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Abstract. Pyroelectric coefficient enhanced 2-2 connectivity laminate compos-
ites’ energy harvesting credentials have been assessed. The use of the electrother-
mal coupling factor for laminate composites (k2Lam) for such assessment has been
appraised while the experimental samples are evaluated to show significant im-
provement in their performance via pyroelectric coefficient enhancement, demon-
strative of their great potential in energy harvesting application. Lead zirconate
titanate and stainless steel laminate composite with 88% pyroelectric coefficient
enhancement is shown to increase its maximum power density, efficiency, and elec-
trothermal coupling factor by 254%, while other material pairings have also been
evaluated to exhibit great promise in this application owing to large pyroelectric
coefficient enhancement accompanied by reduction in total thermal mass.
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1. Introduction

Recently, there has been a large increase in research being conducted on self-powering
systems and energy harvesting applications form an integral part of this. Many
different miniature energy harvesting technologies are being considered at present,
solar cells, thermoelectricity, Micro fuel cells, and Micro engines to name a few,
and this article deals with the one utilizing pyroelectric (PY) effect. This potential
use of temporal temperature gradient in energy harvesting has already been studied
by various research groups such as Olsen et al [1], Sebald et al [2], and Xie et
al [3]. In particular, Sebald et al have recently published a number of works on
pyroelectric energy harvesting application with emphasis on potential benefits of
the non-linear pyroelectricity via Ericsson thermodynamic cycles around the phase
transition region. We have recently investigated pyroelectric coefficient enhancement
in 2-2 connectivity laminate composites through the improvement in the secondary
pyroelectric coefficient[4, 5, 6] under both short and open circuit conditions. This
article is intended to demonstrate how this enhanced pyroelectric coefficient can
improve the outputs of the pyroelectric energy harvesting application.

By exploiting the symmetries of 2-2 connectivity laminates composites of PY and
non-pyroelectric (NP) materials, we have previously reported theoretical pyroelectric
coefficient (PY coef) enhancements of up to 800% in PZT5H-Chlorinated polyvinyl
chloride thermoplastic (CPVC) composites[5] while experimentally demonstrating
substantial PY coef enhancements of more than 100% in PZT-Stainless steel (St)

li2106
TextBox
Smart Materials and Structures, Volume 19, Number 6, 065018 
  



Laminate composites with enhanced pyroelectric effects for energy harvesting 2

laminar structures[4]. As it will become evident in section 3, the parameters
representative of the energy output in PY energy harvesting application are
proportional to p2m where pm is the PY coef along the m-axis. Hence this increase
in PY coef should result in very large enhancements in the outputs of the PY
energy harvesting application and this enhancement will be investigated in laminate
composites of PY materials such as Lead zirconate titanate (PZT5H and PZT5A),
Barium titanate (BTO), Lithium tantalate (LTO), Lithium niobate (LNO), and
Poly-vinylidene fluoride (PVDF), paired with NP materials such as Stainless steel
(St), Poly-tetrafluoroethylene (PTFE or Teflon), Chlorinated polyvinyl chloride
thermoplastic (CPVC), Aluminium (Al), Zinc (Zn), and Invar 36 (Invar36).

In section 2, a schematics of a simple pyroelectric energy harvesting device which
converts a spatial temperature gradient into a temporal one will be exhibited, while
the theoretical treatment on its potential performance will be presented in section 3
via the derivation of expected maximum power density, efficiency, and electrothermal
coupling factor. The findings from these analyses on PY-NP laminate composites will
be presented in section 4, followed by our conclusion in section 5.

2. Pyroelectric energy harvesting device

Figure 1 is a schematic diagram of our PY energy harvesting device. It employs one-
way Shape memory alloy (SMA)[7] springs with steel ones for returning SMA springs
into their original shape and acts as a kind of heat pump transferring heat from hot
to cold surfaces/reservoirs. Note that ΘPY is the temperature of PY element, ΘSMA

the temperature of SMA springs.
Cyclic behaviour from Figures 1(a) to 1(f) then back to 1(a) transforms the spatial

temperature gradient between ΘH (High temperature reservoir and temperature at
which SMA is in austenite phase) and ΘL (Low temperature reservoir and temperature
at which SMA is in martensite phase) surfaces into a temporal one. Although the
existence of the thermal insulation layer is not essential, it does enable a much
simpler phenomenological view of the overall operation while enhancing the actuation
behaviour of SMA springs and decreasing the thermal diffusion process. Spring
arrangements in figure 1 should maximise the surface contact between the PY element
and temperature surfaces, aiding thermal conduction.

3. Mathematical treatment of the potential energy output

In this section, we shall derive the mathematical expressions for analyzing the
performance of the PY energy harvesting device presented in section 2. This
theoretical consideration can be applied to any linear pyroelectric energy harvesting
application where the thermal stimulus on PY element can be approximated by
sinusoidal temperature variation.

3.1. Maximum power density

In order to derive the expression for potential power output from the device depicted
in figure 1, we will use similar technique to that employed by Ren et al [8] and Shu
and Lien[9] in the piezoelectric energy harvesting application. A simple resistive cycle
case in Sebald et al ’s work[2] and standard interface in Lefeuvre et al ’s work[10]
should be analogous to this.
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(a) ΘPY = ΘSMA = ΘL (SMA springs are
in martensite phase, enabling steel springs to
contract and force PY element onto ΘH surface)

(b) ΘPY = ΘH and ΘL < ΘSMA <
ΘH (SMA springs start to change
into austenite phase, overcoming steel
springs’ forces and pulling PY towards
ΘL surface)

(c) ΘPY = ΘSMA = ΘH (SMA springs
are in austenite phase and pull PY
towards ΘL surface)

(d) ΘPY = ΘSMA = ΘH (SMA springs
are in austenite phase, stretching steel
springs and forcing PY element onto ΘL

surface)

(e) ΘPY = ΘL and ΘL < ΘSMA <
ΘH (SMA springs start to change
into martensite phase, and hence steel
springs overcome SMA’s forces pulling
PY towards ΘH surface)

(f) ΘPY = ΘSMA = ΘL (SMA springs
are in martensite phase and the steel
springs pull PY towards ΘH surface)

Figure 1. Schematics of a pyroelectric energy harvesting device where ΘPY and
ΘSMA are the temperatures of PY element and SMA, respectively.

