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WENO schemes on arbitrary mixed-element

unstructured meshes in three space dimensions

P. Tsoutsanis, V.A. Titarev∗, D. Drikakis

Department of Fluid Mechanics and Computational Science, Cranfield University,
Cranfield, UK, MK43 0AL

Abstract

The paper extends weighted essentially non-oscillatory (WENO) methods
to three dimensional mixed-element unstructured meshes, comprising tetra-
hedral, hexahedral, prismatic and pyramidal elements. Numerical results
illustrate the convergence rates and non-oscillatory properties of the schemes
for various smooth and discontinuous solutions test cases and the compress-
ible Euler equations on various types of grids. Schemes of up to fifth order
of spatial accuracy are considered.

Key words: WENO, unstructured, tetrahedral, hexahedral, prismatic,
pyramidal, mixed-element, three space dimensions, very high order, Euler

1. Introduction

Weighted essentially non-oscillatory (WENO) schemes [13, 9] for hyper-
bolic conservation laws combine the very high order of spatial accuracy in
smooth regions of the solution and quasi-monotone behavior at discontinu-
ities. The main idea behind the construction of WENO methods is to com-
bine the low-order reconstruction polynomials with the specially designed
weights in such a way that the resulting reconstructed value is of higher or-
der of accuracy than those from each of lower order polynomials for smooth
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solutions and in the same time free of spurious oscillations near discontinu-
ities. These properties make WENO methods a good choice for long-time
evolution flow problems requiring both shock-capturing ability and uniformly
high accuracy in smooth areas with rich structures.

On structured meshes the WENO schemes are relatively easy to imple-
ment and computationally not very expensive and thus have been used for a
number of studies, e.g. [16, 8]. The extension to unstructured meshes have
so far been carried out for triangular/tetrahedral elements only [5, 14, 3, 23].
However, practical applications of high-order methods require the use of
mixed-element meshes, consisting of a variety of elements, such as hexa-
hedral and prismatic cells. This is because in the numerical modelling of vis-
cous flows such cells are typically used inside the boundary layers where the
rest of the computational domain is discretised by tetrahedrals. Therefore,
the development of WENO methods capable of using general mixed-element
meshes is vital if this class of schemes is to be applied to real-world problems.

The motivation of the present work is to extend the schemes from [3, 4] to
arbitrary three-dimensional mixed-element unstructured meshes, consisting
of all four possible element types: hexahedral, tetrahedral, prismatic and
pyramidal. The extension is based on a new stencil construction procedure,
which is suitable for arbitrarily-shaped cells elements and results in a reduced
number of stencils for tetrahedral elements. The presented numerical results
for to scalar and nonlinear system cases show that the new schemes achieve
the very high order of spatial accuracy across interfaces between cells of
different types and in the same time essentially non-oscillatory profiles are
produced for discontinuous solutions. Since the goal of the present paper is
to develop the basic methodology for the construction of WENO methods on
mixed-element meshes, the calculations are limited to Cartesian geometries
mostly, except one test case, in which the flow over three-dimensional slender
body is considered.

The paper is organised as follows.In Section 2 a detailed explanation of
both linear and nonlinear reconstruction for a scalar variable is provided.
This reconstruction can be viewed as an extension of the WENO methodol-
ogy proposed in [3, 4]. The application of the developed techniques to the
compressible Euler equations is discussed in Section 3. Section 4 presents
numerical results, which demonstrate the very high-order accuracy of the
resulting methods, their essentially non-oscillatory properties as well as illus-
trate the influence of the mesh quality on the accuracy of the calculations.
Conclusions are drawn in Section 5.
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2. Arbitrary order reconstruction on mixed-element meshes

In this section a reconstruction procedure for mixed-element unstructured
meshes in three-space dimensions is described to be used later for the con-
struction of a WENO method. Without loss of generality the idea can be
explained as applied to a scalar variable u(x, y, z). Suppose that the spatial
computational domain is discretized by conforming elements Vi of the vol-
ume |Vi|, indexed by a unique mono-index i. The center of the element has
coordinates (xi, yi, zi). The elements considered are of hexahedral, tetrahe-
dral, pyramidal and prismatic shapes, as illustrated on Fig. 1. The main goal
of the reconstruction procedure is to build high-order polynomial pi(x, y, z)
such that it has the same cell average as u on the target cell Vi

ūi =
1

|Vi|
∫

Vi

u(x, y, z) dV =
1

|Vi|
∫

Vi

pj(x, y, z) dV (1)

and in the same time approximates the point-wise values of u inside the cell
with the given order of accuracy r:

u(x, y, z) = pi(x, y, z) + const · hr, h ≈ |Vi|1/3 (2)

To build up this polynomial, the reconstruction procedure will use the cell
averages of u(x, y, z) on the target cell Vi as well as averages ūm from the
reconstruction stencil formed by neighboring cells Vm.

In order to simplify the notation, in this section the global spatial index i
is omitted and the local numbering of cells is introduced. The reconstruction
problem can thus be reformulated as follows: for a target cell V0 build a
high-order polynomial p(x, y, z) so that its spatial average on cell V0 is equal
to u0 and approximates point-wise values of u with rth order of accuracy.

2.1. Linear (central) reconstruction

In general, the reconstruction can be carried out in the physical coordi-
nates x = (x, y, z), taking special measures against scaling effects. A more
elegant and computationally accurate approach, however, is to use the so-
called reference coordinate system (ξ, η, ζ), as was suggested in [3] for triangu-
lar (2D) and tetrahedral (3D) elements. Here this transformation technique
is extended to deal with general mixed-element mesh elements.

