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Abstract i 

ABSTRACT 

A simulation tool for flight dynamics and control investigations of three different Vertical 

Take Off and Landing (VTOL) unmanned aircraft configurations has been developed. A 

control concept has been proposed in order to take advantage of the fast response 

characteristics of the ordinary small engine/propeller propulsion systems in such aircraft, 

as well as replacing the complex rotors used previously in VTOL concepts for small 
unmanned aircraft. The simulation model has been established on the basis of the 

proposed concept so that it can also be used to study the feasibility of this idea. An 

Object-based methodology has been introduced so as to reduce the amount of 

aerodynamic required data for the simulation model. The equations of motion associated 
with the aircraft multibody system with ten degrees of freedom have been derived using 
the Newton-Euler method. The modelling of various subsystems including the propeller 
model, the airframe aerodynamics and the engine model has been carried out. A method 
for calculating the propellers' slipstream effects on the other components has been 

presented. Input data for the simulation model have been estimated, using different 

sources. The Advanced Continuous Simulation Language (ACSL) has been used for the 

programming of the mathematical model. A series of comprehensive tests have been 

carried out in order to demonstrate the validity of the simulation model. The ability of the 

simulation model to explain the aircraft modes of motion as well as to discover unknown 
nonlinear behaviours and to describe them has been demonstrated. 
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system 
ýPn Relative angular velocity of the body p w. r. t. X,, Y,, Z,, axes system 

[µ] : Mass matrix 
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[DCMJ : Direction Cosine Matrix j to i 

on Tilt angle 
611 Slipstream deflection angle 

9C Propeller collective pitch 

6nd : Servomotor input current 

8 : Pitch angle 
ter : Yaw angle 

cp Roll angle 

p : Air density 

P. Mass density of a typical composite material 

State vector 

v: Viscosity factor 

a: Angle of attack 
Sideslip angle 
Angle of attack defined in local wind axes for bodies 

CT : Rotation angle 
S: Control surface deflection angle 
S1 Throttle setting 

yi m : Rotation angle between X� Y,, Zn and X. Y. Z. axes systems 
%. 

a 
Wing incidence angle 

Xha : Horizontal stabiliser incidence angle 
Xnw The angle between each nacelle and its associated wing 

Superscripts 

On the top right hand side of the symbol indicates the axes system in which the variable 
is defined. 
On the left hand side of the symbol indicates the side of the aircraft with which the 

variable is associated. It may take r or l indicating right and left side of the aircraft. 

r: right side 
l: left side 

Dummy index (right, left) 
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v: Dummy index (different components of the aircraft) 
d: Time derivative w. r. t. inertial frame 
dt 

.: Time derivative w. r. t. XaYaZQ axes system 

o: Time derivative w. r. t. X, Y�ZZ axes system 
': Time derivative 

a: XQYaZQ axes system 

n: X�YnZn axes system 

m: X 
mYmZ, n axes system 

v: X, YZ, axes system 
h: X,, YhZh axes system 

w: X, 
ýY., 

ZK, axes system 

Subscripts 
On the bottom right hand side of the symbol denotes the name of the symbol 
On the bottom left hand side of the symbol is reserved to indicate the reference point of 
the moment of a force or moment of inertia. 

M : Main object 
S : Secondary object 

s : Propeller slipstream 

nr : Right tilting part 

nl : Left tilting part 

pr : Right propeller 

Pl : Left propeller 
n : Tilting part, body n 
p : Propeller, body p 
b : Fuselage-empennage assembly 
fu : Fuselage 
hr : Right horizontal stabiliser 
hl : Left horizontal stabiliser 
vu : Upper vertical stabiliser 
vl : Lower vertical stabiliser 
wr : Right wing 

v 
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wl : Left wing 
tot : Vector size 

x, y, z : Vector components 

xx, xy, xz : Matrix components 
Dummy index (different components) 

of : Airfoil 

sb : Streamline body 
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND 

Pilotless aircraft is one of the most challenging areas in aeronautical science. 
These aircraft are called by a variety of names and acronyms. The most generic 
terms are Unmanned Aircraft (UMA), Unmanned Aerial Vehicle (UAV) and 
Remotely Piloted Vehicle (RPV). The future of UMAs seems to be very 

promising, mainly because they can be significantly cheaper to develop, build and 
can be used for a broad spectrum of applications [1]. 

Among the existing problems in the development of these systems, recovery has 

always been of much concern. Current arrangements which vary from the simple 

parachute to the large net-carrying recovery vehicle, are still not able to provide 

a safe, cheap and easy recovery for UMA customers. Each method has its own 
disadvantages which can cause serious performance limitations and increase 

service cost [2]. The application of the helicopter type UMA considerably 
reduces the recovery problems, however, at the expense of reductions in speed, 
altitude, endurance and manoeuvrability. 

One solution for this problem is to combine the attribute of vertical take off and 
landing of a helicopter with the high speed and efficient cruise ability of fixed- 

wing aircraft. This is the reason for the growing interest in the Vertical Take Off 

and Landing (VTOL) type UMA which can fly at high speeds whilst still being 

able to take off and land vertically as well as hover anytime during flight. 

The idea of VTOL aircraft has been a recurrent theme in full size aircraft design 

and research for well over sixty years [3-24]. Many VTOL concepts have been 
built and flown with reasonable success. However, only the concepts of Jet Lift 
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and Tilt-rotor have reached to the stage of production. The British VATOL 

aircraft Harrier and the American V22 Tilt-rotor aircraft Osprey can be quoted 

as examples. 

In the area of VTOL unmanned aircraft, some limited studies have been reported 

about the possible configurations and technology assessment for VTOL UMA 

[25,26]. However, the number of reports on the development programs are 

greater. The best known previous efforts are the Naval Ship Research and 
Development Center's VATOL demonstration vehicle [26], and the shrouded 

propeller UMAs Dornier-Lippisch Aerdyne and Short-Brothers Skyspy [26,27]. 

The recent efforts are much more promising. These efforts are mostly focused on 
the open-rotor concepts (systems normally seen on propeller-driven aircraft and 

rotorcraft). The most famous development programs of VTOL UMA of these 
kind in recent years are the Bell tilt-rotor UMA Pointer and its next generation 
Eagle Eye [1,20,29-38], the Sky Technology tail-sitter UMA Sparrow Hawk 
[28,39], the Boeing tail-sitter UMA Heliwing [40], the McDonnel Douglas 
Stopped-rotor UMA [28], the Freewing Aircraft Tilt-body UMA [38,41] and 
Daedalus Research Free-wing UMA STF-9A [28,38]. The majority of these 
VTOL UMA concepts are still in the research stage and almost no detailed 

information about the flight dynamics of these aircraft are available. 

1.2 THE PROPOSED CONTROL CONCEPT 

In the existing VTOL concepts, the ability of the engines to play an important 

role in aircraft control seems to be ignored. This is most probably due to either 
the poor response characteristics of their comparatively large engines or because 

there has not been much advantage compared to the cost of development. 
However, the small engines which are commonly used in ordinary small to 
medium size UMAs have sufficiently fast response characteristics to be 

considered as an active component of the aircraft control system. This ability can 
be used to control the amount of thrust force delivered by the propeller. If the 
direction of thrust is also controlled simply by rotating the propeller axis, then 
the complex rotors in VTOL concepts such as Tilt-rotor aircraft may be replaced 
by an ordinary simple engine/propeller propulsion system. In this way, the 
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resulting simplicity in mechanical system leads to lower manufacturing and 

maintenance cost. 

The application of this idea in a tilt-rotor configuration is shown in Figure 1.1. 

In this figure, the existing and the proposed concepts are respectively titled as 
Rotor-tilt and Nacelle-tilt control concepts. The Nacelle-tilt concept is called a 
Tilt-nacelle aircraft in this thesis. The main difference between the two concepts 
is the type of controllers which are used to control the aircraft orientation in 

different directions. As shown in Figure 1.1, in a Tilt-nacelle aircraft the 

complex rotor is eliminated and the differential collective and cyclic pitch 
controls are replaced by differential engine throttle settings and nacelle tilt 

controls. 

The application of the proposed concept can also be examined using the other 
VTOL configurations such as Tilt-wing and Tail-sitter. The Tilt-nacelle, Tilt- 

wing and Tail-sitter configurations and their associated velocity diagram 
describing the conversion process are shown in Figures 1.2,1.3 and 1.4. 

In the Tilt-nacelle configuration, the nacelles can rotate relative to the fuselage 

and the wing is fixed . During take off and landing, the nacelles are in the 

vertical position. The aircraft transition from hover to cruise or from cruise to 
hover can then be carried out by rotating the nacelles from the vertical to the 
horizontal position and vice versa. The fuselage remains in the horizontal 

orientation in all flight regimes. The actual airspeed over the wing (V, ) is a 

vector summation of the aircraft velocity and the propeller induced velocity. The 

wing angle of attack during the hover and the conversion process is negative. 

In the Tilt-wing configuration, the nacelles are fixed to the wing. The wing is in 
the vertical position for VTOL type manoeuvre and is rotated approximately 
ninety degrees forward to enable conventional propeller-driven flight. The 

configuration is similar to Tilt-nacelle except that in the Tilt-wing configuration 
the nacelles are attached to a tilting wing. The effective angle of attack over the 
wing is equal to the difference between the wing angle of attack (a,,, ) and 
induced angle of attack (a, ). 
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The Tail-sitter configuration has the same appearance as a conventional aircraft 
but with large diameter propellers. At launch, it is held in the vertical position 

until released for a vertical take off using the lift provided by the propellers. The 

aircraft then changes attitude and begins a conventional flight with the lift force 

being generated by the wing. In recovery, it flies to vertical position and lands 

vertically on its tail. 

Figure 1.5 depicts the available independent controls in an aircraft with the 

proposed control concept. Different combinations of these controllers may be 

used for different configurations and in different flight phases. 

1.2 REQUIREMENT FOR A SIMULATION TOOL 

The transition between propeller borne and wing borne flight is a complex 
physical process during which the propeller and wing pass through regions that 

are not normally experienced by conventional aircraft. Therefore, it is by no 
means certain that such transitions are physically possible for previously 
mentioned configurations. In addition, it is not immediately obvious what the 

advantages and disadvantages are between the configurations with regard to this 

manoeuvre and their compatibility with the considered control concept. A 

simulation tool is therefore necessary for such investigations. This simulation 
model can also be used for investigations of the aircraft stability and control as 
well as development of suitable control strategies. 

Moreover, the sizing of VTOL aircraft is very much influenced by its stability 
and control characteristics during flight in different regimes. Therefore, it is very 
important that the evaluation of the stability and control characteristics is carried 
out at early stage in the design process so that satisfactory flying characteristics 
can be obtained later with minimum need to change the aircraft sizing. A 

simulation model is equally useful in providing invaluable insight for conceptual 
design of a nearly optimised configuration, considering all factors including 
desired control tasks. 
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The complex coupled dynamics associated with the proposed concept (described 
in Chapter 3) leads to elimination of any simplifications in the aircraft equations 
of motion. Therefore, the complete equations of motion of an articulated flying 

structure with ten degrees of freedom must be used in this simulation. In other 

words, the quasi-static assumptions which have been used in previous works for 

tilt-rotor aircraft can not be made in this work [13,21,23]. 

As a research tool, the simulation model should be sufficiently general and 
flexible to be simultaneously used for investigations of all the aspects of flight 
dynamics of the three different VTOL configurations. Clearly, development of 
such a simulation tool is a multidisiplinary task which involves different areas 
such as dynamics of multibody systems, flight dynamics and simulation, 
aerodynamics of VTOL aircraft, propeller/engine propulsion system, aircraft 
stability and control, computer programming and validation methods. 

1.3 OBJECTIVES AND THESIS OUTLINE 

As the thesis title implies, the ultimate objective of this work is to develop a 
simulation tool to be used when there is little specific data available. This tool 
can then be used for investigations of flight dynamics and control of the 
previously mentioned VTOL UMA configurations, together with a feasibility 

study of the proposed control concept. In order to achieve this ultimate goal, 
some prerequisite objectives had to be completed in the form of different tasks. 
These tasks have been carried out in a step-by-step manner and are presented in 
different chapters. The following thesis outline represents the process of 
completion of these prerequisite objectives. 

In chapter one, a very brief introduction of unmanned aircraft and their recovery 
problems is provided. The capabilities of VTOL aircraft and recent development 
programs are then reviewed. The concept of using engines in aircraft control in 
order to reduce the mechanical complexity together with three aircraft 
configurations as the potential candidates are introduced. The application of the 
simulation tool, the objectives and the thesis outline are also described. 
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In chapter two, the relevant concepts of mathematical modelling and flight 

simulation are reviewed. This chapter provides all the basics which must be 

known for development of a successful flight simulation. The state space 

presentation is described in order to be used for formulation of the aircraft 

mathematical model in the following chapters. 

In chapter three, the general methodology used to establish the simulation model 

is described. This methodology is the baseline of all the mathematical modelling 

in the forthcoming chapters. The reasons for system complexity, the generality 

and flexibility requirements, and the kind of restrictions that led to devise such 

an approach are explained. An assessment about different aspects of the 

methodology is also provided. 

In chapter four, the equations of motion of the aircraft multibody system are 

developed. The Newton-Euler approach has been used in this development. 

These equations are then integrated with navigation equations and assembled in a 

state-space form. An appropriate system of notations and conventions is 

introduced. 

In chapter five, the modelling of various subsystems including propeller model, 

airframe aerodynamics, engine model and servomotor model has been carried 

out. In addition, the gravitational and inertia terms in the equations of motion 

are defined. A method for calculating the propellers' slipstream effect is also 

presented. 

In chapter six, the data preparation procedure for the simulation model is 

discussed. As previously mentioned, since there is no specific data available, a 

set of reasonable input data must be approximated to be used in the validation 

studies. The approximation of these data for various quantities is presented in 

this chapter. 

In chapter seven, attention is focused on programming the resulting equation on 
the computer. Firstly, the support languages for model simulation are reviewed. 
The Advanced Continuous Simulation Language (ACSL) is then introduced and 
its structure, advantages and inconveniences are discussed. Secondly, the 
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program development issues are explained, such as programming procedure, 

program structure, programming style, etc. A review of the testing process, 

strategies and techniques is then presented. This chapter finally ends by 

describing the comprehensive tests that have been carried out in order to prove 
the internal consistency and algorithmic validity of the developed model. 

In chapter eight, it is aimed to show the validity of the simulation model in terms 

of its capabilities to provide a series of reasonable and explainable simulation 

results associated with the considered VTOL configurations. The wing- 
supported flight as a common flight phase and the propeller-supported flight 

phase of each individual configuration are considered. The simulation results 
covering aircraft trimming, aircraft modes and aircraft controls are then 

presented. The ability of the simulation model to predict and to explain the 

aircraft behaviour correctly and to be used for hypothesis testing, explanation 
and discovery is also discussed . The discussion includes the prediction of the 

unstable oscillatory mode of tailsitters. 

In chapter nine, some generalised conclusions are drawn and prospects of future 
works are presented. 



Chapter two: Relevant Concepts of Flight Simulation 11 

CHAPTER TWO 

RELEVANT CONCEPTS OF FLIGHT SIMULATION 

2.1 INTRODUCTION 

In creating a successful flight simulation, it is important to have a clear understanding of 

what are the different steps in the development process as well as the kind of difficulties 

that might be encountered later. The more comprehensive the initial conception is the 

more elaborate the final product will be. The present chapter intends to provide such a 
background in order to reduce the number of unexpected problem. 

2.2 AIRCRAFT MATHEMATICAL MODELLING AND SIMULATION 

2.2.1 Basics 

The basis for analysis, computation or simulation of the motions of flight vehicles is the 

mathematical model of the vehicle and its subsidiary systems, i. e. their general equations 
of motion. Whatever configuration a vehicle may take, its motion is governed by the 

generic form of Newton's second law: 

X=F/M (2.1) 
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Where k is the acceleration of the vehicle, F is the applied force and M is the mass. 
The specific form of the equations of motion will be dealt with later on, but given an 

expression like Equation 2.1, the basic mathematical model of the vehicle is embodied in 

the definition of F. For a vehicle flying in air, this mathematical model is primarily the 

relationship between the air reactions and the motion of the aircraft relative to air. This 

can be called the aerodynamic model. The other external force and, moment arise from 

engine thrust. Bearing in mind that the gravitational acceleration is already considered in 

the acceleration term k. Definition of these force and moment components is the key to 

a realistic description of an aircraft flight characteristic. The aircraft performance and 
dynamic behaviour can then be calculated for as wide a range of flight conditions as that 
for which F can be defined. Simulation is fundamentally the generation of these forces 

and the solution of the equations of motion [42]. 

The simulation space is divided into three basic elements as depicted in Figure 2.1. 

Starting with reality, a conceptual model, described via equations or other governing 
relationship, is obtained by analysis. Implementation via programming yields a computer 
model which, through simulation, may be related to reality. The credibility of the 

conceptual model is then evaluated by procedures which test the adequacy of the model 
to provide an acceptable level of agreement with reality, while the computer model , in 

the form of an operational computer program, is confirmed as an adequate representation 
of the conceptual model by procedures of verification. Finally, model validation 
demonstrates that computer model possesses a satisfactory range of accuracy in 

comparison with reality consistent with its intended application. 

In creating or deriving mathematical models, it is important that the modeller (the person 
doing the modelling) has a clear idea of what the model is for, and that he states this 
together with his definition of his model. It is important because the purpose of the 
model influences its form and quality [43]. 

Modelling of many systems is extremely difficult, especially, when there is no `Reality', 
for example when the model is going to be used as a basis for a research work on a new 
concept and there is no specific data available. These kind of systems may often be 

simplified in the interest of obtaining an applicable model and yet still retaining sufficient 
realism for the task at hand. An applicable model in the present context means the one 
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that requires minimal data but is still able to keep the generality requirement to predict all 

the major aspects of the vehicle flight dynamics. 

2.2.2 Mathematical Modelling Versus Stability and Control Analysis 

Deriving mathematical models for simulation has some similarities with basic techniques 

of stability and control theory but there are also some differences. Similarities include 

mathematical notation, system of axes and basic nomenclature. Differences, however, are 

significant, and include the need for a wide range of speed, aircraft configuration and 

manoeuvre. 

The classical approach to stability and control analysis is to start with the complete 

equations of motion and make assumptions that enable the equations to be linearised 

about some local point of equilibrium (a trimmed state). Once linear equations are 

available, many techniques can be applied to the analysis of the system to investigate the 

stability of motion following a disturbance from trim. While such techniques have been, 

and are, invaluable in the design process, only small disturbances from the equilibrium 

state are permitted before the model is invalid. Many simulation tasks, demand a wide 

range of flight speed or require large changes in aircraft configuration in order to 

accomplish that task. A transition from wing-borne to rotor-borne flight of a VTOL 

vehicle is an example. 

2.3 MAIN ELEMENTS OF THE MODEL 

The concept of a mathematical model is introduced in the previous section, where the 

primary, or core elements of the model were defined as those which directly produce the 

external forces acting on the airframe, namely aerodynamic and engine thrust. 

The aerodynamic model has to reproduce the dominant features of the forces and 
moments acting on the aircraft. These are lift and drag, the main contributors to the 

aircraft's performance, and moments about three axes, through which the aircraft is 

controlled. Mathematical models would normally consider the physical components of 
the vehicle, e. g. wing, body or, for a helicopter main rotor, tail rotor, body and tail-plane, 
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and build mathematical expressions for the contributions made by these components. 
Aerodynamic models are normally static or quasi-static, based on the assumption that the 

airflow can establish a steady condition in a time scale much shorter than that of the 

aircraft manoeuvre itself. This time, as such, does not appear explicitly in the 

mathematical model, but the aircraft's transient behaviour is, of course, a function of 
time [42]. 

An engine model must first produce the correct amount of steady thrust to correspond 

with the demanded value. An engine can not change its thrust instantaneously. Burning 

more fuel to increase thrust must first accelerate the rotating machinery of the engine and 
this takes time. The timescale, being in the range of a few tenths of a second to several 
seconds, can influence the ability of controlling the aircraft. This, especially, happens 

with VTOL aircraft in which, in the hover, engines play an important role to generate 
control forces. Thus, adequate modelling of the growth or decay of thrust with time is 

necessary. 

2.4 EQUATIONS OF MOTION 

2.4.1 The General Equations 
As it was stated, the core of a mathematical model for flight simulation is the equations 
of motion of the aircraft. To find these equations for a conventional aircraft it is quite 
usual to start with the Newton's second law of motion. By applying this law, the 

equations of motion can be established in terms of the translational and angular 
accelerations which occur as a consequence of some forces and moments being applied 
to the aircraft. The obtained nonlinear set of equations, sometimes called "total force" or 
"large amplitude" equations, is sufficient to cope with general large-scale motion of an 
aircraft, but is not solvable in this form except by numerical techniques, and then only 
once all the forcing terms can be described. 

2.4.2 Small Perturbation Equations 

In many simulations there is no alternative to use of the large amplitude equations and 
fortunately modern computer techniques now permit this. It may still be desirable, 
however, to seek a linearised form of equations, since they then become amenable to 
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treatment by a wide range of analytical techniques. Such procedures are important at the 

design stage of a new aircraft and also in research, when experiments are conducted to 

establish data on the fundamental behaviour of aircraft based on simplified situations and 

modes. The large-amplitude equations, can be linearised by using small-disturbance 

theory [42]. In applying small-disturbance theory it is assumed that the aircraft deviates 

to only small extent from a datum, steady flight condition or trimmed state. The resulted 

equations are called small perturbation equations. Obviously, this theory can not be 

applied to problems in which large-amplitude motions are to be expected. However, in 

many cases small-disturbance theory yields sufficient accuracy for practical engineering 

purposes and can provide much valuable information and many important insights with 
relatively little effort. It gives sufficiently correct results for engineering purposes over 

surprisingly wide range of applications, including stability and control responses. 

2.4.3 Aircraft Orientation 

In order to describe the motion of an aircraft, it is necessary to define the aircraft 
orientation in space by its attitude, which may be specified in a number of ways. The 

conventional method is to define a sequence of three angles, known as the Euler attitude 
angles [44]. 

Equations derived in terms of Euler angles have the advantages of using physically 
meaningful variables and of being minimal, i. e. minimum number of first-order differential 

equation that can be used. They also have some significant disadvantages. First, in these 

equations a division by zero occurs if the pitch attitude variable reaches +/- 90 deg. In 
digital simulation this exact number has almost zero probability of occurrence, but 

significant computational errors may occur in the vicinity of the singularities. Second, the 
Euler angles may be integrated up to the values outside the normal +/- 90 deg. range of 
pitch, and the normal +/- 180 deg. range of the bank and yaw angles. This wraparound 
problem may make it difficult to determine the attitude uniquely. Finally, the relationships 
involving Euler angles are linear in terms of the aircraft angular rates but nonlinear in 
terms of the Euler angles [44]. 

There are a number of other ways to represent the orientation of an aircraft. These 
methods involve four, five, or even six variables in place of the three Euler angles. They 
have all been considered for the purpose of avoiding the mathematical singularity of the 
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Euler angle representation and increasing the speed of computer processing. One of 

these methods is now used almost exclusively in all of various aircraft applications. This 

method referred to an quaternion four-variable or Euler parameter representation [44]. 

Unlike the nonlinear relationships involving the Euler angles, the quaternion parameters 

satisfy a set of linear differential equations, with the angular rates as their coefficients. 
The differential equations can be used to "propagate" the quaternion representation of 

attitude forward in time. In this case, Euler angles need only to be calculated when 

needed for feedback control and for visualisation of the attitude. They are also needed at 
the beginning of a simulation to initialise the quaternions. 

Nowadays, the quaternion representation of attitude is widely used. It gives a unique 

representation of attitude and does not suffer from the singularity and wraparound 

problems of Euler equations. Also, the linearity of the quaternion differential equations 
leads to some computational advantages. 

2.4.4 Axes and Frames of Reference 

During the process of formulating and solving a problem in flight dynamics, a number of 
frames of reference (coordinate axes) must be used for specifying relative positions and 

velocities, components of vectors (forces, velocities, accelerations, etc. ) and elements of 
matrices (aerodynamic derivatives, moments and products of inertia, etc. ). The equations 
of motion may be written from the standpoint of an observer fixed in any of the reference 
frames, the choice being a matter of convenience and preference, and formulae must be 

available for transforming quantities of interest from one frame to another. 

There are many possible axis systems, but for simulation they fall into broad classes, 
Body and Earth or Inertial axes. Body axes consist of an axis system fixed in the aircraft 
and thus move in the space and rotate with the aircraft. For a specific set of body axes it 
is essential to know how the orientation of the axis system is defined with respect to the 
aircraft. 

Geometric-body axes are those axes defined such that the x-axis is aligned with a 
geometric feature, such as the fuselage reference line or a wing datum. Often such axes 
are known just as body axes. An alternative set of body axes is known as principal-body 
axes, defined such that the x-axis is aligned with principal inertia axis, thus making the 
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cross-products of inertia zero. This simplifies the lateral equations of motion but it is not 
particularly helpful in simulation, since the location of the principal axis could change 
with aircraft configuration. It is, however, sometimes useful in theoretical studies. 
Geometric-body axes offer sufficient advantages in giving constant moments of inertia. 

Aerodynamic-body axes (sometimes known as stability axes or wind axes) have an x-axis 
aligned with the projection of the velocity vector, in a datum flight condition, onto the 
plane of symmetry. Aerodynamic-body axes are therefore at an angle relative to 
geometric-body axes. These axes are usually employed to define the basic aerodynamic 
forces, especially lift and drag, as they are the natural axes for such definitions. If the x- 
axis is always coincident with the projection of the velocity vector, then the axes are no 
longer body axes, because they are no longer fixed in the aircraft. 

Flight- path and air-path axes also exist. Neither is a body axis system. For both, the x- 
axis is directed along the path followed by the origin 0 (the center of gravity), either the 
path relative to earth or the path related to the air-speed vector. They differ only if there 
are winds. 

Earth or Normal axes comprise a set of axes defined with respect to the earth, with the 
origin at a suitable point, the x-axis pointing North, the y-axis East and the z-axis down. 
Unlike body axes, Earth axes are inertial axes. They are used as reference axes for 

position and attitude and for the definition of winds. 

2.4.5 Axis Transformation 

One of the most fundamental operations in formulation of an aircraft equations is axes 
transformation. Many axes systems are used in flight simulation (e. g. Body axes or Earth 
axes) and many vector quantities are required to be transformed between them. The basic 
tool is the Direction Cosine Matrix. This is the linear transformation from one axes 
system to another. The elements of the DCM are the cosines of the angles between the 
base vectors of each axes system. These are not all independent and six algebraic 
equations, usually called constraint equations, have to be satisfied as well. Once a DCM 
has been obtained, the axes transformation is straight forward. However, 
computationally it represents nine products and nine summations and if many such 
transformations are required this can be a major part of computer work load. The inverse 
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transformation between axis system is simple, since the inverse of DCM is its transpose 

[45]. 

In many parts of a simulation program, the axes are rotating relative to each other and as 

a result the DCM is time dependent and changes as the calculations proceeds. Thus, it is 

a part of the simulation's job to calculate the new DCM at each calculation step. A good 

example is the use of body axes to express the equations of motion. In such a 

formulation the translational and rotational velocities are expressed as differential 

equations and solution of the equations provides the relevant velocities in body axes. To 

find the earth referenced velocities, a direction cosine matrix is needed. Since it will be 

time varying due to the relative velocities of the axes, it would be expected that its 

elements to be dependent on the angular velocities. This is indeed the case and nine 
differential equations can be written for the DCM elements that have angular rates as 

coefficients. The solution of these nine simultaneous differential equations will yield the 

required DCM. Since, the elements are not all independent, six algebraic constraint 

equations have to be satisfied as well. This is a considerable calculation problem. Many 

schemes have been used, all requiring a lot of computing, fortunately alternative methods 

are available [46]. 

2.4.6 The Aerodynamic Angles 

The aerodynamic forces and moments on any moving object in air are produced by the 

relative motion with respect to the air and depend on the orientation of the aircraft with 

respect to the airflow. In a uniform airflow, these forces and moments are unchanged 

after a rotation around the free-stream velocity vector. Therefore, only two orientation 

angles (with respect to relative wind) are needed to specify the aerodynamic forces and 

moments. The angles that are used are the angle of attack (alpha) and sideslip angle 
(beta). They are known as aerodynamic angles. These angles will be defined later in the 
following chapters. 

2.5 DATA REPRESENTATION 

Depending on the implied form of the model and required accuracy, the input data, such 
as aerodynamic, engine, propeller and so on, to the simulation program, may be 
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presented in a variety of ways. Sometimes a compact table of numbers is sufficient, but 

more often many data tables are needed, and some are two or three-dimensional. These 

tabulated data are discrete, whereas aircraft models require data at arbitrary values of the 

independent variables. This problem can be solved by using an interpolation algorithm 

with the data. Given a table of values of Y as a function of a set of values of X then the 

value of Y for any general value X is obtained by interpolation between adjacent 

coordinate axes. Special action has to be taken if X is either less than the lowest X-value 

in the table or greater than the highest X value. One action would be to set Y to the 

nearest end-point value. An alternative would be to extent the slope of the final segment. 
Which of these procedures is adopted depends on the problem and the nature of the data. 

2.6 THE STATE-SPACE FORMULATION 

The aircraft mathematical model can be built from a set of simultaneous ordinary 
differential equations of various orders. In this case, if we wish to examine the dynamic 

behaviour starting from some point on a trajectory, the initial values of the derivatives of 

various orders are needed to be known. As an alternative, the aircraft mathematical 

model can be expressed by a set of first-order differential equations that governs the 

dynamics of the aircraft . These are represented in the state-space form as the vector 

equations 
X= fm U) (2.2) 

where X is the (n x 1) state vector, U is the (m x 1) control vector, and f is a vector- 

valued nonlinear (in general) function of the state and control vectors. In addition to the 

state Equation 2.2, an output equations of the general form: 

Y=g(X, U) (2.3) 

is also required, where Y is a(px 1) output vector and g represents a set of nonlinear 

equations which are functions of the state and control vectors. The state variables can be 

any set of variables that completely describe the system. The state is an indication of the 

stored energy of a system (i. e., potential and kinetic of the aircraft) and its distribution. 
We normally choose a minimal set of state variables (i. e. independent set of variables) 
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and use the obvious orthogonal component of position and velocity (translational and 

angular) for this purpose . The output variable, Y, usually correspond to physical 

quantities for which measurement sensors have been supplied. 

For much of the analysis and design, the nonlinear model is approximated by a linear 

model. For the linear case, the Equations 2.2,2.3 can be rewritten as: 

x= Ax + Bu (2.4) 

y= Cx + Du (2.5) 

where, for an nth-order system, A is an (n x n) system matrix, B is an (n x m) input 

matrix, C is a (p x n) matrix referred to as the output matrix and D is a (p x n) direct 

matrix [44]. 

Note, that the uppercase symbols are used in Equations 2.2,2.3 for the state, control and 
output vectors because they represent the actual values of aircraft variables. However, in 
Equations 2.4,2.5, the lowercase symbols indicate that the state, control and output 
vectors are deviations from some nominal values (the steady-state flight condition). The 

steady-state condition and the linearization process will be discussed later in this chapter. 

Because of particular form of state equations, all of the necessary initial-condition 
information is carried by the state vector. In fact, the state variables can be defined as a 
set of variables such that the knowledge of the state vector at a particular time, and the 
control vector after this time, completely defines the motion (state trajectory) from that 
time on. This concept of state implies our earlier definition that the state vector defines 
the energy stored in the dynamics of each instant of time. This property will be useful 
when one wants to choose a set of state variables. Obviously, reduction of equations of 
motion to state-space form may include simply redefining the derivatives of some state 
variables as state variables in their own right. 

The advantages of state-space formulation will become evident if one gets involved with 
the development of analytical tools and numerical algorithms. Here, it should be pointed 
out that the vector function f can not in general be represented analytically, because 

they encompass a number of nonlinear effects, in the form of large body of tabular 
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aerodynamic data. Despite this, there is no difficulty involved in computing a trajectory. 

This is because the expression for the derivative vector, and starting value for the state- 

vector, constitute an initial value problem in the mathematical theory of ordinary 
differential equations. The theory and algorithms for numerical integration of this type of 

problems were developed long time ago by mathematicians. The numerical algorithms 
developed based on the state space formulation can readily be turned into software tools. 

The software tools will provide the capability to trim aircraft models for steady-state 
flight, perform digital flight simulation, extract linear state-space and transfer functions 

descriptions of aircraft models, and perform operations on the linear equations. These 

linear equations allow us, to design aircraft flight control systems. Figure 2.2 shows how 

the software tools fit together and emphasises the central core of the nonlinear state- 

space model [44]. 

2.7 NUMERICAL SOLUTION OF THE STATE EQUATIONS 

To simulate a flight using an aircraft model, the governing differential equations must be 

solved. These equations are nonlinear, depend on experimental data, and are subjected to 

arbitrary input signals. Therefore, an analytical solution is out of the question, and 

numerical methods must be used to calculate an aircraft trajectory. 

In general, a trajectory mean the motion of the tip of the state vector in the state 

coordinate as time evolves, in a more limited sense it also means the motion of the 

aircraft in some three-dimensional coordinate frame as time evolves. The state trajectory 

will change in a continuous manner because the state variables describe the energy stored 
in a physical system, and an instantaneous change in energy would require infinite power. 
This continuous variation of the state makes numerical integration possible, although 
state derivatives can often change discontinuously, and this may cause difficulties with a 
particular integration algorithm. 

Numerical evaluation of continuous trajectory implies calculating discrete sequential 
values of the state: 

X(to + kT) ,k=0,1,2,... (2.6) 
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that satisfy the state equations: 

X(t) = fm o, U(t )) (2.7) 

where to is the initial time and T is the time step. It is convenient to use a fixed basic 

time step for a given simulation, but the integration algorithm may internally subdivide 

the basic time step as it attempts to obtain an accurate solution. 

Next, we must consider the fact that the state equations are not autonomous since the 

control input is an external input. In order to use standard numerical integration 

algorithms, it is necessary to assume that the time step is so small that the control input 

remains constant within the sample interval kT to (k+1)T . 

Numerical integration of the continuous state equations is an initial-value problem. The 

initial value X(to) is given and the future values given by Equation 2.6 must be 

calculated. This can also be called prediction of future states based on current values of 

the first derivative. It is therefore intimately related to the Taylor series, which links 

prediction to knowledge of the derivatives of the orders. By using Taylor series some 
basic algorithms can be derived. One class of algorithms, that is called Runge-Kutta 

algorithms, directly solves the initial-value problem. They use the set of continuous state 

equations to predict the state derivative within the sample interval, at time instants 

beyond the current time. 

Another class, called linear multistep methods, requires past values of the state. They are 
therefore not self-starting and do not directly solve the initial-value problem. However, 

they do not require values of the state derivatives within the sample interval and are 
therefore useful for integrating the discrete-time signals in combined continuous-discrete 

simulations. 

2.7.1 Stability, Accuracy and Stiff Systems 

In developing numerical algorithms it is always necessary to consider how computational 
errors are magnified. If, in pursuit of greater accuracy, one blindly attempts to create 
higher-order linear multistep method formulae, it is quite possible that the algorithm will 
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be unstable and errors will grow with time, stability can be determined by analysing a 
finite-difference equation associated with the integration algorithm. 

The Runge-Kutta properties are different from those of the linear multistep methods. In 

the case of the Runge-Kutta algorithms, a reduction in step size will eventually eliminate 

an instability, although the required step size may be unrealistically small. When a set of 

state equations is being integrated, the required step size will be determined by the 

smallest time constant (i. e. the fastest component) of the solution function. A system 

with a very wide spread of time constants is known as stiff system, and a very large 

number of Runge-Kutta steps may be necessary to yield only a small part of the complete 

solution. Indeed they may be so many that rounding errors become a problem. Other 

techniques are required for stiff systems [44]. 

2.7.2 Choice of Integration Algorithm 

The most important feature of the Runge-Kutta methods is that they directly solve the 
initial value problem. In other words, no past values are needed to start the integration. 

This, of course, exactly matches the philosophy of the state-space formulation in which 

all of the information describing the state of the system is contained in the state vector at 

any time instant. The full significance of these facts can only be appreciated when a 

simulation containing discrete events is considered. This is a common practical 

engineering situation. For instance, at a given time a new subsystem may be activated, or 

at a certain value of some variables, the equations of motion may change because limiting 

or saturation behaviour occurs. Consequently, previous states are less relevant, the 
information they carry may now apply to only a part of the complete system. This 
favours the Runge-Kutta methods over the multistep methods. The disadvantages of the 
Runge-Kutta methods are that the error expressions are complex, they are inefficient 

when dealing with stiff systems, and more derivative evaluations are required for a given 
order than is the case with linear multistep methods. The tremendous increases in 

computing power in recent years have made these disadvantages much less significant for 

small to medium-sized simulations. Such simulations are commonly run with a fixed time 
step that has been found to be adequate for the required accuracy and is also determined 
by other discrete event considerations. 
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The important features of linear multistep methods are that higher-order methods are 

obtained for a given number of derivative evaluation, and an accurate expression for the 

integration error can usually be obtained. These methods come into their own on very 

large systems of equations, large stiff systems, and when there is no hard-limiting 

behaviour or topological changes due to switching [44]. 

2.8 STEADY-STATE TRIMMED FLIGHT 

The concept of a singular point, or equilibrium, of an autonomous (no external control 
inputs) time-invariant system is introduced in the theory of nonlinear systems [44]. 