According to the first and second law of thermodynamics, the reversible change
dU in the internal energy U of an elastic dielectric subjected to a small change of the
strain dS, electric displacement dD, and entropy dσ is given by;

dU = Θdσ + TkldSij + EndDm (3.1)

where Θ is the temperature of the material.
If one wishes to investigate systems under isothermal conditions, and use electric

field, E, and stress, T , as the independent variables, a Legendre transformation of U
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has to be performed by adding the expression −SijTkl−DmEn−σΘ to U . This results
in the following free energy function, which is also know as the Gibbs free energy, G,
of a piezoelectric crystal[11, 12];

G = U − SijTkl −DmEn − σΘ (3.2)

where i, j, k, l, m, n = 1..3.
Any natural process occurs if and only if the associated change in G of the process

is negative. Likewise, a system reaches an equilibrium when the associated change in
G is zero. We now assume constant external electric field, i.e. dEn = 0 ∀n, from the
definition of short circuit condition[5] and choose the temperature (Θ), stress (Tij)
and electric field (Em) as the independent variables. By considering the conventional
nine components of the second order strain and stress tensors, while the magnetic
effect is ignored as usual, we get the expression for the change in electric displacement
under short circuit condition (3.3).

dDm =
∑
k

∑
l

(
∂Dm

∂Tkl

)
E,Θ

dTkl +
∑
n

(
∂Dm

∂En

)
T,Θ

dEn

+

(
∂Dm

∂Θ

)
T,E

dΘ

= dE,Θ
mkldTkl + εTmndEn + pT,E

m dΘ

(3.3)

Assuming the PY element is free to deform and even 2-2 connectivity laminate
composites behave in a homogeneous manner in this freedom (dTkl = 0), 3.3 can be
simplified.

dDm = εTmndEn + pT,E
m dΘ (3.4)

Let thermal stimulus, namely temperature variation inside PY element, be
Θ, f frequency (ω = 2πf), t time, and Θ0 amplitude of temperature variation
(Θ0 = (ΘH −ΘL) /2).

⇒ Θ = Θ0 exp(iωt) +
ΘL +ΘH

2

∴ dΘ

dt
= iωΘ0 exp(iωt)

with thermal variation assumed to be sinusoidal

(3.5)

Now, dQm = AdDm and dEn = dVn/
PY t where Qm is the charge on the surface,

A surface area, Vn potential difference across the thickness of PY element, and PY t
the thickness of PY element.

From 3.4:

⇒ dQm = AdDm = A
(
εTmndEn + pT,E

m dΘ
)

=
A

PY t
εTmndVn +ApT,E

m dΘ

(3.6)

From 3.5:
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⇒ Im =
dQm

dt
=

A
PY t

εTmn

dVn

dt
+ApT,E

m

dΘ

dt

=
A

PY t
εTmn

d {V0 exp(i(ωt+ θ))}
dt

+ApT,E
m (iωΘ0 exp(iωt))

=
A

PY t
εTmn {iωV0 exp(i(ωt+ θ))}

+ iωΘ0ApT,E
m exp(iωt)

(3.7)

where Im = Current generated from PY element
V0 = Amplitude of the potential difference generated across PY element
θ = Phase difference between the sinusoidal thermal variation and the potential
difference across PY element

Equation 3.7 implies the generated potential difference or voltage across a resistor
R0 (total external load resistance) will be:

V = dVn = V0 exp(i(ωt+ θ)) = R0Im

= R0

[
iωAεTmn

PY t
V0 exp(iθ) + iωΘ0ApT,E

m

]
exp(iωt)

⇒ V0 exp(iθ) =
iωR0Θ0Ap

T,E
m

1− iω
R0AεTmn

PY t

(3.8)

Hence power dissipation averaged over time in the load resistor R0 is:

Power = P =
V 2
0

2R0
=

ω2R0Θ
2
0A

2
(
pT,E
m

)2
2
[
1 +

ω2R2
0A

2(εTmn)
2

PY t2

]
=

ω2R0Θ
2
0A

2
(
pT,E
m

)2
2 [1 + ω2R2

0C
2
0 ]

(3.9)

where C0 = Capacitance of PY element =
εTmnA
PY t

Note that this power dissipation in 3.9 is the power generated from PY element,
which in turn gets dissipated by the external load resistor R0. This expression reaches
its maximum when R0 = 1/(ωC0), i.e. when R0 matches the impedance of the voltage
source.

⇒ Pmax = Maximum power dissipation

=
ωΘ2

0A
2
(
pT,E
m

)2
4C0

=
ωΘ2

0A
(
pT,E
m

)2
4
εTmn
PY t

=
PY tωΘ2

0A
(
pT,E
m

)2
4εTmn

(3.10)
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Also from 3.9:

⇒ Pden = Power density =
Power

Volume

=
ω2R0Θ

2
0A

2
(
pT,E
m

)2
2 [1 + ω2R2

0C
2
0 ]×A (NP t+ PY t)

=
ω2R0Θ

2
0A

(
pT,E
m

)2
2 [1 + ω2R2

0C
2
0 ] (

NP t+ PY t)

⇒ PdenMax = Maximum power density

=
ωΘ2

0A
(
pT,E
m

)2
4C0 (NP t+ PY t)

=
ωAΘ2

0

(
pT,E
m

)2
4
εTmnA
PY t

(NP t+ PY t)

=
ωΘ2

0

(
pT,E
m

)2
4εTmn

(
NP t
PY t

+ 1
)

=
2πfΘ2

0

(
pT,E
m

)2
4εTmn

(
1
R + 1

) =
πfΘ2

0

(
pT,E
m

)2
2εTmn

(
1
R + 1

)
=

πf
(
pT,E
m

)2
(ΘH −ΘL)

2

2εTmn

(
1
R + 1

)
× 4

=
πf

(
pT,E
m

)2
(ΘH −ΘL)

2

8εTmn

(
1
R + 1

)
(3.11)

where R = PY t/NP t is the thickness ratio, ω = 2πf with f being frequency in Hz,
and the unit of Power density being Wattsm−3 or Wm−3.

3.2. Efficiency and electrothermal coupling factor

Equation 3.11 means:

⇒ W = Maximum electrical energy output

= PdenMax × τH L × V ol

=
π
(
pT,E
m

)2
(ΘH −ΘL)

2

8εTmn

(
1
R + 1

) × (f × τH L)× V ol

=
π
(
pT,E
m

)2
(ΘH −ΘL)

2

16εTmn

(
1
R + 1

) × V ol

(3.12)

where τH L = 1/(2f) is the time taken for ΘPY to vary from ΘH to ΘL (this would be
half of the period of this sinusoidal wave), V ol is the volume, and W is the maximum
electrical energy output measured in Watts.