The basic steps of the transformation procedure proposed in the present
work can be summarized as follows. Firstly, if the cell V0 is not tetrahedral, it
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is decomposed into tetrahedrons. The number of these tetrahedral depends
on the type of element V0 and is equal to two for a pyramid, three for a prism
and finally six for a hexahedral cell. Next, the linear transformation and
the corresponding Jacobian matrix from physical coordinate system (x, y, z)
into the reference coordinate system (ξ, η, η) are defined using one of the
tetrahedral elements resulting from the decomposition. Finally, the cell V0

and other cells in the reconstruction stencil are transformed into the reference
space.

Let w1 = (x1, y1, z1), w2 = (x2, y2, z2), w3 = (x3, y3, z3), w4 = (x4, y4, z4)
be the four vertices of one of the tetrahedral elements the target element V0

consists of. The transformation from the Cartesian coordinates (x, y, z) into
a reference space (ξ, η, ζ) is defined as




x
y
z


 =




x1

y1

z1


 + J ·




ξ
η
ζ


 , J =




x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1

z2 − z1 z3 − z1 z4 − z1


 (3)

with J is the Jacobian matrix If the target cell V0 is in fact tetrahedral, then
(3) reduces to the mapping introduced in [3]. Eq. 3 defines both the direct
and inverse mappings from ξ = (ξ, η) into x = (x, y), which are denoted as

x = x(ξ), ξ = ξ(x) (4)

Via the inverse mapping the element V0 can be transformed to the element
V ′

0 in the reference coordinate system. Note that for the uniform (Cartesian)
hexahedral mesh the transformed element V ′

0 is just a unit cube in the refer-
ence space (ξ, η, ζ), whereas for a general hexahedral element as well as for
prismatic and pyramidal cells four of the vertices of the transformed element
will be from the unit cube.

For performing the reconstruction on the target element V0, the so-called
central reconstruction stencil S is formed which consists of M + 1 elements,
including the target element V0:

S =
M⋃

m=0

Vm

where the local index m counts the elements in the stencil S. The central
stencil is build up recursively by adding the direct side neighbors of the
element V0 and all of the elements already existing in the stencil, until the
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desired number of elements is reached. The neighbors are added irrespective
of their shape. The inverse mapping (4) is then applied to all the elements Vm

from the reconstruction stencil S and the transformed elements and stencil
are denoted as E ′

m and S ′, respectively:

S ′ =
M⋃

m=0

V ′
m

Fig. 2 shows an examples of a central stencil the physical coordinate sys-
tem for the linear third order reconstruction; the target cell V0 has direct
neighbors of all four types.

The reconstruction polynomial at the transformed cell V ′
0 is sought as an

expansion over local polynomial basis functions φk(ξ, η, ζ):

p(ξ, η, ζ) =
K∑

k=0

akφk(ξ, η, ζ) = ū0 +
K∑

k=1

akφk(ξ, η, ζ) (5)

where ak are degrees of freedom and the upper index in the summation of
expansion K is related to the degree of the polynomial r by the expression

K =
1

2
(r + 1)(r + 2)(r + 3)− 1.

The basis functions φk are constructed in such a way that condition (2) is
satisfied identically irrespective of values of degrees of freedom:

φk(ξ, η, ζ) ≡ ψk(ξ, η, ζ)− 1

|V ′
0 |

∫

V ′0

ψk dξdηdζ, k = 1, 2, . . .

{ψk} = ξ, η, ζ, ξ2, η2, ζ2, ξ · η, . . .

(6)

The unknown degrees of freedom ak are found by requiring that for each
cell V ′

m, m = 1, . . .M , from the stencil S ′ the cell average of the reconstruc-
tion polynomial p(ξ, η, ζ) be equal to the cell average of the solution ūm:

1

|V ′
m|

∫

V ′m

p(ξ, η, ζ) dξdηdζ = ū0 +
1

|V ′
m|

K∑

k=1

∫

V ′m

akφk dξdηdζ = um. (7)

In general, in order to compute the degrees of freedom ak we need at least
K cells in the stencil, different from the target cell V0. However, the use of the
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minimum possible number of cells in the stencil M ≡ K results in a scheme
which may become unstable on general meshes. It is therefore recommended
to use more cells in the stencil then the minimal required number [2, 11, 3].
Although it is usually sufficient to use 50% more cells, on mixed-element
meshes it may be safer to increase the stencil further. We typically select
M = (1.5 . . . 2) · K. The resulting over-determined system (7) is solved by
means of the least-square procedure.

2.2. WENO reconstruction on mixed-element meshes

The WENO reconstruction proposed in the present work is an extension
of the approach from [3] to mixed-element meshes, consisting of elements of
arbitrary shapes. The WENO reconstruction stencils is a union of several
reconstruction stencils Sm, m = 0, 1, . . . , ms. These are one central stencil
and several one-sided, or sectorial, stencils. The construction of the central
stencil S0 was outlined in the previous sections. The sectorial stencils are
obtained by adding only those neighboring cells, centres of which lie inside
the given sector. In [3] eight sectorial stencils are used for a tetrahedral ele-
ment, which include four primary sectors and four additional so-called reverse
sectors. This is already quite computationally demanding for tetrahedral el-
ements, which have four faces, and becomes too expensive for other type of
elements, which have more faces. In the present work a different procedure
for defining the directional sectors is adopted, which is approximately two
times more efficient. The direction stencils are formed by the barycenter and
edges of the faces as illustrated in Fig. 3. Namely, the planes C12, C13 and
C23 define the directional stencil sector for the triangular face whereas the
planes C12 , C23 , C34 , C41 make the sector for the quadrilateral face.
Here C is the barycentre of the element. In other words, the number of sec-
torial stencils in our schemes is usually equal to the number of faces of the
cell ms = L. Note, that the number of stencils may be smaller near solid
boundaries. Overall, our reconstruction procedure thus uses a significantly
smaller number of stencils compared to the original construction [3].