According to this theory the coordinate of the singular point of a nonlinear state 

equations are given by the solution vector, X, , which satisfies: 

i= f (X, U) with j=0 ;U=0 or constant 10 (2.8) 

This idea has a strong intuitive appeal, the system is a at rest when all of the derivatives 

are identically zero, and then one may examine the behaviour of the system near the 

singular point by slightly perturbing some of the variables. If , 
in the case of an aircraft 

model, the state trajectory departs rapidly from the singular point in response to a small 

perturbation in, for example, pitch attitude, then the aircraft is unlikely to be controlled. 

To find the steady-state flight condition, the simultaneous nonlinear Equation 2.8 must 
be solved. Then the values of the state and control vectors that satisfies these equations 

can be calculated. In general, because of nonlinearity, a steady-state solution can only be 

found by using a numerical algorithm on a digital computer which iteratively adjusts the 
independent variables until some solution criterion is met. The solution will be 

approximate but can be made arbitrarily close to the exact solution by tightening up the 

criterion. Multiple solutions may exist, and a feasible solution will emerge only when 
practical constraints are placed on the variables. 

The trim algorithm communicates with state-space model only through its proper inputs 

and outputs. This means, we don't work within the model to balance forces and 
moments separately. It has the important advantage of separating the method from 
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supporting software, and promoting modular software with standard mathematical 

algorithms. Figure 2.2 illustrates this idea, the generic trim program links to any 

nonlinear model and produces a file containing the steady-state values of the control and 

state vectors for use by the time-history and linearization programs. 

One of the first isses that must be decided is how to specify the steady-state condition, 
how many of the state and control variables may be chosen independently, and what 

constraints exist on the remaining variables. A computer program can then be written so 

that the specified variables are entered from the keyboard, and the independent variables 

are adjusted by the numerical algorithm which solve the nonlinear equations, while the 

remaining variables are determined from the constraint equations. 

2.9 LINEARIZATION 

When we perform a computer simulation to evaluate the performance of an aircraft with 
its control systems, we almost always deal with nonlinear equations. Such equations are 

much more difficult to solve than linear ones, and the kinds of possible motions resulting 
from a nonlinear model are much more difficult to categorise than those resulting from a 
linear model. It is therefore useful to linearize models in order to gain access to linear 

analysis methods. It may be that the linear models and linear analysis are used only for 

the design of the control system (whose function may be to maintain the system in the 
linear region). Once a control system is synthesised and shown to have desirable 

performance based on linear analysis, it is then prudent to carry out an accurate 
numerical simulation of the system with all the nonlinearities in order to validate the 

performance. 

By definition, Linearisation is the process of finding a linear model that approximate a 
nonlinear one. Fortunately, as Lyapanov proved over 100 years ago, if a small-signal 
linear model is valid near a equilibrium and is stable, then there is a region (which may be 

small, of course) containing the equilibrium within which the nonlinear system is stable 
[44]. Thus, we can safely make a linear model and design a linear control for it so that , 
at least in the neighbourhood of the equilibrium, our design will be stable. Since a very 
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important role of feedback is to maintain the process variable near equilibrium, such 

small-signal linear models are a frequent starting point for control models. 

Starting with a nonlinear equation and considering small perturbations from the steady- 

state condition X, 9 U` , linear-coefficient state equations can be derived by expanding 

the nonlinear state equation in a Taylor Series about the equilibrium point (Xe, U`) . 
Approximating by the first-order terms, the perturbations in the state, state derivative, 

and control vectors must satisfy: 

Sü 
ä 

S]f = SX 
-I- au (2.9) 

Equation 2.9 can then be rewritten in an implicit linear state-variable form as follows: 

Ex = Fx + Gu (2.10) 
where 

E= 
of 

; F= Ialfx of 

aX X. . au u, u, u. 

Lowercase notation has been used to indicate that x and u are perturbations from the 

equilibrium values of the state and control vectors. By premultiplying the Equation 2.10 

by E-' then: 

x= E-'Fx + E-'Gu (2.12) 

or 
x= Ax + Bu (2,13) 

where 

A =E-'F ; B=E"'G (2.14) 

The coefficient matrices A and B are called Jacobian and must be calculated at the 
equilibrium point. Obviously, for a given flight condition, A and B are time invariant 
and the resulting state equations are referred to as LTI (Linear-Time-Invariant) state 
equations. 
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For the aircraft dynamic and control analysis, usually, equations are needed to be 

linearised in different steady-state conditions. Therefore, algebraic linearisation is not a 

convenient way of doing this, because, different steady-state flight conditions may have 

significantly different dynamics and a linearised equation about one equilibrium point that 

has been done with certain approximation and assumptions may not be applicable for the 

other one and it needs another set of linearised equations. This makes considerable 
inconvenience. As an alternative method of deriving LTI equation from our aircraft 

model, numerical linearisation can be used. Since a nonlinear simulation model is 

established in state-space form, it is convenient to use the aerodynamic data and calculate 

the Jacobian matrices for the LTI equations directly from the nonlinear model. This is 

done by perturbing the state and control variables from the steady-state condition, and 

numerically evaluating the partial derivatives in the Jacobian matrices. The Jacobian 

matrices may therefore be determined for any steady-state flight condition. Figure 2.2 

illustrated how this idea fits into the software environment. 

2.10 VERIFICATION AND VALIDATION 

The very important parts of the process of developing a useful computer simulation are 

verification and validation of the underlying mathematical description. According to 

Reference [48], verification is defined as being concerned with proving that a computer 
based description is consistent with the underlying mathematical or conceptual model to 

a specified degree of accuracy. Validation, on the other hand, is concerned with 
demonstrating that the mathematical or conceptual model has a satisfactory accuracy 

over the range of conditions relevant for the intended application. Since these two words 

are often confused and used interchangeably, it is useful to use the words internal and 

external, respectively, when discussing verification and validation. The processes of 
`internal verification' and `external validation' are then clearly and distinctly separated. 
This gives emphasis to the fact that the processes leading to model verification should 
provide proof of the internal consistency of the model and the associated software 
whereas the assessment of external validity of the model involves questions of judgement 

to a greater extent. 
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2.10.1 Internal Verification [48] 

The criteria for internal verification may be summarised as follows: 

a. Internal consistency of the model and the associated computer program in that they 

can be shown to involve no logical, mathematical or conceptual contradictions. 

b. Algorithmic validity of the computer-based model such that the algorithms and 

associated programs can be shown to be appropriate and leads to solutions with a 

specified numerical accuracy. 

Internal verification processes are important at every stage of model development. All 

proposed changes within an established model must also be subjected to careful 

assessment in terms of these internal verification criteria. 

2.10.2 External Validation Criteria [48] 

Criteria for external validation are concerned with assessment of the suitability and 

accuracy of the model in the context of its intended application and include the following 

issues. 

a. Theoretical validity in that model is consistent with currently accepted theories or 
based upon some sound theoretical foundation. 

b. Empirical validity in terms of agreement between the behaviour of the model and all of 
the available data concerning the real system. 

c. Pragmatic validity in terms of the extent to which the model satisfies the requirements 
of the intended application. 

d) Heuristic validity in terms of the potential of the model for hypothesis testing, 
explanation and discovery. 

The most important of these four criteria in practical modelling applications are usually 
the empirical and theoretical criteria. These should be considered at every state of model 
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development and evaluation. Empirical validity is especially important and has to be 

assessed not only during model development but also throughout the subsequent 

application. If at any stage the model does not satisfy this criteria it is essential to return 

to the theory and to the data which form the basis of the mathematical description. 

Additional tests on the real system may be necessary as part of this process of model 

refinement. 
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CHAPTER THREE 
GENERAL METHODOLOGY 

3.1 INTRODUCTION 

Having discussed the requirement of a simulation model in Chapter 1, the next 
step is to develop the vehicle mathematical model. The mathematical model of 
the considered VTOL configurations is a combination of multibody dynamics and 
VTOL aerodynamics which are both fundamentally complicated phenomena. 
Therefore, the existing well-established methods for mathematical modelling of 
the conventional aircraft are not applicable to this case. In addition, as it is also 
pointed out in Chapter 1, there is no specific data available. What should actually 
be investigated by the simulation model is the feasibility of the concepts. This, in 

turn, demands a high level of generality and flexibility for the mathematical 
model. In the following sections, it is intended to explain the important issues 

and the kind of restrictions that were faced at the beginning of the model 
construction. Considering the issues, an ad hoc methodology was devised to 
meet all the requirements. 

3.2 PROBLEM DEFINITION AND METHOD OF APPROACH 

Dynamic Complexity 
The dynamics of the mentioned VTOL configurations is much more complicated 
than conventional aircraft, principally due to the relative movement of several 
massive parts such as propellers, nacelles, wings and fuselage. These vehicles 
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have ten degrees of freedom instead of six degrees of freedom associated with 

conventional aircraft. In fact, they can be considered as articulated flying 

structures. 

In these vehicles the c. g. and mass moment of inertia are not fixed. They change 
during transition or anytime that tilt angle controls are active. These changes 

may happen unsymmetrically, for example in yaw control during hover. 

Therefore, unlike conventional aircraft, the usual assumptions such as fixed c. g. 
location, fixed mass moment of inertia and aircraft symmetry can not be made in 

mathematical modelling of the aircraft. The time rate of change of inertia and 

c. g. position are the issues that must be considered in the derivation of the 

aircraft equations of motion. 

The other important features of a VTOL vehicle is to have. large diameter 

propellers, needed to produce sufficient lift in the helicopter phase. The 

considerable mass and inertia of these kind of propellers together with high 

rotational speed may cause significant gyroscopic effects whenever the propeller 

axis experiences an angular velocity in space. It may happen either due to the 

control system action (active tilt angle control) or when transition takes place, or 

even, when the aircraft flies on a curvilinear trajectory. 

Aerodynamic Complexity 

A VTOL aircraft typically flies in three different regimes including, low speed 
flight, transition flight and cruising flight. Because of flying in different 

conditions the aircraft aerodynamics is more complicated than the aerodynamics 

of a conventional aircraft. This complexity is principally due to three facts. 

First, the wide range of angle of attack and sideslip that aircraft is subjected to. 
In low speed flight, aircraft is capable of flying rearward and sideward as well as 
forward. In addition, it ascends and descends vertically, therefore, it experiences 
angles of attack in the range of -180 to +180 deg. and sideslip angle from -90 to 
+90 degree. Moreover, due to the different flight conditions, propellers have to 

operate at angle of attack within -90 to +90 deg. 

i 
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The second fact is the considerable aerodynamic effect of the propellers 

slipstream on the other components, in particular wings that in the considered 

configurations are fully immersed in the propeller's slipstream. The propeller 

slipstream influences the local velocity vector acting on the vehicle airframe. 
When the aircraft is operating at low speed the velocity of the propeller induced 

flow is at its maximum, as transition takes place the vehicle accelerate and the 

velocity of the induced flow reduces until it reaches its minimum in aeroplane 

mode. Consequently, the slipstream effect is in its most severe condition during 
low speed flight in helicopter mode. 

The direction and the strength of the propeller slipstream are not constant. They 
depend on airspeed, propeller induced velocity and tilt angle. Thus, they change 
in terms of flight condition. It means that if one component is immersed in the 

propeller slipstream for a certain flight condition, it may not still be located in 

there if the flight condition changes. When calculating the aerodynamics of the 
aircraft it is important to specify which parts of the aircraft are affected by the 
propellers slipstream at the time. It should be pointed out that the components 
primarily influenced by the propeller flow field are horizontal and vertical 
stabilisers, wing and nacelles. 

Different Configurations 

As pointed out in Chapter 1, there were three different VTOL concepts to be 

simulated. The concepts had similarities in multibody system and baseline shape. 
Therefore, it was decided to take benefit of having these similarities and 
avoiding development of separate simulation model for each of them. As a 
consequence, the need for generality was further increased. 

Lack of Data 

The shortage of any specific data was the other important problem in the 
development of the simulation model including mass, inertia, engine and 
aerodynamics. Due to the mentioned aerodynamic complexity, a huge number of 
data over a wide range of angle of attack and sideslip angle was required to 
entirely cover the flight envelope associated with VTOL flight. The estimation of 
these data for three different configuration was not possible by using existing 
data sheets which are limited to small aerodynamic angles. 
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Flexibility Requirement 

In order to be used as a research tool, the simulation model had to be sufficiently 

general and flexible so that the user has a large amount of freedom in specifying 
the components' characteristics individually. In this way, there is no need for re- 

estimating the aircraft characteristics for every single change in the components' 

specifications during research work. 

Method of Approach 

Regarding the mentioned requirements, difficulties and restrictions, the only way 
which could lead to development of a simulation model was to consider the 

aircraft as a combination of a number of the separated elements. The aircraft 
modelling could then be carried out by integrating the model of these individual 

components. This method is called the Object-based approach in the present 
work and is explained in the following section. An assessment of the approach is 

also provided at the end of this chapter. 

3.3 THE OBJECT-BASED MODELLING 

The structure of the approach which has been used to develop the simulation 
model of an articulated aircraft is shown in Figure 3.1. In this approach the 

aircraft is considered to be composed of several elements grouped as 'MAIN' 

and `SECONDARY' objects (M. O. and S. O. ). The first group is in fact the 
multibody system which is used to derive the general equations of motion of the 

vehicle. It includes five main objects A, 'n 
, 

'n 
, 

`p and 'p 
. In Figure 3.2 a 

better representation is given. The second group is the group of objects of which 
the dynamics of the aircraft is a result of their characteristics, i. e. mass, inertia, 

size, position and aerodynamics. This group includes fuselage, vertical and 
horizontal stabilisers, wings, nacelles, engines, servomotors and propellers. The 
location of each of these objects in the real aircraft is shown in Figure 3.3. 

The chart in Figure 3.1 shows, how different elements are related to each other 
and what kind of information is needed to build up the simulation model. In this 
chart, fixed connections are shown by the solid lines. Those lines that are ended 
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by the small filled circles indicate that two objects are connected through 

revolute joints. The signs `*' and `+' indicate that the S. O. may be affected by 

the right and left propeller's slipstream, respectively. 

The primary information to build up the model are aerodynamic forces and 

moments, inertia, mass and thrust characteristics of each object. For a secondary 

object, these kind of characteristics are shown by a number of BOXes which are 

titled by A, I, M and T. An A box contains all the necessary information to 

establish the aerodynamic model of the corresponding object. In other words, it 

provides aerodynamic forces and moments generated by that object. The boxes I 

and M contain inertia and mass characteristics, respectively, and T is a box to 

represent generated thrust forces and moments by the object. 

Each of these boxes can be divided into the smaller internal parts of information 

which are called UNITs as shown in Figure 3.4. A `UNIT' can be considered as 
the smallest independent pack of information which should be available at any 
time during simulation. The information inside the units OAC , 01 , OM , OTC 

should be given as the inputs to the simulation model. Note that, the T box only 
appears for the main objects 'p and 'p 

. It should be pointed out that the 

propeller slipstream effect will be manifested by changing the local now 

characteristics over the other parts of the aircraft. Therefore, these effects have 

automatically been considered in the OLAC unit of an object. The OSPO unit is 

an essential part of each box. It is useful for transformation of values from a data 
defined axes system to a main axes system. 

An M. O. is a single rigid body which is connected to other parts by revolute 
joints. It moves in space while subjected to external aerodynamic loads and 
reaction forces and moments at the joints. The dynamics of an M. O. can be 

expressed by the equations of motion of a single rigid body. Each main object 
can be a collection of the secondary objects which are fixed together and have 
the same velocity and acceleration as the main object. The aerodynamic forces 

and moments, inertia and mass of a main object can be determined by a 
summation of all the partial values of its secondary objects as follows: 
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AM = (As)t 

im = (Is)t (3.1) 

MM = DMs)t 

t 

A bigger pack of information can also be defined for an object. This pack is built 

by a set of the boxes A, I and M, and is called the AIM of an object. Using the 

above relationships, the AIM of a main object can be defined in terms of the 
AIMS of its secondary objects as follows: 

AIMM = (AIMS ), (3.2) 

It should be pointed out that due to the nature of the thrust producer objects 'p 

and 'p 
, the relevant pack includes an additional box T and it is specially called 

AIMT. 

Having established the AIM of a M. O., two other essential parts are needed to 

complete the model of the M. O.. These two are reactions at the joints and the 

object kinematics. The OJR, Object Joint Reactions, which in fact expresses 
the boundary conditions of a M. O. can be broken down into the two parts as 
'KNOWN' and 'UNKNOWN' joint reactions. The known reactions are those 

which are produced by servomotor and engine output torque. The unknown 
reactions are the internal structural force and moment reactions. They will be 

eliminated from the equations as shown in the following section. The OK, Object 
Kinematics, represents the kinematics of the main objects and contains all the 

velocities and accelerations. 

Relating all of these parts by the single Rigid Body Equations Of Motion 
(RBEOM), the model of a M. O. will be completed. Figure 3.5 shows all the 
elements and sub-elements necessary to build up the model of a main object. This 

model can be demonstrated briefly by the following relationship: 

MODEL = RBEQM(AIM, OJR, OK) (3.3) 
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Fig. (3.5): The elements and subelenments for model construction 
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3.4 SIMULATION MODEL 

3.4.1 Main Objects 

As it is shown in Figure 3.1, the aircraft is composed of five main objects A , 'n , 
In 

, 'p and 'p 
. The object A represents the fuselage-empennage assembly. 

Dependant on configuration type, the object n may represent nacelle or nacelle- 

wing assembly. The former for Tilt-nacelle and the latter for Tilt-wing aircraft. 
The objects 'n, 1n can rotate relative to the object A through revolute joints. 

The objects 'p and lp are the right and left propellers which rotate relative to 

objects 'n and 'n 
, respectively. The multi-object model contains ten degrees of 

freedom. Three translation and three rotational degrees of freedom are 

associated with the object A. Two rotational degrees of freedom are associated 

with tilting objects 'n and 'n 
, and the last two rotational degrees of freedom are 

associated with the objects 'p and 'p 
. The total mass of the system is: 

m= ma + mnr f mnt f mpg + mp1 (3.4) 

Equations of motion 
The kinematic similarity of the Tilt-nacelle and Tilt-wing provides the capability 

of deriving one set of equations of motion for both of them, using the mentioned 
multi-object system. In addition, when the objects 'n and 'n are fixed at zero tilt 

angle, the model can also represent the dynamics of a Tail-sitter. According to 
Equation 3.3, the model of all main objects can be demonstrated as follows: 

MODEL A= RBEQMA (ALMA , OJRA , OKA ) 
MODEL'n = RBEQM,, (AIM.,, OJRn, , OK., ) 

MODEL 'n = RBEQMn (AIM,,, OJR�l, OK�1) (3.5) 
MODEL 'p = RBEQMP (AIMTP, , OJRpr, OKp, ) 
MODEL lp = RBEQMp (AIMTpt, OJRP, , OKpl ) 
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It should be noticed that, due to the similarity of the right and left sides of the 

aircraft, the same set of equations of motion are used for each pair of objects rn 

, 
°n and 'p , 

'p Using relation 3.2, then: 

AIM A= AIMb+ confl. (AIM., + AIMwt ) 

AIM 'n = AIM,, + conf2 . AIMw, 

AIM 'n = AIM�i + conf2. AIM,, (3.6) 

AIMT 'p = AIMTp, 

AIMT lp = AIMT , 

Where, the subscript b denotes the fuselage-empennage assembly. Therefore 

AIMb =AIMju + AIMh, + AIMh, + AIM,. + AIM,, (3.7) 

By eliminating the unknown part of OJR between each two connected main 

objects, the general equations of motion can be determined in the matrix form as 
follows, 

Mlox, o"S1oxl = F, 3 (3.8) 

In this equation, M is the mass matrix, S is the acceleration vector and F is the 

force vector. 

Various configurations 
In terms of the aircraft configuration, the right and left wing can be contributed 

as a part of main body A or as a part of tilting body 'n or rn 
. Thus, two codes 

confl and conf2 , presented in Equation 3.6, have been considered to express 
the kind of contribution that a wing can make. These codes are defined as: 

Tilt-nacelle: confl = 1.0 ; conf2 = 0.0 
Tilt-wing : confl = 0.0 ; conf2 = 1.0 (3.9) 

For a Tail-sitter aircraft, tilt angle movement is not primarily used as a controller 
input. Thus, the objects 'n and 'n are considered fixed to the main body. 
Therefore, no matter which set of the conf codes is selected, the same result 
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will be obtained. However, if attempt is made to use tilt angle control as a 

complementary controller for the Tail-sitter configuration then a decision must 

be made whether the aircraft is a Tilt-nacelle tail-sitter or a Tilt-wing tail sitter. 

Having specified the type of the aircraft, the appropriate set of conf codes 

should be selected. It should be pointed out that when tilting objects 'n and in 

are fixed to the main body, the equations of motion must be rearranged to 

consider the change in system degrees of freedom. This issue is discussed in the 

following section. 

Transition 
The transition is a process during which the flight mode is changed from 

helicopter to aeroplane or vice versa. Whenever transition takes place the 
degrees of freedom of the system will be changed since in aeroplane mode tilting 

objects are fixed. Therefore, two degrees of freedom are absent from the system 

and the order of the governing system of equations reduces to eight. This causes 
discontinuities in the simulation model whenever transition occurs. However, 

using the same system of equations, the discontinuities can be managed by 

substituting a value of zero for all non-diagonal terms of the rows and columns 
corresponding to right and left relative angular accelerations in the mass matrix 
and the total force vector. In other words, the relative angular velocities and 

accelerations between the tilting objects and the main object A are forced to be 

zero during wing-borne flight. As soon as, the system becomes unlocked, the full 

order system will be applied again. 

3.4.2 Secondary Objects 

As shown in Figures 3.1 and 3.2, the vehicle is composed of fifteen secondary 
objects. In terms of characteristics, these objects can be grouped as `Airfoils' 
`Bodies' , `Propellers' , `Engines' and `Servomotors' . 

The airfoils and bodies are the major drag and lift producers in the aircraft. Due 
to the aerodynamic complexity and nonexistence of a real sized aircraft, the 
estimation of the aircraft aerodynamic forces and moments acting on the airframe 
for three VTOL configurations, regarding the associated range of angle of attack 
and sideslip is impossible. Therefore, it seems to be most convenient to consider 
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the constituent parts of the vehicle separately and evaluate the corresponding 
force and moment contributions for each of them. The individual contributions 

are then summed up to produce the overall forces and moments acting on the 

vehicle. This idea is well-matched with the concept of object-based modelling. 

Using this concept, it is possible to express the force and moment contribution of 

each airfoil or body separately, using local airspeed, angle of attack and sideslip. 

The aerodynamic data is now much easier to estimate for each separate element, 

although it is less accurate. 

The group of airfoils contains, the right & left wings, the right & left horizontal 

stabilisers and the upper & lower vertical stabilisers. Each airfoil is considered to 

be rectangle with a control surface centered at the middle of the length. A typical 

airfoil is shown in Figure 3.6. For simplicity of data preparation, the same airfoil 

section is considered for all the airfoils. In Figure 3.6, intention is to show all the 

necessary information required to built up the AIM of an airfoil. Having 

aerodynamic dimensionless coefficients of the selected airfoil section (C), mass 
& inertia (M&I), local absolute velocity vector (V), size (a, b), position (L) and 

orientation (?, ) of each member of the group, the associated AIM can be 

constructed. 

The group of bodies includes the fuselage and the right & left nacelles. Again, 

for the sake of simplicity the same streamline shape for all the bodies is 

considered. A typical streamline body is shown in Figure 3.7. Same as airfoils, by 

having similar set of information, the AIM of all members in this group can be 

established. 

The group of propellers has two members which are the right and the left 

propellers. These components are the thrust producer elements in the aircraft. 
Therefore, as stated before, modelling of these objects needs some extra 
information about their thrust characteristics. This characteristics are provided 
by associated T box. As shown in Figure 3.8, to build up the AIM of a 

propeller, information about the aerodynamic coefficient (C), mass (M), inertia 

(I), size (D), position (L), pitch angle (0, ), orientation (8� ), speed (N), local 

velocity (V), and the thrust and power coefficients (C1 , Cr), are needed. 
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Fig. (3.6): A typical airfoil 

V // 

Fig. (3.7): A typical streamline body 
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The engines and servomotors are supposed to be placed in the fuselage. Hence, 

there are no independent AIM associated with these objects. The modelling of 

these objects can be carried out in terms of their output power and torque 

characteristics. As shown in Figure 3.9, engines may be modelled by a function 

which expresses the engine output power in terms of the rpm and throttle 

setting. The model of the servomotors can be expressed in terms of a 

relationship between the output torque and the input command. The level of 

complexity of the servo model is arbitrary and depends on the desired accuracy. 

3.5 ASSESSMENT 

The previously presented methodology is the foundation of all the mathematical 

modelling in the following chapters. Therefore, it is worthwhile having an overall 
assessment about the different features of the methodology which is the subject 

of this section. 

The nature of the approach is to consider the main bodies as separate elements. 
Then, the single body equations of motion is used to integrate all the related 
parameters of each element including reactions with the other components. This 

procedure is well-matched with the methods commonly used to derive the 

equations of motion of multibody systems. Its major benefit is to simplify the 
derivation of the complex equations associated with multibody structures. Using 

the object-based approach, the general equations of motion of the aircraft 
articulated structure can be derived straightforwardly without explicitly dealing 

with the rate of change of inertia and center of gravity position. 

In this methodology, all the similarities between components, e. g. the similarity 
of being an airfoil or streamline body, and configurations, e. g. having kinematic 

similarity, are well used to keep the simplicity and modularity of the simulation 
model. This has been one of the main priorities throughout the model 
construction. As a result, the existing model has a modular structure that 
simplifies modification tasks. One benefit of it, is that the model improvement 
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Fig. (3.8): A typical propeller 

Fig. (3.9): The engine model 
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may be made at subsystems level while maintaining the integrity of the rest of the 

model. 

Investigation of the effects of many different factors, such as mass and inertia 

distribution, aerodynamics of different parts and the characteristics of the 

propellers, engines and servomotors, etc. on the flight dynamics of the vehicle is 

quickly and easily achievable by exchanging the relevant UNITs in the simulation 

model. For example, the effect of different set of wing airfoil data on the 

performance of the system can be examined simply by exchanging the OAC unit 

of the wing. In the same way, the effect of mass distribution can be investigated 

by exchanging the OM and OSPO units of different objects. The simulation 

model is therefore provided the capability of being a suitable research tool. It 

can also be used as a tool for the initial sizing of the aircraft, considering all 
factors, including desired control tasks. 

Due to the modular nature of the model, the control surface of each airfoil can 
be considered to be activated independently. Therefore, the available number of 

control surfaces are now more than those for a conventional aircraft. Hence, the 

possibility of using all these independent control surfaces which are probably 

necessary to manage the complex control tasks can be investigated. In particular 

case, the conventional control surfaces, i. e. elevator, aileron and rudder can be 

formed by appropriate surfaces being forced to be deflected together. 

As discussed previously, if the modelling of the aircraft had been carried out in 

the usual way the amount of required aerodynamic data would have been huge. 

One of the most important features of the object-based modelling is the 

reduction in the amount and the variety of the required aerodynamic data. In the 

present simulation model the required aerodynamic data is limited to only two 

sets of data associated with a simple airfoil and streamline body. 

It should be pointed out that the accuracy of the estimated data in considering 
three dimensional effects and the aerodynamic interaction between components 
has direct influence on the accuracy of the aerodynamic model. The better the 

estimation, the more accurate the aerodynamic model. However, even in the less 

accurate case the generality of the model to predict all the main aspects of a 
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VTOL flight is still satisfactory. Since the aerodynamic interaction is minimum 

when the angles of attack and sideslip are small, the aerodynamic model is in its 

most accurate time in this condition. 

It may seem that the accuracy of the aerodynamics is somewhat sacrificed in 

favour of the generality. However, regarding the objectives and the amount of 
the available data, it is a good achievement to be able to develop the simulation 
tool. In fact, the object-based approach introduces a trade-off between 

generality, flexibility and accuracy requirements. 

The other important benefit of using this approach is the development of one 
simulation model for all configurations and for three different flight conditions, 
helicopter, transition and aeroplane. This approach also provides the facility of 
accounting for the influence of the propellers slipstream on different parts of the 

airframe 

It should be emphasised that the reduction in the computational time has never 
been an objective in the current object-based modelling. Therefore, there is no 
claim that the resulted computer program is going to have a satisfactory run time 

characteristics or can ever be used for real time computing. Instead, due to the 

well-provided modularity, relatively easy debugging, verification and testing of 
computer program was expected and observed. 
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CHAPTER FOUR 

EQUATIONS OF MOTION 

4.1 INTRODUCTION 

The baseline of the model development was established in the previous chapter. In this 

chapter, the equations of motion of the aircraft multibody system will be derived. The 

derivation of these equations will be started from very basic forms of the Newton's 

second law and will be ended by a state-space form. To be referred, almost all details are 

presented, mainly in the complementary appendices. 

4.2 FORMULATION METHOD 

Probably the most commonly used method to derive the equations of motion of a 

multibody system are Newton-Euler and Lagrangian methods. In the use of the Newton- 

Euler method the free-body diagrams of each body of the system are examined. Force 

and moment balances then leads to the governing equations. Thus, the equations contain 
interactive and constraint forces acting between the bodies. To find the general form of 
the equations of motion the unknown constraint reactions should be eliminated from the 
dynamical equations. This can be carried out by consideration of the geometrical and 
kinematical equations describing the nature of the constraint. When the system consists 
of more than one body, the need to account individually for the constraints associated 
with each connection substantially enhances the level of difficulty. However, the 
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procedure is comprehensive in that all forces and kinematic variables are included in the 

analysis. Due to the vectorial nature of the equations, it is also called vectorial 

mechanics. 

Another approach for formulating the dynamic equations of motion is Lagrange's 

method. While vector quantities are used in Newtonian mechanics, scalar quantities such 

as kinetic energy, potential energy and work done by the forces acting on the systems are 

used in Lagrangian dynamics. In Lagrangian dynamics the concepts of the virtual work 

and virtual displacement are important. The system equations of motion are expressed in 

terms of a set of generalised coordinate and associated generalised forces. Using 

Lagrange's method the differential equations of motion expressed in the independent 

coordinate's of the problem can be obtained by a differentiation of the energy written in 

these same generalised coordinates. The method has the advantage of not involving the 

forces of constraint which do no work and which often complicate the formulation of the 

equations of motion. In other words, non-working interactive and constraint forces are 

automatically eliminated from the analysis. However, a disadvantage of using Lagrange 

equations is that scalar energy function needs to be differentiated. This does not usually 

present any difficulty for small multibody systems. However, for large multibody system, 

the differentiation are extremely cumbersome and unwieldy, 

According to Reference[49], it is not clear that a completely objective answer can be 

given to the question of whether a Lagrangian type or Eulerian type formulation is the 
best for multibody dynamic analysis. The various routes lead to the same place, in 

principal, but they may differ in the degree to which they satisfy the criteria for general 

purpose computer simulation for a specific problem. Therefore, each problem seems to 

require its own particular insight. For aerospace vehicles dynamic analysis, vectorial 

mechanics has always been used as the method of derivation of the equations of motion. 
This method is the best-known and most physically direct method. On the other hand, 

there is no demonstrable advantage of the Lagrange method over the Newton-Euler 

method. Particularly for the present work where knowledge of the internal reactions is 
important. The Newton-Euler method is therefore used to derive the equations of motion 
associated with aircraft multibody system. 
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4.3 VECTOR FORMULATION 

As stated earlier, the starting point for the derivation of the aircraft equations of motion 

will be the vector form of Newton's second law of motion. The magnitude and direction 

of the three dimensional vectors used in the dynamic analysis are in general independent 

of the coordinate system in which they are expressed, but components are not. Many 

mechanics texts treat vector quantities at a very abstract level and routinely use vectors 
defined relative to different coordinate systems in expressions. The clearest example is 

that of addition of vectors which are given or known relative to different reference 
systems. This is often very convenient and leads to compact and somewhat elegant 
formulas. However, unless these vectors are expressed with respect to a common 
coordinate system, they can not be summed, and so while elegant, the formulae have 
hidden much of the work of the computation. Therefore, it is common practice to use 
superscript and subscript on a vector symbol to indicate both the nature of the vector and 
the frame in which it is expressed. In this way, all the necessary information is carried 
with the vector notation and expressions may be applied directly to actual numerical 
computation. 

In the development of the equations of motion, a given vector may be needed to be 

expressed in several different coordinate frames. When a vector is specified in a new 
coordinate frame its magnitude and direction are unchanged and only the coordinates of 
the vector are changed. This simply means that the vector is resolved along the 
instantaneous directions of the coordinate axes as if it emanated from the coordinate 
origin. 

4.4 NOTATIONS AND CONVENTIONS 

The number and variety of variables used in this thesis are quite large. Therefore, a 
general and consistent system of notation and convention is needed to avoid any possible 
error in the development of the mathematical modelling and its resulted computer 
program. This system of notation is explained in this section. 

Generally, in terms of the type of variables, they are classified as vectors, matrices or 
scalars. Each variable, regardless of its type, is represented by a symbol usually 
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accompanied by leading and trailing superscripts and subscripts. The necessary 
definitions are given in the following. It should be pointed out that despite the apparent 

complexity, when reader becomes familiar with the notations and conventions, it should 
be easy to read and follow the text. In addition, it has the advantage of having all the 

related information being carried with the symbol at the same time. 

Vectors 
A vector will be denoted by a boldface symbol. The following symbols are considered for 

some of the main variables. 

V Linear velocity 
V Linear acceleration 
12 Angular velocity 
S2 Angular acceleration 
A: Aerodynamic force 
F : Reaction force 
T : Thrust force 

M : Moment 

Matrices 
Matrix quantities are represented in brackets. 
Symbol [DCM]'' denote the Direction Cosine Matrix between two typical axes system i 

and j. 

The components of a typical vector S can then be transformed from j to i axes system by: 

S'= [DCM]'S' (4.1) 

Transformation of a typical mass moment of inertia matrix [I] from frame j to i can be 
carried out by using the following relationship [46]: 

[IT = [DCM]'' [I]i [DCMy' (4.2) 

For a typical vector S enclosed by brackets: 
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0 -S, Sy 
[S] = SZ 0 -S. (4.3) 

-Sy S. 0 

This will be used to denote the cross-product matrix corresponding to the (S X). A 

cross-product matrix is a skew-symmetric that is: 

[S]T = -[S] 

Scalars 

(4.4) 

Normal non-boldface symbols are used to represent scalar quantities. As well as the 

other symbols they may have superscripts or subscripts. 

Superscripts 
On the top right hand side of the symbol indicates the axes system in which the variable 
is defined. 

On the left hand side of the symbol indicates the side of the aircraft with which the 

variable is associated. It may take r or 1 indicating right and left side of the aircraft. 

Subscripts 

On the bottom right hand side of the symbol denotes the name of the symbol. It is not 

subjected to any strict convention. Nevertheless, the majority of the symbols may not be 

identified if they are not accompanied by it. 

On the bottom left hand side of the symbol is reserved to indicate the reference point of 
the moment of a force or moment of inertia. 

To indicate the components of a vector or a matrix (i. e x, y, z or xx, xy, xz, ... ), they will be 

added to the bottom right hand side subscript of the symbol. 

K: A dummy index indicating different sides of the aircraft 
'U :A dummy index indicating different parts of the aircraft 
d 
dt : This operator indicates the time derivative w. r. t. inertial frame 

": A dot on the top of a symbol indicates the time derivative w. r. t. XOYQZa frame 
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o: An small circle on the top of a symbol indicates the time derivative w. r. t. 
K X. K Yn K Zn axes. 

:A prime indicate time derivative of a symbol irrespective of the axes system 

The following fundamental relationships for relative rotation between two coordinate 
frames are proved in Reference [44,46,49] and will be used later in the derivation of the 

equations of motion. 
If frame j rotate with an angular velocity L w. r. t. frame i, then : 

a) -OJ it 

b) [DCM]f' =-[SZ'][DCM]J' (4.5) 

c) [n IDCM]'1] =-[DCMj'[fi+] 

At the same time the following relationships are valid for the rate of change of a typical 
vector S: 

a) 
d(Sj)=dJ(Sf)+S2jxSj 
dt dt (4.6) 

b) 
d' (S)= d' ([DCM]'JSJ)= dL ([DCM]'JýSJ +[DCMdj (St) 
dt dt dt dt 

Finally, we may have occasions to use the derivative of a cross product. The following 

rule will be useful. For typical vectors S and P: 

dt(sxr)= d (s)xr+sx 
d 

(r) 

sxr= -(rxs) 
a(S x P)= (aS)x P= Sx (aP) (4.7) 
Sx(P+T)=(SxP)+(SxT) 
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4.5 DERIVATION OF THE EQUATIONS OF MOTION 

In this section the equations of motion of the aircraft will be derived and expressed in the 

state-space form. The selected states are the linear and angular velocities of the main 

body A, relative angular velocity of the bodies 'n and 1nw. r. t. the body A, and 

relative angular velocity of the bodies "pw. r. t. the body "n. To keep the brevity, only 

the highlights of the derivation of the equations are represented. The complete procedure 
is presented in Appendices Al, A2, A3 and A4. Having defined all the variables in the list 

of symbols and using extensive set of subscripts and superscripts, no attempt is made to 
define every single variable during the process of derivation of the equations. The 

variables whose names are started by C are used to simplify the equations. These 

variables include non-acceleration terms. The definition of these variables are presented 
in Appendices Al to A4. 