Note that W is evaluated over a period of half a thermal variation cycle, i.e. from
figures 1(b) to 1(e), since the next half cycle will have exactly the same electrical
characteristics except the direction of polarisation/current/voltage being reversed,
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which can be taken care of using AC-DC converter circuit incorporating rectifier
bridge.

In order to make comparisons with various other PY energy harvesting
arrangements, techniques employed in Sebald et al ’s work[2], namely evaluation and
comparison of the “Efficiency (η)” and “Electrothermal coupling factor (k2)”, will need
to be carried out. Note that η is a more application specific version of our “Efficiency
(Eff)” expressions in our previous publication[5].

For the time period of τH L = 1/(2f) one can also calculate the amount of thermal
energy input used to bring about the temperature change of PY element from ΘH to
ΘL.

Qh = Heat taken from hot reservoir

= Thermal energy input

= V ol × c̄E

∫ τH L

0

(
dΘ

dt

)
dt

= V ol × c̄E [Θ]
t=τH L

t=0 = V ol × c̄E × 2Θ0

=
R cPY

E + cNP
E

R+ 1
× (ΘH −ΘL)× V ol

(3.13)

where c̄E =
A( cPY

E tPY + cNP
E tNP )

A( tPY + tNP )
=

R cPY
E+ cNP

E

R+1 is the volumetric heat capacity of

the whole PY element and cE = cvol volumetric heat capacity of each constituent.
Equations 3.12 and 3.13 leads to optimal η (Efficiency) expression for simple

resistive load PY energy harvesting case, namely ηRes.

⇒ ηRes =
W

Qh
=

π(pT,E
m )

2
(ΘH−ΘL)2

16εTmn( 1
R+1)

× V ol

R cPY
E+ cNP

E

R+1 × (ΘH −ΘL)× V ol

=
π
(
pT,E
m

)2
(ΘH −ΘL)

16εTmn

(
R+1
R

) (R cPY
E+ cNP

E

R+1

)
=

π
(
pT,E
m

)2
(ΘH −ΘL)

16εTmn

(
cPY
E +

cNP
E

R

)
(3.14)

It is apparent from 3.14 that where ηRes is concerned there is a trade off between
the increased PY coef and denominator of ηRes expression as R gets smaller. Hence for
every 2-2 connectivity laminate composite, there will be an optimal R which maximises
the efficiency (ηRes). In addition it also suggests that enhancing PY coef is a very
effective route for improving PY energy harvesting efficiency since ηRes is proportional

to
(
pT,E
m

)2
.

In the literature[2] “Electrothermal coupling factor (k2)” is defined as:

k2 = Electrothermal coupling factor at ΘH

=

(
pT,E
m

)2
ΘH

εTmnc̄E
=

(
pT,E
m

)2
ΘH (R+ 1)

εTmn

(
R cPY

E + cNP
E

)
(3.15)



Laminate composites with enhanced pyroelectric effects for energy harvesting 8

Using 3.15 and noting the Carnot efficiency is defined as[13, 2]; ηCarnot =
1 − ΘL

ΘH
= ΘH−ΘL

ΘH
with temperatures measured in absolute temperature scale, one

can also make comparison between ηCarnot and ηRes (3.14), ideally optimised energy
harvesting cycle (Carnot cycle)’s efficiency and that of simple resistive load case
respectively.

⇒ ηRes =
π
(
pT,E
m

)2
(ΘH −ΘL)

16εTmn

(
cPY
E +

cNP
E

R

)
=

π

16
×

(
pT,E
m

)2
ΘH (R+ 1)

εTmn

(
R cPY

E + cNP
E

) × ΘH −ΘL

ΘH

×
(
R cPY

E + cNP
E

)
R+ 1

× 1

cPY
E +

cNP
E

R

=
π

16
× k2ηCarnot ×

(
R cPY

E + cNP
E

)
R

(R+ 1)
(
R cPY

E + cNP
E

)
=

π

16

[
R

R+ 1

]
k2ηCarnot

(3.16)

Comparison in 3.16 enables comparison between various PY energy harvesting
systems operating in the same environment, namely defined available temperature
gradient or hot/cold reservoirs and evaluated maximum possible energy conversion
efficiency (Carnot efficiency).

It should also be noted that all expressions, 3.11 ∼ 3.16 converges to that of
non-composite PY material only case presented by Sebald et al as R → ∞.

4. Results and discussion

A few of the most widely used PY materials[5], such as PZT (PZT-5H and PZT-
5A), BTO, LTO, LNO, and PVDF, were paired with six different NP materials with
wide ranging thermal and elastic properties[5], namely, St, PTFE, CPVC, Al, Zn, and
Invar36, to analyze the resulting laminate composite’s energy harvesting credentials.
Although all the 36 pairs were examined, in this communication the conclusions of
only selected few with the most interesting results are presented.

It must also be noted that in figure 1, although ΘH and ΘL are shown as the
temperatures of hot and cold reservoirs/heat sources/drains respectively, as long as
the resultant force from steel and SMA springs changes direction at these temperatures
owing to SMA springs temperature dependent spring constant (Elastic stiffness),
the actual temperatures of the hot and cold reservoirs (Θhot and Θcold) can be
anything as long as they satisfy Θhot > ΘH and Θcold < ΘL. This facilitates the
possibility of having potentially huge spatial temperature gradient when PY element
is in contact with the surfaces of hot and cold reservoirs, which can improve the
thermal conductivity even further leading to higher available frequency (f), and
hence ultimately greater Maximum power density (PdenMax). The use of SMA,
however, means the thermal (heating/cooling) cycle frequency (f) achievable from
such arrangements would still be rather limited. This is one of the main reasons why
the frequency range considered in section 4 is constrained to those below or equal to
1 Hz, dampening the potential energy output available. One way of overcoming this
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may be the use of ferromagnetic SMA[14], which can produce actuation frequency
ranges of 200 Hz or more, although the use of magnetic stimuli means more design
complications.

4.1. Pyroelectric energy harvesting potentials of 2-2 connectivity laminate composites

Although PZT-5A’s energy harvesting credentials were also considered, the trend
was very similar to that of PZT-5H with smaller numerical values. Hence only the
outcomes of the latter will be presented as an example of perovskite materials’ energy
harvesting potential. BTO did not demonstrate interesting enough results, while LNO
behaved very similarly to LTO with only smaller numerical values. Hence only LTO’s
results are presented.