Figs. 4 – 6 illustrate the directional WENO stencils for a particular cell
V0 of the mixed-element unstructured mesh. Alls stencils are plotted in the
physical coordinate system and correspond to the central stencil, shown on
Fig 2. Here, the target element V0 is hexahedral and is marked on the plots of
directional stencils. Note that there are in total six mixed-element directional
stencils, attached to each of six faces of the element V0.
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The WENO reconstruction polynomial is now defined as a non-linear
combination of reconstruction polynomials pm(ξ, η, ζ), obtained by using in-
dividual stencils Sm:

pweno =
ms∑

m=0

ωmpm(ξ, η, ζ) (8)

Substituting the form of the individual polynomial (5) corresponding to the
stencil Sm

pm(ξ, η, ζ) =
K∑

k=0

a
(m)
k φk(ξ, η, ζ)

and further reordering yields the final expression for pweno:

pweno = ū0 +
K∑

k=1

(
ms∑

m=0

ωma
(m)
k

)
φk(ξ, η, ζ) ≡ ū0 +

K∑

k=1

ãkφk(ξ, η, ζ) (9)

Here ãk are the new values of degrees of freedom, modified according to the
WENO procedure. As is usual in WENO methods [9, 14], the nonlinear
weights ωm are defined as

ωm =
γm

ms∑
m=0

γm

, γm =
dm

(ε + ISm)p

where dm are the so-called linear weights, ISm are smoothness indicators, ε
is a small number used to avoid division by zero and finally p is an integer
parameter, controlling how fast the non-linear weights decay for non-smooth
stencils. We typically use ε = 10−6 and p = 4.

The selection of linear weights dm is based on [3]. The central stencil is
assigned a large linear weight d0 = 102 . . . 103 whereas the sectorial stencils
are assigned smaller weights dm = 1. This selection of the weights is mo-
tivated by the fact that for smooth solutions the central stencil is usually
the most accurate one. The oscillation indicators ISm of each stencil is a
measurement of how smooth the solution is on this stencil. Due to the use of
the reference coordinate system, scaling is already taken out of the problem
and ISm can be computed in a mesh-independent manner as

ISm =
∑

1<|β|<r

∫

V ′0

(
Dβpm(ξ, η, ζ)

)2
dξdηdζ (10)
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where β is a multi-index, r is the order of the polynomial and D is the
derivative operator. The general form of B in three space dimensions can
be found in [3]. It is easily seen that the smoothness indicators (10) are

quadratic functions of the degrees of freedom a
(m)
k and thus the expression

(10) can be rewritten in terms of the so-called universal oscillation indicator
matrix [3]. For purely tetrahedral meshes this matrix does not depend on
the element. For general elements it will, however, depend on the element.
For efficiency, it can be precomputed and stored at the beginning of the
calculations for each element Vi.

3. Application to the compressible Euler equations

3.1. The framework

The developed WENO reconstruction technique is applied to solve nu-
merically the three-dimensional compressible Euler equations of the form

∂

∂t
U +

∂

∂x
F(U) +

∂

∂y
G(U) +

∂

∂z
H(U) = 0, (11)

where U is the vector of conserved variables, F, G, H are flux vectors in x,
y and z coordinate directions respectively, given by

U =




ρ
ρu
ρv
ρw
E




, F =




ρu
ρu2 + p

ρuv
ρuw

(E + p)u




, (12)

G =




ρv
ρvu

ρv2 + p
ρvw

(E + p)v




, H =




ρw
ρwu
ρwv

ρw2 + p
(E + p)w




. (13)

Here ρ is density, u,v,w velocity components in the x, y and z directions,
respectively, p pressure, E = p/(γ − 1) + (1/2)ρ(u2 + v2 + w2) total energy,
γ is the ratio of specific heats; γ = 1.4 is used throughout.
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Spatial integration of (11) over a mesh element Vi yields the following
semi-discrete finite-volume method:

d

dt
Ui +

1

|Vi|
∮

∂Vi

FndA = 0,

Fn (U) = F (U) nx + G (U) ny + H (U) nz,

(14)

where n = (nx, ny, nz) is outward unit normal vector to cell faces, Ui(t) are
the cell averages of the solution at time t, Fn - projection of the flux tensor on
the normal direction. The integral over the element boundary ∂Vi is split into
the sum of integrals over each face Aj resulting in the following expression:

d

dt
Ui = Ri, Ri = − 1

|Vi|
L∑

j=1

∫

Aj

Fn,jdA = − 1

|Vi|
L∑

j=1

Kij (15)

Here the numerical flux Kij corresponding to the face j of the cell Vi is the
surface integral of the projection of the tensor of fluxes onto the outward unit
vector nj for face Aj. In a numerical method the exact integral expression
for the numerical flux Kij for the face j of a cell Vi is approximated by a
suitable Gaussian numerical quadrature:

Kij =

∫

Aj

Fn,jdA =
∑

β

Fn,j (U(xβ, t)) ωβ|Aj| (16)

where the subscript β corresponds to different Gaussian integration points
xβ and weights ωβ over the face Aj.

The temporal derivative in (14) is approximated by the third-order TVD
Runge-Kutta method [9]:

U
(n+1/3)
i = Un

i + ∆tRi(U
n),

U
(n+2/3)
i =

3

4
Un

i +
1

4
U

(n+1/3)
i +

1

4
∆tRi(U

(n+1/3)),

Un+1
i =

1

3
Un

i +
2

3
U

(n+2/3)
i +

2

3
∆tRi(U

(n+2/3)).