4.5.1 Assumptions 

The aircraft is a multi-rigid-body system. The total mass of the system is constant, 
however, the location of the center of gravity is subjected to change. Apart from the 

relative motion of the components, any deformation of the structure are not taken into 

account. The earth is flat and fixed in space. This assumption is particularly valid for an 

unmanned aircraft since the flight time and the distance covered for each operation are 

generally small, The atmosphere is assumed still and not moving with respect to earth. 

4.5.2 Reference Frames 

In order to formulate the equations of motion for describing the aircraft motion, suitable 

coordinate systems are required. Figure 4.1 depicts the multibody and the system of 
reference frames which are used to derive the equations of motion of the aircraft. As 

shown in this figure, four main right-hand orthogonal axes system are considered. The 
X; YZ, set is fixed to the earth and can be considered to be an inertial coordinate 

system. The positive X, is aligned with North direction, positive Y with East and 

positive Z, points downwards to the center of the Earth. The XQYQZQ set is fixed to the 
body A and moves as it translates and rotates. The origin of the set is located at an 
arbitrary point 0. The positive Xa axis is aligned forward along the fuselage, the 
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positive Y, axis along the right wing and the positive Z, axis downward. Such a set of 

axes is referred to as body axes. The equations of motion will be derived with respect to 

this axes. Two other frames 'X, 'YI'Zn and 'X, `Y�'Z� are fixed to the bodies 'n and 'n 

with their origins located at the joints 'J and 'J, respectively. Each of the bodies 'p 

and 'p is considered to have an axis of inertia symmetry whose mass center is on this 

axis. The positive 'X,. and 1 X. are aligned with the axes of symmetry of the bodies 'p 

and 1 p. The planes XaZa, 7.7. and `X� `Zn are always parallel. 

It should be emphasised that the term joint is considered here to represent the entity of 
interaction between two bodies. By definition, a joint is an arbitrarily designated point 

where the effects of all interactions can be represented by a single interaction force and a 

single interaction torque applied at that point. Therefore this term doesn't imply a 

physical joint. Meanwhile, in each side of the aircraft we have two joints J, and J2 

between bodies " p&"n and 'n& A, respectively. These joints are coincident. 

4.5.3 Equations of Motion of the Body A 

The Newton's second laws for the translational motion and angular rotation of the body 

A, as an isolated body, take the forms obtained in Appendix Al, Equations A1.6 and 
A1.18 that are repeated here: 

F. " =T V. +m fl:, x b°) (4.8) 

OMA =d 01, 
]Q"r}+mab° Xd (Vo) (4.9) 

dt dt 

Fo and , 
Mä are the summations of all the external forces and moments acting on the 

body A, respectively. In terms of the aerodynamic, gravitational and joint reaction forces 

and moments they can be expressed as follows: 

Fa a j, = W, " + A: -'F' -`r,, (4.10) 
oMaa--oMaW+oA, Ma --'Me -'MaJ-'dax'F! a, -'dax'Fa (4.11) J, 
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In these equations the effect of the bodies 'n and 'n on the body A are represented by 

force and moment vectors -'F,, , -'F,, , -'Mj, and -`M°,, 

Expanding the time derivatives in Equations 4.8 and 4.9 in terms of the time derivative in 

XQYaZQ axes system by using Equation 4.6a, then: 

Fa = maV. a+ manna, x V: + ma (SZ:, x b° + fl1 x ba ) 
(4.12) 

+ maýa, x (cct x b*) 

a; oM" - 
[o IQ tz + °t x 

([o1: ]ai)+ 
m, b° xV 

(4.13) 
+mab' x(n 1xVo) 

Considering the fact that b" = 0, then after substituting Fa and , 
Mä from Equations 

4.10 and 4.11 and using the matrix form of cross-product, the equations of motion of the 

body A can be expressed as follows: 

Wä +Aä-'F;, -'F;, =mg II -ma[b°] 2', 'j+C25 (4.14) 

0M 
,, +0Mn, 'rM%'IMi, '["d']*Fi, '['d'1Fi, (4.15) 

[pIä ä; +ma[b°]VO +C26 

4.5.4 Equations of Motion of the Body "np 

As stated in chapter three, due to the similarity of the bodies np at right and left side of 

the aircraft, one set of equations can be used for both sides. Starting with Equations 

A2.12 and A2.29, we have: 

'F' =d (m",, "Vi, +m�n"S2n, x" e") (4.16) 

KMn 
__ 

KTnnn+KTnün 
' "P dt "lnp . l`nr 9pPt Pn1 

(4.17) 

mPKen x d(KVýý) 
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"F�P and ,, M' '� are the summation of all the external forces and moments acting on the 

body K np , respectively. In terms of the aerodynamic, gravitational and joint reaction 

forces and moments, they can be expressed as follows: 

"FDP="T"+"WP 'A" +"F;, (4.18) 

i, Mnp=xMPCý'A T 
iiMw, 

ýý'i, 
Mý,, ý'KMii (4.19) 

In these equations the effect of the body A on the body "np are represented by the 

force and moment vectors " F,, and " M,, . 

Expanding the time derivatives in Equations 4.16 and 4.17 in terms of the time 

derivatives in "X, Yn"Zn axes system, these equations take the following forms: 

eso 
K FIp = 1'I! 

n pK 
Vh + i'12np K 

nI 
XK Vh + mnp (K iln! XK e +K ant XK en) 

(4.20) 
+ %l1npK. 1LýF X('n', 

�XKCn) 

KMn =[X In 1Kýn +r KIn]xc +x an xn 
)i-ýýn 

x(p ]K ?t) 
Je np JG np J of 1w P Pn n! !i np J ni nI 

[ 
nP Pn 

(4.21) 

+m�pKen x(K VVB+xQnrxKV, %) 

0 

Considering the fact that x e" =0, then after substituting "Fp and ;, M' 
p 

from 

Equations 4.18 and 4.19 and using the matrix form of cross-product, the joint reactions 
IC F., and "M",, can be expressed as follows: 

ee 

K F. i, = mnn 
xV- 

mnnIK e] K. 
1Lnj+K C3 (4.22) 

oeo 
KmJa [JaInpJKanj+[BPiP]KSLPn'{"'mnp[KýinIK`jh"'ý'KC4 

(4.23) 

Using the following relationships obtained in Appendix A4, Equations A4.6 and A4.13, 

p 

K S2�; =K C1+K [DCM]"°SZar +K Slýa (4.24) 
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KenKK na p 
ýK 

Kaa Vý, = C2+ [DCM] V, [DCM]na [d ]SZa, (4.25) 

ee 

to substitute "fl and " V;, in Equations 4.22 and 4.23, then : 

e 
KFh_KcJ+[ 

lý6]v +1K1.7 
a1+1KC8JxJLnR 

4.26) 

Mn K=KC9+["C10]j +["C11}Aa; +[i, IRSZRQ+[gplpj pa . 12 

(4.27) 

In above equations the joint reactions are expressed in terms of the time derivatives of 
the selected state variables. 

4.5.5 Equations of Motion of the Body Kp 

Similar to the body 'np 
, one set of equations can be used for both 'p and 'p. For this 

body, only the angular equation of motion is needed. Therefore, starting with Equation 
A3.3, we have: 

K 
BPMP dt BP 

IPI icon 
al+x0Pn)I 

(4.28) 

' MP is the summation of all the external moments acting on the body 'p. In terms of 

aerodynamic, gravitational and joint reaction moments, it can be expressed as follows: 

KMn=%M" + "M"+ KM" +,, M,, +KM" (4.29) 8P p Pc 8P T 8P Wy 8P Ao !, 

In this equation the effect of the body "n on the body "p are expressed by the moment 
KM" 

Jt, 

Expanding the time derivative in Equation 4.28 in terms of the time derivative in 
"X" Y. cZ. axes system and substituting RPM p from Equation 4.29, and using matrix 

representation of cross-product, Equation 4.28 takes the following form: 
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ee 

=IlCIPýKSýý, +[lCIpýxSZP�+C34 (4.30) lemn J1 sp 

e 

Now, using Equation 4.24 to substitute ' 0' 
.1, then : 

ee 

"M%="C35+"C36ýSZ; r+[gpIpý"Sý"a+[gpIPý"SZPý (4.31) 

In above equation the reaction moment is expressed in terms of the derivative of the 

selected state variables. 

4.5.6 Equations of Motion of the Aircraft Multibody System 

To find the general form of the aircraft equations of motion, the equations of individual 

elements must be combined. Therefore, using the following relations: 

"F�= K [DCM]n4K F� (4.32) 

"M J, =" [DCMT °" M;, (4.33) 

The joint reaction force and moments between body A and "np, obtained in Equations 

4.26 and 4.27 can be transformed from "XA"Y,, "Z� frame of reference to X. Y. Z. 

reference frame as follows: 

e 

KF. �=KC12+[Kc13]i' +[cC14}f , +["C]5]Kn na (4.34) 

"M;, _"C16+1"C17]' 0 +[KC18Po; +["C19]KS "a+[KC20]Kc1pn (4.35) 

Now, they can be substituted in Equations 4.14 and 4.15. After re-arranging terms these 
equations will take the following forms: 

[C27]V° +[C28y1 , +{'C]5]'SZýQ+[1 CI5]1SZ�a = C29 (4.36) 
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[C30]V�" + [C31], + ['C32]'S 
. 
"a+ ['C321 l52:, + ['C20]'SZp. + [`C20]` i= C33 

(4.37) 

Now, using Equations 4.36,4.37,4.27 ( for right and left side) and 4.31 (for right and 
left side), then the general equations of motion of the aircraft multibody system can be 

expressed in matrix form as follows: 

ýv3 

[C27] 
[00] 

{r of fx3 [, C10] 

) f, [0] 
IXE [o1 

31c3 s,, 3, tß 
[C28] ['C15] ['C15] [0] [0] 

4 
C29 

[C31] ['C32] ['C32] ['C20] ['C20] ý 
ö' C33 

['Cl1] [i 'I n1 [0] L: 

P 
1"P, [0] ýRno 

-'C9+'Mi, 
['Cu] [0] [i' J LO] [BP1P] I 

^Q -'C9+'M% 
['C36] [BPI¢] [0] 

L8PjP1 [0] 'Q- -'C35+'M% 
['C36] [0] [BPjn1 

[0] 
[BPIP1 

n S2Pn -'C35+'M;. 

'Y` (4.38) 

Equation 4.38 represents the conventional form of the governing equation of a dynamical 

system. It can be simplified as follows: 

MS"=F (4.39) 

In this equation M is the mass matrix, S' is the state vector and F is the force vector. 
For the present dynamical system, mass matrix must be symmetric. The following 

conditions which are necessary for the mass matrix to be symmetric are proved in 

Appendix A4. 

[c27j 
[C311 
K in Symmetric (4.40) (� npJ Kim 
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[C30] = [C28]r 

['CIO] = [KC15f 

['Cl1]= ["C32]T 

['C36]= ["C20f 

Equation 4.38 is a system of eighteen equations with thirty unknown which are the 
e.. 0 

VO a components of the vectors Va na rS2n IQI* rile IfIn rMn 'Mn 
na ' na I pn + pn 1 Jt ,h 

'M",, and 'Mi, . Obviously such a system can not be solved. It should be noticed that 

the equations are derived with the assumption of the universal joints in all the 

connections. However, the joints are actually revolute joints (one degree of freedom) 

which impose some constraints on the system. These constraints can be implemented by 

eliminating the unnecessary equations which are not related to the actual relative motion 
of the two bodies. These are the equations associated with X and Z directions of the 

vectorial form 4.27 and Y and Z directions of the vectorial form 4.31. Considering this 
fact and defining the following vectors: 

L 

gyp, =Q; Vo =V 
RW 

00 (4.41) 
00 

, 0 00 0 00 0 

rN N 

Inn to ran In 

na n na -n p 
0000 

the final expanded, tenth order system of equations can then be expressed in the form 

shown in Equation 4.42. It should be noticed that the column of mass matrix associated 
with the eliminated states are also omitted. 
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In this equation 

" Mi., =KMs (4.43) 

" Mi. 
s 
=KME (4.44) 

where "Ms is the output torque of the servomotor driving the body K np w. r. t. body A 

and "ME is the output torque of the engine. "ME can be expressed in terms of the 

engine output power and engine angular velocity as follows: 

KM 
__ 

"PE 

E KN 
(4.45) 

The right side of the Equation 4.42 can be broken down into the two parts as shown in 

Equation 4.46, 

C29., C29AX C29B, 
C29y C29Ay C29By 
C29Z C29A= C29BZ 
C331 C33Az C33B,, 
C33y C33Ay C33By 

C33Z C33A= 
+ C33BZ 

-'C9y+'Mý, -'C9Ay -'C9By+'M;, 
-'C9y+'M;, y -'C9Ay -'C9By+'MI, r 

-'C35., +'M;, -'C35As -'C35BJ +'Mý,; 
; 

-'C35x+'M;, s -'C35Ax -'C35B, +'M;, ,. 

(4.46) 

The first term in the right side of Equation 4.46 is called the dynamic vector. It contains 
the products of the components of linear and angular velocities. The second term is the 

vector summation of all the aerodynamic, gravitational and thrust forces and moments. 

If Equation 4.42 is abstracted as follows: 

[µ]; ' =f (4.47) 
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then the state-space form of the equation will be 

'_ 141' (4.48) 

4.6 AIRCRAFT ATTITUDE 

In order to describe the motion of the aircraft with respect to the earth or inertial frame, 

it is necessary to be able to specify the orientation of XaYQZa axes system with respect 

to X, YZ, axes system. In the present work the Euler symmetric parameters or 

quaternions are used to calculate the body-to-earth Direction Cosine Matrix and Euler 

angles 0, y' and (p. Quaternions are related to the Euler angles by [44,46]: 

eo =±(cos(cp/2)cos(8/2)cos(yf/2)+sin(q /2)sin(6/2)sin(yf/2)) 

e, = ±(sin(cp/2) cos(6/2) cos(ty/2) - cos(cp/2) sin(8/2) sin(yr/2)) 
(4.49) 

e2 = ±(cos((p/2) sin(6/2) cos(yr/2) + sin((p/2) cos(0/2) sin(W/2)) 

e3 = ±(cos((p/2) cos(8/2) sin(W/2) - sin((p/2) sin(0/2) cos(yr/2)) 

whichever sign is chosen in Equation 4.49, the same choice must be used for all. The 

constraint equation is: 

eo + e, + e2 + e3 =1 (4.50) 

The following differential equation can be written for the quaternion parameters: [441 

q'=-Zwq (4.51) 

where 

eo 

q=e, (4.52) 
e2 
e3 
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0PQR 

w= 
PR0Q (4.53) 

-Q [_R 
-Q P0 

The body-to-earth DCM can be expressed in terms of the quaternions as follows: 

eä +el - ei - e3 2(e, e2 - e0e3) 2(e0e2 +e, e3ý 
[DCMI a= 2(eoe3 + e, e2) eo - e, + e2 - e3 2(e2e3 - eoe, ) (4.54) 

2(e, e3 - eoe2) 2(eoe, - ee3 ) ea - e, - e2 + e3 

The relationships between Euler angles and the elements of the [DCM]" are: 

8= -sin-' 
(DCM31) 

yr = ATAN2(DCM21, DCM; i) (4.55) 

cp = ATAN2(DCM32, DCM33) 

ATAN2 is the FORTRAN four-quadrant inverse tangent function. The inverse 

transformation between X, YZZ and XQYQZQ axes systems is straightforward, since the 

inverse of the DCM is its transpose. 

4.7 AIRCRAFT POSITION 

The following state equation is needed to calculate the aircraft position in inertial axes 

system: 

p'= [DCMr v (4.56) 

where p is the position vector defined as follows: 
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North North 

P=, East = East (4.57) 

Down -Height 

4.8 ASSEMBLING THE STATE EQUATIONS 

For the complete state model, the relevant state equations are 4.48,4.51 and 4.56. These 

are now assembled in matrix form as shown in Equations 4.58. 

q' =0-2w0q (4.58) 

p0 0 [DCM] Vö 

This is the way in which the equations will be programmed for computer purposes. The 

state vector contains seventeen elements. Three position coordinates, three translational 

velocity coordinates, three angular velocity coordinates, four quaternion variables, two 

engines angular velocities and two relative velocities of the tilting bodies. 
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CHAPTER FIVE 

BUILDING THE AIRCRAFT MODEL 

5.1 INTRODUCTION 

The multi-body equations of motion which were derived in Chapter 4, establish the 

structure of the aircraft model. In these equations, there are many terms that must be 

expressed in terms of the characteristics of the secondary objects. This task can be 

carried out via an appropriate modelling of various subsystems and a clear definition of 

gravitational and inertia terms. The calculated terms will then be incorporated into the 

aircraft state-space model. In the process of model building presented in this chapter, the 

important objective is to gain the maximum flexibility in data changing for the final 

mathematical model. In the mean time, it is desirable to make the input data as simple as 

possible. By the end of this chapter the mathematical model will be completed. The 

required data will then be estimated in the following chapter. 

5.2 MODELS OF SUBSYSTEMS 

In this section the mathematical models of the aircraft components, i. e. , the propellers, 

the airframe, the engines and the servomotors are described. 

5.2.1 Propeller Model 

A propeller usually consists of two or more rotating airfoil-shaped blades. A propeller 
blade may be considered as a strongly twisted wing. This large twist of the blade is 

necessary in order to ensure that each blade element operates at a favourable angle of 

attack. The cross sections of the blade are of the same shape as those of a wing, with a 

well-rounded leading edge and a sharp trailing edge. Propeller sections, however, 

particularly those near the hub have usually a greater relative thickness than wing 
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sections. Structural considerations are responsible for increasing the thickness of the 

profiles towards the hub. 

The angle that the chords of the blade sections form with a plane perpendicular to the 

axis of the propeller is called the Pitch Angle. This angle is much greater for the sections 

near the hub than those near the blade tip. Since, the outer half of the propeller does 

most of the work, the pitch angle usually specified to characterise the entire propeller is 

that at three-fourths of the tip radius, Figure 5.1. 

Among the parameters determining the shape of a propeller, pitch angle has the most 
influence on its characteristics and it must be carefully selected. Usually, for a certain 

airspeed the best performance can be achieved only at a certain pitch angle. Therefore, if 

a wider range of airspeed has to be covered, the pitch angle must be adjustable. A 

propeller whose blades can be rotated simultaneously through the same angle about their 

longitudinal axes, i. e. axes running along the blades and perpendicular to the propeller 

axis, is called a Variable-Pitch propeller [51]. The effect of such rotation consists in 

changing the pitch angle of all blade sections by the angle through which the blade has 

been rotated. 

Consider a propeller operating at the velocity V 
pc 

(velocity of the propeller disk center), 

with angle of attack ap between the free stream velocity and the propeller disk. Figure 

5.2 summarises the quantities defining the force and moment components acting on the 

propeller. The XYZ,. axes system is chosen so that the free stream velocity V, 
G 

always lies in the XmZ. plane. Thus, this axes system rotates with V,,, as it changes 

direction. The force component along the propeller axis, X. , is usually called Thrust. 

The component perpendicular to this axis and pointing along the positive Z. direction is 

called the in plane H -force and the third components is the in plane Y -force. Also, there 

are three moment components. The X-component is called the torque and two others are 

the pitch moment My and the yaw moment M= 

The velocity vector Vor can be expressed in terms of the previously calculated linear and 

angular velocities V; 
2 and SZ�; (Chapter 4) as follows: 
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v;, =va x(5.1) 

The position vectors f and j are shown in Figure 4.1. Since 

VMn5.2 
pc = Vp1. C) 

then 

where 

Vm Vn 

a. = Sin ' P", J= Sin-1 PCr (5.3) 
Vm. Vm. 

`1 
PCia = 

((v; )f (v; 

r 

)2 
+ 

(v; )= (5.4) )''2 
Consider Figure 5.3 in which the frame X 

mYmZ,, 
has been rotated relative to the frame 

X�Y. Z.. The rotation is a left-handed rotation about the Xn axis, through an angle y',.. 

. This angle can be expressed in the following form: 

Vm- ATAN2(VpI 
r ,V p} 

i 
(5.5) 

ATAN2 is the FORTRAN four-quadrant inverse tangent function. Having calculated 

Wm9 then: 

100 
[DCM]"m =0 Cosyf SinNJ 

m 
(5.6) 

0 -Sinyr n, 
Cosyl 

M 

The above results will be used later in this section. 

Generally, two types of approach, the blade element and momentum theories, may be 

used to model the propeller. The first method is aimed at treating each propeller blade as 

a wing and introducing the usual lift and drag specifications as used for fixed wing 

analysis. In this approach the increment of force and moment on a typical element of the 
blade are calculated and then integrated along the blade to find the total force and 

moment. In this method it is usually assumed rather arbitrarily that each blade element 
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operates independently of all the other elements as if it were an element of an airfoil of 
infinite span engaged in a uniform rectilinear motion. It is obvious that this simple form 

of the theory can not give more than a rough approximation. However, using this 

method, calculation of all the forces and components are possible. 

Due to the unnecessary complication and possible numerical difficulties associated with 
the highly nonlinear equations derived by using the blade element theory [51], it was 
decided not to use this method in the current version of the simulation model. However, 

using the derived equations, it has been proved, at least theoretically, that the Y-force 

and My moment are both zero for a propeller [52]. 

In the second method, typified by the actuator disk, the realities of the propeller blades 

are ignored and the propeller is treated as a single entity obtaining thrust by setting up a 
uniform mass flow of air over its whole plan area and imparting a change of momentum 
to it. This is a simplistic view of the problem but highlights some important general facts 

about the performance of the propeller. What the momentum theory achieves is to 
furnish one relation between the three variables C. , C. and ADR which are called the 

thrust coefficient, the power coefficient and the advance ratio, respectively (will be 
defined later in this section). This relation is supposed to be valid for any propeller 
independent of the number of blades, their profiles, etc. No account whatever is taken of 
the shape of the propeller body. The theory replaces this body by an ideal mechanism, the 
so-called actuator disk. The action that this disk is supposed to exert on the fluid 

represents the main features of the action exerted by the propeller. One drawback of this 
method is that the Y and Z components of the force and moment can not be calculated. 
However, as mentioned earlier, the Y components are theoretically zero and the Z 

components are relatively small and can be neglected. [53] 

A combined momentum and blade-element theory is also possible. Interested readers are 
referred to the materials in which propellers or helicopter rotors have been analysed 
[51,53-571. 

In the present work, a combination of the momentum theory and empirical data is used in 
mathematical modelling of the propeller. Since, the momentum theory is well-known and 
widely-used method, sufficient discussion about this theory can be obtained in the 
relevant books, e. g. [51,53-55]. Therefore, in this work, a detailed description of the 
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method is avoided and only the obtained results will be used. It should be pointed out 
that in spite of neglecting the Y and Z components of the force and moment acting on 
the propeller, the process of modelling will be carried out with the complete set of the 

components. This simplifies any possible change of the propeller model in the final 

computer program. Obviously, in the current mathematical model, a value of zero should 
be considered for the mentioned components. 

The characteristics of a variable-pitch propeller of various blade settings can be 

empirically represented by using a type of diagram which is called a propeller chart [51]. 
The curves on this chart show the dimensionless coefficient of thrust and power defined 
by: 

Thrust 
CT _ (5.7) 

P rpm D4 
60 

CP 
- 

Pp, 
pp 

p rpm3D5 
(5.8) 

60 

as a function of advance ratio, a dimensionless term defined by: 

- pc 
Sin(oc 

p ADR - (5.9) 
rpm D 
60 

, for various blade angles O, . The points on these curves are obtained by experimental 
results. Having abstracted these curves by the following functions: 

C,. = CTG(ADR, 6C) (5.10) 

Cp = CPG (ADR, 6, ) (5.11) 

the generated thrust and torque and absorbed power by the propeller can then be 
calculated by using the Equations 5.7 and 5.8 as follows: 

0 
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12 
Thrust = Cr. ppJ D4 

60 C/ 
(rpm s Pprop 

= Cp" p 160 D 

Torque = 
P°'°p 

rpm (60) 

As mentioned earlier, in the current propeller model 

Yý = 0. 

Hm =0. 
My =0. 
mm = 0. 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

Now, the components of the force and moment vectors T' and M PC can be expressed 

as follows: 

T "' = Thrust 

Ty = RPMrdc. Yf (5.16) 

Tz' =Hj' 

Mpg; = -RPMrdc. Torque 

Mper = My (5.17) 

Mm= RPMrdc. MZ 
PCs 

The term RPMrdc is called the Rotational Direction Code. This term is implemented to 

consider the effect of the direction of the propeller angular velocity on the sign of the 

calculated forces and moments and it is defined as follows: 

RPMrdc=1 For positive angular velocity 
RPMrdc=-1 For negative angular velocity (5.18) 
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Therefore, in all the above equations, the variable rpm represents the absolute value of 

the propeller angular velocity. For the implementation in the equations of motion the 

force and moment vectors T' and M pC should be transformed to the X�Y. Z,, axes 

system, therefore: 

T"= [DCM]n"Tm (5.19) 

M pC = [DCM]nm M pC (5.20) 

Also, two other related vectors can be calculated as follows: 

13MT =ýf" + j") xT" (5.21) 

BPMT 
= in x T' (5.22) 

The flow model for the momentum theory analysis of the propeller at an angle of attack 
a,, is shown in Figure 5.4. This is indeed the projection of the X,,, Zm plane shown in 

Figure 5.2. In this model, a circular jet of air of velocity V 
pc 

having the same diameter as 

the propeller, is assumed to impinge upon the propeller and being deflected downwards 

so that it finally has a downward component W, [53]. The induced velocities at the disk 

V, and in the far wake W, are assumed to be parallel to the propeller thrust. 

According to Gluart's hypothesis and momentum theory results [54], the following 

expression can be written for induced velocity. 

Vj ̀  
vti)Z 

21/2 
(5.23) [(vcoso)2 

+(VpcSinc o+V, 
) J 

and 
W, =2V, (5.24) 

where Vn is the induced velocity in hover and it can be expressed as follows: 
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1/2 
V" /pn D /2 

(5.25) 
t 

The value of W, will be used in the calculation of the local velocity vector over the 

components which are influenced by the propeller slipstream. To have control over this 

value, a coefficient called the slipstream contraction code 2 is considered as follows. 

W, =1V, 0.5 5 Ksscon2 51 (5.26) 
Ksscon2 

Using this coefficient, the strength of the propeller slipstream can be freely set up. This is 

considered as a useful capability from the research point of view. Obviously, for the 

value of Ksscon2 = 0.5, Equation 5.24 is determined. 

Nonlinear Equation 5.23 can be solved by an iterative approach. The iteration can be a 
simple, straight substitution as expressed by the equation itself. However, in or near to 
hover, if a bad choice of starting value is taken, a very slow convergence takes place and 
in the worst situation, hover, can result in no convergence at all when the iteration will 

oscillate between two results. For this reason, a modification to the expression can be 

made to collect both terms on one side of the equation and then to invoke the Newton- 

Raphson technique to determine the solution. This results in a more complicated iterative 

expression, but the method rapidly converges at all flight conditions and for this reason is 

generally more robust, [55] 

The Equation 5.24 is derived based on the assumption of a definite flow through the 

propeller with a well-defined slipstream. However, for a negative angle of attack, e. g. in 

vertical descent, it is clear that the relative upward flow will, if it becomes large enough, 
prevent a slipstream from forming, and some of the air will recirculate through the 
propeller in what is known as the vortex-ring state, shown Figure 5.5. At small rate of 
descent the flow in the vicinity of the disk is still reasonably well represented by the 
momentum theory model. However, at descent rate beyond VV,,, Sina,, = --V, /2 the 

flow near the propeller disk becomes highly unsteady and turbulent [54]. In this region 
the momentum theory is no longer valid. To avoid this situation, the following constraint 
is considered in the propeller model. 
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Fig. (5.4): The flow model for momentum theory analysis of propeller 

Fig. (5.5): Vortex-ring state in vertical descent [54] 
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VP., 
a 

Sina 
Pý_1 (5.27) 

V4 

Finally, it should be pointed out that the propeller model has been developed based on a 

variable blade angle assumption. Therefore, the propeller is adjustable for various 
forward speeds and , in the case, this flexibility can be used for thrust controlling as a 

complementary option. 

5.2.2 Propeller Slipstream Effect 

As stated in Chapter 3, when calculating the aerodynamics of the aircraft, it is important 

to specify which components are affected by the propellers slipstream at the time. 
Therefore, continuous investigation must be carried out during simulation time to find 

out if a new component has located in the propellers' slipstream or an already affected 

part has gone out of the propellers' slipstream. Having checked that, the propeller 

slipstream effect will then be taken into account in aerodynamics calculations that is the 

subject of the next section. In this section, the method used for such an investigation is 

presented. 

Figure 5.6 shows the model of the propeller slipstream effect on the typical component 
u. This component is considered to be influenced by the propeller when its 

aerodynamic center, AC,,, is inside the propeller streamtube. This seems to be a 

reasonable criterion for the normal flight conditions, although, it may not be perfect for 

the situations in which a component is partly immersed in the streamtube. However it is 

sufficiently correct for investigation of the fundamental characteristics of such effects on 
the flight dynamics of the aircraft. 

As shown in Figure 5.6, the aerodynamic center AC� is positioned w. r. t. the propeller 
disk center by the vector LS� . The calculation of this vector for different components is 

the subject of the Appendix B 1. In this section, the general procedure will be discussed. 
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In terms of the components, the induced velocity vector " Wi a can be written as follows: 

º"1' 

K wm 
-Kwind °0 

(5.28) 
ind 

0 

The absolute velocity vector of the propeller slipstream, " Vs , can then be expressed as 

a summation of " V' 
ý and " W;: by 

K VS G" `1pß+" Wt d (5.29) 

where 
KVm=K[DCM]"nKV. (5.30) 

" VPS is calculated in Equation 5.1. The deflection angle "8S can then be defined as: 

f-levsm 

"8S =Sin-' Ky 
(5.31) 

Sra 

where 
aaa (5.32) + (K V; ) ]lea 

KVsa = 
[(KVS 

+(X Vm 

Changing Ksscon2 with Kssconl which is called the slipstream contraction code 1 in 

Equation 5.26 yields: 

"W, =1 Ksscon, 
"V, (5.33) 

The two slipstream contraction codes 1 and 2 are actually the same. However, as it will 
be seen later, using two different codes provides better flexibility to the mathematical 

model. The elliptical cross section at "PC and ACS, are geometrically identical. 

Therefore, using Equation 5.33 and the principal of mass conservation along the 

propeller slipstream, the following relations will then be obtained. 
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"a2 = (Kssconi)-"2 a, = (Ksscon, )-112 D 

"bz = (Kssconi)-'12 b, = (Ksscon, )-"2 D Cos KO (5.34) 

Substituting into the general form of the equation of an ellipse, then 

(x yS ý2 
--ý-ý +-s--r =1 (5.35) 
(3a2)2 ("b2)2 

The equation of the elliptical cross section at AC� can then be given by 

("Ys)2(Cos"8S)2 +("ZS)2 = 025KssconiD2 (Cos" 0S )2 (5.36) 

For those points located inside the ellipse 

("Ys)2(Cos"8S)2 +("Zs)2 50.25KssconiD2 Cos"8s)2 (5.37) 

Therefore, AC� will be located in the propeller slipstream if the Y and Z components 

of LS� satisfy the above criterion, i. e. 

(i. süy )2(Co? 8s )2 + ("LS, ss )2 S 025KssconiD2 (Co? 03 )2 (5.38) 

The following codes can then be set up as follows 

"Kss� = 1.0 AC� is in the propeller slipstream (5.39) 
"Kss� = 0.0 ACS, is out of the propeller slipstream 

The values of "Kss� will be used in the aerodynamics calculations in the next section. 

Detailed description associated with each individual component may be found in the 
Appendix B 1. 
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Finally, it should be noticed that in the derivation of the deflection angle " Os , the value 

of the induced velocity "W, is used. In other words, it is assumed that the induced 

velocity increases to the value "W immediately behind the propeller disk. However, 

practically, it happens somewhere at a distance behind the propeller disk and the 

slipstream continues to deflect in the course of travelling this distance, Figure 5.7. The 

longer the distance, the less accurate the deflection angle. Unfortunately, the momentum 

theory doesn't give any clue about the length and the variation of the induced velocity 

along this distance. However, the possible error in the criterion 5.38, imposed by 

inaccuracy in the deflection angle '0., may be compensated by appropriately selecting 

the value of the coefficient Kssconl . Moreover, application of the two different 

slipstream contraction codes Kssconl and Ksscon2 provides the capability of dealing 

with the value of W, and the criterion 5.38 more independently and arbitrarily. This 

advantage has been experienced during the computer simulation. 

5.2.3 Airframe Aerodynamics 

As mentioned in Chapter 3, to follow the general methodology in considering the 

constituent parts of the vehicle separately when evaluating aerodynamic forces and 

moments, the airframe is broken down into the airfoils and streamline bodies. Therefore, 

the airframe aerodynamic modelling is limited to only the models of a simple airfoil and a 

streamline body. 

To calculate the aerodynamic forces and moments acting on a component, the local 

velocity vector at its aerodynamic center is needed. For a typical component v of the 

main body A, this velocity vector can be expressed by 

-'Kss. 
r Wind 'Kss.. ' Wrnd (5.40) V"C� = VO+Ki2a7 X L' 

Vgl, 

where, L;, 
a, 

is the position vector of the component aerodynamic center w. r. t. the origin 

0. Similarly, for a component of the tilting part "np 

V° (5.41) AC, J2 ="V" -+"Kfn, x Vol-"`Kss, K%' ' Ind 
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where, Lüý is the position vector of the component's aerodynamic center w. r. t. the point 

"J2 . Definitions of "Kss� and " W;,, d were given in the previous section. As it can be 

seen, the aircraft freestream velocity, aircraft angular velocity and propellers' slipstream 

velocity are contributed in the evaluation of the local velocity vector. The calculation of 
the V,, c for every individual element is presented in Appendix B 1. 

The local angle of attack and sideslip can then be calculated as follows 

au = ATAN2(Vvt , V" (5.42) 

vv 
ßu = Sin -1 

AC 
(5.43) VACuror 

where 

22 VACvor = 
[(v; )+ (VAC. + (v: )2]ý/z (5.44) 

For streamline bodies, two other angles must be calculated which are 

yý = ATAN2(CVÄc. 
r 
Sin(y�1)+ VAC. Cos(yv1),, Vu A) (5.45) 

a� = ATANZ(-VAc� "VAC 9VACW, . VAC) (5.46) 

where 

y.,, = ATAN2(V,; c r, 
V,; c. 

) (5.47) 

The angle ß� will be used in calculation of the Direction Cosine Matrix between the 
local body axes and the local wind axes systems, Equation 5,65. The angle y,, is the true 

angle of attack (the angle between the local velocity vector and the body longitudinal 
axis). This angle will be used to find the lift, the drag and pitching moment coefficients 
for a streamline body later in this chapter. 
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Airfoils 

In the present work, the term airfoil is used to designate a lifting surface of rectangular 

shape. As shown in Figure 5.8, one of the sides of the rectangle is the Span and the other 

side is the Chord of the airfoil. The ratio SpanlChord is called the aspect ratio and can be 

shown by 

AR= 
SPAN 

OH 
(5.48) 

Consider an airfoil moving through the air with a constant velocity. The forces exerted 

by the air on the airfoil will then depend on its shape, size, orientation, the velocity of 

motion, and the density and viscosity of the air. The shape of the airfoil can be defined by 

giving the shape of the profile and the aspect ratio AR . The size can be defined by 

giving the chord length. Finally, the orientation can be determined by giving the angle of 

attack. 

The magnitude, direction, and line of action of the resultant force that the air exerts on 

an airfoil are completely determined when its components, Drag and Lift, parallel and 

perpendicular to the velocity, and pitching moment with respect to an arbitrarily chosen 

point are known. The lift, drag and pitching moment of an airfoil can be written as 

Liftai =Yp 
(VA 

cy)2 Sar Cabo 

Dragq, =Y 2P 
(vACj2sQf Co.. (5.49) 

2 
Moment01 =YP 

(VAc,,, ) SQf Coo 

Caf., Calpo and CafMO are the dimensionless coefficients of lift, drag and moment. For an 

airfoil of given profile these coefficients depends on Reynolds number (Re), the aspect 

ratio AR, and the angle of attack ct f. The influence of Reynolds number is 

comparatively small. The curves showing the coefficients CaLO, Cuf,, 
0 and CfMO as 

functions of the angle of attack c, are known as the characteristic curves of an airfoil 

[51]. The forms of these curves depend on the shape of the profile, the aspect ratio of the 

airfoil, and, to a certain extent, the Reynolds number. Before going into the details, some 
issues concerning the general form of these characteristic curves which are of prime 
importance in aerodynamic modelling of the aircraft should be discussed. 
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For each profile there is a certain direction of velocity in which the lift and accordingly, 

the lift coefficient are zero. This direction is called zero lift direction of the profile. In 

this work, the angle of attack of an airfoil is measured from this zero lift line. For small 

values of the angle of attack the lift coefficient is proportional to aaf . In Figure 5.9 a 

typical C 10 vs a« curve is shown. For angles of attack up to a certain value the curve 

is almost a straight line. For higher angles of attack, the character of curve changes 

abruptly. The range of values of C. A. within which the curve remain linear depends on 

the shape of the profile and on the value of the Reynolds number. The upper end point of 

the approximately straight portion of the CafL vs aaf curve is called the stalling point 

[51]. At the stalling point the Cafo vs a, f curve, shows a sharp bend. If the angle of 

attack is increased further, then Caf, 
o 

drops to nearly zero for aaf = 90° . It is obvious 

that at a0f = 90° the problem is rather that of the motion past a rectangular plate 

opposed to the direction of flow. 