4.1.1. PZT-5H pairs From figures 2(a) and 2(b), it is evident that despite PTFE
and CPVC introducing extreme PY coef enhancements, owing to their high thermal
expansion coefs, and possessing very low volumetric heat capacities, it is in fact
Zn, Al, and St with their reasonably high thermal expansion coefs and middle-
range volumetric heat capacities that demonstrate the most promise in PY energy
harvesting (cf. table A3). This is traced back to their high Young’s moduli, which
provides for sufficient enhancement even at relatively high R values, i.e. even when
only small mass of NP material attached. This is a very good example of a case
where pure enhancement in PY coef alone is not enough for good performance in a
particular application of PY effect. Energy harvesting characteristics of PZT5H-Zn,
PZT5H-Al, and PZT5H-St pairs indicate their great potential in PY energy harvesting
applications. In particular, noting that all these values are evaluated for the simplest
resistive cycle case means should much better energy harvesting circuits and storage
technologies be used, there indeed is great potential in these 2-2 connectivity laminate
composites to be exploited in PY energy harvesting application based on both linear
and non-linear pyroelectricity.

4.1.2. LTO pairs LNO and LTO’s small PY coef enhancement[5] meant that their
2-2 connectivity laminate composites actually reduced their PY energy harvesting
abilities as illustrated by Figures 3(a) and 3(b). However, LTO and LNO single
crystals by themselves are expected to show the highest PdenMax of all the materials
and composites considered in this dissertation, implying to its potential employment
in energy harvesting applications. The reason for this is their relatively high PY coefs
coupled with low dielectric constants resulting in high voltage response.

4.1.3. PVDF pairs Figures 4(a) and 4(b) insinuates that although PVDF pairs also
fared rather badly when it comes to PY energy harvesting abilities, at higher R values
some actually showed slight improvement, PVDF-Invar36 and PVDF-St in particular.
This suggests that where PY energy harvesting application is concerned, thin coating
of Invar36 or St on PVDF (even to act as electrodes) can improve electrical energy
output (PdenMax and ηRes) of PVDF PY element.

4.1.4. Comparison with other pyroelectric materials In order to make comparison
between PY materials and laminate composites considered in this work and various PY
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(a) Maximum power density (Wm−3 or
µWcm−3) vs R

(b) Efficiency (ηRes) vs R

Figure 2. Pyroelectric energy harvesting potentials of PZT5H pairs with ideal
interfacial bonding layer, ΘL = 300K, ΘH = 310K, and f = 0.01Hz assumed.

elements assessed by Sebald et al [2], table 1 was created with materials such as PMN-
PT (Lead magnesium niobate-Lead titanate single crystals), PLZT (Lead-lanthanum-
zirconate-titanate), and PVDF-HFP (Poly(vinylidene fluoride-hexafluoropropylene)
copolymer).

Note that our PZTs have much lower k2 since the literature used much smaller
εT33 and cE = cvol values than ours. In case k2 was not fully representative of potential
PdenMax particular PY element might be capable of, k2Lam = {R/(R+ 1)} k2 from
3.16 were also evaluated as illustrated by table 1. Equation 3.15 can be used to derive
an expression for k2Lam.

k2Lam =
R

R+ 1
k2 =

(
R

R+ 1

) (
pT,E
m

)2
ΘH (R+ 1)

εTmn

(
R cPY

E + cNP
E

)
=

(
pT,E
m

)2
ΘHR

εTmn

(
R cPY

E + cNP
E

) =

(
pT,E
m

)2
ΘH

εTmn

(
cPY
E +

cNP
E

R

)
(4.1)

This new electrothermal coupling factor for laminate composites (k2Lam) should
be used when assessing PY energy harvesting potentials of 2-2 connectivity laminate
composites, which suggests that when considering various composites for their



Laminate composites with enhanced pyroelectric effects for energy harvesting 11

(a) Maximum power density (Wm−3 or
µWcm−3) vs R

(b) Efficiency (ηRes) vs R

Figure 3. Pyroelectric energy harvesting potentials of LTO pairs with ideal
interfacial bonding layer, ΘL = 300K, ΘH = 310K, and f = 0.01Hz assumed.

energy harvesting credentials, as suggested by Sebald et al [2], their particular
connectivity symmetry must be taken into account before carrying out comparisons
with their material counterparts. Figure 5 illustrates this point very well by closely
approximating the trends depicted in figure 2(a).

Good k2Lam values predicted for PZT5H-Zn, PZT5H-Al, and to a less extent
PZT5H-St in figure 5 owes largely to NP materials’ ability to generate significantly
large enough PY coef enhancement even at quite high R values while having relatively
low cvol, leading to less additional thermal mass. PTFE and CPVC pairs do have a
peak at low R due to their extreme PY coef enhancements at such R values and their
extremely low cvol. (cf. table A3)

It is also evident from table 1 that LTO single crystal is a very promising PY
material for energy harvesting application. Although PMN-PT single crystal from
the literature exhibits the highest k2 it is expensive and fragile, while PZT/PVDF-
HFP composite, another PY element from the literature with great promise, has
k2 evaluated from electrothermal coupling factor expression not yet adapted for
composites. With that in mind, LTO single crystal, PZT5H-Zn (R = 1.005), and
PZT5H-CPVC (R = 0.045) 2-2 connectivity laminate composites show extreme
promise in PY energy harvesting application. In particular, PZT5H-Zn (R = 1.005)
composite’s PdenMax of 12.35 Wm−3 at ΘL = 300K, ΘH = 310K, and f = 0.01Hz,



Laminate composites with enhanced pyroelectric effects for energy harvesting 12

(a) Maximum power density (Wm−3 or
µWcm−3) vs R

(b) Efficiency (ηRes) vs R

Figure 4. Pyroelectric energy harvesting potentials of PVDF pairs with ideal
interfacial bonding layer, ΘL = 300K, ΘH = 310K, and f = 0.01Hz assumed.

Figure 5. Electrothermal coupling factor for laminate composites (k2Lam =
R

R+1
k2) for PZT5H pairs with ideal interfacial bonding layer, ΘL = 300K,

ΘH = 310K, and f = 0.01Hz assumed.

is very respectable, which can easily be further improved by increasing ΘH −ΘL and
f , when compared to that of a typical thermoelectric module, i.e. 30 Wm−3[2].

Considering the important role the frequency plays in determining the maximum
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Table 1. Comparison between enhanced 2-2 connectivity laminate composites
and pyroelectric elements considered by Sebald et al [2] for energy harvesting
application.