(17)

The time step ∆t is selected according to the formula

dt = K min
i

hi

Si

(18)
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where Si is an estimate of the maximum (in absolute value) propagation
speed in cell Vi, K ≤ 1/3 is the CFL number, hi is the characteristic length
of the element Vi.

The description of the scheme is complete once a reconstruction procedure
to calculate the point-wise values from cell averages and a numerical flux
(building block) of the scheme are specified.

3.2. Reconstruction for systems

Calculation of a numerical flux (16) through the face Aj of a cell Vi re-
quires the knowledge of point-wise values of the conserved vector U at the
Gaussian points. These values are obtained by the WENO reconstruction
procedure on mixed-element meshes, developed in the previous section and
extended here in to vector variables, which are solutions of the compressible
Euler equations. The reconstruction produces the high-order vector poly-
nomials Pi(ξ, η, ζ) defined in the local reference coordinate system of each
element Vi. The simplest approach to the construction of these polynomi-
als is to apply the scalar reconstruction procedure (9) to each component of
the conserved vector U. However, for systems better results are obtained if
the reconstruction procedure is carried out in characteristic variables. Our
approach for extending the scalar reconstruction to the characteristic-based
reconstruction is very similar to that of [4], although different in some re-
spects, and thus we only outline the main steps.

Consider the cell Vi and the corresponding set of directional stencils in
the local reference coordinate system {S ′m}, m = 0, 1, . . . ms. The vector of

degrees of freedom A
(m)
ik for each stencil are calculated using the scalar recon-

struction procedure in the component-wise fashion. Then, the corresponding
polynomials are given by

Pim(ξ, η, ζ) =
K∑

k=0

A
(m)
ik φik(ξ, η, ζ) = Ūi +

K∑

k=1

A
(m)
ik φik(ξ, η, ζ), (19)

where φik are basis functions for cell Vi in the local reference coordinate
system.

Define at the arithmetic average of the conserved vector Ui and the con-
served vector Ui′ , corresponding to the computational cell, adjacent to the
face Aj of the current cell Vi:

U′
n =

1

2
(Ui + Ui′).

10



  

Let Rj, Lj be the matrices containing the right and left eigenvectors of the
Jacobian matrix Hj, corresponding to the normal projection of the flux tensor
calculated at this average state

Hj =
∂Fn

∂U
|U=U′

n
,

where Fn is defined in eq. (14). The characteristic projections of vector
degrees of freedom of each stencil Sm, including the cell averaged value UI ,
are computed as

B
(m)
ikj = LjA

(m)
ik , m = 0, . . . , ms, k = 0, . . . K.

The scalar WENO reconstruction algorithm is applied to each component
of the projected degrees of freedom. The resulting modified degrees of free-
dom B̃

(m)
ikj are projected back to by multiplying them by Rj. The WENO

reconstruction polynomial for the face Aj is then given by

Pij(ξ, η, ζ) = Ūi +
K∑

k=1

Ãikjφik(ξ, η, ζ), Ãikj = RjBikj. (20)

Note, that the degrees of freedom in eq. (20) depend on the face index
j. Finally, the reconstructed values at Gaussian integration points are then
given by

Pi(ξβ, ηβ, ζβ) = Ūi +
K∑

k=1

Ãikjφik(ξβ, ηβ, ζβ), (21)

where (ξβ, ηβ, ζβ) are the coordinates of Gaussian points in the reference
coordinate system for the face Aj of the cell Vi. This completes the recon-
struction step.

An additional step in the reconstruction process was used in [4]. Namely,
for each cell Vi the least oscillatory of all Pij is taken as the unique recon-
struction polynomial Pi and then used for all faces. In the present work this
part of the characteristic-wise reconstruction process is omitted in order to
reduce the computational cost.

3.3. Numerical flux

After the reconstruction is carried out, for each computational cell the
point-wise values of the conserved vector U are represented by high-order

11



  

reconstruction polynomials. Since these polynomials are different, at each
Gaussian point β in the expression for the numerical flux (16) for the face Aj

of cell Vi two approximate values for the conserved vector U exist. The first
value U−

β corresponds to the spatial limit to the cell boundary from inside the
cell Vi and is given by the reconstruction polynomial Pi. The second value
U+

β corresponds to the spatial limit from outside the element and is obtained
by using the reconstruction polynomial of the neighboring element Vi′ . The
values U±

β are usually called left and right boundary extrapolated values.
In upwind Godunov-type methods the resulting discontinuity is resolved by
replacing the physical flux at each Gaussian integration point by a monotone
function of left and right boundary extrapolated values so that (22) can be
rewritten as

Kij ≈
∑

β

Fn,j

(
U−

β ,U+
β

)
ωβ|Aj| (22)

The function F̃n,j

(
U−

β ,U+
β

)
is called the Riemann solver [6], or a building

block of a high-order scheme.
Review of existing exact and approximate Riemann solvers for various

hyperbolic systems can be found in [12, 19]. Using the concept of the ro-
tational invariance [19], for each face Aj the normal projection of the flux
tensor Fn,j is replaced by

Fn,j = T−1F (TjU) (23)

where Tj is the (constant) rotation matrix for face j. Then the expres-
sion (22) for Kij is rewritten as

Kij =
∑

β

Fn,j

(
U−

β ,U+
β

)
ωβ|Aj| =

∑

β

T−1F
(
ÛL, ÛR

)
ωβ|Aj| (24)

where Ûj is the rotated conserved variable and

ÛL = TjU
−
β , ÛR = TjU

+
β

It follows from (24) that the flux function for the Gaussian point β can be
computed from the augmented one-dimensional Riemann problem