Contrary to the Cafto vs aaf curve, the Cafpo vs aal curve, is of parabolic character, 

Figure 5.10. It has a minimum close to a«= 0° . This minimum value of the drag 

coefficient depends on the shape of the profile and on the value of the Reynolds number. 
For the values of a pf 

different from zero, the drag coefficient increases proportional to 

a. at a rate that depends mainly on the aspect ratio. Since within the range of linearly 

increasing C,, f. the lift coefficient is proportional to the angle of attack aal , the main 

character of the Cabo vs af curve can be stated as follows: Within the range of linearly 

increasing COILO the drag coefficient follows the parabolic law [51,57] 

I2 
(5.50) Caton 'Cat�P + 

Kar. AR 
C4-' 

where CAf,, depends mainly on the shape of the profile. This term is often called the 

coefficient of parasite or profile drag. The second term is known as the coefficient of 
induced drag. 

The pitching moment and the pitching moment coefficient depend on the position of the 

point with respect to which the moment is taken. The outstanding fact concerning the 
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variation of the moment coefficient with the range of angle of attack can be stated as 
follows: For any given profile there is a certain point with respect to which the pitching 

moment and the pitching moment coefficient have a practically constant value as long 

as the angle of attack does not exceed the range of linearly varying Cafio [51]. The 

constant value of the pitching moment coefficient depends on the shape of the profile but 

is practically independent of the aspect ratio. This point is known as the aerodynamic 

center (A. C. ) . For the usual profiles it lies near the chord line, about a quarter chord 
length aft the leading edge, in accordance to two dimensional airfoil theory [51]. It 

should be pointed out that the pitching moment is counted positive if it tends to raise the 
leading edge of the profile. 

The values of the coefficient CQf0P , Kar, Cafta and CafMO for a selected profile are given 

in Chapter 6. 

A general view has been given about the fundamental characteristics of an airfoil in the 
last few paragraphs. As it might be noticed, the symbols used are slightly different with 
the usual symbols of aerodynamic dimensionless coefficients. This is done to make them 

compatible with the overall trend of the aerodynamic modelling explanation. 

Now, the components of aerodynamic force and moment acting on a typical airfoil of , 
shown in Figure 5.11, in terms of the aerodynamic dimensionless coefficients in local 
body axes system are considered to be 

1Cal. 
Aaf = PH,, f . Sai 0 (5.51) 

Co. 

0 
MAä =PH , f. Sa. CIIORDp1 Cafes (5.52) 

0 

where, the local pressure head and airfoil reference area are given as follows 

PNaf =YP V, c, 
"� 

(5.53) 
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Saf = CHORDQ1. SPANa1 (5.54) 

The aerodynamic dimensionless coefficients associated with x, z and m directions are 

approximated in terms of the airfoil and control surface contributions at the known 

angles aal and Paf as follows: 

Cats = 
(Cah. 

o 
(aaf) + Cates (aaf ) 8. 

f 
) Cos(ßaf 

Cart = (Carto ((X 
f+ Car=a (aaf ý Sa f) Cos(Paf 

Ca1. = 
(Cabo (aal)+Caf (aai) Saf}COS(ßaf) 

The symbol 5 denotes the control surface deflection angle. Also, we have 

Caf=p (aai) 
_ 

Cosaaf 
C ra Sinaa 

J Cafe ((X) 

_ 
[coscc, 

Calla (aaf 
J 

SinWLaf 

-Sin aal Ctoo (aaf 
Cosaf jt_CaILO(aaf)J 

-Sinaal 11-CLf,, (aaiý 

Cosaaf jt_CafL @afý 

(5.55) 

(5.56) 

(5.57) 

The functions Cafes , Cpf, and Cafes are the aerodynamic input data. These data will be 

estimated in the next chapter. 

Streamline bodies 
A body is called streamline if the flow passing it is free (or practically free) of 
discontinuity surfaces separating a dead-air region from the stream, [51 ]. There are many 
different type of streamline bodies. However, in this thesis, the term streamline body is 

applied to bodies of revolution, shown in Figure 5.12. This type of body is symmetric 
and it has a thicker front part than the rear part. The streamline bodies are used wherever 
the drag must be kept to a minimum. They are therefore used for the aircraft fuselage 

and engine nacelles. 
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Due to the symmetrical shape, of a streamline body, the only nonzero components of 
aerodynamic force and moment in its wind axes system are lift, drag and pitching 
moment. In other words, the lateral force, roll moment and yaw moment are theoretically 

zero. The non-zero components can be expressed as follows 

Lft 
sb =YP 

(v 
ACb 

)2 Ssb C$bL 

Drags, = 
12 

P 
(V 

AC, r 

2 
ssb Cabo (5.58) 

x 
Momenttb = 

34 P (v 
ACb Ssb C$bml 

where Csb, , CS,, and CSbM, are dimensionless coefficient of lift, drag and moment. 
These coefficients depend on Reynolds number and true angle of attack y ie 

(the angle of 

attack between the local velocity vector and the body longitudinal axes). They will be 

estimated in Chapter 6 for a selected profile. 

Now, the components of the aerodynamic force and moment acting on a typical 
streamline body sb, shown in Figure 5.13, in terms of the dimensionless coefficients in 
local body axes system are 

Csb; 
Asb = PHb"Sb Csby (5.59) 

I C31, 

Csh 
MÄb= PHsb. Sb. LENGTH$b Csb., (5.60) 

C$b. 

where 

PH5b =YP vACabfor (5.61) 

Ssb = LENGTNsb. DtAMETERsb (5.62) 

and 
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Cab, _ ý, 
sbp 

Cýby = [DCMTbW 0 
Gabj -CsbL 

Csý 0 
sý Csb. [DCM} Csb., 

LCAJ 0 

where, [52] 

[DCM]. ̀ bw = 

Cosasb. COSI3sb 0 

Sin Pjb COSF'sb. COSß 
sb 

Since 
s6 . 

Cos(3 
sb 

-Sinn s, b 
Sinß 

sb 
COS6 

sb 

+Sinß sbCosa sb 

Sinn b. Cosa 
sb. 

Since 
sb 

-Sinasb. Cosa 
sb 

-Sins sb' 
Cosß 

sb 

Since 
sbSinß sbSinß sb 

+ Cosa 
sb 

Cosß 
sb 

(5.63) 

(5.64) 

(5.65) 

is the Direction Cosine Matrix from the local wind axes system to the local body axes 

system. 

Propellers 

For a propeller the main aerodynamic forces and moments are those which are generated 
due to the propeller rotation. These were calculated in Section 5.2.1. However, some 
small quantities of force and moment may be produced by the propeller body. These 

quantities are neglected in the present model but for the sake of completeness, the 

associated term are left in the equations. Thus 

"A" =0 (5.66) 

, cm. =0 (5.67) 
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Having calculated the aerodynamic forces and moments of each individual component in 
its local axes system, they should then be transformed into the main reference frames 

XQYaZa and "X. YY"Z� . Starting with the components of the fuselage-emppenage 

assembly, designated by b in Chapter 3, we have 

At = [DCM]"Av (5.68) 

86MA _ [DCMrMAv +L' 
42 

x Au (5.69) 

where, L�e2 is the position vector of the component aerodynamic center w. r. t. the center 

of gravity of the body b. The above transformation associated with each individual 

element is presented in Appendix B2. 

Having expressed all vectors in the same axes system and w. r. t. the same reference point, 
then 

Ab = Aaf +Ah+'A;, +"Ay+'A,, (5.70) 

and 

gb Ab gbM j+gbMAM+gbMAA+gbMA, gbMA' 
(5.71) 

The resultant aerodynamic forces and moment acting on the body A will then be 

expressed as follows 

Ap = A6 +Conf 2("A,,, +`A�, ) (5.72) 

0MAa=oMaA +Conf2(«MAw+'M ; 
w) 

(5.73) 

The terms 0MA. and öMA. are defined in Appendix B2, Equation B2.13. In a similar 

way, for the components of the tilting body "np 
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Aü = [DCM]"°AÜ (5.74) 

12M;, = [DCMJ°M' +Lv. 2 x Av (5.75) 

where, Lv+= is the position vector of the component aerodynamic center w. r. t. the joint 

J2 . The above transformation associated with each individual element is presented in 

Appendix B3. Since, there is no definition of the aerodynamic center for a propeller, this 

vector represents the position of any point at which the propeller aerodynamic forces and 
moments are defined. In the present study, the propeller center of gravity is chosen. 

The resultant aerodynamic force and moment vector on the tilting body "np will also be 

expressed as follows. 

"A�p="A�+"An +Confl. A,, (5.76) 

'ZM; 
ý=; 1M; 

+; 
=MA'+ConfLjzMn 

(5.77) 

5.2.4 Engine model 

Small and medium size unmanned aircraft have historically been powered by piston 
engines. These engines convert the thermal energy produced by burning fuel into 

mechanical work. This work is done by rotating the propeller against the resisting 
aerodynamic torque moment. The propeller is driven either directly on the engine shaft 
or indirectly by means of a reduction gear. 

The power output of an engine depends on two operation variables, the speed (rpm) and 
the throttle setting (s, ) which controls the manifold pressure. A complete picture of the 

operation condition needed in connection with engine modelling is given by the family of 
curves P. vs rpm for different throttle settings. Figure 5.14 shows a typical set of such 
curves. As seen, the output power increases with the throttle setting. For a constant 
throttle, the output power has a maximum value at a specific rpm. In mathematical terms, 
these curves can also be represented by 

P, = FE(rpnz, 8, ) (5.78) 
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The function F. is obtained by using experimental data provided by manufacturers or 

obtained from tests. Therefore, in the present mathematical model, a real engine 

characteristic is considered. This is important from the point of view of establishing the 

validity of the control concept. Having calculated the output power, the output torque 

can then be obtained as follows 

PE 
(5.79) ME = 2n (rpm) 

60 

5.2.5 Servomotor Model 
One servomotor has been considered for each of the tilting bodies. A servomotor is a 
common actuator in control systems which directly provides rotary motion. It is standard 
to relate the output torque of a servomotor in terms of its armature current [47]. Using 

the symbols Ms as the output torque and 6ne as the input current, the servomotors can 

be simply modelled by the following relation. 

MS = Ks,,.,, 
oe�, (5.80) 

The term Kse, 
,, 

is called torque constant. The above model can be easily changed by 

more complex models relating the output torque to input current. 

5.3 GRAVITATIONAL FORCES AND MOMENTS 

The objective of this section is to determine all the related terms in the equations of 
motion associated with gravitational forces and moments. In the first place, the mass of 
the main objects should be calculated in terms of the mass of the secondary objects which 
are considered as input data. Therefore 

m, p = mit + mp + Conf 1. mN, (5.81) 

ma = mh + Conf 2. (2m. ) (5.82) 
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where 

mb=mf+2m, +mvu+mkr (5.83) 

As it might be noticed, similar components at the right and the left side of the aircraft are 

considered to have the same mass. The center of gravity location for bodies A and "np 

can then be calculated as follows 

K en 
mn"kl"+mpf"+Conf1. m,, "h" 

= (5.84) 
m�p 

bQ = 
mo° + Conf 2(mm,: L1N, + m,, L1, ) 

(5.85) ma 

where 

oa _ 
mfL1 +mh'L1k+my1L'1h+mýyuLja +my, 

5.86 () 
Mb 

The weight of each part can be calculated by multiplying its mass by the gravitational 
acceleration. Therefore 

Weight,, = ma. GraAcc 

Weight� = m�. GraAcc 

Weightp = mp. GraAcc 

Weightw = mK . GraAcc 
Weight, = mb. GraAcc (5.87) 

Weight1 = mf. GraAcc 

Weight,, 
p = M. P. 

GraAcc 

The following vectors can then be defined 

0 
NVnP =0 (5.88) 

Weight, 
n 
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0 
Wä =0 (5.89) 

Weights 

Now, the associated gravitational forces and moments appeared in the equations of 

motion can be expressed as follows 

"Wnp=K [DCM]"° [DCMT" W�P (5.90) 

W. '= [DCMT' Wa 5.91 

; 
2Mwro="e"x"Wnp 

=r"e"p` Wp (5.92) 

0 M° =baxWa =[b']Wa (5.93) 

Obviously 

BKmn =0 (5.94) 

5.4 MASS MOMENT OF INERTIA MODELLING 

Having obtained the previously mentioned terms, the only remaining ones are the mass 
moments of inertia associated with the main objects. Therefore, in the following, the 
method of calculating these quantities in terms of the mass moment of inertia of the 
secondary objects is presented. The following definition is needed for the rest of the 
calculations. 

For a typical position vector S 
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S; -I- S= -Sv, S. -ss 
{S}° -SzS , 

S2'+' SZ _SZS , (5.95) 
-sxsz -sys= 

sx + sy 

Let's start with the components of the fuselage-emppenage assembly (body b). For a 
typical component v according to parallel axes theorem [46] 

LBbiuIh 
[�ja 

1) 
]+1 {T. 

u. a1 
(5.96) 

where, L.., is the position vector of the component center of gravity w. r. t. the center of 

gravity of the fuselage-empennage assembly b, and 

191, Ivý = [DCMr[, I'IDCMr (5.97) 

The expanded form of the above equations for different components is given in the 
Appendix B3. Having expressed all the inertia matrices in the same axes and w. r. t. the 
same reference point, then 

[86I6ý=[86If]+[a6Ih]+[gyIhý+ý&bIY]+[gbIv] 
(5.98) 

and 
[ Ibý=[gblb]+mb{oQ} (5.99) 

The mass moment of inertia of the body A w. r. t. the point 0 can then be expressed as 
follows 

[o I, j = [o Ib ]+ Conf 2. ([0IW]+ [0IW ]) (5.100) 

In a similar way, for the components of the tilting body "np 

li, Iül_lguiUl+niv{LÜ., } (5.101) 
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where, L.., is the position vector of the component center of gravity w. r. t. the joints 

K12, and 

[ýIý"ý] = [DCMr°[,, IüIDCMý"° (5.102) 

For more detail about each individual component refer to Appendix B3 

The moment of inertia of the body cnp w. r. t. the point "J2 can then be expressed as 
follows 

J2Ipý+Conf 1.112IWý (5.103) 
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CHAPTER SIX 
DATA PREPARATION 

6.1 INTRODUCTION 

In the last three chapters, the aircraft mathematical model has been developed. The next 
step is computer programming and validation of this mathematical model which are the 

subjects of the following chapters. However, since there is no specific data available, a 

set of reasonable input data must be approximated in the first place. The approximation 

of this data must be carried out carefully and based on the realistic assumptions. The data 

estimation procedures and associated issues were sufficiently important to form a 

complete chapter. 

6.2 BASELINE CONFIGURATION 

Since the beginning of the mathematical modelling the baseline configuration has been 
known. This configuration is shown in Figure 1.5. However, for the sake of model 
testing, the geometric proportion between the aircraft components are needed. These 

could be determined via a conceptual design phase if there were a defined mission and a 
set of requirements to be satisfied, but there are not. Therefore, the best choice was to 
use an already existing VTOL aircraft as the baseline configuration. The geometry of the 
Bell Tilt-rotor unmanned aircraft known as Pointer [34] was therefore selected for such 
an analysis. Having fixed the geometry, the size of the aircraft could then be arbitrarily 
selected. 
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In this study, in order to use the existing experimentally obtained characteristic curves of 

a small two-stroke engine used with a 20 inch propeller on the XRAE-2 unmanned 

aircraft [58], it was decided to size the aircraft so that the above combination could be 

used as the propulsion system. Therefore, using the Pointer configuration, the aircraft 
dimensions were scaled to match with the selected propeller size. Also, the total weight 

of the aircraft at take off was calculated in terms of the available engine power at 

8, = 0.64 and rpm = 6000D 
. Further discussion of this is presented later. 

6.3 AIRCRAFT DIMENSIONS 

The three view drawing of the Bell Tilt-rotor unmanned aircraft Pointer and the 

equivalent panels corresponding to the wings and stabilisers is shown in Figure 6.1. The 
dimensions of the panels are determined in terms of the average chord and span of their 

corresponding lifting surfaces. The position of the aircraft center of gravity is to be 
located as close as possible to the direction of the thrust line to prevent any unnecessary 

pitching moment in hover. Therefore, the joints and the wings' center of gravity are 

assumed to be coincident in the X. Z. plane. In addition, the location of the fuselage 

center of gravity is chosen so as to ensure that the center of gravity of the whole 
fuselage-empennage assembly is located along the thrust line. As seen in Figure 6.1, the 

origin 0 is considered to be on the longitudinal axis of the aircraft fuselage and exactly 
below the joints in the X. Z. plane. Regarding such considerations, all the required 
dimensions can be approximated as follows: 

All dimensions are in meter 

Propeller diameter=0.522 

CHORDW = 0.18326 SPANW = 0.3318 
CHORD,, = 0.1222 SPANN = 0.1777 
CHORD., = 0.1777 SPANvu = 0.19436 

i6.1) 

CHORD, = 0.18326 SPANv, = 0.0777 
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Fig. (6.1): Three drawing view of the pointer [34] 
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LENGTH f=0.8552 DIA f= 01305 
(6.2) 

LENGTH, = 0.18326 DIA� = 0.0555 

0.0 0.0 
'd° = 035 ; ld° = -035 (6.3) 

-0.05 -0.05 

0.0944 0.0944 
' kl" = 0.0 ;' kl" = 0.0 (6.4) 

0.0 0.0 

0.1133 0.1133 
'12" = 0.0 ; 'k2' = 0.0 (6.5) 

0.0 0.0 

0.1583 0.0 
f"=0.0 0.0 (6.6) 

0.0 0.0 

0.0 0.0 
'h"' -0.1555 ; 'hw = 0.1555 (6.7) 

0.0 0.0 

-0.4774 -0.4774 
'Ll h=0.0889 ; 'L1 = -0.0889 (6.8) 

-0.0111 -0.0111 

-0.4108 -03719 
"L1 = 0.0 ' L1 = 0.0 (6.9) 

-0.0833 0.0555 
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0.006714 

L1 = 0.0 

0.0 

0.01666 
'L2w = 0.0 

0.0 

0.01452 
'L21 = 0.0 

0.0 

0.01944 
L2 '=0.03054 

0.0 

0.0012 
L2 f=0.0 

0.0 

0.01666 
'L2W = 0.0 

0.0 

0.01452 
'L2h= 0.0 

0.0 

0.01666 
'L2y = -0.01666 

0.0 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

6.4 PROPELLER CHARACTERISTICS 

In the process of modelling the propeller in Section 5.2.1, it was pointed out that the 

propeller characteristics are usually represented by propeller charts. Unfortunately, for 

the selected propeller size, such data is very rarely obtained. Normally, these kind of 

propellers are two-bladed with a fixed-pitch and are constructed from a single piece of 

laminated wood or composite material. They are generally used in small unmanned or 

model aircraft. No aerodynamic data is provided by manufacturers for this type of 

propeller. The only data obtained, is reported in [59] which is limited to the range of the 

pitch angles between 12 to 18.75 deg., There is a good agreement between this data and 

the data provided in Reference [57] for a two-blade 5869-9 propeller which, of course, 

covers a much wider range of pitch angle up to 45 deg., Figure 6.2 and 6.3. Therefore, it 

was decided to use the charts in these figures as propeller characteristics in the present 

work. 
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The lines on these charts represent tests run at a fixed blade angle, at 0.75R. For any 

given blade angle, there is a value of advance ratio (ADR) that will give zero mean 

effective angle of attack on the propeller blade and zero C,.. As the advance ratio is 

reduced from the zero thrust value, the angle of attack on all elements of the propeller 
blade increases. This gives an increase in C. almost in direct proportion to the reduction 

in advance ratio until an angle of attack is reached where the most of the elements of the 

propeller blade begin to stall. Further reductions of advance ratio below the stalling value 

yields no increase in C, . For different blade angles the values of advance ratio at zero 

thrust and stalling point are different, but the maximum C. at stall is approximately the 

same. 

It might be noticed in Figures 6.2 and 6.3 that the values of advance ratio corresponding 
to C. = OA and Cp = 0.0 are not coincident. There is always some small value of Cp 

when C. = OA, corresponding to the power necessary to turn the propeller when it is 

delivering no thrust. This is mainly due to skin friction. As thrust coefficient increases, an 
induced drag is developed on the propeller blade elements, which increases the power 
required to turn the propeller. 

For computer implementation, the C. and C, charts are tabulated in Tables 6.1 and 6.2. 

Since, there is no data for the negative values of advanced ratio, each curve is extended 
by a horizontal line, corresponding to its value at ADR=0.0, to the left up to ADR=-0.6. 
In order to use the TABLE statement available in Advanced Continuous Simulation 
Language (ACSL) [60], the same number of data points for all curves is needed. 
Therefore, a negative value -0.1 is considered wherever it is necessary in the tables. 

Finally, it should be pointed out that the propeller charts in Figures 6.2 and 6.3 are 
determined experimentally for a propeller in axial flow, i. e. zero angle of attack. To be 

able to use these charts for all flight conditions, the advance ratio is defined in terms of 
the component of the air velocity vector normal to the propeller disk, Equation 5.9. 

6.5 ENGINE CHARACTERISTICS 

The engine characteristics associated with a two-stroke ML88. MCD engine which is 

used in XRAE-2 unmanned aircraft are tabulated in Table 6.3, [611. In order to use the 
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Table (6.1): The propeller thrust coel I icient 
ADR -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 

Oc Thrust coefficient 
15 0.1 0.1 0.1 0.1 0.088 0.065 0.035 0.004 -0.03 
20 0.104 0.104 0.104 0.104 0.104 0.094 0.07 0.04 0.007 

25 0.113 0.113 0.113 0.113 0.108 0.105 0.096 0.075 0.045 

30 0.117 0.117 0.117 0.117 0.115 0.11 0.107 0.104 0.093 

35 0.117 0.117 0.117 0.117 0.120 0.119 0.109 0.104 0.102 

40 0.120 0.120 0.120 0.120 0.124 0.126 0.122 0.114 0.106 

45 0.122 0.122 0.122 0.122 0.126 0.129 0.126 0.122 0.115 

ADR 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 
Oc Thrust coefficient 
15 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 
20 -0.027 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 
25 0.014 -0.017 -0.046 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 
30 0.054 0.023 -0.008 -0.04 -0.1 -0.1 -0.1 -0.1 -0.1 
35 0.084 0.06 0.032 0.004 -0.023 -0.1 -0.1 -0.1 -0.1 
40 0.104 0.093 0.073 0.049 0.024 0.0 -0.023 -0.1 -0.1 
45 0.107 0.104 0.100 0.087 0.068 0.047 0.026 0.006 -0.015 

Table (6.2): The nroneller nower coefficient 
ADR -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 

6c Power coefficient 
15 0.04 0.04 0.04 0.04 0.04 0.037 0.025 0.004 -0.015 
20 0.075 0.072 0.07 0.067 0.063 0.06 0.055 0.037 0.01 
25 0.12 0.115 0.112 0.109 0.1 0.092 0.083 0.075 0.053 
30 0.16 0.152 0.147 0.143 0.139 0.133 0.122 0.115 0.1 
35 0.21 0.201 0.195 0.188 0.18 0.17 0.157 0.146 0.14 
40 0.263 0.255 0.245 0.237 0.227 0.22 0.21 0.198 0.188 
45 0.283 0.28 0.278 0.275 0.27 0.265 0.26 0.252 0.24 

ADR 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 
8c Pow er coefficient 
15 -0.04 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 
20 -0.02 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 25 0.022 -0.015 -0.047 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 
30 0.075 0.04 -0.003 -0.04 -0.1 -0.1 -0.1 -0.1 -0.1 
35 0.125 0.100 0.06 0.02 -0.025 -0.1 -0.1 -0.1 -0.1 
40 0.18 0.165 0.138 0.105 0.07 0.028 -0.012 -0.06 -0.1 
45 0.23 0.218 0.212 0.19 0.16 0.125 0.09 0.055 0.01 
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ACSL TABLE statement, the engine power should be recalculated in terms of the same 

specific rpms for all throttle settings. Having done this, the final form of engine data is 

represented in Table 6.4. 

6.6 AIRFOIL CHARACTERISTICS 

The only available data that covers the angles of attack from -180 to 180 degrees was 

associated with a NACA 0012 airfoil section [62]. This airfoil section is commonly used 

as a rotor-blade section in helicopters and it may not be suitable for an aircraft wing at 

all. However, due to the shortage of any other source of data, the characteristics of this 

airfoil, shown in Figure 6.4 are used. The graphs in this figure are tabulated in Table 6.5. 

In should be pointed out that only the attached flow characteristics would change 

significantly with a change of section. 

The effect of the control surface deflection angle S on the resultant drag force and 
pitching moment are neglected. Thus 

Cý. = 0.0 

Cai = 0.0 
(6.14) 

However, this effect on the resultant lift force can not be ignored. Therefore, Caj 

should be approximated for a range of angles of attack from -180 to 180 deg. 

Unfortunately, there is no source of data to be directly used for such an approximation 
over this range. However, the vertical stabiliser lift coefficient of the Bell model 301 Tilt- 

rotor research aircraft [63], was available in terms of the local angle of attack and rudder 
deflection angle in the range of -90 to 90 deg. and -20 to 20 deg., respectively, Table 
6.6. Using this data, the variation of lift coefficient with rudder deflection at an angle of 
attack a can then be approximated by the slope of the line shown in Figure 6.5 as 
follows. 

CL (20°) 
- CL (-20°) 

- C (a) 
n r20 

- -20l 
-1.424(0 

(20°) 
- CL (-20° )) (6.15) 

180 ̀  
ýJ 



Table (6_3): The original engine data 10 11 
Throttle setting 

6t=0.41 6t=0.53 8t=0.64 6t=0.81 St= 1 .0 
rpm P (kw) rpm P (kw) r rn P (kw) r rn P (kw) rpill P (kw) 

4700 1.92 4400 2.4 4600 2.65 4700 2.85 4900 3.06 
5300 1.95 4850 2.62 5100 3.02 5200 3.15 5300 3.3 
5650 2.1 5300 2.65 5550 3.02 5700 3.35 5820 3.6 
6600 2.24 5760 2.62 6200 3.28 6400 3.62 6520 3.88 
6700 2.24 6400 2.88 6700 3.33 7100 3.95 7260 4.28 

6760 2.72 7250 3.42 7600 4.05 7850 4.5 
7000 2.9 7600 3.5 8050 4.25 8300 4.7 

Table (6.4): The recalculated engine data 

rpm 14000 4500 5000 5500 6000 6500 7000 7500 8000 8500 

8t Power (KW) 

1 2.52 2.82 3.12 3.415 3.672 3.872 4.139 4.369 4.567 4.79 

. 81 2.43 2.73 3.03 3.27 3.466 3.667 3.903 4.03 4.228 4.45 

. 64 2.206 2.576 2.946 3.02 3.2 3.31 3.379 3.477 3.591 3.706 

. 53 2.204 2.449 2.63 2.637 2.72 2.836 2.9 2.94 2.97 3.0 

. 41 1.885 1.91 1.935 2.036 2.15 2.225 2.24 2.24 2.24 2.24 
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Table(6.6): Vertical stabiliser lift coefficient of the Bell model 301 
Tilt-rotor research aircraft [63] 

JA BELL Uu Of ds Iowa u4 ndu an low. y, r1p ". VW HELICOPTER CO# s Nv 1ubitCI 10 Ittt ttsI, KUOO nn III, Idb" WP 

IT COEFFICIENT (C ) 
Y� 

20° -10° -20° 

0-. 2 

0 0 0 
92 -1.07 -1.11 
82 -1.02 -1.12 
87 -1.02 -1.09 
91 -1.07 -1.11 
92 -1.11 -1.15 
85 -1.14 -1.19 
74 -1.15 -1.22 
64 -1.14 -1.24 
52 -1.05 -1.18 
30 -. 84 -. 99 

09 -. 63 -. 76 

76 . 23 . 10 

99 . 44 . 31 

18 . 66 . 52 
24 . 77 . 64 
22 . 88 . 74 

19 . 98 . 85 
15 . 98 . 92 
11 . 93 . 91 

. 09 . 90 . 87 

. 12 . 84 . 82 

, 11 . 96 . 92 
0 0 0 

301 -01)9-001 D-211 
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Having calculated the above value over the entire range of 0 to 90 deg. angle of attack, 
the same variation of C,, vs a is assumed for our airfoil and extended over the entire 

range -180 to 180 degrees as shown in Figure 6.6. This curve is tabulated in Table 6.7. 

To complete the airfoil related data, the value of Kar in Equation 5.50 also needs to be 

estimated. According to reference [51] for an airfoil of the usual type and an aspect ratio 
of 2 or more, Kar is approximately equal to 3. However, in our case, due to the fact that 
the aspect ratio of all the airfoils is less than 2, the value of Kar=3.0 may not be valid. 
Therefore, it was decided to calculate the drag force of an airfoil with the same chord but 

a span twice as much as that of the real airfoil and then divide it by two. By equating the 
obtained result with the drag force which can normally be calculated for the real size 
airfoil, it is concluded that Equation (5.50) can still be used if the parameter Kar takes 
the value of 6.0 [52]. In fact two times of the suggested value for a usual size wing. 

6.7 STREAMLINE BODY CHARACTERISTICS 

As it was expected, no data that covers the entire range -180 to 180 deg. angle of attack 
for a streamline body was found. However, some data was available for a shorter range 
of 0 to 30 degrees but only for the dimensionless coefficients of lift and pitching moment, 
shown in Figure 6.7 [64]. In this figure, thick lines are the approximated curves for the 
value of thickness ratio 0.15 corresponding to our streamline bodies. These curves can 
then be extended approximately over the entire range of angle of attack as shown in 
Figures 6.8 a, c. In these figure, the estimated portions are drawn by thinner lines. As it 
might be noticed, to produce these curves, it is assumed that the streamline body is also 
symmetric w. r. t. a plane perpendicular to its longitudinal axis. For the dimensionless 
coefficient of drag, the only data available was at zero angle of attack and as a function 
of Reynolds number [65], shown in Figure 6.9. Using this value, the drag coefficient 
over the entire range of angle of attack is approximated by a sinusoidal function as 
follows, shown in Figure 6.8 b. 

Csbn Csb,, 
o 
(Re, ) + (Csbni (Red) - 

Csbna (Re, ))Sin($b) (6.16) 

Where, ysh is defined in Section 5.2.3, Equation 5.44 and 
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Fig. (6.5): Approximated CLVS Sr curve at an angle of attack a 
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Red = 
VSb. DIAsb (6.17) 

v 

Re = 
V3b. LENGTH$b (6.18) 

v 

CsbDO is the drag coefficient at zero angle of attack which can be expressed as follows 

C=boo (Re, ) = 
3.0 LENGTH Co., (Re, ) (6.19) 

ab 

The variation of CD. with Reynolds number is shown in Figure 6.9. In this figure, the 

thick line indicates the estimated curve for the value of inverse thickness ratio 6.67 

corresponding to our streamline bodies. Also, Csba, is the drag coefficient of a circular 

cylinder in a flow normal to its axis, shown in Figure 6.10 [65]. The curves in figures 6.8 

a, c, 6.9 and 6.10 are tabulated in Tables 6.8,6.9 and 6.10. 

6.8 MASS ESTIMATION 

Since mass estimation of the structure and the other components was very difficult, it 

was decided to set the thrust force equal to weight for the sake of simplicity. As 

mentioned in Section 6.2, the net power generated by engines for the values S, = 0.64 

and rpm = 6000.0 is considered as the available power at take off. At this condition, the 

airspeed velocity and in turn the advance ratio are both zero. Selecting a propeller pitch 

angle equal to 20 degree and using Table 6.1 and Equation 5.12, the total thrust 

produced by the propulsion system can be calculated as follows 

12 
Thrust101 =2 p( 

60 
I. D4 .cT 

(ADR, ©c 
l) 

z 
=21.23 

6600 
x 05224 x CT(0.0,20°) (6.20) 

= 189.95 n. m 
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Table (6.7): CCf" vs aaf 
c -180 -172 -168 -164 -162 -160 -158 -156 -154 -152 -148 -140 

Ca -0.945 -0.945 -0.974 -0.945 -0.859 -0.687 -0.487 -0.329 -0.286 -0.315 -0.43 -0.272 

aaf -90 -40 -32 -28 -26 -24 -22 -20 -18 -16 -12 -8 
Ca 0.0 0.272 0.43 0.315 0.286 0.329 0.487 0.687 0.859 0.945 0.974 0.945 

as 8 12 16 18 20 22 24 26 28 32 40 90 
CaJ12 0.945 0.974 0.945 0.859 0.687 0.487 0.329 0.286 0.315 0.43 0.272 0.0 

cxaf 140 148 152 154 156 158 160 162 164 168 172 180 
Ca -0.272 -0.43 -0.315 -0.286 -0.329 -0.487 -0.687 -0.859 -0.945 -0.974 -0.945 -0.945 

Table (6.8): (Cshl & C,,,, ) vs Y, b 

-180 -175 -170 -165 -160 -155 -150 -130 -90 -50 -30 
Csbt. 0.0 0.0125 0.022 0.035 0.05 0.075 0.1 0.1 0.0 -0.1 -0.1 
Csb 0.0 -0.008 -0.015 -0.02 -0.025 -0.028 -0.028 - 0.0 - 0.028 

sb -25 -20 -15 -10 -5 0.0 5 10 15 20 25 
CsbL -0.075 -0.05 -0.035 -0.022 -0.0125 0.0 0.0125 0.022 0.035 0.05 0.075 
CshMJ 0.028 0.025 0.02 0.015 0.008 0.0 -0.008 -0.015 -0.02 -0.025 -0.028 

sb 30 50 90 130 150 155 160 165 170 175 180 
Csbi. 00.1 0.1 0.0 -0.1 -0.1 -0.075 -0.05 -0.035 -0.022 -0.0125 0.0 
Csbatl -0.028 - 0.0 - 0.028 0.028 0.025 0.02 0.015 0.008 0.0 

Table (6.9): C,. h , 
vs Red 

Red 0.01 10.0 1000.0 2.5e05 6.0e05 1.0e07 1.0e08 
C: sbni 4.0e02 3.0 1.0 1.0 0.25 0.5 0.3 

Table (6.10): CD,,,,, vs Re, 
Re] I. 0e04 1.0c05 I. 0e06 1.0e07 I. 0e08 

CDwet 0.015 0.0062 0.002 0.003 0.002 
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The gross weight of the aircraft is then given by dividing the above value by the 

gravitational acceleration (9.81). Thus 

m10, =1936 kg (6.21) 

This is considered as the total mass of the aircraft and should then be broken down into 

the mass of the different components. 

Therefore, the next step is to estimate a reasonable value for the mass of the different 

secondary objects. Unfortunately, there is no already given comment about it. The 

formulas given in Reference [66] seem not to be fully applicable in this case because they 

do not provide a sensible value for the mass of some of the aircraft components, e. g. 

wing. This is predictable because the figures given in this reference are obtained for the 

ordinary fixed wing unmanned aircraft. Using the hypothetically defined mass density 

[52] for the wing of the XRAE-1 unmanned aircraft [67] in calculating the mass of our 

airfoils was also not quite satisfactory. Therefore, what follows is the result of a pre- 

estimation by employing the above approaches which is then finalised by rather arbitrary 

personal judgement. 

The mass of each airfoil was then considered to be 

mw =1.0 kg 

mti = 0.05 kg 

m. w = 0.1 kg 
(6.22) 

mw = 0.05 kg 

The engines are considered to be located inside the fuselage. Therefore, there is no need 
to calculate the engine mass separately. However, to gain an idea, the following equation 

presented in Reference [68) is used to estimate the mass of each engine. Therefore 

mE=1.15Pma-3.49 
=1.15x5-3.49 (6.23) 

3.0 kg 

The mass of the body n is given by 
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M. = mnacelle + mpylon + mgearbox (6.24) 

where, according to Reference [66] 

m���� = 0.015m 0, = 03 kg 

mPyra� = 0.085mE = 0.25 kg 
(6.25) 

Gearbox transfers the engine power to the propeller and it is placed inside the body n 
The gearbox mass is assumed to be 

mgearbox = 0.1 (6.26) 

Consequently, 

mit =0.3+0.25+0.1=0.65 kg (6.27) 

The following average values are assumed as the dimensions of each propeller blade 

CHORDb = 0.03 kg 
SPAN, = 0.261 kg (6.28) 
THICKNESS,, = 0.035 kg 

The total propeller mass can then be calculated by 

mp = 2(p cm, CHORD,,. SPAN, . THICKNESSb) (6.29) 

where, pc,, = 1.5 gr/cm3 is the mass density of an ordinary composite material [611. 