PY element p εT33 PdenMax ηRes k2 k2Lam = R
R+1k

2

Selected PY elements from the literature[2]

111 PMN-0,25PT -17.90 961 N/A N/A 4.79 N/A
PZT -5.33 1116 N/A N/A 0.37 N/A
PLZT 0.5/53/47 -3.60 854 N/A N/A 0.22 N/A
PVDF -0.33 9 N/A N/A 0.14 N/A
PZT/PVDF-HFP 50/50 -4.50 85 N/A N/A 4.28 N/A

PY materials considered in this work

PZT5H -5.00 2874 2.92 4.63 0.073 N/A
PZT5A -3.00 1803 2.22 3.52 0.056 N/A
BTO -2.00 168 1.04 1.64 0.026 N/A
LTO -2.30 45 52.14 139.41 2.20 N/A
LNO -0.83 30 10.18 17.44 0.28 N/A
PVDF -0.274 7.75 4.16 9.05 0.14 N/A

Selected 2-2 connectivity laminate composites

PZT5H-CPVC (R = 0.005) -44.68 2874 1.16 4.11 13.06 0.065
PZT5H-Zn (R = 1.005) -14.53 2874 12.35 20.86 0.66 0.33
PZT5H-CPVC (R = 0.045) -27.68 2874 3.85 13.05 4.78 0.21
PZT5H-PTFE (R = 0.005) -34.16 2874 0.68 4.63 14.69 0.073

Units: - p (PY coef); × 10−4 Cm−2K−1 - εT33; No unit - ηRes; × 10−6 (No unit)
- PdenMax; Wm−3 or µWcm−3 (evaluated at f = 0.01Hz) - k2; %

power density (cf. 3.11), it must be noted that the choice of 0.01Hz frequency
was not entirely arbitrary. In Appendix A.1, “Time constant” expression in A.3
was used for the largest sample experimentally investigated (a 267 µm PZT5H
and two 250 µm St), with the maximum time constant being evaluated to be
approximately 1.87×10−1s, giving maximum thermal variational frequency of fmax =
1/ (Maximum time constant) ≈ 5.35Hz for 1K temperature variation. However, for
ΘH = 310K and ΘL = 300K considered in our work, total temperature change of
PY element during one full thermal variation cycle in figure 1 is ∆Θ = 2 × 2Θ0 =
2× (ΘH −ΘL) = 20K. In addition, the movement of PY element from one surface to
another is not instantaneous. The time taken for this translation from figures 1(a) to
1(d) would depend on the exact configurations of the SMA and Steel springs.

Hence for a given thermal cycle, the total time it takes for the translation to take
place would be τtran = 1 × 2 = 2s. For ∆Θ = 20K temperature variation, the time
used for changing ΘPY would be τPY = 0.187× 20 = 3.74s, assuming that SMA and
Steel springs’ temperature changing times are a lot less than PY element’s due to
their volume being much smaller. Hence a single thermal cycle process should take
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a maximum of τtotal = τtrans + τPY = 5.74s. This means the maximum thermal
variational frequency a 2-2 connectivity laminate composite of PZT5H-St can achieve
is at least fMax = 1/(τtotal) = 0.175Hz, which is much larger than 0.01Hz used for our
analysis. The fact that Xie et al [3] uses heating rate of 15 ◦Cs−1, effectively 0.75Hz
frequency for ∆Θ = 20K cycles, on a 150 µm thick PZT-5A demonstrates that this
should be achievable, implying 0.01Hz is a conservative and reasonable choice.

4.2. Pyroelectric energy harvesting potentials of measured laminate samples

We now move on to the results of similar analyses performed on the experimental
samples whose PY coefs were measured to be enhanced. Should the same samples
be measured for their power output with impedance matching circuitry, following
outcomes in tables 2 ∼ 4 are expected.

The frequencies investigated in these tables are; f = 0.0017Hz representing 2
◦Cmin−1 heating rate (used in the experimentation for testing the samples) applied
to a ∆Θ = 20K thermal cycle, and f = 0.07 for being the frequency at which some of
the tested experimental samples start to achieve maximum power densities (PdenMax)
larger than that of a typical thermoelectric module, i.e. 30 Wm−3. Where the
efficiencies are concerned, ηCarnot = 0.0323 for ΘH = 310, while ηCarnot = 0.0625
for ΘH = 320.

Table 2 illustrates energy harvesting parameters bonded 2-2 connectivity laminate
composites of PZT5H-St can produce. Even after taking the differences in frequencies
investigated into account, the composites in table 2 that possess R > 1 outperform the
typical PZT5H’s parameters presented in table 1. Although smaller R leads to higher
PY coef enhancement, it also means larger additional thermal mass from NP layer,
resulting in larger c̄E which in turn has a negative effect on all the energy harvesting
parameters, PdenMax, ηRes, and k2Lam. As expected, this suggests maximising the PY
coef alone is not enough to optimise the energy harvesting system and other issues
such as the additional thermal mass needs to be considered.

Where the electrothermal coupling factor for laminate composite (k2Lam) is
concerned Sample XIR7 with R = 1.068 has the highest value, leading to highest
maximum power densities of 32.2 and 129.0 Wm−3 at f = 0.07Hz for ΘH = 310 and
ΘH = 320 respectively. All the samples with R > 1 depict a rather large PdenMax,
larger than 100 Wm−3 at f = 0.07Hz for ΘH = 320, insinuating their potential
deployment in energy harvesting application. Bearing in mind that the frequency
and temperature variations used for these calculations are all viewed as reasonably
conservative values, there is a good chance that these composites, or similar composites
with different PY or NP materials such as Zn, Al, or CPVC (cf. figure 5) could well
find their use in PY energy harvesting.

Figures 6, 7, and 8 summarizes the findings from table 2. Interfacial factor k 1 (a
ratio of strain loss across the PY and NP layers’ interface)[4, 5] is employed to describe
the effect of imperfect boding layer. It is clear from these figures that as long as the
thickness ratio (R) is larger than certain value and the bonding quality is reasonably
good, 2-2 connectivity laminate composites of PZT-5H will outperform stand alone
PZT-5H in the energy harvesting application.

In figure 6(a), a theoretical PdenMax should f = 1Hz be possible is displayed.
With PY coef enhancement of over 100% predicted, theoretically over 500 Wm−3

or 0.5 mWcm−3 is shown to be possible. Considering the fact that phase
transition independent PY effect (linear PY effect)’s energy harvesting credentials
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Table 2. Energy harvesting potentials of the enhanced experimental samples
from our other publications[4, 5].