∂

∂t
Û +

∂

∂s
F̂ = 0, F̂ = F(Û), Û(s, 0) =

{
ÛL, s < 0,

ÛR, s > 0
(25)
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Assuming a three-wave structure with wave speed estimates SL, S∗ and
SR the HLLC flux is given by

F̂HLLC =





F̂L, if 0 ≤ SL ,

F̂∗L = F̂L + SL(Û∗L − ÛL) , if SL ≤ 0 ≤ S∗ ,

F̂∗R = F̂R + SR(Û∗R − ÛR) , if S∗ ≤ 0 ≤ SR ,

F̂R, if 0 ≥ SR ,

(26)

where

Û∗K = ρK

(
SK − uK

SK − S∗

)




1

S∗
vK

wK

EK

ρK

(S∗ − uK)[S∗ +
pK

ρK(SK − uK)
]




for K = L and K = R. The wave speeds SL, S∗ and SR must be estimated.
Here the procedure for pressure-velocity estimates of Sect. 10.5.2 of [19] are
used.

It is worth noting that HLLC flux contains all waves in the Riemann
problem solution, does not use linearization of the equations and works well
for low-density problems and sonic points without any fixes. The HLLC flux
has been recently used in a number of very high-order methods, with good
results, see e.g. [22, 18, 21].

4. Numerical examples

In this section the numerical results of the new schemes are presented as
applied to both smooth and discontinuous solutions in three space dimensions
of the schemes of up to fifth order accuracy. The schemes of spatial order
r are denoted as WENO−r, e.g. the spatially fifth order scheme is denoted
as WENO-5. Since only third-order accurate time evolution method (17) is
used, the resulting methods are of only third order of formal accuracy. For
the numerical schemes up to 3rd-order of spatial accuracy all convergence
tests are run with a fixed Courant number K = 0.3. However for higher than
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third order numerical schemes for convergence studies with smooth solutions
the time-step size is reduced according to (27)

∆t = K ·∆r/3 (27)

where ∆ is a characteristic cell size, r stands for the order of the scheme
for r > 3. This allows the spatial-order of accuracy to dominate the com-
putation. If uniformly fourth and high order of accuracy is required under
the conventional time-step restriction, then an ADER-type time evolution
approach is recommended [20, 21, 3, 4, 15].

One of the advantages of explicit methods used here is that they can be
easily parallelized based on domain decomposition. The mesh decomposition
process is the preprocessor step which is one of the most essential elements
for an equal load balance between processes in terms of memory requirements
and communications between processes. In the present work it is carried out
using the METIS software package [10], which has been shown to work well
for very high order accurate unstructured solvers on tetrahedral meshes [4].
The process chosen for decomposition is to convert the mesh into a nodal
graph rather than using a dual graph in order to derive a partitioning of the
nodes. The load balancing achieved with the METIS software package for
the meshes used ranges between 1.00 and 1.07 for any type of unstructured
mesh. of the scheme employed. The calculations were carried out on the
HPC Facility ’Astral’ of the Cranfield university. Astral is a Hewlett Packard
HPC, comprising 856 Intel Woodcrest cores with 2Gb of RAM per core and
clock frequency of 3.0GHz. With the present implementation overall parallel
efficiency of our methods is above 90% for up to 128 processors used.

4.1. Linear advection with a smooth initial condition

The methods are applied to the linear constant-coefficient advection equa-
tion

∂u

∂t
+

∂u

∂x
+

∂u

∂y
+

∂u

∂z
= 0 (28)

with a smooth initial condition defined in a cube [0, 1]3

u0(x, y, z) = sin (2πx) · sin(2πy) · sin(2πz) (29)

The periodic boundary conditions are applied. The unstructured meshes
used in calculations are constructed as follows. First the number of cells
Nedge over each edge of the cube is specified. Then, for each Nedge four
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sequences of meshes are constructed, corresponding to purely hexahedral
mesh, purely tetrahedral mesh, purely prismatic mesh and a mixed-element
mesh, consisting of cells of all element types. The purely hexahedral mesh
is further perturbed in order to make it non-uniform. The total number of
computational cells in the domain is then denoted as Ntot and is a function of
both Nedge and the type of elements used inside the computational domain.
Table 1 provides a summary of the mesh composition for each mesh sequence.
Cutaway sections for the case Nedge are shown on Fig. 7.

Tables 2 – 5 shows the convergence studies for cell averages for the solu-
tion. The errors are calculated the output time t = 1 Both linear (central
stencil) and non-linear WENO schemes are employed. It is observed that
all schemes reach the designed order of accuracy. Note that hexahedral and
prismatic meshes Nedge = 10 do not have enough elements to employ fifth-
order schemes since the stencils extend more than half a period in length,
leading to incorrect computational results.

The results from the third-order schemes, contained in Tables 2 – 5, makes
it possible to study the relative efficiency of different types of unstructured
meshes. It is obvious that for a given number of boundary cells Nedge the
hexahedral mesh leads to less accurate results are compared to meshes made
of elements with fewer number of nodes: tetrahedral and prismatic ones.
However, in practical applications the numerical error should be taken as
a function of the computational time, which is in turn proportional to the
total number of cells Ntot, the number of time steps Nt, required to reach
the selected output time and the computational cost required to compute the
numerical fluxes for one cell. Generally speaking, for the WENO schemes the
hexahedral element is costlier for flux calculations than tetrahedral, prismatic
or pyramidal one due to the larger number of sectorial stencils used. However,
it also allows one to run with a significantly large time step. For the linear
schemes with the central stencil the cost of the reconstruction for different
cell types is very comparable, whereas the differences in time step size remain
significant.