Thus, 

MP - 0.08 kg (6.30) 

Finally, the fuselage mass is given by 
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mf = m10, - 2mw - 2mh - m, u - m,, r - 2m 
p- 

2m� -16.0 kg (6.31) 

6.9 MOMENT OF INERTIA ESTIMATION 

The calculation of an airfoil mass moment of inertia in its local axes system is carried out 
by approximating the airfoil with a rectangular flat plate which has the same width and 
length as the airfoil chord and span, respectively, and an average thickness corresponding 
to the airfoil thickness at one-quarter chord aft of the leading edge, Figure 6.11. Also, it 
is assumed that the mass is uniformly distributed. In terms of the dimensions, the 

associated mass moment of inertia is given by: (70] 

LmIb2 
+t2/ 

12 
[cg I 

plate, 
=0 

0 

0 
12 m(h2 +t2) 

0 

0 

0 

12 m(b2 + hI 

Substituting the dimensions of different airfoils, we have 

bW = 0.26655 m 0.006 00= 
ý8�, Iwý 0 0.003 0 

h'" 0.18325 m 
tw =0.02 m 000.009 
Mw =1.0 kg 

0.00013 0p 
bh = 0.1777 m 

UK ih 1= 0 0.00006 0 
lZh = 0.1222 m 

000.002 th = 0.0 1466 m 
mh = 0.05 kg 

(6.32) 

(6.33) 

(6.34) 
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bau 0.19436 m 10.0003 00h=0.1749 
m ýByIv0 0.00026 0 

tau = 0.021 m 
(6.35) 

000.00057 
m. w = 0.1 kg 

b, = 0.07775 m 
0.000027 00 hYi = 0.1833 m BvIvý= 0 0.00014 0 (6.36) 

L000.000165j t 4= 0.022 m 
mv, = 0.05 m 

Similarly, each streamline body is approximated by a circular cylinder shown in Figure 

6.12. Again, the mass of the body is assumed to be uniformly distributed. The mass 

moment of inertia matrix for this shape is given by: [70] 

l 
mr2 2 

[cgIcylinder0 

0 

0 
4mr2+12m12 

0 

0 
(6.37) 0 

1 
mr= +1 ml= 4 12 

In the following, the above matrix is calculated for each streamline bodies. It should be 

pointed out that in calculation of the fuselage inertia matrix, a shorter length than the 

actual value is used because, it is assumed that in a VTOL aircraft the mass of the 
fuselage is more likely to be concentrated near the center of gravity or the direction of 
thrust line at take off in order to have less longitudinal inertia and in turn better control in 

hover. 

0.025 00 If = 05553 m 

.f00.45 
0 rf =0.056 m [OP, 

000.45 mf = 16.0 kg 

(6.38) 
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0.0002 

[BnlnnI 0 0 

oo 
0.002 0 

0 0.002 

In = 0.18326 m 
rr = 0.025 m 
m�=0.65 m 

(6.39) 

The mass moment of inertia of the propeller is approximated by a straight bar with a 
rectangular cross section shown in Figure 6.13. Using the dimensions given in this figure, 

the inertia components about Xn axis can be obtained by integration as follows. 

I =SR(y2+z2)dm-J Rr2 cg barme dm= LR (P 
CM Ctdr) 

D2 Dz (6.40) 
=P cm CD. 

12 = m° 12 

The inertia components about Y� axis varies when propeller rotates. Its maximum value 

can be calculated by 

cg 
Ibar, = 

LR(x+z)dlm 

-f 
Rrldm-CgIbar, (6.41) 

and its minimum value is, 

cg 
'bar,, 

= 0.0 (6.42) 

hence, an average value is considered as follows. 

also 

and 

2 

I C9 bur _ cg b arme = rný 
D 

(6.43) 2 24 

cg'bara "cg 
Ibar,, (6.44) 

cg'bar, '"cg'bar, =cg 'bar, (6.45) 

Substitution of the propeller mass and diameter in the obtained equations gives 
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Fig. (6.11): The rectangular plate used to estimate the mass 
moment of inertia of an airfoil 
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Fig. (6.12): The circular cylinder used to estimate the mass 
moment of inertia of a streamline body 
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Fig. (6.13): The straight bar used to estimate the mass moment of 
inertia of a propeller 
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0.0018 

BPIF- 
0 
0 

0.00091 0 
0 0.00091 

D= 0522 m 
mp=0.08 kg 

(6.46) 
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CHAPTER SEVEN 
COMPUTER PROGRAMMING 

7.1 INTRODUCTION 

All the aspects of mathematical modelling and data collection were discussed in previous 

chapters. In this chapter, it is assumed that modelling is complete and attention is going 

to be focused on programming the resulting equations on a computer. This is an 
important phase of computer simulation, especially when the mathematical model is so 

complicated. The degree of versatility, applicability and reliability of the simulation 

model is highly dependent on how it is programmed and tested. Therefore, the present 

chapter is devoted to the programming related discussions. The result of this phase will 
be a verified executable computer program. Using simulation results obtained from this 

program, the model credibility will be investigated in the following chapter. 

7.2 SUPPORT LANGUAGES FOR MODEL SIMULATION 

It was recognised during the early years of the development of electronic digital 

computer, that the programming and coding of each such computers would be 
inordinately difficult and error-prone without the availability of programming aids. As a 
result, a hierarchy of languages and software packages, all designed to facilitate the 
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programming efforts gradually emerged [43]. In this section, it is attempted to quickly 

review the different levels of this hierarchy in order to emphasis the importance of using 
the special purpose computer languages in a simulation work. 

7.2.1 General Purpose Languages 

At the lowest level of the language hierarchy is the machine language, reflecting the 

command structure and detail design of the computer. This is in fact the only language 

which a computer can recognise directly, and requires that all instructions be provided as 
strings of ones and zeros and that all memory addresses likewise be provided in binary 
form. At the next level of the language hierarchy the so-called assemblers are located. 
Assembly languages permit a more compact and easily recognised abbreviation of each 
command, and are available for virtually every commercial digital computer [431. 

As far as most computer users are concerned, the most important programming aids are 
found at the third level of hierarchy, the so-called programming languages. These include 

the scientific programming languages which facilitate the preparation of a program in a 
compact manner, using expression and statements (syntax) that are relatively easy to 
learn and understand by scientifically oriented programmers. Languages falling down into 

this category include BASIC, FORTRAN, PASCAL and COBOL etc. Compilers are 
available for each of these languages to translate the program prepared by the 

programmer into the assembly or machine language of the digital computer. 

7.2.2 Languages Inadequate Facilities 

Development of a complete simulation program by using one of the mentioned high level 
languages still involves a considerable amount of work, particularly when a useful range 
of facilities should be provided with the simulation, for example the capability of 
changing simulation parameters from run to run or system analysis. It is very 
inconvenient if the original source has to be edited and recompiled for a small change in 
the program. In addition, configuration control of the simulation software becomes very 
difficult. Alternatively, all the program data can be held in a file. This file can then be 

edited and read into the compiled program at run time. However, it is still quite a hard 
task and may result in many large data files having to be held as part of the 
documentation of the computer runs. A better system is a run time interpreter that does 
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modifications to selected data values in a standard data base and also keeps a record of 
the run time transaction for each computer run. This however represent a considerable 

amount of extra code that has to be written for the simulation [46]. 

In addition, graphs are usually required at the end of each computer run in order to 

analyse the computed behaviour of the system. Again, it is useful if the variable and 

scaling of these graphs are not fixed at compile time but are selectable at run time. 

Another desirable feature is to be able to call up standard mathematical sub models that 

are used regularly in simulations, especially ones involving discontinuities such as dead 

space, limiting etc. 

The above features point to the advantages of having a special language or program for 

writing simulation models so that it provides the above facilities as standard. In this way 
one can concentrate on the definition of the mathematical model and leave the provision 
of run time facilities to the computer. This kind of special languages will be discussed in 

the following section. 

7.2.3 Simulation Languages 

This class of languages are located at the fourth level of the software hierarchy which is 

called simulation languages [71]. A number of such simulation languages have been 
developed which permit the user to formulate the problem in a more convenient and 
direct form than is possible in high-level language such as FORTRAN. They permit the 

user to make statements which are particularly convenient for the solution of the 
mathematical expressions in a very compact form. They therefore facilitate programming, 
particularly by inexperienced programmers, and thereby greatly reduce the time actually 
spent in programming and debugging. 

Simulation languages are also compiler oriented, similar to high-level programming 
languages, but are specifically used for simulation application. Most simulation languages 

require less programming time, moreover, it is simpler to change a model once it has 
been written. It is also easier to debug such programs. A unique feature of simulation 
languages is their standard functional blocks such as first- and second-order transfer 
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functions in addition to nonlinear functions (dead space, hysteresis, saturation, and so 

on). 

Today's simulation languages provide one of the most powerful tools for modelling and 

simulation activities in an interactive mode. The interactive environment of simulation 
permits the simulation process on the computer be interrupted for the purpose of asking, 
or reporting to, the user (modular, programmer, or decision maker). Based on the 
information available from the computer (output), the human partner decides on what is 

to be modified or executed next. This capability is very useful in the interactive process 
of model building, as well as in validation studies. 

Many simulation languages are now available on a wide range of machines. The readers 
is referred to References [43,71] for further information about simulation languages and 
packages. One of the most popular and widely available one is the Advanced Continuous 
Simulation languages or ACSL. In the present work this simulation language (version 

window/PC 10.1) has been used for computer programming of the mathematical model. 
In the following section a complete description of ACSL will be presented 

7.3 ADVANCED CONTINUOUS SIMULATION LANGUAGE - ACSL 

The Advanced Continuous Simulation Language (ACSL) was originally designed for the 
digital simulation of aircraft type dynamic problems although it has a number of features 

which make it suitable for the study of a wide range of dynamic topics. The ACSL is a 
FORTRAN based system that compiles, links and executes code in an environment 
uniquely created for simulation roles. ACSL has been developed for the purpose of 
modelling and evaluation of continuous systems described by time dependent, nonlinear 
differential equations and/or transfer function. The ACSL program is intended to provide 
a simple method of representing mathematical models'on a digital computer. 

An ACSL simulation consists of two sections, a model definition and the run time 
commands. Using this structure, a continuous system is mathematically modelled with 
ACSL statements in model definition section, then model is analysed under the control of 
instructions interpreted in the run time command section. The advantage of this structure 
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is that once the model is defined, it can be saved on file and analysed indefinitely with any 

run time commands specified interactively and/or in batch mode. 

A program written in ACSL is initially translated into FORTRAN. The FORTRAN code 
is then compiled, linked with the ACSL run-time library, and executed. At this point run 
time command can be entered interactively, by reading from a command file or in a batch 

process: 

7.3.1 Choice of ACSL 

Choice of ACSL as the simulation language in the present work seems natural. ACSL is 

a high level language conceived especially for simulation purposes. One of the important 
feature of ACSL is its sorting of continuous model equations, in contrast to general 
purpose programming languages such as FORTRAN where program execution depends 

critically on statement order. A program written in ACSL is already structured in terms 

of the Initial, Dynamic and Terminal region. In other languages this structure has to be 

constructed manually with the use of logical flags and branching. In addition, ACSL 

provides its own integration algorithms, a graph plotting routine, integration of user 
generated tables, calculation of the system Jacobian matrix, eigenvalue and associated 
eigenvector. Using these facilities, the programmer can concentrate on the specification 
of the model and its analysis. Also, being a FORTRAN based language ACSL offers the 
facility of accepting subroutines written in that language to complement the main 
program features if required. The reader is referred to the Reference [60] for complete 
description of the ACSL capabilities. 

7.3.2 ACSL Explicit Structure 

The ACSL explicit structure, Figure 7.1, is built up of three regions devoted as the 
Initial Region, the Dynamic Region (with embedded Derivative and Discrete Section) 

and the Terminal Region. The Initial region encompasses all those calculations, 
operations and initialising procedures that must be performed prior to a simulation run. 
In other words, every variable whose value never changes throughout the simulation is 
computed. The Dynamic region is that portion of the simulation that solves the 
simulation equations at each user-defined value of time. 
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The basic time interval represented by each pass through the Dynamic region, is termed 

communication interval. This time interval is determined solely by the accuracy 

requirements on communication with the outside world i. e. the user or in the case of real 
time simulation any external hardware or operations connected to the simulation. The 

Dynamic region performs its task by using an integration routine integrating over a 

period of the time step using the code embedded within the Derivative region. The 
interval at which the integration is updated can be smaller than the communication 
interval. This calculation interval is determined strictly by the accuracy requirements of 
the integration. Discrete section is only executed periodically. This section is intended 

primarily for modelling digital sampled data controllers where the communication to and 
from the continuous world occurs at fixed time known in advance. Only the code within 
the Derivative or Discrete section can be sorted by ACSL. 

The Terminal region receives control from the Dynamic region and returns control to the 
simulation entry. Calculations and input/output necessary to properly terminate a single 
simulation run is performed before control is returned to the simulation entry. 

Once back to the run time entry point, ACSL will plot variables previously declared to be 

prepared before the simulation is commenced. In this way, time histories can be 

produced. Similarly, variables may be displaced whilst a simulation run is taking place. 
The procedure of the simulation programming with ACSL is shown in Figure 7.2. 

7.3.3 ACSL Inconveniences 

In spite of many useful features of ACSL, It however should be pointed out that some 
major inconveniences have been experienced during programming with ACSL. The first 

one was the need for the whole program to be compiled and linked as a single unit, 
preventing the separate development, debugging and implementation of program sub- 
units which would then be linked to the main program at compilation time. 

The second difficulty was associated with the FORTRAN compiler. The current version 
of the FORTRAN compiler (FORTRAN 5.1) places the code from each module 
(compiled source file) in its own segment (blocks in memory). Since the maximum size 
of each segment is 64K, the compiled code in each module can not exceed 64K. 
Therefore, if the size of the translated FORTRAN program code is bigger than 64K, the 
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Fig. (7.1): ACSL explicit structure [60] 
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Fig. (7.2): Simulation program procedure [46] 
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only way is to divide the program into a main ACSL program and some FORTRAN 

subroutines which are called by the main program. The ACSL will then translate the 

main program and compile its FORTRAN version plus other associated FORTRAN 

subroutines, subjected to that none of them has exceeded the code-size limit. Since, 

ACSL statements and facilities can not be used in FORTRAN subroutines, they become 

useless in this way. Also, those variables used in subroutines are not defined in the 

common block, and so can not be recognised by the main ACSL program. Therefore, 

their values can not be traced, recorded, set or plotted during simulation by ACSL 

commands. This is a drawback of the current version of ACSL associated with large 

program size and can be a major inconvenience for the user. 

Due to the size of the current program, such a problem was encountered during 

programming of the mathematical model in ACSL, consequently, the source program 
was broken down into a main ACSL program and six associated FORTRAN 

subroutines. Inside subroutines, some of the interpolation functions that had already been 
defined by TABLE statement in main program, had to be used. However, these functions 

could not be called in the FORTRAN subprograms. Therefore, the ACSL one variable 
interpolation subroutine ZZF1 [60] was directly employed. It should be pointed out that 
the latest version of ACSL removes these problems but it was not available in time for 

this work. 

The third difficulty was that the error reporting messages produced by ACSL were not as 
direct and explicit as those found in other languages, which made error identification and 
tracing a rather time consuming process. 

The fourth inconvenience was that the ACSL system was not able to combine the results 
of more than one run in a single plot. For example, when a program was run for a period 
of time and then terminated and again run for some extra time, the ACSL was only able 
to plot the results of the second period at the end of the simulation. Therefore, it was not 
possible to have a single plot of the results from the beginning to the end of the 
simulation. 
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7.4 PROGRAM DEVELOPMENT 

Having chosen the programming language, the next goal was to develop a well- 
documented, reliable, easy to use, flexible and correct program. Similar to the 
development of the mathematical model, it was intended to establish the simulation 

program on a modular basis. 

In Figure 7.3, the data flow diagram of the simulation model is presented, summarising 
the way in which the simulation actually works. This diagram illustrates the major 
modules, the flow of numerical information and the general structure of the simulation. 
As shown in the figure, each of the six modules, gravity A, gravity np, aerodynamic A, 

aerodynamic np, propeller and engine feeds information into the state summer to form 

the force vector and receives information from the other modules. All together, there are 
eighteen modules in which the one called Vehicle Dynamics is the core of the system and 
includes the system equations of motion. These modules are also grouped in six sub- 
systems known as, Vehicle Projectile Like Dynamics, Airframe Aerodynamics, 
Slipstream Effect Checking, Propeller, Engine and Flight Control System, shown in 
different colours. 

Due to the model complexity, a systematic approach with a number of defined steps was 
undertaken to establish the computer model. In the first step of this approach, it was 
attempted to gain a good understanding of what the computer program is going to do 

and what makes it easy to use, regarding some possible future extensions. Having 

grasped such an understanding, a set of requirements and model enhancements was 
defined in the second step. This step was then ended up by establishing some guidelines, 
conventions and procedures that had to be followed throughout the computer 
programming development. In the fourth step, the general structure of the program was 
constructed. Using this structure, the model was then implemented in the final step. 

This step-by-step approach was quite helpful for the assessment of the progress during 
program development and to improve the quality of the final computer program. It 
should however be pointed out that keeping the program development exactly based on 
such an orderly sequential manner was very difficult. In practice, most of the time, it was 
needed to work on all the steps simultaneously. Therefore, in the following some of the 
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program specifications will be described rather than trying to express what was exactly 
done in each individual step. 

7.4.1 Simulation Program 

The Vertical Take Off and Landing UnManned Aircraft flight dynamics simulation 

program (VTOLUMA) was developed in ACSL, based on the mathematical model 

presented in the previous chapters. Due to the problems associated with possible 

numerical singularities at the pitch angles near 90 deg., two versions of the program, one 

with Euler angles and the other with Euler parameters (quaternions), have been prepared. 
In its final form, the program is composed of a main ACSL program and six associated 
FORTRAN subroutines, all together have nearly 4000 lines of programming code. A 

copy of the program is available in the Flight Dynamics group at the College of 
Aeronautics. 

The building of the program in ACSL, including translation, compilation and linking took 

approximately one hour to be accomplished on a PC/486 computer. This time could be 

reduced to 15-20 minutes by using the command SMARTDRV in DOS prompt before 

starting to build the program in ACSL environment. The long time of the program 
building process plus the already mentioned error reporting difficulties associated with 
ACSL were naturally discouraging the introduction of more sophisticated refinements. 
However, the program enhancement was carried out wherever it was necessary, 

regardless of the mentioned associated difficulties. 

The simulation run time of the program depends on the choice of integration control 
parameters, including the integration algorithm and integration time step. A typical 

simulation of 1.0 sec. with Runge-Kutta fourth order and time step 0.1 sec. would take 

approximately 3.0 minutes to be accomplished. This gives a ratio approximately 3.0 
between simulation time and real time. 

As a requirement for a research tool, the program is easy to use, modify and as flexible 

as possible. The input data to the program are in the simplest possible form. All the 
calculations that could possibly be done by hand and then implemented, have been left to 
the computer. The configuration type can easily be selected by setting the code CONFI 
(introduced in Chapter 3), at the beginning of the execution or while it is running so that 
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it is even possible to take off in Tilt-nacelle configuration and then land as a Tilt-wing 

aircraft by changing the configuration code during flight. Moreover, using a code called 
ENGONOFF, the engines can be switched off and on anytime during flight. The 

rotational direction of each propeller can also be chosen by the code RPMrdc, presented 
in Chapter 5. Another code called LOCK has been considered to specify the locked and 

unlocked situation of the tilting parts. 

Due to the requirement of running the program in two different modes, With and Without 

feedback control, a facility has been provided in the program by using a code called 
CONT. Using this code, the user is able to activate or disactivate the feedback control 

system in order to compare the aircraft dynamics in these two flight modes. 

7.4.2 Programming Style 

In this section some of the programming guidelines that have been followed to make the 

program more readable, which led to fewer errors and better documentation, are listed. 
In general, program layout, units, naming conventions and speed enhancement have been 

taken into attention. 

" Readability of the program has been enhanced by trying to have a neat and consistent 
layout with columnar organisation and spaces. 

"A brief statement of the purpose and general structure of the program has been given 
to help the reader quickly identify the program. 

" The program structure keywords (PROGRAM, INITIAL, DYNAMIC, 
DERIVATIVE, DISCRETE, TERMINAL, and their matching END) have been 

stated in column 1 where they can be easily found. Appending comment to the END 

statements have been used to track of them. 

" Assignment statements start in column 5. To help scanning the listing, the equal signs 
have been lined up in column 14 (unless pushed to the right by an oversized variable 
name). Spaces proceed and follow the equal signs. 
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" Spaces have been used in both sides of operators (including logical operators), except 

multiplication, division and exponentiation. No space has been used beside the internal 

side of parentheses. 

"A statement is continued onto another line by putting an ampersand (&) at the end of 

each confined line, using column 72. 

"A combination of dashed and dotted lines have been used to help the eyes in finding 

comments easily. 

"A combination of uppercase and lowercase letters have been used in the program to 
distinguish language elements from user variables. Program structure keywords, 

ACSL and FORTRAN subroutines, function, and operator names are typed by 

uppercase letters. Also, uppercase letters have been used in user variables to highlight 

the key part of the name. 

" The SI units has been used throughout the simulation program. However, if it was 
necessary to enter an input in another unit and convert it within the program, a unique 
name with a suffix indicating converted value, has been used. 

" The names of variables are the same as those in the mathematical model accompanied 
with their descriptive superscript and subscript. The key part of variable names have 

been given in uppercase letters and the rest are in lowercase letters. 

" Program speed enhancing was undertaken by extracting dependent variables that need 
only be calculated once out of the derivative section. Also, multiple calls to the same 
trigonometric functions have been eliminated by creating new variables. This all aids 
in the reduction of non-read to real time ratio. 

9 ACSL's explicit structure is clearly visible, as individual parts with titles. Program 
comments have been included to aid the reader in understanding the coding. 

Manual program sorting has been observed as far as possible during implementation of 
the code in ACSL, in order that if it was necessary, a program language without sorting 
facility could also be used as environment to generate the simulation program. 
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7.43 Program Hierarchical Structure 

In this section, it is intended to explain the program hierarchical structure which 

represent the organisation of the program components. It does not represent the 

procedural aspects of the program. 

As stated previously, the specific structure of ACSL has been followed to generate an 

explicitly structured program. Within this framework, the VTOLUMA simulation 

program was developed in a Top-down design manner [72], i. e. the program's elements 

were initially specified only in broad outline, and then during the multi-phased 

development, they are successively refined in greater detail, until the required coded 

stages were attained. 

The complete program hierarchical structure may be divided into seven levels, including 

ACSL explicit structure, Figure 7.4. The whole program is considered as the level one of 

the hierarchy. The ACSL's Regions and Sections are then located in levels two and 

three, respectively. In Figure 7.4, the ACSL explicit structure keywords are stated by 

using highlighted uppercase letters. In the levels four, five and six of the program 

hierarchy, the user defined areas, sub-areas and sub-sub-areas are located and titled by 

normal uppercase letters. The FORTRAN subroutines are considered as the seventh level 

and are distinguished by grey shaded areas. 

The hierarchy of the complete program consists of 78 ACSL main program functional 

blocks distributed on the first six levels plus 26 FORTRAN functional blocks distributed 

in different subroutines. These functional blocks are denoted by their titles which are 

given in lowercase letters. Each functional block has a well defined task so that it can be 

tested individually. In Figure 7.4, functional blocks are marked by the same colour as 

their associated sub-systems in Figure 7.3. 

It should be pointed out that for better demonstration of the program's sub-systems in 

the derivative section, all functional blocks associated with sub-system Vehicle projectile 
like dynamics are brought together in the same area and title in Figure 7.4. However, in 

the actual program, for the reason mentioned in the last comment of the Section 7.4.2, 

some of these functional blocks are located somewhere else in the derivative section. To 

be referred, the actual hierarchical structure of the program is provided in Appendix C. 



Fiu (7 4)- The VTOIAJMA simulation nrouram hierarchical structure 
PROGRAM 

INI TIAL 
INPUT DATA 

Set u constants 
TA BLE DEFINITION 

PROPELLER 
Thrust coefficient vs pitch angle and advanced ratio 
Propeller power coefficient vs pitch angle and advance ratio 

ENGINE 
Engine power vs throttle setting and rpm 

AIRFOIL 
Airfoil ('I. vs an Ile of attack 
Airfoil CI) vs angle of attack 
Airfoil CM vs angle of attack 
Airfoil CLdelta vs angle attack 
Airfoil CMdclta vs angle attack 

ST REAMLINE BODY 
Streamline body CM vs an le of attack 
Streamline body CDwet 
Streamline body COdI I fu 

INI TIA LIZING 
Untitled calculations 
Set u reference inputs, states and control gains 

CALL SETCONT 
Initialization of reference inputs and reference ýt. ucy 
Read (lain p 
Substitution the (rain matrix into the Gainf matrix 

"l'ransfonnation of some position vectors 
Mass calculations 
Weight calculations 
Calculation of the c. g. co-ords of the hvf assembly in a-axes related to 0 
Calculation of the position vector of the different parts of hvf assembly related to gb 
Calculation of the c. g. co-ords of the bodies np in n-axes related to J 
Calculation of the c. g. co-ords of the body A in a-axes related to 0 
Set up the fuselage inertia matrix in a-axes about b 
Set up the horizontal stabilizer inertia matrices in a-axes about n 
Set up the horizontal stabilizer inertia matrices in a-axes about b 

Set up the vertical stabilizer inertia matrices in a-axes about v 
Set up the vertical stabilizer inertia matrices in a-axes about b 
Set up the hvf assembly inertia matrix in a-axes about b 
Set up the nacelle inertia matrices in n-axes about J 
Set up the propeller inertia matrix in n-axes about J 
Set up the wing inertia matrices in n-axes about w 
Set up the wing inertia matrices in n-axes about J 

Set up the body np inertia matrices in n-axes about J 
set up the hvf assembly inertia matrix in a-axes about 0 
Set up the wing inertia matrices in a-axes about w 
Set up the wing inertia matrices in a-axes about 0 
Set up the body A inertia matrix in a-axes about 0 
Set up the propeller inertia in n-axes 
Zeroise matrices 
Calculation of initial E parameters 

EN D INITIAL 



Continue 

DYNAMIC 
l'ntitled calculations 
DERIVATIVE 

FLIGHT CONTROL SYSTEM 
Calculation of control inputs 

ALL CONTROL 
Calculation of control inputs 

PR OPELLER 
Calculation of the ALPHAm and PSIm 
Propeller model 
Propeller total force components in m-axes 
Propeller total moment components in m-axes 
Transformation to n-axes 
Calculation of the moment generated by the propeller total force about J in n-axes 
Propeller total moment about in n-axes 
Calculation of the moment generated by the propeller total force about in n-axes 

EN GINE 
Engine model 

SL IPSTREAM EFFECT CHECKING 
Calculation of the sli . stream vclocit y and'1'flli'l'As 
Set u the sli psi ream influcnic codes 

(' A L! 
.I 

NI, 'L 
Set up the sli stream influence codes for the right horizontal stabilizer 
Sel up the sli rsueanr influence ecklos for the left horizontal stabilii. cr 
Set u the sli stream influence; codes for the tt per vertical s(abilizcr 
Set up the slipstream influence codes fier the lower vertical stabilizer 
Set up the slipstream influence codes I -or the right wing ('l'ilt-rotor conf, ) 
Set u the sli stream influence codes fur the left wing ('E'ilt rotor cont. ) 
Set u the sli stream inl7uencc: codes for the right nacelle 
Set (11) the Slipstream influence codes fur the left nacelle 
Set lip [he Slipstream influence code for the right wink (I ilt-wing cortf. ) 
tief u the ,h su'eam influence code for the left wing ("Fitt-win, conf'. l 

AI RFRAME AERODYNAMICS 
(a cufaticm ul the aerodvn: unic forces and moments of the body A 

('AI. I. AEROl1VI-W 
('a. of the acrod. forces and moments of the right horizontal stab. 
('al of time aci'od. forces and nwtneats of the left hurltontal stab. 
Cal. of llw arroci. forces and tuctruc nls of the upper vertical stab. 
Cal. of the : rerod. forces and umuillents of the lower rrtiýal stab. 
Cal. of lhr acrud. forces and moments of the right winii ('l'ilt-roior) 

of the acrod. forces and moments of' tl)C left wing (Tilt-rcýlor) 
Cal. of Ute acrod. forces and moments cif the. fuselage 

Cal culation of the aerodynamic forces and moments of the hvfw assembly 
Calculation of the acre. fors. anal mu ills. ut Ili' ("Icnf nts cif the hudv 11: 11 rieht : mud left 

('A1 I. A1RONW 
Calculation of the aei'& ivn: ftnic' forces and Ynontents of the right Hauelle 
Calculation of the aerodynamic forces and mcnnents of the left nacelle 
('al- of sift' arrod. forces and moment", of the right wing (Tilt-wing) 
Cal. of the acrod. forces and moments of the left wing (Till-wing) 

( aleulaijun of the aerodynamic forces and moments of the right and left propellers 
Calculation of the aerodynamic forces and moments of the right and left bodies np 



Continue 

VE HICLE PROJECTILE LIKE DYNAMICS 
Untitled calculations 
Direction cosine matrix from aircraft to inertial axis 
Direction cosine matrix from inertial to aircraft axis 
Calculation of the absolute angular velocity of the body np 
Calculation of the absolute velocity of the joint 
Actuator model 
"Transformation of the weight of the body np to n-axes 
Calculation of the moment generated by the weight of the body np about J in n-axes 
The moment of the propeller weight about in n-axes 
Transformation of the weight of the body A from i-axes to a-axes 
Calculation of the moment generated by the weight of the body A about 0 in a-axes 
Cal. of the vectors and matrices required to build up the mass matrix and total for. vec 
Calculation of the mass matrix 
Invert mass matrix 

CALL INVIR'I' 
Calculation of inverse mass matrix 

Dynamic vector 
'T'otal force vector 
Acceleration vector 
Rate of change of E parameters 
Velocity vector in i-axes 
Integralion 

; 'lirerau attitude 
EN D DERIVATIVE 
DISCRETE 
END DISCRETE 
(Termination calculations 

EN D DYNAMIC 
TERMINAL 
END TERMINAL 

EN D PROGRAM 



Chapter seven: Computer programming 147 

In practice, due to the available sorting facility in ACSL, there is no difference between 

these structures. 

The major advantage of this structured programming approach is that consistency 
between various parts of the whole program is maintained throughout all the stages of 
development. Also, it provides a systematic way of deriving the code for a block, and 

thus the program is more comprehensive and communicative. Since, programming errors 

can be easily detected and corrected, program modification and development is 

accelerated. 

7.5 PROGRAM TESTING 

In any simulation, it is of the utmost importance that the model yields results which are 

representation of the physical system being studied. Therefore, the process of verification 

and validation introduced in Chapter (1) are considered as the very important parts in the 
development of an accurate and useful computer simulation. If a model is not verified 

and validated, then any conclusion derived from the model will be of doubtful value. 

To satisfy the objectives of verification and validation process, it is necessary to define a 
test procedure which ensure that results of the simulation are reliable and the decisions 

made with the model will be similar to those that would be made by actual physical 

system. The testing method must be comprehensive in order that any anomalies may be 

detected and corrected. 

In the following, in the first place it is attempted to provide a general view of testing 

process, strategies and techniques applied in the present work. Having introduced the 

selected methods, further details of the program testing will be provided in the second 
place. 

7.5.1 The Testing Process 

It is obvious that a complex simulation should not be tested as a single unit, i. e. write all 
the code and then test the full model. Such an approach would make it extremely difficult 
to find the errors. The more sensible approach is to break the code down into simpler, 
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discrete blocks and test them individually. In this way, the final program will be a 

collection of well-tested components, which may now be compared against the known 

behaviour of the full physical model. 

As mentioned previously, during the program development phase, the system was well- 
decomposed into sub-systems, modules and functional blocks. This well-organised 
structure was then used to apply testing process introduced in Reference [73]. Using this 

method, the testing process proceeded in five stages, grouped in three activities shown in 
Figure 7.5. 

In general, the sequence of testing activities was component testing, integration testing 

and then acceptance testing. However, as defects were discovered at any one stage, they 

required program modifications to correct them. This might require other stages in the 
testing process to be repeated. The process was therefore an iterative one with 
information fed back from later stages to earlier part of the process. 

7.5.2 Testing strategies 
There are various testing strategies which can be adopted to test a program. Two of the 

most important ones are Bottom-up and Top-down testing [72-74]. 

In the first approach, testing is started from low-level parts which are then integrated and 
coupled with parts at the next higher level. The components thus obtained is tested next. 
In top-down testing, the top-level parts are tested first, and are gradually integrated with 
lower-level parts. 

In Bottom-up testing, the environment in which the part being tested is to be integrated, 
has to be simulated. Such an environment is called a test driver [72,73]. In Top-down 
testing the opposite is true, the lower-level parts, have to be simulated through so-called 
test stubs. Stubs are simple components which have the same interface as that of the 
part. [73] 

Both methods have their advantages and disadvantages. For instance, in Top-down 
testing, unnoticed programming structural design errors may be detected at an early 
stage in the testing process. Early error detection means that extensive redesign and 
implementation may be avoided. Top-down testing has also the advantage that a limited 
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working system is available at an early stage in the development. This is psychologically 

encouraging because it demonstrates the feasibility of the system at the beginning. The 

disadvantage of Top-down testing is the requirement that program stubs, simulating 

lower level of the system, must be produced. Producing stubs can be laborious and time 

consuming. 

Bottom-up testing does not require producing stubs. However, test drivers must be 

written to exercise the lower level components. In addition, it may be difficult to get a 

sound impression of the final system during the early stages of testing because whilst the 

top-level parts are not integrated, there is no system, there are only individual elements. 

In this work, a combination of both methods was used at different stages of the testing 

process. As mentioned previously, the program has been developed in a Top-down 

design manner. Therefore, in some testing stages Top-down development was combined 

with bottom-up testing strategy. This required that all parts of the program to be 

implemented before testing could begin. In Figure 7.5, the testing strategy used for each 

testing stage is presented in testing methods section of the table. 

Whatever strategy is adopted, testing can be carried out either incrementally [73] or non- 
incrementally. In non-incremental approach each part is tested separately and finally they 

will be integrated and whole system will be tested again. In incremental approach, the 

system is tested incrementally. Figure 7.6 shows a test sequence corresponding to an 
incremental approach. In this approach part A is tested first. Part B is then integrated and 

the system composed of the parts A and B is tested. Then part C is integrated and the 

whole system is tested. The process will continue until all parts have been integrated into 

a complete system. When a part is introduced at some stage in this process, tests, which 

were previously unsuccessful, may now detect defects. These defects are probably due to 

the introduction of the new part. The source of the problem is localised, thus defect 

location and repair is simplified. 

In general, incremental approach is recommended. However, it can be very time 

consuming. Therefore, this approach was used only in integration testing stage where it 

is well-matched with the top-down strategy method, Figure 7.5. 



Fig. (7.5): Testing process, strategies and techniques 
150 

User tE 
Accep 

tcsti 

T 
E 
S 
T 
I 

N 
G 

S 

T 
A 
G 

E 
S 

TESTING I Output 
METHODS analysis 

Integration testing Component testing 
System 
testing 

Sub-system 
testing 

Module 
testing 

Functional 
block testing 

1 1,2,3, . 
2 1 , 2,3 

Vehicle 3 1,2,3, ..... 
projectile 4 1,2,3...... 

like 5 1,2,3 . ..... dynamics 6 1,2,3, 
..... 

7 1,2,3, ..... 
8 1,2,3, . 

S 1 1,2,3, ..... 
y Airframe 2 1,2,3, ..... 
s aerodynamics 3 1,2,3 . .... 
t 4 1,2,3.. 
e 5 1,2,3. . 
m Slipstream 1 1,2,3, 

effect 2 1,2,3, ..... 
checking 3 1,2,3...... 

Propeller I 1,2,3...... 

Engine I 1,2,3, ..... 

Flight 

control 
system 

I 1,2,3...... 

Top-down 
Incremental 
All static* 

All dynamic* 

Bolton-up 
Non-incremental 

All static 
Some dynamic* 

S 

Y 
s 

e 

m 

* All static : All components are tested statically 
* All dynamic : All components are tested dynamically 
* Some dynamic : Some of the components are tested dynamically 

Fig. (7.6): Incremental testing 

ABH 
Test sequence 

Test sequence 2 

Tcst scqucncc3 



Chapter seven: Computer programming 151 

7.5.3. Test Techniques 

Test techniques can be separated into static and dynamic analysis techniques. Static 

techniques are concerned with the analysis of the system representations such as the 

requirements, design and program listing, they are applied at all stages of the process 

through structural review. During static techniques, the program is generally not 

executed. Static techniques can only check the correspondence between a program and 
its specifications (verifications), they can not demonstrate that the program is 

operationally useful. Static techniques include Reading, Walkthrough and inspection, etc. 
[721. A large part of the static analysis is nowadays done by the language compiler. 

Dynamic techniques or test involve exercising an implementation. During dynamic 

analysis, the program is executed. With this form of testing the program is given some 
input, and the results of the execution are compared with the expected results. The 

reader is referred to Reference [72] for further information about the subject. 

In this work, a combination of both methods was used at different stages of the testing 

process. In Figure 7.5, the method used for each stage is specified. 

7.5.4 Component testing 

The component testing including functional block and module testing was carried out to 

make sure that individual components of the program operate correctly. The same 

procedure was undertaken in component testing stage of all sub-systems. As shown in 

Figure 7.5, since the functional blocks and modules are relatively simple and shorter 

programs, a bottom-up and non-incremental strategy was used for the sake of saving 
time. In other words, each component was considered as a stand-alone entity and then 

tested statically, and also, for some of them, dynamically. The components are then 
integrated to build up their associated sub-systems. As mentioned previously, a test 
driver had to be prepared for each dynamically tested component. For example, simple 
programs were written to exercise each of the functional blocks containing a look up 
table and plot the data. A range of the independent variables were chosen to ensure that 
interpolation and extrapolation were performed correctly. 
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7.5.5 Integration testing 

Integration testing was carried out in two phases. The first phase, i. e. sub-system testing, 

involved with testing collection of modules which had been integrated into sub-systems. 
The sub-systems were then integrated to make up the entire system in the second phase. 
In this phase, the testing process was concerned with finding errors which normally result 
from unanticipated interactions between the sub-systems. As shown in Figure 7.5, a Top- 

down and incremental testing strategy have been used. 

