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Abstract

Most of those techniques used for the measurement of elastic coefficients for bulk 
piezoelectric ceramics are not applicable to films deposited on thick substrates 
because the measured properties, such as the resonant frequency, are usually 
dominated by the presence of the thick substrate. This work presents a preliminary 
study for the application of Alemany et al. automatic iterative method to the 
determination, from complex impedance measurements, of the film properties using a 
conventional self-supported cantilever design used in MEMS applications and 
fabricated from a PZT thick film on Si-based substrate. 

1. Introduction

The resonance method for bulk piezoceramic characterization in the linear range is a 

commonly used technique developed long time ago and for which numerous Standars 

has been issued1,2. This method allows to determine a number of material coefficients 

from the measurement of the frequency dependence of the complex impedance at the 

electromechanical resonance modes of ferro-piezoelectric ceramics with given 

geometries. Iterative3,4 and fitting methods of analysis of the impedance spectra have 

been developed to provide and alternative to the limitations of the Standard 

calculation methods concerning the characterization of high loss and low sensitivity 

ferro-piezoelectric ceramic materials. 

In the automatic iterative method developed at ICMM-CSIC the material data is 

determined by solving a set of non-linear equations that results when experimental 

impedance data at a number of frequencies are introduced into the appropriate 

analytical expression of the wave equation for a given electromechanical resonance 

mode. This set of equations is established for as many frequencies, which are 

automatically selected by the program, as unknown coefficients. Solution is carried 

out by an iterative numerical method3,4.
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Such analytical expression are valid for sample geometries with given aspect ratios, 

which allows exciting uncopled modes. Regular sample geometries are recommended 

for the use of this characterization method and extreme care shall be taken to 

determine accurately the dimensions and density of the samples, required for the 

accurate determination of the complex material parameters.

It is worth noting that four resonance modes, that can be measured using three sample 

shapes (thickness-poled thin disk, thickness-poled shear plate and long rod or bar), are 

enough to get the full set of independent parameters (2 dielectric (S
11 and S

33 ), 3 

piezoelectric (d33 d31 and d15)and 5 elastic (sE
11, s

E
12, s

E
33, s

E
13, s

E
44)) that characterizes 

a ferro-piezoelectric poled ceramic material (6mm symmetry). Iterative methods were 

developed for all these resonance modes, which allowed a consistent and accurate 

matrix characterization of this type of materials5.

Since most of the ferro-piezoceramic thin and thick films also have such 6mm 

symmetry, in principle this method can be extended also to the film characterization. 

However, in fact they are not applicable to thin films deposited on thick substrates 

because the measured properties, such as the resonant frequency, are usually 

dominated by the presence of the thick substrate and their analytical treatment is not 

straightforward6. This work presents a preliminary study for the application of 

Alemany et al. automatic iterative method3,4 to the determination, from complex 

impedance measurements, of thick and thin film properties, using a conventional self-

supported bending cantilever design used in MEMS applications and fabricated from 

a PZT film on Si substrate6. 

2. Experimental

2.1.Self-supporting Piezoelectric Cantilevers from Thick Films

The substrate for the fabrication of the freestanding Pb1.2(Zr0.52Ti0.48)O3 cantilevers 

was a 350 µm thick double side polished <100> silicon (Si) wafer, with surface oxide 

(SiO2) of 200 nm thickness.  The initial processing step was to prepare the wafer for 

the growth of the piezoelectric layer, this involved the prevention of lead diffusion 

into the Si wafer through the bottom electrode, which can form a liquid phase lead 

silicate at the annealing temperatures used for the piezoelectric (~720°C), with the use 
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of a 60 nm thick zirconium oxide layer (ZrO2).  The ZrO2 was deposited with a sol-

gel method where a solution is prepared from 47 ml of ethanol anhydrite at 99.9%, 

3ml acetic acid and 4.344 g of zirconium propoxide, all of which are measured under 

an N2 ambient atmosphere.  The chemicals were then combined and stirred for 60 

minutes.  The three layers of ZrO2 each of which were dried at 200ºC and pyrolised at 

350ºC, before subsequent crystallisation of the complete ZrO2 layer was performed in 

a rapid thermal annealer (RTA) at 800˚C.  The wafer was platinised using sputtering 

in a Nordiko RF/DC sputtering machine, 8 nm of RF sputtered Ti was used as an 

adhesion layer for the 100 nm thick DC sputtered Pt to act as a the bottom electrode.