It is obvious that for any given value of Nedge, the prismatic and tetrahe-
dral meshes are superior to hexahedral meshes in terms of L1 and L∞ error
norms. This is due to the fact that prismatic and tetrahedral cells are smaller
than the corresponding hexahedral ones, resulting in finer mesh resolution,
but also leading to 4 to 14 times large computational times for the same
value of Nedge. If instead the computational error is taken to be function of
the total number of elements and the number of time steps required to reach
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the output time, then the hexahedral meshes are slightly more efficient than
any other elements.

4.2. Two-dimensional vortex evolution problem

The three-dimensional Euler equations (11)–(13) are solved in the com-
putational domain [0, 10]×[0, 10]×[0, 0.5] with periodic boundary conditions.
The initial condition corresponds to a smooth two-dimensional vortex placed
at the centre of the x-y plane [5, 5]. The vortex is defined as the following
isentropic perturbation of unit values of primitive variables [1]:

u =
ε

2π
e

1−r2

2
(5−y), v =

ε

2π
e

1−r2

2
(x−5), w = 0,

T =
(γ − 1) ε2

8γπ2
e(1−r2),

p

ργ
= 1, r2 = (x− 5)2 + (y − 5)2

, (30)

where the vortex strength is ε = 5. The exact solution is a vortex movement
in the x− y plane with a constant velocity at 45o to the Cartesian axis. The
numerical solution is computed at the output time t = 10 (one period) for
which the vortex returns to the initial position. Periodic boundary conditions
are applied.

The construction of the meshes for this test case is similar to the linear
advection convergence study. The edges of the computational in x, y plane
are mesh with Nedge number of cells, whereas the z direction is discretized
with a fixed number of cell equal to 20. Then, the interior is meshed using
cells of different types. The summary of the mesh statistics can be found in
Table 6.

Tables 7 – 10 show errors and convergence rates in L1 and L∞ norm for
cell averages of density. It is observed that both linear and WENO schemes
achieve the expected convergence rates for all meshes, including the mixed-
element ones. For a fixed resolution the fifth-order schemes are more accurate
than the third order ones by one to two orders of magnitude.

4.3. Blunted-cone-cylinder-flare test case

Finally, the third-order WENO method is applied to calculate the su-
personic flow over a realistic three-dimensional geometry. We consider the
so-called the blunted-cone-cylinder-flare geometry, designated HB-2. The
geometry has been used extensively in aerodynamic test facilities [7]. The

16



  

corresponding high-speed flow is a suitable test of the robustness of the pro-
posed methods as applied to real-life applications.

The geometry of the problem is shown in Fig. 8, where d is the reference
length. In the computational setup the x axis is directed along the body. The
computational domain (including the wake region) was meshed by two hybrid
unstructured meshes of different resolution. Figure 9 illustrate schematically
how the computational mesh was constructed. Although most of the com-
putational cells are hexahedral, near the axis the mesh contains prisms and
is thus of mixed-element type. In actual computations the mesh consisted
of 690040 cells and was partitioned into 32 blocks for parallel computations,
see Figure 10.

The computations were performed for the free-stream Mach number equal
to 5 at zero angle of attack Fig. 11 shows the pressure distribution along
the body, normalized by the post-shock stagnation pressure p0 and plotted
against longitudinal position. The spatial coordinate is normalised by the
length of the body L. Also shown is experimental data from [7] (symbols).
It is observed that the numerical solution provided by the WENO-3 method
agrees very well with the experimental measurements, including fine details.
Fig. 12 shows the pressure distribution, computed on the same mesh using
a TVD method. It is seen that the TVD method provides lower accuracy
even though the flow is dominated by relatively flow structures, such as shock
waves.

5. Conclusions

This paper has focused on the development of three-dimensional WENO
schemes for arbitrary-element unstructured meshes. The extension is based
on a new stencil construction procedure, which is suitable for arbitrarily-
shaped cells elements. A detailed description of the reconstruction step of
schemes is provided allowing for its practical implementation by a reader.

The new schemes have been applied to a number of well-established test
problems with both smooth and discontinuous solutions. The presented nu-
merical results demonstrate that the new schemes achieve the designed order
of accuracy for hexahedral, tetrahedral, prismatic and pyramidal elements,
which is maintained across interfaces between cells of various types. Also, the
computation of discontinuous solutions is not affected by interfaces between
neighbouring cells of different types.
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The future developments will consist of two directions. First is the exten-
sions to the ADER approach [20, 21, 3, 4, 15], which will allow an arbitrary
high-order accurate time evolution as opposed to the third-order accurate
TVD Runge-Kutta method used in the present work. Second direction is the
incorporation of the second-order derivatives. The preliminary results for the
compressible Navier-Stokes equations can be found in [17], where the linear
third-order method is presented. In the non-linear method the WENO recon-
struction, developed in the present work, should be used for computing the
convective flux only whereas the viscous and heat conduction terms are still
computed using the linear central stencil reconstruction. The corresponding
results will be reported elsewhere.
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[3] Dumbser, M., Käser, M., 2007. Arbitrary high order non-oscillatory fi-
nite volume schemes on unstructured meshes for linear hyperbolic sys-
tems. Journal of Computational Physics 221 (2), 693–723.
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(a) Hexahedral (b) Prismatic

(c) Tetrahedral

(d) Pyramidal

Figure 1: Four element shapes considered in the preset work
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X
Y

Z

Figure 2: An example of a central stencil of the third-order spatial reconstruction.