As a first step of incremental testing, the sub-system Vehicle Projectile Like Dynamics 

was tested. In this step, test stubs were used to replace all other sub-systems. In other 

words, airframe aerodynamic and propeller forces and moments, engine power and 
feedback gain were equated to zero, and slipstream effect checking was disactivated by 

setting all the slipstream influence codes equal to zero. 

The sub-system Vehicle Projectile Like Dynamics is the core of the system which 

consists of. the equations of motion of an articulated flying object plus all other necessary 

parts of the program by which the simulation of the vehicle dynamics only under the 
influence of gravity can be carried. 

Since the aircraft equations of motion had originally been derived in this thesis, Chapter 

4, their validity had to be proved via a number of sufficient and convincing tests. 
According to Newton's second law, a projectile like dynamics was expected to observe 
from the motion of the vehicle under gravitational force effect. A number of tests were 
then designed and carried out in order to confirm such an observation. Figures 7.7-7.20 

are devoted to graphically demonstrate the results of these tests. 

On the Top left hand side of each figure, the initial conditions associated with each test 

are given in a table. In this table the more important items which should be taken into 

attention are shaded. On the top right hand side, it is tried to exhibit the vehicle 
conditions at the beginning of each test in a simple way. Using the given aircraft views, 
the reader can simply and quickly understand which test the presented results are 
associated with. 
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In Test 1, the vehicle was given an initial vertical velocity of -10.0 m/s. As seen in Figure 

7.7, it exhibits a parabolic height variation with time. The vertical velocity in inertial axes 
increases linearly from -10.0 m/s at zero height to 0.0 at maximum height. It continues to 

increase until it reaches the same value as the initial vertical velocity but in opposite 
direction (10.0 m/s) at the time of crash. The slope of this line is equal to 9.81 m/s2 

which is exactly equal to the gravitational acceleration. The vehicle centre of gravity 

moves on a vertical straight line. The time to reach the maximum height is exactly half of 
the time to crash. All these results are confirmed qualitatively and quantitatively by 

application of Newton's second law. 

In Test 2, the vehicle was also given a horizontal velocity of 10.0 m/s. As expected, in 

vertical motion, the same behaviour as in Test 1 was observed. A parabolic trajectory 

with a correct range was also obtained in this test. 

In Test 3, a two dimensional motion in YZ plane was examined. The same result as in the 
Test 2 associated with a projectile like motion has been obtained. The time to crash is 

equal to those in the two previous tests. 

In Test 4, the aircraft was given an initial vertical velocity of -10.0 m/s plus an initial 

pitch spin velocity of 1000.0 deg/s. The initial height was chosen to be 10.0 m in this 

test. As seen in Figure 7.10, pitch spin has not affected the linear vertical motion of the 

aircraft and its expected parabolic trajectory under the constant gravitational 

acceleration. The pitch spin velocity has remained constant during flight. The pitch angle 
has constantly increased, however, since the quaternion version of the program has been 

used in which the pitch angle is defined between -90.0 to 90.0 deg., a periodic pitch 
angle variation is seen in Figure 7.10. Due to the rotation of the body axes, a periodic 
variation in velocity components U and W is also observed. Both U and W are zero at 
maximum height where the vertical velocity in inertial axes and in turn its components 
become zero. 

In Test 5, Test 4 has been repeated by adding a horizontal velocity of 10.0 m/s. As seen 
in Figure 7.11, the aircraft trajectory is now parabolic, however, the time to crash is the 
same as before. The pitch rate and pitch angle have the same behaviour because the 
added horizontal velocity has not affected the aircraft rotational motion. The variations 
of the U and W components have the same frequency as before. However, as expected, 
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at maximum height the vector summation of U and W is equal to the initial horizontal 

velocity. 

In Test 6, the body axes was located at the nose of the aircraft in order to check that the 

location of the body axes does not affect the aircraft dynamics when the conditions are 

the same as those in the Test 5. As seen in Figure 7.12, the height vs time and height vs 

north curves have an oscillatory motion around an overall parabolic path. Also, Vdown 

oscillates around an average linear path. The oscillatory motion associated with these 

curves were expected. In fact, in these curves the position and the velocity of the aircraft 

nose are shown which vary periodically with the aircraft rotation around the pitch axis. 

The time to crash is less than its corresponding value in Test 5. This is due to the fact 

that these tests were not really similar. In Test 5, the aircraft centre of gravity was given 

a vertical initial velocity of -10.0 m/s, however, in Test 6, nose was given a vertical initial 

velocity of -10.0 m/s and c. g. had a different velocity. To have an initial vertical velocity 

of -10.0 m/s at c. g. , an initial vertical velocity of -16.10865 (calculated manually, using 

the relative velocity relation between nose and c. g. ) must be given when the body axes is 

located at nose which was carried out in Test 7. 

As mentioned, in test 7, the body was given an initial velocity of -16.10865. The other 

initial conditions were the same as those in Test 6. As explained earlier, oscillatory 

motion of the height and Vdown curves are due to the effect of the aircraft rotation on 

the absolute linear velocity of the aircraft nose. As seen in Figure 7.13, the time to crash 

and the maximum range are equal to those in test 5. The pitch rate has remained constant 

and the pitch angle has exactly the same oscillation as in test 5. 

In Test 8, a more complicated initial conditions was given including the roll and yaw 

rate, however the pitch rate was set to zero. The body axes was located at c. g. again. As 

seen in Figure 7.14, the motion of the aircraft c. g. in space has not been affected by spin 

motion. However, due to the inertial cross coupling, the roll and yaw spins have 

produced some pitch spin. 

In Test 9, the aircraft was launched in XZ plane with the same vertical and horizontal 

velocity as before. However, tilting parts were allowed to rotate with an initial relative 
angular velocity of -45.0 deg/s. No internal active moment between the tilting parts and 
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the main body was imposed, i. e. , zero servomotor output torque and zero friction. As 

seen in Figure 7.15, the parabolic character of the curves associated with height variation 

has not been changed. These curves are very smooth, mainly due to the fact that the 

displacement of the light tilting parts has not significantly changed the aircraft c. g. 
location. The same maximum height, range, time to crash, and slope of the Vdown curve 

(gravitational acceleration) have been obtained. As seen in Figure 7.15, the pitch angle 

(THETA) has changed very slightly from its initial value (zero) in the same direction as 

the tilt angles (THnr, THnl) have been changed. Since, there is no pitching moment (no 

aerodynamic and internal active torque in the joints), such behaviour might not be 

expected. However, as mentioned in Chapter 6, this is due to the fact that the aircraft 

e. g. does not have exactly the same location as the joints in XZ plane and small distance 

exists between them, Figure 6.1. Therefore, the centrifugal force generated by the tilting 

parts during rotating forward has produced a small negative pitching moment. This, in 

turn, has caused a small negative pitch rate and consequently a small change in pitch 

angle . 

Similarly, in Test 10, the tilting parts were allowed to rotate, however, this time rotation 

was generated by servomotors with an output torque of -0.1 n. m. The other initial 

conditions were similar to those in the Test 10. As seen in Figure 7.16, the aircraft 
behaves as it was expected. Due to the equal and opposite internal active torque, the 

main body rotates in the opposite direction to the tilting parts. The tilting parts rotate 

much faster than the main body, because they are much lighter. The oscillatory motion of 

the pitch rate has been caused by centrifugal forces (right and left) explained in the 

previous paragraph. Due to the variation in the length of the moment arm with rotation, 
the pitching moments generated by these centrifugal forces have changed sign 

periodically. Due to this, an oscillation around an average value in some of the curves is 

observed. In addition, due to the increase of the tilting rates (Thndr, Thndl) with time, 

these centrifugal forces have increased. Therefore, an increasing oscillation with time is 

observed in the curves. The Qdot vs Thnr curve is a good description of what has 
happened. As seen in this curve, Qdot has an extermum approximately every 180.0 
degrees decrease in Thnr at which the lines of action of the centrifugal forces pass 
through the joints. 

Test 11 was started with the same conditions as in the test 10, however, after two second 
the tilting parts were locked and simulation was carried on until crash happened. As seen 
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in Figure 7.17, for two seconds everything is exactly similar to the Test 10. After, the 
tilting parts were locked, the vehicle has continued its motion on an parabolic trajectory 

with the same specifications as before. The pitch rate has remained constant at its value 
at t=2.0. The tilt rates (THndr, THndl) have suddenly jumped to zero. The pitch angle has 

continued to increase linearly with a slope equal to Q. The tilt angles have remained 
constant at their values at t=2.0. Since, after locking the tilting parts, there is no internal 

active moment, Qdot has suddenly jumped to zero. These observations were entirely 
predictable. 

In Test 12, the vehicle was given the same initial conditions as in Test 11. However, this 
time with the propellers rotating with rpm=6000.0. Since, the simulation was carried out 
with contra-rotating propellers, no difference between the results in this test and those of 
previous one was observed. The propeller angular velocities (RPMr, RPMI) have 

remained constant. 

In Test 13, Test 12 was repeated with non-contra-rotating propellers. As seen in Figure 
7.19, the vehicle trajectory is exactly the same as before. However, since the propellers 
have been considered to rotate in the same direction, the generated gyroscopic moments 
during rotation of the tilting parts have not been cancelled by each other. Due to this, all 
components of angular velocity have been affected and an unsymmetrical behaviour is 

observed in Figure 7.19. 

In Test 14, Test 12 was repeated, using tilt-wing configuration. As seen in Figure 7.20, 
the vehicle projectile like dynamics is exactly the same as before. However, due to the 
change in mass and mass moment of inertia of the tilting parts, different variations were 
observed in tilt-rate vs time and tilt-angle vs time curves. It needs to be pointed out that 
due to the numerical issues, even in completely symmetrical cases , like in this test and 
Test 12, the roll and yaw rates always have a very small non-zero value. Since, the 
specifications of the tilting parts have been changed in this test, the roll and yaw rates are 
relatively bigger than those in Test 12. These terms may grow with time and affect the 
simulation results. 

In the second step of incremental testing, the sub-system Propeller was added and both 
sub-systems were tested together. Since, the single module associated with this sub- 
system had previously been tested in module testing stage, the program was only run to 
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Fig. (7.18): Vehicle projectile like dynamics, Test 12 
Uic=10.0 
Vic=0.0 

PSIic=O. 0 
THETAic=0.0 

THnicrd=90.0 
THnicId=90.0 

Tsto =4.0 
Confl=0.0 

1, T 

Wic=-10.0 PHlic=0.0 THndicrd=0.0 Gservo=1,0 t 
A, 

Picd=0.0 NORTHic=0.0 T'Hndicld=0.0 THdmndr=-0.1 4.. 
cd=0.0 EASTic=0.0 LOCK]t-I. 0 Tlldmndl=-0.1 

Ricd--O. 0 HEIGHTic=10, U)CK I1=º. 0 Axes at c. g. 
RPMrdcr=l RPMrdcl=-I RPMr=6(N)). 0 RI'MI=6000.0 J L_ 

8 p 

Vdown 
_ 

Height 
Veut 

V `ter ý 
.. 

w 

p 
Height 

=ý p 

Vnorth 

9 am ow v ]a. IiL 
II 

fY 0 
°o m ow -TV ]a "v 

.ý NORTH (a ) 

North p 
THETA 

R PSI 

East P PHI 

q Q dy:, 

Om uw 1T 
(. -I 

]aa f]o "'O. m O. N Iýa 
lsrc llY 

]. as f b to m O. N I. f 
1s. II 

I. Y I. 1 a. m 

rr 

ap RPMr 
- - 

THndr RPMI 

THnr 

F 
ý 

p p. 
rr 

THndl 
P THnI 

B8 
Id. U, 

1wý1 
d, 

I (.. IIY 
,M 0m Yw I t. 1Y 

1 I.. ýI 



. 19): Vehicle pro'tile like dynamics, Test 13 
166 

PSIic=O. 0 THnicrd=90.0 Tsto .0t 
THETAic=0.0 THnicld=90.0 ConflA. O t 

j 0 PHIic=0.0 THndicrd=0.0 Gxrvo-1.0 t 

NORTHic=0.0 THndicld-0.0 THdmndr---0. I 
EASTic=0.0 LOCKIr=1.0 THdmndl=-0.1 

8 
s 

R 

i 
äý 

  

v 
P 

N 

L 

ý7 

Vd7 

Height 

K 

THndl ý4 ä4 

lp M rY i9 

THndr r 

ee 

I 

Height 

Lý^ 

oý 6 
NORTH lm) 

i4 
NO 

FFb 

7AB 

aPI 

Z7i 

4T 

FYR 

qVdY 

es 

aN 

aa 
i1 

}a 'a 

ee 

vv 
p4Y 

C 
  

I 
I 

I 
r 

;r 

I I. nl 

oYY 

Rs 
PSI 

Q 
NM PHI 

r ý. j. 

4, elm, 
THETA 

.s r .: 

'tvJ'. o ,. r "e r T.. m aM i 

RPMr 

THnIý 
RPMI 

Ttinr 

r _-.. ..;.. _ý.. _.. ,, 4 _: - ,ý.. ýýý .ý ,ý 
4sý 

ý', - 



Fi x. (7.20). Vehicle 1)1-()Je ctile like dynamics, Fest 1 4 167 

Uic=10.0 PSIic=0.0 THnicrd=90.0 Tsto =4.0 
Vic=0.0 TIIETAic=0.0 THnicId=90.0 Conflrl. 0 t 
Wic=. I0.0 PHIic-0. O THndicrd=0.0 Gservo=l. 0 
Picd=0.0 NORTHic=0.0 THndicld=0.0 THdmndr=-0. I f/ý 

iýýý++ 

cd=0.0 EASTic=0.0 LOCKIr#I. 0 THdntndlm-0.1 
Ricd=0.0 HEIGHTic=10. LOCKII=1.0 Axes at c. g. 
RPMrdcr=l RPMrdcl=-l RPMr=6000.0 RPMI=6000.0 

8o p 

$ _ 
VV down 

c. a 

Height Worth 

Veast 

Height 

Y 
d A 

am a. x 1ý. 
1. «fl. 

r t. w a. m °0 d )'2 10 24 
NORTH lml 

30 .mo. « 1. {. h. fll. 
¢ ex am 

North 

THETA 

East PHI 

"4 .pi r4 R 4: FP PSI 

Q 

4 

` 
nom a. M l, 

l.. <11. 
¢ !w 

44 

oo. 
lro ýo. m ow Lx 

l.. fll. 
¢ rw IN 

P4 

.. o 
a. m off Lr 1¢ Lw aN 

1 Is« 

j= as rr THndr 
eq _ RPMr 

$ THndI THnr 
RPM] 

THnI 
AA 

- AA 

88 

Y Yo m oM 
i! 

1 I¢ /N 
1 1... 1 

]IO Om ONI f. IrtN iN 
1 I... 1 

Om OM I it 
1.. 111 

WfN ItV 



Chapter seven: Computer programming 168 

confirm that the interaction between sub-systems had been appropriately established. 
Similar to previous case, test stubs were used to replace the rest of sub-systems. The 

airframe aerodynamic forces and moments, feedback gain and slipstream influence codes 

were substituted by zero and a constant value was considered for engine power. 

In the third step, the sub-system Engine was integrated. Similarly, its single module had 

been tested previously, therefore, only interaction between sub-systems was tested. 

The sub-system Slipstream Effect Checking was then integrated. Using different 

combination of tilt angles and velocity components as initial conditions, a variety of the 

propellers slipstream directions were produced and checking was performed to test 

whether the program could correctly specify the affected components or not. All tests 

were successfully passed. 

The correctness of the airframe aerodynamic modules had been proved previously in 

module testing. Therefore, in the next step they were gathered and integrated into the 

program. Tests were then carried out by giving different velocity components and 
comparing the calculated forces and moments associated with the individual elements 

with those were obtained manually. 

In the final step of integration testing, the sub-system Flight control system was activated 
by using some typical non-zero gain matrices associated with different combinations of 
states and controllers. No anomalies have been found. 

7.5.6 User Testing 

A series of extensive and comprehensive tests have been accomplished during the two 
last testing activities. The program is now supposed to be free of any anomalies. 
However, from the operation point of view there is one more testing stage which should 
be carried out before the program is really accepted for practical use. This stage is called 
user testing or acceptance testing. Acceptance testing often reveals those system 
drawbacks that are associated with the anticipated performance and functionality. 
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In the present work, this part of the testing process has been combined in the process of 
the credibility investigation which will be carried out in the following chapter by 

producing some convincing simulation results. 
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CHAPTER EIGHT 
SIMULATION RESULTS 

8.1 INTRODUCTION 

In the previous chapters, a great deal of emphasis on the mathematical modelling and 

computer programming have been placed. A computer model was developed, and the 

internal verification criteria were then applied to confirm its internal consistency and 

algorithmic validity. In this chapter, it is intended to assess the suitability and accuracy of 

the model in the context of its intended application, the procedure which was defined as 

external validation in Chapter 2. This stage is categorised as acceptance testing in terms 

of the testing process described in Chapter 7. 

In this acceptance testing, the primary aim is to show the validity of the simulation model 
in terms of its capabilities to provide a series of reasonable and explainable simulation 

results for the considered VTOL configurations. In addition, it is shown that the 

simulation model is sufficiently flexible and applicable to play its role as a research tool 

to be used for a wide spectrum of the intended applications including initial sizing, 

performance limitation studies, estimation of the stability derivatives, aircraft trimming, 

stability and control investigations such as eigenvalue and eigenvector analysis, stability 

augmentation and autopilot design. Moreover, it is shown that the simulation model is 

able to predict the aircraft behaviour correctly and has the potential for hypothesis 

testing, explanation and discovery. However, it should be noted that it is not primarily 
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aimed to get involved with the synthesis or even analysis of the aircraft dynamics or 

propose changes in the aircraft estimated parameters for better functionality, although it 

is not entirely avoided. As will be seen, whenever needed, sufficient description of the 

aircraft behaviour is provided. 

In addition, the empirical validity, in the form of the degree of agreement between the 

behaviour of the model and the real system is not possible in this work, simply because 

there is no real system. However, there are some fundamental characteristics associated 

with the flight of such a combination of airfoils, bodies, propellers and engines in various 
flight conditions which are expected to be observed. These characteristics are considered 

as the criteria to be satisfied for empirical validity. 

8.2 RESULT PRODUCING STRATEGY 

Due to the generality and flexibility aspects of the simulation program, numerous 

simulation results may be presented for the three considered aircraft configurations at 
different flight regimes. Figure 8.1 provides an idea about the range of the flight 

conditions that may be investigated. As shown in this figure, a complete investigation of 

the aircraft dynamics involves many different cases. However, regardless of the flight 

condition, an almost similar procedure is applied in order to investigate the aircraft 
dynamics. Therefore, only a selection of the simulation results seems to be sufficient to 

satisfy the objectives of this chapter. 

As shown in Figure 8.1, the flight envelope of the considered VTOL configurations can 
be divided into three main flight phases, including the Wing-supported flight (cruising), 

the Propeller-supported flight (hovering) and Transition in which the flight is supported 
by a combination of the lift forces generated by the propellers and wings. Whether a 
VTOL aircraft can successfully accomplish the transition process or not, it is expected to 
be able to fly in two extreme ends of its flight envelope, i. e. wing-supported flight and 

propeller-supported flight. For these flight phases, there are some known behaviour of 
the conventional vehicles such as fixed-wing aircraft and helicopters which can be used 
for the validation purposes. Therefore, in the following sections, the wing-supported 
flight as a common flight phase and the propeller-supported flight phase of each aircraft 
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Fig. (8.1): Different flight conditions of the VTOL aircraft 
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configuration are considered, and the selected simulation results which covers aircraft 
trimming, aircraft modes and aircraft control are presented. 

8.3 FINAL CONSIDERATIONS 

In Chapter 6, some values were estimated for the aircraft dimensions in terms of the 
available engine and propeller data, and baseline configuration. There are still three 
angles about which decision must be made based on the aircraft trim conditions in level 
horizontal wing-supported flight. These are the wing and horizontal stabiliser incidence 

angles ý,, 
ý ,? and the angle between each nacelle and its associated wing ?,. 

In a level horizontal flight, sufficient lift is supposed to be generated by the wing to 
support the aircraft weight. Assuming a zero angle of attack, the generated lift force 
depends on three factors, wing area, aircraft forward velocity and wing lift coefficient 
(consequently, wing incidence angle). Since it is desirable to keep the previously fixed 
value of the aircraft wing area unchanged (Chapter 6), only the aircraft velocity and wing 
lift coefficient must be finalised. 

In general, an increase in lift coefficient results in a decrease in the lowest achievable 
aircraft speed for a trimmed level horizontal flight. Therefore, to keep the aircraft 
velocity reasonably low, that is expected for the class of the light unmanned aircraft, it is 
decided to choose the highest possible lift coefficient. However, it is also necessary to 
define a safety margin to prevent wing stalling which, in this case, occurs at C, =1.3 . 
Regarding these facts, the value of C. = 1.0 is finally considered which corresponds to 
the aircraft velocity of approximately 50.0 m/s and wing incidence angle %wa = 10.0 deg. 

This wing incidence angle is relatively large in comparison with that of the conventional 
aircraft. However, it should be noted that for these aircraft, wings are sized in terms of 
the minimum velocity for a conventional take off and landing. Therefore, they are 
relatively larger and a smaller wing incidence angle is possible. In addition, as mentioned 
in Chapter 6, it should not be forgotten that the selected airfoil section may not be a 
perfect choice in our case. 
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Having finalised the wing incidence to make an equilibrium condition in vertical 
direction, the next step is to obtain equilibrium in pitching motion. This can be carried 

out by calculating an appropriate horizontal tail incidence angle in order to obtain a zero 
total pitching moment. Using simulation program, this was achieved by giving the 
horizontal tail a positive incidence of %ha = 0.427 deg. As it might be noticed, %ha is a 

very small angle. This is due to the fact that the pitching moments generated by thrust 

and lift forces about aircraft c. g. are small. Therefore, a small upward force in horizontal 

tail is sufficient to balance the total pitching moment. 

Finally, regarding that the wing incidence angle has been fixed on 10.0 deg. , an nacelle- 
wing angle of ?,,, 

K, = 10.0 deg. is automatically considered in order to keep the directions 

of the thrust lines parallel to the aircraft longitudinal axis in level horizontal wing- 
supported flight. 

8.4 WING-SUPPORTED FLIGHT 

In this section, the results obtained from the simulation studies of the aircraft dynamics 
during a conventional level straight horizontal non-sideslipping wing-supported flight are 
presented. This flight condition can be defined in terms of the following state variables. 

U= Const. P=0.0 
V=0.0 Q=0.0 
W=0.0 R=0.0 

6=0.0 

IV = 0.0 
N= Const. 

cp = 0.0 
'N = Const. 

(8.1) 

It can be seen that the overall angle of attack ( tan "' (W / U) ) is considered to be zero. 
This implies that the weight of the aircraft is supported only by the lift force generated by 
the wing. This lift force is directly related to the wing incidence angle (X,,, ) which was 
selected to be 10.0 deg. as mentioned earlier. 

Steady-state Trimmed Flight 
The simulation program was used to find the set of the non-zero state variables and 
control inputs for the aircraft in the trimmed flight condition. The aircraft is said to be 
trimmed when all forces are in balance and there is no resultant moment about any axis. 
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In other words, it flies in a steady-state condition where all acceleration components are 

zero: 
U, V. W, P. Q, R, '1V, 'N = 0.0 (8.2) 

The tilting parts were set in Locked position at zero tilt-angle and the aircraft altitude at 
10.0 m. The contra-rotating propeller option was selected. The lateral trim was then 

easily obtained by setting the aileron and rudder at their zero value position and giving 
the same value to the engine throttles at right and left. However, for longitudinal trim, a 

process of trial and error was followed by successively running the program at t=0.0, 

trying to drive the heave acceleration (W ), the forward acceleration (i1), the propeller 

rotational accelerations (" 1V) and pitch acceleration (Q) to zero. 

In this process, the forward velocity (U) was used to control (W) . Any change in 

forward velocity produces a direct change in lift which ultimately results in a change in 

heave acceleration. Similarly, the forward acceleration (0) was controlled by the 

propeller rotational speeds ('N). Any change in "N will change the amount of the 

thrust delivered by the propellers and, consequently, changes the forward acceleration . 
To control each of the propeller rotational acceleration ("N ), its associated engine 

throttle ("St ) were used. The engine throttle has a direct influence on the engine output 

power and torque, and ultimately on the propeller rotational acceleration. For the pitch 

acceleration (Q ), as explained in previous section, it was preferred to keep the elevator 

angle at its zero position, and instead using the horizontal tail incidence angle (Xha) to 

drive Q to zero. Clearly, changing in (ý ha) will produce a direct change in total pitching 

moment and consequently in 6. 

The following values were eventually obtained for the forward velocity, the engine rpms 
and the throttle settings in the trim condition: 

U=49.2787 m/s 
"RPM = 6108.22 (8.3) 
"S, = 0.167435 
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It should be pointed out that there is a trim command in ACSL which can be used to find 

the trim condition of the system. However, since, in our case, this command did not 

provide satisfactory results, the previously mentioned procedure was undertaken. 

Flight Simulation 
Using the obtained trim values, the aircraft was then initially set to trimmed flight 

condition and simulation was carried out for a short and a long period of time. The time 

histories of the state variables corresponding to the aircraft longitudinal motion are 

shown in Figures 8.2,8.3. 

As shown in these figures, since the trim condition is not numerically perfect, oscillation 
in longitudinal variables is observed before the aircraft obtains a new steady-state 

condition. Two types of motion are demonstrated by the aircraft. The first one is a small 
damping short period motion manifested in pitch rate and heave velocity. The second one 
is a moderate damping long-period motion in which all variables are involved. These 

motions resemble the natural modes of a fixed-wing aircraft known as short-period and 

phugoid modes. [44,75-83] 

Simulated Response to an Elevator Pulse 

For better demonstration of these modes, it was intended to excite each mode by using 

an appropriate input. The short-period motion can be excited by elevator input. 

Therefore, an elevator doublet pulse, with the value of 2.0 deg. from 0.0 to 0.5 sec. and - 
2.0 deg. from 0.5 to 1.0 sec. was applied to the trimmed aircraft and simulation was 

carried out for 5.0 sec. As expected, this input did not affect the lateral-directional states. 
However, as shown in Figure 8.4, all the longitudinal states are affected. As seen in this 
figure, the aircraft velocity has approximately remained constant and oscillations in pitch 

rate, pitch angle and heave velocity are quickly damped. The figure shows that pitch 
angle and heave velocity vary in unison. It reveals that there is only a small change in 
flight-path angle. These all are the short-period motion characteristics of an aircraft. 
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: Simulated aircraft in trimmed wing-supported flight-Short time 
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Simulated Response to a Throttle Pulse 

To excite the phugoid mode, the same trim condition was used and a doublet pulse on 

the steady-state throttle setting was superimposed. The doublet had the value of 0.1 from 

0.0 to 2.0 sec. and -0.1 from 2.0 to 4.0 sec. Again, the lateral-directional dynamics was 

unaffected. Figure 8.5 shows the longitudinal responses where the pitch rate has a small 

variation and the heave velocity (consequently the angle of attack) is barely affected, but 

pitch attitude exhibits a very lightly damped oscillation with a long period. Therefore, the 

flight-path angle changes in phase with pitch attitude. The forward velocity also varies. 
This is phugoid mode which involves an interchange of potential and kinetic energy as 

the aircraft climbs and slows down, and then dives and speeds up [44]. The result is a 
damped sinusoidal flight-path about the datum height, as shown in Figure 8.5. Since the 

thrust vectors do not exactly pass through the c. g. , the throttle pulse has also excited the 

short-period mode which is damped too quickly to be clearly seen in Figure 8.5. 

Linearisation of the Nonlinear Model 

The equations of motion of a rigid-aircraft can be split into two uncoupled sets under the 

conditions of small perturbations from steady-state wing-level non-sideslipping flight 

[441. These are the longitudinal equations that involve the variables forward velocity, 
heave velocity, pitch attitude, and pitch rate, and lateral-directional equations that 
involve sideslip velocity, bank angle, and roll & yaw rates. 

Using the simulation program and the existing Jacobian command in ACSL, it was 
intended to demonstrate such a decoupling. Having applied the Jacobian command and 
by inspection the derived Jacobian matrices, it was found that the position states Height, 

North, East and the orientation state Ni have no coupling with the other states. 

Therefore, they were frozen and the new Jacobian matrices were obtained and reordered 
as shown in Figure 8.6. 

The A and B matrices are partitioned in order to separate the longitudinal and lateral 

states and controls. As it can be seen in Figure 8.6, the expected decoupling between the 
longitudinal and the lateral motion is observed, although there are specific couplings 
between both 'N and 'N with the other state variables. Apart from this fact, it is 
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Fig. (8.4): The excited short-period mode 
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Fig. (8.6): The linearised system matrices for wing-supported trimmed flight 

Matrix A 

Q Th u W 'N `N P Phi R V 

Qd -3.302 9.3E-5 0.533 -7.055 0.021 -0.021 0.0 0.0 0.0 0.0 
Thd 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Ud 0.026 -9.81 -0.369 0.075 -0.014 0.014 0.0 0.0 0.0 0.0 
Wd 49.092 -0.004 -0.341 -1.599 0.002 -0.002 0.0 0.0 0.0 0.0 
'Nd 4.636 0.0 -111.055 0.0 -12.683 0.016 3.264 -0.004 -40.012 1.565 
`Nd . 4.636 0.0 111.055 0.0 0.016 -12.683 3.264 -0.004 . 40.112 1.565 
Pd 2.8E-10 0.0 1.95E-8 2.8E-I0 0,016 -0.016 -3.263 0.004 1.599 -1.564 

Phid 0.0 0.0 0.0 0.0 0.0 0.0 I. 0 -2.3E-10 4.5E-10 0.0 
Rd 1.8E-11 0.0 3.4E-10 -1.4E-8 -0.123 -0.123 0.197 -1.3E-5 -2.605 4.712 
Vd -5. IE- I1 0.0 3.0E-1 I 1.4E-9 8.0E-4 8.0E-4 -0.0455 9.810 -49.075 -0.541 

Qd 
Thd 
Ud 
Wd 
'Nd 
`Nd 
Pd 

Phid 
Rd 
Vd 

Qd 
n, d 
Ud 
Wd 
'Nd 
`Nd 
Pd 

Phid 
Rd 
Vd 

Matrix B 

deltahl deltahr throttlel throttler deltavl 

-27.080 -27.080 0,0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 

0.203 0.203 0.0 0.0 0.0 
-1.756 -1.756 0.0 0,0 0.0 

-9.087 9.087 -4213.460 25.111 -5.321 
87 "9.0 9.087 -25.111 4213.460 "5.321 _ _ 9.087 9.087_ -1 0.605 -0.605 5.314 

0.0 0.0 1 0.0 0.0 0.0 

-0.047 0.047 3.026 -3.026 9.141 
0.069 _0.069 -0.018 0.018 -1.048 

Matrix C 

deltavu deltawl deltawr 

0.0 r 1.498 1.498 
0,0 0.0 0.0 
0.0 -0.0122 -0.0122 
0.0 ! 

-4.541 -4.541 

-17.339 58.034 
0.0 0.0 

24.542 -0.303 

Q Th u W 'N `N P Phi R 

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 1.00025 0.0 0.0 0.0 0.0 0.0 0.0 
(10 0.0 0.0 L0 0,0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.999544 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.999544 0.0 0.0 0,0 
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Matrix D 

Qd 
Thd 
Ud 
Wd 
'Nd 
`Nd 
Pd 

Phid 
Rd 
Vd 

deltahl deltahr thronicl throttler 

0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 
0.0 0,0 0.0 0,0 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 
0.0 0.0 0,0 0.0 
0.0 0.0 0.0 0.0 

-58.034 
0.0 

0.303 
-0.438 

V 

0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
1.0 

deitavl deltavu deltawl deltawr 

0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 
0. O 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 
0.0 0.0 0,0 0.0 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 00 
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evident that the expected decoupling between longitudinal and lateral motion does 

indeed exist. The other expected feature is the appearance of the value of the 

gravitational acceleration in A(3,1), indicating the change in X-force with respect to 0 

which should be equal to the gravitational acceleration, [77]. 

It might be noticed that in matrix B, the longitudinal states are affected by the wing 

control surfaces, and lateral states by the horizontal stabiliser control surfaces. This is 

due to the fact that in the present simulation model each control surface is considered as 

an individual control input. To form the conventional control inputs, i. e. , elevator, 

rudder and aileron the following constraints must be applied. 

(Swr = -8w1 

stir = Stil (8.4) 
ovW = 8VZ 

In matrix B, the coefficients of Sw, and Sw, related to the longitudinal states are equal, 

and the coefficients of Sh, and 8h1 related to the lateral states are equal with opposite 

sign. Regarding these facts, it is obvious that by imposing the above constraints, (the 

conventional control surfaces are formed), the effect of S, 
ý 

(aileron) on longitudinal 

motion and S,, (elevator) on lateral motion will be vanished which, of course, is expected 

for a conventional aircraft. 

Modal Decomposition Applied to the Aircraft Dynamics 

Earlier in this section, the classical phugoid and short-period modes of the aircraft in the 

considered trim condition were illustrated by nonlinear simulation. The complete set of 

the aircraft modes will now be illustrated by modal decomposition using the linear model 

derived earlier and shown in Figure 8.6. If propeller states 'N and 'N are left in matrix 
A, they will produce two almost equal eigenvalues -12.6 and -12.9. Freezing these states 
does not considerably affect the basic aircraft modes. As discussed earlier, there is a clear 
decoupling of the lateral and longitudinal dynamics, therefore the modal decomposition 

will be demonstrated using two separate reduced order Jacobian matrices. 
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Longitudinal Modes 
The longitudinal dynamics Jacobian matrix is located in the top-left part of the A matrix 
in Figure 8.6. Selecting the longitudinal states, the ACSL Eigenvalue and Eigenvector 

commands were then used to produce the results shown in Table 8.1. 

As shown in Table 8.1, four longitudinal states give rise to two complex-conjugate pairs 

of eigenvalues, which correspond to two stable oscillatory modes. The periods of these 

modes are separated by more than one order of magnitude. Therefore, they are easily 
identifiable as the short-period and phugoid modes. The periods are also in reasonable 
agreement with the results of nonlinear simulation, shown in Figures 8.2,8.3. The 

corresponding eigenvectors are also given in Table 8.1. As expected, the eigenvectors of 
short-period mode are dominated by the elements corresponding to pitch rate and heave 

velocity. These elements are involved relatively weakly in the phugiod mode. The 
dominant element in the eigenvectors of the phugoid mode is the one corresponding to 

the forward velocity. These results agree with the conclusion drawn from the nonlinear 
simulation and general characteristics of an aircraft longitudinal modes. 

Lateral-Directional Modes 

The Jacobian matrix for the lateral-directional dynamics is shown in the bottom-right part 
of the A matrix in Figure 8.6. Two real eigenvalues and a complex-conjugate pair 
associated with lateral-directional motion are given in Table 8.2. 

The oscillatory mode involves the yaw rate and sideslip velocity, and produces some 
bank angle and roll rate effects. This rolling and yawing motion is called Dutch-Roll 

mode. The eigenvalues show that the Dutch roll period is quite short and the oscillation 
is very slightly damped. 

The second mode is simply a stable exponential mode which involves mostly roll rate. 
This mode is known as the Roll subsidence. The time constant of T=0.302 s associated 
with this mode indicates a fast roll response. 

The third mode is a slightly unstable exponential mode. It is distinguished by a much 
larger time constant T=22.03 s. It involves more bank angle and yaw rate than the roll 
mode and is known as Spiral mode. The spiral modes of many real aircraft are also 
slightly unstable. 
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Altitude Hold Autopilot 

In Figure 8.2 and 8.3, it might be noticed that even in trim condition, the aircraft slowly 
drifts in altitude since trim condition is never perfect. To hold altitude, an altitude hold 

autopilot must be designed. Therefore, the linearised system matrices A, B, C, and D 

were found, using all the longitudinal states plus altitude as the fifth state, and horizontal 

stabiliser control surfaces as inputs. A feedback gain matrix and associated closed-loop 

eigenvalues were then obtained by using the LQR command in MATLAB with Q=[I] and 
R=[I] [69], shown in Figure 8.7. 

The simulation of the control system with the nonlinear aircraft dynamics which is an 

essential part of the complete control design process was also performed. Figure 8.8 

shows the results obtained from the nonlinear simulation with feedback control system. 
As shown in this figure, under the control system action, the aircraft initially moves to a 

steady-state condition with a constant height at approximately t=4.0 sec. However, since 
the selected controllers (3h,, 5,,, ) have no direct effect on the forward velocity, this 

variable is gradually increased, causing some increase in overall lift force and, 

consequently, a change in altitude at approximately t=8.0 sec. 

In this simulation the lateral-directional dynamics were left uncontrolled. However, the 
lateral-directional motion remained unexcited for at least a long period of simulation 
time, since the lateral-directional states and inputs were accurately initialised with their 

steady-state values. 

As shown in ShrVS t curve, the control system again starts to act to bring the altitude 
back to the constant value. By adding throttle inputs, a more precise altitude control can 
be achieved [52]. It should be noted that the feedback control has also changed the fast 

short-period oscillation to a smooth and gradually varying behaviour, as shown in Figure 
8.8. 