Name R p ΘH P 0.07
denMax P 0.0017

denMax ηRes k2Lam

XI3
0.254

-9.18
310 13.9 0.33 2.65 0.042
320 55.7 1.33 5.30 0.043

XII4 -9.02
310 13.5 0.32 2.56 0.040
320 53.8 1.28 5.12 0.042

XI5
0.382

-9.22
310 19.2 0.46 3.71 0.059
320 76.8 1.83 7.41 0.060

XIR5 -7.37
310 12.3 0.29 2.37 0.037
320 49.1 1.17 4.74 0.039

XI8=X3 0.534 -7.95
310 18.0 0.43 3.52 0.056
320 71.8 1.71 7.04 0.057

XI7

1.068

-8.56
310 30.9 0.74 6.28 0.099
320 123.7 2.94 12.56 0.102

XIR7C -8.68
310 31.8 0.76 6.46 0.102
320 127.2 3.03 12.91 0.105

XIR7 -8.74
310 32.2 0.77 6.55 0.103
320 129.0 3.07 13.09 0.107

XI1
1.270

-7.96
310 29.0 0.69 5.94 0.094
320 116.0 2.76 11.88 0.097

XIR1 -7.55
310 26.1 0.62 5.34 0.084
320 104.2 2.48 10.68 0.087

XI4

1.910

-7.49
310 30.1 0.72 6.31 0.100
320 120.5 2.87 12.62 0.103

XIR4 -7.14
310 27.3 0.65 5.72 0.090
320 109.4 2.60 11.45 0.093

XIR4C -7.17
310 27.5 0.66 5.77 0.091
320 110.2 2.62 11.54 0.094

XI6=X2 2.670 -6.72
310 26.8 0.64 5.71 0.090
320 107.4 2.56 11.43 0.093

Units: - R ; No unit - p = PY coef ; × 10−4 Cm−2K−1

- ΘH ; K (ΘL = 300K)
- P 0.07

denMax = Maximum power density at f = 0.07 ; Wm−3 (or µWcm−3)
- P 0.0017

denMax = Maximum power density at f = 0.0017 (2◦Cmin−1) ; Wm−3

- ηRes = Efficiency in resistive cycle case ; × 10−6 (No unit)
- k2Lam = Electrothermal coupling factor for laminate composites ; %

were previously assumed to be rather limited, this is certainly a respectable value.
In particular, with PZT5H-St pair not being the best performing 2-2 connectivity
laminate composite pair in PY coef enhancement, there is a good chance that even
this value can be exceeded by substituting the NP or PY materials.

Figures 6(b) ∼ 6(d) demonstrate more realistic cases where the frequency and
temperature variations are well within the value the previously described PY energy
harvesting system in Figure 1 can deliver. PdenMax of over 160 mWcm−3 is predicted
to be possible at f = 0.07Hz and ΘH = 320K with the best performing experimental
sample exhibiting about 130 Wm−3 under the same condition. This again is a
considerable amount of power. For example, a 1 cm3 PY element of this composite
should be able to provide the maximum of 130 µW of power, which is enough to power
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Figure 6. Maximum power density for PZT5H-St pairs and the samples from
the experiment in our previous publicaitons[4, 5] (with k 1 interfacial factor).

a Radio Frequency IDentification (RFID) tag or a hearing aid[2].
Figure 7 predicts an improvement in the efficiency at around R > 1 or R >

1.5. Maximum of near doubling of the efficiency (ηRes) are predicted via PY coef
enhancement, although experimental samples were only able to demonstrate up to
around 40% improvement. It should be noted that ηRes is independent of frequency,
as the expression in 3.14 suggests.

Electrothermal coupling factor for laminate composites (k2Lam) and its
relationship with R is depicted in figure 8. This measure for PY energy harvesting
credentials was developed to assess a PY material or composite’s potential in PY
energy harvesting application. As such, it is independent of frequency and temperature
variation amplitude (cf. 4.1). It is evident from figure 8 that it predicts PZT5H-St
laminate composite’s performance in both PdenMax and ηRes quite well, with up to
doubling of k2Lam under optimal conditions.

Changes in energy harvesting parameters as a PZT-5H is evaluated, then as it
is bonded to St forming a laminate composite (cf. table 2), are displayed in Table
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Figure 7. Efficiency (ηRes) for PZT5H-St pairs and the samples from the
experiment in our previous publicaitons[4, 5] (with k 1 interfacial factor).

Figure 8. Electrothermal coupling factor for laminate composites (k2Lam)
evaluated for PZT5H-St pairs and the samples from the experiment in our previous
publicaitons[4, 5] (with k 1 interfacial factor).

3. This compares the parameters of a stand alone PY material with its laminate
composite counterpart, which possesses larger volume owing to the introduction of
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NP layer. Samples up to R < 0.534 show reduction in their parameters despite large
Percentile ∆p of up to 88.3% owing to increased thermal mass from the introduction
of NP layer. XI6 (R = 2.670) showed the best improvement in all the parameters
despite its relatively low Percentile ∆p of 63.8%. In fact, near doubling of PdenMax

(95.1% increase), and both ηRes and k2Lam (83.1% increase) indicates that attaching a
thin layer of St may be the best route for improving PY energy harvesting with PZT-
5H. One of the main reasons behind this is St’s large cvol (3.91 × 106 Jm−3K−1),
which is even larger than that of PZT-5H (3.15 × 106 Jm−3K−1). Use of other NP
materials such as Al (cvol = 2.40 × 106 Jm−3K−1), or even PTFE and CPVC with
0.72 and 1.40 × 106 Jm−3K−1 respectively, should aid in reducing this hinderance to
improvement. Table 3 formed the basis for figure 9.

Table 3. Experimental samples before (without NP layer) and after (with NP)
bonding.

