The gain matrix of the CD response model is a
sparse “banded symmetric” matrix parameterized by
p1, p2, · · · , pr, where r is the number of interaction lev-
els [24]. Among several models summarized in [24], the
case with r = 7 and n = 20 is considered in this work,
where p1, p2 · · · , p7 are 1, 1.3, 0.8, −0.6, −0.3, 0 and
−0.1, respectively. As µ̄∆(E) is infinite, when pairings
are selected on a zero element of G, this process has
619 ≈ 6.09× 1014 valid pairing alternatives. Evaluation
of the RGA-number and the µ-IM for a 20 × 20 sys-
tem takes about 2 ms on the aforementioned notebook.
Thus, brute force search would require approximately
4.3×104 years to solve this problem. In comparison, the
BAB algorithm finds the Pareto-optimal set containing
55 pairing alternatives, shown in Figure 3, in about 5.5
minutes through evaluation of 2.83 × 105 nodes. Note
that due to the non-convexity, not all Pareto-optimal
pairings can be found by a weighted sum approach.

5 Conclusions

Closed-loop performance of decentralized controllers
greatly relies on the selected pairings. Efficient methods
are needed to address the combinatorial difficulty and
conflicting nature of different selection criteria. It is the
first time that a general multiobjective formulation of
the pairing problem is proposed. This paper also ap-
pears to be the first to present a BAB framework to

directly handle the multiobjective nature of permuta-
tion problems such as pairing selection. The proposed
BAB method can handle most of the available pairing
selection criteria simultaneously. For the biobjective
problem with the RGA-number and the µ-IM as the se-
lection criteria, a number of lower bounds and efficient
pruning conditions have been derived. Numerical tests
show that a reduction of several orders of magnitude
in solution time over brute-force search is achieved by
the proposed BAB algorithm. The case study of CD
control indicates that the BAB approach is practically
applicable to large-scale industrial problems. Future
work will focus on derivation of tighter lower bounds
and alternate pruning strategies in order to improve the
efficiency further. In addition, the development of an
evolutionary algorithm and comparison of its efficiency
with the proposed BAB algorithm will be pursued.
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Appendix: Proofs

Proof of Proposition 2. For S = (Ff , Cc), let (Ff , ci)
and (Ff , cj) be the fixed sets of Si and Sj , respectively.
Since ci 6= cj , S(Si)

⋂
S(Sj) = ∅ for S in (4). Thus,

every terminal node belongs to only one branch. Now,
the number of terminal nodes of S is the same as the
sum of the number of terminal nodes nodes of all its sub-
nodes. As all terminal nodes are distinct, every terminal
node must belong to at least one branch. 2

Proof of Proposition 3. Note that ‖Λ − I‖sum =
‖Λ‖sum + trace(M11) + trace(M22), where ‖Λ‖sum and
trace(M11) are the same ∀Pn ∈ S. The result follows
as ∀Pn ∈ S, trace(M22) ≥

∑c
i=1 minj [M22]ij , and

trace(M22) ≥
∑c
j=1 mini[M22]ij . 2

Proof of Proposition 4. For any Pn ∈ S, µ̄∆ (E) ≥
µ̄∆1 (E11) and µ̄∆1 (E11) = maxU∈U ρ(E11U), where U
is the set of all diagonal unitary matrices [31]. Now, the
result follows as D ⊂ U and I ∈ D. 2

Proof of Lemma 5. Note that det(BI − A) =∏n
i=1 λi(BI − A) and λi(BI − A) = B − λi(A), where

λi(·) denote the eigenvalue. If det(BI − A) ≤ 0,
λi(BI − A) < 0 and thus λi(A) > B for some i ∈ Nn
implying (15). Similarly, when det(BI + A) ≤ 0, for
some i ∈ Nn, λi(BI + A) = B + λi(A) < 0 and thus
−λi(A) > B or |λi(A)| > B implying (16). 2

Proof of Proposition 6. Based on (14), µ̄∆1

(
Ei11

)
≥

B, if ∃D ∈ D such that ρ(Ei11D) > B. Let D =
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diag(If , dj), where dj = ±1. Now, det
(
BI − Ei11D

)
=

det (BI − E11) (B − βidj) [16], where βi = E21(BI −
E11)−1Ei12. Therefore, when maxdj βidj = |βi| ≥ B ei-
ther det

(
BI − Ei11

)
≤ 0 or det (BI − E11) ≤ 0. Based

on Lemma 5, in either case, µ̄∆1 (E11) ≥ B, which proves
(18). The proof of (19) is similar and is omitted. 2

Proof of Proposition 7. For P ∗n ∈ P, let B = Bµ(P ∗n).
Since bΛ ≥ BΛ(P ∗n), if µ∆(E11) ≥ B, S and its sub-nodes
are dominated by P ∗n , and hence can be pruned. 2
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