Figure 3: Construction of direction planes for triangular (left) and quadrilateral (right)
faces.
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Figure 4: First and second directional WENO stencils
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Figure 5: Third and fourth directional WENO stencils
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Figure 6: Fifth and sixth directional WENO stencils
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(a) Non-uniform hexa (b) Tetrahedral

(c) Prismatic (d) Mixed-element

Figure 7: Cutaway sections of different types of unstructured meshes used for convergence
study of the model equation (28) with initial conditions (29)
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Figure 8: Geometry for for the blunted-cone-cylinder-flare test case.

X

Z

Y

Figure 9: Computational domain and schematics of the mesh construction for the blunted-
cone-cylinder-flare test case.
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Figure 10: The fine mesh for the blunted-cone-cylinder-flare test case.
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Figure 11: The pressure distribution for the blunted-cone-cylinder-flare test case, com-
puted with WENO-3 method.
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Figure 12: The pressure distribution for the blunted-cone-cylinder-flare test case, com-
puted with TVD method.
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Mesh Type Nedge Ntetra Npyra Nprism Nhexa Ntot

Hexa 20 0 0 0 8000 8000
40 0 0 0 64000 64000
80 0 0 0 512000 512000

Tetra 20 84669 0 0 0 84669
40 507337 0 0 0 507337
80 3830397 0 0 0 3830397

Prism 20 0 0 28000 0 28000
40 0 0 219200 0 219200
80 0 0 1760480 0 1760480

Hybrid 20 218016 40000 16000 8000 282016
40 1629213 160000 128000 64000 1981213
80 4844598 640000 1024000 512000 7020598

Table 1: Statistics for the meshes used for the computations of the model equation (28)
with initial conditions (29).

Method Nedge L1 error L1 order L∞ error L∞ order
Linear-3 20 1.39× 10−2 2.857 4.66× 10−2 2.962

40 1.59× 10−3 3.127 5.55× 10−3 3.059
80 1.89× 10−4 3.072 7.67× 10−4 2.865

Linear-5 20 8.56× 10−4 N/S 2.09× 10−3 N/S
40 3.34× 10−5 4. 679 6.89× 10−5 4. 920
80 1.08× 10−6 4.950 1.95× 10−6 5.145

WENO-3 20 9.43× 10−3 2.579 3.67× 10−2 2.622
40 1.55× 10−3 2.604 5.88× 10−3 2.641
80 1.96× 10−4 2.983 8.23× 10−4 2.836

WENO-5 20 7.73× 10−4 N/S 3.47× 10−3 N/S
40 2.69× 10−5 4.844 1.27× 10−4 4.772
80 1.03× 10−6 4.706 4.23× 10−6 4.908

Table 2: Convergence study for various schemes using a unstructured hexahedral mesh as
applied to the model equation (28) with initial conditions (29) at output time t = 1.
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Method Nedge L1 error L1 order L∞ error L∞ order
Linear-3 20 9.85× 10−2 2.844 3.983× 10−2 2.958

40 9.73× 10−4 3.339 6.47× 10−3 2.620
80 1.29× 10−4 2.915 7.26× 10−4 3.155

Linear-5 20 7.54× 10−4 N/S 1.53× 10−3 N/S
40 2.57× 10−5 4.874 5.39× 10−5 4.828
80 9.38× 10−7 4.776 1.79× 10−6 4.912

WENO-3 20 6.93× 10−3 2.671 2.49× 10−2 2.542
40 9.27× 10−4 2.902 4.73× 10−3 2.396
80 1.41× 10−4 2.716 6.77× 10−4 2.804

WENO-5 20 6.99× 10−4 N/S 1.96× 10−3 N/S
40 2.36× 10−5 4.888 8.55× 10−5 4.518
80 9.71× 10−7 4.603 2.69× 10−6 4.990

Table 3: Convergence study for various schemes using a unstructured prismatic mesh as
applied to the model equation (28) with initial conditions (29) at output time t = 1.

Method Nedge L1 error L1 order L∞ error L∞ order
Linear-3 20 4.32× 10−3 2.942 1.66× 10−2 2.746

40 5.96× 10−4 2.857 2.38× 10−3 2.802
80 7.12× 10−5 3.065 2.91× 10−4 3.031

Linear-5 20 1.93× 10−4 4.991 7.56× 10−4 4.322
40 8.67× 10−6 4.476 2.72× 10−5 4.796
80 2.99× 10−7 4.853 1.06× 10−6 4.681

WENO-3 20 1.96× 10−3 2.899 8.67× 10−2 2.541
40 2.54× 10−4 2.947 1.03× 10−3 3.073
80 3.75× 10−5 2.759 1.36× 10−4 2.918

WENO-5 20 3.72× 10−4 4.712 8.63× 10−4 4.963
40 1.69× 10−5 4.460 2.97× 10−5 4.860
80 5.33× 10−7 4.986 8.94× 10−7 5.053

Table 4: Convergence study for various schemes using a unstructured tetrahedral mesh as
applied to the model equation (28) with initial conditions (29) at output time t = 1.
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Method Nedge L1 error L1 order L∞ error L∞ order
Linear-3 20 7.96× 10−4 2.892 5.78× 10−3 2.642

40 9.23× 10−5 3.108 6.99× 10−4 3.047
80 1.17× 10−5 2.979 8.32× 10−5 3.070

Linear-5 20 4.85× 10−5 4.692 2.61× 10−4 4.518
40 1.44× 10−6 5.073 8.67× 10−6 4.911
80 4.57× 10−8 4.977 2.55× 10−7 5.087

WENO-3 20 9.29× 10−3 2.638 6.75× 10−3 2.778
40 1.17× 10−4 2.990 7.63× 10−4 3.145
80 1.41× 10−5 3.050 9.41× 10−5 3.019

WENO-5 20 5.62× 10−5 4.887 3.43× 10−4 4.925
40 2.35× 10−6 4.578 1.08× 10−5 4.784
80 7.56× 10−8 4.959 3.62× 10−7 4.898

Table 5: Convergence study for various schemes using a hybrid unstructured mesh as
applied to the model equation (28) with initial conditions (29) at output time t = 1.