Name R Perc ∆p Perc ∆PdenMax Perc ∆ηRes Perc ∆k2Lam

XI3 0.254 83.1 -32.1 -43.0
XII4 0.254 88.3 -28.2 -39.8
XI5 0.382 76.3 -14.0 -26.8
XIR5 0.382 73.6 -16.7 -29.1
XI8=X3 0.534 82.4 15.8 0.08
XI7 1.068 84.4 75.5 57.2
XIR7C 1.068 80.8 68.8 51.2
XIR7 1.068 82.6 72.3 54.3
XI1 1.270 54.0 32.6 19.9
XIR1 1.270 57.3 38.4 25.1
XI4 1.910 38.4 25.8 16.2
XIR4 1.910 57.5 62.8 50.4
XIR4C 1.910 63.1 74.6 61.2
XI6=X2 2.670 63.8 95.1 83.1

Units: - R =
tPY

tNP = thickness ratio ; No unit

- Perc = Percentile
- Perc ∆p = Percentile PY coef enhancement after bonding ; %
- Perc ∆PdenMax = Percentile maximum power density (PdenMax) change
after enhancement ; %
- Perc ∆ηRes = Percentile efficiency (ηRes) change after enhancement ; %
- Perc ∆k2Lam = Percentile electrothermal coupling factor for laminate
composites (k2Lam) change after enhancement ; %

Figure 9 describes how the percentile change in energy harvesting application
specific parameters (PdenMax, ηRes, and k2Lam) vary with the percentile PY coef
enhancement. By comparing the percentile improvements in these parameters between
stand alone PZT-5H and PZT5H-St composite (with additional NP layer bonded,
and hence with larger volume), one can investigate the effect of trade-off between
the enhanced PY coef and increased thermal mass. Figure 9(a) depicts a somewhat
confusing picture where rather unexpectedly high PY coef enhancement leads to a
reduction, which can be attributed to increased thermal mass from NP overtaking
the improvement from the enhanced PY coef. However, figure 9(b) describes
a proportional correlation between Percentile ∆k2Lam and Percentile ∆PdenMax,
demonstrating the suitability of k2Lam as potential indicators for PY energy harvesting
performance in laminate composites.
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Figure 10. Percentile pyroelectric coefficient enhancement versus improvements
in PdenMax, ηRes, and k2Lam in percentage (from Table 4).
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Table 4. Experimental samples before and after the bonding (same volume).

Name R Perc ∆p ∆PdenMax, ∆ηRes, and ∆k2Lam (Perc)

XI3 0.254 83.1 235.3
XII4 0.254 88.3 254.4
XI5 0.382 76.3 211.0
XIR5 0.382 73.6 201.2
XI8=X3 0.534 82.4 232.7
XI7 1.068 84.4 239.9
XIR7C 1.068 80.8 226.8
XIR7 1.068 82.6 233.6
XI1 1.270 54.0 137.1
XIR1 1.270 57.3 147.3
XI4 1.910 38.4 91.7
XIR4 1.910 57.5 148.1
XIR4C 1.910 63.1 166.0
XI6=X2 2.670 63.8 168.2

Units: - R =
tPY

tNP = thickness ratio ; No unit

- Perc = Percentile
- Perc ∆p = Percentile PY coef enhancement after bonding ; %
- Perc ∆PdenMax = Percentile maximum power density (PdenMax) change
after enhancement ; %
- Perc ∆ηRes = Percentile efficiency (ηRes) change after enhancement ; %
- Perc ∆k2Lam = Percentile electrothermal coupling factor for laminate
composites (k2Lam) change after enhancement ; %

Figure 10 depicts the proportional correlation between Percentile ∆p and
Percentile ∆PdenMax, ∆ηRes, and ∆k2Lam. It represents a case where both PZT-5H
and St were assumed present when considering both before and after bonding. Hence
this represents the case where the overall volume of initial materials (as PY and NP
are not yet bonded, they are not a composite) is equal to the volume of resultant
laminate composite after bonding. As there is no additional thermal mass (volume)
after the bonding (it was added beforehand), the only quantity that affects the energy
harvesting parameters is the enhanced PY coef. This correlation between Percentile
∆p and the improvements in all three energy harvesting parameters is also present in
table 4, which formed the basis for Figure 10.

As one would expect, in the case of table 4 and figure 10, larger the PY coef
enhancement larger the improvement in the energy harvesting parameters. It must
be noted that all three parameters demonstrated the same amount of percentile
improvement since the only reason Percentile ∆PdenMax behaved differently from the
other two parameters in table 3 was due to its dependence on the overall volume and
independence of heat capacities. Sample XI7 (R = 1.068) is expected to show up to
240% increase in PdenMax, ηRes, and k2Lam from PY coef enhancement of only 84.4%,
which suggests that thin PZT-5H with thick St attached could improve the overall
energy harvesting performance quite drastically for the same volume of PY material
and 2-2 connectivity laminate composite. This indicates that the use of thin-films, or
at least the thinnest possible bulk material, in the PY energy harvesting applications
will be a good idea despite the scaling behaviour of thin films, as this leads to reduction
in the significantly negative role played by the additional thermal mass. In addition,
use of other NP materials with lower cvol values than that of PZT-5H, such as Al, Zn,
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PTFE or CPVC, should lead to even larger improvements as this will lead to reduced
thermal mass. This reduced thermal mass should also enable the use of higher f
values, potentially resulting in very high PdenMax, ηRes, and k2Lam.

Although we only focused our attention on the linear pyroelectricity based energy
harvesting application as this employs pyroelectricity under the short circuit condition,
under which we have experimental results of the enhancement as stated in our previous
communications[4, 5], it should be noted that analysis on the phase transition based
non-linear pyroelectric effect should also be possible. However, it requires the use
of the pyroelectric coefficients under both short and open circuit electric boundary
conditions while its practical realization also necessitates additional electronic circuitry
such as synchronised electric charge extraction (SECE)[15] or synchronised switch
harvesting on inductor(SSHI)[16]. Hence we have only dealt with simpler case of
linear pyroelectric effect with resistive load in this communication although we have
no doubt that our enhanced 2-2 connectivity laminate composites can also improve
the performance of non-linear pyroelectric energy harvesting application. In addition,
various hybrids of this and other methods of energy harvesting also exist, such as
the hybrid between magnetostriction and piezoelectricity in Magnetoelectric[17, 18]
devices, and it is hoped that our work can also find use in such applications as well.

5. Conclusion

Mathematical expressions/parameters that are important in judging the energy
harvesting credentials of any PY material or PY-NP 2-2 connectivity laminate
composites, namely Maximum power density PdenMax, Efficiency ηRes, and
Electrothermal coupling factor k2 have been derived. In doing so, it is discovered
that while electrothermal coupling factor (k2) quoted in the literature[2] is adequate
for stand alone PY materials, for PY coef enhanced laminate composites its more
general counterpart in electrothermal coupling factor specifically designed for laminate
composites (k2Lam from 4.1) should be used. It seems possible that for other
connectivity configurations of composites, various electrothermal coupling factor
expressions may be needed. The main application parameters that affect PdenMax

are identified as ΘH −ΘL and f , while ηRes was independent of f , and k2Lam of both.
The independence of k2Lam from (ΘH −ΘL) and f made it an ideal parameter for
judging the energy harvesting credentials of PY materials or composites, provided
ΘH is sufficiently large enough. Comparisons between PY material without and
with added NP layers (different total volume), and between PY material with NP
(not bonded) and its laminate composite counterpart of the same volume have been
made. It was discerned that percentile improvement in k2Lam (Percentile ∆k2Lam) was
able to demonstrate a proportional correlation with the percentile improvement in
PdenMax (Percentile ∆PdenMax) in both cases, which percentile PY coef enhancement
(Percentile ∆p) failed to do in the case of differing volumes due to the introduction of
additional thermal mass in the form of NP layer leading to dissimilar volume expression
before and after the bonding of the laminate composite.