A step command on altitude at t=10.0 sec was then applied to the aircraft in order to 
change its height from 10.0 m to 11.0 m. The results are shown in Figure 8.9. As can be 

seen, some of the variables have a large overshoot at t=10.0 sec because of the 
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Table(8.1): The wing-supported flight longitudinal modes 

Short-priod mode Phugoid mode 
-2.443+/-18.619 -0.189+/-0.235 

Freq. =18.778 rad/s Frcy. =0.301 rad/s 
Damp. =0.130 Damp. =0.626 

T=0.337 s T=26.74 s 
Q -0.307+/-0.179 -0.004-/+0.008 
Th -0.007-/+0.017 0.029+/-0.008 
U -0.006+/-9.98E-4 -0.359-/+0.930 
W -0.434-/+0.828 -0.0252-/+0.066 

Table(8.2): The wing-supported flight lateral-directional modes 

Dutch roll mode Roll mode Spiral mode 
-1.569+/-15.164 

Freq. =15.246 rad/s -3.315 0.0454 
Damp. =0.102 T=0.302 s T=22.03 s 

T=0.414 s 
P 0.0774-/+0.0633 0.955 0.044 

Phi -0.0054+0.005 -0.288 0.974 
R -0.15+/-0.253 -0.060 0.193 
V -0.851-/+0.424 -0.031 0.107 

Fig. (8.7): The gain matrix and closed-loop eigenvalues 
of the controlled aircraft in wing-supported flight 

Gain matrix 

-0.70710678 -1.2171582 -46.909505 -0.17157577 0.35435449 

-0.70710678 -1.2171582 -46.909505 -0.17157577 0.35435449 

Closed-loop eigenvalues 

1. -0.2995 
2. -0.7423+/- 0.7667 i 
4. -34.0385+/-27.629 i 
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immediate action of the control inputs. In addition, 5h. (also ÖM) has initially reached to 

its minimum limit (-20.0 deg. = 0.349 rad. ), and the aircraft altitude has finally settled 

down at approximately 11.0 m after ten seconds.. 

As a further check, the eigenvalues of the controlled system obtained from nonlinear 

model by Eigenvalue command in ACSL were compared with those derived by linear 

model in MATLAB. A very good agreement between these two sets confirmed the 

correct performance of the controller and aircraft. 

8.5 PROPELLER-SUPPORTED FLIGHT 

In this section, the results obtained from simulation studies of the aircraft dynamics 

during the propeller-supported flight condition for the three configurations Tail-sitter, 

Tilt-nacelle and Tilt-wing are presented. 

8.5.1 Tail-sitter configuration 

In terms of the state variables, the considered flight condition for the Tail-sitter 

configuration can be defined as follows. 

U=0.0 P=0.0 0= Const. - 90.0 deg. 'N = Const. 

V =OD Q=0.0 yJ=0.0 'N = Const. (8.5) 
W=0.0 R=0.0 cp=0.0 LOCKr, l=0.0 

Steady-state Trimmed Flight 

To find the steady-state flight condition, the aircraft altitude was initially set at 10.0 m. 
The tilting parts were fixed at zero tilt-angle and contra-rotating propeller option was 

selected. Normally, only wings are affected by the propellers' slipstream in this condition. 
Having set up the rudder and aileron at their zero value position and using the same 

value for both throttle settings, the lateral-directional trim had already been achieved. 
Similar to the previous case, a process of trial and error was then followed at T=0.0 s to 
find the longitudinal trim. 
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Fig. (8.8): Simulation of the controlled aircraft in wing-supported flight 
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In this process, the propeller rotational speeds ('N ), the pitch attitude (0) and the 

engine throttles ("S, ) were respectively used to drive the forward acceleration (0 ), the 

heave acceleration (TV) and the propeller rotational accelerations ("1V) to zero. For the 

pitch acceleration, it was experienced that neither the wing control surfaces nor the 

horizontal stabiliser control surfaces (if, of course, they are artificially located in the 

propellers' slipstream by slightly increasing the slipstream diameter by using Kssconl) 

can produce sufficient moment to balance the thrust force generated pitching moment. 

The resultant thrust force is equal to the aircraft weight. This implies that even a small 

distance between thrust line and the aircraft c. g. may produce a considerable moment. 

Therefore, it was decided to slightly change the location of the joints in order to achieve 

a zero value for Q. Having experienced this fact, it has been found that powerful 

control surfaces with high effectiveness value are necessary for a successful control of a 

Tail-sitter aircraft in hover. 

The following values were eventually obtained for the location of the joints, the pitch 

altitude, the engine rpms and the throttle settings in trim condition. 

"dz =. 0154 m 
0= 85.8100005 deg 

(8.6) 
" St = 0.703145 

'RPM = 6078.8 

Flight Simulation 
Using the obtained trim values, the aircraft simulation was then carried out for a few 

seconds. The time histories of some of the major variables are presented in Fig. (8.10). As 

seen in this figure, due to the accurate initialisation of the lateral-directional states with 
their steady-state values, a very small variation is observed in these states. However, in 

longitudinal motion an unstable oscillation with fairly long period is exhibited by the 

aircraft. This type of oscillation is very similar to what was reported by NACA for a 

vertically rising research model aircraft [84], shown in Figure 8.11, . In this figure, the 

variable Z is equivalent to the variable North in our case. 
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Aircraft Modes 

By defining the following state and control vectors 

State vector. [Q, 0, U, W, 'N, 'N, P, cp, R, V] (8.7) 

Control vector. [SW6 
,S Wr ,'81 

18 
tI 

the linearised system matrices were then obtained by using ACSL Jacobian command and 

are shown in Figure 8.12. In this figure, it is clearly shown that in constant propeller 

rotational speeds, the longitudinal and lateral motions are decoupled. The obtained 

eigenvalues of each separated longitudinal and lateral-directional dynamics are presented 
in Table 8.3. 

The previously mentioned longitudinal oscillation resulted from nonlinear simulation is 

now well-confirmed by the obtained longitudinal unstable complex-conjugate eigenvalues 

which have the same period as that observed in nonlinear simulation. In addition, the 

same lateral-directional divergent oscillatory mode, as predicted in. Table 8.3, was 

observed in nonlinear simulation when this mode was excited by giving some lateral- 

directional out of the trim initial conditions. However, it is not presented here, Again, 

similar lateral-directional oscillatory motion is reported in Reference [84]. 

It should be pointed out that two damped subsidence and a divergent oscillation in 

longitudinal and lateral-directional motions are the typical modes of helicopters during 

hover [53-56,83,85]. Therefore, the obtained results confirm the expected similarity 
between a Tail-sitter aircraft and a conventional helicopter. 

Position Hold Autopilot 
To enable the aircraft to maintain its position fixed in space a position hold autopilot was 
designed using the state and control vectors given in relation 8.7, and the LQR method. 
The simulation of the controlled aircraft was then carried out. The time histories of some 
of the variables are given in Figure 8.13. As it can be seen, the control system was able 
to stabilise the aircraft and hold its position (Height, North, East) after approximately 
60.0 sec . However, the system had the tendency to be destabilised even with a small 
position change command, implying that the control system had a poor robustness 
characteristics. This can be justified by the fact that the wing control surfaces are too 
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Fig. (8.11): Uncontrolled pitching motion of a vertically-rising model aircraft in 
hovering flight [84] 
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Fig. (8.12): The line arised system matrices for propeller-supported trimmed flight 

, Tail-sitter configuration 
Matrix A 

Q Th U W 'N `N P Phi R V 

Qd -. 003 -0.002 0.037 0.110 -3.455e-5 3.13e-5 3.143e-5 0.0 l. le-4 0.0 
Thd 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Ud 1.620e-4 -0.714 -0.016 -0.023 -0.015 0.015 5.99e-5 0.0 -6.22e-5 0.0 
Wd 0.004 -9.784 -0.104 -0.301 0.001 -0.001 2.422e-4 0.0 -2.411 e-4 0.0 
'Nd -2.328e-6 -4.994e-5 -17.217 -0.008 -11.263 0.003 0.784 -7.654e-5 -6.895 3.519e-4 
'Nd "2.328e-6 -4.975e-5 17.221 -0.008 0.003 -11.263 0.784 -7.625e-5 -6.895 3.522e-4 
Pd 2.328e-6 4.977e-5 -0.002 0.008 -0.003 -0.003 -0.784 7.622e-5 0.272 -3.521e-4 

Phid 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 13.650 0.0 
Rd 3.748e-4 0.008 -1 . 92le-4 -4.499e-4 -0,134 -0.134 0.0184 7.662e-7 -0.0149 -0.005 Vd -2.778e-6 -5.936e-5 -3.125e-5 1.340e-4 9.512e-4 9.530e-4 -0.0127 0.717 0,003 -0.002 

Matrix B 

throttlel throttler deltawl deltawr 

Qd 0.0 0.0 0.113 0.113 
Thd 0.0 0.0 0.0 0.0 
Ud 0.0 0.0 -0.002 -0.002 
Wd 0.0 0.0 -0.336 -0.336 'Nd 

-1448.12 8.835 -4.411 4.410 
`Nd -8,835 -1448.12 -4.411 4.411 
Pd 8.935 -8.835 4.411 -4.411 

Phid 0.0 0.0 0.0 0.0 
Rd 0.025 -0.020 0.001 -0.010 
Vd 0.142 -0.142 0.071 -0.071 

Matrix C 

Q Th U W 'N `N P Phi R V 

Qd 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thd 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Ud 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Wd 00 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 
'Nd 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 
`Nd 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
Pd 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 

Phid 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 
Rd 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
Vd 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 

Matrix D 

throttlel throttler deltawl deltawr 

Qd 0.0 0.0 0.0 0.0 
Thd 0.0 0.0 0.0 0.0 
Ud 0.0 0.0 0.0 0.0 
Wd 0.0 0.0 0.0 0.0 
'Nd 0.0 0.0 0.0 0.0 
`Nd 0.0 0.0 0.0 0.0 
Pd 0.0 0,0 0.0 0.0 

Phid 0.0 0.0 F 0.0 0.0 
Rd 0.0 0.0 0.0 0.0 
Vd 0.0 0.0 0.0 0.0 



Chapter eight: Simulation Results 192 

close to the aircraft c. g., therefore they can only generate a very small controlling 

moment. This moment was enough to stabilise the aircraft at its trim condition, but it was 
not enough to sustain the stability after a large disturbing command such as a command 
for changing its position. This was confirmed when the horizontal stabiliser control 
surfaces which can produce bigger moments were added as control inputs. The 

simulation results of the new system are given in Figure 8.14. As expected, the new 
control system has better characteristics. As can be seen in Figure 8.14, the aircraft has 

reached the steady-state condition in a fixed position in shorter time. A command was 
then applied in order to change the aircraft position by one meter in each direction. As 

shown in Figure 8.15, after an initial overshooting the aircraft has finally taken its new 
position at t=90.0 sec. . 

Figure 8.16 shows the trajectory of the aircraft c. g. in three perpendicular planes. As 

shown the aircraft initially moves in horizontal direction and then starts to gain altitude. 
This is an expected behaviour, because in general, horizontal movement is much easier 
than vertical movement during which the gravitational force must be overcome. The 

same behaviour was also observed for a Tail-sitter UAV in a video which was 
accompanied with a paper presented in 11th RPVs conference [86] 

The same closed-loop eigenvalues were obtained from nonlinear model in ACSL with 
those derived by linear model in MATLAB which further confirmed the study. 

8.5.2 Tilt-nacelle Configuration 

In terms of the state variables, the considered flight condition for the Tilt-nacelle 

configuration can be defined as follows. 

U =0.0 P=0.0 0=OD 'N=Const. 

V= OD Q= OD ter = 0. D 'N = Const. "An = Const. - 90.0 deg. (8.8) 
W=0.0 R= OD cp = 0.0 LOCKr, 1= 0.0 

Steady-state Trim Condition 
Again, an altitude of 10.0 m, Locked tilting parts and contra-rotating propeller option 
were used. Due to the complete symmetry, the lateral-directional trim had already been 

achieved. To achieve longitudinal trim, the propeller rotational speeds ("N ), the tilt 
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Fig. (8.13): Propeller-supported, Tail-sitter, controlled aircraft without ah 
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Fig. (8.14): Propeller-supported, Tail-sitter, controlled aircralt with öh 
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rig. (ö. D): iurcrarc response to a pc cnangc cuIILuLauu 
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Fig. (8.16): Propeller-supported, Tail-sitter, aircraft trajectory 
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angles (C0) and the throttle settings ("8, ) were respectively used to control the heave 

acceleration (W ), the forward acceleration (0) and the propeller rotational acceleration 
("k). The pitch acceleration was then driven to zero by a small displacement in the 
location of the Joints. 

It needs to be pointed out that due to the considerable aerodynamic download over the 

wing produced by the propellers' slipstream, a high propeller rotational speed was 
necessary to generate sufficient thrust and keep the aircraft in trim condition. However, 

the engines were not able to produce sufficient torque even at maximum throttle to 

counter balance the reacting aerodynamic torque on the propellers at this condition. This 

problem was rectified by using a smaller propeller collective pitch (18.0 deg. ) as opposed 
to the default value 20.0 deg. 

The following trim values were eventually obtained. 
'd" _ -0.00687m 
"Sr = 0.746537 

"RPM = 6602 (8.9) 

"0n = 91.64 deg. 
"0c =18Ddeg. 

Flight Simulation 
The simulation results in the form of time histories are given in Figure 8,17. As shown, a 
sort of limit cycling has happened. To explain this kind of behaviour, the second and the 
third graphs of Figure 8.17 must be taken into attention. As seen in these curves, due to 
the existence of a longitudinal unstable subsidence mode (will be derived later) which is 
dominated by the forward velocity, the aircraft exhibits an unstable divergent motion 
during the first few seconds. Accordingly, the aircraft nose comes down and the aircraft 
forward velocity is increased rapidly. As a consequence, the horizontal tail becomes 
effective and the divergent pitch motion is controlled and damped. However, the forward 
velocity continues to increase, changing the direction of the propellers' slipstream until 
the wing goes out of them. As seen in the second graph of Figure 8.17, the value of the 
slipstream influence code, Ksswrr (also Ksswll) jumps to zero at approximately t=16.0 s. 
This causes a rapid change in the angle of attack and dynamic pressure over the wing. 
Consequently, the aircraft nose comes up and the forward velocity decreases. The wing 
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is again affected by the propellers' slipstream and pitch motion is damped, however, this 

time at a different pitch angle. At this moment, the pitch altitude starts to decrease 

gradually. This is ended up by second increase in forward velocity and the same cycle is 

repeated. 

Aircraft Modes 

Considering the same state and control vectors as shown in relation 8.7, the linearised 

system matrices presented in Figure 8.18 were obtained. Decoupling between the 

longitudinal and lateral motion is also observed in this case. The obtained eigenvalues of 

each separated longitudinal and lateral-directional dynamics are presented in Table 8.4. 

As can be seen, an unstable oscillatory mode in lateral-directional motion is also 

observed for the Tilt-nacelle configuration. However, the longitudinal unstable 

oscillatory mode of the Tail-sitter configuration has been replaced by an unstable 

subsidence mode. Also, one of the longitudinal stable real roots has been changed to a 

complex-conjugate stable mode. 

Position Hold Autopilot 

In order to stabilise the aircraft in both longitudinal and lateral directional, and also to 

keep it in station, the LQR method was used in order to design a position hold autopilot. 
In Figure 8.19, the results obtained from the nonlinear simulation are presented. As 

shown, the feedback control system was able to stabilise the aircraft and hold its position 

after approximately 100.0 sec. 

The response of the aircraft to a position change command was also checked. The 

trajectory of the aircraft c. g. during the course of changing position in different planes 
are given in Figure 8.20. The same discussion as that provided in the case of Tail-sitter is 

also valid about the shape of the trajectory. 

The controlled system eigenvalues obtained by linear and nonlinear models were also 
compared and a very good agreement were found. 

8.5.3 Tilt-wing Configuration 

The considered flight condition for Tilt-wing configuration can be defined as follows: 
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Fig. (8.17): Propeller-supported, Tilt-nacelle, simulation in trimmed condition 
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Fig. (8.18): The linearised system matrices for propeller-supported trimmed flight 

, Tilt-nacelle confi guration 
Matrix A 

Q Th U W 'N `N P Phi R V 

Qd 0.003 4.156e-4 -0.079 -0.2577 -1.977e-4 1.915e-4 0.001 0.0 0.0 0.0 
Thd 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Ud 0.0013 -9.81 -0.009 -0.046 -3-508e-5 3.403e-5 1 . 209e-4 0.0 0.0 0.0 
Wd -9.721e-4 -0. (X)2 0.002 -0.271 0.014 -0.014 9.662e-4 0.0 0.0 0.0 
'Nd 0.001 0.0 2.640e-4 9.272 -9.797 -0.0123 -2.632 -6.321e-4 -0.0134 -4.619e-4 
`Nd 0.001 0.0 2,640c-4 -9.271 . 0.0123 -9.792 -2.632 -6.318e-4 -0.0134 "4.619e-4 
Pd 0.057 0.0 -0.0036 -0.0036 -0.315 -0.315 -0.853 0.054 -0.136 -00126 

Phid 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 
Rd -4.87e-4 0.0 3.667e-4 7.511e-4 -0.0033 "0.0033 0.0415 -0.0022 -0.0095 -1.027e-4 
Vd -5.15e-7 0.0 5.10le-7 1.056e-6 -5.63e-6 -5.62c-6 -0.00137 9.81 1.009e-5 -0.0018 

Matrix B 

throttlel throttler deltawl deltawr 

Qd 0.0 0.0 0.024 0.025 
Thd 0.0 0.0 0.0 0.0 
Ud 0.0 0.0 -0.0186 -0.0186 
Wd 0.0 0.0 9.334e-4 9.319c-4 
'Nd -1852.35 4.2976 -0.0921 0.0921 
'Nd -4.2977 1852,35 -0.0921 0.0921 
Pd -0.3356 0.3356 -0.008 0.008 

Phid 0.0 0.0 0.0 0.0 
Rd -4.2898 4.2898 -0.0919 0.0919 
Vd 0.0 0.0 -1.306e-4 1.306e-4 

Matrix C 

Q Th U W 'N 'N P Phi R V 

Qd 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Thd 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Ud 0.0 0.0 1.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 
Wd 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 
'Nd 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 
'Nd 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 
Pd 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 

Phid 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 
Rd 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 1.0 0.0 
Vd 0.0 0.0 0.0 0.0 0.0 0.0 000.0 0.0 1.0 

Matrix D 

throttlel throttler deltawl deltawr 

Qd 0.0 0.0 0.0 0.0 
Thd 0.0 0.0 0.0 0.0 
Ud 0.0 0.0 0.0 0.0 
Wd 0.0 0.0 0.0 0.0 
'Nd 0.0 0.0 0.0 0.0 
'Nd 0.0 0.0 0.0 0.0 
Pd 0.0 0.0 0.0 0.0 

Phid 0.0 0.0 0.0 0.0 
Rd 0.0 0.0 0.0 0.0 
Vd 0.0 0.0 0.0 0.0 
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Table(8.3): Propeller-supported, Tail-sitter, aircraft modes 

tudinal 
0.426+/-0.901 i Freq. =0.996 radis Damp=-0.427 T=6.974 s 
-0.007464 T=134.0 s 

-1.16474 T=0.859 s 

0.214+/-0.3751 Freq. =0.431 rad/s Damp=-0.495 T=16.755 s 
-0.497 T=2.012 s 

-0.792 T=1.263 s 

Table(8.4): Propeller-supported, Tilt-nacelle, aircraft modes 

Longitudinal 
0.922 T=1.085 s 

-0.249 T=4.016 s 
- 0.460+/-0.799 Freq. =0.922 rad/s Dam i. =0.499 T=7.93 s 

Lateral-directional 
0.103 +/- 0.3551 Frey. =0.369 rad/s Damp. =-0.279 T=17.7 s 
-0.0084 T= 119.05 s 
-0.880 T=1.136 s 

_.:..... :: ä.: r 
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Fig. (8.19): Tilt-nacelle, controlled aircraft 
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U=0.0 P= OD 0=0.0 'N = Const. 
'OR = Const. - 90.0 deg. 

V= OD Q=0.0 y1= OA `N = Const. (8.10) 

W =0.0 R=0.0 cp=0.0 LOCKr, I=1AKe" =0.0 

The same procedure as mentioned in previous section for Tilt-nacelle configuration was 

used to find the trim condition. Since, the Unlocked tilting parts option had been 

selected, the tilting part relative angular accelerations ("6n) also had to be driven to 

zero. This was carried out by using the output torque of the servomotors. The following 

trim values were finally obtained. 

Id. ' = -0.00085m 
"Sr = 0.703719 

"RPM = 60795 (8.11) 

'Ad= -0.0602n. m 
"6n = 85.9deg. 

Using the obtained trim values, the aircraft simulation was then carried out, and the 

results are presented in Figure 8.21. An unstable oscillatory behaviour is exhibited by the 

aircraft which is similar to what observed for the Tail-sitter configuration. These two 

configurations are principally similar in that the thrust line and the wing chord are in the 

same direction in both, whereas in Tilt-nacelle configuration they are perpendicular. 
Using the following state and control vectors, a feedback control gain was then obtained 
by using LQR method. 

(8.12) State vector: [Q, 6, U, W, 'N, ' N, ' ©, ' 6, ' R, V] 

Control vector: [` 8d, ' ©a, '6 
r+f 

Sr 

The result of the nonlinear simulation of the controlled aircraft and the aircraft response 
to a position change command are shown in Figures 8.22,8.23. As can be seen, the 

control system has been able to stabilise the aircraft and keep its position. The open-loop 

and closed-loop eigenvalues are also provided for comparison reason in Table 8.5. 
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Fig. (8.20): Propeller-supported, Tilt-nacelle, aircraft trajectory 
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Fig. (8.21): Propeller-supported, Tilt-wing, simulation in tnmmea condition 
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Fig. (8.23): Propeller-supported, Tilt-wing, aircraft trajectory 

Height-North 

W-ý 
2 ^' 

Irv C;. 

N 
of 

-a .a NORTH (m) z2° 

Height-East 

m 

Oi 

In In 

oERST Cmlý 

N 

Of 

North-East 

d 

N 
Ö 

-0.2 o 
EAST Cm) 



208 

Table (8.5): Propeller-supported, Tilt-wing, open-loop and 
closed-loop eigenvalues 

Open-loop 
5.14+/-15.18i 
0.098+/-4.381 
1.094+/-2.241 
0.05+/-0.235i 

0.0358 
0.0 

-0.478 
-2.75 
-7.63 

-11.31 
-14.373 

Closed-loop 

-0.211 
-1.217+/-0.2821 
-1.35+/-1.7461 
-0.946+/-2.79i 
-3.77+/-2.51 i 

-6.335+/-5.971 
-81.8437 
-81.53 

-1439.63 
-1447.48 
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CHAPTER 9 

CONCLUSIONS AND FURTHER WORKS 

9.1 CONCLUSIONS 

The primary objective of this research work, i. e. development of a simulation model for 

flight dynamics and control investigations of the considered VTOL configurations and 
feasibility study of the proposed concept, has been achieved. The following points may 
be highlighted in this respect. 

" The obtained results provide confidence in the validity of the mathematical model 

upon which the simulation is based. No logical contradiction and inconsistency in the 

mathematical modelling has been observed. 

" The object-based approach has proved to be an applicable method for the simulation 
of an aircraft when there is little data available and, when at the same time, a general 
knowledge of the aircraft dynamics is required. 

" Using the object-based approach, the amount and the variety of the required 
aerodynamic data has been considerably reduced. 

" The simulation results confirm the capability of the object-based approach of 
predicting the fundamental characteristics of VTOL flight, even though the aircraft 
aerodynamics are not perfectly modelled in this approach, as discussed in Chapter 3. 
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" The equations of motion of the aircraft multibody system have been originally derived 
in this thesis. Using separated objects, the derivation of these equations has been 

carried out in a straightforward manner without explicitly dealing with the rate of 

change of inertia and centre of gravity position. The validity of these equations have 

been proved through a number of sufficient and convincing tests. 

" The geometric and kinematic similarities between components and configurations 
have been used to maintain the simplicity and modularity of the simulation model. The 

modularity simplifies modification tasks so that model improvement may be carried 
out easily and quickly without having concern for loss of integrity. 

" Using the Object-based approach, the requirements of generality, flexibility and 
singleness (one simulation model for three different configurations) for the simulation 
model have been achieved. This technique allows the user a larger amount of freedom 
in specifying the components' geometry and aerodynamics. 

The propeller's slipstream effect model developed in Chapter 5 has been found 

sufficiently effective for continuous tracing the slipstream direction and calculating the 

effect of the propeller induced velocity on the affected components. 

" The ability of the simulation model to provide invaluable insight of the aircraft 
stability and control characteristics has been demonstrated. This ability can be used to 

obtain the most suitable control strategies together with optimum sizing of the aircraft 
at early stage in the design process. In addition, it is shown that the simulation model 
is sufficiently flexible and accurate to play its role as a research tool and has the 

potential for hypothesis testing, explanation and discovery. 

" The simulation model has been able to demonstrate the natural longitudinal and 
lateral-directional modes of aircraft during conventional wing-supported flight, 
including Short-period, Phugoid, Dutch-Roll Roll subsidence and Spiral mode. In 

addition, the expected decoupling between longitudinal and lateral-directional motions 
has been observed. 
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The period of unstable oscillatory modes of the aircraft obtained by nonlinear 

simulation in hover flight are generally long and could be easily controlled by an 

experienced pilot. 

" Unstable oscillatory behaviour were exhibited by both the Tail-sitter and Tilt-wing 

configurations, indicating the expected principal similarity in that the thrust line and 
the wing chord are in the same direction in both of them, whereas in Tilt-nacelle they 

are perpendicular. 

" Two damped subsidence and a divergent oscillation in longitudinal and lateral- 

directional motion which are the typical modes of helicopters during hover, have been 

observed for the Tail-sitter configuration, confirming the expected similarity between 

two vehicles in hover. Similar divergent oscillations have been reported for a tail-sitter 

model aircraft by NACA [84]. 

" Although the majority of the input data have been estimated in this work, using 
completely different sources, the simulation results are surprisingly reasonable and 

encouraging. This indicates that a careful data preparation has been carried out. 

" No contradiction has been found in connection with the proposed control concept 
during the aircraft simulation. However, it is quite clear that a comprehensive 
investigation must be carried out before a decisive comment can be given. 

" The LQR method used to find the feedback gain matrices has been found a powerful 
method. In all the cases, the feedback control systems designed by LQR method were 
able to stabilise the aircraft, at least in the vicinity of the trim condition. It should 
however be pointed out that a practical control system for such aircraft needs to be 

elaborately designed, considering real factors and restrictions. 

" In general, the obtained simulation results indicate that the mathematical model is 
highly nonlinear in nature, so that even a small change in aircraft condition may lead 
to completely different behaviour. 

" The results obtained by the linearised model have always confirmed the nonlinear 
simulation results, indicating the validity of the ACSL linearization routine. 
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" An interesting limit cycling phenomenon has been observed and explained for the Tilt- 

nacelle configuration which proves the ability of the simulation model to discover the 

unknown nonlinear behaviours and to describe them. 

" The Advanced Continuous Simulation Language (ACSL) has been found a suitable 
language with sufficient facilities for the purpose of modelling and evaluation of non- 

real-time nonlinear systems, although some inconveniences have been experienced 
during the course of working with this language. 

" Using structured programming approach, the consistency between various parts of the 

whole program was maintained throughout all the stages of the development. Also, it 

provided a systematic way of deriving the code for the functional blocks. In addition, 

since programming errors could be easily detected and corrected, program 

modification and development were accelerated. 

9.2 FURTHER WORK 

The following suggestions are presented for further development and applications of the 

simulation model and the applied methodology. 

" Clearly, the next step in the research work is to use the developed simulation program 
for the analysis of flight dynamics and control of the aircraft in different regimes, in 

particular the transition phase. This task can be started by trying to optimise the 

aircraft sizing in order to obtain the best possible functionality. 

" In the present simulation model, no dihedral angle has been considered for lifting 

surfaces e. g. wings. With suitable assumptions, this angle may also be incorporated in 
the simulation model. 

" The aircraft trim conditions presented in this thesis have been obtained by hand and 
through a process of trail and error. However, using an appropriate trim routine, 
steady-state conditions may be obtained in a faster and more accurate way. 
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" As previously concluded, the methodology used in this work is a suitable method to 
be used when a general knowledge about the flight dynamics of an unconventional 
aircraft is required and there is little data available. Therefore, this methodology can 
be applied for the other alternative VTOL concepts such as the Freewing and Tilt- 
body, shown in Figures 9.1-9.4, or the derivatives of the considered concepts such as 
U-tail Tilt-rotor aircraft, shown in Figure 9.5. The strange looking of these aircraft 
and their conversion process indicate that even an initial investigation of their flight 
dynamics must be started by wind tunnel tests. Therefore, the application of the 

methodology in these cases is well justified. 

" The object-oriented simulation is a recognised and appreciated method in the field of 
discrete event and discrete time systems [87]. However, to the knowledge of the 
author, no effort has been made so far to extend the application of this method for 

continuous systems. The present work might be regarded as an initial attempt and a 
basis for the future work by those who think it may be possible. 
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Fig. (9.1): Daedalus STF-9A demonstrator [38] 
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Fig. (9.2): Slaved tandem freewing take off and landing sequences [38] 
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Fig. (9.3): Freewing Scorpion Tilt-body UAV [38] 

Fig. (9.4): Alternative Tilt-body deck landing sequences [38] 
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Fig. (9.5): Bell Eagle Eye tilt-rotor UAV [38] 
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APPENDIX Al 

The general form of the Newton's second law for traslational and angular rotation of the 
body A, can be written as follows: [50] 

Fä ýdt(Pä) (A1.1) 

*=d 0HQ)+v xPQ (A1.2) oMa 

The total linear momentum of the body A can be expressed as follows: 

PÄ = m. B, (A1.3) 

where 
Vgo = Vö + S2äj x b° (A1.4) 

substituting V8a in Equation (A1.3), then: 

PQ = maV p+ maiZQ, xi (A1.5) 

Now, Equation (A1.1) can be written in the following form: 

Fa =t (m. V. + mmnnä; x b°) (Al. 6) 
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Similarly, the total angular momentum of the body A about 0 can be expressed as 
follows: 

OHa 
Ha +b° x P; (A1.7) 

where 

84Hä =[ g« , 
a, «1 (A1.8) 

using Equations (A1.5) and (A1.8) and after simplification we have: 

Hä =[ ga 
IäQ1 + mqb° x (S2a1 x b°) + mab° x Vo (A1.9) 

According to parallel axis theorem [46]: 

10 Ip a 
a, = fga IQ Q, + maba x (fä, xba) (A1.10) 

Now, using Equation (Al. 10), Equation (A1.9) can be written as follows: 

a 
0 Hä = [oI17 

1 +m, b° xv (A1.11) 

Substituting 
, 
H. and Pa from Equations (A1.11) and (A1.5) into Equation (A1.2), 

then: 

°M° = dt 
&ja]Q-3, j+±(M. ba 

tx 
Vö ) 

(A1.12) 
+Vo x(m°V. +macl:, xb°) 

=d oIa 
°rý+ma 

d 
(b°)xVö +mab° x 

t(V, AI. 13 () 
+maV, xV° +maV: x(S2Qrxba) 

where 

maV0 X Va =0 (A 1.14) 
and 
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d 
(b°) = b° + fl, ', x b° (A4.1.15) 

The vector b° is fixed in the XaYQZQ axes system, thus the time derivative of this vector 

w. r. t. this system (denoted by ") is zero. Therefore 

dt 
(b') ^ fl°' x ba (A1.16) 

substituting the associated terms in Equation (A1.13) and note that: 

(ßär x ba) X Vö = -Vö x (f2är x b°) (A1.17) 

then, 

a s= d 
ýjjW j+ mab" xd (Vö) (A1.18) 

The Equations (A 1.6) and (A 1.18) are used as starting point for the derivation of the 

equations of the motion of the body A in chapter four. 
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APPENDIX A2 

The general form of the Newton's second law for translational and angular motion of the 

body "rp can be written as follows: [50] 

"F p=d "PRp (A2.1) 

hM np - Ji 
H 

np)+x 
VJ: xK Pp (A2.2) 

The total linear momentum of the body "rp is given by: 

K pnp=KP�+Kp (A2.3) 

where 
"P� =M A 

VRR (A2.4) 

xpP =mPKVSP (A2.5) 

x Vgn= VJ: +x Qnlxx kin (A2.6) 

K vn KV17+Kfn, XKf n (A2.7) 

Using Equations (A2.4), (A2.5), (A2.6) and (A2.7) and after simplification, the Equation 
(A2.3) can be expressed in following form: 

"P;, =(M + mr )K Vý, +K fl" x (mn" k1" + mp K fn) (A2.8) 
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Now, using the relation: 

m,. rk1" +mp"f" = m�P"en (A2.9) 

where 

mnp = mit + mp (A2.10) 

then 

KPip =mnp%V% +mnpKDn! xKen (A2.11) 

Substituting in Equation (A2.1) yields: 

"F P=d (m"P"VC, + m"P" S2nr x" e") (A2.12) 

Similarly, the total angular momentum of the body "np about J2 can be expressed as 
follows: 

i, Hnp=JKHn+%Hp (A2.13) 

where 

i, H, =, Hn+"klx"P� (A2.14) 

1c H"= HP+Kf"x"PP (A2.15) 

"H" - "I" S2" (A2.16) g" " gn " "J 

; "HP 
= 

iBPI-JKý�J+KnP") 
(A2.17) 

Using Equation (A2.4), (A2.5), (A2.6), (A2.7), (A2.14), (A2.15), (A2.16), (A2.17), and 
after simplification, Equation (A2.13) takes the following form: 
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KHnp =[Kln1nnt+mnKkl" x(Kc1 
, x"kln) 

+[BPIPc"ni+mpKf n x(KDnfxKf") (A2.18) 

I"p n +(m'k1"+m. 'f")x"V;, 

According to parallel axis theorem [46]: 

rKin1' n =rgmp n; +mn"kl" x(Kýnrx`kih) (A2.19) 

[icJ; ]K n _r 1I- +M, Xf" x("anrx"f") (A2.20) 

Now, using Equations (A2.19), (A2.20) and (A2.9), Equation (A2.18) can be expressed 

as follows: 

(A2.21) KHn =[, In ]K n +[KIn 
1K nP^ +mnPxenx'VJ", J: np J: np ni 8P P 

where 
K In + In (A2.22) 

[!: 

np, -[ "I"". 
] ["h 

p 

Using Equations (A2.21), (A2.1 1), Equation (A2.2) can be expressed in following form: 

x Mn _K In ýn +K 
Jz Jz np `a Ji np n7 

[8P 
P Pn} 

+ 
1mnpKCnxKV j 

hfl 

+K`In x'imnpxVh+mitpKSZnixxen} 
13 

hl. P nt SP P Pý J 

+ %p - (" e" )x" Vi, + m"p x e" x dt (" V. % 

+%/2npx V" X"v" +mnpKVh x(KnnixKen) ii h 

(A2.23) 

(A2.24) 

where 
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m-P" vJ, X" vii =0 (A2.25) 

and 

Ken)__Ken+"fnjXxen (A2.26) 

The vector "e" is fixed in the "XR' Y"KZ" axes system, thus the time derivative of this 

vector w. r. t. this system (denoted by o) is zero. Therefore: 

T (" e")=" SZn, x" e" (A2.27) 

Substituting the associated terms in Equation (A2.24) and note that: 

(KSZn; x"e")x"V% ý""V% x(" �rx"eA) (A2.28) 

we have: 

Kmn __ 
d 

xIn an + lein Kýn 1 
np dt !: np nl 

[gp 

p PnJ 

(A2.29) 
+mnpKen x: V%) 

The Equations (A2.12) and (A2.29) are used as starting point for the derivation of the 

equations of motion of the body K np in chapter four. 
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APPENDIX A3 

The general form of the Newton's second law for angular motion of the body 'p can be 

written as follows: [50] 

"M" =d (KH") (A3.1) 8P P dt BP P 

where 
IC HP 

- 
[9p"I; a, -, +% aPn) (A3.2) 

Thus Equation (A3.1) can be expressed in the following form: 

BPMP dt BPIPkKýnr+Kýpn (A3.3) 
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APPENDIX A4 

In this appendix, it is attempted to present the derivation of the aircraft equations of 

motion in complete detail so that they will always be available for the readers who wish 
to follow the equations in more detail. Before starting with the kinetic of the system 

some kinematic relationships must be derived. 