Mesh Type Nedge Ntetra Npyra Nprism Nhexa Ntot

Hexahedral 40 0 0 0 8000 8000
80 0 0 0 64000 64000
160 0 0 0 512000 512000

Prismatic 40 110800 0 0 0 110800
80 440840 0 0 0 440840
160 1761280 0 0 0 1761280

Tetrahedral 40 0 0 51844 0 51844
80 0 0 350153 0 350153
160 0 0 2085769 0 2085769

Hybrid 40 97343 39217 0 8000 137360
80 351405 109755 0 64000 525160
160 1041529 486391 0 512000 2039920

Table 6: Statistics for the meshes used for the vortex evolution problem.
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Method Mesh L1 error L1 order L∞ error L∞ order
Linear-3 402 × 20 1.87× 10−1 - 2.45× 10−1 -

802 × 20 2.61× 10−2 2.837 2.93× 10−2 3.061
1602 × 20 3.26× 10−3 3.001 3.6× 10−3 3.027

Linear-5 402 × 20 1.24× 10−1 - 1.49× 10−1 -
802 × 20 3.57× 10−3 5.118 4.68× 10−3 4. 992
1602 × 20 1.08× 10−4 5.046 1.47× 10−4 4.984

WENO-3 402 × 20 1.67× 10−1 - 1.96× 10−1 -
802 × 20 2.31× 10−2 2.853 2.98× 10−2 2.717
1602 × 20 2.52× 10−3 3.196 3.76× 10−3 2.986

WENO-5 402 × 20 8.65× 10−2 - 9.64× 10−1 -
802 × 20 2.33× 10−3 5.214 3.29× 10−3 4.872
1602 × 20 8.14× 10−5 4.839 9.33× 10−5 5.140

Table 7: Convergence study for various schemes using a uniform hexahedral mesh as
applied to the vortex evolution problem (30) at output time t = 10.

Method N L1 error L1 order L∞ error L∞ order
Linear-3 402 × 20 1.96× 10−1 - 2.51× 10−1 -

802 × 20 2.87× 10−2 2.771 3.35× 10−2 2.905
1602 × 20 4.41× 10−3 2.702 4.63× 10−3 2.855

Linear-5 402 × 20 1.18× 10−1 - 1.28× 10−1 -
802 × 20 2.86× 10−3 5.366 4.17× 10−3 4.939
1602 × 20 1.11× 10−4 4.687 1.56× 10−4 4.740

WENO-3 402 × 20 1.78× 10−1 - 2.57× 10−1 -
802 × 20 1.95× 10−2 3.190 3.11× 10−2 3.046
1602 × 20 2.54× 10−3 2.864 4.07× 10−3 2.933

WENO-5 402 × 20 7.99× 10−2 - 1.27× 10−1 -
802 × 20 2.46× 10−3 5.021 4.514× 10−3 4.814
1602 × 20 7.22× 10−5 5.090 1.28× 10−5 5.140

Table 8: Convergence study for various schemes using a prismatic mesh as applied to the
vortex evolution problem (30) at output time t = 10.
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Method N L1 error L1 order L∞ error L∞ order
Linear-3 402 × 20 2.18× 10−1 - 2.84× 10−1 -

802 × 20 3.01× 10−2 2.857 3.42× 10−2 3.051
1602 × 20 5.20× 10−3 2.533 5.49× 10−3 2.641

Linear-5 402 × 20 1.41× 10−1 - 1.53× 10−1 -
802 × 20 2.92× 10−3 5.605 4.71× 10−3 5.024

16062× 20 1.19× 10−4 4.604 1.59× 10−4 4.890

WENO-3 402 × 20 1.31× 10−1 - 2.93× 10−1 -
802 × 20 2.13× 10−2 3.299 3.26× 10−2 3.168
1602 × 20 2.80× 10−3 2.927 4.49× 10−3 2.860

WENO-5 402 × 20 8.63× 10−2 - 1.44× 10−1 -
802 × 20 2.71× 10−3 4.989 4.80× 10−3 4.096
1602 × 20 7.7× 10−5 5.141 1.49× 10−4 5.014

Table 9: Convergence study for various schemes using a tetrahedral mesh as applied to
the vortex evolution problem (30) at output time t = 10.0.

Method N L1 error L1 order L∞ error L∞ order
Linear-3 402 × 20 1.73× 10−1 - 2.28× 10−1 -

802 × 20 1.99× 10−2 3.120 2.86× 10−2 2.994
1602 × 20 2.74× 10−3 2.864 3.42× 10−3 3.063

Linear-5 402 × 20 9.38× 10−2 - 1.11× 10−1 -
802 × 20 2.89× 10−3 5.019 4.05× 10−3 4.767
1602 × 20 9.23× 10−5 4.970 1.23× 10−4 5.036

WENO-3 402 × 20 1.59× 10−1 - 1.53× 10−1 -
802 × 20 1.97× 10−2 3.010 2.80× 10−2 2.457
1602 × 20 1.92× 10−3 3.357 3.71× 10−3 2.916

WENO-5 402 × 20 6.53× 10−2 - 7.12× 10−1 -
802 × 20 2.22× 10−3 4.870 3.27× 10−3 4.442
1602 × 20 5.83× 10−5 5.258 8.03× 10−5 5.350

Table 10: Convergence study for various schemes using a hybrid mesh as applied to the
vortex evolution problem (30) at output time t = 10.0.
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