From considering the resistive cycle energy harvesting credentials of the thirty-
six PY-NP 2-2 connectivity laminate composites, LTO single crystal was determined
to show immense promise as a prime PY material candidate for energy harvesting
application. PZT5H-Zn (R = 1.005) and PZT5H-CPVC (R = 0.045) 2-2 connectivity
laminate composites also display potential in PY energy harvesting application.
In particular, PZT5H-Zn (R = 1.005) composite’s PdenMax of 12.35 Wm−3 at
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ΘL = 300K, ΘH = 310K, and f = 0.01Hz, is very respectable, which can easily be
further improved by increasing ΘH − ΘL and f , when compared to that of a typical
thermoelectric module, i.e. 30 Wm−3[2]. The possibility of further improvements
were noted by facilitating potentially huge spatial temperature gradient when PY
element is in contact with the surfaces of hot and cold reservoirs, which can improve
the thermal conductivity even further leading to higher available frequency (f), and
hence ultimately greater PdenMax.

When bonded laminate composites of PZT-5H and St were considered, the
composites with R > 1 outperformed the typical PZT5H’s energy harvesting
parameters. Although smaller R leads to higher PY coef enhancement, it also means
larger additional thermal mass from NP layer, resulting in larger effective volumetric
heat capacity (c̄E) which in turn has a negative effect on all the energy harvesting
parameters, PdenMax, ηRes, and k2Lam. This suggests maximising the PY coef alone
is not enough to optimise the energy harvesting system. Other issues such as the
additional thermal mass needs to be considered.

Appendices

Appendix A.1. Time constant derivation

Appendix A.1.1. Thermal conductivity The intensive property of a material that
indicates its ability to conduct heat, defined as the quantity of heat Q, transmitted in
time t, through a thickness L, in a direction normal to a surface area (A), due to a
temperature difference ∆Θ, under steady state conditions and when the heat transfer
is dependent only on the temperature gradient.

k = Thermal Conductivity

= Heat flow rate× Distance

Area× Temperature gradient

=
Q

t
× L

A×∆Θ
(A.1)

Appendix A.1.2. Specific heat capacity and heat capacity Amount of heat energy
required to achieve temperature difference of 1 K in 1 m3 of a material. Heat capacity
= cP × ρ = Specific heat capacity × Density = [Jm−3K−1]

Appendix A.1.3. Thermal diffusivity

k

ρ× cP
= Thermal diffusivity

=
Thermal conductivity

Density× Specific heat capacity

(A.2)

Appendix A.1.4. Time constant (T) This quantity will be defined as the minimum
time required for the whole sample to change a single degree, or equivalently a single
Kelvin. The derivation and mathematical expression of this entity will be displayed
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in the following. To derive the ”Time constant”, from the definition of thermal
conductivity (cf. A.1 and diffusivity (cf. A.2):

T = Time constant = Time taken for 1 K change

=
QL

A∆Θ
× 1

k

However, from the definition of heat capacity:

Q = Heat capacity×Volume× Temperature difference

= cP ρAL∆Θ

∴ T =
(cP ρAt∆Θ) t

A∆Θ
× 1

k
=

cP ρt
2

k

= t2 × 1

Thermal diffusivity

(A.3)

Appendix A.1.5. Evaluation of time constants for our composites For a laminate
structure with three layers (namely layers 1, 2, and 3): Max(T1, T2, T3) < τ <
T1 + T2 + T3 where Ti is the time constant for layer i

This means if the time constant of our heating rate is larger than T1 + T2 + T3,
it should be larger than τ , and hence PY coef measurement of the sample should not
be affected by the heating rate. Typical values used for our sample time constant
calculation:
� Thermal diffusivity of Stainless steel = 4.05 ×10−6m2s−1

� cPT
p = Specific heat capacity of PZT = 420 Jkg−1K6−1

� ρPT = Density of PZT = 7.8 ×103kgm−3

� kPT = Thermal conductivity of PZT = 1.25 Js−1m−1K−1

For 2 degrees a minute heating rate, the time needed for 1 K temperature change
is 30 seconds. Meanwhile, our largest sample has dimensions:
� Layer 1 : Stainless steel of thickness tSt = 250µm
� Layer 2 : PZT of thickness tPT = 267µm
� Layer 3 : Stainless steel of thickness tSt = 250µm

T1 = T3 =
tSt 2

Thermal diffusivity of St

=

(
250× 10−6

)2
4.05× 10−6

≈ 1.54× 10−4s

T2 =
cPT
p ρPT tPT 2

kPT

=
420× 7.8× 103 ×

(
267× 10−6

)2
1.25

≈ 1.87× 10−1s

∴ Time constant for our largest sample
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= T1 + T2 + T3 ≈ 1.87× 10−1s ≪ 30s

Therefore, the use of heating rates up to 2 degrees a minute should definitely be
okay while even higher heating rates should still be possible.

Appendix A.2. Material properties

All the data quoted in this section are evaluated at the room temperature unless stated
otherwise.

Table A1. Pyroelectric and thermal coefficients of various pyroelectric materials.

PZT-5Ha PZT-5Aa BTOb LTOc LNOc PVDFd

p1
T,E 0 0 0 0 0 0

p2
T,E 0 0 0 0 0 0

p3
T,E -5.0 -3.0 -2.0 -2.3 -0.83 -0.274

cvol 3.15 3.15 3.19 1.87 2.92 2.3

Units: - p; ×10-4 Cm-2K-1 - cvol; ×106 Jm-3K-1

a References [19, 20, 21]
b References [22, 23]
c Reference [24]
d References [25, 26]

Table A2. Dielectric constants of various pyroelectric materials.

PZT-5Ha PZT-5Aa BTOb LTOc LNOc PVDFd

ε11
T 2438 1796 2920 51 84 7.35

ε22
T 2438 1796 2920 51 84 9.27

ε33
T 2874 1803 168 45 30 7.75

a Reference [21]
b References [27, 28]
c Reference [29]
d Reference [30]
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