The thick film lead zirconate titanate (PZT) is composed of a composite slurry 

containing Ferroperm PZ26 PZT powder mixed with PZT sol to create the bulk of the 

PZT layer, which due to its high porosity is infiltrated with a PZT sol diluted with 2-

Methoxy-Ethanol with a 1:1 ratio to increase densification to 7,07 g/cm3.  The process 

to deposit a complete layer of PZT uses two depositions of the PZT slurry, with 4 four 

sol infiltration steps giving a ‘layer’ thickness of 3.4 μm.  Each component of the 

‘layer’ of the PZT slurry and sol infiltration is deposited onto the substrate in a cyclic 

process which includes drying at 200˚C and Pyrolosis 450˚C of the PZT film to 

provide the required total thickness in our case around 10 µm, prior to sintering in a 

box furnace at 720˚C.  A lift-off lithography process incorporating LOR2A and S1818 

resists was used to deposit a patterned top electrode with the same parameters as the 

bottom electrode.  Following the deposition of the top electrode and subsequent lift 

off, the wafer was RF sputter coated with a blanket layer of gold 200 nm thick, a 2.5 

µm thick resist mask was patterned upon the gold layer using the image reversal resist 

AZ5214E to provide a mould.  1 µm of nickel was then electroplated into the resist 

mould which was then stripped giving a hard metal mask for the deep reactive ion 

etching (DRIE) of the PZT film7  After the etch of the PZT, the hard mask was 

removed by wet etching the nickel in ferric chloride, and removing the gold in 

potassium iodide and iodine.  The wafer was then patterned using AZ4562 resist to 

RIE etch the bottom electrode and the surface oxide with Ar and CHF3, O2 gasses 

respectively.  After this the wafer was patterned on the back face using the same 

image reversal technique as the front to allow the sputter deposition and subsequent 

lift off of a 100 nm thick aluminium layer which acts as the hard mask for DRIE 

through the Si wafer to release the dies.  The final step is the O2 ashing of the 
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protective resist on the front of the wafer and chemical cleaning using acetone and 

isopropanol alcohol. The devices obtained for this study are shown in Figure 1. 

2.2. Impedance measurements

A special measurement cell was fabricated for the purpose of accurate connection to 

the conducting paths of the devices and testing under reduced pressure conditions 

(below 1bar) the evolution of the resonance spectra (Figure 2). Measurements were 

carried out using an HP4192A LF impedance analyser.

The first fact to take into account for this measurements is that the measuring voltage 

must be fixed so as to stablish a linear range. Figure 3 shows the evolution of the 

measured resistance and impedance for the L26 device as a function of the voltage 

applied to the sample. Asymmetric peaks are found for 50mV or higher. Such an 

effect is well know as to be due to non-linear behaviour and has also been observed in 

ceramics under 50 V of excitation8.  

The second fact that must be considered is the ocurrence of coupling between 

resonance modes, since the method under study is only valid for single modes. Figure 

4 shows the resistance, R, and conductance, G, at the resonances of devices L10 and 

L26. Whereas the spectrum for L10 shows three peaks, corresponding to three modes 

of vibration, the L26 device shows an uncoupled unique mode of resonance.

2.3 Analysis of modes of resonance and principles for the calculation

The identification of the mode of movement of the resonance to be used for the 

parameters calculation is a crucial issue for the validity of the method.To determine 

the mode of motion FEA simulation of the cantilevers was made using ATILA 

software (9) and a three-dimentional harmonic analysis. Due to the symmetry of the 

system, only one half of the device was modelled to reduce the calculation time. 

Bending motion of L28 was found at 775 Hz, whereas a pure length extensional mode 

was found at 292 kHz and a coupled torsional movement and wavy length extensional 

mode was found at 325 kHz. Similar behaviour was found for L10, at higher 

frequencies since the cantilever length is lower (Figure 4(a)). Such modes of 

resonance are very close in frequency and coupling can be expected, thus are not 

optimum for the calculation of the film parameters by the method here studied. 
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Bending motion of L26 was found at 2260Hz, whereas at 488 kHz a pure length 

extensional mode is found. Thus the resonace R and G peaks shown in Figure 4(b) are 

identified as the lenght extensional mode of the cantilever L26.

Alemany et al. developed an automatic iterative method for piezoceramic 

characterization that provides the values of T
33 , sE

11 and d31, as well as the 

electromechanical coupling factor k31, from the impedance measurements at the length 

extensional mode of a thickness poled long bar3, which can be used for the purpose of 

characterization from the mode shown in Figure 4(b). For the thickness poled 

cantilever (/4 wave resonator) we have a lenth extensional mode of motion with a 

node at one edge, where the cantilever is fixed to the substrate, and maximum 

amplitude at the other edge. The distribution of strain in the cantilever was obtained 

by FEA and it is shown in Figure 5(a). A thickness poled bar of double lenght and 

double capacitance of the cantilever ones will have a node at the center and maximum 

amplitudes at both ends (/2 wave resonator), as FEA results in Figure 5(b) shows. 