A4.1 KINEMATIC RELATIONS 

The absolute angular velocity of the " X�" Y�"Z� axes system can be expressed in terms 

of absolute angular velocity of the XaY4Za axes system and relative angular velocity of 

the axes system "Xe KY�"Zn 

w. r. t. XQYaZg axes system as follows: 

KLiq! Kflfl +XcI (A4.1) 41 na 
[%ýCNi, na nai +, flna (A4.2) 

then 
oee 

n= Qn + "an 
ni ai na (A4.3) 

" 

= 
(K 

[DCM]na cal) K 
�na (A4.4) 

Now, performing differentiation presented in Equation (4.6b) 
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°" 

KLmnr = K[DCMfaL, 
4ar+K[DCMýn44a +"rho (A4.5) 

and using relation (4.5b), then: 

eo 

K SZn1=x C1+K ýDCMý°aýal +x ýna (A4.6) 

where 
KC1= -ý"Sýn°ý` [DCMT QýAý (A4.7) 

Similarly, 

I`V%="V, i, =K[DCMT ° KVi, (A4.8) 

where 
KVG, =Vö +üax`da (A4.9) 

therefore, 

'V;, -"V;, "[DCMr°Vo+'[DCMr°[fl. 'I `d° (A4.10) 

Differentiation of Equation (A4.8) according to relation (4.6b) gives: 

KVl, ' KVl: = ýK[DCM]"°KVa, (A4.11) 
" 

[D&Ta V j,, +"[DCMTa" 7j (A4.12) 

using relation (4. Sb) and (A4.9), then: 

ee 
KýJ'KV,;, 

=KC2+"[DCMraVQ2[DCMra[Kdapä, (A4.13) 

where 

K C2 = -[K nna I [DCM]ne K Vi, (A4.14) 

A4.2 EQUATIONS OF MOTION OF THE BODY A 

Starting with the Equations (A1.6) and (A1.18), we have: 



Appendix A4 238 

Fä =t (m4V. + m0Sl:, x b°) (A4.15) 

°M° _ dt 
ýoI: P. 'i +mb° xd (V. ) (A4.16) 

then, expanding the derivatives by using (4.6a) we have: 

Fä = m°Vö + m°SZQI x V; + M. (Stpj XI °+ fl ,x 
b°) 

(A4.17) 
+ mf1 1 x(12.1 xb°) 

, 
Mä = 

[o': ] : +Siät x ff0i: }a: 
1)+mpb° X Vö 

(A4.18) 
+ mab° x (SZa; X Va) 

Considering the fact that b° =0 and by expressing the FQ and Mä in terms of their 

components : 

Fß = Wý + Aý-'F;, -'F;, (A4.19) 

0Mä=aMw, +0M% -'M 3-'M%`dQxF (A4.20) 

and substituting in the Equations (A4.17) and (A4.18) then the main body equations of 

motion take the following foams: 

W, '+Ap-'F'-'r = maV; +m, S2ýj x Vp il il (A4.21) 
+maSZälxb° +mmci:, x(Saar xba) 

0M +'MnM%-! M%''daxrFa_Idax'F*� _ 

[0 aj ai +nai x ([oIä] ')+mab° x Vo + maba x (S2ä, x Vo) 
(A4.22) 

Using the matrix form of the cross-product expressed in (4.3), Equations (A4.21) and 
(A4.22) can be expressed as follows: 
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W° +A°-'F-1F° =m V° -m b° ° 

+ M. ýQ. ar V 
.a + M. [a IJQ. 1 

}b z 

M° + Ma -rMa _I Ma rda rý. a _1 da ý. a _ o W, o A. !o !r- !ýh 

[a': + ma [b ]V. + ýýý, ýa Iý är + ma [b° I :1 ]V. (A4.24) 

A4.3 EQUATIONS OF MOTION OF THE BODY 'tip 

For the body "np starting with Equations (A2.12) and (A2.29), we have: 

C Fnp = 
dt 

(mnp" Vi + mnp" fÄr xK e) (A4.25) 

xMn __ +r KID n1 
dt *" 

{[iJn, [s; 
p] Pf} 

(A4.26) 
+mnpxen x KV%) 

Expanding time derivatives by using Equation 4.6b yields: 

eee 
Kl'n 

=%%t 
EV'm KJln XKVn +m (Kfn XKCn'FKan x Ken 

np np h np ni Jr np ̀  n1 n1 (A4"27) 

f77lnpxiln! X(x£In1XKen) 

00 
7" 

mit Kn lKl6 
lnIK/fin 

TK^n 
xýrKTn ýC/'fin K('ýn KTnP ýPn) 

J: lýlp J: lnp . 1i + 
IL 

rK 
Tn 

9p p1 ý1LPn ý1Lni Il Jrlnp J ý1Ln! i(in! 
NPln 

e 

'i )13nPxen x(K Vii+K n, xxV2 

(A4.28) 
O 

Considering the fact that "e" =0 and by expressing the and ;, M' 
ý, 

in terms of 
components 

K1nP_KTn+IC 

_': 
+KAhn+K F" (A429) 
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i, Mýp=KMpC+, %Mrý'AMwý+%M%-f'xMi, (A4.30) 

and substituting in the Equations (A4.27) and (A4.28), the equations of motion of the 

body "np take the following form: 

"e 

F% = mnp Vj, +mnpKfnrx'V11 +mnp flflrx'en (A4.31) 
+m Kiln x(" n xKen ýKTnýXýn 

KAn 
np 

il�, 
. 1Ln1 

)1 
np np 

ICMn 
ýIKTn 

1i a.., +[ n1K/'ln +K^n x(1ic' in 
ýG^n K^n xrf KTn1K^n 

lYl�, -L�, lnp J afu gp ý1LPn JLnI npJ ý1Ln1 . 1Lnl 1`L 9p pJ ýli, pn 

e 

'ý'%ii 
Ken x KV n+ %%Z Ken iýýKdLn iýKVn)_KMn _K 

M" KMn 
_K*, 

tn 
ll np h np ni h pc Ji Th Wy Ji 

(A4.32) 

Using the matrix form of the cross-product expressed in (4.3), Equations (A4.27) and 
(A4.28) can be expressed as follows: 

"e 
xý. n _M xVn_m xen xýn+m OR vn 

j, np np nr np nr ýr (A4.33) 
+m,, 

PLxQnjJLxflnrlen 
Tn^KwP xAnP 

"0 
xnxn -6""j+ rxnKnKMKnKnhKnx fl n MJr-[hlnp] 

L9PIp1 pn`f-17lnp[ 
8 Vhf' 

JiInp 
ýnf+ý ýnlý[gpI all 

PI l". 
+m Ken Knn ýrn_-xMn 

_KMn_KMf _KMn 
np 

flnt 
1' J, lýl 

pc J, 1ý1T 1, W, 1, A, 

(A4.34) 

Now, by defining 

KC3= %%inp[KÜni J Vh + 
np ni ni n 

%%1 lK, LnJLKýnJ CnýKIn-Kwp KAn 
np 

(A4.35) 

KC 
_ 

rK. ( KTn /1n + 
[ýL K/. Kiq 1Kfýq 

. 'f 1 .Ln! Ja np . lLni ni gplpJ ýLpn 111 

(A4.36) ým 
(Ken K^n KVn_lf*ýn 

ýKMnýKMq 
Kmn 

npl . 1Ln1 �0 1ýlpc It 7' 1 H', - It 
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Equation (A4.33) and (A4.34) can be written as follows: 

K Fn=m 
�P 

" V% _m, 
[K e" JK SZRI+" C3 (A4.37) 

"Mýr =%InpgplpýKSýpý I I%i»PýKýýýKV>>+K C4 (A4.38) 

o 

Substituting the '1, and from Equations (A4.6) and (A4.13) in Equation 

: (A4.37) then 

w Fn =K C5 + [K c6]Vö + [" C7pöi +[ CS]'C 
a (A4.39) 

where 
r'C5 = m"pxC2-mnpre"jC1+KC3 (A4.40) 

["C6] = mnp c [DCMT" (A4.41) 

[KC7]=-m�p'[DCMf"["d"]-m"p["e"r[DCM]"° 
(A4.42) 

= -[K 1.6][x d°]- 
[K 

C" 

1K C6] 

["C8]=-mRP[Ke"] (A4.43) 

Similarly, using Equations (A4.6) and (A4.13), then Equation (A4.38) can be written in 

the following form: 

K1Ylh=K C9+["C10]Vö +C"C11pÄr+[irInpý"S2ýQ+[gpIp]KSZpa 

(A4.44) 

where 

"C9 =[j, InPl C1+/rin, C"C"l C2+" C4 

=i' IJ C1-[" C8ý` C2+" C4 
(A4.45) 
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[" CIO] = map [" e" I [DCM]"° _ [lee, ][" C6] (A4.46) 

;, I Pt [DCM]"°-m"p["e"r[DCM]"°["d°] 
(A4 

=j;, In t[DCM]"°-["e"ý["C6]ý"d°] (A4.47) 

Now, using the following relationships 

K F%=x [DCMT °"F2 (A4.48) 
K Mj, 

=" [DCMý'AK M;, (A4.49) 

Equations (A4.39) and (A4.44) can be written as follows: 

"Fi, _"C12+["C13], 7 +["C14Jo:, +["C15]"S2nQ 

(A4.50) 

"M°,, ="C16+["C]7]Vö +['C18p. "j+{KC]9]', " C20]K6p' 

(A4.51) 

where 

K C12=" [DCMf n" CS 

["C1+K[DCMr"[K C6] 

(A4.52) 
[" C14}K [DCM ]"" [" C7] 

[" CI Sý" [DCMT" [" C8] 
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K C16=" [DCMT °" C9 

[" C]7]"[DCMr"["CIO] 

[x C18]K [DCMrn {K Cl l] (A4.53) 

[` C19}" [DCMT"[ I, P] 

["C20} [DCMT"[8PIP] 

Using Equation (A4.50) the term [K d° `F,, in Equation (A4.24) can be expressed in the 

following form: 

e 

[Kd°J"F;, ="C21+["C22]V° +[KC23]Oar +["C24]"£1 (A4.54) 

'C21 =[K d° I C12 

["C22] = {"d°IKC]3] 

["C23] =["d°I"C]4] 
(A4.55) 

[KC24]= C"d']["C15] 

Now, using Equations (A4.50), (A4.5 1) and (A4.54) to substitute the associated terms in 

Equations (A4.23) and (A4.24), then: 

W. " + Aa-'C12-['C]3]Vo -['C]4}1ä, -['C]S]'dnQ 
. 

-'C12-ýýC13ýVö -[ýC14} : 1-['C15ý'SZý, =ma / -mQ`bQ : i+C25 

(A4.56) 
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0Mµrý 
+0Mý -'C16- 

['C]7]V: 
- 

['C]spot 
- 

[rC19}' Clna- [*C20] ýn; 

-'C16-['C]7]V. -['C181d. ', C19ýrSZýa-['c2oI mit 
� 

-'C21 - 
['C22]V,, " - 

['C23}är - 
['C24]a 

-rC21- 
['c22]': 

- 
['C23pa, 

- 
[rC24] rrna 

_ 
[01, ar +ma[ba]V; +C26 

(A4.57) 

where 

C25 = mp [SZr]V° + ma ýSZärýýýärýa (A4.58) 

C26 = [5l a, ][oIa f'ß, + ma [b" ][fly, ]V. (A4.59) 

In more simplified form the Equations (A4.56) and (A4.57) can be expressed in terms of 
the selected state variables as follows: 

[C27]Vo + [C28]Oar + ['C15]'S2na+ ['C]5} 1 nna = C29 

(A4.60) 

[C30]Va +[C3]Ja, +['C32]'S2na+['C32] 
d 

a+['C20] 
'SýPn+[ýC20] 1 SZPn = C33 

(A4.61) 

where 
[C27] = m[I ]+ ['C]3]+ ['C]3] 

[C28] = -ma 
[ba I+ ['C]4]+ ['C]4] (A4.62) 

C29 = WÄ + Aa-'C12-`C12- C25 
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[C30] = ma [b" ]+ ['C22]+ [lC22]+ ['C17]+ ['C]7] 

[C3]]= [, Ip]+['C23]+[IC23]+['C]8]+['C]8] 

(A4.63) 
['C32] = [C24] [" C19] 

C33=0MH,. +0Mý. -'C16-'C16-C21-'C21 - C26 

A4.4 EQUATIONS OF MOTION OF THE BODY "P 

For the body 'P, we only need the angular equations of motion. Therefore, starting with 
Equation (A3.3) we have: 

BP 
M' 

dt BPIPlKfl"J+Kf,; ")I (A4.64) 

Expanding the derivatives by using Equation (4.6a) and using matrix representation of 

cross-product, Equation (A4.64) will take the following form: 

KMn 
__r 

In1Kf2n+(KIn1Kon +(xýnýrxInýCýn +[% ýný(KI ap 
8P P 

19p 
PJ niIs PJ Pn L nt L8p P1 ni L&P P Dn 

(A4.65) 

' MP can be expressed in terms of components as follows: 

"` M" =" M" + "M" + "M" + "M" +K M" (A4.66) 8P P Pý 8P T dP wl RP AP Ji 

substituting in Equation (A4.65) yields: 

e 
KMJ, 

-jgplpýKýnt+[gpIp, 
KOn +C34 (A4.67) 

where 
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C34S2"ý"IRI"DN+"S2" )"M" -"M"-"M" -"M" "t Sp p "t P. oC to r an W, ip A, 

(A4.68) 

Now, using Equation (A4.6) to substitute for "fl in Equation (A4.67), then: 

"M,, ="C35+["C36]6oi+['I' 
]'fl. "Q+1 IP1K6vý 

(A4.69) 

where 
'C35=[w ; 

I; 1 C1+" C34 

(A4.70) 

["C36] =[ävIr1K [DCM]"a 

A4.5 EQUATIONS OF MOTION OF THE AIRCRAFT MULTIBODY 
SYSTEM 

Using Equations (A4.60), (A4.61), (A4.44) for right and left side and (A4.69) for right 
and left side, the general equations of motion of the aircraft multibody system can be 

expressed in matrix form as follows: 

[C27] [C28] ['C/5] ['05] [0] [0] vo 

C29 
[C30] [C31] ['C32] ['C32] ['C20] ['C20] C33 
['CIO] ['Cll] 1" 

"A] [o] [dplPý [ý%] rýn 

ono 
1ý --'C9+'i, lh 

['C1o] ['C11] [0] { 
,i] 

[0] 1 ', IP] aý° 'c9+'Atý, 
[0] ['C36] [8,1"p] [0] [1`1"P] [0] fz 

^ -'C35+' 1, 
[0] ['C36] [0] [1, ', Vp [0] [dnlp] 

ý� -'C35+'1ý1j, 
A^ 

(A4.71) 
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In conventional form for dynamics systems the above equation can be represented by the 
following form: 

MS" =F (A4.72) 

where, M is the mass matrix, S' is the state vector and F is the force vector. 

Proof of the mass matrix symmetry 
Some of the useful relationships that will be used to prove the mass matrix symmetry are 
as follows: 

For a skew-symmetric matrix S 

[S]T = -[S] 
[S] = -[S]T 

(A4.73) 

For Direction Cosine Matrix 

({DcMT')T 
= [DCMT° 

([DcMr' 
= 

([DCMr)T 
= [DCM), " 

(A4.74) 

Now, 

["C]5]" [DCMT" [KCB}K [DCMr" (-m"p )[K e" ]= 
-111,, P 

x [DCMT" [" e" 

(A4.75) 
and 

! tl"p["e"I [DCMT" =m"pC-[" e"}r)e[DCMJ"", 
r 

(_mpK [DCMf" [Ken])' 

(A4.76) 

Comparing (A4.75) and (A4.76), then: 
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[K C10]= [' CI S}T (A4.77) 

Also, 

[C28] _ -ma [b° ]+ ['C]4]+ ['C]4] 

= -ma 
[ba }+' [DCMT n ['C7]- ' [DCM)"" ['C7] 

=-mq[b°} '[DCMJmn(mnpr[DCMT°['d°]-m. 
p['e"][DCM] 

) 

+'[DCM]""(m"P'[DCM]"°[cd°]-in"p['c"]'[DCM]"°) 

=-ma[b°]-m�p['d°] -m�p'[DCMT�['c"]'[DCM]�° 

-m�v['d°]-m�p'[DCMf"[te�l [DCM]�° 

(A4.78) 

and 

[C30]=ma[b°]+['d"I'C]3]+['daI'C13]+'[DCMr"['CIO} ' [DCMr"[lC10] 

= ma[b°]+['d"]'[DCMr"['C6] +[rd"1 [DCMr"['C6] 

+'[DCMT"(m"PX'e"I[DCMr' +r[DCMr"(nm"p)[lc"]'[DCMr 

--ma[b"]T -m"P['d°}T -m"r[ld'f 

+m"v('[DCMr)T(-['e'yX [DCMT")r +nI"P('[DCMr")r)( [DCM]a")r 

-ma[b"y -m"a[rd°]r -m"a[Ida 

-(m"v(r[DCM]°"X[re"]X'[DCMTa))T -(mRp([DcMrX[1eM 1]Jl'[DCMT°)1r 

(A4.79) 

Comparing (A4.78) and (A4.79), then: 

[C30] = [C28]T (A4.80) 
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Also, 

["C32]= ["C24I"C]9]= [w d'I"C]5}+-"[DCMJ' [ i: p] 
_["d°}`[DCMý'"["C8}t-"[DCMT 

[i, i: ý 

=["dai [DCMT (m"pre"}+-"[DCMf"[;, Iýr] 

=-m"r[Kd"j[DCMT"[Ke"}+r[DCMT"[iimr} 

(A4.81) 

and 

p"Cll] = -m, 
[K&"I"d°j[DCMra[s`as]+[%Isp]"[DCMrp 

= m"p([Ke"J 
X [DCMT")T ([Kd"]T, 

+([, I"pjrX"[DCMr ) 

(-m"pId" I [DCMr"[le e"Dr +("[DCMr"[! ýI"pj)T 

(A4.82) 

Comparing (A4.81) and (A4.82), then: 

["CI1]= [rC32]r (A4.83) 

Also, 
["C20ý" [DCMr" [ pPlö l (A4.84) 

and 

["C36]=[SPIP]'[DCMý"A = ([SPIP1)T ('C[DCMr"lT =(" [DCMr"[IPIPl) 

(A4.85) 
Comparing (A4.84) and (A4.85), then: 

["c36]= ["c2oT (A4.86) 

Also, 

[C27]= ma []] + ['C]3]+ ['c]3] (A4,87) 
since 
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ma [1 1 Symmetric 

and 
["C]3ý" [DCMr" ["C6}" [DCMr" m°P"[DCMT ° (A4.89) 

= m°[l4 Symmetric 

[C271 Symmetric 

Also, 

(A4.88) 

(A4.90) 

[C3]J= [. I: ]+['C23]+['C23]+['C]8]+['C]8J (A4.91) 

since 
[ IQ ] Symmetric (A4.92) 

and 

(A4.94) 

the terms -m�p[K da I'd"] and [ Inp] in Equations (A4.93) and (A4.94) are symmetric. 

Also, summation of the terms and - m�j" e° 11C d° j is symmetric. 

Therefore 

['C23] 
= 

[K 
da 

][K 
CI4] .. 

[K dQ I` [DCMT� 
[K 

CJ 

_[Kd°I[DCMT(m.. "[DCM]"°["d°]-[DCM] 

=-m�P["d°J"d°]-m�p[d°I [DCMr"[e"I [DCM]�° 

--m�P[Kd"Izda}- m�r[kdAIK ea] 

(A4.93) 

["C]8}"[DCMT"[xCll 

:K[DCM r" ({ Inp j[ DCM ]" o_ m"P [K e" i`[ D CM j" A[ K a" I) 

[le I, " -m"n11, e"Axa"I 

[C31) Symmetric (A4.95) 
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The obtained results from previous calculations can be summarised as follows: 

[C27][C31] 

xIA Symmetric 
Li' npl 

xIý BP Pý 

(A4.96) 
[C30] = [C28]r 

['C10]= ["C]5]T 

["Cll]= ["C32]T 

["C36]= ["C20]r 

The above conditions are exactly the necessary requirement for the matrix M to be 

symmetric. Therefore, the symmetry of mass matrix is proved. 

Final form 

Considering the constraints mentioned in Section 4.5.6 and defining the following 

vectors: 

0 
o 00 rn "8 

na '_n 

0 

PU 

Star =Q, V, -V 
RW 

0 O 00 

iýn is . na A 

0 

0 

pn 
U 

0 

'N 
0 ' ý; 

n 
0 
0 

(A4.97) 

the final expanded, tenth order system of equations can be expressed as shown in 
Equation (A4.97). 
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In this equation 

"Mi,, ="MS (A4.99) 

KPD 
Mý 

PC 
(A4.101) 

The right side of the Equation (A4.98) can be broken down into the two parts as follows: 

C29x 
C29y 
C29= 
C33x 
C33, 
C33= 

-'C9y+'MJ4, y 
-IC9y+'M;,, 

-'C351 +'M;, 
j 

--1C35x+'Mý, j 

C29Ax 
C29AY, 
C29At 
C33As 
C33A, 
C33A= 

-'C9Ay 
-'C9Ay 

-'C35Ax 

_-'C35A, 

i+1 

C29B, 
C29Br 
C29Bt 
C33BR 
C33By 
C33Bz 

-'C913,, +'M j, r 
-'C911ý, +tMi, r 

-'C35B, +'M;,. 

-'C3SBJ+'M;, 

(A4.102) 

The first term in the right hand side of the Equation (A4.102) is called the dynamic 

vector and the second term is the vector summation of all the aerodynamic, gravitational 
and thrust forces and moments. 
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APPENDIX ß1 

In this appendix, the method of calculating the position vector LS and the code Kss " 
defined in Section 5.2.2, for each individual component is presented. 

All the position vectors and axes systems necessary for the following calculation in this 

appendix are shown in Figure B 1.1. The X-axis of a local coordinate frame is parallel 
with the zero lifting line of the corresponding airfoil or with the axis of symmetry of the 

corresponding streamline body. In addition, except for XVYbIZV coordinate system, the 

Y-axis of all other on-board coordinate frames are parallel. Therefore, one angle is 

sufficient to define the relative rotation between two adjacent frames and the associated 
Direction Cosine Matrix. These constant angles and associated sign convention are 

shown in Figure B1.2. The angles X., X., are the incidence angles of the wing and the 

horizontal stabiliser, respectively. It should be noticed that in the following calculations 

the effect of each propeller on the fuselage and the components of the tilting part "np in 

the opposite side of the aircraft is neglected. For example, the right propeller does not 
affect the left wing. 

Starting with the necessary transformations, we have: 

'L2 h= [DCMT h 'L2h4 ; 'L2b = [DCMT" 'L2, h 

'L2',, = [DCMT" "L2, ' ; 'L2 
,, = [DCMT' 'L2v (D 1.1) 

'L2'., = [DCMr' 'L2w ; 'L2 ,, = [DCMJrw 1 L2W 

'L2ý = [DCMrw 'L2w ; lL2N, [DCMrW 'L2w 

where, 
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Cos%,. 0 SinX hq 
[DCMr' =010 (B1.2) 

-Sink hQ 0 CosX, ha 

100 
[DCMr" =001 (B 1.3) 

0 -1 0 

Cosa,,, 0 Sink 
[DCMrW 010 (B 1.4) 

-SinX wa 
0 COSX 

wa 

COS%nw 0 Sint' 

[DCM]nW =010 (B 1.5) 

-Sinxnw 0 Cos%�w. 

Also 

"[DCM1 "=" [DCMjm [DCMr" (B 1.6) 

where 

Co? 8,0 Sin" 0, 
"[DCMJr =010 (B 1.7) 

-Sin" 0,0 Cos" 0, 

100 
[DCMT" =0 Cos" V. -Sin" (B 1.8) 

0 Sin" V. Cos" ip, " 

Now, for the constituent components of the empennage, we have 
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"LS;, =" [DCM]r°"LS' V= hr, hl, vu, vl (B 1.9) 

where 
'LSP, ='[DCMT°('Lln+'L2%-'d°)- (f +j") 

'LSht=r[DCMT4 ('L1a+1L2a-'da)-(f'+ j" (131.10) 

'LSna="[DCMr°("Llv+"L2y-'d4) -(f" +1") 

'LSv, =r[DCMT4('L1a, +lL2, -'da)-(f" + j") 

'LS»�=f [DCMr°("L1h+'L2h-! d°)-(f'+j") 

ILS;,, =1[DCMT°('L1a+sL2'-ld°) - 
(f" +J`) (B 1.11) 

'LSnu=`[DCMr°(°L1a+"L2a-rd°)-(f" 

1 LS"� , =1 [DCMT a(1 Llv +'L2',, -'da) - (f "+ j-) 

Applying the criterion (5.38), then 

If (rLSs)2(COSK 042 +("LS", S 025 Kssconl D2 (Cos "©s)2 

then "Kss� =1.0 Else "Kss� = 0.0 ;x=r, 1 ;v= hr, hl, vu, vi 
(B 1.12) 

Similarly, for the constituent components of the tilting body "np 
, we obtain 

rLSar=r [DCMT" "LS"r 

'LS' ='[DCM]`"'LS, j (B1.13) 
"LS-,,, =[DCM]'" LSD, 

'LSD,, =' [DCM1`"' LS" 

where 
'LSn, =('kl"+'k2")^(f" + 

(B 1.14) 'LS, ' 1 =(`k1"+'k2")-(f" + j" 



Appendix BI 259 

Tilt-nacelle 

rLSNr=r[DCM]na(rL1N+rL2N -rda) - 
(f � +j�) 

LSnf,, - _1[DCM] �a (t'L1a +rL2o _ºd0)1-(f� + .� 
(131.15) 

ý 

Tilt-wing 

'LS",, _ ('h"+'L2R, ) 
- lf" +i") 

'LS",, =(1h"+'L2', 
) 
-(f" + j") 

iB1.16) 

Using criterion (5.38), then 

If (rLSS)2(COsrO)2 +('LS", 
t) 

25 025 Kssconl D2 (Cos '0. ) 2 

then 'Kssn, =1.0 Else 'Ksss, = 0.0 

(B1.17) 

If ('Ls', )2(Cos' e3 )2 + ('Ls )2 S 0.25 Kssconl D2 (Cos tos)I 

then 'Kssn, =1.0 Else 'Kss�1= 0.0 

(B1,18) 

S 025 Kssconl D2 (Cos 'Os)2 If ('LSr, )2(C0S'OS)2+('4r*)2 

then 'Ksswr = 1.0 Else 'Kssw, = 0.0 

(ß1.19) 

If ( +('LSwl, )2 S 025 Kss conl D2 (Cos'©s) 

then 'Kssw, =1.0 Else 'Kss,, 
I = 0.0 

(B 1.20) 
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APPENDIX ß2 

In this appendix, the calculation of local velocities and the transformation of the 

aerodynamic force and moment vector associated with each individual component to the 

main axes system are presented. All the necessary position vectors are defined in Figure 
(B1.1). 

For the constituents parts of the emppenage, we have 

rV,; cý = [DCM} "I VACI, 

uvv = DCM vauVa 
AC, 

LJ 
ACr 

I VAC= CDCMJha 1 VA A,, ACS 

'VAC, 
= 

[D Mra 1 VAC, 
(B2.1) 

where 

, VACS 
'vp +n ,x (r L1 +"L2, ")"rKSStir'[DCMrn'Wlnd-'KSSh,! [DCMr"1Wind 

VAaC* = Vö + ca:, X(' Ll h +1L2h )--'Ksshl"[DCMr"' WWnd-'Ksshl l [DCMT n1 Wrnd 

a+ na, X ("L1 °, +" L2ý)-'Kssý; [DCMý""' Wrnd -'Kss�Y' [DCMr" 1 Wind Y VAC,, 
= V0 

1 VACv = Vo +SZa; x (1L1a+1L2v)-'KSS�ir[DCM]""'Wrnd-'Kssy, '[DCMr"l Wind 

(82.2) 
Also 

"Ah = [DCMrh"Ah 

'Ah = [DCMr' Ah 

"Aa = [DCMT""A' 

'Av = [DCMT" A; 

and 

.M 
Ba =[DCMT"M"4+('r: +'L2F)x'Ah 

g'MGM = [DCMrn' MAh" 

86 
Mý = [DCMrY"M;. 

eMý =[DCMr'M;, +('r, °+'L2: )x'AM 

(B2.3) 

(132.4) 
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where 
'r"-rLl° -o° h-h 

'rh°='L1h° -o° 
° r° =°Ll° - o° YV 

(B2.5) 

'r°='Ll° - o° YY 

For the fuselage 

v; 
1=v 

+S2Ä; x(L1f+L2f) (B2.6) 

also 

gbMA, =M44, +(rf+L2f)xAf (B2.7) 

where 

rr =L1f-oa (B2.8) 

For the wing in the case of Tilt-nacelle 

VA"C. [J 
ACw 

(B2.9) 
VAC. _ [DCM)" 1 VAc� 

where 
?aarrarº VAcw = VO +S2a, X L1a 4+ L2W)- Kss,,, [DCMVn 'W na 

(B2. io) ' Výcw =V0 + S2ýj x ('L1w+'L2w)-'KssWß' [DCMT ' wI d 

"L1W="d° +[DCMT"" hw (B2.1 1) 
Also 

'Ad = [DCMrW'AW 

'AW = [DCMr'AW 
(B2.12) 

and 

0Mý _ [DCMrw'MA, +('L1w+'L2w)X'A,, 

Om% ý [DCMTW SM4 +('L1w+'L2w)X'Aý, (B2.13) 

and, in the case of Tilt-wing 
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'VAC = [DCM]wn , VAC" 
" (B2.14) 

rV AC" = [DCM ]wý' V, c. 

where 
rn +rf2n1 XIr hn +rL2M, 

)-rKSSwr rw nd I v" 
AC. J2 

In11n 

\J 

n1nltn 
(B2.15) 

VAC. J2 n= vn + S2nl Xh+ L2,, )- Kssxr wrna 

Also 
rtlw = [DCM]nw7AW 
'Aw 

=[DCM]nwjAw 

ýBZ. IÖý 

and 
Wrmw 

, ýM; = [DCMf 
Aw +(rhn+rL2w)xrAw 

, 
'M; 

ß = [DCMTW IM' +('h"+°L2", )x'A�, (B2.17) 

For the nacelles 
, VAC�-rVJ1+r. 0n! X("kln+rký. n)-'Kss 'Wind 

!n! h+rS2a ! kla+rk2n -IKss! � 
(B2.18) 

VAS^ = V, 
zn! 

xý n! 
Win 

ALSO 

rmn +('kl"+'k2")X'A. " 

'Mn=1M" +(lkl"+tk2")X'A°ý 
ýB2.19) 

and finally for the propellers 

, 2MÄ ='Mý +f"x'A" rºp (82.20) 

ý'M, +r=lM1 +f"x'Aä 
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APPENDIX B3 

In this appendix, some more detail about the mass moment of inertia calculations 
presented in Section (5.4) is given. 

For the constituent components of the empennage, we have 

ra ýgbIh, 
= grhlah, 

+ m{rro 
} 

! Ia _ 
IIa ý, m : ra 

[gb 
hJ` gh hhh 

(B3.1) ýgblr] ̀[? V 
vJ+mvw{°r. 

} 

I Ia 

` [811a 1gb vv vJ 
+mv! {r rv a } 

where 
{g Ih ]= [DCM]°n[, 'Ih][DCM]n° 

[8IIa]_ [DCMTn[84'Ih][DCM]n° 

I°, ]= [DCM]°"[, Iv][DCM]"° 
(B3.2) 

F 
Bv 

Ia ]= [DCMT" [, ' 1"][DCM]"° 

For the fuselage 
ýsbIf1=lel; ]+mtlril (133.3) 

For the wings, in the case of Tilt-nacelle configuration 

10IZ, 
] = [gwI' ]+ m{'L1w} 

(ß3.4) 
10 wj 

[8wIW]+mW{'Llw} 
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where 
F r14, ]= [DCM]°w[BWIW)DCM]'"° 
Ih 

IW ]= [DCM]"w IW JDCM]w° (B3.5) 

9W w 

and, in the case of Tilt-wing configuration 

r lý' IwJ L(tW', 11 +W lr hn f (B3.6) [Jiin 
=LBwIW, -t-I/tw{1,1" 

where 

[ 
BW 

jR ]= [D CM ]nw f, ' IW ][D CM ]wn 

r 'Ir]= [ACM]"w[BWIw][DCM]w" 
(B3.7) 

For the nacelles 

1', 
1J=[8"IrJ+m" ýkl" 

I.,, ýIýý= (I33.8) 

and finally for the propellers 

Ihr [BPIPJ+MP{f ^ 

Hl"i"Pl+ (ß3.9) Ill im mp{fn} 



APPENDIX C 
FiQ «_ I)- The VTOLUMA simulation program hierarchial structure 

'f ý', 

PROGRAM 
INI TIAL 

IN PUT DATA 
Set up constants 
TABLE DEFINITION 

PROPELLER 
Thrust coefficient vs pitch angle and advanced ratio 

[-Propeller power coefficient vs pitch angle and advance ratio 
ENGINE 

Engine power vs throttle setting and rpm 
AI RFOIL 

Airfoil CL vs angle of attack 
Airfoil CD vs angle of attack 
Airfoil CM vs angle of attack 
Airfoil CLdelta vs angle attack 
Airfoil CMdelta vs angle attack 

ST REAMLINE BODY 
Streamline body CM vs angle of attack 
Streamline body CDwet 
Streamline body COd II fu 

INI TIALIZING 
Untitled calculations 
Set u reference inputs, states and control gains 

CALLSETCONT 
Initialization of reference inputs and reference states 
Read Gainp 
Substitution the Gain matrix into the Gainf matrix 

Transformation of some position vectors 
Mass calculations 
Weight calculations 
Calculation of the c. g. co-ords of the hvf assembly in a-axes related to 0 
Calculation of the position vector of the different parts of hvf assembly related to b 
Calculation of the c. g. co-ords of the bodies np in n-axes related to J 
Calculation of the e. g. co-ords of the body A in a-axes related to 0 
Set up the fuselage inertia matrix in a-axes about b 
Set up the horizontal stabilizer inertia matrices in a-axes about gn 
Set up the horizontal stabilizer inertia matrices in a-axes about b 
Set up the vertical stabilizer inertia matrices in a-axes about v 
Set up the vertical stabilizer inertia matrices in a-axes about b 
Set up the hvf assembly inertia matrix in a-axes about b 
Set up the nacelle inertia matrices in n-axes about J 
Set up the propeller inertia matrix in n-axes about J 
Set up the wing inertia matrices in n-axes about w 
Set up the wing inertia matrices in n-axes about J 
Set up the body np inertia matrices in n-axes about J 
set up the hvf assembly inertia matrix in a-axes about 0 
Set up the wing inertia matrices in a-axes about w 
Set up the wing inertia matrices in a-axes about 0 
Set up the bod A inertia matrix in a-axes about 0 
Set u the propeller inertia in n-axes_gp 
Zeroise matrices 
Calculation of initial E parameters 

EN DI NITIAL 

._.,. ,. _ z, 



Continue 

DYNAMIC 
Untitled calculations 
DERIVATIVE 

Untitled calculations 
FLIGHT CONTROL SYSTEM 

Calculation of control inputs 

CALL CONTROL. 
Calculation of control inputs 

Direction cosine matrix from aircraft to inertial axis 
Direction cosine matrix from inertial to aircraft axis 
Calculation of the absolute angular velocity of the body np 
Calculation of the absolute velocity of the joint 

PROPELLER 
Calculation of the ALPHAm and PSIm 
Propeller model 
Propeller total force components in m-axes 
Propeller total moment components in m-axes 
Transformation to n-axes 
Calculation of the moment generated by the propeller total force about J in n-axes 
Propeller total moment about in n-axes 
Calculation of the moment generated by the propeller total force about in n-axes 

EN GINE 
Engine model 

Ac tuator model 
Transformation of the weight of the body n to n-axes 
Calculation of the moment generated by the weight of the body np about J in n-axes 
The moment of the propeller weight about in n-axes 
Transformation of the weight of the body A from i-axes to a-axes 
Calculation of the moment generated by the weight of the body A about 0 in a-axes 
SL IPSTREAM EFFECT CHECKING 

Calculation of the slipstream velocity and THETAs 
Set u the sli stream influence codes 

CA LL INI1. 
Set up the slipstream influence codes for the right horizontal stabilizer 
Set up the slipstream influence codes for the left horizontal stabilizer 
Set tin the sli stream influence axles for the upper vertical stabilizer 
Set u the slipstream influence codes for the lower vertical stabilizer 
Set u the slipstream influence codes for the right wing Tilt-rotor conf. ) 
Set up the slipstream influence ccxles for the left wing Tilt-rotor conf. ) 
Set up the slipstream influence codes for the right nacelle 
Set u the slipstream influence codes for the ICtt nacelle 
Set up the sli ýstý retort influence code for the ri&ht wind ýI ill g conf. ) 
Set u the sli stream influence code for the left wing Wilt-win conf. ý 

AI RFRAME ALRODYNAMICS 
Ca lculation of the aerod namic forces and moments of the body A 

CALL AEROIIVFW 
Cal. of the acrod, forces and moments of the righthoriiontal stab. 
Cal. of the aerod. forces and moments of the left horizontal stab. 
Cal. of the acrod. forces and moments of the:. uppcr vertical stab. 
Cal. of the aercxi, forces and moments of the lower vertical stab. 
Cal, of the acrod. forces and moments of the fight wind (Tilt-rotor 
Cal. of the aeroxi. forces and moments of'the left win Tilt-rotor 
Cal. of the aertxl. forces and moments of the fuselage 



Continue 
'O% 

Calculation of the aerodynamic forces and moments of the hvfw assembly 
Ca lculation of the acro. fors. and moms. of the elements of the body n at right and left 

CALL AERONW 
Calculation of the aerodynamic forces and moments of the right nacelle 
Calculation of the aerodynamic forces and moments of the left nacelle 
Cal. of the aerod. forces and moments of the right wing (Tilt-wing) 
Cal. of the aerod. forces and moments of the left wing (Tilt-wing) 

Ca lculation of the aerodynamic forces and moments of the right and left propellers 
Calculation of the aerodynamic forces and moments of the right and left bodies np 

Ca lculation of the vectors and matrices required to build up the mass matrix and total for. vec. 
Calculation of the mass matrix 
Invert mass matrix 

CALL INVERT 
Calculation of inverse mass matrix 

Dynamic vector 
Total force vector 
Acceleration vector 
Rate of change of E parameters 
Velocity vector in i-axes 
Integration 
Aircraft attitude 

EN D DERIVATIVE 
DISCRETE 
ENI) DISCRETE 
Termination calculations 

EN D DYNAMIC 
TERMINAL 
END TERMINAL 

EN D PROGRAM 

.:.. 