Both resonators share contour conditions and the analytical expression and resonance 

frequency is the same for both. Making appropriated geometric corrections it is 

possible to calculate the material parameters of the cantilever for the mentioned mode 

using the software of the Alemany method for the length extensional resonance of 

thickness poled bar.

3. Results and discussion

The above mentioned calculation was made for the L26 device from the 

measurements at the verge of the linear range, 10 mV input signal, determined after 

measurements in the range of 5 to 100mV (Figure 3). The results of the calculated 

parameters and the coupling factor, k 31 , are shown in Table I. The regresion factor, 

R2, of the reconstructed spectra using the calculated parameters to the experimental 

one is high, indicating that the calculus is accurate. However, the high value of 33
T

obtained indicates that admittance data are overstimated. In fact, the capacitance 

measured below the conducting paths, which are needed to conect the cantilever to the 

measuring equipment, has a value of the same order of  the capacitance of the 

cantilever. Therefore, the measured admittance needs a correction arising from this 

stray capacitance in parallel with the cantilever. This stray capacitance was calculated 
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from the total value measured and the ratio between the area of the conducting paths 

to that of the total electroded area of the device. After this correction is made, 

considering negligible the resitance of the conducting paths, in addition to find a 

lower value of 33
T at resonance, we found that the coupling factor increases. The 

elastic coefficient remains unchanged after the data correction

Conclusions

The feasibility of the use of the resonance method for the calculation of the dielectric, 

elastic and piezoelectric complex parameters, as well as coupling coefficients of self-

supporting thin or thick films has been shown. Alemany et al. iterative method for the 

length extensional resonance mode of thin bars, thickness poled and excited, provide a 

way of calculation of complex film parameters T
33 , sE

11 and d31, as well as the 

electromechanical coupling factor k31, from the resonance of a self-supported thick 

film cantilevers.

Special care must be taken in the complex admittance measurements concerning the 

linearity regime of the measurement and the residual capacitance of the connecting 

pads, which influences both the dielectric and piezoelectric properties determination. 

Work is under progress to asses the best poling conditions, loading effects of the top 

electrodes and effect of reduced pressure atmosphere for the accurate determination of 

the material parameters of thin and thick films. 
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List of Figure captions

Figure 1. Devices obtained for the study. Film thickness is 10 μm, width 250μ and 
length 2500, 2000 and 1500 μm (from left to right).

Figure 2. Sample holder and example of experience with reduced atmosphere.

Figure 3. Resistance, R, and conductance, G, measured at the resonance of device L26 
as a function of the measuring voltage.

Figure 4. Resistance and Conductance measured at the resonances of devices (a) L10 
and (b) L26.

Figure 5. Strain distribution at two equivalent resonance modes: (a) the λ/4 length 

extensional mode of a thickness poled cantilever of thickness t, width w and length l 

and (b) the λ/2 length extensional mode of a thickness poled bar of thickness t, width 

w and length 2xl.
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Table I. Resonance characteristics and thick film parameters of L26 device .

PARAMETERS RELATED TO THE 
FUNDAMENTAL LENGTH 
EXTENSIONAL RESONANCE MODE 
OF CANTILEVERS, THICKNESS 
POLED AND EXCITED

Raw measured data
L26 sample measured 

at 10 mV

Corrected data 
L26 sample measured 

at 10 mV

Fs (kHz) 493.82 493.82
Fp (kHz) 494.03 495.08
Auxiliary Frequencies F1= 486.26 kHz      

F2= 501.74 kHz
F1= 485.52 kHz
F2= 499.07 kHz

Number of iteracions 491 33
R2 0.999937 0.999915
|K31| 3.13 % 7.71 %
N31 (kHz.mm) 1481 1482
s11E (10-12 m2N-1)* 16.10 - 0.05 i 16.10 - 0.05 i 
d31  (10-12 C.N-1) -18,4 + 0.7 i -13.0 + 0.5 i
33T 2415 - 58 i 200 - 1.8 i
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Figure 1. Devices obtained for the study. Film thickness is 10 μm, width 250μ and 
length 2500, 2000 and 1500 μm (from left to right).
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Figure 2. Sample holder and example of experience with reduced atmosphere.
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Figure 3. Resistance, R, and conductance, G, measured at the resonance of device L26 
as a function of the measuring voltage.
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Figure 4. Resistance and Conductance measured at the resonances of devices (a) L10 
and (b) L26.
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Figure 5. Strain distribution at two equivalent resonance modes: (a) the λ/4 length 

extensional mode of a thickness poled cantilever of thickness t, width w and length l 

and (b) the λ/2 length extensional mode of a thickness poled bar of thickness t, width 

w and length 2xl.


